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Abstract

Title: Residential Demand Response using Electricity Smart Meter Data
Author: Yohei Kiguchi

The electricity industry is currently undergoing changes in a transitioning period char-
acterised by Energy 3D: Digitalisation, Decentralisation, and Decarbonisation. Smart meters
are the vital infrastructure necessary to digitalise the energy system as well as enable ad-
vancements in decentralisation and decarbonisation. As of today, more than 500 million
smart meters have been installed worldwide, with that number expected to rise to several
billion installations over the decade. Smart meters enable electricity load to be measured
with half-hourly granularity, providing an opportunity for demand-side management innova-
tions that are likely to be advantageous for both utility companies and customers. Among
these innovations, time-of-use (TOU) tariffs are widely considered to be the most promising
solution for optimising energy consumption in the residential sector, however actual use is
still limited.

The objective of this thesis is to investigate opportunities and problems related to TOU

tariffs utilising smart meter data at the national level. The authors have identified four major
research gaps which need to be filled in order to expand commercial applications of TOU

tariffs. These gaps are the described and addressed in the following chapters: the "TOU

load adaptation forecasting problem", the "TOU winner detection problem", the "TOU public
dataset problem", and the "excess generation forecasting problem".

This thesis demonstrates three modelling approaches and one new TOU dataset (CAMSL).
A significant contribution to the field is through the discover of new summary statistical
features (statistical moments) and assesses the capacity of these to encapsulate other more
widely used explanatory variables of demand response. The thesis is concluded by discussing
future works and policy implications, such as the necessity of the more tailored modelling
works and public live-stream of smart meter data, which could accelerate the roll-out of the
demand side management at the residential sector.
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Chapter 1

Introduction

1.1 Energy 3D

Since the 1970s, fossil fuels have contributed 60–70 % of the global energy production
(Ventures [277]), but this balance is changing. Political and social factors have helped to
drive the acceptance of renewable energy sources, and recent technological advancements
in renewable energy, reduced prices of battery storage systems, and enhanced decentralised
power production are speeding up the global transformation of the energy sector. Climate
change has been an international issue for a long time and was propelled globally by green
activists and political parties, though industries have moved more cautiously.

The Paris Agreement of 2015 and the Fifth Assessment report of Intergovernmental Panel
on Climate Change clearly outlined the severity of the issue, establishing the target that the
global average temperature rise needs to be kept under 2°C over pre-industrial levels. (Rogelj
et al. [233], Wang and Su [279]). The 3D’s of the new energy system - or Energy 3D - are
pressuring industry to move towards a low-carbon economy. According to industry experts,
Energy 3D refers to the decarbonisation, decentralisation, and digitalisation of the energy
sector, which collectively would result in a dramatic overhaul of the existing energy and
transport infrastructure. Figure 1.1 summarises these 3 Ds of Energy 3D.

Decarbonisation refers to the continuous adoption of sustainable energy sources, such as
wind and solar, and the move away from the usage of fossil fuels. Targets for decarbonisation
at a global level were established for the first time in 2015 at COP21 in Paris. In 2016, the
COP22 in Marrakech, named “the COP of the action”, offered the opportunity to execute
the Paris COP21 agreement (Ghezloun et al. [105]). The Paris agreement identified that
climate change was associated with emissions of human-made greenhouse gasses (GHG)
and proposed measures to maintain global average temperature increases to under 2°C and, if
possible, 1.5°C. According to the BloombergNEF [28] report, renewables will produce about
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Fig. 1.1 3 Ds of Energy 3D (based on Forum [97])

62% of total energy by 2050, of which solar and wind will produce about 48% and the power
production from fossil fuels will decline to only 31%. This reduction is driven mainly by the
need for 12 TW of new investment in energy generation by 2050, which expects 77% to be
for renewable energy resources and is forecasted to cost $13.3 trillion. Figure 1.2 illustrates
the global trend of energy production from all sources of energy.

Fig. 1.2 Global trend of energy production (based on BloombergNEF [28])

Electric vehicles (EVs) can further promote the decarbonisation of energy and transport.
In addition to decreased tailpipe emissions, the charging of EV batteries from electricity -
ideally generated from renewable sources - can result in net carbon reduction and supplement
broader grid decarbonisation initiatives. For instance, EV smart charging systems can make
it possible to store about one fifth of solar power generated in Great Britain and can release
this energy when required (Corliss [50]).
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Decentralisation, the second D of Energy 3Ds, is a framework of reallocating tasks, power,
things, and people away from a single organisational structure into a broader distribution of
control. In decades past, energy generation was generally relegated to large power plants
owned by public utilities. However, technological advancements have reduced the cost
of generating and storing energy across smaller systems at a price point where individual
ownership is feasible.

Today, homeowners and businesses are investing in their own energy systems such as
batteries and photovoltaic (PV) systems to supply their own energy needs. There are a
growing number of cases where energy "microgrids" capable of supplying the entirety of
their energy demand at the city, neighbourhood, or even building level. This decentralisation
has benefits in that it increases the resilience of the grid - as the connected individuals have
flexibility to disconnect or even become suppliers to the grid itself - but is countered with an
increased challenge of management as the individual assets are no longer singularly owned
and controlled.

Digitalisation, the last D for Energy 3D, where previously manual and mechanical
processes and devices are connected to information networks, are generating data, and -
increasingly - are remotely controllable. "Smart" technologies are rapidly being used in
the energy system, but much of this ecosystem is still full of outdated resources that are no
longer fit for the technological world. The rise in the volume of distributed devices in the
power system such as electric vehicles, solar panels, and batteries has led to the generation of
large volumes of data. In addition, existing measurement devices are being upgraded and are
increasingly able to collect more data - both in form and frequency. The primary example
of this for the energy system is with smart meters, which enable the collection of energy
consumption data in the order of minutes or hours. The coming sub-sections of this chapter
explain in detail how smart meters come into the equation of Energy 3D.

1.2 Electricity Smart Meter

A general smart meter is a tool capable of measuring the physical parameters of the energy
flowing via its borders, tracking events (e.g. shutdowns, alterations in predetermined rated
power), and digitising and transmitting this data to a central procurement system. In most
systems, an electrical smart meter gathers data from a site and then sends the reports to the
Distribution System Operator (DSO). This report encompasses not only the energy flows,
but also voltage level, power factor, disconnections, errors, and more. The DSO then uses
information both for network management (e.g. managing losses in power network) and for
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supplying authenticated data to retailers, which can be used primarily for billing purposes as
well as for customer services.

In consideration of the smart meter’s critical role in the electricity supply chain, multiple
policymakers have specified its key features. As per EU Commission Directive 2004/22/EC
on Measuring Instruments (MID), a smart meter shall display metering results directly at
the customer location through a monitor or another display device (Directive et al. [66]). It
must be easy to use, long-lasting and must be reasonably future-proofed. Data for several
days or over one type of physical data (e.g. energy consumption, reactive energy, active
energy, and voltage) can be encrypted and recorded in the smart meter log to cope with the
potential inaccessibility of the communication network used in the Head-End System (HES)
data exchange with the DSO.

1.2.1 First Generation Smart Meters

In the first generation (1G) of electrical smart meters, measured information shared between
the smart meter and the Head-End System (HES) generally goes through two steps as shown
in Figure 1.3. In the more popular smart meter infrastructure, the first step makes a connection
between the smart meter and the so-called data concentrators, which are generally located
in a secondary substation with low voltage (LV)/ medium voltage (MV) transformers. The
second connection enables measurements, obtained from data concentrators, to be sent to
the HES. This data concentrator is a smart platform that obtains, processes, and reassembles
thousands of data measurements from smart meter prior to transmitting this information to
HES. If the communication with a smart meter is obstructed, it can also request new data
attainment.

Fig. 1.3 Advanced Metering Reading Basic Architecture (based on International [139]).
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Smart meters, data concentrators, and HES are the primary components of this Advanced
Metering Infrastructure (AMI) (CEN and CENELEC [39]). AMI plays a crucial part in
electricity delivery systems by storing load profiles and allowing two-way data flow (Mo-
hassel et al. [189]). Theoretically, communications inside the AMI allow data attainment
from smart meters to HES. However, the data can be exchanged in both ways - that is, from
HES to smart meter and from smart meter to HES - in almost every case. Nonetheless, this
needs a more complicated architecture with several communication technologies such as
Wide Area Network, Local Network, and Neighbourhood network, as depicted in Figure 1.4.
This permits DSOs to perform several operations remotely, such as taking meter readings
or remotely disconnecting a customer with unpaid bill. The previous structure as shown in
Figure 1.3 is referred as Advanced Metering Reading (AMR), and this advanced architecture
with communication technologies is known as Advance Metering Management (AMM).

Fig. 1.4 Advance Metering Management Functional Structure (based on CEN and CENELEC
[39]).

Currently, researchers are using various technologies to communicate measured parame-
ters to the data concentrator. The most preferable way is communication through Power Line
Communications (PLC) or Transmission Line Communication (TLC) as its deployment is
possible in the current electrical system and it doesn’t need a separate infrastructure. The
electrical utilities can control it directly and it is reachable even in installations deep within a
building. This also mitigates the requirement for the DSO to attain the telecommunication
services, even though they are already being used for linkage of HES to the data concentrator.
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Moreover, wireless communication technologies, such as Wireless Meter-Bus (WM-Bus),
operating at sub-GHz frequencies are common substitutes for gaining data from smart meter.
However, their main limitations are that frequency planning is required to make sure less
interference and a separate communication network must be deployed.

1.2.2 Second Generation Smart Meters

Italy is leading the smart metering deployment in Europe since it was the first EU nation to
announce advanced, remotely-read smart energy meters for deployment to LV customers on
a broad scale. Today, over 35 million of 1G smart meters are in service (Italian Authority of
Electricity and Water [143]). The Legislative Decree 102/20143 in Italy transposed the EU
Energy Efficiency Directive (EED 2012/27/EU) and regulatory authority ARERA in Italy
was given the charge of setting the minimal functional capabilities of the second-generation
smart meters (Italian Authority of Electricity and Water [143]). In 2016, the regulatory
authority issued the following two decisions (Engie [81]):

• Decision 87/2016/R/eel specified the technical requirements and anticipated efficiency
standards of second generation (2G) smart meters with consideration for improving
precision and accuracy of metered data for all LV users.

• Decision 646/2016/R/eel introduced a tariff regulation that established standards for
recognising the capital expenditure of smart metering systems in line with their func-
tionality and performance levels as characterised by Decision 87/2016/R/eel.

The new 2G smart meters were designed to improve customer service, additionally
reducing the billing practise of estimated energy usage rather than true energy usage, and
enhance precision and accuracy of the measuring data for all LV connected consumers. The
latest communication attributes directly bring the raw metered data to the end-users and
also direct these readings to the corresponding DSO. The DSO needs this data for providing
services such as home automation, demand response programmes, and customer awareness
initiatives. Pitì et al. [221] compared the 1G and 2G smart meters on the basis of metered
data and sampling data resolution as shown in Table 1.1.

According to Navigant [195] research report of 2019, many markets across the globe
are continuing the deployment of 1G smart meters, whereas the dynamic and competitive
economies in North America and Europe are pushing forward with initiatives of the 2G smart
meters. Differences arise in implementation and project readiness, with certain nations such
as UK and Italy finishing their 1G smart meter deployments, while others, such as most of
the Middle East and India, are only starting to execute their smart meter projects. Figure
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Table 1.1 Comparison of 2G and 1G smart meters (Pitì et al. [221])

Metering Data 2-G Smart Meter 1-G Smart meter

Active energy withdrawn 15 min 3 values per month
Active energy Injected 15 min 3 values per month
Reactive energy withdrawn 15 min 3 values per month
Reactive energy Injected 15 min 3 values per month
Active power withdrawn 15 min (peak) and 30 min (peak)

instantaneous value (1s)
Active energy Injected 15 min (avg) No
Min/max voltage 1 per week Only occasionally
Voltage in limits Yes, compliant with EN50160 Only occasionally

and not compliant with
EN50160

Outages On event occurrence Implemented but not used

1.5 depicts the number of 2G smart meter or SMETS2 that are installed in UK in 2019 and
Figure 1.6 illustrates the 2G SMs deployment timeline of Italy (as decided by ARERA).

In UK, according to the Data Communications Company [57] the increase in number of
2G smart meters - or SMETS2 - installations in 2019 (3.3 million) can be seen to be more than
6 times the number of installations in 2018 (0.5 million). Furthermore, on 27 February 2020,
British Gas reached 4 million installations of SMETS2 (Data Communications Company
[57]). Notably, their director of Industry Development also claimed that they can see the
benefit of smart meters on their consumers’ monitoring and adaptation of their electricity
usage to minimise pollution.

In Italy, ARERA accepted the 2G smart meter deployment proposal for E-distribuzione
company in Rome with Resolution 222/2017/ R/eel from 2017. The deployment proposal
covers a 15 year span from 2017 to 2031 and involves a national replacement of its 31.8
million 1G smart meters with 2G smart meters to achieve a penetration of 80 % by 2022.
E-distribuzione was able to follow the 2G smart meter deployment plan as it already deployed
about 1.4 million 2G SMs by November 2017 (also see Figure 1.6).

2G smart meters can also send non-authenticated raw data, in real-time, directly to the
concerned user. By using in-home devices (IHD) or Home Area Network (HAN), 2G-
smart meter can directly communicate and measurements may appear on a local monitor or
smartphone device, providing analysis on consumption data and guidance for decreasing
electricity bills. Additionally, a smart meter that can enable two-way communication can
also get notifications from an IHD requesting to perform certain operations or get specific
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Fig. 1.5 Number of 2G Smart Meters installed in UK in 2019 (based on Data Communica-
tions Company [57]).

Fig. 1.6 Planned annual deployment number of 2-G SMs in Italy (based on Engie [81]).
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information. These systems are naturally more susceptible to cyber- and electrical-security
problems, which must not be disregarded.

Furthermore, at the HES end, validation process analyses raw data to see if the data are
valid and complete, or, if that is not the case, it applies advanced algorithms to reconstruct
missing measurements. Upon validation, the authenticated readings are ready to be sent
to the retailers for billing purposes. However, in the case with millions of users and daily
measurements with fine granularity, even with 100 percent data accuracy this validation
process can consume many hours before the measurements can be sent to the retailers.
Figure 1.7 illustrates the evolution of smart meters from 1G to 2G (Pitì et al. [220]).

Fig. 1.7 Evolution of Smart Meters from 1G to 2G (based on Pitì et al. [220])

1.2.3 Harmonisation of 15-minute Settlement

The Electricity Balancing Guideline (EBGL Regulation) obliged all EU nations to switch to
15 minutes Imbalance Settlement Periods (ISPs) from the current popular ISPs of 30 and 60
minutes by December 2020 or January 2025 in the event of derogation (Kurevska et al. [161]).
Currently in Europe, ISP of 60 minutes is most commonly being used, and 30 minute ISP is
only popular in France, Ireland, and UK. The new move towards 15-minute settlement means
that the current 1G smart meters should be changed to 2G smart meters on priority basis
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as smart meters must be able to record data with 15-minute time intervals. This 15-minute
settlement also means that 1G smart meters are outdated and must be replaced with 2G smart
meters. According to some regulatory authorities such as Ofgem, the movement towards
ISP of 15-min would mean increased expenses as the current smart meters would need to be
replaced and redesigned (Ofgem [206]).

Recently in May 2020, Ofgem performed a Cost-Benefit Analysis (CBA) for adopting
the ISP of 15-minutes and found that the change to 15-minute ISP is not bringing them any
significant benefits (Ofgem [204]). They found out that the implementation costs have even
increased from what was initially proposed by original Frontier Economics CBA in 2016
(Economics [74]). The original CBA predicted that the movement towards 15-min ISP could
negatively affect the UK customers. Ofgem’s latest CBA findings also found that the move
towards 15-min ISP would produce a net cost between -C615m to -C1,816.6m. On the basis
of these latest findings (May 2020), Ofgem decided to grant a waiver of this duty to electricity
system operators in the UK (Ofgem [206]). Another report by Empower in 2018 published a
landscape for smooth transition to the 15-minute ISP (Empower [79]). They encouraged the
energy market players to realise various phases and components involved in market designs
of smart meters and their deployment. This would help in focused and targeted discussions
among stakeholder groups and mixing of various problems would be prevented. Figure 1.8
shows the conceptual model for dividing up discussions into various phases.

Fig. 1.8 Concept of smooth harmonisation of 15-min ISP (based on Empower [79])
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1.2.4 Smart Meters Installations

Globally, the rise in the number of smart meters from 2013 to 2017 is shown in Figure 1.9,
with the majority being in China followed by Europe and North America. China has already
installed more than 513 million smart meters at the start of 2019, making up 64.3% of
worldwide deployments. Western Europe installed 14.1% of global smart meters, and North
America installed around 11.6% (Michael Kelly [186]). However, most of these smart
meters are still using the concept of AMR, even though 2G smart meter employing AMI are
also being deployed and are gaining popularity in countries such as Italy (Stagnaro [254]).
Sweden and Italy have the world’s oldest smart meters installed, but now they are updating
them with the second generation.

Fig. 1.9 Smart Meter installations across the globe (2013-2017) (based on [51])

Figure 1.10 depicts the present and forecasted number of smart meter installations as well
as cumulative investment from 2017 to 2025, according to the latest report of AMI global
forecast 2020-2025 (Mackenzie [176]). Over the next five years, utilities around the world
are expected to spend about $30 billion to deploy 300 million smart meters, bringing many
of the world’s most densely populated nations to full implementation. However, many parts
of the world will also be left with significantly lower adoption. It can be seen in Figure 1.10
that combined expenditure in AMI-based smart meters will grow to $127.6 billion in 2025 -
increasing from $97.4 billion cumulative expenditure currently (2020).

From 2020 to 2025, total global smart meter installations are expected to grow from about
1 billion to almost 1.3 billion. By 2025, Asia will lead the global industry with approximately
40% of all the new meters installations, or over 136 million units. A total number of around
850 million smart meters will be deployed throughout Asia, with 640 million in China, 22.5
million in South Korea and 82 million in Japan. India will account for 300 million possible
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Fig. 1.10 Smart Meters installations and their expenditure around the world (2017-2025)
(based on [176])

installations of smart meters, projected to be the second-largest industry after China, but has
only installed around 7.7 million smart meters in 2019 (Mackenzie [176]).

Europe is expected to invest over $17 billion, or around $2.9 billion annually, installing
over 110 million smart meters by 2025, as nations including Spain, France, UK, Netherlands,
and others turn to full launch. According to (Mackenzie [176]) analyst, Netherlands, Spain,
and France are likely to meet the EU target of deploying smart meters at the premises of 80%
of all consumers by the end of 2020. The UK has claimed that it would reach this target by
2024. The smart meter roll-outs in Germany are slow because of cost issues and data privacy
policies imposed by its government.

In North America, the U.S. utilities expect to invest almost $3 billion to install 24 million
smart meters in addition to approximately 104 million smart meters already installed in this
year. In 2025, about four-fifths of U.S. electrical companies’ consumers will have smart
meters, which will be a rise from around two-thirds as of the current year 2020. However,
this projected time frame progress may halt if regulatory authorities postpone a substantial
number of utility initiatives.

Finally, slower growth in Africa and Latin America is expected over the next five years.
By 2025, less than one in five Latin American electricity users will have smart meters,
regardless of major installations in Brazil and Mexico. Most of Africa stays without smart
meters, though government of Egypt intends to install 30 million in the coming 10 years.

1.2.5 Industrial Smart Meter Analytics Applications

The growing penetration of smart meters allows collection of an enormous amount of fine-
grained energy consumption data, thus a significant subject worldwide is how to utilise large
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amounts of smart meter data to improve demand-side efficiency. Retailers are no longer
using smart meters only for billing purposes - they are using forecasting methods to boost
their financial returns and enhance customer support. Detailed smart meter data is offering
valuable insights into the consumer lifestyles and energy consumption patterns to compete
with the growing competition in electricity market, making the retail sector more successful,
productive and competitive (Yang et al. [300]). Moreover, DSOs are eager to use smart meter
data analytics to improve network performance by effective system planning and outage
management. More and more projects in the field of smart meter data analytics are also being
built around the world.

Recently in 2017, SAS [238] issued a technical report that mentioned the findings of its
industrial smart analytics survey (Figure 1.11). This study intended to identify the problems
and patterns in the usage of data analytics by the utilities to meet their business objectives.
About 136 electrical companies from 24 countries participated in the survey. The published
findings showed that the main data analytics application fields include energy forecasting,
smart meter analytics, asset management/analytics, grid operation, customer segmentation,
energy trading, credit and collection, call centre analytics, energy efficiency (EE), demand
response (DR) programme management, and DR marketing.

Fig. 1.11 Utility priorities percentage in Smart Analytics application areas (based on SAS
[238])

Given the soaring demand for analysing millions of data collected via smart meters,
increasing the number of energy data analysts will be an important challenge. This is
addressed by a combination of commercial, public, and academic initiatives (Hong et al.
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[127]). For instance, Energy Systems and Data Analytics MSc, a programme being offered
by University College London, is teaching students how data analytics can be used in energy
systems (UCL [273]). In Denmark,the CITIES Innovation Centre is supporting many projects
that are inspecting the potential of machine learning algorithms to enhance load prediction
accuracy and savings possibilities for consumers (Liu et al. [169]). A joint Research Centre
of several universities, the Bits to Energy Lab, has also announced many initiatives for
smart meter data analytics that are investigating occupancy detection, non-intrusive load
monitoring, and base load estimation (Bits to Energy [27]).

Multiple start-ups are also utilising smart-meter data in their business models and tech-
nology to innovate in the sector. For instance, Opower was formed in 2007 to offer SaaS
based customer engagement products to the electrical utilities. It provides software to utility
companies that addresses a variety of smart meter data analysis application areas, including
EE, DR, distributed energy resources (DER) management, call centre analytics, energy dis-
aggregation, and dynamic segmentation and marketing (Opower [209]). Other examples of
companies in operating in this space include Bidgley (Bidgely [26]), SMAP Energy (SMAP
Energy Limited [250]), Eliq (Eliq [78]), and more.

While each startup can be differentiated in terms of technical speciality and geography,
the use cases and values will frequently overlap. For the utility, these startups offer products
that can add additional products and revenue streams, as well as opportunities for improving
the customer relationship. Through digital EE and DER management applications, utilities
can improve customer satisfaction and product uptake by offering streamlined consultations
and personalised recommendations for a number of energy packages (home retrofits, solar
panel installation, etc.). This also offers additional revenue streams for the utility in the form
of product sales, as well as a path to "locking in" customers for longer term engagements -
both critical advantages in competitive retail markets. Digital applications can also enable
energy disaggregation - an approximate breakdown of consumer’s total power consumption
into identifiable groups, including cooling, heating, and illumination - which in turn can be
used to identify the best consumer groups for issuing DR programmes and promoting the
sales of products such as connected home devices. Moreover, through dynamic segmentation
and marketing, utilities can quickly curate relevant customers and accelerate acceptance (up
to 61 % more than standard marketing).

Such startups are often working closer to the consumer (demand side), where inefficiency
remains and has been dramatically changing with the roll-out of smart meters. They are trying
to unlock the value from smart meter data and give consumers and distributors information
and value-added services for revenues. The next sub-section introduces the concept of
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Demand Side Management (DSM), which is one of the major and promising application of
smart meter data analysis that will be implemented in this thesis.

1.3 Demand Side Management

In energy system operation, there are two different practices that can be followed to meet the
total forecasted energy demand: increasing the energy generation by bringing new physical
energy resources at the supply-side and deploying responsive methods that can offer artificial
resources at the demand-side. The first approach simply involves the building of additional
generation resources to meet rising demand, and the second strategy offsets the growing
load demand by formulating appropriate managerial actions that create virtual resources at
demand-side by changing the power demand.

Clark W. Gellings invented the phrase ‘demand-side management’ in 1980s (Gellings
[103]). Demand Side Management (DSM) is preparing, executing and tracking the utility
operations such that the use of energy by consumers can be manipulated and adjustments in
load magnitude and the time pattern can be achieved. Customers and utilities may handle the
consumption pattern separately, but the DSM goal involves a utility/customer relationship
which produces mutual benefits (Gellings [102]). In (Gellings et al. [104]), the purpose of
DSM was limited to the design and execution of programmes that can actively shape the
electric load profiles and obtain desired energy usage, fewer operating costs, and an economic
stability. But since the 1990s, a number of theories, methodologies, and definitions have
been presented in the literature to synchronise the fundamental conceptual framework of
DSM with power system transformation. For example Goldman and Kito [110] examined the
effect and experience of electrical companies with DSM bidding programmes. In addition,
the concept (initially proposed by (Daryanian et al. [56])) of demand-side response has been
commonly used by the researchers - for example, by Baladi et al. [21] and Roos and Lane
[234]. After that, DSM responding to price became an interesting concept for research.

1.3.1 Classification of Demand Side Management

Palensky and Dietrich [210] classified DSM into the four types depending on the time and
effect of the implemented steps at the demand side, also depicted in Figure 1.12:

1. Energy Efficiency (EE)

2. Time of Use (TOU)

3. Demand Response (DR)
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4. Spinning Reserve (SR)

Fig. 1.12 Classification of Demand Side Management (based on Palensky and Dietrich [210])

EE methods - the first category of DSM spectrum - include all constant apparatus changes
- for example, replacing an ineffective ventilation system with a more efficient one or making
investments in the building structure through the inclusion of extra insulation. These steps
have the benefit of saving energy and emissions immediately and permanently, and thus are
the most popular tool. There is another term known as Energy Conservation, it can also be
considered to belong to this category of DSM, as it relies on consumer changes in behaviour
in order to accomplish better energy efficiency.

In the TOU category of DSM, the utilities define tariffs in such a way that the electricity
price is high during some time intervals and low during the others, generally corresponding
with times of higher or lower demand. For example, a utility may want its consumers to
reduce consumption from 13:00 to 15:00, and it can achieve this target by setting high
electricity prices during these hours. The expectation is that consumers will be discouraged
to use more energy during this time interval and will reorganise their energy-consuming
operations to lower-cost periods in order to reduce their electricity bills. Moreover, an
alteration to the TOU fixed pricing plan would mean that a new contract needs to be signed
between the utility and the consumers, thus, this does not take place frequently.

However, TOU may not automatically decrease overall energy consumption as certain
energy consuming activities will continue to happen regardless. If a certain electronic
appliance or system is changed, it may have to go back to its original state once the peak
timings with high rates are over. For instance, a groundwater pumping device that can be
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quickly emptied for 30 minutes of peak period due to its reservoir tanks will refill the tanks
after the period concludes. Therefore, a "rebounding impact" (or repayment) happens, energy
is still consumed, and perhaps a new energy peak may emerge. This impact can be anticipated
and possibly prevented with a combination of controls, predictive analytics, and rate design.
TOU is further explained in detail in the next section.

DR – the third type of DSM – describes the “changes in electric usage by end-use
customers from their normal consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability is jeopardized” (DoE
[67], Chiu et al. [46]). By facilitating consumer engagement and response, DR influences
short-term effects on the energy sector, resulting in financial gains for both utilities and the
consumers. It also decreases the total plant and capital costs by enhancing the efficiency of
the power grid and in the long run reducing the peak load (Goldman [109]).

Consumers may take part directly in DR programmes through the utility, or can participate
indirectly via an intermediary. In regulated markets, like wholesale power markets, smaller
consumers are usually aggregated by intermediaries, referred as aggregators, curtailment
service providers, or demand response providers that provide aggregated customer capabilities
to the organised market (Chiu et al. [46]). If appropriate benefits are given to the consumers,
they may organise their power consumption in order to minimise the peak to average demand
ratio or mitigate power costs (Mohsenian-Rad et al. [190]). However, low consumer flexibility
and practical circumstances which are inherent to the consumer can mean that actual load
shedding for power system can be uneconomic and will produce diminishing returns when
carried out through price incentive only .

There is a need to dedicate contractual demand management requests if the power grid
or portions of its network (transformers, power lines, substations, etc.) are not performing
as usual because of failure or maintenance (Palensky and Dietrich [210]). The last category
of DSM, spinning reserves, addresses this (Palensky and Dietrich [211]). Spinning reserves
refer to the first plan of a power grid operator to preserve grid stability after a major system
failure, including unplanned failure of a large-scale power plant or an important transmission
line. The DR spinning reserve projects function by aggregating separate controllable and
small loads such as domestic appliances (Eto et al. [84]). Loads may function as a ‘virtual or
negative’ spinning reserve if their power usage is related to the grid via smart means such as
’droop control’.

Spinning reserve is regarded both as the primary control, which says that active power
output ultimately depends on frequency, and as secondary control, to maintain grid state
and frequency with extra active power (Vasquez et al. [275]). This is usually the job of
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controlling power stations, but in simple terms loads will utilise less power if the frequency
of the power system decreases. It can be done independently (such as primary control), or in
a coordinated fashion (such as secondary control). Furthermore, loads managed by modern
SCADA standards, such as IEC 61850 or central management and dispatch node, can also
act like virtual storage through load changes. The combination of these loads results in total
loads that can take part in energy markets and can keep up with standard power storage
systems (Kirschen [155]).

1.3.2 Importance of Demand Side Management

DSM has a large potential to help in improving the power system efficiency and the use of
available resources. According to Gellings [102], it could be used as a means of achieving
various load shaping targets such as valley filling, peak clipping, strategic conservation, load
shifting, flexible load shape, and strategic load growth depicted in Figure 1.13.

Fig. 1.13 Fundamental Load Shaping Methods (based on Gellings [102])

The mixture of the above methods allows the load curve to be as close as possible to
electricity production curve. This might reduce the amount of resources required to meet
customer demands utilising current generation methods (mostly fossil fuels) and could
substantially boost the load factor (Strbac [256]). With more DSM installations, there may
be a significant rise in the competitive pressure and reduction in the dominant generation
stakeholder’s "market power" (Rad et al. [227]). Reducing the influence of the market is an
important primary concern for system operators (SO) in order to ensure favourable energy
prices.

DSM also provides the option to deal with demand shortages without building costly
new generation power plants. As new power systems incorporate greater contributions from
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renewable energy resources with high degrees of variability, DSM will be especially valuable.
For instance, wind power plants could evidently match the large volume of energy produced
by traditional fossil-fuel power plants. However, being dependent on the wind, the amount
of energy being generated in real time can change quickly, presenting a challenge to ensuring
the resilience of the grid.

DSM will also act as an alternate method of power reserve since a traditional standby
power plant or another related approach would be possibly ineffective and expensive. Strbac
[256] claimed that DSM may generally bring a wide range of advantages for network system,
including: delaying investments for new network; enhancing distributed generation access to
the current power distribution network structure; reducing challenges of voltage-constrained
transmission of power; reducing heavy traffic in substations at the distribution side; optimising
the handling of power outages; improving the productivity and energy security to critical
customers; and producing a sharp decrease in emissions.

In summary, multiple forms of technology and coordination between the utilities and the
consumers are required based on the categories of DSM. The latest introduction of smart
metering devices in the domestic sector has attracted researchers around the world to look
into how these can be fused with DSM programmes. TOU tariffs are an efficient substitute
for flat tariffs as they offer customers with electricity price certainty for different hours
throughout the day, in addition to not requiring additional infrastructure beyond the smart
meter (Newsham and Bowker [196]). Therefore, TOU is one of the most common types of
DSM programmes and holds a promising future (Hirst [124]).

1.4 Time-of-Use Tariff

Supporting domestic customers to shift the period during which they use energy is a crucial
component of many government’s decisions to make sure that regional supplies of energy
are safe and sustainable in the move to greater penetration of sporadic renewable energy
resources and the electrification of transport and heat (Carreiro et al. [38]). One method of
encouraging customers to shift their consumption behaviour is by offering them monetary
savings through time-of-use (TOU) energy tariffs, where electricity rates differ according to
conditions such as the retail energy prices and the power network limitations. The literature
shows that consumers would adjust their patterns of consumption in answer to a wide range
of TOU prices. Cappers and Sheer [37] and Economics and First [75] have assessed 30 cases
to show the effects of TOU tariffs on load demand.
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There are several variations of TOU tariff structure and some of these tariff plans may be
more attractive to consumers than others. Nicolson et al. [198] describes four main types of
TOU tariffs (see also Figure 1.14):

• Static TOU pricing. In this scheme, there are multiple electricity rates throughout the
day (or days), but their timing and amount are permanent and do not change. It is
targeted to address large periods of time, typically on the order of months or years. For
instance, utilities can announce peak pricing rates from 4 to 8 PM on weekdays, and
lower rates at other hours. There can be numerous structures to accommodate seasons,
day of the week, and time during the day, but in all cases the rates are pre-determined
and the customers are informed many days in advance (Dupont et al. [71]).

• Real-time pricing (RTP). The price is dynamic in nature and offers variable real-time
rates that may change throughout the day and according to the current wholesale price
of energy. For example, utilities may calculate prices for the next 15, 30, or 60 minutes,
but the crucial difference is that the advance notice time of RTP programs is usually
less than a day (Dupont et al. [71]).

• Variable Peak pricing (VPP). VPP is a combination of static and dynamic electricity
prices. The rates are fixed but their "window" of application fluctuates frequently. For
instance, there can be high, medium, and low rate hours, and users will be informed
in advance (e.g. less than a day earlier) the timings during which these rates will be
applied.

• Critical peak pricing (CPP). In this type, high rate incidents are alerted to consumers
in advance with notice of generally less than a day - similar to RTP programs - but the
difference is that the rate is usually fixed (Dupont et al. [71]). The prices are usually
high during those times of the year when wholesale electricity rates are high.

Though TOU electricity tariffs have long been the focus of grid management practices
comprising many significant commercial and industrial users, residential TOU services
remain limited to fairly elementary legacy choices such as the France Tempo Electricity
Tariff (Crossley [53]), Great Britain Economy 7 tariffs (Focus [96]), and some states of
the United States. The TOU pricing plans operated by Electricite de France EDF [76] are
the highly effective examples of residential TOU pricing. It was estimated that 25 % of its
30 million consumers are using TOU pricing plans (Cousins et al. [52]). They announced
voluntary pricing designs for domestic customers in 1965 after offering it to their industrial
users in 1956. In the United States, more advanced TOU rates are now available on the
market. Since 1978 in California, TOU tariffs were made compulsory for users consuming
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Fig. 1.14 Main types of Time-of-use Tariffs (based on BRIEF [32])

more than 500 kW to deal with the power crisis issues of 1973. Moreover, many utilities
in different parts of US offer voluntary residential TOU prices. In literature, some more
advanced works presented technological tools, generally smart thermostats, that could be
configured by consumers in higher peak period price cycles to reduce their HVAC load
set-points (Wang et al. [280]). These innovations can also help residential TOU tariffs to be
more attractive.

1.4.1 Importance of Time-of-Use Tariffs

When correctly applied, time of use tariffs can greatly contribute to monetary savings for
both the utility and consumers due to the shift in load demand. The projections of savings
will differ according to the load size of the participant and the subsequent response to the
pricing. Furthermore, the part of the population with a lower-than-average load curve might
still see significant cost savings from such price plans, because some plans may be offering
more incentives to customers with lower overall load.

According to Hledik et al. [125], there are also additional possible benefits of TOU tariffs
which are not monetary but are vital for the both utilities and consumers. For example, it
is hypothetically possible to convey price signals for ancillary services to domestic retail
consumers and facilitate their participation. Ancillary services are mechanisms that enable
grid operators to establish a stable power system. They may include services to mitigate the
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supply-demand energy imbalance, assist the power system in recovering after a failure, and
keep the proper electricity flow.

Another benefit of TOU can be a reduction in wholesale electricity price. A decrease in
load demand during peak load hours may reduce wholesale electricity prices temporarily –
producing a gain for customers as energy costs reduce on the whole and allow net savings to
be passed on. Further, the stability in price can enable lower overall costs as the risk premium
associated with "peaky" load can be reduced.

TOU pricing also offers environmental benefits. Peak demand is typically supplied by
fossil-fuel sources (Ofgem [200]), so if TOU tariffs reduce or shift peak power demand,
the fossil-fuel sources would need to produce less power. This in turn would result in
fewer emissions, generally leading to a net environmental gain. However, the impact on the
environment of many of these TOU tariffs is very small, given the small number of peak price
activities and minimal adjustments in overall consumption of electricity. Nonetheless, some
research has indicated that TOU tariffs may contribute to a net decrease in overall energy
consumption by promoting an enhanced awareness of energy consumption and mitigation
activities (such as by encouraging the use of energy efficient devices) that carry over into
more efficient lifestyle and consumer choices on the whole (Di Cosmo et al. [64]).

Moreover, TOU tariffs may enhance the economic appeal of many kinds of distributed
energy sources, for example, electric vehicles, rooftop solar PV modules, and energy storage.
Indeed, TOU tariffs are already vital for household owners if they plan to install PV units on
their rooftops. The domestic PV power producers may receive payments for every kWh of
energy that they produce. However, this payment may vary throughout the day. For example,
the homeowners will get higher rates for sending power back to the grid during the peak time
rather than sending it back during the off-peak hours. Furthermore, homeowners would also
be able to reduce their energy bills by analysing the TOU rates and using more of the energy
that they produce when these rates are high. The next sub-section discusses the relationship
between domestic PV power producers and electricity tariffs in detail.

1.5 Domestic Feed-In Tariff (Solar)

Motivated by the pressing issues of climate change, increasing fossil fuel costs, and efforts
of authorities to limit reliance on imported fuel internationally, governments are promoting
the production of electricity using renewable electricity sources. Among the most popular
sources of renewable energy, solar PV technology is growing rapidly with producing 59% of
the total green energy worldwide as shown in Figure 1.15 in 2019 (Agency [4]).
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Fig. 1.15 Global electricity production from renewables installed in 2019 (based on Agency
[4])

As a major aspect of the commitments of the governments across the world to handle the
changing climate and energy security, a variety of economic incentives have been put into
place to promote the use of renewable energy, and particularly solar PV. One such reward is
a feed-in-tariff (FIT) plan, which attracts consumers by offering them valuable long-term
contracts as discussed below.

1.5.1 Global Deployment of Rooftop PV

Solar photovoltaics have shown a strong domestic development over the past few years.
Photovoltaic systems are widely known as advanced technologies for domestic usage and
critical to meeting renewable energy deployment targets (Energy and Change [80]).

According to IEA [138], domestic solar PV production is expected to grow to 143 GW in
2024 from 58 GW in 2018, and the yearly capacity increase is likely to be tripled and reach
more than 20 GW by 2024, as demonstrated in Figure 1.16. Chinese domestic PV growth is
projected to increase significantly in contrast to its past six years. Spurred by the feed-in tariff
schemes (IEA [137]), China will record the world’s largest deployed residential PV-based
power generation capacity by 2024. Feed-in tariff incentive schemes are ensuring rooftop PV
homeowners a reliable income for all their energy production. By 2024, China will also be
exceeding the domestic PV generation capacities of Japan, EU, and the US combined.

In Europe, Germany and the UK are among the biggest four solar PV markets (PV Maga-
zine [224]). The UK ended all rooftop solar PV incentives on 31 March 2019, removing the
previous feed-in tariff (FIT) programme with the new Smart Export Guarantee (SEG) scheme.
Initiated in January 2020, this scheme requires all licensed power providers with over 150,000
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Fig. 1.16 Global capacity growth of domestic solar PV systems from 2013-2024 (based on
IEA [138])

customers to give at least one SEG tariff to new domestic PV system installations. Smaller
utilities can also provide a tariff if they wish. This termination of old FIT schemes did not
affect the users which were already using it on their solar PV installations. In this SEG tariff
scheme, the government does not recommend a particular tariff type, duration, or rate, but
stated that the purchasing tariff must at all times provide an export rate above zero GBP per
kWh, thereby providing income for domestic produces with excess solar energy. This is
different from the previous FIT schemes where producers were paid a fixed rate for all energy
they produced. The UK has about 3 GW capacity of domestic rooftop PV installations below
10 kW.

In Germany, 581 MW of solar PV projects up to 10 kW capacity and 3.9 GW overall
solar projects were installed in 2019 [93]. Recently, German market research group EuPD
Research reviewed over 1,000 householders and discovered that 20% of them are actively
deciding to invest in solar PV. People surveyed said that they wanted to participate in PV
installations to decrease their energy bills whilst contributing to environmental sustainability,
and to gain from the government-guaranteed Feed-in Tariff schemes. Germany previously
applied a 52 GW PV cap on the installations that would qualify for the incentive scheme,
which EuPD Research proposed would be achieved by July 2020. After hitting this cap, no
new PV system of less than 750 kW would qualify for the tariff plans, thereby threatening
the further progress of PV development. However, the PV incentive cap was annulled by the



1.5 Domestic Feed-In Tariff (Solar) 25

government of Germany in May 2020, and now the commercial and residential PV sectors of
the country await the introduction of a new criterion.

On the other hand, some nations, such as Greece and Italy, substituted their FITs with
retail net energy metering (NEM) frameworks, which offer incentives to the power producers
for the electricity that they provide to the grid. In NEM, the smart meter of the PV power
producer runs in a backward direction when the user is exporting the surplus energy to the
grid, and in a forward direction when the power production is not enough and the user is
importing energy from the grid (Dan [54]). The utilities pay full retail electricity price to the
PV power producers for the surplus power that they send to the grid, and if the consumption
of the user is greater than the energy he is producing, he would buy energy from the utility.

Other nations, such as Portugal and Vietnam (Bridge [31]), have preferred self-consumption
frameworks that work like NEM schemes but usually do not permit energy payment transfers.
The common usage of smart meters has helped in removing the imbalance between con-
sumption and generation by controlling these power flows in real-time. In self-consumption
frameworks, the PV power producers use part or all of the power that their system is generat-
ing (Énergies [305]). This helps them in reducing electricity bills by avoiding having to pay
full retail energy prices and associated charges. As an example of this, the standard retail
electricity price in the UK is only 34% attributed to the wholesale cost of generation with
the remainder attributed to grid charges, retail profit margin, VAT, and other items (Ofgem
[205]). Assuming generation costs were equivalent, a consumer would be cutting 66% of the
cost per kWh of electricity that they generate and use themselves.

Energy payment transfers are not involved when the user is using all of the produced
power or is storing the excess, such as through a battery system. On the other hand, if the user
is consuming only a part of the produced power and is importing the extra power to the grid,
then the utilities can buy this power. However, this is not the main aim of self-consumption
frameworks.

NEM schemes can have structural problems where they do not reflect the market price
of electricity. For example, there are variants of NEM strategies (which are not true NEM
schemes) and overall tariff allowances across the globe that pay customers below the actual
retail price of electricity (Koumparou et al. [160]). In the Philippines, the Renewable Act of
2008 regulates the NEM strategies and the customers are often paid a generation cost that is
even less than the half of the retail electricity price (The US Solar Institute [265]). Home
solar PV customers need to sell the generated energy above levelised cost of energy (LCOE)
to have a positive net present value (NPV) (Comello et al. [48]). The main challenge is to
gain a positive NPV or grid parity as a reward.
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1.5.2 Domestic Feed-in Tariff

A feed-in tariff is a strategic plan designed to speed up investment in renewable technologies
by providing renewable energy suppliers with long-term agreements. The goal of the tariff
is to provide green energy suppliers with cost-based incentives, long-term deals, and price
certainty that indirectly assist funding investments in renewable energy. The tariff can
apply to a series of technologies, such as, Anaerobic Digestion (AD), Wind, Hydro, and
Photovoltaic up to a certain maximum total installed capacity. The core objective is to reduce
the cost of such systems by offering a more secure return on investment. The term Domestic
Feed-in Tariff (D-FIT) refers to the financial rewards offered to householders if they invest in
renewable energy technology such as solar PV.

Let’s take an example to better understand how the D-FIT scheme may help at domestic
level. At the domestic level, a house owner will be reluctant to take the initiative of producing
green electricity because it will be very costly up front to install a system - often in the
thousands of pounds - and they have no guarantee that there will be a buyer for their excess
energy at a price that makes the return on investment attractive.

As such, some may still consider the installation but will discount the return made from
selling generated energy and select a smaller installation scaled to suit their own needs (in
essence, a self-consumption arrangement). However, if they can be assured of the price their
generated energy can be sold at, some may be convinced to opt for a larger system. This price
assurance can be achieved through a D-FIT scheme in which the government regulator may
force the utility or system operator to purchase electricity produced from renewable energy
at a higher rate than the standard electricity price - sometimes by paying the difference from
additional taxes or levies - to incentivise the deployment of renewables. As a result, more
homeowners will now consider installing a solar PV system because the anticipated savings
from the price difference will be both significant enough to pay off the system investment
and assured as it is backed by the government.

The government may subdivide the applicants into small and large installation categories
with different different FIT schemes, and the focus of this section is domestic PV installations
(stand alone or roof mounted installations). The D-FIT schemes can be of the following three
types:

1. Export tariff. In this scheme, each homeowner is provided with an extra fixed rate for
each power supply unit that they add into the grid system.

2. Generation tariff. In the generation tariff, the homeowners are paid for both exporting
renewable power to the main grid or using it themselves; this is unlike the export
tariff, where homeowners are paid only for exporting renewable power to the grid. The
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electricity provider will charge a flat rate for each generated power supply unit (kWh)
and the price level depends on the renewable energy technology and the capacity of
the installed network (Ofgem [207]). Once the homeowner registers, tariff rates are
assured and linked with inflation rate.

3. Electricity bill savings. If the homeowners will be producing their own green electricity,
they will need less power from the grid. As the renewable energy generated is also less
expensive than the grid electricity, overall there will be a reduction in electricity bills.

Export tariffs are the most popular form of residential solar subsidies to make the
investment lucrative for a homeowners. Any surplus energy that their solar PV energy
production system contributes to the grid station is paid per kWh and is rewarded as an
additional credit on energy bills. Recently a combination of TOU and DFITs is being offered
by the retailers such as in Australia (Australia [19]). Previously, homeowners with PV
modules could only sell back their surplus energy at a flat rate throughout the day, but
with TOU/DFITs, varying rates during different time of the days are offered to homeowners.
For example, if homeowners choose to go for TOU/DFITs, they may get higher payments
for producing surplus energy during the peak hours rather than the off-peak hours. The
homeowners could gain more benefits from such schemes by limiting their residential power
consumption during the peak hours such that they have more energy to contribute to the grid
station.

1.5.3 Decentralisation with Rooftop Solar PV

Domestic solar PV installations are now a central focus of the new energy system created by
smart meters, communications, and two-way flow of power. The advent of this distributed
energy resource and others such as plug-in EVs, micro wind turbines, and smart home
appliances have made homeowners active members of the power system. As discussed in
section 1.5.1, there are self-consumption schemes in some countries that permit homeowners
to produce electricity for their own needs rather than getting a payment for supplying it to
the grid. Therefore, the most profitable and optimal way to consume the self-produced solar
power will include a more sophisticated smart homes system incorporating solar power with
energy storage, PV systems, heating, electric vehicles (EV) charging, energy efficiency, and
demand response (magazine [177]).

With DR programmes, homes with rooftop solar PV installations can be flexibly con-
trolled based on the needs of the grid. Demand response is a process that allows users
to adjust their energy consumption habits and provide grid services, either independently
or via an aggregator. The homeowners with rooftop solar installations can produce, trade,
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consume, and store power, thus moving from being passive to active consumers, also called
as prosumers (IRENA [140]). They now have more control over electricity production, and
are altering the energy market dynamics with the versatility of demand-side management.

Rooftop solar PV installations along with demand response are contributing towards
decentralisation of the power system. Optimising domestic electricity consumption can
give the energy system cost-effective flexibility. However, customers will be more likely
to openly participate in decision-making when as the financial rewards become greater and
more certain, and consumer service options such as demand response are a necessity for
enabling this.

1.6 Thesis Aims

The main aim of this thesis is to investigate opportunities and problems related to time-of-use
tariffs at the national level utilising smart meter data. As of today, there exists a large body of
research on smart meter data analytics and smart meter penetration has reached high levels
in many developed countries. However, several points which prevent utility companies from
practically implementing TOU tariffs at a large scale remain untouched, and the actual usage
of these new technologies for DSM is still limited. Therefore, more practical modelling
frameworks, which can bridge a large number of existing modelling works and commercial
objectives led by utilities, has a vital importance. Major research gaps which need to be filled
in order to expand commercial applications of TOU tariffs are identified with some practical
solutions proposed in this thesis. The overall structure of this thesis and a description of each
chapter is presented below.

Chapter 2 reviews existing academic literature relevant to a TOU tariff implementation
and examines any gaps to preventing the large scale roll-out of the TOU tariff. This chapter
identified four research gaps:"TOU load forecasting problem", "TOU winner detection prob-
lem", "TOU public dataset problem", and "excess generation forecasting problem". Each
problem is addressed in the following chapters.

Chapter 3 describes "TOU load forecasting problem", proposing a top-down statistical
medium-term load forecasting model of residential customer demand response following the
adoption of a time-of-use tariff and reports the model’s accuracy and the feature importance.
The importance of statistical moments to capture various lifestyle constraints based on smart
meter data, which enables this model to be agnostic about household characteristics, is
discussed. 646 households in Ireland during pre/post-intervention of the time-of-use tariff is
used for validation. The value of Mean Absolute Percentage Error in forecasting average
load for a group of households with the investigated Random Forest method is 2.05% for the
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weekday and 1.48% for the weekday peak time. The content of Chapter 3 is based on the
published work in the journal Energy [152].

Chapter 4 addresses "TOU winner detection problem", providing a statistical model to
identify the characteristics of so-called winners and losers - or households that would be
better or worse off under a TOU tariff, using only ex ante information. The results indicate
that the model accuracy reaches a reliable level using historical electricity load and basic
household characteristics as inputs. This accuracy can be further improved if customers’
online engagement preferences are available - providing justification for the development of
online interaction and gamification components in TOU programmes. This chapter (detailed
in Appendix A) also makes a contribution to addressing the "TOU public dataset problem" by
publishing a new public dataset (CAMSL) of 1423 households in Tokyo, Japan, including
historical smart meter data, household characteristics, and online activity variables during the
2 years of comprehensive TOU intervention period in 2017 and 2018. The content of Chapter
4 is based on the published work in the journal Energy [153].

Chapter 5 presents the "excess generation forecasting problem", demonstrating a data-
driven modelling framework to predict excess electricity generation, factoring intermittent
generation, and customer load adaptation. An illustrative study, with a-year long dataset from
287 households in Tokyo Japan, is used to derive the forecasting model. Results show that
year-long data from 18 households is sufficient for accurate prediction of excess generation
across a uniform geographic and socio-economic setting. The content of Chapter 5 is based
on the published work in the International Building Performance Association Conference
(IBPSA2015).

Chapter 6 draws out conclusions and limitations of this research, then outlines possible
avenues for future improvements and policy implications in smart meter data application and
demand side management.

These chapters are modified from the published version in order to fit with the thesis
structure. Note that the introduction and the literature review are kept in each analysis chapter,
and some readers might feel this to be redundant where there is overlap with the previous
chapters. The author however believe that keeping the succinct overview of holistic problems
and relevant literature is beneficial for a wider audience (who might not have enough time to
read through the entire thesis).





Chapter 2

Literature Review

2.1 Survey of Smart Meter Data Analytics Literature

Data analytics practices and case studies are now more prevalent in modern power systems.
Motivated by the advancements in communication and information technologies, an informa-
tion layer has now been introduced into the traditional power transmission and distribution
system for gathering, storing, analysing the data. All of this is possible by utilising widely
installed smart meters and sensors.

Wang et al. [281] work is the one of the latest and comprehensive review of smart
meter data analytics applications. They carried out a bibliographic evaluation using Web
of Science (WoS) databases to give an idea about the current research works in the field of
smart meter data analytics. The terms used for finding relevant research papers were such
as “consumption” or ”smart meter” or ”load” or ”demand” and ”data” and ”residential” or
”household” or ”resident” or ”industrial” or ”building” or ”individual” or "consumer” or
"customer” and "demand response” or “energy theft” or ”forecasting” or ”clustering” or
”profiling” or ”classification” or "anomaly” and ”power system” or ”smart grid”. Figure 2.1
indicates the volume of WoS indexed publications from 2010 to 2017. According to Wang
et al. [281], a total of 200 publications have been published in the field of smart meter data
analytics in WoS by 2017. The number of papers before 2011 was reasonably small, and it
steadily increased from 2012 and in the year 2017, it hit 60 in WoS. This outcome was as
expected as the projects of smart grids mainly began in the late 2000s and the researchers
required several years to acquire data for detailed testing and several more years to report
and publish the results in journals.

In Wang’s work, the taxonomy of smart meter data analytics are defined in the following
categories: load analysis, load forecasting, load management, and others. (see Figure 2.2):
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Fig. 2.1 Publications indexed by Web of Science from 2010 to 2017 (based on Wang et al.
[281])

Fig. 2.2 Classification of Smart Meter Data Analytics (based on Wang et al. [281])
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The load analysis category has been further divided into bad data detection, non-technical
loss detection, and load profiling. In load forecasting, load forecasting with and without
individual meters and probabilistic forecasting are included. The load management category
is comprised of characterisation of customers, demand response marketing, and demand
response implementation. The others section includes a combination of connection verifica-
tion, outage management, data compression, and data privacy. In all these categories, the key
machine learning methods that were utilised for smart meter data analysis include classifica-
tion, clustering, dimensionality reduction, time series, deep learning, outlier detection, online
learning, compressed sensing, low-rank matrix, and others.

Under this taxonomy, the existing academic literature relevant to the main aim of this
thesis is mainly covered by two main pillars of "load forecasting" and "load management". A
large number of existing literature studies under these two categories have been found, but the
issues they cover are different from a traditional load forecasting problems in that customer
behavioural adaptation under different TOU tariffs needs to be incorporated in forecasting
models. This chapter reviews existing academic literature under these two categories and
critically examines any gaps to prevent the large scale roll-out of a TOU tariff.

2.2 Load Forecasting

Smart meters allow electricity retailers and local utilities to properly understand and predict
the power consumption of an individual building or house. Therefore, the load data supplied
by smart meters have high spatial resolution that has the potential to significantly improve
the forecasting performance. Since residential and building energy consumption could be
more unpredictable and random than aggregated consumption, the conventional methods and
techniques built for aggregate load forecasting may or may not be sufficient. Researchers
are developing various strategies to deal with the challenges of the smart meter based load
forecasting, such as assessing and changing the current load prediction methods as well as
introducing new techniques. Figure 2.3 shows the different types of load forecasting based
on geography and time resolution.

For the operation and control of a power system, accurate models for load or demand
forecasting are vital. Load forecasts assist electric utilities significantly on decisions related
to the generation and purchase of power, the growth of the power network, load switching,
and more. The power demand depends on multiple parameters such as time, weather, and
economic limitations. Load forecasting takes these variables into account and is helping
utilities to play a part in the decentralisation of the power market.
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Fig. 2.3 Types of load forecasting based on geography and time resolutions (based on
Estebsari and Rajabi [83])

Residential load can fluctuate very quickly as home appliances are turned on and off.
Although the system-wide load prediction benefits from the load smoothing effect of several
homes, rapid variations at each household scale cannot be prevented, making this load
forecast more difficult. Moreover, rooftop PV installations at the domestic level need to
incorporate these fluctuations in order to optimise home self-sufficiency and reduce the
afternoon detrimental impact of PV excess generation on the grid (Weniger et al. [292]). The
afternoon PV excess generation forecasting is also crucial as many countries have to reach
their specific target of total domestic PV installed capacity.

Until the latest introduction of smart meters, high-resolution household data was lacking.
Figure 2.4 shows the typical steps involved in a load forecasting model (LFM) using smart
meter data. This section inspects how such LFMs have been developed in the literature based
on the following research questions:

1. How to remove or incorporate the weather influences? In Figure 2.4, it can be seen
that after selecting a particular application of load forecasting, the next step (2nd step)
involves acquiring historical data for load, weather, and other variables affecting the
load. Therefore, this research question deals with how researchers have been adding or
removing weather variables at this stage.
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2. What are the latest machine learning (ML) models for short-, medium-, and long-term
load forecasting? Choosing the right forecasting model (step 5 in Figure 2.4) is critical
for utilities, and continuous research is going on for finding an accurate, fast, and
easy-to-use machine learning forecasting model. To answer this question, extensive
research has been performed to find out the latest ML models that are being used
according to various applications of load forecasts.

3. What are the popular input features for short-, medium-, and long-term load forecasting
models? This also addresses the 2nd step of LFM depicted in Figure 2.4. The selection
of input predictor variables highly depends upon the duration of load forecasting.
Hence, subsection 2.2.3 discusses in detail what kind of features are being used in
literature to forecast load on a short-, medium-, and long- term basis.

4. What are the popular methods for evaluating forecasts? Finally, it is obviously vital to
assess the performance of different LFMs in order to choose the best one. Thus, sub-
section 2.2.4 deals with the last step of LFM and summarises the common performance
metrics that are being used in literature.

Fig. 2.4 Development of a typical load forecasting model (based on Lusis et al. [173])

2.2.1 Weather Influences

Weather influences can be highly important for domestic electricity demand (Beccali et al.
[22]). This thesis has focused on how temperature influences can be removed or incorporated
into the load forecasting models. It is vital to note that temperature influences on demand
data decreases with time, therefore, these influences are usually not considered for medium-
and long-term forecasting. They are only appropriate for short-term load forecasting up to
a week. Based on literature, the following are the four popular ways of incorporating or
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removing temperature dependencies (Gan et al. [101], Gaillard et al. [99], Xie and Hong
[296], Yu et al. [303]):

1. Min-max scaler. In machine learning models, the input predictor variables must
be normalised to the same scale to comply with the scaling sensitivity of the neural
networks. Therefore, the temperature data can be normalised using the popular method
of min-max scaler defined by Equation 2.1:

Tnorm =
T −Tmin

Tmax −Tmin
(2.1)

where Tnorm corresponds to the temperature normalised value, and Tmin and Tmax

represent the highest and lowest temperature values in the specific raw data. The
normalised temperature values will lie between 0 and 1.

2. Exponential Smoothing. It is a method for smoothing data, which must be time-
series, using an exponential frame. In the traditional moving average method, the
previous data points are assigned the same weights, but in exponential smoothing, an
exponential parameter allots exponentially decreasing weights to the data with time.
For smoothing temperature values and removing any arbitrary variations, the induction
2.2 can be used at any time t.

T (γ)
t ≜ γT (γ)

t−1 +(1− γ)Tt (2.2)

where γ is the exponential smoothing parameter ranging from 0 to 1, i.e., γ ∈ [0, 1],
T (γ)

t is the smoothed temperature, and Tt is the raw temperature value that must be
smoothed.

3. Bootstrap method. This technique first makes equal duration (hours, day, or years)
fragments of historical temperature series data, and afterwards, it arbitrarily selects
the fragments by replacing it with any other historical data to develop a new series of
temperature data. This will assist in developing a comprehensive temperature scenario,
but in the case of probabilistic load forecast, it may not result in a good quantile score.

4. Cubic polynomial. Let’s assume x is an input sequence of hourly load data with
time length Z, and τ is the equivalent temperature vector with the same length. The
temperature dependencies can be well-estimated using a cubic polynomial function
defined by 2.3:
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argmin
c0,c1,c2,c3

1
2

Z

∑
i=1

(
xi −

(
c3τ

3
i + c2τ

2
i + c1τi + c0

))2
(2.3)

where c0,c1,c2,c3, are the approximated coefficients and the temperature component
of electricity demand is denoted by 2.4:

b(τ) = c3τ
3 + c2τ

2 + c1τ + c0 (2.4)

where b(τ) shows that the cubic polynomial is applied element-wise to the temperature
values vector τ . If temperature predictions τ̃Z+1, τ̃Z+2, . . . are available, then the cubic
polynomial can be simply used to forecast the electricity demand xZ+ j.

2.2.2 Machine Learning Forecasting Models

Machine learning forecasting models are assisting in improving the performance of the whole
power network, and the race is on to find the best of the best models for an accurate short-,
medium-, and long-term load forecasting. This section discusses the latest machine learning
models for load forecasting that are surpassing the existing state-of-the-art models. The next
sub-sections discuss the ML models for short-, medium-, and long- term forecasting and
Table 2.1 illustrates the ML models that have performed best for each category. The last two
sub-sections discuss the emerging approach of probabilistic load forecasting in contrast to
the point-based prediction and excess generation forecasting.

Short-term Load Forecasting

Short term load forecasting is becoming increasingly important as the energy generation
market has deregulated and renewable resources have been aggregated. It includes predicting
load for time intervals ranging from a few minutes to up to one week, and it is becoming
particularly crucial for power market spot price calculation and bidding. However, the short-
term load forecasting efficiency based on conventional algorithms is often unsatisfactory and
not stable enough. Thus, various approaches have been proposed to improve the models’
accuracy as well as introducing emerging techniques from deep learning.

A widely cited research paper of Edwards et al. [77] implemented and tested the perfor-
mance of seven machine learning algorithms for predicting the residential power consumption
for the next hour. They developed variants of support vector machines (SVM), linear regres-
sion (LR), artificial neural networks (ANNs), hybrid of fuzzy C-Means and ANN, hybrid
of hierarchical mixture of experts (HME) and ANN, and hybrid of HME and LR experts.
The test case was conducted on the basis of two datasets: one with two office buildings
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and another with three residential buildings. The study showed that the methods could not
produce good predictions for the three residential buildings but performed well for the two
commercial buildings.

This body of research often use clustering methods to classify meters with similar patterns
to avoid the important features from being lost during aggregation. A clustering algorithm can
first group the consumers, and then the load of every consumer group can be predicted using
separate forecasting models. Eventually, the separate load predictions of every consumer
group can be combined to obtain the aggregated load prediction and improve forecasting
accuracy. For instance, Chaouch [41] developed the load forecast for the next day as a
realistic time series problem. Initially, clustering was done to divide the historical load
segments into various groups. At the end, functional wavelet-kernel based on clustering
(CFWK) method was utilised to predict the next-day target segment. The results of daily
median absolute error (DMAE) performance metric proved the effectiveness of CFWK when
compared with simple FWK.

In addition, a Ward’s linkage load modelling method based on clustering was also utilised
in (Hsiao [131]) to predict the load patterns with 30 minutes forecasting horizon. In their
work, clustering was done using contextual data comprising temperature, data, time, and
economic parameters. The proposed approach outperformed traditional methods of SVR, LR,
random walk (RW), back-propagation ANN, and auto regressive integrated moving average
(ARIMA).

Other examples include Least Squares Support Vector Machines (LS-SVM), which was
developed in (Edwards et al. [77]) for forecasting residential and commercial demand for the
next-hour. The LS-SVM differs from the standard SVM approach in two ways. Firstly, its
criterion function is based on least squares. This is a benefit as quadratic programming is
not required for solving the objective function. The LS-SVM needs to only compute linear
equations, and thus can quickly find solutions. Secondly, it has equality problem constraints
rather than inequality ones. Nonetheless, LS-SVM does not have the SVM’s sparsity property
as it utilises all the data points to find a solution, but this may or may not influence its ability
to form a generalised forecasting model. The proposed LS-SVM model outperformed HME
variants, FFNN, and FCM with FFNN models when forecasting residential load.

In contrast to these works using classical machine learning techniques, the recent ad-
vancement in deep learning has introduced a new paradigm to boost the accuracy of the
models in short-term load forecasting. The research work of Hong et al. [129] provides a
technique based on iterative ResBlock and deep neural networks to learn the spatio-temporal
relationships present in the load data of the appliances. ResBlock’s simple framework con-
tains two main components: one skip connection and a number of stacked layers. There are
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few hidden layers present in the stacked layers and end-to-end layers are linked directly. This
framework is analogous to the ResNet He et al. [120] building block that is utilised for image
classification, however, with a slight change. The authors tested their residential short-term
load forecast model on real data and found that both the iterative ResBlocks and load data
of appliances assisted in enhancing the prediction performance. MAPE, root mean squared
error (RMSE), and mean absolute error (MAE) were reduced by up to 32.78%, 20% and
22.58%, respectively.

Moreover, self-Recurrent Wavelet Neural Network (SRWNN) was proposed in (Chitsaz
et al. [45]) for forecasting 24-hour ahead load with prediction steps of an hour. The purpose
was to handle the volatile and non-smooth power demand time series data in microgrids.
The Levenberg-Marquardt (LM) algorithm was used to optimise the parameters of SRWNN
during training. The proposed model was compared with simple WNN and normalised
MAPE and RMSE performance metrics were used. The SRWNN model produced more
accurate predictions with volatile load data than conventional approaches and showed lower
values of RMSE and MAPE.

Very recently, a deep Bi-LSTM based sequence to sequence regression approach was
proposed in (Mughees et al. [194]) for forecasting day-ahead peak load of a residential area
both on special and normal days. The proposed six-layered deep Bi-LSTM forecasting
model was compared with its shallow version, LM back propagation based ANN, Medium
Gaussian SVR, shallow LSTM sequence to sequence, and deep LSTM sequence to sequence
forecasting models. The results demonstrated that the deep Bi-LSTM sequence to sequence
model performed better than the comparison models both on special and normal days. The
load profile on special days (holidays) always differ from normal days and less data is
available to forecast its load. This research work was successfully able to address the
challenge of accurately forecasting load on such days.

The latest stochastic deep learning models, Factored Conditional Restricted Boltzmann
Machine (FCRBM) and simple CRBM, were investigated in (Mocanu et al. [187]) for fore-
casting short-, mid-, and long-term power consumption. CRBM method is an improvement
of RBM model as it has an additional conditional history layer. It takes in account all the
potential links between weights, neurons, and biases when calculating the overall energy
function. Similarly, FCRBMs are an improvement of CRBMs as it has two more layers
namely features and styles. However, these layers can be reduced to a single layer to fit
the forecasting needs. The results showed that FCRBM surpassed conventional machine
learning models such as ARIMA, CRBM, HWM, ANN, SVM, and even surpassed some
deep learning models such as RNN forecasting models.
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Medium-term Load Forecasting

Medium-term electrical load forecasting has become critical given the extreme impact of
climate change on power consumption, as well as the latest developments in smart grids
including the utilisation of renewable resources. Specifically, electricity pricing setting, grid
maintenance planning, and energy distribution preparations all require medium-term load
forecasts. It includes forecasting load for 1 week to up to several months, though the time
interval must be less than a year. The authors in Shirzadi et al. [249] develop and analyse ML
models for medium term load forecasting. Upon completing the cleaning and preprocessing,
the models are trained using a dataset including nine years of historical load data from Canada
combined with meteorological data (wind speed and temperature). The results revealed that
using deep learning approaches of LSTM and NARX, the model was able to forecast load
demand more correctly than RF and SVM, achieving a MAPE of 4–10% and an R-Squared
of 0.93–0.96.

Mocanu et al. [187] used factored conditional restricted Boltzmann machine (FCRBM)
and conditional restricted Boltzmann machine (CRBM) to forecast time series load con-
sumption of three sub-meters and a household. They did short-, medium-, and long- term
forecasting with time resolutions of 1 year, 1 week, 1 day, 1 hour, and 15 minutes. The
FCRBM model surpassed all the other algorithms in terms of performance, and both CRBM
and FCRBM proved to be more robust. Similarly, Samuel et al. [237] provides a CRBM-
based methodology for medium-term load forecasting that combines hourly load demand
and temperature data to forecast month ahead hourly load demand. A mutual data-based
feature selection method is utilised for data preprocessing and a meta-heuristic optimisation
algorithm is utilised to enhance the convergence and accuracy rate of CRBM. The results
showed that the suggested model performed better than traditional methods in terms of
convergence rate, accuracy, and execution time.

Yu et al. [303] used sparse coding for modelling and forecasting of volatile and stochastic
household-level load for the next-week and next-day. They conducted a further case study
on 5000 homes data in Chattanooga, TN, and the addition of the sparse coding features
improved the forecasting accuracy by 10%. Estebsari and Rajabi [83] used a hybrid approach
based on convolutional neural networks (CNN) and time series image encoding methods
to address the problem of unpredictability of individual household load consumption. The
performance of a real domestic customer’s forecast using various encoder strategies was
contrasted with other current prediction methods like ANN, SVM, and CNN. The image
encoding method with best performance resulted in mean absolute percentage error (MAPE)
of about 12%.
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Long-term Load Forecasting

The utilisation of hourly and monthly data to develop a suitable long-term prediction model
and increase forecasting accuracy is in high demand in the energy sector. Long-term load
forecasting is particularly important for power system operations and grid expansion. In
long-term forecasting, the load is predicted for one or more than one year. Wen et al. [291]
proposed a Takagi-Sugeno (TS) fuzzy based RNN model for long-term forecasting. The
model is based on two stages. In the first one, an original weather station selection approach
is proposed and in the second stage an enhanced self-organising RBF-RNN is combined with
a TS fuzzy model. The results confirmed that the proposed model performed better than its
traditional version, GA-LSTM, FIR, SVR, and MLR.

According to some studies, ANN could produce erroneous load forecasts when utilised for
long-term forecasting as the training data is somehow always limited. However, an improved
ANN model was developed by Mohammed and Al-Bazi [188] comprising of an adaptive
back propagation algorithm. The proposed model took into account the variations between
future inputs and trained data and adjustment factors were also introduced. Monthly power
consumption data from 2011 to 2020 was used and load shedding time was also considered.
Results demonstrated that the proposed ANN model outperformed traditional and latest
techniques such as RNN. The long-term forecasts were able to achieve MAPE of 0.045 and
MSE of 1.195 and .650. Another novel dynamic feed-forward BP ANN algorithm for long
term forecasting has been proposed in Masoumi et al. [180]. The model was tested using
Canada’s power network data and the results confirmed the effectiveness of the proposed
approach.

An hourly load forecast for long-term has been proposed by Bhatia et al. [25]. The authors
developed an ensemble model with first stage based on stacks of adaptive and gradient boost
regressors and second stage based on Lasso LARS regressor to reduce the variance. Thirteen
years of historical data from Germany’s energy market has been used, out of which five
years of data is used for testing the model. The proposed model surpassed all the traditional
methods with MAPE of 1.59 and had lower computational costs when compared with ANN.
An LS-SVM based approach has been used in Yasin et al. [301] to forecast long-term power
demand. Weather data including humidity and temperature and wind speed were considered
as inputs along with energy data. For enhancing the accuracy, a Grey Wolf Optimiser was
used to minimise the MAPE-based objective function and find out optimal tuning parameters
of LS-SVM. The proposed algorithm achieved MAPE of 0.13% and outperformed the other
comparison algorithms.

Long term load forecasting is often limited to power demand data with annual or monthly
resolution, which leads to low accuracy. However, now deep learning algorithms such as
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LSTM have been able to forecast load for long-term using hourly load data as in Agrawal
et al. [5]. This is particularly because LSTM can consider long-term dependencies in the
input data. The authors proposed LSTM-RNN model and trained it using ISO New England
data for 12 years. The forecasts were made for five years and the suggested model was able
to achieve MAPE of 6.54 %. The model took only 30 minutes to compute, making it ideal
for offline training to predict load demand over a five-year period.

Point vs Probabilistic Load Forecasting

The short-, medium-, and long-term load forecasting techniques discussed above are referred
to as point forecasting. In the previous decade, increased market competitiveness, old power
infrastructure, and the demand for renewable energy deployment have made probabilistic load
forecasting (PLF) play a crucial role in power system operation and planning. A PLF model
is capable of extracting more details related to future uncertainties. A standard point forecast
model typically consists of historical data input, load modelling, and the target response (the
predictions). However, a probabilistic forecast can be developed in the following three ways:

1. Enhancing the PF outputs to PLF by developing point forecast ensembles or integrating
modelled or simulated residuals

2. Using PLF models, for example, quantile regression

3. Developing various input conditions to send to a PF model

For example, a quantile regression neural network QRNN was proposed in (Gan et al.
[101]) to produce next-year probabilistic load forecasting. Regular neural networks can
only raise one output value at one point, but this is not suitable for probabilistic load
forecasting. However, the proposed QRNN produced vectors comprising of quantiles by
changing variables in the loss function. The results demonstrated that QRNN surpassed the
reference models multiple linear regression (MLR), linear quantile regression (LQR), multi-
layer perceptron (MLP), and maximum relative improvement (MRI)) in 7 zones. Similarly,
Gaillard et al. [99] developed a probabilistic short- and medium-term load forecasting model
based on a quantile generalised additive model (quantGAM). Different temperature scenarios
were also developed to feed into the forecasting models. The results showed that quantGAM
was computationally fast, easily implementable, and achieved best performance. A more
detailed review on probabilistic load forecasting models can be found in works of Hong and
Fan [126].
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Excess Generation Forecasting

With the integration of renewable energy sources into smart grids, accurate energy output
forecasting of PV grid-connected systems is particularly crucial for economic dispatch, grid
stability, and optimal unit commitment. This is because generation from PV systems is
highly volatile due to its reliance on weather and solar irradiance. Hossain et al. [130]
developed a method to predict PV output power for 1 hour and 1 day ahead. The proposed
ELM model was compared with ANN and SVR on the basis of MAPE, RMSE, and other
performance metrics. The results confirmed the supremacy of the proposed model in terms
of computational time and accuracy. Similarly, Malik et al. [178] proposed PV power
generation forecasting model which considered the power degradation of old panels, which
in turn increased the accuracy of the results. Another effective PV forecasting approach
based on empirical mode decomposition and BPNN has been proposed by Yadav et al. [299].
The empirical mode decomposition algorithm first decomposes the power time series that is
then utilised for training the BPNN.

There are many other PV power forecasting models in past research, however the author
could not find a model which directly address the excess generation forecasting problem
where behaviour is incorporated. Currently,forecasting models for the PV generation model
and load are substituted for this problem, and excess generation itself is still considered to be
a niche area of study.

2.2.3 Predictor Variables

Based on the research papers reviewed in this and the previous subsection 2.2.2, Table 2.2
summarises the possible predictor variables that can be fed to a machine learning forecasting
model, depending upon application. The historical data that is used for load forecasting is
transformed and organised into a ‘prediction matrix’ of m by n dimensions, where m would
correspond to the number of time steps and n would correspond to number of predictor
variables.

For short-term load forecasting, researchers are using smart meter load data with se-
quential parameters such as weekends, weekdays, calendar, and hour of day (Edwards et al.
[77], Humeau et al. [133], Rodrigues et al. [232]), along with current values and forecasts
of weather parameters such as humidity, wind speed, temperature, and irradiation to fore-
cast domestic load (Gajowniczek and Ząbkowski [100]). Moreover, the number of electric
appliances, daylight hours, energy consumed every minute, number of occupants, holidays,
extreme weather events, important local activity, consumer price index, average of stock
exchange, economic growth rate, and oil prices are some other predictor variables that are
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Table 2.1 Best Machine Learning Models for short-, medium-, and long-term forecasting

Best ML Models ML Models used for Comparison

Short-term~
Load Forecasting

Least Squares SVM
(Edwards et al. [77])

HME variants, FFNN, and
FCM with FFNN models.

Self-Recurrent Wavelet
Neural Network
(Chitsaz et al. [45])

Simple WNN

Iterative ResBlocks
Deep Neural Networks
(Hong et al. [129])

ELM, SVM, and ARMA.

Factored Conditional
Restricted Boltzmann
Machine
(Mocanu et al. [187])

ARIMA, CRBM, HWM, ANN,
SVM, and RNN

Medium-term~
Load Forecasting

Group Sparse Coding
Machine
(Yu et al. [303])

ARIMA and Holt-Winters smoothing

Factored Conditional
Restricted Boltzmann
Machine
(Mocanu et al. [187])

ARIMA, CRBM, HWM, ANN,
SVM, and RNN

Quantile Generalised
Additive Model
(Gaillard et al. [99])

Long-term~
Load Forecasting

Quantile Regression Neural
Network
(Gan et al. [101])

MLR, LQR, MLP, and MaxRI

Factored Conditional~
Restricted Boltzmann~
Machine
(Mocanu et al. [187])

ARIMA, CRBM, HWM, ANN,
SVM, and RNN
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frequently being used in literature for short term load forecasting (Chitsaz et al. [45], Mocanu
et al. [187], Chaouch [41], Hsiao [131]).

For medium-term forecasting, previous week load, total previous day’s load, moving
average temperature, and lagged temperature variables are used in (Yu et al. [303]).

For long-term load prediction, median of monthly peaks, normalised monthly load
peak, housing stock, employment rate, weekend, number of jobs, holidays, weekdays, dry
bulb temperature, hour load, week load, demographic and economic variables, year load,
month load, and weather are commonly being used as predictor variables (Hong et al.
[128], Hyndman and Fan [135], Gan et al. [101]).

2.2.4 Forecast Evaluation

For assessing the performance of machine learning models, researchers often use performance
metrics based on error calculation. In this thesis, six popular error metrics for evaluation
of prediction have been identified (Edwards et al. [77] Chitsaz et al. [45] Lusis et al. [173]).
The coefficient of variance (CV), given by 2.5, calculates how far the total prediction error
fluctuates from the average value of actual load demand. A low CV rating represents that the
model has a low a range of errors. Equation 2.6 gives mean bias error (MBE), which specifies
how often the real load demand can be underestimated or overestimated by a specific model.
A null MBE is favoured, as this indicates that the model will not support a specific pattern in
its forecasting.

RMSE shows how the predicted data is clustered across the best fit line by calculating
the standard deviation of the prediction errors and is defined by 2.7. Therefore, lower values
of RMSE will indicate that the model has accurately forecasted the load. Normalised RMSE
(NRMSE) as illustrated by equation 2.8 associates RMSE with the actual demand data.
Mean absolute error (MAE) provides the average error magnitude in a prediction set and is
defined by equation 2.9. Lower values of MAE will mean an accurate forecasting model.
MAPE metric defines the error percentage in every prediction as can be seen in equation
2.10. Therefore, lower values of MAPE will mean that the model is more accurate.

CV =

√
1

n−1 ∑
n
i=1 (y− p)2

ȳ
×100 (2.5)

MBE =
1/(n−1)∑

n
i=1 (y− p)

ȳ
×100 (2.6)

RMSE =

√
1
n ∑(y− p)2 (2.7)
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Table 2.2 Predictor variables for short-, medium-, and long- term load forecasting (Chitsaz
et al. [45], Mocanu et al. [187], Chaouch [41], Hsiao [131], Yu et al. [303], Hong et al.
[128], Hyndman and Fan [135], Gan et al. [101])

Predictor Variables

Short Term Load
Forecasting

Medium Term Load
Forecasting

Long Term Load
Forecasting

Previous day load profile Previous Week Load
Normalised monthly
load peak

Previous week load profile
Total previous days
load

Median of monthly
peaks

Every minute load profile Moving Average Temperature Holidays
The surface of the property Lagged Temperature Weekdays
Number of electric
appliances Weekends

Number of occupants Housing stock
Daily temperature Employment rate
Sunshine curves Number of jobs
Month Weather
Day of month Demographic variables
Day of week Economic variables
Holiday for work Hour load
Holiday for school Week load
Festival Month load
Important local activity Year load
Typhoon Dry bulb temperature
Relative humidity
Wind speed
Consumer price index
Economic growth rate
Average of stock
exchange
Composite coincident
Index
Hour of the day
Oil prices
Solar Irradiance
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NRMSE =

√
1
n
·

n

∑
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y− p

y

)2

(2.8)

MAE =
1
n ∑ |(y− p)| (2.9)

MAPE =
1
n ∑

|(y− p)|
y

∗100% (2.10)

In all the above equations 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10, n is the length of load data, p is the
predicted load, y is the actual load, and ȳ is the average load.

It is noteworthy that both NRMSE and MAPE are vulnerable if the actual load data is near
or equal to zero, and thus produces a rather large error. MAPE is also sensitive to outliers
and cannot adequately calculate each load forecast because of its time-shifting property. In
Moreno et al. [193], a resistant MAPE (r-MAPE) was suggested to solve MAPE’s behaviour
to outlier values based on the Huber M-estimator estimate. R-MAPE can include outliers and
does not permit them to control the error calculations. For dealing with the intermittent nature
of individual power consumption, mean arctangent APE (MAAPE) has been developed in
(Kim and Kim [154]). Equation 2.11 gives this variation of MAPE. It considers constrained
impacts for outliers by regarding the ratio as an angle rather than a slope.

MAAPE =
1
n

n

∑
t=1

(AAPEt) f ort = 1, . . . ,n (2.11)

where AAPEt = arctan
(∣∣∣yt−pt

yt

∣∣∣)
2.2.5 Problems in Load Forecasting

The problem the author has identified is that while there are established machine learning
modelling frameworks for load forecasting, frameworks for direct modelling for customer
load adaptation or excess generation were not available.

Regarding customer behavioural adaptation under different TOU tariffs, the reliance on
historical data can have a number of drawbacks given that there is no in-built capability
to model discontinuous user behaviour such as an adoption to a TOU tariff. Therefore we
suggest that a dedicated data-driven model should be developed for this particular problem
considering the discontinuity of user behavioural patterns due to an intervention of a TOU

tariff. We name the problem as the "TOU load adaptation forecasting problem".
Similarly, regarding excess generation modelling, forecasting models for PV generation

models and load are substituted for this problem. There are many research works such as
Hossain et al. [130], Malik et al. [178], Yadav et al. [299] that have developed algorithms
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to predict the overall PV output power when connected with the grid but not the excess
generation. Forecasting the excess generation from households is essential for utilities, as the
cumulative installed capacity of residential PV systems is growing in many countries and
this impact has become substantial for demand management. Thus we also suggest that a
dedicated data-driven model should be developed for this particular problem. We name the
problem as the "excess generation forecasting problem".

Furthermore, some of the recent machine learning works use complex models which
might require a lot of time and computation power if dealing with millions of households.
The cost of computing time is a widely known issue in the field of machine learning [258].
Specifically, a variety of recently successful neural network models inherently take time for
their training due to their complex structure and numerous parameters. For instance, Hong
et al. [129] proposed a ResBlock and DNN based method which increased the computational
costs even with only 196 data points for testing and 200 epochs for training, which took
101.7 seconds to train the proposed model. In addition, FCRBM used in Mocanu et al. [187]
processed about 2,075,259 instances of load consumption data in the form of images and
stated that the computational complexity of the suggested algorithm would increase when
generating the proposed image encoded data realistically. Similarly, the authors in Hsiao
[131] used 400 days of data with 98 readings per day, and there is no guarantee that the same
Ward’s linkage-based approach would perform well when the dataset gets quite large.

Considering the millions of smart meters installed which continuously generate billions
of data points everyday across the world and the importance of continuous re-training the
modelling parameters, computational time should also be highly considered in the modelling.
Thus, this thesis suggests a way to improve the accuracy of classic machine learning models
by introducing new features that capture the characteristics of load profiles efficiently. More
specifically, statistical moments are introduced in Chapter 3 and 4 as an effective feature for
different tasks related to load prediction error while keeping the computational cost low.

2.3 Load Management

Smart meter data is also contributing to the management of DR programs by assisting
the researchers in finding the right customers for DR program marketing and solving the
problems regarding their implementation. Despite the large potential of TOU tariffs for
helping to achieve carbon neutrality, we cannot force consumers to switch to a TOU tariff
without their consent in the real world. Particularly in the competitive deregulated energy
market such as the UK and Japan, energy companies are reluctant to sell a TOU tariff, which
has a higher cost of explanation to the customer and a risk of losing customers to a competitor
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offering a simple single-rate tariff. Therefore it is important to find the right customers who
would likely to be well-suited for a DR program. This sections covers relevant techniques
to identify the right customers for a DR program: the customer characterisation (3-a) and
demand response program marketing (3-b) under the categorisation in Wang et al. [281]

2.3.1 Customer Characterisation

Customer Characterisation is the grouping of customers for developing dedicated tariff plans
according to their load profiles or patterns of energy consumption. The customer classes
are created automatically using clustering methods, which can use both direct and indirect
methods. The load profile for each customer class is then used to depict it. Direct clustering
refers to clustering which can be immediately applied to smart meter data, whereas indirect
clustering is when the smart meter data requires pre-processing by methods such as dimension
reduction methods.

Customer Characterisation based on Direct Clustering

Chicco [44] examined direct clustering methods such as k-means (KM), follow the leader
(FDL), fuzzy k-means (FKM), and the hierarchical clustering (HC) variants for electrical
load pattern classification. When the utility requires a load pattern partitioning directly from
the clustering algorithm with the number of groups equal to the number of user groups
that they aim to create, the use of hierarchical clustering variants could not be sufficient,
and an approach such as KM would be more suitable. In comparison, for outlier detection,
hierarchical clustering variants might be used efficiently, whereas KM and FKM would be
obviously unsuccessful. According to Wang et al. [283], another direct clustering method -
self-organizing map (SOM) - was compared with KM, FDL, HC, and FKM, and the findings
confirmed that hierarchical clustering and follow-the-leader methods surpassed the other
methods, and can deal with the unusual isolated load.

However, direct clustering methods often encounter a few fundamental problems. The first
problem is the smart meter data resolution. In (Granell et al. [113]), three common clustering
techniques - the Dirichlet process mixture model (DPMMs), hierarchical algorithms, and KM
- were used to examine how the smart meter data influences clustering results with different
frequencies ranging from 1 minute to 2 hours. They discovered that the smart meter data is
effective for most purposes if it has a temporal resolution of at least 30 minutes. The KM
algorithm appeared to be quicker and reliable in a 4-60 minute range of time resolutions.

The second concern of direct clustering methods is that the data from the smart meter are
mainly time series data. Unlike conventional static data clustering methods, Benítez et al.
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[24] suggested a modified KM algorithm for the dynamic clustering of the time-dependent
residential electricity consumption data. The dynamic clustering quickly identified and
grouped the main patterns of consumer data. In (Al-Jarrah et al. [9]), a two-stage clustering
model was suggested for resolving the problem of the computational complexity of the
tremendous volume of data in power consumption load profiles. During the first phase, KM
algorithm was used to produce local representative load profiles (RLP), while in the second
step, a central processor developed a global RLP by again clustering the cluster centres
obtained in the first stage. The multi-layered model was successfully able to dramatically
reduce the computation and brought down the expenses of the load profiling process.

Customer Characterisation based on Indirect Clustering

Many works in the research literature are also emphasising on indirect clustering, using
different methods for feature extraction and smart meter data dimension reduction before
performing clustering. In Koivisto et al. [159], the authors used principal component analysis
(PCA) to reduce the dimensions of huge yearly load profiles data of 18098 customers. After
that, they used KM clustering for classifying the customers and multiple regression analysis to
explore the explanatory parameters for load modelling. The components obtained from PCA
can disclose the power consumer pattern of various types of connection points. Likewise,
Chelmis et al. [42] used PCA to identify the time trends of individual consumers and the
spatial pattern of many consumers. After that, a new K-medoids algorithm, depending upon
Voronoi decomposition and Hausdorff distance, was suggested for outlier detection and
clustering the load profiles. The method proved to be efficient on a large number of data
points.

Ward et al. [287] proposed an original functional data analysis (FDA) technique based
on functional PCA for classifying daily power consumption of lighting and plug loads.
They demonstrated how the FDA model can produce stochastic input data for simulating
energy consumption of a building. Hierarchical clustering was utilised to investigate how the
building loads are linked to ‘activity’ as described in a database. It was found out that plug
load clusters are more closely associated with the activities, whereas, the lighting loads are
primarily linked with the amount of data variability.

In order to find valuable typical load profiles, knowledge of the global and local features of
the smart meter data is vital. In (Morán et al. [192]), the authors proposed deep convolutional
autoencoder for feature extraction of the load profiles. They further identified their effect on
the main supply point to assist in developing a global load supply profile. Three new kinds
of features were introduced in (Al-Otaibi et al. [10]) for clustering daily load profiles by
using conditional filters on features based on meter resolution combined with calibration and
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normalisation, shape signatures, and profile errors. The suggested feature extraction technique
had small computational complexity, and the extracted features were understandable and
informative in describing patterns of power usage. In (Piao et al. [218]), 10 sub-space
clustering and forecasted clustering techniques have been implemented to recognise consumer
contact type in order to produce global and local shape variations. The clustering process has
proved to be more resilient to noise by relying on the load profile subspace.

In customer characterisation methods, the irregularity, uncertainty, and high stochasticity
of smart meter data have also been addressed. Four major time frames describing various peak
demand patterns overlapping with common day intervals - breakfast, overnight, evening time,
and daytime - were defined in (Haben et al. [117]). After that, ten different behaviour classes
were classified, using clustering based on a finite mixture-model, to represent customers
based on their volatility and demand. In (Sun et al. [260]), a mixture model was also utilised
for the clustering of domestic power consumption profiles by the C-vine copula method. The
method was used to model the high-dimensional non-linear associations between the power
consumption of various time frames. This technique also performed efficiently in large sets
of data.

2.3.2 Demand Response Programs Marketing

In demand response marketing, consumers are evaluated based on factors such as their
potential for participating in a demand response program, total or peak load, bill savings, and
reliability of participation. However, smart meter data with a resolution of 15-30 minutes
does not provide deep insights into other forms of potentially valuable information - such as
appliance type and operating status. Furthermore, consumer understanding and receptivity
towards demand response is also difficult to model. Therefore, there are a number of
difficulties directly evaluating the consumer potential for demand response. Popular works
that are evaluating DR potential indirectly are examining variability and appliances, and
these are detailed in the following subsections.

Variability

Variability is a crucial metric for determining the demand response potential. Albert and
Rajagopal [11] have proposed a hidden Markov model (HMM) to estimate the user’s state
sequence using residential time series data. Spectral clustering was used to distinguish
power consumption data by duration, variability, and magnitude. Occupancy states data,
patterns of inter-temporary consumption, and variability information could allow marketers
or aggregators to reach appropriate customers at various time frames.



52 Literature Review

Hierarchical clustering and adaptive KM algorithm based encoding system was used for
household power segmentation in (Kwac et al. [162]). A residential daily load profile of
one year consisting of over 66 million data points was pre-processed, and segmentation was
performed within a specific error threshold. The authors stated entropy performance metric
(given by equation 2.12) to track the load variability of each user and categorise his load
profile. In equation 2.12, pn (Ci) is the relative frequency of every encoding cluster centre Ci

in the daily load profile of every household n.

Sn =−
K

∑
i=1

p(Ci) log p(Ci) (2.12)

The entropy will be lowest if the user only has a one cluster centre and highest if the user’s
load profile have cluster centres that are equally likely to be present in the database. In other
words, the average entropy would be lower on weekdays as users follow a regular routine
on weekdays when compared with weekends. If any user’s entropy quantile was more than
75%, it was considered as an irregular or variable user, and for users with quantile less than
25%, they were labelled as stable users. The authors concluded that lower entropy consumer
load profiles with less variability were easy to predict and more stable, and therefore had a
higher potential for demand response. Similarly, users with high entropy will not be good
candidates for DR events as their energy activities and usage will be more variable, but they
will be good candidates for energy efficient programs like rebates.

However, Wang et al. [282] contradicts this with the finding that high entropy users may
not have a good potential for demand response. They claimed that the users with high usage,
high entropy level, and thus high variability are fit for price-based DR such as TOU pricing,
as they have adaptability for altering their usage. Lower entropy users may also be targeted
for other types of DR programmes as they are less variable and easier to predict. Wang et al.
[282] claimed that users with minimum entropy and high usage level are good candidates
for incentive-based DR such as direct load control (DLC). They are more likely to use the
same load and their control is predictable. Albert and Rajagopal [11] conducts a similar
analysis as Wang et al. [282] in a comprehensive classification of energy consumption of
consumers by differentiating into regular and random consumption patterns. The users with
regular or predictable load should be considered essentially different from the random ones
for efficiency and demand response programs for balancing load in the smart grid. The users
with irregular or random load can be suitable for participating in peak-pricing DR, which
in turn may also stimulate more regular usage. On the other hand, predictable consumers
offering less versatility in their usage, are potential candidates for energy efficiency programs
offering rebates for reducing the power consumption of electrical appliances.
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Appliances

Another way of finding suitable customers for demand response is to calculate the potential
reduction in power consumption by analysing the energy demand of electric appliances and
the consumer’s behaviour towards controlling the active demand of appliances. In (Labeeuw
et al. [164]), a mixture model was developed to cluster similar residential load profiles.
Clusters were made to estimate the active demand reduction potential of "wet" appliances
including dishwashers, tumble dryers, and washing machines. The study found that both the
power consumption of the residential wet appliances and response towards DR have a high
potential for shifting demand. Similarly, Jindal et al. [146] proposed a two-stage methodology
for the management of DR and flattening the residential load curve. The authors first used an
SVM classifier to identify consumers and appliances with surplus power consumption, and
then that surplus load is shed by using a rule base on a load balancing algorithm. The authors
claimed that the user with surplus load would be the best choice for demand response and
SVM achieved a recognition accuracy of 88.5%.

Given the high DR potential of devices such as heating, ventilation and air-conditioning
(HVAC) systems, their power consumption sensitivity to ambient air temperature is an
efficient assessment measure. Linear regression and unsupervised classification were used in
(Dyson et al. [73]) to estimate this sensitivity of a residential air conditioning system. Also,
the maximum likelihood method was applied to find out the best change-point for every
model. This allowed the authors to approximate DR potential at various hours of the day. A
hidden Markov model (HMM) and thermal regimes-based temperature response model was
developed in (Albert and Rajagopal [12]). The authors used the temperature and hourly load
data to divide the individual load data into a temperature sensitive and non-sensitive part. To
choose the best DR user, a basic selection problem to optimise an averted load consumption
was utilised, and the developed model can get very high savings when compared with a
random method. Figure 2.5 summarises some of the best candidates for demand response
programs for residential, commercial, and industrial customers in terms of availability of
electric appliances.

Electric appliances are usually defined as thermostatically controlled appliances (TCL),
non-thermostatically controlled appliances (non-TCL), and devices with batteries. Thermo-
statically controlled appliances include refrigerators, water heaters, HVACs, and freezers.
Non-thermostatically controlled appliances refer to a further category of non-urgent and
urgent loads. Urgent loads are those loads that must instantly turn on or off once a command
is given by the consumer - for example, cooking appliances, lights, fans, entertainment
appliances. Non-urgent loads can be operated after certain time periods, such as laundry
machines, dishwashers, and dryers. Loads or devices with batteries mostly include electric
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Fig. 2.5 Best Consumers for Demand Response Programs (based on Ponds et al. [222])

vehicles. Tulabing et al. [272] have checked the DR potential for flexible loads at substation
level. Figure 2.6 shows the concept that they adopted to calculate aggregated DR potential
from households. Their developed algorithm allowed the DR controller to aggregate the
TCL, non-TCL, and battery-based loads in households for DR programs. The users could
send requests for turning on the load and then the DR decides whether to turn it on according
to the available power.

Fig. 2.6 DR aggregator controlling flexible loads at sub-station level (based on Tulabing et al.
[272])
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2.3.3 Problems in Load Management

The problem the author has identified is that the suitability of an individual customer toward
a TOU tariff is still not being well addressed. We found that some papers (Kwac et al.
[162], Albert and Rajagopal [11], Wang et al. [282]) reached contradictory conclusions to
identity the suitable customer for a TOU tariff. Kwac et al. [162] stated that higher entropy
users may not be good candidates for DR as their routine is variable and is not easy to predict.
However, Wang et al. [282], Albert and Rajagopal [11] stated that this variability in their
routine makes them a good candidate for price-based DR since their variability would allow
them to adapt their power consumption according to the electricity prices. But these works
are theoretically examining the historical load and do not examine an actual empirical dataset
(perhaps due to the limitations of available public datasets). Thus we suggest that more
data-driven works are needed to identify the right customer using the actual datasets.

Furthermore, in practical use, user engagement towards a TOU tariff needs to be con-
sidered for identifying the right customer (Cousins et al. [52]). Any introduced tariff plan
may fail if it does not take account of the customer’s point of view (Eskom [82]) . Although
it is difficult to quantify the customer willingness, a means of enhancing the engagement
can be a meaningful variable for this modelling. An emerging concept of “gamification”
has the potential to improve customer adaptation in a TOU trial with a marginal financial
cost. Gamification-based solutions have been shown to improve the interest of residential
consumers in energy systems by addressing a wide variety of customer motivations, including
social, environmental and economic motivations (Seaborn and Fels [243]). Therefore, we
also suggest to incorporate this “gamification” in the further research of a forecasting model
to identify suitable customers toward a TOU tariff.

We name the problem discussed in this sub chapter as the "TOU winner detection prob-
lem".

2.4 Public Load Datasets

These modelling studies require a dataset (such as historical electricity consumption and
some households variables), and scarcity of these public datasets can be a major barrier to
overcome. Therefore this section investigates any available public dataset this paper can use
for the data-driven modellings.

Electric utilities are frequently unwilling to disclose their smart meter data publicly
because of many problems such as security and privacy. There are dozens of historical load
anonymised or semi-anonymised databases that have been accessible to the public throughout
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the last several years. However, when it comes to a dataset of a demand response trial, the
number of the datasets becomes very limited.

2.4.1 Load Datasets of Demand Response Programs

The following part summarises six major public load datasets of demand response programs
(also summarised in Table 2.3).

• Customer Behavior Trials. Ireland’s regulator of the electricity and natural gas indus-
tries, Commission for Energy Regulation (CER), initiated one of the largest customer
behaviour trails (CBTs) using smart meters. The trials were conducted to check the
potential of smart meter data together with various DSM stimuli and TOU tariffs for
achieving measurable changes in total power usage and peak demand reductions of
consumers. Furthermore, the residential CBT also recognised a “tipping point”, where
energy price would considerably change the power consumption of the user. The CBR
assessed if smart meter data would help change the power consumption pattern through
a range of home sizes, lifestyles, and demographics (Gungor et al. [115]). The data
was collected from July 2009 to December 2010 of more than 5000 Irish households
and industries. After data pre-processing, the dataset recorded measurements of 4225
meters for more than 536 days. Out of these meters, 3296 smart meters were used as
a test group. The findings of the trials showed users with overall 2.5 % total power
demand reduction and 8.8 % average reduction in peak demand.

• Low Carbon London. Like CBTs, a study involving more than 5000 homes was
conducted in London as a section of the low carbon London initiative (Schofield et al.
[240]). Time of Use (TOU) data, smart meter data, and survey data were gathered
to study the effect of a variety of low carbon technologies on the power distribution
system of London. The project was supported by Ofgem and collected readings from
2011 to 2014. In 2013, dynamic TOU tariff was offered to 1122 homes out of the total
5567 households.

• PecanStreet. Pecan Street TOU and customer behaviour trial was conducted in Austin,
TX to develop this database (Pecan Street Inc. [215]). Peacan Street also recruited
homes from the Mueller neighbourhood. The dataset includes minute-level energy
consumption data of 280 homes from 2013 to 2014 at both appliance- and whole
home-level. Each home out of the 256 dwellings in the Mueller area was randomly
allocated to the five groups. The first group (control group) included 57 households
that did not receive any new tariff plan. In the second "passive" group, 44 homes did
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not receive a new tariff plan but could visit an online portal that monitored their usage
of electricity at the appliance level. In the third "active information" group, CPP was
offered to 46 homes and they were informed 24 hours earlier than the issuance of the
event using a text message. For example, the text message would include: “A Pecan
Street Project critical peak event is taking place tomorrow from 4 PM to 7 PM.” In the
fourth group (active information+recommendation), the same text message was sent to
the 47 homes, which asked them to perform one of the following actions: "Pre-cool
your home,” “Reduce your air conditioning usage,” or “Do not use your clothes dryer.”
The last pricing group issued CPP to 62 homes only from June to September (summer
season). Again, text messages were sent 24 hours before the issuance of CPP. In this
group, nighttime pricing was also offered from March to May and in November and
December. The lowest offered rate was 2 cents/kWh.

• Ausgrid Resident. The Ausgrid distribution system recorded half-hourly rooftop PV
production data and smart meter data from 300 domestic users for three years in an
Australian distribution system (Ratnam et al. [229]). Three smart meters were installed
to record PV generation for FIT tariffs, domestic power usage according to an inclining
block rate or TOU, and controllable load related to electrically heated water systems.
The gross metering mode measurements of domestic power usage were recorded
according to the user’s preference of registering under TOU tariffs or inclining block
rates. The financial rewards associated with off-peak 1 or off-peak 2 were offered to
137 homes in which the electrical company controlled the watering heating systems of
the users. In the off-peak 1 tariff plan, the users allowed the electrical company to turn
off their water heating system for 18 hours each day. The off-peak 2 plan was more
expensive as the utility was only allowed to turn off the water heating systems for only
8 hours each day.

• ISO New England. The demand data at system-level and subsequent temperature
data of nine zones are released on monthly basis by ISO New England. The readings
include real-time demand, day-ahead demand, system load, locational marginal pricing
(LMP), and regulation clearing price information. Further specifics are available at
(ISO New England [141]).

• Smart Grid Smart City (SGSC) is another publicly available DSM dataset. SGSC
customer trial was started by Australian Government in 2010 and lasted for 4 years.
It has collected data from smart meters installed in 10,000 individual homes in New
South Wales and can be found at (Australian Government [20]). It contains user TOU

(half hour increments) and population information, as well as comprehensive statistics



58 Literature Review

on the usage of appliances, retail offers, environment, distributor product offers, and
other similar variables. The offered pricing plans were seasonal TOU, dynamic peak
pricing plan, rebates for interruptible load such as AC, and top-up tariff incentive
(Norris et al. [199]). During dynamic peak pricing, the offered price was $3.00/kWh
that was six to seven times more than normal TOU peak prices. Users were attracted
by offering either off-peak prices or shoulder prices outside of the peak time. The
seasonal TOU aimed at reducing summer and winter peak demand by offering peak
prices more than normal TOU rates. The researchers checked whether users would
shift their energy usage to other times and reduce the load during winter and summer
peaks. In summers and winters, users were charged according to peak, off-peak, and
shoulder TOU rates. However, in autumn and spring, only off-peak and shoulder rates
were offered.

2.4.2 Problems in Public Load Datasets

The identified problem is that these public datasets of demand response trials are still limited,
and repetitively used for research works. This is mainly due to the low public acceptability
of DR programs and the expenses involved for conducting trials. For example, customer
behaviour trials Irish public dataset has been used in research works of Quilumba et al.
[225], Wen et al. [290], Li et al. [167], Wang et al. [284]; Low Carbon London DR data
has been used in Wang et al. [284], Sun et al. [259], Dong et al. [69]; PecanStreet TOU
data was utilised in Brown et al. [33], Perez et al. [217], Donaldson and Jayaweera [68];
Ausgrid resident data from the Australian distribution system has been used by Sunny et al.
[261], Karandikar et al. [150], Razavi et al. [230]; and ISO New England data has also been
used by many researchers (Sahay and Tripathi [236], Parsons and De Roo [213]).

Another problem is that the most recent currently available dataset above is relatively old
(up to 2015), especially when considering that customer electricity consumption behaviour
can change from year to year. Therefore, a more recent dataset will be required in this field.

We name the problem discussed in this sub chapter as the "TOU public dataset problem".

2.5 Identified Research Gaps

The author has critically assessed the past works in the relevant fields, and identified four
major research gaps which need to be filled in order to expand commercial applications of
TOU tariffs. The four research gaps addressed identified in this chapter will be addressed in
the following chapters: the "TOU load adaptation forecasting problem", the "TOU winner
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Table 2.3 Public Load Datasets (Wang et al. [281])

Name Brief Description Number Frequency Duration Country

Customer
Behavior
Trials
[115]

Smart meter read
data; Pre- and
post-trial survey
data;

6445
Every
30 min

2009/9 to
2011/1 Ireland

Low Carbon
London
[240]

Smart meter read
data; Electricity
price data;
Appliance and
attitude survey data;

5567
Every
30 min

2013/1 to
2013/12 UK

PecanStreet
[215]

Residential electricity
consumption data;
Electric vehicle
charging data;

280
Every
1 min

2005/5 to
2017/5 US

Ausgrid
Residents
[229]

~PV~output data;
Controlled load
consumption data;
General
consumption~data;

300
Every
30 min

2010/7 to
2013/6 Australia

ISO New
England
[141]

System load data;
Temperature data;
Locational marginal
pricing data;

9 Hourly
2003/1 to
now UK

Smart Grid
Smart City
[20]

Smart meter read
data; Electricity
price data;
SM TOU and
geographical data;

10000
Every
30 min

2010 to
2014 Australia
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detection problem", the "TOU public dataset problem", and the "excess generation forecasting
problem". By bridging these gaps, this thesis aims to establish a foundation for helping utility
companies conduct practical analysis of smart meter data, and encouraging the larger scale
implementation of a TOU tariff. The following paragraphs briefly summarise the identified
four research gaps, and further detailed literature reviews will be conducted in each chapter.

Firstly, a practical framework to forecast users’ load adaptation under different time-of-
use tariffs has not been fully developed despite the existence of a large body of research
on load forecasting. This load forecasting capability is important for utilities to design a
TOU tariff and estimate subsequent impacts in their load management. These modelling
frameworks generally follow one of the three distinct approaches: econometric models
with an emphasis on estimating price-elasticity, bottom-up disaggregation of household
consumption according to electrical appliances and their time of use, and top-down statistical
models. The emergence of historical smart meter data makes the top-down statistical approach
popular in industrial use. However, the reliance on historical data can have a number of
drawbacks given that there is no in-built capability to model discontinuous user behaviour
such as an adoption to a TOU tariff. Therefore applying a top-down approach for a problem
of forecasting consumer response to TOU tariffs is a challenging issue. This issue is referred
as "TOU load forecasting problem".

Secondly, although time-of-use tariffs have the potential to be mutually beneficial -
realising a cost reduction for both energy companies and customers if the customer responds
to the price signalling - at the individual level such tariffs are likely to create both positive and
negative financial outcomes because of customer characteristics and the potential capacity for
peak shifting. Identifying the potential reducers or non-reducers before applying a time-of-
use tariff can optimise the programme’s design and marketing strategy, which can maximise
the outcome of a TOU programme. Factoring user engagement into a TOU program in a
data-driven model is also challenging issue. This issue is referred as "TOU winner detection
problem".

Thirdly, despite the emerging awareness of the importance of DSM, the availability of a
publicly available historical consumption dataset, including customer behavioural changes
due to a TOU tariff intervention, is very limited. Only a dozen sources of open data are
available as the power companies are reluctant to release their smart meter data owing to
security and privacy concerns. Learning a lesson from other fields where publicly available
datasets have spurred previous applications in machine learning and data mining, a wider
range of public data sets related to a TOU tariff intervention would enable further examination
in this field. This issue is referred as "TOU public dataset problem"
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Finally, if rooftop PV panels are installed at a household, predicting net demand after
accounting for energy consumption behaviour becomes complicated. During PV system
operation (day time), electricity generated by the PV panels does not often match electricity
needed by households. When electricity generation exceeds household demand, excess
electricity generation can be exported to the electricity grid. Forecasting the excess generation
from households is essential for utilities, as the cumulative installed capacity of residential
PV systems is growing in many countries and this impact has become substantial for demand
management. Although this is not strictly a time-of-use tariff itself, these programmes
effectively function like a time-of-use tariff, encouraging demand adaptation to maximise the
financial incentives given by a subsidy. Thus, we apply the similar methodology we have
developed for the TOU adaptation load forecasting models into this problem. This issue is
refereed as "excess generation forecasting problem"

The following three chapters will address these four problems. Chapter 3 address the
first problem, Chapter 4 does the second and third problems, and Chapter 5 does for the last
problem. The author believes that proposing practical solutions toward these four problems
will enable the commercial expansion of applications of TOU tariffs at the national level.





Chapter 3

Intra-Day Load Profiles under
Time-of-Use Tariffs

Highlights

• A model to forecast user adaptation under different Time-of-use tariffs.

• Lifestyle constraints are considered as key inputs in the form of statistical moments.

• The model requires only a half-hourly sampled historical smart meter data.

• Random Forest outperforms Neural Network and Liner Regression models.

• MAPE of the best model reports 2.05% for the weekday.

Collaborators

• Yeonsook Heo1 contributed to the discussion on the modelling of the proposed ap-
proach.

The first analysis chapter addresses the "TOU load adaptation forecasting problem",
defined in the Chapter 2. This chapter briefly overviews the current circumstances of a TOU

tariffs implementations, and more detailed examination in existing approach toward the load
forecasting problem in a "TOU tariff before presenting the modelling works.

1was from Energy Efficient Smart Initiative, University of Cambridge, and is an Associate Professor, School
of Civil, Environmental and Architectural Engineering, Korea University.
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3.1 Introduction

Residential energy sectors worldwide are facing the emerging development of smart meters
combined with better techniques for streaming and processing large volumes of metering
data into useful information. The ongoing roll-out of smart meters provides a clearer impetus
for increasing policy support of demand-side management (DSM) solutions than ever before
(Torriti et al. [269]). Time-of-use (TOU) tariffs, also known as time-dependent pricing, are
a DSM solution wherein the price of electricity varies depending upon the time of the day
and the day of the week. The tariff structure is designed to yield potential price savings for
the end-user, and targets peak electricity load shifting to constrain the electricity load on a
given sub-station. Studies have shown that TOU tariffs can be particularly effective in the
residential sector, as they offer a more certain financial incentive to customers than other
more complex price-based DSM programs such as real time pricing (Darby and Pisica [55]).

Alongside smart meter installation, by 2020 TOU tariffs will become available in most of
the EU, United States, Japan, and Australia (ABI Research [2]). The success of TOU tariffs as
a DSM solution depends upon consumers changing the timing of their energy demand based
on a given tariff structure. Recently, large-scale longitudinal studies have been conducted
to evaluate the behavioural change of residential customers pre- and post-intervention of
a TOU tariff. The Customer-Led Network Revolution (CLNR) project in UK (Wardle et al.
[288]) confirmed load shifting from peak to off-peak periods throughout a two-year trial with
576 households. Torriti [267] monitored 1446 households in Northern Italy and showed that
while TOU tariffs result in a significant level of load shifting in the morning, the evening
peaks do not change and overall consumption is in fact increased by 13.69%. Faruqui and
Sergici [88] examined 15 pilot projects that showed TOU rates induce a drop in peak demand
that ranges between 3% and 6%. Wang and Li [286] reported that potential peak reduction
in the residential sector is much smaller than that of the commercial and industrial sector
based on Federal Energy Regulatory Commission [91] survey. On the other hand, Faruqui
et al. [89] concluded that residential customers are more price responsive than small business
customers. They also examined estimates of the price elasticity of demand across 42 different
TOU studies, and found a positive relationship between peak to off-peak price ratio and
peak reduction. Gils [107] confirmed that household consumers hold a large potential load
reduction in most European countries.

To date a large scale implementation of TOU tariffs has not taken place. In recent
years, researchers have developed modelling frameworks which can allow utility companies
to exploit smart meter data in order to predict potential load shifts when designing TOU

tariff structures. These modelling frameworks generally follow one of the three distinct
approaches: econometric models with an emphasis on estimating price-elasticity, bottom-up
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dis-aggregation of household consumption according to electrical appliances and their time
of use, and top-down statistical models.

A classical approach estimates price-elasticities of demand distinguishing between the
elasticity of demand due to price changes of the good itself (own-price elasticity) and
of other goods (cross-price elasticity). The own-price elasticity provides an estimate of
the percentage change in usage during a particular period (i.e. day or billing period) that
results from a 1% change in price during that period. The cross-price elasticity provides
estimates of the elasticity of substitution between peak, mid-peak, and off-peak periods.
For example, Kirschen et al. [156] modelled consumer behaviour using a matrix of own-
price and cross-price elasticities and showed the effect of market structure on the elasticity
of the demand for electricity. Goel et al. [108] modelled customer response using the
matrix of own/cross-elasticities, based on the assumption of constant elasticities. Venkatesan
et al. [276] emphasised the importance of distinguishing between different consumer types
considering different scenarios and levels of consumer rationality. Recently, Katz et al. [151]
employed a similar approach to evaluate load-shift incentives for household demand response,
comparing the effects of hourly pricing and a simple rebate scheme. An advantage of these
approaches follows from the assumption that price-elasticities of demand are scale free, and
under certain assumptions, are applicable out of sample. However, most of these studies
have been conducted prior to the roll-out of smart meters. The integration of this classical
approach with newly available energy big data is a new challenge in this field.

An alternative approach considers the potential for load shifting at the level of individual
appliances, utilising information on the dis-aggregation of total household consumption
according to electrical appliances (or activities). The advantage of this approach is the ability
to identify the primary cause of load variation by associating load-shifting with appliances.
For example, Armstrong et al. [17] computed consumption profiles for different types of
activities based on publicly available data on energy use. Gottwalt et al. [112] applied this to
evaluate the capability of residential load shifting when smart appliance and TOU tariffs are
applied. Shao et al. [245] proposed a physics-based residential load model at the appliance
level based on controllable load such as space cooling/heating, water heater, clothes dryer,
and electric vehicles for demand response modelling. McKenna et al. [183] also constructed
a bottom-up demand response model, combining multiple models such as hot water demand
model and thermal appliances. Xu et al. [298] explicitly acknowledged variability across
consumer response by applying a shifting boundary to limit the maximum load-shift in
certain groups of customers.

A disadvantage of this approach is the requirement of ex-ante identification of demo-
graphic or appliance variables or the installation of additional sensors to record activities that
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influence consumption. This is difficult to access without dedicated and costly studies and
must be continuously updated as household appliances and activities change. This point is
also emphasised by Armel et al. [16] recommending a 1-minute to 1-second data frequency
to infer the usage of key appliances.

The last framework is a top-down approach based on the use of statistical models using
consumption data. A top-down approach usually treats the load at an aggregated level and
does not distinguish energy consumption due to individual consumers or any appliances (see
Swan and Ugursal [263]). The strength of a number of top-down models is the emphasis
on historical energy consumption, which is indicative of the expected pace of change with
regards to energy consumption. This approach is used widely by utility companies to
forecast future energy demand. With the continued fall in computation costs, non-linear
techniques such as Decision Trees (DT), Artificial Neural Networks (ANN), and Support
Vector Machines(SVM) have been used for medium-term electric load forecasting (see Hahn
et al. [118] and Hernandez et al. [122]). However, the reliance on historical data can have a
number of drawbacks given that there is no in-built capability to model discontinuous user
behaviour such as weather changes, introduction of new appliances, and an adoption to a
TOU tariff. Therefore applying a top-down approach for a problem of forecasting consumer
response to TOU tariffs is a challenging issue.

This chapter presents a new top-down framework for predicting load profiles following
the introduction of a TOU tariff, using demographics and historical electricity usage in the
pre-intervention period. The influence of a TOU tariff introduction is usually evaluated
with a time-horizon of one month to one year, comparing electricity consumption during
pre/post introduction. In terms of the time-horizon, this work falls into the category of
medium-term load forecasting. This chapter emphasises that this forecasting problem differs
from standard medium-term forecasting models given the need to account for consumer
behaviour adaptation to a TOU tariff.

The accuracy of a prediction model plays a vital role in making important decisions on
the operation and planning of a power utility system (Hippert et al. [123]). The measure
most frequently used to assess the accuracy of a medium-term load forecasting model is
Mean Absolute Percentage Error (MAPE) (Hahn et al. [118]). However, current studies in
TOU prediction do not report the accuracy of their models in a standard form. Without such a
standardised measure of accuracy, it is difficult to compare the performance of the competing
TOU models.

Although there exists a large body of research on demand response in electricity pricing,
a practical framework to forecast user adaptation under different TOU tariffs has not fully
developed. The novelty of this work is to provide the first data driven modelling of residential
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customer demand response following the adoption of a TOU tariff. In particular, this study
evaluates the importance of lifestyle constraints which are constructed using statistical
moments based on historical usage. The question as to the relative importance of demographic
information and historical load profiles in the context of forecasting the impact of TOU on
demand response, is of considerable interest to both companies and policymakers.

The key contributions of this chapter are summarised below.

1. The first top-down statistical model designed to forecast residential customer demand
response following the adoption of a TOU tariff, and evaluate its predictive performance
accuracy using MAPE.

2. The first model to explicitly include lifestyle constraints influencing user adaptation to
a TOU tariff.

The remainder of this chapter is organised as follows. Section 3.2 introduces the dataset
used to develop and test the modelling framework. In Section 3.3, the dataset and a list of
relevant features for model development are described. Relevant statistical techniques and
the accuracy of measurements are discussed in the Section 3.4. In Section 3.5, a number
of summary measures demonstrate the predictive accuracy, comparing with other studies.
The final Section concludes the work with limitations and future works. This work focuses
exclusively upon active demand response due to behaviour adaptation. As such it is assumed
that no automated energy storage is present in the sample households.

3.2 Data

The dataset used in this study is taken from the Electricity Smart Metering Customer Be-
haviour Trial carried out by the Irish Commission for Energy Regulation [49] (CER) . This is
a public dataset (reviewed in the previous chapter) and can be accessed using Irish Social
Science Data Archive ISSDA [142]. It consists of half hourly observations for a total of 4232
households, with a benchmark period of approximately 6 months and a trial period of one
year.

This dataset is repetitively used in some existing works such as Quilumba et al. [225], Wen
et al. [290], Li et al. [167], Wang et al. [284]. For instance, Quilumba et al. [225] used
residential half-hourly power consumption data of 17 months for load forecasting with no
use of any tariff plan data as done in this chapter, and Wang et al. [284] used the half-
hourly load data for probabilistic load forecasting. Wen et al. [290] utilised the CER data to
identify patterns of domestic power consumption. Li et al. [167] used 1896 domestic power
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consumption data from the days when users were charged with the standard fixed-rate tariff
plan. To the author’s best knowledge, none of previous works use this dataset for the same
purpose of this chapter.

During the trial period households were randomly allocated to one of the four TOU

tariffs (TOU-A, TOU-B, TOU-C and TOU-D) along with billing information as an incentive for
load shifting. CER also collected demographic information via questionnaires to research
participants, such as: gender, socioeconomic classification, age group, income level, list
of appliances, internet access, number of other residents, housing type, employment status,
owner/tenant, education level etc.

Four major demographic features are used in this research: gender, age group, social
class, and number of other residents. In this study, the subset of 646 TOU tariff participants
(households) with the same level of DSM stimuli (bimonthly bill, energy usage statement and
electricity monitor) are used. Similarly, the subset of 929 households who are not assigned
to any TOU tariffs are used as a control group.

It is possible that a weather effect might impact the differences in load profiles across
the pre/post observation periods. In this regard the utilisation of a control group, who by
definition are no different from the TOU group (apart from facing a constant flat tariff), can
be used to isolate any confounding effect of this type.

In order to further rule out the impact of other changes, such as a change in consumption
behaviour on our estimate of the impact of the introduction of TOU tariffs, a subset of the
data around the TOU introduction on 1st January 2010 is used. Specifically, two periods of
one month each are considered; December 2009 and January 2010. The number of data
points for weekday and non-weekday are 44 and 18, respectively. These make it possible
to analyse the pre/post-intervention effect. By limiting the period to just two months (one
month pre/post the introduction of TOU tariffs), any seasonality effect should be minimised,
making it easier to isolate the demand response due to the introduction of the TOU tariff.

The structure of TOU tariffs and the flat-rate tariff are presented in Table 3.1. TOU tariffs
A, B, C and D have three different rates within a given weekday, and two different rates
within a non-weekday (weekend and bank holidays). Peak ratios are calculated by taking
the ratio of the peak time rate of weekday and non-weekday respectively to the original flat
tariff rate 14.10. Household assigned to the control group remain on the flat tariff during the
post-intervention period.
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Tariff Flat (Control) TOU-A TOU-B TOU-C TOU-D

Off-peak 14.10 12.00 11.00 10.00 9.00
Mid-peak 14.10 14.00 13.50 13.00 12.50
Peak 14.10 20.00 26.00 32.00 38.00
Weekday peak ratio 1.00 1.42 1.84 2.27 2.70
Non-weekday peak ratio 1.00 0.99 0.96 0.92 0.89

Table 3.1 Flat-rate tariff and the four TOU tariffs are used in the CER study. The values are
cents per kWh. Off-peak (23:00-08:00), Mid-peak (weekdays 08:00-17:00, 19:00-23:00,
non-weekdays 17:00-19:00), Peak (17:00-19:00).

3.3 Modelling Framework

An estimate of the impact of the TOU tariffs is obtained by comparing, for each household,
the historical load profile generated under a flat tariff (pre-intervention) and the load profile
under the TOU tariff (post-intervention). Although this is of interest in itself, companies
and regulators will only observe historical load profiles at the point in which TOU tariffs are
actually introduced into the market. In this sense the key objects that are of interest are the
forecasts of the load profiles once households are offered TOU tariffs, particularly in the peak
periods for weekdays, where it matters most to both consumers and energy suppliers.

Figure 3.1 summarises the key steps of the proposed modelling. Two types of input data
(historical smart meter data, and demographic data) are initially prepared. The smart meter
data over 62 days (December 2009 and January 2010) recorded at half-hour intervals is split
into weekday and non-weekday subsets as the structure of TOU tariffs are different in the
given dataset.

Once data is prepared, the statistical model is created, starting from the feature extraction.
Given 646 households on one of the four TOU tariffs with 48 half-hourly electricity con-
sumption, which are aggregated over the periods, there are 31008 data samples= 646×48
half-hour electricity consumption as input samples for the models. A description of a data
sample for one household is given in Table 3.4. The outputs from the statistical model are
validated using cross-validation. More details are explained in the Section 3.4.1.

The output generated from the model is an intra-day predicted load curves for each
household assigned to a TOU tariff. This represents average consumption for each of the
half-hour intervals averaged over the prediction period. By utilising error metrics such as
MAPE with the unseen test data, model performance is evaluated (see 3.4.2).
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Fig. 3.1 Each step of the proposed model from the input to the performance evaluation.

3.3.1 Historical Consumption

At time t a load history, say ct ,ct−1,ct−2, . . ., is observed, where a given element, say c j,
denotes a meter reading recording the total energy consumed in a given time interval (i.e.,
half-hour). This time series of meter readings is then collected in a D×n matrix c = {cd,τ},
where τ = 1, ...,n indexes the time stamps for the dth day. Cτ is a D×1 vector that contains
the readings for the τ th time stamp collected over D days. If c is averaged along the columns
then C̄ = {C̄τ} is a n×1 vector, representing the average intra-day shape of the electricity
demand curve under a flat tariff. C̃ denotes a comparable object for a TOU tariff, where prices
vary over the τ intervals. The consumption level during the τ th interval is considered as a
random variable Cτ , with C = {Cτ} a N ×1 random vector.

In Figure 3.2, two plots extracted from the dataset are presented. The first presents the
half-hourly consumption corresponding to five consecutive weekdays of electricity usage for
a given customer; each dot represents the consumption measured in a given half-hour. The
second plot shows the historical load profile, C̄ (D = 5), representing the average half-hour
consumption over the same five weekdays.
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Fig. 3.2 Left: half-hourly electricity consumption for five consecutive days for a particular
user. Right: Average intra-day electricity demand curve over the same five weekdays.

3.3.2 Statistical Description of Lifestyle

Making inference on consumer lifestyle patterns using smart meter data is a critical compo-
nent of energy efficiency programs and other services. Recently, Beckel et al. [23] inferred
household characteristics from electricity consumption data by using statistical models with
a large number of features such as average consumption during different times of the day,
features related to temporal dynamics, and the first ten principal components (Wold et al.
[295]). However, the feature construction processes could be improved accordingly. First,
the importance of each feature to the model performance is not examined. Second, some
popular metrics in statistics, such as the moments of a distribution, which are frequently
used to capture the shape of a distribution (see the study by Press et al. [223]), are not used.
An advantage in the use of statistical moments is that it compresses all the information
contained in the data into a very small number of expressions. This study utilises the first
four moments: mean, variance, skewness and kurtosis, measuring their importance for the
model performance, and comparing against other demographic characteristics.

For each time stamp τ , the nth moment is derived as

µn(cτ) =
D

∑
d=1

(cd,τ −C̄τ)
n pτ(cd,τ) (3.1)

where pτ(c) is the probability of having consumption c at the time stamp τ . In the context
of the residential electricity consumption, each moment indicates a particular aspect of
consumer behaviour. In this study, the time stamp τ represents a half-hourly period between
midnight (τ = 0) and 11:30pm (τ = 47).
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Figure 3.3 illustrates average consumption C̄τ of a single household at four different
time stamps (τ = 0,12,24,36) during weekdays at the pre-intervention period (December
2009), and Table 3.2 presents the values for the moments. C̄τ is highest at 18:00, and lowest
at midnight 0:00. A high variance µ2(cτ), indicates that consumption at time stamp τ is
relatively unpredictable. As expected, in this example consumption is more variable at 12:00
and 18:00 than during the time interval 0:00−6:00. Skewness µ3(cτ) is a measure of the
lopsidedness of the distribution. A distribution having a longer tail on the right will have
a positive skewness. This household has a high value of µ3(cτ) at 12:00 (see Table 3.2).
Hypothetically, this statistical characteristic reflects occasional energy-intensive activities at
midday such as cooking and laundry. Finally, µ4(cτ) kurtosis, is a measure of the heaviness
of the tail of the distribution, compared to the normal distribution of the same variance is
presented. The values at 0:00 and 6:00 are much lower than during the day, implying the
night-time electricity consumption pattern (most likely sleeping based on low consumption)
is consistent. In summary, these statistical features of load profiles could reflect valuable
information about household behaviour based on their own past consumption.

Fig. 3.3 Consumption distribution of a single household at different time stamp τ (τ =
0,12,24,36) during weekdays at the pre-intervention period (December 2009).
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Time 0:00 6:00 12:00 18:00

C̄τ 445 527 689 1870
µ2(cτ) [×105] 2.30 1.43 10.6 6.72
µ3(cτ) [×108] 3.32 1.20 24.0 6.51
µ4(cτ) [×1011] 6.34 1.91 80.0 18.6

Table 3.2 Moments of the consumption distribution (in Wh) of a single household at different
time stamp τ (τ = 0,12,24,36) during weekdays at the pre-intervention period (December
2009).

3.3.3 List of Variables

Table 3.3 summarises the variables used in this analysis. The target variable2 C̃τ denotes
average consumption in Wh under a TOU tariff at time stamp τ , a half-hourly period between
midnight (τ = 0) and 11:30pm (τ = 47). Variables C̄τ , µ2(cτ), µ3(cτ), and µ4(cτ) are used
for training and are therefore calculated over the training period (December 2009); C̃τ is
averaged over the evaluation period (January 2010).

The variables used for model development are categorised into three feature groups (FG)s
depending on the nature of the parameters. The first FG includes the first four statistical
moments. Each variable C̄τ , µ2(cτ), µ3(cτ) and µ4(cτ) are standardised by subtracting the
mean from each feature and dividing by its standard deviation. This technique has been
confirmed effective in feature selection by Dy and Brodley [72]. The second FG includes tariff
information including rates under the flat and the TOU tariffs, and the peak ratio. The third
FG has the four demographic features, and the definitions of the each feature are described in
Table 3.3.

2The target has 48 values since this model is interested in forecasting intra-day load profile at every half-hour
point averaging over days.
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Group Variable Number of possible values Description

τ 48 Represents a half-hourly period between midnight (0) and 11:30pm (47)

1 C̄τ Continuous Mean

1 µ2(cτ) Continuous Variance

1 µ3(cτ) Continuous Skewness

1 µ4(cτ) Continuous Kurtosis

2 Flat price Continuous Tariff rate given a specific time under flat tariff

2 TOU price Continuous Tariff rate given a specific time under TOU tariff

2 Peak ratio Continuous A ratio of the peak time rate to the average rate.

3 Age group 5 0:26-35, 1:36-45, 2:46-55, 3:56-65, 4:65+

3 Gender 2 0:Female, 1:Male

3 Socioeconomic classification 6 AB, C1, C2, DE, F, Refused

3 Other living residents 3 0:Only adults, 1:Adults and children, 2:None

C̃τ Continuous Average consumption in Wh under a TOU tariff (target variable).

Table 3.3 List of variables utilised in this analysis.

Table 3.4 illustrates that the form of a data sample for a given household comprises the
variables described in Table 3.3. Note that C̄τ , µ2(cτ), µ3(cτ) and µ4(cτ) are standardised
and C̃τ is not.

τ C̄τ µ2(cτ) µ3(cτ) µ4(cτ) Flat price TOU price
13 0.615 0.483 0.078 -0.015 14.1 12.0

Peak ratio Age group Gender
Socioeconomic
classification

Other
living residents

C̃τ

1.67 4 0 C2 2 801

Table 3.4 One sample data of a household.

3.3.4 Performance Metrics

Cappers et al. [36] used two different performance metrics to evaluate demand response
performance: the one compares the actual load reduction to what was initially subscribed
to a demand response program, and the other one estimates the customer’s actual demand
response load curtailment compared to their peak demand. Similarly in physics, Energy and
Power are two major metrics for quantifying the status of electricity: Energy is the product
of power and time (measured in Watt-hours), and Power is the flow of energy at any one time
and is measured in Watts (W). Therefore, to indicate the peak reduction in Energy and Power,
the following two metrics Rpeak and Rpeak(W ) are used for this work respectively:
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Rpeak =
1

npeak
∑

τ∈Peak

C̄avg
τ −C̃avg

τ

C̄avg
τ

, (3.2)

Rpeak(W ) =
maxτ∈Peak C̄avg

τ −maxτ∈Peak C̃avg
τ

maxτ∈Peak C̄avg
τ

(3.3)

where C̃avg
τ = 1

M ∑
M
m=1 C̃(m)

τ , M denotes the number of households, C̃avg
τ is the observed

average consumption. npeak is the number of intervals that correspond to peak time (npeak =

4).

3.3.5 Preliminary Analysis

A peak reduction effect could be influenced by a number of factors such as weather conditions
and changes of occupancy behaviour. Limiting the observed period to two months (one
month each for pre/post TOU tariff intervention) minimises these external influences. We
also compare the load profiles of the control group who remain on the flat tariff during the
two periods, to evaluate the potential of these factors to confound our estimate of the impact
of the introduction of TOU tariffs on average load profiles.

Figure 3.4 presents the average consumption profiles of TOU and the control group during
the pre/post intervention period; Table 3.5 summarises the peak reduction of each group
relative to the benchmark period. The electricity consumption of the control group remains
unchanged during weekdays, and shows a slight increase during the weekends, whereas all
TOU groups show the significant peak reduction during the peak time.

An independent t-test is conducted to compare the differences in the consumption between
the pre and post observation periods for TOU and the control group for weekday data. As a
result, for the TOU group, there was a significant difference in the peak consumption during
the pre/post intervention periods (pvalue = 9.9× 10−6), while there wasn’t for the control
group (pvalue = 0.91).

This result concludes that there are no external factors that brings the peak reduction
during the observation periods, and the TOU tariff price signals is considered to be the sole
factor to realise the peak reduction.
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Fig. 3.4 Comparison of average consumption profiles between the TOU group and the control
group

The extent of load shifting for the TOU tariff participants is generally consistent with the
relative magnitude of incentives given by the peak ratios. Customers assigned to TOU tariff
D, who are given the highest incentive for load shifting, reveal the largest demand response
with a 16.77% energy reduction and 15.79% power reduction during the weekdays. During
the non-weekdays the reduction is smaller for all tariffs, and consistent with the relative low
peak ratio.

Date type Metric Control TOU-A TOU-B TOU-C TOU-D

Weekday Rpeak -0.3 % 12.41 % 12.10 % 12.46 % 16.77 %
Weekday Rpeak(W ) -1.3 % 13.43 % 13.13 % 12.72 % 15.79 %
Non-weekday Rpeak -3.4 % 6.31 % 10.76 % 6.59 % 7.11 %
Non-weekday Rpeak(W ) -3.8 % 7.60 % 12.25 % 8.62 % 7.67 %

Number of households 929 230 93 233 90

Table 3.5 Overall mean of peak-load reduction.

Figure 3.5 observes that the distribution of peak reduction is widely spread at the individ-
ual level across the four tariffs; 265 out of 646 households (41.0%) actually increased peak
consumption despite the penalised peak rate. This indicates that individual load consumption
does not necessarily react to a TOU tariff, although the aggregated load over the same TOU

tariff group reacts more rationally to minimise the energy bill (Table 3.5 shows that all tariff
groups achieved both Energy and Power reduction at the aggregated level). Therefore the
impact of TOU tariff should be examined at the aggregated scale.
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Fig. 3.5 Peak-change at the individual level after an introduction to a TOU tariff.

3.4 Modelling Techniques

This work utilises three common predictive modelling techniques for load forecasting: LR,
ANN and DT. Predictive modelling seeks to locate rules for predicting the values of one
or more variables in a data set (outputs) from the values of other variables in the data set
(inputs). These inputs and outputs are the energy consumption data described in Section 3.2.

The popularity of the LR model may be attributed to the simplicity and interpretability
of model parameters. Traditionally, this approach has been the most popular modelling
technique for utility companies in predicting energy consumption. Ranjan and Jain [228]
demonstrated the application of linear regression models of energy consumption for different
seasons in Delhi. Similarly, Al-Garni et al. [7] analysed in Eastern Saudi Arabia, and Tso
and Yau [271] did in Hong Kong.

ANNs somewhat mimic the learning process of a human brain. Instead of complex rules
and mathematical routines, ANNs are able to learn the key information patterns within a
multidimensional information domain. Kalogirou and Bojic [148] explained the two key
advantages of ANNs in the context of energy prediction. First, ANNs operate like a “black
box” model, requiring no information about the system, such as functional form. Instead,
in keeping with a machine learning approach, the ANN learns the relationship between the
input parameters and the controlled and uncontrolled variables by studying historical data.
Another advantage is their ability to handle large and complex systems with many interrelated
parameters. The success of ANNs is based, in part, on an ability to ignore input data that are
of minimal significance and concentrate instead on the more important inputs.

DT is a non-parametric supervised machine learning method which partitions the data into
“leaves” defined by covariates in order to estimate the individual outcomes. DT is constructed
by recursively splitting the data in order to minimise the mean square error of estimated
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outcomes. The method can then be used to predict the value of a target variable utilising
simple decision rules learned from the data features. The algorithm used in this work is CART

(classification and regression trees) (Quinlan [226]).
Model selection, which in the case of decision trees is the partition that defines the tree,

and estimations are carried out on the training data with the goal of minimising expected
mean squared error in the “holdout” or “test” data. In some cases the selection and estimation
of a model also requires a choice of value for one or more tuning parameters. The model
conducts a grid search over the maximum depth, whose effectiveness to avoid over-fitting the
model to the training dataset has been shown by Safavian and Landgrebe [235].

In this analysis, 22944 samples, each of which denotes a datum of a single household
at a given time stamp, are generated from 48 half-hour data samples of 646 households as
training data (see Section 3.4.1). These samples, combined with the 12 features outlined in
Table 3, are used to predict the target variable C̃τ . An example of a tree is illustrated with the
setting of maximum depth of 2 in Figure 3.6. 3 The samples in the top node are partitioned
using recursive binary splitting to generate the prediction in the bottom node. Features such
as X [1] (average consumption C̄) are used for the binary split. In this analysis, the optimal
maximum depth based upon minimum MAPE, is 30 over the range 10 to 50.

As noted by Strobl and Zeileis [257], single trees can be unstable such that small changes
in the training data can lead to very different models or trees. This can be corrected by
constructing a large number of DT at training time and outputting the class that is the mean
prediction of the individual trees; this technique is called Random Forest (RF) (Friedman
et al. [98]). Hence, this work uses RF instead of DT. Another common way of preventing
this is cross-validation as discussed by Sterlin [255]. This will be explained in the following
section.

Fig. 3.6 An example decision tree with the setting of maximum depth of 2.

3A larger number for maximum tree depth generates more granular predictive values.
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3.4.1 Cross Validation

As standard in statistical modelling, k-fold cross validation, whose success in accuracy
estimation has been reported by Kohavi et al. [158], is used to check the accuracy of model
outputs by splitting the data across all tariffs into four equal subsets: three for training and
one for testing. All data samples are split into four groups so that each subset volume is
almost equal for each tariff (see Figure 3.7).

The cross validation process is repeated four times (k = 4), so each subset of the data is
used once for validation purposes. As a result, 646 load curves are predicted from the four
folds. These results are then averaged to give a single estimation for each time period.

Fig. 3.7 Test and training samples for k-fold cross validation (k = 4).

3.4.2 Evaluation Measures

The model accuracy is evaluated using Mean Absolute Percentage Error (MAPE), the measure
most frequently used to assess the performance of a model in the field of a medium-term
load forecasting such as the study by Hahn et al. [118]. The main objective is to minimise
the MAPE over household groups, and particularly during the peak time. Two MAPE metrics
are used:

MAPEi
g =

1
n

n

∑
τ=1

∣∣∣∣C̃avg
τ −Ĉavg

τ

C̃avg
τ

∣∣∣∣, (3.4)

MAPEi
g,peak =

1
npeak

∑
τ∈Peak

∣∣∣∣C̃avg
τ −Ĉavg

τ

C̃avg
τ

∣∣∣∣, (3.5)

where C̃avg
τ = 1

M ∑
M
m=1 C̃(m)

τ , M denotes the number of households, i indexes the cross valida-
tion fold, m indexes households, C̃avg

τ is the observed average consumption, and Ĉavg
τ is the
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prediction made with the proposed model. n is the number of half-hour intervals and npeak is
the number of intervals that correspond to the peak time (n = 48, npeak = 4).

In addition to MAPE, Absolute Percentage Error (APE) is used to measure the model’s
power(W) prediction. APE is calculated as,

APEi
g,peak(W ) =

∣∣∣∣maxτ∈Peak C̃avg
τ −maxτ∈Peak Ĉavg

τ

maxτ∈Peak C̃avg
τ

∣∣∣∣. (3.6)

Given k = 4 cross validation, the average across the folds is taken as the final MAPEg,
MAPEg,peak and APEg,peak.

3.5 Results

Table 3.6 presents estimates of MAPE for the three different techniques (LR, NN and RF). The
RF model outperforms LR and NN for both values of MAPE, especially in terms of MAPEg,peak

during the weekdays, which is the main performance indicator. In forecasting average load
for a group of households RF model yields a MAPE value of 2.05% for the weekday and
1.48% for the weekday peak time.

Date type Model LR RF NN

Weekday MAPEg 2.95% 2.05% 3.12%
Weekday MAPEg,peak 1.78% 1.48% 1.94%
Weekday APEg,peak(W ) 0.60% 0.13% 0.58%
Non-weekday MAPEg 7.65% 2.66% 6.15%
Non-weekday MAPEg,peak 0.77% 1.61% 0.25%
Non-weekday APEg,peak(W ) 0.64% 1.69% 3.0×10−4%

Table 3.6 Comparison of the three statistical models on test data

In using MAPE as a standardised measure of model performance the proposed model com-
pares favourably relative to existing medium-term forecast studies with a similar forecasting
time horizon. Pedregal and Trapero [216] demonstrated a comparable finding with a MAPE

varying between 5% to over 10% based upon medium-term(12 week ahead) hourly electricity
forecasting at an aggregated level. Al-Hamadi and Soliman [8] presented a model to forecast
weekly average intra-day load profile with a time-horizon of a year, delivering the result
that the MAPE is 3.8%. Given that this forecasting problem includes the demand response
following the introduction of a TOU tariff, this model incorporates additional complexity
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compared to other existing medium-term load forecasting studies. In this respect the accuracy
of the proposed model is competitive in medium-term load forecasting models, and should
be of practical use for decision making to assess the medium-term impact of load adjustment
to TOU.

Figure 3.8 presents the intra-day load profiles across the different models. As a reference
point, the line of the actual post-intervention load profile (labelled as ’Post-TOU’, averaged
load curve in January 2010) is also given. All three models forecast the peak reduction
closely.

Fig. 3.8 Comparison of post- TOU load predictions using three different statistical techniques.

Figure 3.9 shows the prediction errors between post-intervention load profile and each
prediction. LR and NN have most of their errors at the border of the peak time where abrupt
behavioural changes have been observed. The results consistently favour RF as the preferred
modelling technique.

Fig. 3.9 Prediction error in Wh between actual load profile subsequent to an introduction of
TOU tariffs, and predicted load profiles for three different statistical techniques.
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3.5.1 Feature Importance

DT model results provide clear information on the importance of significant factors for
prediction based on Gini coefficient (Breiman [29]). In regression analysis, its value is
calculated as

G =
n

∑
i=1

pi(1− pi), (3.7)

where n represents the number of total “leaves” and pi is the ratio of the ith leave.
The importance of a feature is computed as the (normalised) total reduction of the

criterion that is attributable to that feature. Table 3.7 reports this importance of the RF model.
The higher the rating, the more important the feature. Every time a split of a node is made on
variable m the Gini impurity criterion for the two descendent nodes is less than the parent
node. Summing the decreases in the Gini measure for each individual variable over all trees
in the forest gives a variable importance that is often very consistent with the permutation
importance measure (Breiman and Cutler [30]).

The work finds that the average consumption feature is the most important predictor. It
is also noteworthy that the most relevant features are statistical features of consumption,
suggesting the tree strongly uses these features to forecast the load shifting. Although the
feature TOU price, and peak ratio does not have an influential effect in this model, it is
important to remember that the window of the peak period of four TOU tariffs is fixed under
this trial, so that the effectiveness of these two features might be underestimated. Therefore,
further trials with different windows of peak periods is needed to examine the importance of
these parameters.
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Feature Importance

average 66.77%
kurtosis 9.87%
time 8.61%
skewness 5.79%
variance 5.73%
TOU price 0.90%
other living residence 0.65%
age group 0.62%
social class 0.59%
peak ratio 0.27%
gender 0.19%

Table 3.7 Features importance according to RF. These variables are summarised in table 3.3

An additional important finding is that none of the demographic features generate a
significant contribution to the predictive capacity. Eliminating these features with low
importance values could improve the model performance. This method of feature selection
has been utilised by a number of studies. Granitto et al. [114], for instance, has introduced
random forest recursive feature elimination to determine small subsets of features with high
discrimination levels on chemical dataset. Díaz-Uriarte and De Andres [65] has also applied
this technique for gene selection.

Table 3.8 shows the RF model performance with/without demographic variables. It should
be noted that the absence of demographic information does not lead to a deterioration in
model performance, and the model even works better. A recent study of electric behavioural
analyses conducted by O’Neill and Weeks [208] similarly observed the similar effect. This
finding removes the extra cost for energy companies and analysts since the collection of
demographic data is costly, with a limited ability to increase the predictive ability of a given
model.

Date type Model With demographic Without demographic

Weekday MAPEg 2.05% 1.80%
Weekday MAPEg,peak 1.48% 1.11%
Weekday APEg,peak(W ) 0.14% 0.05%

Table 3.8 Comparison of the RF model performance with/without demographic features
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3.5.2 Prediction of Intra-day Load Profile

The actual and predicted intra-day load profile generated by the RF model are presented
in Figure 3.10. The results demonstrate that for the peak periods the model successfully
captures the behavioural change for all tariffs.

Fig. 3.10 ‘Pre-TOU’ and ‘Post-TOU’ actual load under the flat-rate tariff and a TOU tariff
respectively. ‘Prediction’ is predicted load curve by this model.

The difference between ’Post-TOU’ predictions and actual load are demonstrated in
Figure 3.11 for each group. These lines are more irregular than the similar analysis in Figure
3.9, since users are divided into the four tariff groups, where the number of households in
each group is relatively small. Each line shows zigzag patterns around the zero line, and
no significant over/underestimation in any particular time periods or any groups has been
observed. The common phenomenon observed across the four groups is the negative spike
at the beginning of the peak period, and positive spike at the end of the peak period. This
indicates customer demand response is not as immediate as the model predictions, with
around a 30 minutes time lag prior to customer adoption. This characteristic is not captured
by the proposed model, and is the source of the most significant errors in the modelling
performance.
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Fig. 3.11 Prediction error in Wh between actual load profile subsequent to an introduction of
TOU tariffs, and predicted load profiles for the DT model.

3.6 Conclusion

The model developed in this study can be used to forecast the impact of the introduction of a
TOU tariff. The novelty of this study lies in explicitly accounting for consumer variability by
extracting key features from past data. By incorporating lifestyle constraints, measured by a
number of functions of historical load, the proposed model is able to predict the full intra-day
load profiles with low MAPE. The MAPE value in forecasting average load for a group of
households with the best model RF is 2.05% for the weekday and 1.48% for the weekday
peak time. Random Forest is the preferred modelling technique based upon a comparison
with Neural Networks and Linear Regression. By comparing the model’s accuracy against
a number of important studies of medium-term load forecasting at an aggregated level, the
work demonstrates that the model can be of practical use for decision making to assess the
medium-term impact of load adjustment to a TOU tariff introduction.

The key findings of this chapter can be summarised as follows. First, we show that
top-down statistical modelling of historical smart meter data can be used to forecast the
effectiveness of a TOU tariff. This can help energy companies to design TOU tariffs and
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optimise energy sourcing strategy accordingly. Second, the work demonstrates that it is
possible to infer key features from the statistical moments derived from historical smart
meter data that capture lifestyle constraints at an individual level, and determine the shape of
an aggregate load profile; no ex-ante data on demographics is required to run this model to
generate this competitive accuracy. This removes the additional cost collecting demographic
data, unlocking further value of the metering infrastructure without requiring any changes to
the smart meters that have already been deployed.



Chapter 4

Winners and Losers under Time-of-Use
Tariffs

Highlights

• A continuous work on a TOU tariff modelling from Chapter 3, focusing on an effect at
the individual level.

• A model to identify household outcomes under a Time-of-Use tariff

• Reliable model accuracy using historical electricity load and basic characteristics

• Published public dataset of energy consumption with online activity variables

Collaborators

• Riku Arakawa1 contributed to the discussion on the modelling of the proposed ap-
proach. He also helped to check the mathematical notations.

The second analysis chapter addresses the "TOU winner detection problem" and the "TOU

public dataset problem", defined in Chapter 2. This chapter briefly overviews the current
circumstances of a TOU tariffs implementations, and more detailed examination in existing
approach to evaluate load shifting potentials in a "TOU tariff, and available public dataset
before presenting the modelling works.

1is from Graduate School of The University of Tokyo, Information Science and Technology.
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4.1 Introduction

The total installation of smart meters is expected to rise from 665.1 million in 2017 to more
than 1.2 billion by the end of 2024, according to the latest report published by Mackenzie
[175]. Asia is and will be the biggest market for smart meters over the next five years,
accounting for approximately two-thirds of the global installed base through 2024. China is
the key market driver, accounting for more than half of all smart meters installed globally
and deploying 476 million smart meters between 2011 and 2017. Japan, the second largest
country in this region, deployed 60 million smart meters. In Europe, the smart meter market
has a similar rate of adoption as North America, estimated at about 30-40% of all utility
customers (Smart Meter Market Report [251]), with an ultimate target of 80% or more
according to the 2009 Third Energy Package plan.

Since smart meters record consumption at a frequency of one hour or less it will be
possible for energy suppliers to offer customers tariffs which reflect consumption at a more
granular basis. With the increasing penetration of renewable sources of energy generation -
which are characterised by higher levels of variability time-based electricity pricing is even
more important as a means of facilitating their integration (De Jonghe et al. [58]). The
advantages of smart meters for local grids, such as lowering capacity in the distribution
network and gathering transmission network data, are also recognised (Depuru et al. [61]).
The importance of this “smart” grid has been emphasised by Mathiesen et al. [182] for making
a way to a future with 100% renewable energy and transport solutions. In Mathiesen and
Lund [181], electric vehicles are identified as the most promising transportation technology
and users with flexible demand such as electric vehicles would be more likely to benefit
from time-varying electricity prices. Mehrjerdi and Hemmati [184] suggested that optimal
dispatching and adjusting of the loads through their proposed demand response program can
efficiently harvest the maximum possible energy of the intermittent renewable generation
sources.

Many studies have confirmed that TOU tariffs represent a promising demand-side manage-
ment (DSM) programme for the residential sector given that it provides more certain financial
incentive to customers relative to other DSM programmes such as real-time pricing (Darby
and Pisica [55]). A survey in the United Kingdom (The Brattle Group [264]) also confirmed
that TOU tariffs are more popular than any other type of time-variable price incentive. 26%
of customers indicated that they would switch to a TOU tariff if available. The benefit of
TOU tariffs was also empirically demonstrated through the customer-led network revolution
load and generation monitoring trials in the UK (Wardle et al. [289]). Another large-scale
longitudinal study in Italy (Torriti [268]) also confirmed that TOU tariffs bring about higher
average electricity consumption and lower payments by consumers. In total, TOU tariffs have
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been shown as a successful DSM tool given that these studies observe consumers changing
the timing of demand based on a given tariff structure.

The benefits from customer demand response under a TOU tariff may provide potential
savings for both energy suppliers and consumers. The European Commission estimates
access to dynamic electricity price contracts could generate savings of e309 per metering
point distributed amongst consumers, suppliers, and distribution system operators (European
Commission [85]). Similarly, the UK gas and electricity regulator Ofgem published a report
on the distributional impact of TOU tariffs, highlighting that the average customer facing a
£615 annual bill under a flat tariff would save on average £8 (1.3%) under a static TOU tariff
(a tariff with different rates during different fixed time periods (Ofgem [203])). A study in
the United States estimated that a 5% reduction in peak demand has the potential to provide
savings of USD 35 billion in generation, transmission, and distribution costs over a 20-year
period (Faruqui et al. [87]).

4.2 Motivation

Energy suppliers widely have introduced TOU tariffs to their consumers, and there has been
previous work on optimal TOU tariffs design. As discussed and demonstrated in Chapter
3, energy companies could estimate the potential impacts of a TOU tariff before the large
scale roll-out, thus they could find an optimal solution at the nation level. However, the
investigations in Chapter 3 are conducted at the aggregated level, rather than at the individual
household level. A closer examination at each household outcome from a TOU tariff deserves
an extra work. The research question of this chapter is how to predict the effects of a TOU

tariff at an individual consumer level using smart meter data.
The proposed work in this chapter departs from previous studies; the methodology adopts

modelling potential outcomes of individual consumers under a TOU tariff using smart meter
data and other ex ante information. This model is important given that in practice, energy
retailers need to obtain explicit consent from customers to switch energy contracts to a TOU

tariff. In addition, despite the benefit of implementation of TOU tariffs at a national level,
TOU tariffs are likely to create both winners and losers at an individual level. For example,
TOU tariffs can be disadvantageous if a consumer does not (or cannot) shift load in the peak
time, and as a result faces an increase in the electricity bill. In this regard, energy suppliers
and regulators considering the design of a specific intervention are interested in the ex ante
identification of characteristics of individuals who would either benefit or be disadvantaged
following the introduction of the policy.
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Ofgem [203]’s assessment found that there are households in all groups (including vulner-
able groups) that would be subject to increased bills under a TOU tariff. For example, White
and Sintov [293] noted that the elderly and those with disabilities with limited flexibility of
electricity consumption around peak periods could face greater increases in electricity bills
under specific TOU tariffs. Therefore, demand-side measures should be carefully targeted
rather than ‘one size fits all’ and policymakers and energy companies need to remain vigilant
to counteract adverse TOU impacts.

This work identifies the characteristics of households who are able to reduce peak load
to achieve bill reduction (“winners”), and those households who are not able to reduce
peak load and face a bill increase (“losers”) using only ex ante information. The reliable
identification of the characteristics of potential winners and losers prior to the introduction of
TOU tariffs, ensures a better match between tariffs and customers. Three research gaps have
been identified to address the aforementioned problem.

First, although prediction-based machine learning methods are promising to inform
decision making around the design of a TOU programme (See Kleinberg et al. [157]), the
prediction of winners and losers is still not being well addressed. This is because many
factors (not only electricity behaviour but other social factors) need to be considered for the
model development. For instance, the degree to which TOU tariffs can be fully enforced is
affected by considerations such as technical constraints and the willingness of the customer
to adapt to the tariff signal (Cousins et al. [52]). Any introduced tariff plan may fail if it
does not take account of the customer’s point of view (Eskom [82]) . A forecasting model
factoring in different price responsiveness for each set of customer characteristics is required
for raising awareness and incentivising behavioural change to flatten the demand curve and
boost bill savings.

A means of enhancing the outcome of the demand side measures is also important. This
chapter examines the emerging concept of “gamification”, which has the potential to improve
customer adaptation in a TOU trial with a marginal financial cost. Gamification explores the
characteristics of an immersive environment that motivates and engages consumers by using
game design elements (Deterding et al. [62]). Gamification-based solutions have been shown
to improve the interest of residential consumers in energy systems by addressing a wide
variety of customer motivations, including social, environmental and economic motivations
(Seaborn and Fels [243]). Based on this, this chapter examines how the use of gamification
in a TOU trial enhances user engagement.

Lastly, the availability of a publicly available historical consumption dataset (containing
DSM trial) is limited given the reluctance of energy companies to release their smart meter
data due to security and privacy concerns. The currently available public TOU or DSM
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datasets are relatively old (with the most recent being from 2014) and customer electricity
consumption behaviour can change from year to year. For example, the Low Carbon London
(Schofield et al. [240]) dataset collected dynamic TOU readings in 2013 and the Pecan Street
TOU dataset has measurements from 2013 to 2014 (Pecan Street Inc. [215]). Likewise, the
Ausgrid Resident dataset has PV generation readings for domestic power usage according to
an inclining block rate or TOU, and controllable load from the year 2010 to 2013 (Ratnam et al.
[229]). The Australian government also released a DSM Smart Grid Smart City dataset, which
included readings for seasonal TOU, dynamic peak pricing plan, and rebates for interruptible
load for the years from 2010 to 2014 (Australian Government [20]). Furthermore, it can be
observed that the available datasets are from EU nations, Australia or US. Therefore, to the
best of the author’s knowledge, there is currently no publicly available TOU dataset in Asia.
This research work is the first and most recent (from 2017 to 2018) to release TOU public
dataset in Asia based on the trials conducted in Tokyo, Japan.

This work makes the following contributions:

1. A model to predict the characteristics of households who will benefit or lose under a
TOU tariff using smart meter data and other ex ante information.

2. An examination of the role of gamification in enhancing user engagement with a TOU

programme provides insight in designing the programme for favourable outcome for
energy companies at low cost.

3. As a side contribution, the dataset used in this work including historical smart meter
data, household characteristics and online activity is made available to promote future
research. It is expected that both academic and industrial researchers can utilise the
dataset for studying the effects of TOU programme and developing data-driven models.

The remainder of this chapter is organised as follows. Section 4.3 examines the existing
research relevant to this field, specifically by identifying studies in the drivers of energy
price behaviour, user engagement, and existing trial data. Section 4.4 outlines how the trial
was structured and details the notable components. Section 4.5 defines the methodological
approach to developing and testing the statistical model, and section 4.6 details the results of
these models. Section 4.4.4 introduces the public dataset created as a result of this trial and
gives details on how it may be accessed. Finally, Section 4.7 summarises the findings and
offers commentary for future work.
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4.3 Literature Review

There is not a standardised approach in the existing literature to evaluate DSM potential. The
three identified research gaps are examined further reviewing relevant academic works in
this section: drivers for electricity price responsiveness, user engagement, and availability of
public data.

4.3.1 Drivers for Individual Electricity Price Responsiveness

It is generally believed that smart meter data is likely to generate benefits for both consumers,
retailers and distribution network operators. Wang et al. [285] showed that degree of the
individual potential demand response are graded into several subsets by introducing a
demand response evaluation index system. In order for models to identify subsets of the
population who are likely to either benefit or be disadvantaged by TOU tariffs, historical
consumption data can be supplemented with other data sources. A number of studies have
examined the relationship between demand response subsequent to the introduction of
TOU tariff and household characteristics. A study of 1300 California households showed
that price responsiveness is not observed in all households with a skewed distribution of
price elasticity (Reiss and White [231]). O’Neill and Weeks [208] utilised a modelling
framework that captured the heterogeneous causal effects of a TOU pricing scheme in terms
of differences in demand response. They examined the heterogeneity in household variables
across quartiles of estimated demand response and they found reasonable associations with
covariates; for example, households that are younger, more educated, and that consume
more electricity are predicted to respond more to a new pricing scheme. Guo et al. [116]
concluded that demographic and residential characteristics, psychological factors, historical
electricity consumption and appliance ownership are significant drivers that determine
electricity price responsiveness. Yilmaz et al. [302] surveyed 622 homes to quantify their
interest in price-based and direct load control demand response programs based upon their
household and socio-demographic characteristics. The results demonstrated that employment,
tenure, education, and household type affected the individual user’s preference.

Variability in individual load profiles is a key measure for evaluating the potential of
DSM since the segment of customers who have a constantly high level of consumption and
low-variability during the peak time is thought to be a good target for a DSM programme
(Kwac et al. [162]) . A state transition matrix obtained by a large data set of load curves was
used in (Wang et al. [282]) to calculate the entropy of users, which quantifies variability in
usage pattern. It was found that for price-based DSM such as TOU, higher entropy users with
higher variability and power usage are more appropriate, as their versatility allows them to
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change their load per electricity price change. On the other hand, lower entropy users’ with
less variable consumption data is easy to predict and more suitable for direct load control
and other incentive-based DSM programs. Using quarter-hourly electricity consumption
data, Kwac et al. [163] developed statistical techniques through the measure of variability to
identify small and large customer segments that can yield measurable results and high returns
for energy programmes. It was discovered that an individual-level energy consumption
forecast would be easier for stable customers having less variable load profiles as compared
to unstable customers exhibiting highly variable load patterns. Furthermore, the increase in
the size of load clusters also considerably reduced the variability in the data.

Appliances such as heating, ventilation and air conditioning (HVAC) have great potential
for DSM. The sensitivity of electricity consumption to outdoor air temperature is another
effective evaluation criterion to examine the relationship of energy consumption and price
responsiveness. Cao et al. [35] developed a model for estimating the average consumption
per meter, using clustering methods on load consumption data with a focus on using peak
consumption occurrence to segment consumers. Albert and Rajagopal [13] proposed a
ranking method for assessing a consumer’s viability for a thermal demand response - or
energy consumption attributed to HVAC use - where the DSM potential was evaluated using
temperature sensitivity and occupancy. Afzalan and Jazizadeh [3] added characterisation
schemes for resultant clustered load shapes, with the aim of facilitating information retrieval
by assigning cluster load shapes with specific semantic attributes and effectively translating
the underlying behavioural actions. Their characterisation scheme extracts descriptive
features from load shapes to explain their temporal pattern.

4.3.2 User Engagement

User engagement can be enhanced not only by tariff pricing (Campillo et al. [34]) but also
by gamification. Gamification - the trend of employing game mechanisms and techniques in
non-game contexts (Deterding et al. [63]) - has dramatically increased in recent years and can
be viewed as a new paradigm for enhancing online user engagement. Gamification rewards
can be broadly categorised as monetary, status, and achievement rewards (Kankanhalli et al.
[149]). Popular design elements of a gamified application includes points, leader boards,
rankings, virtual badges, and level status. Empirical studies on gamification (Hamari et al.
[119]) have identified the importance of feedback based on motivational messages. Recent
successful examples of gamification in other fields are Foursquare and Nike+ (Deterding
et al. [62]), which achieve high engagement from customers without monetary rewards.

Engagement with DSM programmes, however, have typically encountered several sig-
nificant obstacles. Firstly, the majority of customers have only experienced a flat rate for
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electricity and therefore, an awareness of the significant variation in the intra-day wholesale
price of electricity is generally not widely known. Communicating this effectively will
have implications to the success of recruitment to the programme and its eventual outcome.
Second, based upon extensive literature reviews (see Luthra et al. [174]) and validated with
expert opinions from academia and industry, the lack of customer engagement - or initial
interest that wanes over time - has been identified as a key obstacle. Programmes must
therefore anticipate these issues and engage accordingly, seeking the deeper drivers of energy
consumption.

The engagement metrics in a game-enhanced DSM platforms may include the average time
of DSM tool usage/user group, an average number of consumers who signed in the DSM tool
every DSM-event/month/week, the implemented DSM actions ratio, accepted DSM requests
ratio, digital engagement metrics with related DSM data, reliability and flexibility parameters
of DSM methods, and psychographic and demographics consumer profiles. (See for example,
Lampropoulos et al. [165].) As an example, Zehir et al. [304] analysed the engagement
of DSM program participants by grouping them into rare and active users according to
their gamified DSM platform use frequency. Similarly, Fijnheer and Van Oostendorp [95]
monitored the power consumption flexibility and behaviour of consumers by tracking the
frequency of the participant’s sign-ins and how long he/she is engaged. A study conducted
by Schofield et al. [241] utilised a measure of an engagement based upon the distribution of
the subsequent annual bills, and using the percentile in which the actual bill occurred as a
proxy for engagement.

Gamification appears to be of value within the domain of energy consumption, conserva-
tion and efficiency, with some evidence of positive influence found for behaviour and the user
experience (Johnson et al. [147]). Paone and Bacher concluded that behavioural feedback
(providing building occupants with information regarding their historical and current energy
consumption) is an effective means for influencing occupants, with gamification presented
as a new opportunity to induce behavioural change (Paone and Bacher [212]). Senbel et al.
found that participants in an energy conservation campaign were motivated by the actions
and stories of their friends and did not pay attention to the actions or competition scores of
strangers (Senbel et al. [244]). In total, findings from these studies suggest that adopting
gamification (e.g., employing mechanisms for showcasing the behaviour of peers) may be
effective in increasing engagement and in shifting long-term energy consumption.

4.3.3 Importance of Public Dataset

Smart meter data collected by conducting the DSM trials offer utilities the chance to manage
the energy consumption of individual customers even out of thousands of them. The utilities
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can test new DSM programs and compare them with the old ones (Ludwig et al. [172]).
However, despite the emerging awareness of the importance of DSM, the availability of a
publicly available historical consumption dataset, including customer behavioural changes
due to a TOU tariff intervention, is very limited. In Wang et al. [281]’s review, only a dozen
sources of open data are available given the reluctance of energy suppliers to release their
smart meter data due to security and privacy concerns. In many cases, datasets from 4232
households in Dublin, Ireland (Commission for Energy Regulation [49]), 5567 households
in London, United Kingdom (Schofield et al. [242]), 40 households in Austin, Texas (US)
(Smith [252]) are repetitively used in many papers. There are also researchers who are testing
various frameworks and algorithms using such smart meter data but they don’t publish their
datasets (Ashok [18]) and some are producing the data artificially (Li et al. [168]). However,
reference real-world data sets play an important role in making research more comparable
and usable.

There is significant evidence that publicly available datasets have spurred previous
applications in machine learning and data mining. For example, many early successes in
natural language processing were spawned by the now-classic Wall Street Journal corpus
(Marcus et al. [179]), and image recognition research has been aided by common benchmark
datasets such as MNIST (Modified National Institute of Standards and Technology database)
digit recognition (LeCun [166]), CalTech 101 (Fei-Fei et al. [92]), and the PASCAL challenge
(Everingham et al. [86]). Wagner et al. [278] pointed out the scarcity of publicly available
data in the energy disaggregation field, and created a public data set to support this research.2

A wider range of public data sets related to a TOU tariff intervention would enable further
examination in this field. This work addresses this issue by publishing the dataset of a TOU

trial result for the future academic research.

4.4 Time-of-Use Trial

Energy market reform was implemented in Japan from 2016, where the electricity market was
deregulated and competition was introduced (Shinkawa [248]). Japan is the fourth largest
market in electricity consumption after China, United States and India (according to the CIA
[1]), and the largest single deregulated electricity market.

The deregulation of the electricity market promotes competition, with the market share of
new entrants serving 11.7% of total energy demand in July 2017. Japan also has one of the
highest rates of smart meter penetration in the world, with 60 million electric smart meters

2The energy disaggregation field is focused on detecting appliance-level usage from a household energy
consumption profile and this dataset is referred to as REDD - Reference Energy Disaggregation Data Set.
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deployed in 2018. The data from smart meters is also live-streamed to energy suppliers,
making the utilisation of the smart meter data technically feasible. Moreover, products and
services - like TOU tariff - are welcomed by energy suppliers as a means to differentiate their
offers in the competitive market.

Looop Inc., one of the new entrants in Japan, introduced a TOU tariff for customers in
Tokyo. The CAMSL dataset was generated based upon the introduction of a TOU tariff trial in
2018 (Looop TOU campaign [171]) by Looop Inc. and SMAP Energy.3

1023 households in Tokyo (TOU users) voluntarily participated in this trial. During the
programme, volunteer users were assigned to a TOU tariff during July 2018 to September
2018 (92 days), the remainder were assigned to a flat tariff (see Table 4.1). All TOU users
had access to their historical energy consumption charts via a web application and were also
provided with daily email notifications indicating any peak reduction in consumption against
an individual baseline which was set based on June 2018 consumption (see Section 4.4.2).
A limited amount of demographic information - specifically household type and number of
residents - was collected via a questionnaire.

Period Start date End date Number of Days TOU users non-TOU users

Pre-TOU period 1 June 2018 30 June 2018 30 Flat tariff Flat tariff
TOU period 1 July 2018 30 September 2018 92 TOU tariff Flat tariff

Table 4.1 Users on TOU/Flat tariff

Several key features explored in this trial are explained in the following sections. The first
is the structure of the TOU tariff, which allows the price of electricity to vary according to the
time of the day and the day of the week. The second is the web application, which provides
personalised feedback regarding the user’s historical and current energy consumption. This
section also describes the quantification of user engagement with the web application. The
final section discusses the construction of the control group.

4.4.1 Time-of-Use Tariff

For this trial the TOU tariff is available during the summer daytime since the energy price
at JEPX (Japan Electric Power Exchange) (JEPX [145]) tends to be high due to increased
usage of air-conditioning. Figure 4.1 shows the average price in half-hour increments on
the JEPX spot market over the period July 2017 and September 2017. It is observed that the

3This dataset is called CAMSL: CAMBRIDGE-SMAP-LOOOP given that this was a joint research programme
between Looop Inc. (an energy retailer in Japan), SMAP ENERGY Limited (smart meter data analysis company
in UK) (SMAP Energy Limited [250]), and researchers at the University of Cambridge.
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price of electricity starts to rise in the morning until the late evening. The period from 2pm
to 10pm for weekdays is set for the peak time in this trial, encouraging consumers to reduce
consumption due to relatively higher JEPX prices caused by high demand by industrial and
residential customers and less solar generation.

Fig. 4.1 Intra-day averaged price of JEPX spot market between July 2017 and September
2017. The horizontal axis is half-hourly time stamp from 0 (midnight) to 47 (23:30). The
highlighted hours (2pm to 10pm) are the peak hours in this trial.

During high demand periods energy retailers sell electricity at a loss if the wholesale cost
exceeds the contracted retail price. If electricity consumption can be reduced during the peak
period, this can create a win-win for consumers and retailers: a reduction in the negative
spread of electricity sales for retailers which can be passed on to energy consumers in the
form of a bill reduction.

The TOU tariff in this trial provides an incentive for the user to shift load from peak time
to off-peak time (see Table 4.2). The reward takes the form of an energy bill reduction, as
well as the avoidance of a bill increase if there is not a load shift. A peak rate (35 JPY/kWh
- 35% higher than the flat rate) is applied during the 2pm-10pm weekday period, and an
off-peak rate (20 JPY/kWh - 23% lower than the flat rate), is applied for all other periods
including the weekend. The flat tariff alternative is 26 JPY/kWh for all periods.
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Period Flat tariff TOU tariff Difference

Peak Rate 26 JPY/kWh 35 JPY/kWh 35%
Off-Peak Rate 26 JPY/kWh 20 JPY/kWh -23%
Availability All times 1 July to 30 September 2018

Table 4.2 Tariff structure of flat and TOU tariff. Peak time is 2pm to 10pm weekdays, and
off-peak time is the rest including weekends.

4.4.2 Web Application

In this TOU trial a web application is provided to incentivise additional demand response
beyond that provided by the TOU tariff. All TOU participants are required to sign up and
register an email address in order to receive daily personal feedback through the web
application. In this application the user can view their actual half-hourly consumption and
personal baseline, generated from their average consumption for each time stamp during
peak time in June 2018. This is then fixed for the entire trial period.

Figure 4.2 is an example of the web application. The highlighted zone (14:00 to 22:00)
represents the peak time. The fold line with small dots during the peak time is the personal
baseline and the other line is the actual consumption of 24 July 2018. Peak reduction is
observed in the day as the line of the actual consumption is mostly below the baseline during
the peak time.

Fig. 4.2 Individual feedback and reward system.
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A points system is a core component for the gamification element in this trial. For
the duration of the trial, users were able to view their electricity consumption via the web
application. If for any day of the TOU period peak time consumption is less than the baseline,
the user is rewarded 1 point per 0.01kWh. No penalty is enforced if the consumption is higher
than the baseline. The individual points and leader boards (rankings based on accumulated
points) are updated daily, with rewards allocated on this basis.

To understand the relative effectiveness of the web application component, it is necessary
to obtain a measure of individual-level engagement with the application. This is done
by recording a number of measures of user activity on the web application using Google
Analytics (Google Analytics [111]). These measures are defined as follows (Analytics Help
[14]).

• Number of sessions: A session represents individual activities within the web applica-
tion (checking the charts, viewing different pages, etc.) within a 30 minute window.
A single user can open multiple sessions in a day. A session ends after 30 minutes of
inactivity or at midnight.

• Average session duration: The average time a user spends in a single session on the
web application.

It is important to note that the web application became available at the beginning of
the TOU trial. Given that the variables which record web activity do not represent ex ante
information, these are used as a means to conduct ex post analysis to measure the correlation
between online engagement and peak reduction.

4.4.3 Control Group

To address the problem of self-selection whereby volunteers for the TOU trial are likely to
have characteristics and preferences that are distinct from the general population, a control
group was selected comprised of Tokyo-based consumers who are billed on their normal
electricity tariff and given no web application. Since this TOU trial is part of commercial
programme, a fully randomised control group is not available. The control group of 400
non-TOU users was randomly selected from Looop’s customer base while maintaining the
same distributions of demographic variables.

Figure 4.3 presents the average load profile for TOU users and control group over the
two periods. Note that during the pre-TOU period the average consumption of both groups
are similar. However, during the TOU period, the consumption level of the TOU group is
consistently lower than the control group. This phenomenon is more visible during the peak
time (highlighted zone in Figure 4.3).
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Fig. 4.3 Load curve of average consumption in TOU and control groups. (left: pre-TOU

period, right: during-TOU period)

4.4.4 Public Dataset

The dataset used in this work has been published and is publicly available on the web:
https://github.com/smapenergy/CAMSL. The CAMSL dataset contains the items shown in
Table 4.3. The dataset is available for free for both academic and industrial researchers to
access upon the request.

File name File type Description

README text instruction text
consumption_data zip from June 2017 to December 2018, 1023 TOU users and 400 non-TOU users
customer_info csv number of residents and house type
web_info csv sessions, average session duration (July 2018 to December 2018)
temperature_Tokyo csv hourly average temperature in Tokyo from June 2017 to December 2018 ((author?) [Japan Meteorological Agency])
holiday_Japan csv from January 2017 to December 2018
non_tou.csv.gz gz raw data of consumption of total 3337 customers who did not participate in the TOU trial

Table 4.3 Items in the CAMSL TOU dataset

The dataset includes 1423 households (1023 TOU users and 400 non-TOU users) in Tokyo
between 1st July 2017 and 31st December 2018 (18 months). The dataset also includes raw
data of 3337 customers who did not participate in the TOU trial. Each day has 48 half-hourly
data points for energy consumption from a smart meter and each household has 579 days
between 1 July 2017 to 31 December 2018, comprising a total of 27792 data points for
electricity consumption obtained at each household for this dataset. The uniqueness of this
dataset is the additional online engagement data recorded via web-application usage, the
inclusion of which enables further studies related to gamification effects.

The CAMSL trial was designed from the ground up to be minimally invasive in terms of
privacy. The intent to publish collected data was explicitly communicated to all participants
at numerous stages in the sign up process, and participants had to give prior consent before

https://github.com/smapenergy/CAMSL
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signing up. This dataset does not store any identifying information about the specific house
and area - beyond the general location of Tokyo - and releases only historical data.

4.5 Modelling Framework

With the continued fall in computation costs, non-linear techniques such as Decision Trees
(DT), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) have been
commonly used for medium-term electric load forecasting (Hernandez et al. [122] and Hahn
et al. [118]). Here the primary objective is to train a model that minimises the loss between
the predicted and actual values in a test dataset [70]. In constructing a load prediction model
for individual customers under a TOU intervention, Chapter 3 (published as Kiguchi et al.
[152]) found that a Random Forest (RF) model (Breiman and Cutler [30]) outperforms neural
network and linear regression for predicting the residential load after TOU intervention. RF

represents an improvement of DT, given the construction a large number of DT since single
trees are unstable, small changes in the training data can lead to very different trees structures
(see Strobl and Zeileis [257]).

This work builds on Chapter 3, in developing a RF based regression approach that is
capable of predicting the individual characteristics of winners and losers of a TOU tariff
using smart meter data and other ex ante information. Although it is possible to approach
the analysis as classification approach based on the identification of winners or losers, a
regression approach is able to estimate the extent of individual peak reduction. This is of
greater use considering that fact that energy companies want to see the transparency of the
results, and design TOU tariffs rates accordingly. Therefore, regression approach is chosen
for this work.

4.5.1 Definition of Winners and Losers

The identification of the characteristics of individuals that are able to adjust consumption
following the introduction of a TOU tariff involves a number of steps. First, the percentage
change in peak electricity usage for household i over the period spanned by the TOU trial
against the baseline is given by

R̃i = 100× 1
np

∑
τ∈Peak

C̄d
τ,i −C̄p

τ,i

C̄p
τ,i

, (4.1)

where τ denotes the time index of 48 half-hourly data points and np is the number of time
indices contained in the peak period (16 points over 8 hours). C̄p

τ,i denotes the average
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consumption of the user i at time stamp τ over the pre-TOU period (30 days in June 2018);
C̄d

τ,i is the counterpart for the TOU period (92 days from July to September 2018).
A key measure of customer engagement with a TOU tariff is the difference in peak

consumption between the TOU and non-TOU users over the period spanning the introduction
of the time-of-use tariff. This difference in peak consumption is referred to as peak reduction
in the sense of comparing the change in peak consumption for both TOU and non-TOU

users against the specific baseline. This method is useful to remove external factors such as
seasonality. 4

Peak reduction for individual household i in the TOU group is given by

Ri = R̃i − R̃c (4.2)

where R̃c is given by

R̃c =
1
nc

∑
i∈C

R̃i, (4.3)

where nc denotes the number of users in the control group. R̃c denotes the average percentage
change against the baseline for households in the control group (C), who do not face the TOU

tariff.
Although retail companies and policy makers care about the winners and losers as

reflected in the distribution of Ri, as noted in Chapter 3, predicting demand response at the
individual-level is difficult. To address this problem, a threshold rule to classify the users
into two distinct groups of winners and losers is introduced, as opposed to using the full
distribution of Ri. The classification is written as

Sk,i =

{
1 if Ri ≥ k
0 else

(4.4)

Sk,i = 1 (Sk,i = 0) then indicates that household i has reduced (failed to reduce) peak load by
more than k%, where k is an unknown constant.

4.5.2 Modelling Method

The modelling method uses a RF based regression approach that estimates Ri, and then
generate Sk,i using (4.4). The individual level input variables are categorised into two groups:

4This represents the same methodology as used in the 2011 Irish TOU trial (Commission for Energy
Regulation [49])
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load-use variables and demographic variables. The first group includes the 1st to 4th moments
derived from the historical half-hourly energy consumption recorded at each smart meter. The
first moment represents the average consumption. The second moment (variance) represents
the standard deviation and indicates the variability of usage. The third moment (kurtosis) is
useful for determining the degree of symmetry of histograms and whether they are skewed.
The fourth moment (skewness) measures the heaviness of the tail, and hence a measure of
the number of outliers.

Chapter 3 found these moments to be an important predictor of electricity consumption.
For example, the average consumption of the given user (i) for the pre-TOU period is written
as 1

48 ∑
48
τ=1 C̄p

τ,i. By summing over 48 timestamps, the average value for a given day during
the pre-TOU period is calculated. These values are summarised in Table 4.4.

Group No. Average Variance Skewness Kurtosis

TOU 1023 120.1 685.1 1.49×104 1.05×106

Table 4.4 The four statistical moments of the daily consumption data in pre-TOU period.

The second group of input variables includes a limited number of demographic variables:
number of residents (from 1 to 5 or above) and household types (detached, flat). Detached
house is defined as a free-standing residential building, and flat (apartment) is defined as
self-contained housing unit that occupies a part of a larger building.

4.5.3 Evaluation

The introduction of Sk,i turns this regression problem into a binary classification problem. A
commonly used performance measure for binary classification5 is defined as the total number
of the correctly classified observations divided by the total sample size, namely

ACCURACY =
T P+T N

T P+T N +FP+FN
. (4.5)

T P (true positive) indicates the number of households where Sk,i = 1 and Ŝk,i = 1. FN (false
negative) indicates the number of households where Sk,i = 1 and Ŝk,i = 0. FP and T N can be
similarly defined.

Beckel et al. [23] advocate the use of the Matthews Correlation Coefficient (MCC) over
simple precision or recall when the number of samples in given classes are imbalanced in

5See Sokolova and Lapalme [253] for an extensive overview of different performance measures for classifi-
cation tasks.
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binary classification tasks. MCC utilises a penalty function to reward true positives (the
underrepresented class). MCC is given by

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(4.6)

MCC ranges between 1 (-1) when there is total agreement (disagreement) between the
observed and estimated classes. A value of 0 indicates random classification. This work uses
MCC to quantify the performance of the classifiers.

4.6 Results

In this section, the classification performance of the model is examined. Section 4.6.1
evaluates the overall model performance, and discusses the potential benefit of this model
In Section 4.6.2 individual feature importance is examined, and essential variables for the
model construction are identified. In Section 4.6.3, the importance of online engagement in
detail is considered. Revealing the relationship between online engagement and the TOU trial
outcome is one of the unique points in this chapter, and gamification is a key tool to enhance
the level of online engagement with marginal financial cost.

4.6.1 Model Results

In Figure 4.4 the distribution of R̂i and Ri, which are the predicted and actual peak reduction
for individual household respectively, is presented. It is observed that for the majority of
customers R̂i > 0, indicating a reduction of load over the period of the TOU tariff. Out of
the 1023 households, the model predicts 854 instances of load reduction (R̂i > 0) versus 742
observed. The mean of R̂i and Ri are 15.9 and 16.5 kWh per day. The variance of R̂i and Ri

are 488.3 and 2647.2.
The accuracy of the RF-based regression model at the individual level was calculated

using mean absolute percentage error, which was 60.4%. The fact that the distributions
of R̂i and Ri are different is to be expected given the difficulty of predicting individual
consumption. The relatively low accuracy of the regression model result provides motivation
for applying the binary classification rule (winners and losers) instead of predicting individual
consumption, which helps to practically interpret this model’s results given this limitation of
the dataset in this chapter.

The size of this dataset might cause this accuracy, and therefore future works using larger
dataset for training the model could improve the regression accuracy. A practical approach to
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establish a larger dataset that is known to be successful in a domain such as image recognition
(Chollet [47]) is the fine-tuning methods, where the model is trained on an existing dataset
and then tuned on a newly collected dataset. Considering this possibility, the publicised
dataset CAMSL is beneficial for further TOU analysis studies.

Fig. 4.4 Distribution of the model result (left: R̂i, right: Ri)

The predicted distribution of R̂i is then utilised for classifying winners and losers. That
is, the classification model identifies the winners (Ŝk,i = 1) and losers (Ŝk,i = 0) for a given
threshold k. Table 4.5 show the MCC results with different threshold value k (from -30 to
30). Given MCC values are greater when k > 0, indicates that the proposed model performs
better at predicting instances of peak load reduction. This indicates that potential winners are
comparatively easier to detect by the model.

One potential application of the proposed model is for energy suppliers to target potential
households based on their budget. The budget constraint determines how many households
can be targeted for the marketing of the DSM programme. Energy suppliers can target
prospective winners of the DSM programme, which are given by the proposed model that
estimates Ri. The distribution of R̂i shown in Figure 4.4 provides information to decide the
optimal k by calculating the number of Ŝk,i = 1, i.e., prospective winners.

k% -30 -20 -10 10 20 30

MCC values 0.17 0.14 0.16 0.36 0.38 0.29

Table 4.5 MCC result with different threshold value k

Table 4.6 presents a confusion matrix which provides a measure of model performance
in terms of the number of correctly identified predictions. The table is presented for the
case where MCC is highest (k =20). In this instance, predictive performance based upon a
classification of individuals around the threshold (R̂i > 20%) is evaluated. From the table,
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it is observed that 50.2% (536 out of 1023) of customers are observed to reduce peak load
by more than 20% (Ri > 20%) in the TOU tariff trial. It can be understood that an energy
supplier offering this TOU tariff to this pool of individuals would have an equal number of
winners and losers.

This approach might be used by energy suppliers to deliver a TOU tariff. For example,
based on Table 4.6, a company might restrict a TOU tariff to those individuals whose
characteristics match those that are predicted to reduce peak load. If this subset of predicted
winners (722 users) were to join the programme, 63.0% (455 users) will become winners
in this trial. This model can therefore increase the effectiveness of the TOU programme by
25.5%6, and identify the majority of potential winners (84.9%) before a tariff is implemented.

Sk,i = 1 Sk,i = 0
Ŝk,i = 1 455 267 722

Ŝk,i = 0 81 265 346
536 532 1023

Table 4.6 Confusion matrix for k =20

4.6.2 Feature Importance

Table 4.7 reports values of the Gini coefficient values for each feature. This measures the
change in the prediction error when data for a single feature is permuted while the others are
left unchanged. This makes it feasible to decide which features should be used given the cost
of collection and importance for the model performance of R̂i prediction (Breiman [29]). The
results demonstrate that features derived from historical load data are the dominant factors
for the predictive performance. Note that variance comes first among all variables, followed
by the mean, kurtosis and skewness.

In contrast the contribution of the household characteristics are limited. As has been
found in a number of other studies (see, for example, O’Neill and Weeks [208]), demographic
characteristics are reflected in the historical load profiles, suggesting that these static features
are not so important.

6the increase of 25.5% represents a move to 63.0% from 50.2%.
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Variable Gini coefficient

average 23.82%
variance 24.17%
skewness 16.72%
kurtosis 20.72%

number of residents 7.59%
household type 6.98%

Table 4.7 Feature importance

4.6.3 Importance of Engagement

Given that the web application was launched at the start of the TOU tariff trial, engagement
variables represent ex post information and as a result are not used as a part of the modelling.
However, it is possible to determine if these variables correlate with the model results. The
average number of sessions of the responsive households (Sik = 1) and the others (Sik = 0)
during the TOU period were 6.68 and 3.71 respectively, and the difference was statistically
significant (p < 0.05). This result suggests that the degree of online engagement correlates
with the outcome of the TOU price signalling.

This result can be aligned with previous research on the effectiveness of gamification as
discussed in Section 4.3.2. Specifically, it is implied that if an energy company can encourage
customers to be more active on the online service (for example, by providing gamification
features such as points and rewards), this may generate a greater degree of demand response.
Although the causality link between households’ online engagement and their peak reduction
should be further investigated, this implication can provide an additional opportunity for
energy companies to optimise TOU planning; they often believe financial incentives (similar
to tariff incentive in Section 4.4.1) are the only the way to motivate the customers.

Sophisticated gamification design is equally important for a TOU trial, and implementing
gamification could be much cheaper than monetary rewards at a large scale deployment.
As noted, in this trial measures of user engagement variables are obtained ex post. If a
similar programme is planned in the future and some participants rejoin the programme,
these variables could become ex ante information, and used as a proxy for user engagement.
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4.7 Conclusion

Time-of-use (TOU) tariffs and other kinds of time-dependant pricing can be mutually benefi-
cial, resulting in a cost reduction for both energy companies and customers if the customer
responds to the price signalling. This work provides a data-driven approach to identify the
characteristics of households that would either be positively or negatively affected under
a TOU tariff, using only ex ante information such as smart meter data. Such a model can
maximise the outcome of a TOU programme and reduce the chances of adverse outcomes for
participants.

The key findings of this work can be summarised as follows. First, the predictive model
performs better for the identifying winner rather than identifying losers. The highest model
accuracy is achieved 0.38 (MCC score) for the classification, where k is set to be 20. Gini
coefficient values reveal that historical smart meter data is the main contributor to this model
performance rather than household characteristics. This result indicates that such a model
can help energy companies to deliver a TOU tariff to potential winners efficiently.

Second, the level of online engagement is confirmed to have a significant influence on
a TOU tariff outcome. Online engagement variables meaningfully contribute to the model
performance, and the engaged customers are significantly more responsive to the price
signalling compared to the others. These results indicate that enhancement of the online
engagement needs to be considered for a TOU tariff design, and good gamification can bring
a favourable outcome for energy companies at relatively low cost.

This chapter also publishes a new public dataset (CAMSL) of 1423 households in Tokyo,
Japan, including 18 months of historical smart meter data, household characteristics and
online activity variables. The author believes that a scarcity of public datasets has prevented
researchers from developing models and testing external validity. This chapter demonstrates
hopefully the first of many models using this CAMSL dataset. The dataset is available for
free for both academic and industrial researchers to access upon request.

This work and Chapter 3 have demonstrated data-driven modelling techniques of con-
sumer demand response following a TOU tariff introduction at residential scale, unleashing
the power of smart meter data. Academic research institutions are also able to use the
published dataset to further optimise the proposed TOU model, potentially incorporating data
on other flexible resources such as heat pumps and electric vehicles. These works could help
consumers and energy suppliers in making the best use of the increasing penetration rate of
intermittent clean energy resources and make the energy more affordable and secure.



Chapter 5

Data Driven Model for Rooftop Excess
Electricity Generation

Highlights

• A forecasting problem for excess generation from residential PV systems is similar to
load forecasting problem under a TOU tariff in Chapter 3 and 4.

• A data-driven Gaussian Process model is chosen to address the stochastic nature of
excess generation.

• A drawback of the decoupled approach for excess generation is examined.

• A year long dataset from 287 households in Tokyo Japan, is used to derive the fore-
casting model.

• Results show that a-year-long data from 18 households is sufficient for accurate
prediction of excess generation across a uniform geographic and socio-economic
setting.

Collaborators

• Yeonsook Heo1 contributed to the discussion on the modelling of Gaussian Process.

The final analysis chapter addresses the "excess generation forecasting problem", defined
in the Chapter 2. This chapter briefly overviews the current circumstances of rooftop solar

1was from Energy Efficient Smart Initiative, University of Cambridge, and is an Associate Professor, School
of Civil, Environmental and Architectural Engineering, Korea University.
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installations and related subsidies, and more detailed examination in existing approaches
to forecast the residential excess generation from rooftop solar panels before presenting
modelling works.

5.1 Introduction

Residential PV systems make up the dominant share of solar energy deployment worldwide,
and they are anticipated to remain the dominant driver for PV generation deployment: around
60% in 2010, and 40% in 2050 among the four market segments (residential, commercial,
utility-scale, and off-grid) (Figure 5.1) (IEA [136]).

Fig. 5.1 Evolution of PV electricity generation by end-use sector (IEA [136])

In the residential sector, there is usually a poor correlation between load and generation;
more energy is generated during daytime, whilst consumption is highest in the morning and
in the evening hours (see Figure 5.2. Excess generation is the result of this mismatch between
the timing of generation and consumption. Energy traders participating in liberalised markets
aggregate the excess energy produced by many rooftop installations to sell it. They need
to notify the amount of energy that they can provide in advance and in case of imbalance
between the bid and the actual amount of energy they are subject to penalties and/or loss
of revenues (Pinson et al. [219]). In this scenario, accurate excess generation forecasting
becomes crucial to optimise the revenues of the traders, and thus encourage the installation
of rooftop PV systems.
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Fig. 5.2 Typical daily energy usage of a PV installed household. excess generation is a result
of a mismatch between the timing of PV generation and consumption)

Accurate prediction of excess generation is also essential for grid operators, since inac-
curate predictions of excess electricity into the grid from several thousands of PV systems,
scattered geographically, can be challenging for grid stability (Denholm and Margolis [60]).

PV generation, on-site consumption, and therefore, excess generation is measurable in
real-time through a single device – the smart meter. Indeed, many countries are showing
a strong commitment to support large-scale smart-metering programs, with the aim of
better real-time management of electricity flows through the grid. In 2009, the European
Commission Directive required that 80% of EU households have smart meters installed by
2020. This is likely to result in an exponentially increasing available datasets, which will be
invaluable for predicting future excess generation using data-driven methods.

Excess generation is essentially the result of the difference between real-time PV gen-
eration and on-site load consumption. Individual models for predicting PV generation and
on-site consumption have been researched extensively. However, to the author’s knowl-
edge, no model exists that integrated generation and consumption uniquely for the goal
of quantifying excess generation. This chapter compares the forecasting accuracy of an
integrated excess generation model against the more traditional decoupled approach and
thereby examines the necessity of an integrated excess generation model. Furthermore,
various financial programmes which incentivise households to maximise (or minimise) the
excess generation, make this problem even more complicated. Although this is not strictly
a time-of-use tariff itself as discussed in previous chapters, these programmes effectively
function like a time-of-use tariff in that they encourage demand adaptation to maximise the
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financial incentives given by a subsidy. Therefore, the final analysis in this thesis is to address
the "excess generation forecasting problem".

Next section examines the financial incentive/dis-incentive for the excess generation. The
third section provides an overview of relevant existing energy demand and PV generation
models. The following section describes the dataset of an illustrative study and proposes an
integrated modelling procedure for predicting excess generation. Finally, prediction results
of the proposed model are compared against decoupled model (model for PV generation
minus load consumption). The conclusion explains two key findings and scheduled future
work.

5.2 Financial Support for Excess Generation

Various government programmes promote a range of small-scale renewable and low-carbon
electricity-generation technologies. Until renewable power reaches grid parity, subsidisation
schemes are necessary in order to accelerate renewable power generation. Two notable
schemes are explained below.

Feed-In-Tariffs
Feed-in tariffs (FIT) are the most extensively-used policy programmes for accelerating

renewable energy deployment all over the world. FIT account for a greater share of renew-
able energy development than either tax incentives or renewable portfolio standard (RPS)
policies. Feed-in-tariff programs exist in 75 countries, states, and provinces around the world;
altogether, FIT are responsible for approximately 75% of global PV development (Cory et al.
[51]).

In a FIT program, electricity from a grid-connected rooftop photovoltaic power station
can be sold to the grid at a higher price than the grid charges to the consumers. This
arrangement provides a secure return for the installer’s investment. However, the minutiae of
the financial mechanism shows discrepancy depending on a country, as illustrated by the two
examples in section 5.2.

Net metering
Net metering is another prevailing scheme designed to foster private investment in

renewable energy. Even though specific design details vary, net metering allows customers
with PV systems to reduce their electric bills by offsetting their consumption with PV
generation. In effect, net metering sells PV-generated power to the utility at the customer’s
marginal retail electricity rate.
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Incentive and Disincentive for Excess Generation

Some countries encourage on-site consumption of on-site generation, and others do not. This
divergence in philosophy is epitomised by the types of subsidisation incentives offered to
residential PV owners. This financial scheme influences energy-usage behaviour of household
occupants, and makes it arduous to model globally standardised excess generation models,
unlike the PV generation model, which basically follows the laws of thermodynamics.

Two countries using opposite incentive poles—the UK and Japan—are illustrated below.
Case 1: A disincentive for excess generation: UK
In the UK, consumers have a stronger incentive to utilise the preponderance of their

generated electricity on sunny days, thereby minimising excess generation. As seen in
Table 5.1, UK customers receive a guaranteed FIT for all generation (10-14 p/kWh), plus an
‘export tariff’ (4.77 p/kWh) for excess generation (Ofgem [202]). According to uSwitch, a
UK energy-price comparison service and switching website, the FIT is much smaller than the
average electricity bill (12-15 p/kWh) (Uswitch [274]). Therefore, customers have incentive
to consume their generated electricity, rather than export it to the grid.

This is, however, theoretical. Up to now, Ofgem assumes that excess electricity exported
to the grid is 50% of total generation for PV systems with total installed capacity of 30kW
or less, where it is not possible or practical to measure electricity generation with an export
meter (Ofgem [201]).

This situation will change with the emergence of smart meters, which will allow the provi-
sion of more tailored incentives based on metered excess generation. The UK Government is
obliging energy companies to install smart meters for their customers by 2020 (DECC [59]).
With smart meters, export tariff will be paid according to the metered excess generation,
rather than a fixed ratio.

Case study 2: an incentive for excess generation: Japan
In Japan, FIT is only paid for excess generation— not total generation, as in the UK. FIT

prices are currently much higher (38-42 JPY per kWh) than the average electricity bill (20-25
JPY per kWh) (METI [185]). Customers have a strong financial incentive to maximise their
excess generation, and so are willing to change their consumption behaviour by shifting
electricity-heavy appliances, such as dishwashers and washing machines, to evening, rather
than wasting opportunities to export excess generation with subsidised prices. By shifting
electricity usage from daytime to night-time, a household saves roughly 15-20 JPY/kWh.

In this work, we will work with a dataset in Japan, therefore the customer has an incentive
for excess generation.
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Table 5.1 FIT schemes in the UK and Japan

UK JAPAN

Generation Tariff 10-14 p/kWh -
Export Tariff 4.77 p/kWh 38-42 JPY /kWh
Average Electricity Bill 12-15 p/kWh 20-25 JPY /kWh

5.3 Literature Review

Excess generation can be considered as a function of PV generation and on-site load con-
sumption. PV generation and residential consumption models are useful in pre-screening
important features for excess generation modelling as explanatory variables/inputs. In this
section, recent studies in these fields are reviewed in order to identify key variables for excess
generation modelling.

5.3.1 PV Generation Models

Models for predicting PV generation are categorised into engineering (physical) models and
statistical time-series models. An engineering model involves a physics-based model of PV
panels, which converts solar irradiance to output power. Various simulation tools are currently
available to perform PV simulation, e.g., TRNSYS; RETScreen; PVSIM; PVFORM; PVNet;
and so on. The RETScreen Photovoltaic Project Model (Centre [40]) mainly utilises site-
specific weather information (especially insolation), as well as configuration of a PV system.
TRNSYS is used for dynamic simulation with modelling of solar radiation, PV array output,
and inverter output (Mondol et al. [191]).

On the other hand, statistical models predict future PV output by computing the trend of
the output based on present and past samples of PV generation. Meteorological parameters,
including temperature, clearness, dust, and relative humidity, are frequently considered as
explanatory variables in such models (Toğrul and Onat [266]). For example, (Long et al.
[170]) survey multiple features (as inputs) that can improve accuracy of daily PV generation
based on two years’ data collected in Macau on four types of machine learning models:
Artificial Neural Network, Support Vector Machine, k-nearest neighbour, and the multivariate
linear regression. Parameters shown to be important across all the four models include
maximum air temperature, daily mean air temperature, insolation, wind-speed, precipitation,
and day-before PV generation.

(Huang et al. [132]) contrasted the performance of an engineering (diode) model and a
statistical model (Neural Network) in a case study of a 1 MW PV station. The performance
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difference is measured by nRMSE. The chapter finds that the statistical model using tempera-
ture, cloud coefficient, irradiance, humidity, and the position of sun as inputs shows better
performance than a diode physical model.

5.3.2 On-site Load Models

Various technical studies for modelling residential sector energy consumption are relevant
for identifying key features that influence household electricity consumption patterns during
daytime hours (defined as the hours during which excess generation is possible).

One study (Parti and Parti [214]) identifies important features influencing consumption
corresponding to end-use groups: the number of occupants, electricity price, household
income, floor area, and heating/cooling per unit area.

(Shimoda et al. [247]) developed a residential end-use energy consumption model for
the city of Osaka, Japan. In this model, households are rated based on the number of family
members, appliance ownership levels, and appliance ratings. (Shimoda et al. [246]) simulated
electricity consumption used by each appliance at five-minute intervals, according to the
occupants’ energy-usage activity. These studies yield valuable conclusions for end-use
electricity consumption patterns. First, electricity consumption depends more on the number
of family members in a household than on the total floor area of the house (unless electric
space heating and cooling are dominant). Second, the influence of the total floor area on
electricity consumption is stronger in a large family, since the number of occupied rooms and
energy use for lighting, heating, and cooling increases with the number of family members.
Finally, for the same floor area and household size, the electricity consumption in a detached
house is greater than that of an apartment.

5.4 Modelling Procedure

5.4.1 Dataset

Thirteen months’ (January 2014 – January 2015) data from a grid-connected PV system
installed on the grid-connected rooftop of 287 detached residential dwelling located in
the Tokyo area is considered. Figure 5.3 displays the weekly averaged energy dataset
over all sampled households: excess generation and PV generation have peaked during
the spring to summer (around week 15-32) except rainy season (week 20-25), whereas
electricity consumption has dual peaks in the summer and winter. The dataset has been
strictly anonymised. In addition to monitored energy data, some parameters found useful
upon reviewing existing models are collected via questionnaires. These include panel
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characteristics (angle, azimuth and capacity), number of people living in a household, floor
area (m2), and heating source (gas-heating/all electric). Some households are all-electric
dwellings, using only electric power for heating and domestic hot water, cooking equipment,
etc. This means the entire energy consumption of such dwellings is recorded using only the
electricity monitors.

Fig. 5.3 Averaged weekly energy dataset of all households from 1st January to 31st December
2014

Metered energy dataset, PV generation, consumption, and excess generation, are aggre-
gated over daytime (6am to 6pm) since only daytime energy activities should be considered
for this purpose: Gd (daytime PV generation), Cd (daytime consumption), and Ed (daytime
excess generation). The list of available explanatory variables per household used in this
analysis is shown in Table 5.2.

One important note is that near-time value of energy dataset by itself is not appropriate
to utilise as an explanatory variable as it is unavailable for future prediction. However,
aggregated value over a time-period T might be fair to add if T is long enough since these
values are inferable from similar sites within the region, or from historical data. In this
computation, period T is set as January 2014 to December 2014.

The dataset used in this study is classified into two types of data: the explanatory variables
and the objective variable. The objective variable is always excess generation Ed in this
chapter, and the explanatory variables are described in Table 5.2. The importance of these
variables will be investigated for model development.
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Table 5.2 List of explanatory variables

Variable Description

Whouse Sum of panel capacity in a house
AZhouse Largest panel’s azimuth in a house
ANhouse Largest panel’s angle in a house
CT,Mean Average of CT (Set of Cd over the period T)
DNRT Daytime/Night-time ratio over the period T
ET,Mean Mean of Ed over the period T
ET,Max Max of Ed over the period T
ET,STD Standard deviation of Ed over the period T
Ed-j Historical Excess generation before j day (j =1,2,3,7)
Esystem Heating system (0: gas heating, 1: all electric)
Npeople Number of people in a house: from 1 to 7
nday Number of day
m Month
Week Week
La Latitude
Lo Longitude
Sfloor Floor area
td,ave Average of daily air temperature (Celsius)
td,max Daily maximum temperature (Celsius)
td,min Daily minimum temperature (Celsius)
hd Daily Humidity (Percentage)
Prd Daily Precipitation (mm)
vd Daily Wind velocity (m/s)
Id Daily Insolation (kWh)
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To evaluate the performance of modelling, this dataset is split into two groups: a training
dataset and an evaluating dataset. The datasets are grouped by each month for monthly
comparison as shown in equation 5.1:

Dm = {{xm,ym} | m = 1,2, · · ·13} (5.1)

where, m is the month of dataset starting from January 2014, and m=13 is the January 2015.

5.4.2 Model Selection

In order to quantify uncertainty in excess generation predictions, this work uses a Gaussian
Process (GP) model (Williams and Rasmussen [294]) for an excess generation modelling
framework. Traditional linear regression models are easier to implement but pose two major
drawbacks: First, they assume (linear) relationship between independent and dependent
variables. As a result, they do not capture complex nonlinear behaviour of excess generation
and multivariable interactions among variables. Second, they assume constant variance of
predictions throughout the entire range of observations, which implicitly requires large data
sets to ensure the prediction reliability. Unlike the traditional linear models, a GP model does
not require specification of the structural relationship between independent and dependent
variables, and consequently they can capture complex behaviour with fewer parameters. In
addition, as the parameters of the GP model are trained under a Bayesian setting, the resulting
model naturally allows quantification of uncertainties in prediction. (Heo and Zavala [121])
demonstrated the strengths of the GP model to predict energy use in comparison to the linear
model.

GP is a collection of random variables, any finite number of which has Gaussian dis-
tributions (Williams and Rasmussen [294]). GP is specified by a mean function m(x) and
covariance function k(xi,x j). A mean function is a matrix of mean output values for the given
set of input values. Typically, the mean function m(x) is assumed to be zero. The covariance
function k(xi,x j) used in this analysis is defined in Equation 5.2. The covariance matrix
quantifies proximity between two sets of input values with respect to their outputs. We used
a squared exponential function, which is appropriate for modelling very smooth functions.

k
(
xi,x j

)
= θ0 exp

{
− 1

2γ2

∥∥xi −x j
∥∥2
}
+θ1 (5.2)

where θ = (θ0,θ1,γ) are hyper parameters, each of which denotes signal variance factor,
noise variance factor, and length scale factor, respectively. Those hyper-parameter values are
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trained to maximise the fit between predictions and observations through a log likelihood
function of logP(y | θ) given by:

logP(y | θ) =−1
2
{

log
(
K(X,X)−yT K(X,X)−1 y−n log(2π)} (5.3)

where y denotes observations on the output (excess generation in our study) at known
conditions x (e.g., all the explanatory variables in Table 5.2) and K is covariance matrix for
given set of input values X. With the optimal hyper parameters θ ∗ derived from training, the
mean vector µpred and the covariance matrix Vpred to yield probabilistic outputs for new input
values X∗ are given by equations 5.4 and 5.5:

µpred = K(X∗,X)T K(X,X)−1y (5.4)

Vpred = K(X∗,X∗)−K(X∗,X)T K(X,X)−1K(X,X∗) (5.5)

For model validation, the dataset is randomly split into two subsets based on a commonly
considered rule: 70% for training and 30% for test. With the test dataset, we compare
predictions with actual observations with use of MSE (mean squared error) defined in
Equation 5.6.

MSE =
∑

n
i=1

(
y∗(i)−µpred(i)

)2

n
(5.6)

where y∗ is the metered excess generation, θpred is the predicted excess generation, and n is
the number of data in the test dataset.

5.4.3 Feature Selection

Correlation analyses are performed to identify relative importance of PV generation and
on-site consumption on excess generation. All data points in 2014 are used. The Pearson
correlation values are 0.93 with PV generation, and -0.29 with consumption. These results
show that PV generation has a strong correlation while on-site consumption has a weak
correlation, and it is visible in Figure 5.3.

We identified twenty-seven potential explanatory variables for model development (Table
5.2), which can be grouped into eight feature clusters (FC) in order of sampling cost (Table
5.3); accordingly, static features (FC 1-4) come first, followed by time-varying features such
as meteorological information (FC 5) and historical energy consumption/generation (FC 6-8).
Consumption related parameters, average daytime consumption and daytime/night-time ratio
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Table 5.3 List of feature clusters (FC)

Cluster Description Features

FC 1 Panel attribute (static) Whouse AZhouse ANhouse Cellhouse
FC 2 Household characteristic (static) Npeople Sfloor Esystem
FC 3 Geospatial information La Lo
FC 4 Time information m Week nday
FC 5 Meteorological information td,ave td,max td,min hd Prd vd Id
FC 6 Consumption indicators DNRT CT,Mean
FC 7 Excess generation aggregation ET,Max ET,Mean ET,STD
FC 8 Historical dataset Ed-1 Ed-2 Ed-3 Ed-7

over time T, are grouped within FC 6. Aggregated values of historical excess generation over
time T are grouped within FC 7. FC 8 includes near-time excess generation; for example,
Ed-1 is previous day’s excess generation.

5.4.4 Model Development

In a model development, identifying an optimum set of key features is vital to ensure
forecasting accuracy while minimising the cost of data collection. Required computation
power is also greatly reduced as the number of explanatory variables becomes smaller.
This section describes the process followed in this project to identify an optimum set of
explanatory (input) variables for the GP model.

First, individual feature effect on the model accuracy is examined by adding one parameter
at a time. As solar insolation is well-acknowledged as an important parameter that determines
PV generation and consequently excess generation, solar insolation Id is selected as the
primary feature, and all other features listed in Table 5.3 are subsequently added one at a
time. Figure 5.4 plots the relative influence of all features in order of MSE.

Overall, most features within the same cluster shows similar effect on prediction accuracy,
as it is visualised in different colours in Figure 5.4. Aggregated historical excess generation
features under FC 7 are the top three (MSE value of 10), followed by panel capacity (Whouse)
and the four FC 8 features. The lowest MSE value was achieved by insolation Id and historical
value of maximum daily excess generation over the period T: ET,Max.

As the second step, all features are added incrementally in order of their corresponding
MSE values to determine the optimal number of key explanatory variables to be included in
the model. In this sequential analysis process, only features that achieved more than 1% of
MSE improvement are considered. As the outcome of this sequential process, Id, Ed-1, ET,Max,
td,min are the four features that best explain excess generation. This experiment clearly shows
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Fig. 5.4 Model accuracy trained with a single variable and sorted in order of MSE score
(colour represents FC)

Table 5.4 Result comparison of the model

Input Features MSE

Id Ed-1 ET,Mean td,min 9.032
All 28 features 8.212

the importance of analysing model features collectively, as it enables removing important
but redundant variables. For the modelling purpose, static parameters such as number of
occupants do not explain excess generation.

Finally, the accuracy of the model with these four features is examined by comparing
the prediction accuracy of the model with the four features only against a model with all
the features as input variables. Table 5.4 shows that the model with the top four features
produces a competitive level of accuracy in comparison to using all the features as input
variables.

5.4.5 Model Validation

The developed model is validated against unseen evaluation dataset Deval. From the entire
dataset, Dtrain is a training dataset starting from January 2014 to m-1 month, while Deval
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is the evaluation dataset starting from month m, as defined in Equations 5.7 and 5.8. As
an increase of m, the model trained with longer training period is expected to have better
extrapolation for an unseen evaluation dataset.

Dtrain =

{
m−1

∑
N=1

Dm | m = 2,3, · · ·13

}
(5.7)

Deval =

{
13

∑
N=m

Dm | m = 2,3, · · ·13

}
(5.8)

5.4.6 Decoupled Model Description

As described in the introduction, excess generation can be decoupled into two energy
components: PV generation and on-site consumption. Hence, it is natural to think that two
individual energy models can substitute an integrated excess generation model. In theory, the
exact daily aggregated value of excess PV generation can be expressed as:

E integrated
d = ∑

day
max(g(t)− c(t),0) (5.9)

where g(t) and c(t) are respectively the generation and consumption at time t.
When we approximate excess PV generation by separately aggregating daily consumption

and generation, we however end up estimating excess generation as:

Edecoupled
d = max(Gd −Cd,0) (5.10)

where Gd = ∑day g(t) and Cd = ∑day c(t)
We notice that E integrated

d ≥ Edecoupled
d if g(t) is smaller than c(t) any time: hourly electricity

demand is higher than hourly on-site generation. If no aggregation over a daily time duration
is performed, the decoupled approach can properly predict hourly excess generation.

However, if consumption and generation values are aggregated over any duration, the
decoupled approach is most likely to underestimate the true value of excess generation by
subtracting some electricity demands, met by the grid supply, from the aggregated on-site
generation.

Figure 5.5 represents the distribution of the discrepancy between the integrated and de-
coupled approaches (E integrated

d - Edecoupled
d ). This figure confirms the concerned discrepancy

happens frequently causing more than 2kWh differences. This illustrates the unavoidable
nature of underestimation in the decoupled approach: excess generation is highly likely
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larger than the value obtained from a decoupled approach if the values are aggregated over
any duration.

Fig. 5.5 Error distribution of (E integrated
d - Edecoupled

d ) in January 2015

5.4.7 Prediction Results

Prediction results by the proposed integrated excess generation models are compared against
both metered data and the values obtained from the decoupled approach. In the decoupled
model, metered daytime (6:00 to 18:00) aggregated values of PV generation and consumption
are used, instead of modelling them individually. This means that the values used removes
inaccuracy of these models and uncertainties of model parameters, and represents the most
accurate values.

Figure 5.6 displays the excess generation predicted by the integrated excess generation
model and the decoupled model against true values of excess generation (metered data).
This shows that the decoupled approach tends to consistently underestimate the exact value
of excess generation, and this phenomenon is remarkable during the winter seasons. This
result confirms the previous mathematical examination on the drawback of the decoupled
approach, and, therefore, elucidates the necessity of development of tailored excess generation
modelling.
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Fig. 5.6 Monthly scale of forecasting results against metered data from January 2014 to
January 2015

5.4.8 Length of the Training Period

As shown in Figure 5.6, the integrated excess generation model tends to overestimate in peak
generation periods during spring and summer seasons, and prediction error is noticeably
low during the autumn and winter seasons. Whether the model adjusts its tendency of
overestimation to slight underestimation by learning from more datasets, or the model itself
has a tendency to overestimate in peak generation, and underestimate in off-peak generation,
is yet to be analysed.

For further examination, the forecasting results are illustrated at daily resolution. Figure
5.7 and Figure 5.8 displays two distinctive months. These figures confirm that the model
successfully followed the fluctuation of excess generation closely on daily basis. In Figure
5.7, the prediction is constantly overestimated, whilst in Figure 5.8, the tendency is adjusted
mostly. This leads to a conclusion that the model modified its initial overestimation tendency,
by learning from different seasonal dataset. Hence, this work reconfirms the importance of
a-year-long minimum data collection in a single site, with multiple distinct seasons.

5.4.9 Effect of the Number of Training Points

The biggest barrier for the development of such a data-driven model is the cost incurred in
collecting actual energy data from residential households for a-year-long period. The time
complexity is also a factor; a GP has cubic time (n3), where n is the number of training data
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Fig. 5.7 Daily scale of forecasting results against metered data in July 2014 (overestimated
example)

Fig. 5.8 Daily scale of forecasting results against metered data in January 2015 (underesti-
mated example)



126 Data Driven Model for Rooftop Excess Electricity Generation

points. Hence, minimising the size of the training dataset has vital importance for realistic
implementation. In this section, the consequence of the number of training points on the
performance of the model is analysed. To do so, we consider limited data points randomly
chosen from all data points and the result is plotted in Figure 5.9.

Fig. 5.9 Effect of the number of data point on the model accuracy. Each data point represents
a day of a household.

In the range of 6,000-16,000 points, the MSE changes are always within the same order
of magnitude. If the number of data points is reduced below 6,000, the MSE increases
significantly. The outcomes indicate the model seems to converge by 6,000 data points. This
trial points out that 6,000 data points is the optimal amount of training data necessary to
accomplish the best performance with the least computation cost. If 365 data points can
be collected per a household for a-year long survey, 6,000 data points is equivalent to 18
households. This number sounds realistic to reproduce this trial anywhere in the world.

5.5 Conclusion

To the best of the author’s knowledge, this chapter proposed the first integrated data-driven
GP model for daily excess electricity generation. The analysis presents a framework to
develop a GP model by identifying effective features, and demonstrates a way to minimise
the number of necessary datasets without compromising predictive accuracy.

This chapter demonstrates how to optimise required set of features, training data periods
and number of households, which directly link to cost of data collection and computational
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power. Four features, two of historical excess generation data and two of weather parameters,
are shown to be effective combination. Also, a-year long data collection from 18 households
produces the optimal number of training datasets for robustness against seasonality.

This research also reveals a particular drawback of the decoupled approach to quantify
excess generation. The proposed model presents much higher prediction performance than the
decoupled value (daytime generation minus daytime consumption), which has unavoidable
tendency of significant underestimation. It reaffirms the necessity of excess generation model.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

The primary objective of this thesis was to examine the opportunities and challenges asso-
ciated with time-of-use (TOU) tariffs at the national level, using smart meter data. As one
core factor of the vision of Energy 3D, the digitalisation is of paramount importance in the
energy sector. This paradigm has been introduced by utilising "Smart Technologies" such as
smart meters that can connect local energy systems to the information network. In response,
the demand for the analysis of the collected electricity consumption data via smart meters is
soaring and there is a number of previous research existing such as load forecasting, load
clustering, and demand response estimation in electricity pricing. However, as outlined in
Chapter 2, these works leave several points untouched, which prevents utility companies
from practically implementing the technologies at a large scale. As of today, although the
penetration of the smart meter has reached high level in many developed countries, actual use
a TOU tariff is still limited. Throughout the reviewing of the previous works in related field,
this research work has found out four significant research gaps that need to be addressed in
order to expand commercial applications of TOU tariffs.

Firstly, a practical framework to forecast users’ load adaptation through a top-down
approach has not been fully developed. This load forecasting capability is important for
utilities to design a TOU tariff and estimate subsequent impacts in their load management.
We name this as "TOU load forecasting problem". Existing modelling frameworks generally
follow one of the three distinct approaches: econometric models with an emphasis on
estimating price-elasticity, bottom-up disaggregation of household consumption according
to electrical appliance usage, and top-down statistical models. The emergence of historical
smart meter data makes the top-down statistical approach popular in industrial use. However,
the reliance on historical data can have a number of drawbacks given that there is no in-built
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capability to model discontinuous user behaviour such as weather changes, introduction of
new appliances, and the subsequent adoption to a TOU tariff. Therefore applying a top-down
approach for a problem of forecasting consumer response to TOU tariffs is a challenging
issue. Chapter 3 discusses this problem and proposes a top-down statistical medium-term
load forecasting model for domestic demand response following the introduction of a TOU

tariff. The chapter also discusses the accuracy of the model and the significance of its features,
implying that statistical moments in the load profile are useful features.

Secondly, although time-of-use tariffs have the potential to be mutually beneficial -
realising a cost reduction for both energy companies and customers if the customer responds
to the price signalling - at the individual level such tariffs are likely to create both positive and
negative financial outcomes because of customer characteristics and the potential capacity
for peak shifting ("TOU winner detection problem"). Identifying the potential reducers
or non-reducers before applying a time-of-use tariff can optimise the programme’s design
and marketing strategy, which can maximise the outcome of a TOU programme. Chapter 4
solves this issue, presenting a statistical model for determining the characteristics of so-called
winners and losers, or households that will gain or lose from a TOU tariff plan, based solely
on ex ante details.

Thirdly, availability of historical consumption dataset, including customer behavioural
changes due to a TOU tariff intervention, is very limited. Given the importance of such dataset
in utilising data-driven approaches, newly collected dataset is introduced in this thesis to
address the "TOU public dataset problem". Chapter 4 also addresses this (described in detail
in Appendix A) by publishing a new public dataset (CAMSL) of 1423 households in Tokyo,
Japan, which includes historical smart meter data, household characteristics, and online
activity variables collected over the course of two years of comprehensive TOU intervention
in 2017 and 2018.

Finally, "excess generation forecasting problem" is introduced to show how similar
incentivised programmes for a customer who has installed rooftop solar generation under
various financial schemes, can leverage smart meter data. Excess generation is the unused
generation from the rooftop solar panels exported to the electricity grid, and this amount
has became substantial for demand management as the cumulative installed capacity of
residential PV systems is growing in many countries. This problem can be considered as a
"TOU tariff problem as well, therefore similar modelling framework has been applied for
this problem. Chapter 5 introduces a data-driven Gaussian Process model for forecasting
electricity excess production. The forecasting model is developed using an illustrative
analysis that uses a year-long data from 287 households in Tokyo, Japan. The results indicate
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that a year’s worth of data from 18 households is adequate to forecast excess generation
accurately in a standardised geographic and socioeconomic context.

By bridging these gaps, this thesis aims to establish a foundation for helping utility
companies conduct practical analysis of smart meter data, and encouraging the larger scale
implementation of a "TOU tariff. The subsequent chapters summarise each chapters.

6.1.1 Intra-day Load Profiles under TOU Tariffs

The introduction of smart meters that allow the measurement of electricity load on a half-
hourly basis creates an exciting demand-side management opportunity that is likely to benefit
both utilities and consumers. TOU incentives are generally regarded as the most viable option
for residential energy consumption optimisation. Being based on wholesale energy rates,
TOU will allow consumers to plan their energy use to take advantage of price fluctuations.
In a TOU tariff plan, certain price rates are set in advance and applied to various predefined
periods of a calendar day, where the energy prices are separated by trends and rates.

Despite the fact that there is a substantial amount of research on demand response in
energy pricing, a realistic framework for forecasting consumer adaptation under various
TOU pricing plans has yet to be established. This research effort is devoted to this path in
order to investigate potential solutions. The novelty of this study is that it is the first to
provide top-down statistical modelling of domestic consumer demand response following
the implementation of a TOU tariff, as well as to report on the accuracy of the model and
significance of its feature. Statistical moments could be used to capture lifestyle-related
constraints of each household, allowing this model to be agnostic to household characteristics.
The proposed model was validated using data from 646 homes in Ireland before and after
the implementation of the TOU Tariff. The Mean Absolute Percentage Error in forecasting
average load for a group of homes using the Random Forest method is 2.05% on weekdays
and 1.48% on weekday peak times.

6.1.2 Winners and Losers under TOU Tariffs

As smart metres are deployed across deregulated domestic energy market, TOU tariff plans
could become more common. If consumers respond to price signals, TOU tariffs and other
methods of time-dependent pricing plans may be mutually beneficial, resulting in cost savings
for both energy producers and consumers. For a viable TOU design, there are two main
requirements:

1. To accurately represent changes in both electricity prices and grid constraints so that
customers’ reactions can be affected for both generation and grid benefits.
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2. To allow consumers, who use DR, gain the rewards of the TOU tariff deployment.

Nevertheless, because of customer engagement and future peak shifting capability, these
tariffs are likely to have both favourable and unfavourable financial consequences for users.
Finding potential energy reducers or non-reducers ahead of time will help to improve the
design of a TOU programme, thus increasing the benefit of its outcome.

Using only ex ante data, this research develops a statistical model to classify the features
of so-called winners and losers - or homes that will be better or worse off under a TOU tariff.
The accuracy of model achieves a reliable standard using historical power demand data and
basic homes characteristics. If online activity information is accessible, this accuracy can be
enhanced even further, justifying digital engagement and gamification in TOU schemes. This
work also introduces a new public dataset (CAMSL) of 1568 Japanese households, which
includes historical smart metre data, household characteristics, and online activity variables
collected during the TOU engagement intervals in 2017 and 2018.

6.1.3 Data Driven Model for Rooftop Excess Electricity Generation

This work proposed an integrated data-driven Gaussian Process model for daily excess
electricity generation. The research provides a structure for developing a model by classifying
useful features, as well as a method for reducing the number of datasets required without
sacrificing forecasting accuracy.

The work shows how to optimise the necessary set of features, training data intervals, and
number of homes, all of which are directly related to data collection costs and computational
capacity. The combination of four features, two of historical excess-generation data and
two of weather parameters, is demonstrated to be reliable. Further, for robustness against
seasonal variation, a year of data collection from 18 homes yields the optimum number
of training datasets. This study also exposes a major flaw in the decoupled approach for
calculating excess generation. The developed model has a significantly better prediction
output than the decoupled value (daytime generation minus daytime consumption), which
has an inherent tendency to underestimate significantly. The outcome confirms the need for
an excess-generation model.

6.2 Limitations

Due to various constrains in the real world, there are some limitations in our works which
the author has recognised.
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6.2.1 External Validity

One more major shortcoming of this study is that the proposed models are trained and tested
on a single dataset. Power demand is believed to vary considerably by region, year, weather,
household type, appliance availability, social crisis, pandemic, etc.

Extensive testing using multiple datasets of various locations and conditions is not easily
accomplished. As previously mentioned, the lack of valid public datasets further complicates
academic analysis. In industries, energy producers have recently collected vast amounts of
data on power demand and other metrics (which they would not make public), suggesting
that further validation should be possible. Additional analysis for diverse datasets (different
numbers of homes, locations, and parameter configurations, for example) to increase external
feasibility is also needed if an energy provider wishes to adapt this model to their target
market.

6.2.2 Limitation for CAMSL dataset

One downside of Chapter 4 is that the control group’s pool of participants in the CAMSL
dataset was not completely chosen randomly during the selection process, which may
incorporate unintended biases. Due to the commercial nature of this research and our inability
to participate in the design of the control group, recruiting participants in a completely
randomised academic way was beyond the scope of this trial’s investigation power. Given that
the smart meter has already hit the practical stage, obtaining a completely randomised control
group (as is typically the case during the early stages of a pilot trial) is more challenging;
hence, the suggested solution is considered to be a viable option. However, there are a few
alternative strategies for constructing a successful control group, and therefore another trial
for developing a control group using the CAMSL dataset would be strongly regarded.

A further limitation of the CAMSL dataset is that the control group was distinguished
from the trial group by the fact that they remained on the traditional flat-rate tariff and did
not communicate with a digital interface or gamification. Although this study’s approach
adequately accounted for differences in behaviour due to a variety of causes, it was unable to
distinguish the effect of the digital interface from the financial incentive in the end results.
Because of this, further analysis is needed to disentangle the relative impacts of these
elements, which can then be used to evaluate the influence of various financial rewards, as
well as the effectiveness with which these structures are conveyed through the digital interface
and gamification. Gamification and methods of constructive communication between energy
producers and customers are, and will continue to be, critical and useful components of
incorporating intermittent renewable energy supply in the years ahead; consequently, further
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studies should be conducted to study the in-depth causal effects of gamification on consumer
behaviour.

Finally, the causality link between online engagement and reduction rate cannot be fully
justified in the current dataset. In order to more fully prove this link, there would need to
be investigation into the result of further trials. For example, if a trial where companies try
to increase the online engagement of losers (i.e., households who did not reduce their peak
consumption in the current trial) results in their consumption significantly decreasing due to
the intervention, then the causality link would be established more solidly.

6.2.3 Deeper Examination on a GP Model

Certain decision-making factors in modelling framework of Chapter 5 are still not entirely
justified. The immediate next stage in model construction would be to thoroughly validate
each stage and to minimise the number of explanatory variables without sacrificing accuracy.
To begin, a GP model selection is more justified when compared to other probabilistic
forecasting modelling methodologies illustrated in Section 2.2.2. A comparative analysis
using different probabilistic models as we did in Chapter 3 could have done to choose the
best model.

Moreover, if it is determined that a GP model is the most appropriate for this purpose,
other covariance functions should be taken into account. Since GP is absolutely defined
by its mean and covariance functions, selecting a covariance function is critical for any
further GP study. The squared exponential was selected for this study, assuming correlation
between each data point. For developing rather smooth functions, the squared exponential
for covariance function is thought to be suitable. Nevertheless, there are several covariance
functions for GP. We could analyse alternative covariance functions, evaluate their properties,
and determine if the squared exponential is truly the best covariance function for this research.

Similarly, additional opportunities for development should be considered, such as min-
imising features (explanatory variables), examining seasonal fluctuations, and evaluating
the model’s performance at different time and spatial resolutions. Seasonal variation can be
included to determine the optimum number of data points and observation time length, while
this study demonstrates that 1,000 data points are adequate to replicate this model’s accuracy.
Throughout this research work, the model’s extrapolation robustness should be evaluated
further.
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6.3 Future Work

By introducing three modelling approaches and one new dataset (CAMSL), this study
has successfully presented the identified four main research gaps despite aforementioned
limitations . Nevertheless, there are a variety of ways through which they can be further
enhanced, and additional research can be done to gain further information. This section
summarises some suggestions for future research.

6.3.1 A model for more flexible DR tariffs

To the author’s best knowledge, Chapter 3 is the one of the first forecasting model to
incorporate the users’ load adaptation under different TOU tariffs. However, one major
flaw in this thesis is that it restricts the study’s scope to gain insights into the consumer’s
behaviour with a static TOU tariff. A static TOU tariff - in which prices vary over time spans
but remain constant for a set period of time (generally many months) - is previously believed
to be favoured by consumers, as supported by previous literature (Schlereth et al. [239]). A
national study in the UK (Nicolson et al. [197]) examined the data suggesting that over a
third of bill payers are in favour of switching to a 3-tiered smart time of use tariff, indicating
a sizeable potential market for a static TOU tariff.

On the other hand, with the intention of adding a significant portion of intermittent
renewable generation power - and hence more volatile production costs - electricity retailers
might prefer to offer a more flexible DR tariff (dynamic TOU tariff or demand response tariff)
where prices are able to adjust in response to supply prices. This problem will be even more
complicated if customer has new controllable capacity such as from heating/cooling system,
residential batteries and electric vehicles, which could automate some of these load shifting
activities. A study of a public acceptability of domestic demand-side response in the UK
(Fell et al. [94]) suggested that such a direct load control can be favourable to residential
customers within tight bounds and with override ability, showing that dynamic TOU tariff
(otherwise the least popular tariff) can be as acceptable as a static TOU tariff .

There are very limited load forecasting modelling studies for a static TOU tariffs as dis-
cussed in this thesis, thus as expected there are very few modelling works which incorporate
some automated load behaviour with batteries and electric vehicles; a model for electrical
load of a home comprising of a home energy storage, a PV generator, and an electric vehicle
in Arens et al. [15]; and a model for power consumption of a single home composed of PV
panels and energy storage device in Ahmed et al. [6].
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Some of modelling works designed for static TOU tariffs might be useful for these
emerging problems, however further modelling works dedicated for these problems is strongly
encouraged and will have a high demand in the near future.

6.3.2 Live-stream Smart Meter Dataset

The latest public dataset for demand side management was obtained in 2015 as discussed in
Chapter 2. CAMSL dataset presented in Chapter 4 and Appendix 1 is collected in 2018, thus
the newly obtained CAMSL dataset will be highly valued for future researchers. However,
CAMSL will be outdated shortly due to various sociological changes such as Covid-19 and
potential installations of electric vehicles and home batteries.

In particular, Covid-19 has considerably affected the load demand, and might change
some of people’s activities and behaviour for the long run. During the Covid-19 pandemics,
numerous countries consumed very low energy as lockdowns took effect (Gillingham et al.
[106]). The closure of major social meeting sites has resulted in a reduction in the gov-
ernment and industrial sectors’ energy demands. Additionally, the normal demand pattern
would be different on weekdays and weekend but with the pandemic, movement of typical
residential consumers was restricted and load profiles showed almost similar behaviour on
both weekdays and weekends (Chen et al. [43]). Some of these reduced loads will revert
once the pandemic is over, but some will not since our lifestyle has changed in the process.
Such an inconsistency of load possibly outdated the majority of our historical data collected
in pre-pandemic era, and this might cause severe effects on future load modelling works. A
study (Xie et al. [297]) demonstrated a way to exploit the value of data in pre-/post-pandemic
by focusing on the bidirectional interaction between human and buildings. Thus, these data
will not be completely wasted, but there is still a high demand for the new dataset.

The author suggests an approach to overcoming this post-pandemic historical data short-
age problem. As of today, millions of smart meters are capable of live-streaming continuous
electricity consumption data everyday, and such an up-to-date dataset is the one of the best
ways to catch up with such sociological changes in electricity consumption. Therefore, any
new public dataset which obtains the explicit customer consent for a certain time period (past
and future) will be highly valued by the researchers. This live-stream dataset will be rela-
tively feasible from customers who has installed a 2G smart meters, which usually have the
capability to communicate directly with consumer devices. This might give researchers direct
access to the smart meter dataset without the secondary involvement of energy suppliers.

The author will keep on working in this sector after this thesis, and will explore the
possibility of generating such a live-stream dataset in Japan. I will be delighted to see similar
activities across different countries.
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6.3.3 Statistical Moments

In Chapter 3 and Chapter 4, the effectiveness of statistical moments are demonstrated, and
to the author’s best knowledge, our work in Chapter 3 (published as Kiguchi et al. [152] in
2019) was the first work to present the importance of statistical moments for load forecasting
modelling. Specifically, as shown in Table 3.7 and Table 4.7, these features contributed to
the model accuracy significantly. Hence, it is suggested that statistical moments capture
effective features of load profiles without using many hand-crafted features as mentioned
in Chapter 2. This can be beneficial to not only reduce manual work necessary to prepare
many features but also to keep the size of the models relatively small, which can result in less
time to re-train the models when new data arrive. To further generalise this approach, more
in-depth studies must be conducted. For example, recently, Fayaz et al. [90] showed that
using the statistical moments for the input to neural networks can result in nearly 50% better
prediction of short-term energy consumption in a residential building, compared to the model
excluding them. Similarly, it will be a useful result to demonstrate the efficacy of statistical
moments if the accuracy of the model excluding them is reported in our problem settings.

Note that there is a requirement to collect longitudinal data to prepare statistical moments
as the model’s feature since they are behavioural features over a certain period (e.g., several
months). This constraint causes a fundamental limitation: the proposed approach might not
work properly at a time when the distributions from which the statistical moments are derived
are changing rapidly, for example, due to Covid-19. Thus, a live-stream smart meter dataset
which enables a regular update to these variables and the subsequent re-training of the models
is similarity crucial for future modelling works. The applicability of statistical moments for
load forecasting/management modelling will be further investigated in the future work as our
work is the one of the earliest to demonstrate its potentials.

6.3.4 Individual Load Forecasting Accuracy under a TOU Tariff

In Chapter 4, the prediction accuracy of load demand at an individual level is actually
low, thus we use a binary approach to evaluate the forecasting accuracy. In many practical
situations, individual load forecasting is not the primary objective of electricity providers
when designing TOU tariffs and optimising energy procurement, since their primary objective
is aggregated load profiles. However, the precise estimation of peak load reduction as a result
of the individual-level implementation of a TOU tariff is still critical for a variety of reasons.
For example, it is critical to consider what a household’s energy bill will look like with any
changes to their everyday life habits under a TOU tariff. A binary result demonstrated in
Chapter 4 is not able to provide a estimation of the future energy bill to each customer.
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As a quick potential improvement, a probabilistic model such as Gaussian process could
perform better. I however suggest that more thorough examination into the causes and
probability of peak shifting at the individual level is required for better individual modelling
while still minimising demographic variables.

6.4 Policy Implication

Throughout the intensive works on examining TOU tariff potential for the energy transition,
the author ends the thesis with commentary on some of the policy implications.

6.4.1 Demand for Public Dataset

Limited availability of the public dataset slows the further modelling work in this area, and
inconsistency of load patterns in pre-/post-pandemic environments makes this problem even
more severe.

Energy companies have accumulated enormous amounts of historical electricity con-
sumption data from millions of smart meters but they are reluctant to publish it or collaborate
with external researchers. Although they often cite privacy concerns as the major barrier for
this, the author feels that their lack of policy support for data utilisation is the actual reason
for this. For example, European Data Protection Supervisor states that power data usage
patterns obtained from smart meters can reveal much more than how much power is being
used: the use of household appliances is an indicator of human behaviour, and allows for the
identification of individuals. The operation of smart meters therefore entails the processing
of ‘personal data’ and needs to be in line with the EU’s General Data Protection Regulation
(GDPR) Supervisor [262].

To the author’s best knowledge, most industry professionals would disagree with the
concerns above as the information potentially unveiled from half-hourly settlement is very
limited and not valuable for these concerned applications. Nevertheless, because the privacy
breach penalties are so harsh neither most companies prefer not to risk sharing smart meter
data. If policy maker would express determine that half hourly smart meter data is not
personally identifiable, then the the utilities may feel better about sharing.

The author suggests that government standardised guidelines/rules of data sharing consent
towards public dataset participation will result in more projects and innovation in this field.
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6.4.2 Demand for TOU tariff roll-out

Despite the large potential of TOU tariffs toward promoting carbon neutrality, we cannot force
consumers to switch to a TOU tariff without their consent in the real world. Particularly in
the competitive deregulated energy market such as the UK and Japan, energy companies are
reluctant to sell a TOU tariff, which requires more time and energy to educate the customer
to the benefits and more risk of adverse outcomes. It is a known point of competitive
differentiation to only offer simple, easy to understand tariffs, and some companies are
worried about losing potential customers if their competitor takes the path of providing a
simple single-rate tariff.

On the other hand, some countries and states such as Spain, Italy, Ontario and California
successfully managed to implement TOU tariffs with the majority of customers. The above-
mentioned countries and states are accomplishing large roll-out of TOU tariff plans by
making it a default choice or by embracing market-driven innovation. As a default option,
users are able to transition away from a TOU tariff plan should they choose. In market-
driven innovation approach, smart devices can help customers maximise potential savings
and, by automating the procedure, save them the time and effort associated with constantly
monitoring and adjusting to tariff changes.

In Spain, about 40% of domestic users are on dynamic TOU pricing plans - much more
than in the rest of the Europe (Hussain [134]). This is because the government decided to roll
out the dynamic TOU tariff plan as the regulated default pricing plan for small customers.
Likewise, in 2012, Ontario became the only province in North America to make TOU pricing
plans as the default choice. Over the next four years, the participation rate increased to
about 89 percent. The California Public Utilities Commission (CPUC) also directed the
government’s three investor-owned utilities (IOUs) to move to "default" tariffs by 2019,
which would require users to pay TOU prices until they opt out (Trabish [270]). Additionally,
the pilots contained two protection schemes for customers. The first is a "shadow bill" that
indicates whether clients would benefit more from the TOU rate versus their previous rate.
The second is an assurance that users who would have benefited from greater savings under
the previous rate will be compensated for the difference during the first year of the shift.

A large scale of TOU tariffs will open a door to further demand side management
opportunities. For example, in California, behind-the-meter battery installations are achieving
the cost parity due to these TOU tariffs; therefore, a large scale of battery installations are
underway. As a result, one of the leading company named STEM, Inc (STEM) is newly
listed at the New York Stock Exchange in 2021, and their market cap is over 3 billion dollars
as of today (November 2021).
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The author suggests government driven encouragement of TOU tariff roll-outs at the
national level is needed, and this action is necessary to fully incorporate more intermittent
renewable energy power stations, and battery installations.



Appendix A

CAMSL Dataset

Overview

CAMSL is the public dataset for a TOU tariff intervention study using smart-meter data
including, pre, during, and post TOU intervention periods. The CAMSL dataset was generated
based upon the introduction of a TOU tariff trial in 2018 (Looop TOU campaign [171])
by Looop Inc.(a energy retailer) and SMAP ENERGY Limited (smart meter data analysis
company in UK) (SMAP Energy Limited [250]). This dataset is called CAMSL: CAMBRIDGE-
SMAP-LOOOP given that this was a joint research programme between Looop Inc., SMAP
ENERGY Limited, and our research group at the University of Cambridge. Note that this is a
commercial trial conducted by two companies to examine the opportunities for a TOU tariff.

The author’s contributions:

• Actively consult on the creation of the commercial trial design.

• Implemented features to obtain user consent for a future academic use.

• Process the collected raw data and prepare the dataset, including creating documenta-
tion and the github repository.

• Manage the CAMSL dataset for the future researcher access.

The collected data was preprocessed to exclude customer data which had missing points
during the trial period, including those who quit their participation in the middle of the
trial. As a result, the CAMSL dataset provides 1423 customers data in total, 1023 as TOU
customers, and 400 as Control customers. TOU tariffs are as follows:

• TOU: peak rate is equal to 35 JPY/kWh, off-peak rate is 20 JPY/kWh
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Fig. A.1 Sample data of the consumption data. Each row represents half hourly consumption
data.

• Control: peak rate and off-peak rate are 26 JPY/kWh

The dataset also includes raw data of 3337 customers who did not participate in the TOU
trial.

Table of Contents

The entirety of the CAMSL dataset is publicly available on the web: https://github.com/
smapenergy/CAMSL. The CAMSL contains the items shown in Table A.1. The dataset is
available for free for both academic and industrial researchers to access upon the request.

File name File type Description

README text instruction text
consumption_data zip from June 2017 to December 2018, 1023 TOU users and 400 Control users
customer_info csv number of residents and house type
web_info csv sessions, average session duration (July 2018 to December 2018)
temperature_Tokyo csv hourly average temperature in Tokyo from June 2017 to December 2018
holiday_Japan csv from January 2017 to December 2018
non_tou.csv.gz gz raw data of consumption of total 3337 customers who did not participate in the TOU trial

Table A.1 Items in the CAMSL TOU dataset

Consumption Data

The file “consumption_data.zip” contains csv files for each household. Each csv file has a
monthly data and three columns: time, timestamp and consumption. Each row represents a
half-hourly consumption data. Figure A.1 shows a part of the data table. Figure A.2 shows
an average load curve for a specified month.

https://github.com/smapenergy/CAMSL
https://github.com/smapenergy/CAMSL
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Fig. A.2 Load curves of average consumption of all users in different months, January (left)
and September (right).

Fig. A.3 Sample data of the customer information. Each row represents data of one household.
The table has 1423 rows that are equal to the sum of the numbers of TOU customers and
Control customers.

Customer Information

The file “customer_info.csv” has 1423 rows and four columns: id, house_type, num-
ber_of_residents and tou. There are no missing data in the table. Each row is data for
each household, whose identifier is shown as id. The column house_type means the type of
the household (1: detached house, 2: flat). The column number_of_residents represents the
number of people living in the house. Finally, tou is a flag showing whether the household is
a TOU customer or not (1: TOU customer, 0: Control customer). Figure A.3 shows a part of
the data table. Figure A.4 shows the distributions of house_type and number_of_residents in
the dataset.

Web Information

The file “web_info.csv” has 1023 rows and three columns: id, sessions and average_session_duration.
There are 395 households who miss these values, shown as NaN in the following Figure A.5.
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Fig. A.4 The number of households by house type (left) and number of residents (right).

Fig. A.5 Sample data of the web information. Each row represents data of one household.
The table has 1023 rows that are equal to the numbers of TOU customers.

These are the households who did not visit the web page during the TOU period. Each row
is data for each household, whose identifier is shown as id. The column sessions means
the number of times the user visited the web page during the TOU period. The column
average_session_duration represents the average time the user spent on the page by each
visit. Figure A.5 shows a part of the data table. Figure A.6 shows the distributions of sessions
and average_session_duration in the dataset.

Temperature in Tokyo

The file “temperature_Tokyo.csv” has 13896 rows and two columns: temperature and time.
There are no missing data in the table. Each row is hourly temperature data. The column of
temperature shows the hourly average temperature measured in Tokyo, Japan, from June 2017
to December 2018. The column of time shows the time that the corresponding temperature
was measured. Figure A.7 shows a part of the data table. Figure A.8 shows the sample
average daily temperature of June of 2017 and 2018.
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Fig. A.6 The number of households by sessions (left) and average session duration (right).

Fig. A.7 Sample data of the temperature information. Each row represents hourly average
temperature measured in Tokyo. The table has 13896 rows.

Fig. A.8 Average daily curve of June of 2017 and 2018.
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Fig. A.9 Sample data of the Japanese holiday information. Each row represents the date for
Japanese national holiday. The table has 32 rows.

Fig. A.10 Sample data of the consumption data. Each row represents half hourly consumption
data of a certain household. The table has 92741904 rows.

Holidays in Japan

The file “holiday_Japan.csv” has 32 rows and one column: date. There are no missing data
in the table. Each row represents the date for Japanese national holiday from January 2017 to
December 2018. Figure A.9 shows a part of the data table.

Non TOU data

The file “non_tou.csv.zip” has 92741904 rows and three column: dt, c, and consumer_id.
There are no missing data in the table. Each row represents the consumption data at a single
date time of a household. Figure A.10 shows a part of the data table.
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