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We review two previous approaches to studying pseudoscalar meson-meson scattering amplitudes to beyond

1 GeV using non-linear and linear chiral Lagrangians. In these approaches we use two different unitarisation

techniques - a generalised Breit Wigner prescription and K-matrix unitarization respectively. We report some

new findings on K-matrix unitarisation of ππ and πK scattering in the non-linear chiral Lagrangian approach and

make some related remarks about the light scalar mesons.

1. Introduction

Pseudoscalar meson-meson scattering up to the
1-2 GeV energy range is of interest for several re-
lated reasons. On the one hand this region is be-
yond that where chiral perturbation theory has
traditionally been applied and below that where
we can use perturbative QCD, so it is a chal-
lenge to develop a framework to calculate these
amplitudes from first principles. At the same
time there are many resonances in this region,
some of which are controversial from the point of
view of establishing their properties experimen-
tally and their quark substructure. In particu-
lar, the scalar mesons are a long-standing puz-
zle in meson spectroscopy because, for example,
there are too many states to fit into a single
SU(3) nonet and the masses and decay patterns
of some of the scalar resonances are not what one
would expect for quark-antiquark scalar states.
This talk is based on approaches developed by
the Syracuse group. Many other interesting ap-
proaches are given in the proceedings of this con-
ference and also cited in the references given in
the bibliography.
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2. Non-linear chiral Lagrangian approach
to meson-meson scattering

We begin [1,2] with the conventional chiral La-
grangian, including only pseudoscalars:

L1 =
F 2

π

8
Tr
(

∂µU∂µU †)+ Tr
[

B
(

U + U †)] , (1)

in which U = e2i
φ

Fπ , with φ the 3 × 3 matrix
of pseudoscalar fields and Fπ = 132 MeV the
pion decay constant. B is a diagonal matrix
(B1, B1, B3) with B1 = m2

πF 2
π/8 = B2 and B3 =

F 2
π (m2

K − m2
π/2)/4.

We add a nonet of scalar mesons, which
transform like external fields under chiral trans-
formations. The trilinear scalar-pseudoscalar-
pseudoscalar interaction that follows from the
general chiral invariant extension of L1 to include
a scalar meson nonet is given by [3]

LNφφ = AεabcεdefNd
a∂µφe

b∂
µφf

c

+ BTr (N) Tr (∂µφ∂µφ)

+ CTr (N∂µφ) Tr (∂µφ)

+ DTr (N) Tr (∂µφ) Tr (∂µφ) (2)

The first term of (2) may be eliminated in favor
of the more standard form Tr (N∂µφ∂µφ), but is
interesting because it is the OZI rule conserving
term for a dual diquark-antidiquark type nonet
mentioned below.



2

The scalar particles with non-trivial quantum
numbers are given by:

N =





N1
1 a+

0 κ+

a−
0 N2

2 κ0

κ− κ̄0 N3
3



 (3)

with a0
0 = (N1

1 − N2
2 )/

√
2. There are two iso-

singlet states: the combination (N 1
1 + N2

2 +
N3

3 )/
√

3 is an SU(3) singlet while (N1
1 + N2

2 −
2N3

3 )/
√

6 belongs to an SU(3) octet. These will
in general mix with each other when SU(3) is
broken. We take a convention where the physical
particles, σ and f0, which diagonalize the mass
matrix [3] are related to the basis states N 3

3 and
(N1

1 + N2
2 )/

√
2 by

(

σ
f0

)

=

(

cosθs −sinθs

sinθs cosθs

)

(

N3
3

N1

1
+N2

2√
2

)

, (4)

We note that there are different possibilities,
in addition to quark-antiquark configurations, for
the underlying quark substructure of N which
all give rise to the same SU(3) transformation
properties. For example, forming diquark ob-
jects Ta = εabcq̄

bq̄c and T̄ a = εabcqbqc, where
the antisymmeterisation of the quark fields is im-
plicit, we can form a pure tetraquark scalar nonet
N b

a ∼ TaT̄ b or construct linear combinations of qq̄
and qqq̄q̄ nonets.

We studied s-wave pseudoscalar meson scatter-
ing in a framework beginning with Eqs.(1) and
(2). If we begin with the tree-level scattering am-
plitudes, which due to chiral symmetry give good
agreement with experiment close to the scatter-
ing threshold, we find that they soon deviate from
the experimental data. They also violate unitar-
ity. The approach that we took originally [2] was
to add an imaginary piece by hand to the tree-
level propogator of the s-channel resonance. For
example, for πK scattering we called the lightest
strange scalar resonance κ and made the substi-
tution

m2
κ − s −→ m2

κ − s − imκG′
κ (5)

in the denominator of the s-channel s-wave am-
plitude. In order to fit to experiment, the quan-
tity G′

κ was left as a free parameter, not neces-
sarily equal to the perturbative width, Gκ say.

This is one kind of generalisation of the Breit-
Wigner description of the resonance. Our fit [2]

gave
Gκ

G′
κ

= 0.13 showing a substantial deviation

from a Breit-Wigner resonance for which this ra-
tio would be exactly equal to 1. Good agree-
ment with experiment was also found [1] with
this generalised Breit-Wigner prescription for the
case of ππ scattering. The fitting parameters
are the scalar-pseudoscalar-pseudoscalar coupling
constants, which can all be written in terms of the
four coefficients in the interaction terms in Eq.
(2), the scalar meson masses and the mixing an-
gle, θs. Our best fit for θs was about −20o which
we note, in our mixing convention, would be close
to ideal mixing for a “dual” diquark-antidiquark
nonet.

3. Pseudoscalar meson-meson scattering in
SU(3) Linear Sigma Models

In the three flavor linear sigma model the pseu-
doscalar and scalar meson multiplets both appear
from the beginning since the model is constructed
from the 3 × 3 matrix field

M = S + iφ, (6)

where S = S† represents a scalar nonet and
φ = φ† a pseudoscalar nonet. Under a chiral
transformation qL → ULqL, qR → URqR of the
fundamental left and right handed light quark
fields, M is defined to transform as

M −→ ULMU †
R. (7)

We considered a general non-renormalizable La-
grangian2 of the form

L =
1

2
Tr (∂µφ∂µφ)+

1

2
Tr (∂µS∂µS)−V0−VSB(8)

where V0 is an arbitrary function of the in-
dependent SU(3)L × SU(3)R × U(1)V invari-
ants Tr

(

MM †), Tr
(

MM †MM †), Tr
(

(MM †)3
)

6
(

detM + detM †). Of these, only I4 is not in-
variant under U(1)A. In this model there are
many constraints among the parameters. For ex-
ample, many of the trilinear scalar-pseudoscalar-
pseudoscalar coupling constants are predicted

2See [4] and references therein for more detail
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in terms of the pseudoscalar and scalar meson
masses. Another difference is that [compare with
Eq. (2)] this trilinear interaction does not involve
derivatives. Both models give the current algebra
results in the limit where the scalar mesons are
integrated out. If we calculate the tree level s-
wave amplitudes in the Linear Sigma Model they
deviate from experiment and also violate unitar-
ity as we go beyond the threshold region. We
used [4] the well-known K-matrix procedure to
unitarise the linear sigma model amplitudes and
then checked if the resulting unitary amplitudes
can give a good fit to data. In the standard
parameterization [5] of a given partial wave S-
matrix:

S =
1 + iK

1 − iK
≡ 1 + 2iT, (9)

we identify K = Ttree where Ttree is the given par-
tial wave T-matrix computed at tree level in the
Linear Sigma Model and so is purely real. This
scheme gives exact unitarity for T but violates
the crossing symmetry which Ttree itself obeys.

We show our best fits to the I=J=0 ππ scatter-
ing data in the linear sigma model with K-matrix
unitarisation in [4]. The parameters in this fit are
the “bare” masses of the two I=0 scalar mesons
in M and their mixing angle. Using these param-
eters we can solve for the poles in the unitarised
amplitude in the complex s plane. Labelling these
poles zσ and zσ′ we can identify the physical
masses and widths as usual from the Real and
Imaginary parts, for example zσ = m2

σ − imσΓσ.
In [4] we also fit the I=1/2, J=0 πK scattering
data. We note that since this model only con-
tains one strange scalar resonance, it of course
cannot fit the data over the full experimental en-
ergy range since a second strange scalar state, the
well-known K∗

0 (1430), which is important in this
channel is not present in this model.

4. Summary and comparison between
models

We have found good agreement with scattering
data in the approaches based on the non-linear
chiral Lagrangians outlined in Sections 2 and 3.
The best-fit values of the parameters - scalar me-
son masses and coupling constants - were some-

what different in the two approaches, as can be
seen for example in Table 1. We are currently
studying scattering using the non-linear chiral La-
grangian approach outlined of Section 2, but em-
ploying the K-matrix unitarisation as described
in Section 3. This should make it easier to com-
pare the linear and non-linear chiral Lagrangian
models more directly and to understand the ef-
fects of the unitarisation prescriptions in them-
selves. This was partly motivated by our work
on extending the non-linear chiral Lagrangian ap-
proach to include vector mesons [8]. This en-
abled us to study the interesting rare radiative
decay processes φ → ππγ and φ → πηγ. We
found that the shape of the partial branching frac-
tion depends quite sensitively on whether we use
derivative or non-derivative scalar-pseudoscalar-
pseudoscalar coupling as in Section 2 or 3 respec-
tively.

A summary of our results for the masses of
the light scalar mesons is shown in Table 1 for
ππ and πK scattering. In the third and fourth
columns we show the results of the analyses de-
scribed in sections 3 and 2 respectively. In the
fourth column we give the results with and with-
out the inclusion of the ρ vector meson for the
case of ππ scattering. The K∗(892) is included
in the πK scattering result in column 4. In col-
umn 2 we show the results of our current anal-
ysis, which are preliminary. However we can see
some trends, namely that the f0(980) parameters
are quite stable, whereas the σ and κ parameters
seem to depend more on the model and, even
more, on the unitarisation procedure. For both
ππ and πK scattering the K-matrix unitarisation
seems to yield lower values for the lightest scalar
meson masses. These results are preliminary be-
cause we have only done a fit of ππ scattering
data over a limited energy range. Also we have
not included the inelastic channel and so the im-
portant KK̄ threshold region. Similarly in πK
scattering we have included the κ, but not the
K∗

0 (1430) state. These and a similar study of
related scattering channels are interesting direc-
tions for future work.
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Table 1
Comparison between models and unitarisation procedures

MODEL Non-linear chiral Lag. Linear Sigma Model Non-Linear chiral Lag.
UNITARISATION K-matrix K-matrix Generalised BW

(without vectors) (without vectors) (with/without ρ)
mσ, phys(MeV) 444 457 559/378
mf0, phys(MeV) 986 993 990
mκ, phys(MeV) 720 798 897
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