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ABSTRACT
We develop a Bayesian method of analysing Sunyaev–Zel’dovich measurements of galaxy
clusters obtained from the Arcminute Microkelvin Imager (AMI) radio interferometer system
and from the Planck satellite, using a joint likelihood function for the data from both
instruments. Our method is applicable to any combination of Planck data with interferometric
data from one or more arrays. We apply the analysis to simulated clusters and find that when
the cluster pressure profile is known a priori, the joint data set provides precise and accurate
constraints on the cluster parameters, removing the need for external information to reduce
the parameter degeneracy. When the pressure profile deviates from that assumed for the fit,
the constraints become biased. Allowing the pressure profile shape parameters to vary in the
analysis allows an unbiased recovery of the integrated cluster signal and produces constraints
on some shape parameters, depending on the angular size of the cluster. When applied to real
data from Planck-detected cluster PSZ2 G063.80+11.42, our method resolves the discrepancy
between the AMI and Planck Y-estimates and usefully constrains the gas pressure profile shape
parameters at intermediate and large radii.

Key words: methods: data analysis – galaxies: clusters: general – galaxies: clusters: in-
dividual: PSZ2 G063.80+11.42 – galaxies: clusters: intracluster medium – cosmology:
observations.

I N T RO D U C T I O N

With the advent of large Sunyaev–Zel’dovich (SZ) effect surveys
carried out by instruments such as Planck (Planck Collaboration
XXVII 2016), the Atacama Cosmology Telescope (Hilton et al.
2018), and the South Pole Telescope (Bleem et al. 2015), SZ
observations have the potential to become a powerful tool for con-
straining, for example, cosmological properties via cluster number
counts. Numerical simulations show a tight, low-scatter correlation
between the SZ observable, the Compton-y parameter and cluster
mass (e.g. da Silva et al. 2004, Nagai 2006), but recent attempts
to use SZ cluster number counts for cosmological analysis have
produced results in tension with other, more mature methods such
as the cosmic microwave background (CMB) primary anisotropies
(Planck Collaboration XXIV 2016). One issue is the uncertain mass-
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observable calibration, although another issue is the modelling of
the observable itself.

Perrott et al. (2015, hereafter P15) compared properties of 99
galaxy clusters observed in SZ with Planck and the Arcminute
Microkelvin Imager (AMI) radio interferometer system. They
showed that the discrepancies between the cluster parameters as
constrained by AMI and Planck could be explained by the cluster
gas pressure profile deviating from the profile assumed for analysis.
The AMI observations were shown to be particularly sensitive to this
effect when attempting to constrain the total integrated Compton-
y parameter due to missing angular scales. It was noted in P15
that the combination of the two instruments would be powerful
for investigating the gas pressure profiles of the clusters due to the
complementary angular scales measured. In this paper, we explore
this idea further by developing a joint Bayesian analysis pipeline
that combines the data from the two instruments. We note that
this pipeline could also be used with other interferometric data,
for example from the Atacama Large Millimeter/submillimeter
Array (ALMA) which has recently been used for SZ analysis
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(e.g. Kitayama et al. 2016) and in the future for the Square
Kilometre Array (SKA), which will be able to observe the SZ
effect in its highest frequency band (Grainge et al. 2015). The
pipeline would also be easily extended to include data from other
single-dish instruments such as NIKA(2) (e.g. Adam et al. 2014).
This work joins a growing body of analysis combining SZ data
from different instruments, sensitive to different angular scales.
Recent works such as Sayers et al. (2016), Ruppin et al. (2017),
and Di Mascolo, Churazov & Mroczkowski (2018) all combine
Planck Modified Internal Linear Combination Algorithm (MILCA;
Planck Collaboration XXII 2016) y-maps with SZ data from other
instruments to jointly fit the gas pressure profile, while Romero
et al. (2018) use a Planck-derived prior on the integrated Compton-
y parameter; however, to our knowledge, this is the first time that
Planck frequency maps (rather than y-maps) have been jointly
analysed with other SZ data.

The paper is arranged as follows. In Section 2, we describe the
telescopes and data used in our analysis and in Section 3 we describe
our analysis method. In Section 4, we describe our cluster model.
In Sections 5 and 6, we verify our method using simulated clusters
and in Section 7 we apply the method to a test case using real data.
We anticipate further work in Section 8 and conclude in Section 9.

2 PLANCK AND AMI TELESCOPES

2.1 Planck satellite

The combination of the Planck satellite’s low-frequency and high-
frequency instruments (LFI and HFI) provides nine frequency
channels in the range of 37–857 GHz. The HFI, used for cluster
analysis, has angular resolutions of 10, 7.1, and 5.5 arcmin at 100,
143, and 217 GHz and 5.0 arcmin at each of 353, 545, and 857 GHz.
The Planck frequency bands correspond to two decrements, the null,
and three increments in the SZ spectrum, making it particularly
effective at the blind identification of galaxy clusters despite its
relatively low angular resolution. See e.g. Planck Collaboration
XXVII (2016) for further details.

2.2 AMI

AMI (Zwart et al. 2008) is a dual-array interferometer designed
for SZ studies, which is situated near Cambridge, UK. AMI
consists of two arrays: the Small Array (SA), optimized for viewing
arcminute-scale features, having an angular resolution of ≈3 arcmin
and sensitivity to structures up to ≈10 arcmin in scale; and the
Large Array (LA), with angular resolution of ≈30 arcsec, which
is insensitive to SA angular scales and is used to characterize
and subtract confusing radio-sources. Both arrays operate over the
same frequency band with a central frequency of ≈15.5 GHz and a
bandwidth of ≈5 GHz; in P15 this was divided into 6 channels but
after a recent correlator upgrade the band is now divided into 4096
channels (Hickish et al. 2018), and binned down to 8 channels for
analysis after radio-frequency-interference excision and calibration.
The simulated data in this paper have the properties of the new
correlator.

3 J O I N T L I K E L I H O O D A NA LY S I S

3.1 Bayesian parameter estimation

For a model, M and a data vector, D, we can obtain the probability
distributions of model parameters (also known as input or sampling

parameters) � conditioned on M and D using Bayes’ theorem:

Pr (�|D,M) = Pr (D|�,M) Pr (�|M)

Pr (D|M)
, (1)

where Pr(�|D,M) ≡ P(�) is the posterior distribution of the
model parameter set, Pr(D|�,M) ≡ L(�) is the likelihood
function for the data, Pr(�|M) ≡ π (�) is the prior probability
distribution for the model parameter set, and Pr(D|M) ≡ Z(D) is
the Bayesian evidence of the data given a model M. In this paper,
we will be interested in the posterior distributions of the sampling
parameters rather than the evidence, which would be used for model
comparison. We use the nested sampling algorithm MULTINEST

(Feroz, Hobson & Bridges 2009) to calculate our posteriors.

3.2 Model parameters

The model parameters can be split into two subsets (which are
assumed to be independent of one another): cluster parameters
�cl and radio-source or ‘nuisance’ parameters �rs. The cluster
model parameters are relevant to both AMI and Planck data, and
are detailed with their associated priors π (�cl) in Section 4. �rs

are relevant only for AMI data, since they are used to model the
radio-source contamination of the SZ cluster signal recorded by
the SA, based on values measured with the LA. More information
on the prior distributions used for �rs can be found in Section 4.3
of P15.

3.3 Joint likelihood function

If one has an AMI data set dAMI and a Planck data set dPl, then the
joint likelihood function for the data is given by

L(�) = L (dAMI, dPl|�,M) . (2)

In this analysis, we treat dAMI and dPl as being independent (see
Section 5.3 for justification), and since the Planck predicted data
only rely on the cluster parameters we can write

L(�) = LAMI (dAMI|�,M)LPl (dPl|�cl,M) . (3)

3.3.1 AMI likelihood function

The AMI likelihood calculation is detailed in Feroz et al.
(2009, hereafter F09). Briefly, the AMI likelihood function
LAMI (dAMI|�,M) ≡ LAMI(�) is given by

LAMI(�) = 1

ZD

e− 1
2 χ2

AMI . (4)

Here, χ2
AMI is a measure of the goodness-of-fit between the real and

modelled data and can be expressed as

χ2
AMI =

∑
ν,ν′

[
dAMI,ν − dp

AMI,ν(�)
]T

C−1
AMI,ν,ν′

× [
dAMI,ν′ − dp

AMI,ν′ (�)
]
. (5)

In this expression, dAMI,ν are the data observed by AMI at frequency
ν and dp

AMI,ν(�) are the predicted data generated by the model at
the same frequency. CAMI,ν,ν′ is the theoretical covariance matrix
for the AMI likelihood, which includes primordial CMB and source
confusion noise as described in Hobson & Maisinger (2002) and
F09 (section 5.3). Source confusion noise allows for the remaining
radio-sources with flux densities below the flux limit Slim that the
LA can subtract down to. The instrumental noise is estimated from
the scatter of the visibility measurements within an observation.
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Referring back to equation (4), ZD is a normalization constant
given by (2π)D/2|CAMI|1/2, where D is the length of dAMI (i.e. the
combined vector of data from all frequencies).

3.3.2 Planck likelihood function

To calculate the Planck likelihood, we use a version of the POW-
ELLSNAKES (PWS; Carvalho, Rocha & Hobson 2009 and Carvalho
et al. 2012) Bayesian detection algorithm designed for detecting
galaxy clusters in Planck data, adapted to operate on a previously
determined position rather than to conduct a blind search. PWS
treats the data observed by Planck as a superposition of background
sky emission (including foreground emission and primordial CMB)
bν , instrumental noise nν , and signal from the (cluster) source sν .
The model for the predicted data vector is thus

dp
Pl,ν(�cl) = sν(�cl) + bν + nν . (6)

PWS works with patches of sky sufficiently small such that it can
be assumed the noise contributions are statistically homogeneous.
In this limit, it is more convenient to work in Fourier space,
as the Fourier modes are uncorrelated. It also assumes that the
noise contributions are Gaussian, which is very accurate in the
case of instrumental noise and the primordial CMB but may be
more questionable for Galactic emission – the deviations from
Gaussianity of bν are discussed in section 4.3 of Carvalho et al.
(2012). Since PWS is a detection algorithm, it calculates the ratio
of the likelihood of detecting a cluster parametrized by �cl and
the likelihood of the data with no cluster signal (sν(�cl,0) = 0).
Thus, the log-likelihood ratio of the Fourier transformed quantities
is

ln

[
LPl (�cl)

LPl

(
�cl,0

)
]

=
∑
ν,ν′

d̃
p
Pl,ν(�cl)

TC−1
Pl,ν,ν′ d̃Pl,ν(�cl)

−1

2
d̃

p
Pl,ν(�cl)

TC−1
Pl,ν,ν′ d̃

p
Pl,ν(�cl), (7)

where tildes denote the Fourier transform of a quantity, and CPl,ν,ν′

is the covariance matrix of the data in Fourier space.

3.3.3 Joint likelihood analysis hyperparameters

Ideally when making a joint inference from two different data
sets, likelihood hyperparameters would be used (see Lahav et al.
2000; Hobson, Bridle & Lahav 2002; Ma & Berndsen 2014) so
that the relative weighting of the two likelihoods is treated in a
Bayesian way. This allows meaningful results to be extracted when
the data sets are not in good agreement, which could be due to,
for example, systematic bias or an incorrect model. However, the
log-ratio given by equation (7) is not a probability density due
to the fact that it is missing a normalization factor proportional
to d̃Pl,ν(�cl)TC−1

Pl,ν,ν′ d̃Pl,ν(�cl). These hyperparameters affect the
normalization factor of the likelihood (it becomes a function of
them), thus the PWS algorithm is incompatible with their use as it
does not include the normalization term in the likelihood calcula-
tions [a more detailed explanation is given in chapter 8 of Javid
(2018)]. We therefore do not include likelihood hyperparameters
in our analysis. This should not be problematic when applying
our method unless the data have been incorrectly analysed or the
cluster model used is not flexible enough to describe both of the data
sets.

4 C LUSTER MODEL

Since AMI and Planck observe the SZ effect caused by the electron
gas in clusters (see e.g. Birkinshaw 1999), both telescopes measure
signals proportional to the Comptonization parameter y,

y = σTkB

mec2

∫
Te(r)ne(r) dl, (8)

where kB is the Boltzmann constant, me is the rest mass of an
electron, c is the speed of light, and σ T is the Thomson scattering
cross-section. Te(r) and ne(r) are, respectively, the electron temper-
ature and number density in the intracluster medium, as a function
of radius from the centre of the cluster (r), and the integral is over
the line of sight. If an ideal gas equation of state is assumed for
the electron gas then in terms of the electron pressure Pe(r), the
Comptonization parameter is given by

y = σT

mec2

∫
Pe(r) dl. (9)

The cluster model considered here is used to calculate a ‘map’
of y by evaluating equation (9) at different points on the plane of
the sky. It assumes a spherically symmetric, generalized Navarro–
Frenk–White (GNFW; Nagai, Kravtsov & Vikhlinin 2007) profile
to model the electron pressure

Pe(r) = Pei(
r
rp

)γ (
1 +

(
r
rp

)α)(β−γ )/α . (10)

Pei is an overall pressure normalization factor and rp is a character-
istic radius.

The parameters α, β, and γ describe the slope of the pressure
profile at r ≈ rp, r � rp, and r � rp, respectively. Our model
parametrizes a cluster in terms of observational (rather than physi-
cal) quantities: θ s is the characteristic angular scale corresponding
to rp (θ s = rp/DA where DA is angular diameter distance) and Ytot is
the total integrated Comptonization parameter of the cluster, given
by

Ytot = 4πσT

mec2
PeiDAθ3

s

�
( 3−γ

α

)
�

(
β−3
α

)
α�

(
β−γ

α

) , (11)

where � is the gamma function.
Our model therefore has input parameters �cl =

(x0, y0, Ytot, θs, α, β, γ ), where x0 and y0 are the cluster centre
offsets from the designated central sky coordinate.

A set of ‘universal’ pressure profile (UPP) GNFW shape param-
eter values were derived in Arnaud et al. (2010) as the best fit to a
sample of clusters from REXCESS (observed with XMM–Newton;
Böhringer et al. 2007). These are (γ , α, β, c500) = (0.3081, 1.0510,
5.4905, 1.177) and are often used as a fixed standard cluster profile.
In this analysis we will not restrict our model profiles to the UPP
case.

The GNFW profile extends to infinity; in practice some cut-off
radius for the y-map must therefore be defined when implementing
this model. A frequent choice, used for example in the analysis of
Planck data, is to cut off at θ = 5θ500 = 5θ sc500. For the case of the
UPP, this implies that a spherical integral to 5θ500 gives Ysph,5θ500 =
0.96 Ytot, or a cylindrical integral gives Ycyl,5θ500 = 0.97 Ytot (with the
line-of-sight integral extending to infinity within a radius of 5θ500 on
the sky). In the case of arbitrary values of (γ , α, β), this fraction can
change significantly; plus in the general case c500 is not necessarily
known so a different cut-off radius must be defined which we denote
θ lim. We choose to define θ lim for an arbitrary profile by the radius
at which Ysph,θlim = 0.95 Ytot (found via a numerical root finder)
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Table 1. Cluster parameter prior distributions. N denotes a Gaussian
distribution parametrized by its mean and standard deviation, U denotes
a uniform distribution, and δ is a Dirac delta function. In the cases where
the latter is used, the values used for the function’s argument will be stated
when the analyses are carried out.

Parameter Prior distribution(s)

x0 N (0 arcsec, 300 arcsec)
y0 N (0 arcsec, 300 arcsec)
Ytot U [0.00 arcmin2, 0.02 arcmin2]
θ s U [1.3 arcmin, 15 arcmin]
α δ(αmodel) or U [0.1, 3.5]
β δ(βmodel) or U [3.5, 7.5]
γ δ(γ model)

by analogy with the UPP. For some profiles which fall off more
slowly with radius this becomes prohibitively large and we therefore
impose a maximum radius of 10 θs. We have verified that in these
cases the Comptonization parameter integrated over the line of sight
at 10 θs is <0.1 per cent of the value at the centre, i.e. we are not
cutting off substantial cluster signal in the outskirts.

We then translate the y-map to signal on the sky at each frequency
using the non-relativistic approximation (Zeldovich & Sunyaev
1969). Recently, it has been shown that relativistic corrections may
be significant for high-temperature clusters at Planck frequencies
(e.g. Remazeilles et al. 2019); we note that relativistic effects reduce
the Planck SZ signal, so if corrections were applied the effect would
be to increase the discrepancy between AMI and Planck parameter
constraints shown in P15.

4.1 Priors

In P15, we used a position prior based on the Planck position
and error, and a joint ellisoidal prior on Ytot and θ s based on the
population of clusters detected by Planck. Here, we assign wide,
non-informative, independent priors to x0, y0, Ytot, and θ s (see
Table 1) to explore how much the combination of the two data
sets can constrain the parameters.

In the standard Planck analysis and for the AMI data analysed
in P15, the GNFW shape parameter values were fixed to the UPP
values. In this analysis, we will both simulate and analyse clusters
with non-UPP profiles and explore the constraints on α and β

produced by our joint data set. The priors used for α and β vary
throughout our analysis (Table 1); they are either fixed at some
specific value (delta function priors) or allowed to vary uniformly
(uniform priors on a bounded domain).

5 C LUSTER SIMULATIONS

For all simulations the y map of a single cluster is generated with
10 distinct noise realizations as follows. First, 10 CMB realizations
are created by sampling primordial CMB noise from an empirical
power-law distribution (Hinshaw et al. 2013) and distributing at
random positions on the sky. For each instrument, we add further
realizations of the relevant sources of noise, as follows.

5.1 Planck cluster simulations

We construct a Planck all-sky foreground and thermal noise map by
adding one noise realization to the CO, FIRB, free–free, spinning
dust, synchrotron and thermal dust emission maps simulated using

the Planck sky model, all taken from the Planck Legacy Archive1

using the FFP8 release. We note that we do not include point sources
since as of this data release they were not separated into strong and
weak point source maps, and for cluster analysis on real data the
strong point sources would be masked. We also choose not to add the
thermal and kinetic SZ emission maps as we wish to see how much
information can be extracted from the data in an ideal situation of a
single, isolated cluster.

We then randomly select 10 patch centres on the sky, with the
constraint that the patch centres are above δ = 0◦ (to satisfy AMI’s
observing limits) and that all of the 20◦ square patch is outside of the
Planck 20 per cent Galactic plane mask (in which 20 per cent of the
sky is masked). We cut patches from the all-sky foreground+noise
map at these coordinates and add the resulting patch maps to the
CMB and cluster maps to produce the final Planck simulations. Each
patch map therefore contains different thermal noise, foreground
emission, and CMB but the same cluster.

5.2 AMI cluster simulations

The AMI simulations are constructed by adding the cluster and
CMB maps to confusion noise realizations, created using the 10C
source counts given in Davies et al. (2011) up to a maximum flux
density of 360μJy (i.e. assuming sources above 4 × a typical
AMI-LA noise limit of 90μJy beam−1 have been detected and
removed). A 10-h mock AMI-SA observation is performed at the
10 patch centres used for the Planck simulations, using the in-house
package PROFILE (see e.g. Grainge et al. 2002). Instrumental noise
is also added to the mock observations, giving a total noise level of
≈120μJy beam−1 on the map.

Similarly to the Planck simulations, each AMI simulation con-
tains different thermal noise, confusion noise and CMB and the
same cluster. Each AMI simulation corresponds directly to a Planck
simulation that has the same observing centre and CMB realization.

5.3 Testing the independence of the AMI and Planck data sets

In Section 3.3, we made the assumption that dp
AMI,ν and dp

Pl,ν are
not correlated with each other, so that the likelihoods for the two
data sets can be separated. The instrumental noises associated with
each telescope can safely be assumed to be independent. Due to
the telescopes operating at different angular scales and frequencies,
the confusion noise present in AMI data and foreground emission
present in Planck data are assumed to be independent of one another.
A similar argument can be applied for primordial CMB noise,
nevertheless we carried out a simple test to see if this is the case.
For a given set of cluster parameters, we ran the joint analysis on
Planck and AMI data sets that had different CMB realizations to
one another. We found that the resultant parameter constraints were
not significantly different to the results obtained using AMI and
Planck data which had the same CMB realizations as one another
(Fig. 1). We thus concluded that the covariance between the data
sets introduced by the common CMB background was negligible.

6 C LUSTER SIMULATION R ESULTS

In the following, we apply the joint analysis to clusters simulated
as described in Section 5 and compare results with analyses which
use (the same) AMI or Planck data alone.

1https://pla.esac.esa.int/#home
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Figure 1. Two-dimensional marginalized x0–y0 and Ytot–θ s posterior distri-
butions for a high SNR (see Section 6) cluster simulation. The red contours
correspond to the posterior distribution associated with the AMI and Planck
data sets that had different CMB realizations to each other, while the black
ones correspond to data sets generated with the same realization. The star
symbols indicate the values input when generating the simulations.

Table 2. Cluster simulation inputs using an observational model and three
different pressure profile shapes. x0 and y0 are always 0, i.e. the cluster is at
the simulated map centre.

Ytot θ s γ α β

/ arcmin2 / arcmin

UPP Low SNR 0.001 2 0.3081 1.0510 5.4905
High SNR 0.007 8

PIP Low SNR 0.001 2 0.31 1.33 4.13
High SNR 0.007 8

REP Low SNR 0.001 2 0.065 0.33 5.49
High SNR 0.007 8

We consider simulations generated using three different sets
of profile shape parameters: the UPP, the parameters fitted to
a stacked Planck data set in Planck Collaboration V (2013)
(‘Planck Intermediate Profile’, PIP), and the parameters fitted to
the cluster RXC J2319.6-7313 in Arnaud et al. (2010) that are the
most different in the sample to the UPP (‘REXCESS Extreme
Profile’, REP). These values are listed in Table 2. We consider
a ‘low’ and a ‘high’ signal-to-noise ratio (SNR) clusters, which
correspond to input values of (Ytot, θs) = (0.001 arcmin2, 2 arcmin)
and (Ytot, θs) = (0.007 arcmin2, 8 arcmin), respectively. We note
that ‘low’ and ‘high’ SNR are in relation to the Planck simulations
rather than the AMI simulations, where they are both well detected.
We then analyse the 10 different noise realizations for each cluster
using the priors, given in Table 1 and plot the resulting posterior
distributions using GETDIST.2

6.1 Analysis with fixed profile parameters

First, we analyse the high- and low-SNR UPP simulations, using (γ ,
α, β) fixed to the correct input values. Figs 2 and 3 show the results
of the simulation sets using AMI data only, Planck data only, and the
two data sets combined. Each two-dimensional (2D) marginalized
posterior distribution plot shows the 68 per cent confidence contours
for the 10 different noise realizations, with the input values marked
with black stars.

In the case of the positional parameters, it is clear that the
higher angular resolution of the AMI data means that it drives the

2http://getdist.readthedocs.io/en/latest/.

posterior inferences, although the addition of the Planck data does
improve the constraints slightly in the high-SNR case. This result
is consistent for all following analyses, and we do not consider the
x0 and y0 constraints any further.

Both AMI and Planck constraints are degenerate in the θ s/Ytot

plane and previous results based on AMI and Planck data have relied
on ancillary data to reduce this degeneracy. For AMI, a correlated
prior in θ s and Ytot based on a simulated population of clusters
injected into and recovered from Planck data was used (see P15).
For Planck, a prior on θ s has been used to ‘slice’ the θ500/Y(r500)
posterior constraint based on either an X-ray measurement or a
mass-observable scaling relationship (see e.g. Planck Collaboration
XXVII 2016), both relying on the assumption of the ‘universal’ c500.
The combination of AMI and Planck data removes the need for these
ancillary priors and produces a much tighter constraint on both θ s

and Ytot since the degeneracy directions are different. This is most
striking in the case of the low-SNR cluster, but is also evident in the
case of the high SNR cluster.

We next analyse the PIP and REP simulations keeping (γ , α,
β) fixed to the UPP values in the analysis, i.e. we now have a
mismatch between the cluster profiles used to produce and analyse
the simulations. The 2D posterior constraints on Ytot and θ s in this
case are shown in Figs 4 and 5. In the case of the PIP simulations,
all of the constraints are offset from the true position; although the
direction of the offset is mostly in θ s so that the one-dimensional
(1D) marginal constraint on Ytot is not too badly offset it is clear
that any method to reduce the degeneracy by slicing the posterior
will be problematic. In the case of the REP simulations, the low-
SNR cluster constraints are not too badly affected by the profile
mismatch; this is because the change is to the inner part of the
profile which is not well resolved by either instrument. The high-
SNR constraints however are significantly biased both in the 2D
plane and in the 1D Ytot plane.

6.2 Variable shape parameter analysis

We next consider the same set of simulations described in Section 6,
but now allowing the GNFW shape parameters α and β to vary in
the analysis. We assign the uniform priors stated in Table 1 to α

and β.
Figs 6 and 7 show 2D posterior constraints for a selection of

parameter pairs for the UPP low- and high-SNR cluster simulations,
respectively. The two sets of simulations share some common
features, as follows. The constraints on Ytot are mostly driven by
the Planck data, since the lower resolution Planck data are most
suited to measuring the total cluster signal, while the interferometric
AMI data rely on extrapolations to larger angular scales than are
measured; the joint constraints are generally tighter than the Planck-
only constraints and appear unbiased. There is a large degeneracy
between θ s and β that is inherent to the GNFW model, since
decreasing β makes the cluster amplitude fall off more slowly with
radius that can also be achieved by increasing θ s.

In the case of the low-SNR cluster, the joint analysis successfully
constrains Ytot and puts an upper limit on θ s and a lower limit on β.
α is fairly unconstrained since it affects the profile on the scale of
θ s = 2 arcmin, which is not well-resolved by either instrument.

In the case of the high-SNR cluster, α can be constrained by
AMI alone. The joint analysis places a lower limit on θ s, but β is
unconstrained due to the θ s/β degeneracy.

We do not show all of the constraints produced for the PIP and
REP simulations, as they are qualitatively similar, with the following
exceptions. Since β is lower for the PIP it effectively makes the
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SZ profile fitting with joint AMI-Planck analysis 2121

Figure 2. 2D marginalized x0–y0 and Ytot–θ s posterior distributions for the 10 UPP low-SNR cluster simulations obtained from AMI data (top row), Planck
data (middle row), and AMI and Planck data combined (bottom row). The contours in each plot represent the 68 per cent confidence intervals of the separate
posterior distributions obtained from each of the 10 realizations. The star symbols indicate the values input when generating the simulations. Note the different
axis scales.
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2122 Y. C. Perrott et al.

Figure 3. 2D marginalized x0–y0 and Ytot–θ s posterior distributions for the 10 UPP high-SNR cluster realizations. The figure layout is as described in Fig. 2.
Note the different axis scales in the x0–y0 plots.
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SZ profile fitting with joint AMI-Planck analysis 2123

Figure 4. 2D marginalized Ytot–θ s posterior distributions for the 10 PIP low-SNR cluster simulations (top row) and high-SNR cluster simulations (bottom
row). The posteriors plotted are, from left to right: AMI-only, Planck-only, and joint constraints. The contours and markers are as described in Fig. 2. Note the
different axis scales in the low-SNR plots.

cluster much more extended. The significance of the high-SNR
AMI detection becomes much lower and with α and β allowed
to vary all of the parameters are essentially unconstrained, so the
joint constraints become driven by the Planck data. Ytot is well-
constrained; a lower limit can be put on θ s and an upper limit on
β, while α is unconstrained. In the low-SNR case, only Ytot is well
constrained since although the cluster is more extended it is also
much less bright so there is not enough signal to noise to constrain
α and β. We show the joint constraints for this case in Fig. 8 as a
‘worst-case’ scenario.

In the high SNR, REP case, α is very tightly constrained and β is
better constrained by the AMI data alone. This is because the lower
α value of the profile causes it to fall off more sharply with radius,
putting more signal on AMI scales. In the low SNR, REP case we
obtain tight constraints on Ytot and α, a tight upper limit on θ s and
a lower limit on β. We show the joint constraints for this case in
Fig. 8 as a ‘best-case’ scenario. We note that for the REP analysis
we are fixing γ to the incorrect, UPP value; we also varied α and
β while fixing γ to the correct, REP value that had little impact on
the parameter constraints.

Overall, we conclude that where nothing is known a priori
about the pressure profile of the cluster (other than that it fol-
lows a GNFW shape), we can use the combination of AMI
and Planck data to successfully constrain Ytot; often constrain
α; and sometimes put limits on β and θ s depending on how
well resolved the cluster is (which depends both on θ s and on α

and β).

7 A PPLI CATI ON O F J OI NT ANALYSI S TO
REAL CLUSTER DATA

As a test case, we apply the joint analysis to PSZ2 G063.80+11.42
(z = 0.426; M500, SZ = 6.2 × 1014 M	) from the P15 sample.
The cluster is well detected by both Planck (PwS SNR = 6.5)
and AMI (Bayesian detection significance = 3.8) and there is a
significant offset between the AMI and Planck posterior constraints
on Ytot and θ s. The AMI radio-source environment is relatively clean.
We reobserved the cluster with AMI to benefit from the improved
performance of the new correlator, and use the DX11d data release
with strong point sources masked (Planck Collaboration private
communication) for the Planck data.

We first run the AMI and Planck analyses separately using
the priors given in Table 1 (assigning delta priors to the GNFW
shape parameters at UPP values) to confirm the discrepancy. For
comparison, we also ran the AMI analysis with the P15 priors; these
three sets of posterior chains are shown in Fig. 9. We note that the
tighter positional constraint in the latter case is due to a degeneracy
with a radio source flux near one edge of the cluster; when the
wider positional prior is used the source flux is allowed to increase,
broadening the cluster decrement and shifting the position of the
cluster. This has little effect on the θ s/Ytot constraint. We see that the
discrepancy is confirmed with the newer AMI data (and the AMI
Bayesian detection significance increases to 6.0); the Planck θ s/Ytot

constraint lies significantly above that produced by AMI.
We now analyse the PSZ2 G063.80+11.42 data while allowing α

and β to vary. Fig. 10 shows the resulting posterior distributions for
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2124 Y. C. Perrott et al.

Figure 5. 2D marginalized Ytot–θ s posterior distributions for the 10 REP low-SNR cluster simulations (top row) and high-SNR cluster simulations (bottom
row). The posteriors plotted are, from left to right: AMI-only, Planck-only, and joint constraints. The contours and markers are as described in Fig. 2. Note the
different y-axis scales.

the AMI-only, Planck-only, and joint analysis methods. Similarly
to the simulations, we see that Ytot is well constrained by the joint
analysis and the constraint is completely driven by the Planck data.
The addition of AMI data improves the constraint on θ s from an
upper limit to a true constraint, and both α and β are constrained,
although not tightly. The 1D parameter constraints are summarized
in Table 3; β agrees with the UPP value, while a higher value of
α is favoured but only at the ≈1σ level. We perform one further
analysis on the AMI data, fixing α to the fitted value from the
joint analysis, and leaving β fixed to the UPP value. The posterior
constraints on θ s and Ytot in this case are shown in comparison with
the AMI-only UPP analysis and the Planck analysis varying α and
β; it can be seen that the AMI posterior shifts in the correct direction
to overlap with Planck, confirming that this value of α gives better
agreement between the two instruments (Fig. 10, upper right-hand
corner). No X-ray observations of this cluster are available to
compare X-ray-derived constraints on the profile parameters; for
our future AMI-Planck sample (see Section 8) comparison with
X-ray-derived parameters will be informative and complementary
across a different range of angular scales.

8 FU T U R E WO R K

Along with the sample of 99 clusters from P15, clusters that were
previously excluded from the AMI sample due to difficult radio
source environments are currently being reobserved with the new
correlator; the superior dynamic range of the new instrument allows

us to cope better with these environments and successfully extract
cluster parameters. We will analyse all AMI detections with the
joint pipeline, giving us a large cluster sample to probe deviations
from the UPP and consider the impact this may have on the Planck
cluster number counts.

We note that Javid et al. (2019) found that realistic radio source
environments could bias the recovery of cluster parameters from
AMI data. This issue and its effect on the recovery of the pressure
profile parameters will be investigated in conjunction with the
analysis of the larger AMI-Planck sample.

With the larger sample we will be able to compare our SZ-derived
profile parameters to X-ray-derived parameters. This will allow us to
test for any systematic differences and combine information across
a broader range of angular scales.

Our pipeline is also simply extensible to the use of any physical
model that uses a GNFW profile for the gas pressure, e.g. the models
proposed in Olamaie, Hobson & Grainge (2012) and Javid et al.
(2018). We also plan to implement a non-parametric model such as
that proposed in Olamaie et al. (2018).

9 C O N C L U S I O N S

(i) We have developed a joint likelihood function for SZ data
obtained from the Planck satellite and the AMI radio interferometer
system in order to compare inferences obtained using it with those
from the individual likelihoods. The method could apply to any
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Figure 6. 2D marginalized posterior distributions for four combinations of θ s, Ytot, α, and β for the 10 UPP low-SNR cluster simulations obtained from: AMI
data (top row), Planck data (middle row), and AMI and Planck data combined (bottom row).

combination of Planck and interferometric data from one or more
telescopes.

(ii) We generated simulations of clusters using an observational
model similar to the one used in P15, using gas pressure profile
shape parameter values taken from either the UPP (Arnaud et al.
2010, ‘universal’ pressure profile) or two other realistic variations.
We considered both a smaller angular size, fainter cluster and a
larger angular size, brighter cluster. From looking at the resulting
posterior distributions we found the following:

(a) When simulating and analysing the clusters using the
model with UPP parameters the joint analysis greatly reduced
the degeneracy in Ytot–θ s shown in the individual AMI and
Planck analyses, due to the different degeneracy directions for
the individual data sets. The improvement on the parameter
constraints for the joint analysis is particularly prominent in the
small angular size cases. Thus when the profile shape of a cluster
is known a priori, the combination of the two data sets provides
accurate, precise constraints on the cluster parameters with no
need for external information to reduce the Ytot–θ s degeneracy.

(b) When simulated clusters created using non-UPP profiles
are analysed with the profile shape assumed to be UPP, the Ytot–
θ s constraints are biased away from the true value. This occurs
in the individual AMI and Planck data sets and is particularly

problematic in the joint analysis, where a tight, significantly
biased constraint is produced.

(c) When allowing the shape parameters to vary in the
Bayesian analysis, we generally found that for all the clusters Ytot

was well-constrained and unbiased; Planck drove the constraint
and the joint analyses improved the constraint slightly.

(d) Furthermore dependent on how well resolved the clusters
are, the shape parameter α can often be constrained. Due to
the strong β–θ s degeneracy these parameters are more difficult
to constrain and it is usually only possible to place limits
on them.

(iii) Finally, we applied the joint analysis to real data for the
cluster PSZ2 G063.80+11.42 which is part of the sample of 99
clusters considered in P15. We confirmed the discrepancy in Ytot

and θ s estimates when using updated AMI data and resolved it
by allowing α and β to vary. Using the joint analysis, we could
constrain Ytot and θ s well and place loose constraints on α and β,
finding that a slightly higher value of α than the UPP value was
preferred, while the constraint on β was consistent with the UPP
value.

(iv) We plan to apply our method to all the 99 clusters of the
P15 sample, plus clusters currently being reobserved by AMI, to
investigate deviations from the UPP and possible impact on the
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Figure 7. 2D marginalized posterior distributions for four combinations of θ s, Ytot, α, and β for the 10 UPP high-SNR cluster simulations obtained from:
AMI data (top row), Planck data (middle row), and AMI and Planck data combined (bottom row).

Figure 8. 2D marginalized posterior distributions for four combinations of θ s, Ytot, α, and β for the 10 PIP low-SNR cluster simulations (top row) and REP
low-SNR cluster simulations (bottom row) obtained from AMI and Planck data combined. These represent our ‘worst-case’ and ‘best-case’ constraints for the
set of clusters studied.
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SZ profile fitting with joint AMI-Planck analysis 2127

Figure 9. Posterior distributions for Planck-only (black, solid), AMI-only
with flat priors (blue, dashed) and AMI-only with P15 priors (magenta,
filled contours) analyses of PSZ2 G063.80+11.42, fixing the profile shape
parameters at the UPP values. Note the range of the right-hand plot is
truncated to better display the degeneracies.

Table 3. Summary of parameter constraints for PSZ2 G063.80+11.42,
varying α and β. The errors given are the 68 per cent limits from the 1D
marginalized parameter constraints.

AMI-only Planck-only AMI-Planck

x0/ arcsec −59+24
−18 −38+31

−26 −55 ± 14
y0/ arcsec −70+26

−14 −45 ± 31 −65 ± 15
Ytot/ (103 arcmin2) 6.9+2.3

−5.7 1.32+0.17
−0.38 1.40+0.23

−0.34
θ s/ arcmin 8.9+3.9

−3.0 <3.81 4.27+0.95
−1.4

α 0.77+0.10
−0.63 <2.16 1.66+0.55

−0.74
β 4.79+0.42

−0.74 >5.94 5.78+1.0
−0.87

Figure 10. Bottom left-hand corner: triangle plot showing posterior distributions for Planck-only (black filled contours, solid lines), AMI-only (blue filled
contours, dashed lines), and joint analysis (magenta empty contours, dot–dashed lines) of PSZ2 G063.80+11.42, all with the same priors, allowing α and
β to vary. The black vertical lines and star show the UPP values of α and β. In the upper right-hand corner, the blue dashed and filled magenta contours
show AMI-only analyses with α fixed to the UPP value and the joint analysis value (1.66), respectively; the posterior has shifted to better overlap with the
Planck-only posterior with α and β varying, shown with solid black contours.
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Planck cluster number counts. We also plan to extend our method
to incorporate different physical and non-parametric cluster models.
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