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1 Introduction and summary

In this paper we investigate the low-temperature behaviour of nonrelativistic gauge theory
in 2 + 1 dimensions. We focus particularly on U(NN.) Chern-Simons gauge theories with
Ny fundamental scalar fields compactified on Riemann surfaces. In the Higgs phase, these
theories are dynamically rich, supporting vortex solutions. Indeed, the particular theories
we study have an effective low-temperature description in terms of Hamiltonian dynamics
on moduli spaces of (nonAbelian) vortices.

A priori, studying the dynamics of these theories, even at low temperature, looks like
a difficult task. Vortices are complicated objects, solving systems of coupled, nonlinear
differential equations to which analytic solutions are known only in extremely special cases.
As soon as N, > 1, the geometry of the moduli space is — in the best cases — only partially
understood, making it hard to study quantum mechanics on it directly. With all that said,
there are two remarkable strands of knowledge which allow us to get to grips with these
theories, as follows.

e Coulomb branch localisation. Also known as Jeffrey-Kirwan-Witten localisation and
originally due to Witten [1] and Jeffrey-Kirwan [2], this technique allows one to express
integrals over symplectic quotient spaces in terms of certain residues. It has led to
enormous progress in the analysis of supersymmetric field theories (see [3, 4], for
instance). The vortex moduli space is a symplectic quotient (of an infinite-dimensional
space by an infinite-dimensional group), so this is available to us (at least formally).
This technique has been used in [5, 6] to compute the volumes of vortex moduli spaces.

e FElectric-magnetic duality. It is expected that vortices, these magnetically charged
particles in the background of an electrically charged condensate, admit a dual
description as electrically charged particles in the background of a magnetic field.
This idea has found itself to be particularly important in understanding the physics
of the quantum Hall effect: it is expected that fluids of vortices in bosonic Chern-
Simons-matter theories with gauge group U(N.) at Chern-Simons level A describe
(nonAbelian) quantum Hall fluids at filling fraction N./A [7-11].

We will weave these strands together, using the first to provide quantitative evidence for
the second and using the second to guide our interpretation of the results of the first.

1.1 Main results

Our main technical result is the computation of the Euler characteristics x(£) of arbitrary
powers A\ of quantum line bundles £ — M on moduli spaces of nonAbelian vortices for
arbitrary N. and Ny on an arbitrary compact Riemannian surface X. This corresponds to
computing the index (that is, the ‘expected’ dimension of the Hilbert space) of the effective
topological quantum mechanics of the (2 + 1)-dimensional theories we consider on ¥ x S*
or ¥ X R at arbitrary Chern-Simons level, which is the power A. We expect, but do not
prove, that this index is exactly the dimension of the Hilbert space when the area of ¥ is
sufficiently large.



ZSCS ZFermi

vortices fermionic particles
vortex charges fermion flavours
monopole operators particle creation operators
vortex-hole symmetry particle-hole symmetry

(U(D)top X SU(N)favour)/Zn global symmetry U(N) global symmetry

Fayet-Iliopoulos parameter background U(N) gauge field
Weil prequantisation condition flux quantisation condition
saturated Bradlow bound saturated Landau level

Table 1. A summary of the local Fermi-vortex duality.

In the Abelian case, where the moduli spaces are relatively easy to describe, we compute
the index directly, using the Hirzebruch-Riemann-Roch theorem to express y(£*) as an
integral over the moduli space and doing this integral (this is sometimes called ‘Higgs
branch localisation’). The result is given as theorem 3.3.1.

In the nonAbelian case, where the moduli spaces are not sufficiently well-understood to
carry out the relevant integration directly, we use Coulomb branch localisation techniques to
do the computation. A key step in the calculation is the identification of the correct residue
prescription when negative powers of Vandermonde-type determinants appear (which is
whenever the genus of ¥ is one or higher). The form that the general result, given in (4.6),
takes is generally complicated, but in special cases it simplifies dramatically.

Local vortices as fermions in the lowest nonAbelian Landau level. Indeed, there
is a drastic simplification when N. = Ny = A = N, resulting in strong evidence for the
notion that nonrelativistic quantum vortices in U(N) gauge theories with N fundamental
Higgs fields (so-called local vortices) at level A = N ‘are’ fermions in a background flux, at
least at low temperature. This can be expressed as a low-temperature duality

ZSCS,N A ZFermi,N (11)

where Zgcg n is a critically-coupled nonrelativistic Chern-Simons-matter theory (a
Schrodinger-Chern-Simons theory, hence SCS) with gauge group U(NN), Chern-Simons
level A = N and N fundamental flavours, and Zgermi,n is a theory of N fermion flavours
critically coupled to a particular background gauge field for the U(N) flavour symmetry.
Vortices in the theory on the left are mapped to elementary fermionic excitations on the
right. The matching of various objects across the duality is summarised in table 1.

The duality (1.1) was more-or-less proved in the Abelian case of N = 1 in [12]. In
particular, it was shown in [12] that the low-temperature topological quantum mechanics
on both sides of the duality were equivalent: an isomorphism of the vector spaces of states



was given (although the question of whether this introduced an isomorphism of ‘natural’
Hilbert space structures was not resolved, see [12, Remark 7.3]). At the level of indices, the
same result was found in [13].

Both [12] and [13] use knowledge of the geometry of the moduli space of Abelian vortices
in their calculations. As we resort to the use of rather ‘soft’ techniques, we demonstrate
a weaker statement for general N, finding an equality of the ‘expected’ dimension of the
Hilbert space (that is, the relevant index) on both sides of the duality.! In particular, on
both sides of the duality we find the index (at fixed particle number)

NA
() »

where NA=N % is, in the vortex theory, the area of the two-dimensional surface
Y in units of vortex size (it is related linearly to the Fayet-Tliopoulos parameter 7 of the
vortex theory and to the gauge coupling constant e?) and k is the number of particles or
vortices. We see that the inverse of the vortex size, which is roughly the charge density
of the bosonic condensate, sets the strength of the effective magnetic field in the Fermi
theory. The parameter N.A must be an integer: in the vortex theory this is necessary for
the quantum theory to exist, in the Fermi theory this is a flux quantisation condition.

On the Fermi side, the computation of the index is a simple calculation: these are
fermions in the lowest (nonAbelian) Landau level at filling fraction v = k/N.A. On the
vortex side it is tricky: even after one has carried out the localisation calculation, it involves
apparently miraculous cancellations in a polynomial in N.A of generic degree Nk (there is
also a simple, but highly heuristic, argument for the result just from symmetry arguments,
which we give in subsection 5.3).

The result (1.2) does not depend on the topology or local geometry of the surface
¥, which may be thought of as reflecting the local nature of vortices when Ny = N..
The dependence of the result on the choice of two-dimensional scale A is simple. Note
also that (1.2) captures the so-called Bradlow bound [14, 15], which is the selection rule
0 < k < NA for vortices on compact surfaces.

The fact that our evidence takes the form of an equality of indices may lead one to
suspect that the duality only holds as a result of some hidden supersymmetry. However,
the evidence of [12] in the Abelian case suggests that this is not the case. In that case there
is a genuine isomorphism of non-supersymmetric spaces of states. Our methods are not
powerful enough to show this in the nonAbelian case, but it seems reasonable to conjecture
that it is true; this conjecture then leads to conjectures on the geometry of the moduli
space of nonAbelian vortices.

Vortices as composite particles and the quantum Hall effect. Our general result,
given as (4.6), contains much more than (1.2). We can independently vary A, which is
conjectured to change the filling fraction of the dual quantum Hall fluid, N¢, and N,. In

"We expect that the index exactly computes the dimension of the Hilbert space when the area of ¥ is
sufficiently large. This expectation is based on the general lore of positivity for vector bundles and is proved
in the Abelian case in [12].



general, these changes lead to significant complications in the form of the index, involving
genus-dependent contributions. This reflects just how special local vortices at the right
level are.

So as to not bombard the reader with unnecessarily complicated formulae at this early
stage, we will illustrate the ideas in the Abelian case. Setting N. = 1 but allowing for a
general number Ny of charged scalars and general level A, we find the index

I g\ ingi A(A—/-c)+Nfl<:+(Nf_1)(1_9)_g>
jz;)(j))\]Nf ( Nek+ (Np—1)(1—g)—j (1.3)

at vortex number k, where g is the genus of ¥. We derive this result rigorously: it is given
as theorem 3.3.1.
We extract some lessons from this, as follows.

o Anyons, composite vortices, and quantum Hall fluids. The way that the vortex number
k enters (1.3) indicates that vortices can be given a ‘composite’ interpretation. If we
squint and ignore topology-dependent effects for a moment, comparison with counting
formulae for particles with fractional statistics (see [16], for example) suggests that we
should think of a single vortex in this Abelian theory as a bound state of particles with
exchange phase exp(imNy/\) (and, dually, vortex holes are bound states of particles
with exchange phase exp(itA/Ny)).

There are some subtle topological issues in play, but: Quantum vortices are made of
anyons! This idea is not entirely new: in [17] it was pointed out that (local) Abelian
vortices can admit quasihole-like excitations with fractional spin and charge, which
were evaluated using a Berry phase argument.

The index (1.3) tells us that composite vortices can be thought of as experiencing the
‘effective magnetic flux’

)\.A—(/\—Nf)k—i-"':NfA—(Nf—)\)(A—k)+"'

where - - - denotes topological contributions. This is highly reminiscent of the effective
magnetic flux experienced by the composite fermions of Jain [18, 19], with A identified
with the total applied magnetic flux (as in the duality above). Indeed, modulo topology,
at Ny =1 and A odd, vortices should be dual to composite fermions, electrons bound
to A — 1 flux quanta. In general, we view our result as evidence for a duality between
our theory and theories of composite particles appearing in effective descriptions of
quantum Hall fluids.

We note further that the topological contributions that we have suppressed above are
related in the dual theory to the geometrical phases of [20] that arise when coupling
the quantum Hall fluid to the curvature of space (see also [21] for an approach to
understanding quantum Hall fluids where similar phases arise, albeit for slightly
different reasons).

o Vortex-hole (a)symmetry and bosonisation. An interesting feature of the local re-
sult (1.2) is that it demonstrates an exact symmetry between the theory of the vortices



in the Higgs phase, which have number k, and the theory of vortex holes in a vortex
fluid (which is a Coulomb phase), which have number N.A — k, via the symmetry
NAY _ (1 NA

(%) (vAln)-

The index (1.3) illustrates the fact that when N, # Ny this symmetry is generally
broken by topology-dependent effects. In the general case, this breaking is characterised

by the quantity® N.(Ny — N.)(1 — g).

The symmetry is partially restored for the Abelian theory at g = 1: in this case, (1.3)
is unchanged if one interchanges

k< A—Fkand X< Ny. (1.4)

That one must interchange A with NNy is perhaps surprising and a little mysterious. A
potential explanation, which we do not develop in any detail here, comes from the
consideration of more general three-dimensional theories. The Chern-Simons level
may be viewed as being induced by integrating out massive fermionic fields in an
auxiliary ultraviolet theory. Then the genus one vortex-hole duality of (1.4) might be
viewed as a shadow of (a nonrelativistic version of) the ‘master’ bosonisation duality
of [22] (which builds, in particular, on [23]; see also [9] for comments on bosonisation
in nonrelativistic theories). This duality interchanges fermions and bosons, so by
applying the duality and then integrating out the fermions on both sides, one recovers
the right kind of picture.

e Semilocal duality and three-dimensional mirror symmetry. In the special case of
A = Ny, the duality between vortices in Abelian theories and composite particles is
reminiscent of the three-dimensional mirror symmetry of [24].

At this special point, the pseudoparticles which comprise a vortex do not have
fractional statistics and so a direct description of the dual theory is more accessible.
We find in section 7 that these vortices may be regarded as bound states of bosons
or bound states of fermions attached to flux and spin. The particles are forced into
bound states by Chern-Simons terms for an Abelian gauge field.

The fermionic version of the dual theory has Ny fermion flavours and a gauge group
U(1)Ns, with each U(1) factor attaching flux to one of the flavours. The overall
diagonal U(1) factor is ‘gauged again’ to constrain the particles into bound states.
This has the effect of inducing a constraint on the form of the overall diagonal gauge
field and so the theory is, morally speaking, a theory with gauge group U(1)"s /U(1).
(That said, there are certain subtleties, particularly on surfaces of genus greater
than zero.)

The duality in this case therefore has schematic form

U(1)n, + Ny scalars < U(1)"fJU(1) + Ny fermions + CS and BF couplings

2This quantity is, not by coincidence, reminiscent of that characterising the ghost anomaly in the theory
of two-dimensional sigma models into Gr(N., Ny) with N' = (2,2) supersymmetry.



(where the subscript on the gauge group denotes the Chern-Simons level), under which
vortices are mapped to bound states of fermions, and so bears a resemblance to the
mirror duality

U(1) + Ny hypermultiplets <+ U(1)"7 /U(1) + N; hypermultiplets

of (relativistic) three-dimensional gauge theories with N' = 4 supersymmetry [24, 25].
It seems natural to expect that our nonrelativistic story can, in this special case, be
viewed as a certain deformation of three-dimensional mirror symmetry, although we
do not go so far as to construct this deformation here.

The dualities we consider have the flavour of mirror symmetry beyond the superficial
similarities. Mirror symmetry is an electric-magnetic duality, exchanging magnetically

charged vortices with electrically charged particles, just as our does. Our version of

e2rvol(%)
4

of a background magnetic field (just as in the local duality discussed above). At the

the duality interchanges the parameter A = of the vortex theory with the flux
level of global symmetries, this corresponds to the fact that the duality interchanges
the topological U(1) symmetry of the vortex theory with the phase rotation symmetry
of the fermion theory.

e Topological degeneracy. Consider the vortex fluid at maximal density, corresponding
to k = A. Then the index (1.3) tells us that the vortex fluid has expected quantum
degeneracy A9.

This is not surprising. When k = A, the vortex centres spread over the whole surface,
the Higgs fields vanish everywhere, and the theory is in a Coulomb phase, with a
massless photon. The theory is then simply a U(1) Chern-Simons theory at level A.
This theory has classical degeneracy characterised by the moduli space of flat U(1)
connections. It is well-known, and not too hard to show, that the corresponding
quantum theory has degeneracy \9.

The above ideas extend to the nonAbelian case, albeit with some wrinkles. The outcome
of the computation becomes significantly more complicated away from the special cases of
N.= Ny = Xor N, = 1. We expect that the general result (4.6) leads to understanding of
rather general nonAbelian fractional quantum Hall fluids, but we do not make significant
developments in that direction here.

Vortices on the Q-deformed sphere. In the case of ¥ = 52 and N, = Ny =1, we also
consider the effect of a harmonic trap (which is a version of the {2-deformation of [26, 27];
see also [28, 29]) with parameter ¢ € [0,1). Using standard localisation results (where the
localisation is now with respect to a Hamiltonian U(1) action on the vortex moduli space),
we find in subsection 3.4 that the k-vortex index in this case is

)\(.A _ k) +k _ (1 _ qA(A—k)—i—k)(l _ q)\(A—k)—i-k—l) . (1 _ qA(A—k)—H)
< k >q'_ - - ) (14 |

the g-binomial coefficient. This is a (so-called) g-analog of the undeformed result, which is

recovered in the limit ¢ — 1.



A primary purpose of the 2-deformation on flat space is to regularise infrared divergences.
In the limit that the area of the sphere diverges, corresponding to A — oo, we have (for A > 0)

- <>\(A—k:)+k> _ 1

A—ro0 k 1—q)(1—¢?)---1—¢qF)"

This limit may be thought of as giving a flat space result. Indeed, in this limit, we
recover a special case of the ‘K-theoretic’ vortex partition function of [30, eq. 5.16] on the
()-deformed plane.

1.2 Related work

The quantity we compute, x(£"), is the ‘K-theoretic lift’ of the volume of the vortex moduli
space. The leading term of x(£*) as a polynomial in ) is the volume of the moduli space.
This can be regarded as a consequence of the Hirzebruch-Riemann-Roch theorem. The
limit A — oo is a semiclassical limit, so this is consistent with the physical notion that
the volume of the vortex moduli space can be thought of as the thermodynamic partition
function of a vortex gas [31, 32].

In [5, 6, 33], the volume of the vortex moduli space was computed using methods similar
to those that we use here for nonAbelian vortices. In the Abelian case, we use a more direct
method and show that our results in this case specialise to reproduce those of [5, 31, 32].

Our approach runs parallel to matrix model approaches to understanding nonrelativistic
quantum mechanics on the vortex moduli space [10, 17, 34, 35], which also make clear
relationships with the quantum Hall effect (at least in special cases). The advantage of our
approach is that it is rather general (in particular, we can work on surfaces of arbitrary
genus) and, in a sense, geometrically clearer (as it does not rely on the D-brane construction
of [36] of the vortex moduli space). On the other hand, we are restricted to the computation
of rather ‘soft” observables (like the Euler characteristic) and may have to work hard for
concrete insight.

Our story is also closely related to that of vortex partition functions in two-dimensional
theories with N = (2,2) supersymmetry [30, 37-41]. These partition functions also play
important roles in three-dimensional theories with A > 2 supersymmetry [42-47]. This
story has developed along two avenues, related to two ways to regularise the infrared
divergences of such theories: the Q-background of [27] and compactifying the theory, based
on the seminal work [48].

While we draw ideas and methods from this literature, the quantity y(£*) that we
compute is distinct from the usual vortex partition functions of these relativistic super-
symmetric theories. Both quantities can be expressed as integrals over the moduli space of
vortices, but the Euler characteristic we compute is ‘twisted” by the quantum line bundle
L£* and so is sensitive to the symplectic structure of the vortex moduli space (as the
quantum line bundle has the property that its first Chern class is proportional to the
cohomology class of the symplectic form on the moduli space). Physically, this is because
the vortex moduli space is the phase space of our nonrelativistic theory, while it is the
configuration space of a relativistic theory in three dimensions (or the space of instantons in
a two-dimensional theory).



Note that, because we do not require the apparatus of supersymmetry, nor do we rely
on D-brane constructions of the moduli space, the theories we consider are well-defined
when the two-dimensional spatial surface ¥ has arbitrary geometry and topology — we do
not need to couple the theory to background supergravity. The quantity we compute is not
topological from the (2 + 1)-dimensional perspective (it depends on an overall spatial scale),
but is topological from the perspective of the effective low-temperature quantum mechanics.

Despite this, it is likely that certain nonrelativistic deformations of low-energy partition
functions in three-dimensional supersymmetric theories could reproduce our results, at least
in special cases. Indeed, our computation of the Abelian index on the 2-deformed sphere
becomes a ‘K-theoretic’ vortex partition function on the Q-deformed plane (as computed
in [30]) in the limit that the area of the sphere becomes infinite. Finding the links between
our story and the story of vortex partition functions in supersymmetric theories could lead
to a clearer understanding of the relationships between our results and both bosonisation
and mirror symmetry that we alluded to above.

Finally, our analysis of the quantum mechanics of vortices in Chern-Simons-matter
theories is based on geometric quantisation (see [49] for a textbook treatment). Geometric
quantisation of pure Chern-Simons theory was considered in [50, 51], while (as mentioned
above) geometric quantisation of the N. = Ny = A = 1 Chern-Simons-matter theory was
studied in [12, 13].

1.3 Summary

The rest of this note is structured as follows. In section 2 we outline the mathematical
background behind nonrelativistic Chern-Simons-matter theories and describe how they
can be effectively described in terms of quantum mechanics on the vortex moduli space.
We also describe the process of geometric quantisation and some of the subtleties that arise.
In sections 3 to 5 we carry out the computation of the Hilbert polynomial of the quantum
line bundle on the vortex moduli space. This computation has three parts:

e Rigorously quantise the moduli space of Abelian vortices. We do this by direct
integration over the moduli space, which we describe as a projective bundle over the
Jacobian variety of X for sufficiently large k. The result is given in theorem 3.3.1. When
N.= Ny =1and ¥ = 52 we go further (in subsection 3.4), quantising the theory in
the presence of a ‘harmonic trap’, corresponding to the (2-deformation on the sphere.

e Use Coulomb branch localisation to reduce the computation in the nonAbelian case
to an integral over a Cartan subalgebra of u(N,) and, correspondingly, to a sum of
‘Abelian’ contributions, which we now understand. The result of this is the general
formula (4.6) for the Hilbert polynomials of quantum line bundles on moduli spaces
of vortices in the theories we study.

e Simplify the output in special cases. This is ‘elementary’ but tricky, requiring us to
prove some combinatorial identities. Our main weapon in these proofs is simply the
comparison of generating functions. The result in the case N. = N; = X is given
in (5.1).

We go on to interpret the results in the context of duality in section 6 and section 7.



2 Chern-Simons-matter theories and vortices

2.1 Kahler vortices

Let (Y,wy) be a Kdhler manifold carrying the isometric, Hamiltonian action of a compact
Lie group G. Write
p:Y —gv

for the Kéhler moment map. Here g is the Lie algebra associated to G. We will identify g
with its dual using the Killing form.

Example 2.1.1. The example to which we specialise shortly is the case where Y consists
of Ny copies of the fundamental representation of G = U(N,.). The moment map is then

i
M((zlv T ﬂsz)) = §lej

where z; € CNe fori=1,--- N ¢ and summation is implied.

Let ¥ be a Riemann surface, representing physical space, with a volume form wy,. Let
P — ¥ be a principal G-bundle. We can then form the associated Y-bundle

p: YV =PxgY =%

We consider a theory of a connection A on P and a section ¢ of ). The connection A on P
induces a connection on ), which is a splitting of the Atiyah exact sequence

vy — TY 2 7y, (2.1)

where Ty is the bundle of vertical vector fields (defined as those in the kernel of dp).
Indeed, the connection A induces a map

v TY = TvY

which splits the exact sequence (2.1). The covariant derivative of a section ¢ of ) with
respect to the connection A is then defined by

dag = va(de) € Q' (T, TvY).

The symplectic form wy on Y induces a vertical 2-form on the fibres of ), but not a
true 2-form. For that, we need to use the connection to tell us how to feed non-vertical
vectors into the vertical 2-form (this is essentially minimal coupling to a gauge field). This
gives a true 2-form, which we call wy.

The natural energy density functional on the space of pairs (A, ¢) is the Yang-Mills-Higgs
energy density

Evaii = 5| F(A) +dadl? + (€ — u(9))*

where ¢ is an element of the (dual of the) centre of g (known in the context of supersymmetric
field theory as the Fayet-Iliopoulos parameter), and e? is the gauge coupling constant, a



scale factor on the dual Killing form on gV (we call the coupling constant e? even in the
nonAbelian case rather than the usual g2 to avoid confusion with the genus g of ¥). As
shown in [52], this functional admits the following Bogomolny rearrangement

1 5 *
Evam = | * F(A) = € (€ = (@) [* + 1040 + #(6, A) [wF](€), (22)
where the Dolbeault operator 04 is defined by
_ 1 )
949 = 5 (dad + Jy odagojs),

and where w§ is the G-equivariant symplectic form on Y (see [53]).
The vorter equations ask that

F(A) =€ (€ — u(9)) ws (2.3)
Oa¢p=0. (2.4)

Solutions to these equations are absolute minimisers of &y within their topological class.

2.2 Vortex moduli

Write C for the infinite-dimensional space of (reasonable) pairs (A, ¢). This is an infinite-
dimensional Kéahler manifold, with Kéhler form?

we((Ar, 1), (A2, ¢2)) = 62/Z (612‘01”(/11 A Ag) + wy(d1, éz)wz)

where (4;, ¢;) € Q1(Z,adp) x T(¢*TyY), i = 1,2 are tangent vectors to C at a point (A, ¢).
The space C has a natural complex structure and the corresponding Riemannian metric is
the natural kinetic energy functional for the relativistic (2 4 1)-dimensional gauge theory
associated to this data.

Let Cy be the space of pairs (A, ¢) € C solving the equation

Oad=0.

This is (formally) a symplectic space, with symplectic form we,. The group G :=I'(Adp)
of gauge transformations acts on C and on Cp in the usual way, preserving the symplectic
forms we and we,. One can show [52] (see also [54]) that the moment map for this action is

v(A, ¢) = +F(A) + ¢’ u(9)

which takes values in the dual of the Lie algebra of G. This tells us that the vortex moduli
space is the Kéahler quotient

M=0Cy//cG.

3We have inserted an extra factor of e? into the definition of the Kéhler form so as to simplify notation
later, in line with our convention that Chern-Simons levels are pure integers.

~10 -



We have been very sloppy: the functional analysis of this was worked out in the Abelian
case in [55], and it works out as advertised. One upshot of this result is that the vortex
moduli space is a Kédhler manifold (at least for generic &).

What does the moduli space look like? In general it is hard to say, but a great deal is
known in special cases. In particular, if G = U(1) and Y is the fundamental representation of
U(1), then the moduli space of charge k vortex solutions on ¥ is well-known [14, 15, 55, 56]
to be the symmetric product

Sym* (%) == 2xk /s,
where the symmetric group S, acts by permuting the various factors in £**. This tells us
that a charge k vortex solution in this case is uniquely specified by an unordered list of k
points in 3, which we interpret as the positions of the k vortices.

There have been many more investigations into the moduli spaces of more general
vortices from both a physical and mathematical perspective, including [36, 57-62].

2.3 Schrodinger-Chern-Simons theories

The Chern-Simons matter theories which play a central role in our story are the ‘natural’
nonrelativistic (2 4+ 1)-dimensional extensions of the theory of two-dimensional Yang-
Mills-Higgs theory we considered above. As we will show, these theories admit an (exact)
description as gauged Hamiltonian mechanics on the infinite-dimensional configuration space
C and an effective low-temperature description in terms of trivial Hamiltonian mechanics on
the vortex moduli space M. The particular theories we consider are generalisations of the
Abelian theory considered by Manton in [63] (see also [17, 64-66] for further considerations
of Manton’s model relevant to our study and [46, 67] for discussions of the dynamics
of vortices in relativistic theories with Chern-Simons terms). We will give the general
formulation to illustrate the geometry of the theories, but will later specialise to familiar
linear examples, where the description simplifies.

The theory is specified by the data of a Lie group G, a Hamiltonian G-space Y, as
above, and a Chern-Simons level in H*(BG), which we represent as A. The action of the
theory on ¥ x S! takes the form

S = 21 / (tr (F(A) AF(A)) + 2wy Aws + e2(u($) — & F(A)) Aw)

™ JExD?
g

21 Juxst

(2.5)
Evvudt A wx,

There are a few things to explain here. First, A and ¢ are extensions of A and ¢ respectively
from ¥ x S to ¥ x D?. In general, such extensions may not exist, so in defining the
theory we should restrict to loops (A|x, ¢) : S* — C which are simply connected. Provided
an extension exists, the Lagrangian depends only on the homotopy class of the extension
provided the parameter X is an integer (or more accurately, that the class in H*(BG)
induced by ) is integral).*

4There is a quirk of conventions here. A Chern-Simons level is sometimes thought of as a dimensionful
quantity taking values in he~2Z, rather than a dimensionless quantity taking values in Z. We will prefer to
take our Chern-Simons levels to be pure integers. We will usually work in units with 2 = 1, but we have to
be careful with factors of €.
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The coordinate ¢ € [0,27) is a periodic coordinate on the circle factor. The constant
5 is a scale factor on the length of the circle. Notice that it appears only in front of the
second integral, as this is the only place where a ‘bare’ dt sits.

For reasons that we will describe shortly, one can (up to a ground state energy) replace
the critically-coupled two-dimensional energy density Eymp, which is the Hamiltonian of
the theory of (2.5), with |04¢|?, which looks a little less ‘fine-tuned’.

To connect (2.5) with more familiar things, we can write it purely in (2+ 1)-dimensional
notation. To do this, it is useful to specialise to the case of G = U(N,) and Y = CNeVr.
Then

$*wy — (1(d), F(A)) = id 56 A d3; — 6] F(A)o;
= %d (@dgéfzi — (dgqgj)&i)

where i = 1,--- , Ny is the flavour index and summation is implied. This allows us to use
Stokes’ theorem, leaving us with an integral over the boundary of ¥ x D? which is ¥ x S!.
This is

ie?

xSl

T or

where Dy is the time component of the covariant derivative and CS(A) is the Chern-Simons
3-form,
1
CS(4) = tr (A AdA+ ZAN[A, A]) ,
which has the defining property that it is a primitive of tr(F(A) A F(A)).

In the form (2.6), the action looks quite familiar. It is the obvious generalisation of
the model considered by Manton in [63] in the Abelian case, at least for certain choices of
coupling. The nonAbelian version of this theory has previously been considered in [9, 68],
for example. The reason that we initially wrote (2.5) rather than (2.6) is that the latter is
not generally well-defined (or, rather, it is well-defined only when one defines it as (2.5)).

2.4 Classical vortex mechanics

The action (2.5) can be reinterpreted as an action for gauged Hamiltonian dynamics on the
infinite-dimensional configuration space C. The gauge group is the group G = I'(3, Adp) of
G-valued gauge transformations on X.

In (0 4 1)-dimensional language, the field content of the theory consists of a path in
the space of configurations on X, which we write as

(AE,(b) : Sl —C

where Ay, is the two-dimensional gauge field and ¢ is the scalar field, as before, and a
gauge potential a for the infinite-dimensional gauge group G. The gauge potential a is the
t-component of the original gauge potential A of the (2 4 1)-dimensional theory. Indeed,
A=a + AE.
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More precisely, we take a G-bundle P — S! with connection a. There is an associated
C-bundle given by
C=PxgC— S,

and we take a section (Ay), ¢) of this bundle. The space C has a symplectic form w¢, which
defines a vertical 2-form along the fibres of C. By minimally coupling this to the gauge field
a, this can be extended to a true 2-form w¢ on C.

We suppose that this data can be extended over the disk and we write (flg, g?)) and a
respectively for the corresponding extensions of (Ay, ¢) and a.

The action (2.5) becomes

A

T2

where we recall that the moment map v is
v(A,9) = xsF(A) + u(9),

and have used bracket notation to denote the inner product on Lie(G) = I'(adp), which

|, (A e+ (w(d.6) - 6. F@)) -6 [ Bam(ao)at,  (27)

can be thought of as being induced by the inner product on the original Lie algebra g and
integration over X.
Applying Stokes’ theorem to (2.7) gives

A < - 1
= o [ A ue+ 5 [ 0(A60) — € a) — BB dt, (2.8)
where a = a;dt.

The particular Lagrangian (2.7) takes the standard form of gauged Hamiltonian me-
chanics (as in [69]) in C. The gauge group is G and the G-invariant Hamiltonian is Ey.
The gauge field a of this mechanics enters only as a Lagrange multiplier, and integrating it

out imposes the ‘Gauss law’

*F(A) = e2(€ — u(9)),
which we identify as the first vortex equation. With this done, we may quotient by the
gauge action, after which the action (2.7) becomes (in the temporal gauge, a = 0)

% /D2 (4, ¢)"wey g % /S1 (/z (104¢Pws) + Etop) at (29)

which is a Hamiltonian mechanics on the symplectic quotient C//G, with Hamiltonian (up
to the topological term, Eiqp, which is just a ground state energy)

/ 040|*ws,
>

which we view as a function of gauge equivalence classes of pairs (A, ¢). In the limit of low
energy,” or low temperature (that is, rescaling t — Bt and taking 8 — 00), we are led to
consider the configurations which minimise this energy, which is the locus of

5A¢:O.

5In condensed matter applications, one could imagine dissapative effects driving the system towards low
energy. In pure Hamiltonian mechanics, the energy is conserved.
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Imposing this equation puts on the vortex moduli space, with restricted action

A
Svo — | Zum (2.10)

rtex —
27 Jp2

where z is a simply-connected loop S' — M, % is an extension of z to the disk, the
2-form w4 is the Kéhler form on the vortex moduli space, and we have subtracted off the
dynamically unimportant topological term. The reason that this all works out is the fact
that the vortex moduli space is a symplectic quotient.

The action (2.10) describes Hamiltonian mechanics on the vortex moduli space with
zero Hamiltonian. Notice that the vortex moduli space is the phase space of the theory,
not the configuration space (as it would be in a theory with second-order dynamics). The
theory is classically ‘trivial’ (modulo the difficult problem of finding a vortex solution), with
no dynamics. The vortices sit still, reflecting their BPS nature. This theory is interesting
quantum mechanically, however: it is a (generally nontrivial) topological quantum mechanics
on the vortex moduli space.

Note that we could have taken the low-temperature limit before integrating out the
one-dimensional gauge field. In this case, we get the low-temperature gauged quantum
mechanics

N[ (q LB 2
S = 3= | ((A9)"ge + (v(4,6) - 26, F(a))
Integrating out a and taking the quotient by the group G leaves one with the theory (2.10).

2.5 Quantum vortex mechanics

The most natural way to quantise the classical theory of (2.10) is by geometric quantisation
(see [49]). In our context, this proceeds by finding a holomorphic, Hermitian line bundle

LA - M

over the moduli space whose Chern form (that is, the curvature of the unique connection
compatible with the holomorphic, Hermitian structure) is equal to iwaq. In particular, this
implies the topological constraint

L) = o] € HA(M, ),

T
where ¢ (£*) is the first Chern class of £*. This imposes a so-called Weil prequantisation
condition on the Kéhler form wy.

The vector space of quantum states is then identified with the space of holomorphic
sections of £:

Ho(N) == HO(LY).
The bundle £* should be further equipped with a Hermitian structure, which induces a
Hilbert space structure on its space of sections.
In general, even the dimension of the space Ho(\) is hard to access. It generally depends
on the precise choice of line bundle £. A more accessible quantity is the dimension of the
graded space

HN) = (-1 H(LY),

i
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The graded dimension of this is the Euler characteristic x(L£) of L. If there is a well-
defined bundle £ at A = 1, we may also call x(£) the Hilbert polynomial of £ when viewed
as a function of A.

The Euler characteristic is rendered accessible by virtue of the Hirzebruch-Riemann-
Roch theorem

e £ /M ch(LM)td(M) (2.11)

where ch(£*) = exp(%[wM]) is the Chern character of £* and td(M) is the Todd class of
the tangent bundle of M. This is an entirely topological decription of the a priori analytic
quantity y(£*). The main aim of this note is to compute x(£*) in the case of G = U(IV,)
and Y = CNelVr,

There are two subtleties which should be addressed, as follows.

e Polarisation dependence. Generally, geometric quantisation requires a choice of
polarisation. This is, roughly speaking, a choice between ‘position’ and ‘momentum’
representations for the quantum states. In our context, the fact that the moduli space
M is Kéhler allows us to gloss over this issue: the polarisation here is the choice of
holomorphic structure on the bundle £. Polarisations of this type are called Kdhler
polarisations.

It is an interesting question to ask how the Hilbert space changes as one varies the
choice of polarisation. For pure Chern-Simons theory quantised on the product of
a smooth, closed two-dimensional surface > and the real line, the space of Kéhler
polarisations is the moduli space of complex structures on ¥ and the bundle of Hilbert
spaces over this space carries a projectively flat connection, the Hitchin connection [51]
(see also [50, 70, 71]). This demonstrates that, in this instance, the choice of Kéhler
polarisation is unimportant.

On the other hand, it was argued in [12] that for quantisations of moduli spaces of
local Abelian vortices it is generally not possible to construct a similar projectively
flat connection on the moduli space of Kahler polarisations.

For us, the details of different polarisations are relatively unimportant, as we simply
compute a topological invariant.

e The metaplectic correction. The space of quantum states should have a natural inner
product. One way to ensure that this is so is to ‘upgrade’ the quantum states to
L-valued half-densities on M, so that they pair to give a density that can be integrated
over ./\/l Mathematically, this means taklng the quantum states to be sections of

L& K 4 Tather than sections of £, where K3 4 is a square root of the canonical bundle
of holomorphic forms of top degree on M, if such a square root exists.

The metaplectic correction is often necessary in the case of non-Kéahler polarisations,
as otherwise the Hilbert space that one obtains is often empty. In general though, the
metaplectic correction may not even exist, as is generally the case for Chern-Simons
theory [50] and for quantisations of Abelian vortex moduli spaces [12]. The fact that
metaplectic corrections do not generally exist for the theories which we are interested
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in suggests that we should not consider them and so we will not attempt to include a
metaplectic correction in our quantisation.

2.6 The path integral

There is another approach to quantising the theory: the path integral approach. The
partition function for the low-temperature theory on ¥ x S! is written schematically as

Z = Dz exp <i)\/ 2*9M>
LM 21 Js

where 6, is a local symplectic potential on M and LM is a space of loops on M.

On general grounds, the partition function is the dimension of the Hilbert space of the
theory. One can compute it directly using localisation techniques (see, for example, [72]).
Localisation allows one to reduce the path integral to an integral over the space of constant
loops, which is simply M. Up to some potential topological subtleties, this integral over
M is exactly that on the right-hand-side of (2.11).

3 Quantisation of Abelian vortex moduli

3.1 Characteristic classes

In the Abelian case of N, = 1, we will compute the Euler characteristic y(£*) rigorously by a
direct integration over the moduli space using the Hirzebruch-Riemann-Roch theorem (2.11).
To do this, we need to get to grips with the integrand. Here we recall some relevant
information about characteristic classes.

Let X be a complex manifold and let £ — X be a complex vector bundle or rank n. If

ct(E) =14 c1(E)t + ca(E)t2 + - + cp(E)t"

is the Chern polynomial of E, the Chern roots {a;(E)}i=1,... n of E are defined by

n

a(B) = [[( + ai(B)).

=1

Each of the «; has cohomological degree 2. The fact that the Chern polynomial can be
written in this way is a result of the splitting principle.
The Todd class of F is then defined by

where

S l—e
which we interpret in terms of a formal power series. It is immediate from this definition

that the Todd class is multiplicative over exact sequences of vector bundles. We write
td(X) = td(Tx).
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Example 3.1.1 (Projective space). The tangent bundle of P" fits into the Euler exact
sequence
0— 00— 0%+t 5 Th, 0.

td(P") = (1 _§€_€>n+1

where ¢ = ¢;(O(1)) is the generator of H2(P").

Thus

Example 3.1.2 (Projective bundles). Let V' — Y be a vector bundle of rank r, and let
X =P(V) 2, ¥ be the corresponding projective bundle, given by projectivising the fibres
of V. The space X carries the natural tautological line bundle Ox(1).

There are two useful exact sequences, the relative Euler sequence

0= Ox = pVeOx(1)—=Tx)y =0
and the (holomorphic) Atiyah sequence
0—=Txyy = Tx —-pTy —0.

These reveal that
td(X) = td(p*V @ Ox(1))p"td(Y).

3.2 Local Abelian vortices

Let us begin in the local Abelian case of N, = Ny = 1. In this case, our discussion retreads
some of the ideas of [73] on the cohomology rings of symmetric products of Riemann surfaces.
The results of [73] were used in [13] to compute the expected dimension of the Hilbert space
of the vortex quantum mechanics in the special case A = 1 and in [32] to compute the
volume of the moduli space of local Abelian vortices.

The moduli space of local Abelian vortices on a Riemann surface 3 of genus g is
well-known to be the space of effective divisors on ¥ [14, 15, 55, 74]. This can be thought
of as the space of holomorphic line bundles with normalised holomorphic section, which
facilitates the following construction of the vortex moduli space as a complex manifold.®

Write P¥(X) for the moduli space of holomorphic line bundles on X of degree k. This
is a torus of complex dimension g. Let

U— PFE) x X

be the universal degree k line bundle. This is well-defined only after choosing a point x € X
and asking that U|pk (s () be trivial.

Writing ¢ : PF(X) x ¥ — P¥(X) for the projection, we consider the direct image sheaf
qU over PF(X). If k > 2g — 2, this is locally free of constant rank and defines a vector

S Another, direct, way to think of vortices in these terms follows from looking at the dissolving vortex
limit [75, 76], a kind of (shifted) weak-coupling limit, where the vortex equations explicitly become the
equations for a line bundle with a flat connection with normalised holomorphic section.
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Figure 1. A sketch of the moduli space of charge k local Abelian vortices for k > 2g — 2. The
moduli space fibres over the torus P¥(X), which is the moduli space of charge k& holomorphic line
bundles, with fibre CP*~9, which is the space of normalised sections. When k < 2g — 2, there are
degenerate fibres (see [77]).

bundle V over P*(X) with fibre over a holomorphic line bundle £ the space of holomorphic
sections of £. The moduli space of vortices is then

which admits a projection map p : M — P*(X) and supports the tautological line bun-
dle Opq(1). (A sketch of the moduli space is given in figure 1.)
Combining this with example 3.1.2 tells us that the Todd class of M is

td(M) = td(p*V @ Op(1))p*td(PF(D)).
The space P¥(X) is a torus and so has trivial tangent bundle, so the Todd class becomes
td(M) = td(p*V @ Opm(1)) .

To compute the Chern roots of V= qlf, we use the Grothendieck-Riemann-Roch
theorem. We have

ch(V) = ch(qf)
= ¢ (chU)td(D)), (3.1)

where the first equality follows from the definition of V' and the second follows from the
Grothendieck-Riemann-Roch theorem. Write & for the generator of H2(X,Z). Then

td(X) =1+ (1 — )&

and
all)=ko+t

where t € H(X) @ H'(P*(X)) is the class dual to the natural evaluation map.
Using the fact that ch(U) = exp(ci1(U)) and the Grothendieck-Riemann-Roch for-
mula (3.1), we see that

1
Ch(V):k:+1—g+§q*t2.

The class 0 = —1¢*t> € H*(P*(X)) is that of the theta divisor.
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This reveals that rank(V) = k + 1 — g, that ¢;(V) = —o, and that all of the higher
Chern classes conspire to cancel the higher contributions to the Chern character. This
means that

and the Chern polynomial is ¢;(V) = e~?! (note that this truncates because 097! = 0 for

dimensional reasons).
The projective bundle formula reveals that the cohomology ring of M takes the form

H*(M) = H*(P*(%))[¢]/R

where the relation R is

9.1 S
> ez,

i=0
Write 0;, i = 1,--- , g for the Chern roots of V. These obey o2 = 0 for all i. Then the
Todd class of M is
td(M) = td(p*V @ Opm(1))

B E k—2g+1 9 5 _p
S\l —e¢ Ll _ o—(§~ai)
i=1

- (1 —ge—fy_g+1 o

—oX

where, formally, X = % — 1:55

and we interpret e as a formal power series which
truncates.

The Kéahler class of the moduli space is
1
g[wfvt] =d§+o
where d = A — k. To see this, one can write out representatives for ¢ and o directly
(see [78, 79], for example).

Let £ be a holomorphic line bundle with ¢1(£) = d§ + 0. There is a natural choice for
this quantum line bundle £, namely

L = Op(d) @ p*det(V),

although we do not insist on this choice (indeed, V' was defined with respect to an arbitrary
choice of normalisation for the Poincaré line bundle, so the bundle above is not canonically
determined).

Ideally, we would like to compute

KO(L£*) = dimHO (L)

where \ is a parameter (physically, it is the Chern-Simons level). This is generally not
accessible, and may depend on the particular choice of L. Instead, we would like to compute
the Euler characteristic

X(LY) =Y (=1 (L),

i
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The Riemann-Roch theorem tells us that

X = [ encim)

/ Mde+o) ( 3 )k_gH oo X
M 1—e¢

j k— 1 1 e—§
=3 ;‘j/ ol N ( 3 ) o e_U(E_l—e*E)
= I v

which is

This becomes

1—e¢
‘E k—g+1 o i;i
_Z];/ o e (1_€_£> . (1 g)

using the relation R. Expanding the exponential, collecting the powers of o, and removing

terms that do not contribute to the integral, we find

Ad—g-+j
pogh-ot1 ePd—g+j)¢
M (1 —e=§)hitl

e()‘dfg+j)z
Resx =0 Wdl‘,

where we have used that the integral of o9 over the Jacobian is g!, which is a classical result.

To compute a residue of the form

ePr
Resx:() m dx

one may introduce a variable y by 1 —e™* = y. Then ¢* = (1 —y)~! and dz = ﬁdy.

1—y " p+a
ReSyZOTdy = q .

Putting the pieces together gives us the following result.

Then the residue is

Theorem 3.2.1. Let L — M be the quantum line bundle over the moduli space of local

Abelian vortices of charge k on a closed Riemannian surface ¥ of genus g and dimensionless
2

‘area’ A = © TZ‘;Z(Z) € Z. Suppose that k > 2g — 2. Then the Hilbert polynomial of L is

P2 ()()

Remark 3.2.2. Our proof of this result only holds literally in the case that & > 2¢g — 1.
However, the method still goes through in a virtual sense for all k, and the result holds in
general. Note that if k < g, the terms with j =k +1,--- , g all vanish.
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Remark 3.2.3. One can express the Euler characteristic as a single residue as

eAdx

X(£®/\) = Resxzo (e_x + )\(1 — €_$))g mdx .
This is the form that one might find the answer in if one exploited Coloumb branch
localisation. This makes particularly clear the simplification that occurs if A = 1.

This theorem mediates between two known results. Setting A = 1 computes the Euler
characteristic of the quantum line bundle £, which is the expected dimension of the Hilbert
space of the vortex quantum mechanics at Chern-Simons level 1. This is

as previously found in [12] and in [13]. In the full quantum theory, one should sum over
topological sectors with a fugacity t for the topological symmetry. The resulting grand

Z(t) = i (:}) tk

k=0
= (1+t)4.

canonical partition function is

This result exhibits a kind of ‘vortex-hole duality’. By virtue of the Bradlow bound, a
configuration of k vortices in a normalised area .4 might also be viewed as a configuration of
A — k vortex holes in a sea of A vortices. This is reflected in the vortex quantum mechanics

(1))

On the other hand, the volume of the vortex moduli space is (up to constant factors)

by the equality

vol(M) :/ eloml
M

Because the leading term in the Todd class is unity, this is the coefficient of A4™M) ip
x(£*) (this is the highest power of A that appears). We can read this off to be

min(k,g) ki
g\ (A—k)"
2 <J> )

in agreement with the computations of [32], [5] and [6].
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3.3 Semilocal Abelian vortices

Introducing more flavours does not significantly alter the nature of the above calculation.
As revealed by the dissolving vortex limit, the moduli space is again a projective bundle.
Indeed, if the number of flavours is Ny, the moduli space of charge k vortices is, for k&
sufficiently large,

M Ny = [P(VEBNf )

where V — P¥(X) is the vector bundle introduced previously. The dimension of the moduli
space is Ny(k — g+ 1) + g — 1, in agreement with an index calculation.
Multiplicativity of the Chern class means that

c(VENT) = c(V)N
= e Nio,

N¢o truncates because o911 = 0.

Again, the formal power series implied by e~
The cohomology ring of the moduli space can be described using the projective bundle
formula to be

H*(My,) = H*(P*(%))[¢]/R

where the relation R is

g
Zl' NfO' é—ka g+1)—i —O
7!
i=0
The Todd class of My, is
Ny¢(k—g+1)

—¢
where X = % — 1-.—¢ as before.

The cohomology class of the L? Kihler form on the vortex moduli space is (just

as before)

1

%[WMNJC] =d§+o,
where d = A — k. (Note that the second cohomology group of the moduli space has two
generators, so all that one needs to do to verify this is to check the coefficients.)

We again compute the Euler characteristic of a quantum line bundle £ — My, with
2re1 (L) = [wm Nf]. There is again a natural choice, given by

£ = Oy, (d) ® p*det(V),

although, again, we do not insist on this, noting that it is not canonically determined.
Going through the motions as we did for the case of Ny = 1 leads to the result

g (Ad—(g9—3))=

A\ ] 9—J €
x(£) = z:: N ( )Resz 0(1 — e—@)Ny(k—g+1)+9-j dz
g
Z/\

Ny A+ Np(k—g+1) -1
Nek—g+1)4+g—37—1
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Substituting in d = A — k and introducing the notation ¢ = dimc(My,) leads to the
following theorem.

Theorem 3.3.1. Let My, be the moduli space of charge k vortex configurations in a U(1)
gauge theory with Ny fundamental flavours on a closed Riemannian surface ¥ of genus g

. TUOZ(E) € Z, supposing that k > 2g — 2. Let L — My, be a
quantum line bundle for the L? vortex Kdhler form on Mn,. Then

g
XL = STNNY ]<3>< (A 6’624;5 g)}

7=0

and dimensionless ‘area’ A =

where 6 = Ny(k — g+ 1) + g — 1 is the dimension of the moduli space.

Remark 3.3.2. While our proof only literally holds for k& > 2g — 2, the argument should
go through in a virtual sense in the general case.

Remark 3.3.3. Again, one can express the Euler characteristic as a single residue. Indeed,

one has

e/\dx

X(ﬁ)\) = Resx:[)(Nfeix + )\(1 — Cim))gmdx,

which simplifies in the case that A = Ny.

As in the local case, there are two particularly interesting corollaries of this result.
Setting A = Ny, one finds the visually simple result

g Ni(A—k)+6—
N(LNF) = Jg;()(f 5—)]+ 9)

o(Np(A—k)+d
:Nf< il ; ) )

We interpret this result in section 7.
On the other hand, identifying the coefficient of the highest power of \ in x(£*) gives
us the volume of the vortex moduli space, up to factors of 2wr. We read this off to be

min(4,
S v (1) A
j:0 j (5 - j) 7
in agreement with the result of [5, 6].

3.4 Abelian vortices in a harmonic trap

There is a special class of deformations of the theory that ‘preserve critical coupling’ These
are deformations induced from Hamiltonian actions of groups on the configuration space of
the theory preserving the vortex equations. Such deformations induce a potential on the
moduli space for the Hamiltonian mechanics controlling the low-temperature behaviour of
the theory. The potential is such that the Hamiltonian flow generates the symmetry.
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Here we consider an example in the local Abelian case, that of a harmonic trap. The
symmetry generating this is a rotational symmetry of space, so it requires that X has a
rotational symmetry. We will take ¥ to be the round sphere. This has previously been
considered in [28]. In the case that X is the plane, the analogous story was considered
in [29] and plays an important role in the dual approach to quantum Hall physics on
the plane [8] (as, in that case, there is no Bradlow bound and a different mechanism is
necessary to induce the creation of a region of Coulomb phase). The setup is a version of
the Q-deformation [26, 27].

Suppose that ¥ = S? with a round metric and consider U(1) gauge theory with one
fundamental flavour. The moduli space of k-vortex solutions is then the complex projective
space M = CP*. A useful coordinate system for the moduli spaces can be given as follows.
Let z be a complex coordinate on ¥ =2 CP!. A k-vortex configuration is uniquely specified
by k points (z1,---,2;) on ¥ and so we may parameterise the moduli space (away from
configurations with vortices at z = co) with the polynomials

k
H(z - z).

=1

Expanding this polynomial gives an alternative parameterisation in terms of (an affine

patch of) homogeneous coordinates [wg : wy : -+ - : wg| as
k
H(z —2z) =we +wiZF L+ g
i=1

In this patch, wg =1, w; = >, 2, and so on.

The theory on the round sphere S? has a global U(1) symmetry given by rotating
the sphere around a fixed axis. This induces an action of U(1) on the space C of vortex
configurations in the obvious way, rotating the configuration. This action preserves the
vortex equations and so descends to the moduli space of vortices.

We may align our complex coordinate z on X in such a way that e € U(1) acts via

2z ez,

so that z = 0 and z = oo are the fixed points of the action. This action induces the action
Zj = eiQZj
for j =1,---,k on the moduli space coordinates, which in turn implies that

wj s e, (3.2)

forj=1,--- k.

We can now carry out an equivariant geometric quantisation of the moduli space. Again,
we will consider the simpler question of computing the equivariant index. See [4, section 2]
for an introduction to these ideas, which we summarise here.
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The quantum line bundle is O(d)* — CP*, which lifts to an equivariant line bundle.
We are interested in computing the equivariant Euler characteristic

xXum (0@ q) = (=1 trgicpr o) (@)
7

of this equivariant line bundle. Here, for V' a representation of U(1), try(q) is the trace
of ¢ € U(1) in the representation V. If U(1) acts trivially, then any element of U(1) is
represented as the identity and the trace recovers the dimension of the vector space, so that
the equivariant Euler characteristic is the usual Euler characteristic in that case.

One way to compute this is using the equivariant Hirzebruch-Riemann-Roch theorem,
which realises the equivariant Euler characteristic as an integral of an element of the
equivariant cohomology of the moduli space. One has

xww(©O0d):ia) = [ (chupy(©Od)uduay(©PH) (0)

where chy(1)(O(Ad)) is the equivariant Chern character of the bundle O(Ad) and tdyy) (CPY)
is the equivariant Todd class of T pk.

As recalled in [4, 72|, this integral can be reduced to a sum of contributions from the
fixed points of the group action. The outcome of this (when the fixed point set is discrete,
which it is for us) is the Lefshetz formula

troa), (7)
O(\d); q) = - :
XU(l)( (Ad); ) ZF detTl},oCPk(l -q1)

We can apply this to the group action (3.2). This action has k + 1 fixed points
(po,- -+ ,pr). Physically, the fixed point p; corresponds to i vortices sitting at z = 0 and
k — i vortices sitting at z = oo. The character of the U(1) representation O(Ad),, is given by

tropdy, (@) =

and the determinant is
det(r ), (1 —a ) =1]0-¢7).
J#i
The index is then
¢

ji( 1 —¢7)

Xu) (O Z

(see also [4, section 2.9] for a very similar computation). Rearranging this sum gives

Fl-gq
xuy(OAd);q) = [[
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This is the g-binomial coefficient, sometimes known as the Gaussian binomial coefficient. It
has the property that, for any n and k,

e (2),~ ()

so that we recover our previous result theorem 3.2.1 in the genus zero case.
Substituting in d = A — k, we have

xu()(O(Ad); q) = (A(A —k)+ k) '

k
At A =1, this becomes

xu)(O(d); q) = <?> :

The 2-deformation on flat space regularises infrared divergences. In the limit that the
area of the sphere diverges, corresponding to A — 0o, we have (for A > 0)

- <)\(A—k:)+k> _ 1

A0 k 1-q)1—¢*) - (1=q)

In this limit, the only contribution to the index comes from the configuration with all
vortices sitting at the minimum of the potential. This result may therefore be thought
of as a flat space result, with all vortices sitting at the origin. In this special case, we
essentially recover a special case of [30, eq. 5.16], which gives the ‘K-theoretic’ (that is,
2 + 1-dimensional) vortex partition function on the Q-deformed plane.

4 Quantisation of nonAbelian vortex moduli

4.1 Coulomb branch localisation of the Euler characteristic

After localising with respect to time translations and integrating out the time component
of the gauge field, the (super) partition function of our theory is

(LN = /M td(M)ch(L£), (4.1)

where £ — M is a quantum line bundle on the moduli space of vortices. When the
gauge group is nonAbelian, we do not have a generators-and-relations description of the
cohomology ring of the moduli space M, so it is hard to compute this integral directly.
Instead, we will exploit the Jeffrey-Kirwan-Witten method of equivariant localisation (or
‘Coulomb branch localisation’) to compute this integral. We do not give a complete account
of this technique here, instead giving a fairly high-level exposition of the computation in the
context relevant to us. We refer the reader to the original works [1, 2, 80] and to [5, 6], which
give a clear exposition of the technique in the context of computing the volumes of vortex
moduli spaces. Our computation of x(£) generalises the results of these latter works.

— 96 —



The moduli space M is the formal symplectic quotient of the space Cy = {(A4x, @) |
049 =0} C C = {(Ax, ¢)} by the group G of gauge transformations. The lift of the tangent
bundle of M to Cy is the equivariant virtual bundle

adg = TCyp — adg

where adg is the equivariant bundle Cy x Lie(G) — Cp, carrying the adjoint action on the
fibres. Here the first arrow is the derivative of the group action and the second arrow is the
derivative of the moment map. The equivariant Todd class of this virtual bundle is

tdg(Co)tdg ' (adg @ adg) .

In general, we must regard Cg itself as a derived space, as the space of solutions to dx¢ = 0
does not have constant dimension as A varies, so that TC is itself a graded bundle.
The lift of the quantum bundle £ to Cy is an equivariant line bundle £ with equivariant
first Chern class equal to \
f (L) = g[wg
g _

where wg = we, — v is the equivariant symplectic form (see [53]).

] € H5(Co),

0

The super partition function is then the integral
/ (tdg (Co)tdg*(adg @ adg)chg(ﬁ)) () DD
Co XLie(g)

Here @ is valued in the Lie algebra Lie(G) and D® is a measure on this space. Physically,
this could be derived by computing the (super) partition function of the three-dimensional
theory after localising with respect to time translations. The field ® is then the constant
mode of the time-component of the gauge field.

We will use the notion of equivariant integration to localise this to an integral over the
Lie algebra of the maximal torus of the group G. This integral can then be expressed as a
residue.

To do this, we note that the space Cp x Lie(G) carries an infinitesimal U(1) action,
generated by the variations

0((Asz, ), @) = ((day @, 2(¢)),0).

Our integrand is invariant under this action and we may localise with respect to it. The
space of fixed points decomposes into a number of branches, including the Higgs branch,
where ® = 0, and the Coulomb branch, where ¢ = 0. The space of fixed points carries an
action of the torus 7= U(1)™e of global Abelian gauge transformations. The fixed point
locus of this T" action is the Coulomb branch, where ¢ =0 and da,® = 0.

A generic point on the Coulomb branch defines a holomorphic vector bundle of the form

E=PL,—~%
a

where L, has degree k, and ), k, = k, the total vortex number. Deformations of these
T-invariant solutions within the space of configurations are given by pairs consisting of a
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holomorphic section ¢ of ENf and a deformation of the holomorphic structure of E, which
is an element of

H(E®E)=H'|OMe@PL.oL,"] .
aFb
Such a deformation remains T-invariant if ¢» = 0 and if the variation of holomorphic

structure lies in H'(ON¢).

Recall from above that the equivariant virtual bundle we need to consider is
adg = TCy — ady .

Over a connected component of the T-invariant locus, the moment map is constant (as
¢ = 0 and by the quantisation of the Abelian flux). The image of the second map is
therefore zero. We are left with a T-equivariant bundle whose fibre at the bundle F € F is

Vi = (HY(E® EY) = TpF & (vi)p — 0)

where the bundle on the left is the bundle of infinitesimal automorphisms of a point £ on
F (that is, a residual gauge transformation) and vp is the equivariant normal bundle to F
in Cy, which takes the form

vp = (o — H (@ LawLy') o H(EN) — Hl(ENf))
a#b

where we recall that we are working with the derived locus of the space of solutions to
a0 = 0.

The space F' is torus of complex dimension N_.g, with trivial tangent bundle. Putting
this together, the class of Vr in equivariant K-theory is

Vi) = [TF] + Y [H*(La”)] = D [H* (L © L; V)]
a a#b

where by H® we mean the graded space H° — H'.

We now compute the Todd class of each of these summands divided by the Euler class,
include the contribution of the Chern character of the quantum line bundle restricted to the
component, and sum over the components of the fixed point locus. Let z,,a =1, -+, N,
be standard coordinates on the Lie algebra of T. From section 3, we know that the first
and second summands integrated over F' give a contribution of

_ g
e Ya 1
H (Nfl Ep— + )\> (1 — e~wa)Ny(ka—g+1)

a

to the residue. The second summand gives a contribution of

H (1 - e_(%—wb))ka—kb—gﬂ .

ab

The differences x, — x} are the roots of u(N,).
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The restriction of the equivariant Chern character of the quantum bundle to the fixed

e)\daxa
11

where d, = A — kg is the action — [5 (F(A)q — €2(7 — pu(¢))qws) when ¢ = 0.
Putting these pieces together and summing over the partitions of k, which correspond

point locus is

to the fixed point loci of the T-action, we come to one of our main results:

1-g
(;\fl)' X(ﬁ)‘) = Z Resmol (H L (e e_xb)2>

“ > ka=k a<b (4.2)
e)\daxa

X H(Nfe_”:“ + A1 —e ")) dz,

(1 _ e—xa)5a+1
where d, = A—k, and 6, = Ng(ky —g+1)+ g — 1, the sum is over partitions of k of length
N., and where 0 = (N + 1)(k + 1). We comment on precisely how we mean to take this
residue below.

Introducing y, = 1 — e~ %=, the residue (4.2) can alternatively be written as

(;\flj" Z Resy:0< H(ya —)*

Zka:k a<b

X H(Nf(l_ya)“‘)\ya)g y

(4.3)

(1 _ ya)f)\daf(lfg)(chl)fl
Bat dya> :

This is often a more convenient form.
The general structure of the quantity in the residue in (4.2) is

1V (x4, 2p)X™ S Il H(a)!  Z(24,ka)dza,

——
a>b Zka:k @ contribution from
cycles in Jacobian

integration over off-diagonal
components of gauge group

Abelian contribution

where V(zq,xp) = (e7%* —e™®) comes from the off-diagonal part of the gauge group,
H(z,) = (Nge™™ + X(1 — e™ ") comes from integrating over the cycles in the Jacobian
(as we saw in section 3), and Z(z4, kq) = ePdat(1=9)(Ne=D)+1)za (] _ g=%a)=(a+1)  This is
of the same structure as [5, eq. 4.21], which gives the analogous residue formula for the
volume of the vortex moduli space (in our language, the volume is [, ch(£)), although the
precise details differ.

4.2 The Vandermonde determinant

The evaluation of the residues (4.3) requires us to understand the meaning of the
Vandermonde-type contribution

I (e — ). (4.4)

a<b
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The meaning is clear for positive powers (that is, for ¢ = 0), but needs thought otherwise,
as the residue requires us to understand how it behaves when all the y, — 0.
We argue that the correct series expansion of

(ya - yb)_2n

for n € Z>( for our purposes is the symmetric one:

Wa— ) 2" = (=1) " (Wa — v) " (vo — Ya) "

— oy (1-2) T (1-2) 7
= (~Yayp) ™" (2 - ('ZZ + Z))n
~ Can 30 () (G (2 2))

If one views this as a power series in the real numbers, it never converges, which is a cost of
insisting on symmetry.
In general, we say that

2729 = (yo — )2 (Ya — tp) "2

= (o — 1) (~2yu) i(—w’ (‘j’) (3(Z+ yb)) C 4s)

(ya - yb)

Yo Ya

4.3 The general result
We can evaluate the general residue (4.3) using the expansion of the Vandermonde determi-
nant given above:

o0

H(ya — )220 = 2(Ne=D)g Z Z apy iy, Aer e, H ylatea=g(Ne=1)
a<b S la=Ne(Ne—1) €157 EN =00 .

where ay, ... ;. is the coefficient of ], yla in [],<pyle and Acy - en, 18 the coefficient of

. _ 1\ Y
[ ver in Tlacy (1 - 1/2(vay; " + mova )
Evaluating the residue, we find that

Z Z Z allv"':lNcAcla"'chc

Zka:k Ela:Nc(Nc—l) €1, CNe

a 9\ \inrg—j )‘(A_ka)+(Nc_1)+kaa+(Nf_1)(1_9)_la_ca_g>
XE[(;](]‘)ANJ‘ AN )

(—1)72(Ne=1)g

Ay

(4.6)
which is the general result.
As written, this is not too meaningful (or, at least, not too useful). In what follows, we
will attempt to simplify (4.6) in special cases.
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5 Simplifications of the index for local vortices

5.1 NonAbelian local vortices on the sphere

5.1.1 Warm-up: The case of N = 2

In this section, we will simplify the form of the index (4.6) in the case that N. = Ny = N.
We will find ourselves able to simplify the index dramatically when we further take A = N.
To warm up, let us consider the case of N =2 and g = 0. Results in the general case
will follow from similar methods, but it is instructive to begin in this restricted situation as
everything is more-or-less directly computationally tractable.
The relevant residue is

e(}\dl—‘rl)xl e(}\dg—‘rl)xg

- —19)\2
i § kReSﬂEl:m:O(e “l—e xz) (1 _ e—$1)51+1(1 _ e—x2)52+1 dwldxz’
1+k2=

(_1)k+1

X (52;2,2) =

where d, = A — kg and 6, = 2k, + 1.
This can be evaluated: it is

(=D 3 KAdl +01 - 1) (A@ + 0y + 1)
2 P (51 -2 52
_ 9 Ad1 + 61 Ads + 09 " Ay +61+1 Ado + 69 — 1 }
01— 1 09 — 1 01 0o — 2 ’
In general, this appears to be rather complicated.

There is a drastic simplification if A = 2, so that A = N, as the k, dependence of the
binomial coefficients simplifies. In this case, we have

k 24 24 + 2 2A+1\ (24 +1
X(ﬁz;zz) = (_1)k+1 ; l(m _ 1) (2(k _—5 + 1) B ( 2;_ ) (2(k _—FZ)>] .

This can be (rather strikingly) simplified further to

X(Ez;zz) é <2l;4>

as we show with the following lemmas.

Lemma 5.1.1. The identity

k n n+2 >_<n+1><n+1>
; l(%—l) (2(k—i)+1 21 2(k —1)

holds.

2o ()6t
_JZ:%( 17+ i ar—;

Proof. Tt is possible to derive this result by a liberal application of Pascal’s identity for
binomial coefficients and a certain rearrangement of the sum, but a much neater proof
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comes from comparing generating functions on both sides. The sum on the left hand side is
the coefficient of z:2*

i {— ((1—|—m)”+1 +(1 —m)"'H) "+ (33_1(1 —z)" =z} (1+x)”) (:r(l —)" a1 —fv)”+2)

Y

where we have used that § ((1+z)? + (1 — z)P) isolates the even-power terms of (1 + z)P,
as well as the analogous result for the odd-power terms.
Expanding this out gives

—i((l —2)+ (1 +2)*(1—a)"(L+2)" = —(1 - 2)"(1+a)"

The coefficient of 22* in this final polynomial is

() ()

which gives the claimed result. O

Lemma 5.1.2. The identity
2k n n n
—1) = (-1
2 ()t ) - )

Proof. Comparison of the coefficients of 22* on both sides of the identity

holds.

(=214 2" = (1 2)"
gives the result. O

These lemmas lead us to the result that

X(ﬁi;z,z) = (2];4> .

5.1.2 General N on the sphere

When g = 0 but N is allowed to be general, recall that the relevant residue can be evaluated

to give

Mg+ 6, +N—-1—-1,
X(‘CQ;N,N Z Z a’ll"'lN H ( S —1 )
N S ka=k > la=N(N a “o e

where ay,...;,, is the coefficient of yil e yﬁ{}’ in the polynomial [],_,(va — ¥s)>
This is, again, a complicated sum. Once more, it simplifies if we take A = N. In this
case, it becomes

(‘ckNN

NA+2(N 1) 1,
Z%:—kZl_Z: _ e ZNH<Nk tN-1-la )

~32 -



To understand this sum, we will consider its generating function. The basic result that
underlies our computation is the following elementary lemma, which tells us how to pick
out the relevant binomial coefficients in our expressions.

Lemma 5.1.3. For any j, one has

[o.¢] n a
;(NH—;) Zr —I—rx

where r generates the group of N roots of unity.

Proof. On the right hand side, we have
N oo )
— Z rm(1 4 rz) Z Z ( ) =

a=11=0

Lo (7 o al—d)
- X T
NZQ) >

=0

Z\H

Now, by virtue of the properties of roots of unity, the sum

N 1 _er(l_j)

a(l—j) — =3
Z r =7 T

vanishes unless | = Ni + j for some ¢, in which case it is N. Our sum thus becomes

i(NHJ) -

as claimed. 0

Using this lemma and writing n = N A, the Euler characteristic X(E,IX N, ~) is, up to the
overall factor (—1)° N!='N~N the coefficient of V¥ of the polynomial

P(x) = Z Q- Ha;— D+la (ZT. (1-la) 1—1—7“ m)”+2(N 1)—lq )
Yo la=N(N-1) a=1

where 7 generates the group of N*" roots of unity. Because Y1, = N(N — 1), we see that
1,2~ (N=D+la =1, We then have

Pl@)= Y a. ZNH(ZT (a)b(1 4 pbyn 2N >—la>.

S, N (V1)
Expanding the product gives
N N
P(x) = Z a1y Z H r*(l*la)ba(l + T'ba:z:)"JrZ(N*l)*la
> la=N(N-1) b1, ,by=1a=1

N
e Z Z alll]\] H /la_(l_la)ba(l + ,,,,baw)n-‘rQ(N—l)—la )
a=1

biy - bn=1%"1,=N(N-1)
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The only non-zero contributions to the sum come from those terms where all the b, are

different. To see this, sum over the terms where b; = --- = by =: b for some N > j > 1.
Write ' =1,---,j—1and a=7,---,N. The sum over the restricted configurations with
ba =bis
N N N
Z a,.. INZ Z HT (1=1a)b (] 4 pbg)n+2(N=1)~la H ~(=la)bar (1 4 b )+ 2N D)l
Zlu:N(N_l) b=1by=la=j a’'=1

We can now do the product over a, giving

Z a,.. lNZ( Z lab 1—|—’l° l,)n+2 —1)—2:&1@)
> la=N(N-1)

XZ H r (1—=1,1)bgyr 1+’I" )TH-Q( )—la/‘

b, a'=1

Write L = 35 lz. Then this becomes

N(N—-1) ) ~
> 2 > gy gy S T(L Py RN DL

L=0 > la=L> ly=N(N-1)-L b
% Z H r- l l /)b ’ 1 4 7’ )TH-Q( )—la/
by a’'=1

which vanishes because, for each value of L, the sum

as long as N — j > 1. This follows from the definition of the coefficient a;,..;, as the
coefficient of [T, v in [Ty<p(Ya — wb)>.

Returning now to our generating function P(x), restricting to all of the b, different
allows us to write

P(x
]\(ﬂ)_ Y INHT (-la)a(y 4 pagyn+2N-1)-L
’ > la=N(N-1)

= £(1 £ 2PNV DT] (1 + o)) e,

a

where we have used that [],(1 4+ 7%) = (1 + ") where the sign is negative for N even
and positive for N odd. We can now use the definition of the a;,...;, to repackage the sum
as follows

P(z) n _ rd rb 2
N +(1 4 2 V)2 1)};{1) <(1 T T +7‘bx)>
=+(1+ xN)" H(ra - rb)2

a<b
= +NV(1 V)"

~ 34—



By taking the coefficient of 2V* and reinserting the relevant factors, we see that the

X (EéV;N,N) = (J\;A>

Euler characteristic is

when g = 0.

5.2 NonAbelian local vortices on general compact surfaces

5.2.1 Warming up on general surfaces: The case of N = 2

To see through the eventual forest of sums and products that arises in general, when g is
general it is again useful to begin in the case of N = 2, which is the first nontrivial case.

The residue that we need to compute is

~2d1=(1=9)=1(] —yp)~2d2=(1=9)~1

(-1)7220
S1+1 o1 dyrdyz | -
1 Yo

_oq(1=11
2! Z Resy,—y,—0 [(yl_y2)2 29( Y )
: k1+ko=k

) Y

Our prescription for evaluating this residue is based on the series expansion (4.5) for
the Vandermonde-type contribution. Plugging this back into the residue and interchanging
the sum and the integral gives

e s S E)R()

k1+ko=k =0 j:O

X Res @_2_,_% (1—91)_%1_(1_9)—1(1_yQ)—de_u_g)_l
b2 y YD =2 et (=T =427+

dyl dy2 )

where d, = A — kq and 6, = Nykq + (Ny — 1)(1 — g).

The residues can be evaluated and the terms grouped, giving

e s 3 (7)) 2()

2A+(1—g)—1—-2j+i\ [2A+(1—g)+1+2j—1i
2k1 —1—2j+1i 2ko+1+2j5—1i

C(2A+(1—g)—2j+i) (2A+(1—g)+2j —i
2ky —2j+i g +2j —i ‘

Writing S(g, k, 2.A) for this quantity, we will show that the identity

S(g,k,n) = <Z>

holds.
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Introducing the space-saving notation n = 24 and [ = 2j — i, the quantity S(g, k,n) is
the coefficient of z2* of the polynomial

_09—200_9 _}ii ‘

(1)) 5 0)
< ((1 + x)n+(1fg)+1+l + (_1)7971(1 _ $)n+(lfg)+1+l)
_ ((1 + :L,)n—l—(l—g)—l + (_1)1—9—1(1 - $)n+(1—g)—l>

)

< ((1 + x)’nri’(l*g)‘i’l + (_1)1fgfl(1 _ x)n+(1*g)+l)

which simplifies to give

(71)o—g2g—1 i (—Zg> <;)Z i (Z) (1 o x2)n+(1—g)—1—l ((1 + :L‘)2l+1 + (1 _ x)Zl—H)
=0

=0 \J

0o [/ 2 (
~ -y () e (515
=0

g
- _ 1
= (=1)77929(1 - $2)n I (1 _ x§+1)
o

1

— (-)Fa -2

The coefficient of 2% in (1 — 2?)™ is (—1)*(7}), so we have shown that

S(g,k,n) = <Z>

Modulo technical questions regarding the mathematical validity of the residue prescrip-

as claimed.

tion we give, we have demonstrated that

2A
X(ﬁg;k;Z,Q) - ( k >

for all g, k and A.

5.2.2 General N on general surfaces

We now turn to the most general case of local vortices in U(N) gauge theory with N flavours
on arbitrary compact surfaces.
Our results for general N, and g = 0 and for N. = 2 and general g lead us to suspect that

» (NA
X('Cg;lk;N,N) < ( k )

for all N and g.
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We again simplify by setting A = Ny. The residue we need to compute is then

UNNCQ _
( ) |:H(ya - yb)272g H (1 Yo Sat1

a<b a Ya

Z Resy—o
N! S ka=k

where, as always, d, = A — kg, 6o = Nykq + (Ny —1)(1 —g),and a,b=1,--- N..

Our prescription for computing this residue is based on the expansion of (4.5), which
gives

e =97 =T Wa — v)* T[] (wa —

)~ Npda=(Ne=1)(1-g)—1
dya | »

a<b a<b a<b
-9
20e=10 TT (e — ) TT oo~ < ( +yb))
al;[b b H al;[b 2\ Ya
o(Ne—1)g T (ve — QHy g(Ne—1) I Z ( ) ( 1)Za,b (ya . yb>
a<b a<biq p=0 2 Yo Ya
219 TT (o — ws QH?J o) T Z ( ) ( 1)i“‘b
a<b a<biqp=0 2

Z'a,b .
Yab \ 2jap—ta,b —2Ja,btiab
3 (z ( >y W
ja,b:(] ]a’b

:Q(Nc_l)g Z a,.. lNcHyla g(Ne—1) H Z <Z >< 1>za,b
a,b

Zla:Nc(Nc*]-) a<blab 0
ta,b i 92 . 9 )
a,b Ja,b—%a,b  —2J)a,btla,b
aes ( )y "
ja,b:(] ]a,b
o
_ Nce—1 latca—g(Ne—1
D ST, T D SEND TR | (At o
> la=Nc(Nc—1) €1, ,CN=—00 a

where qy,...;,, is the coefficient of ], yle in Ha<b(ya — yp)? as before and Aey ey, 18 the
coefficient of [], y5 in [[,<p Zza . (u b)( 1/2(yayb + ybygl))1/2~

The idea is to unwind this expansion, compute the residue, pass to the generating
function, and then wind the expansion back up to obtain a neat form.

Substituting this into the residue gives, up to the overall prefactor
(_1)02(chl)gN}chNc!fl,

Nydy + (Ne — 1) + 60 =l — ca
i Ay
Z Z Z all’ e e, ,CNCH ( 5a_la_ca+g(Nc_1)
S ka=k > la=Nc(Nc—1) €15 CNe a
where, as always, d, = A — kq and §, = Nykq + (Ny — 1)(1 — g). This constitutes the
general result for the Euler characteristic X(Lgf\,c Nf).
We now set N. = Ny =: N. In this case, the residue becomes

NA+(N-1)(2—g)—1l, —cq
> Z Z aly e iy ClwwH( +( )(2—-9) )

S ka=hk S la=N(N-1) €1~ Nka+ (N =1) = la - ca

CN
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Using lemma 5.1.3 and writing n = N.A, we find that these numbers are the coefficients of
NE of the polynomial

Pg(:c) = Z Z all,"',lNACL"',CN
ST la=N(N-1) €1, N

N
> Hx—(N—1)+la+ca (Z T_(l_la_c“)b(l + Tbx)n-i—(N—l)(Q—g)—la—ca)

b=1

where r generates the N*® roots of unity, as before, and we have multiplied through by NV,
The method now is similar to the genus zero case. That Y 1, = N(N — 1) gives
[z~ (N=D+la — 1. We then expand the product to give

Py(x) = Z Z ay e iy At o

> la=N(N—1) €1, CN

N
« Z charf(lflafca)ba(l + Tbax)n+(N71)(2fg)flafca )
b1, ,by=1 a

For exactly the same reasons as before the only nonzero contributions come when all the b,
are distinct, at least after regularisation. Thus

P,
?\([:;C) - Z Z aiy ... lN C1,*,CN char (1-ta=ca) (1+Tam)n+(N71)(2ig)7laica
) S la=N(N—1) €1 CN
= (_1)N+1(1in)n-i—(N—l)(Q—g) Zzall,“'lNACL”',CN
la Ca
XH (L47%)) " (rm (1 +r%)) .

We now wind up the series, using the definition of the coefficients a;, ... ;, and A, ... ¢
which leads to the polynomial

2
Py(x) N+1 )(2—9) rb
= (- x N D] —
N! i 1+7‘ z)  (1+rb2)
a -9
XH 1_7 (1+rx)+r(1+rb:r) '
st b(1+rex)  ro(l+ rbx)
This is

2(N—1)g ra rb 2—2g
7P — :l: 1 :l: N n+(N—1)(2—2g) _

NI g(.’E) ( T ) (;I;[b (1 4 T.ax) (1 + fr.bx)

= +NNO=9) (1 4 2Ny
Now, P,(x) was defined to so that the coefficient of V¥ in

(=) NN=D N1=1oWV =19 p (5)
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is the quantity we are after. Collecting all of the various prefactors that we have discarded
and comparing coefficients, this gives the final result

(L) = (”}f) (5.1

as expected.

5.3 A heuristic argument for the local vortex count

The computation that we have done is interesting in that it is rather involved but has, in
the local case (at least), a very simple output. One simple, but heuristic, way to see that

(%)

follows by considering symmetry arguments based on colour-flavour locking, as used in [36,

the local vortex count might be

81] to understand the internal moduli of vortices. Let us summarise the construction. Let
(A*, ¢*) be a solution to the local Abelian vortex equations. Then one can embed this
Abelian solution into a solution (A, ¢) to the local nonAbelian vortex equations as

A* ¢*
0 Yo

0 \ﬁ
Of course, there is nothing special about the top left entry: a local nonAbelian vortex can
be given by putting a local Abelian vortex in any colour-flavour ‘slot’.

One could then build a charge k& nonAbelian vortex by distributing & Abelian vortices
into the N ‘slots’. Given that the number of charge k; local Abelian vortices is

()

the number of ways to distribute & Abelian vortices among the NV slots is

L)) -7

This is in agreement with the result (5.1).

Note that, while the result of the localisation computation also came as a sum over
partitions of k, the form that the summands take is very different to this and there are
cancellations between the contributions from the various partitions.

It is quite remarkable that objects as complicated as vortices might be amenable to
such simple symmetry arguments (at least in special cases). It would be interesting to see
how to make the above argument rigorous. The results of Baptista in [57] show that aspects
of these symmetry-based arguments can be made rigorous in some generality when applied
to understanding the geometry of the vortex moduli space.
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6 Local duality

6.1 What are local vortices?

In our discussion of duality we will restrict ourselves to two special cases where our results
take a particularly simple form: the local case of Ny = N. = A and the Abelian semilocal
case of N, =1, Ny = A. (Recall that working at Chern-Simons level A\ = Ny simplifies our
formulae significantly, especially on surfaces of genus greater than zero.)

We begin here in the local case, where we conjecture that quantum vortices ‘are’
fermions in a background flux, generalising the results of [12]. More precisely, we will find
agreement between our vortex quantum mechanics and the theory of N :== Ny = N, = A
flavours of (spin half) fermion coupled to a background gauge field for the flavour symmetry.
Matching of these theories requires the matching of choices made in defining the theory.

This apparent duality leads us to conjecture with (6.1) the precise form of the Hilbert
space of the vortex quantum mechanics. The Fermi theory depends on a choice of holomor-
phic vector bundle. We expect that, just as in the construction of [12], such a bundle also
enters the vortex theory during quantisation. This leads us to expect there to be a family
of dualities parameterised by a moduli space of semistable vector bundles.

6.2 The Fermi theory

The basic Fermi theory dual to the theory of local U(N) vortices at level N takes the
following simple form, based on the Abelian example of [12].

Let V' — X be a (flavour) complex vector bundle of rank N and degree ¢ (V)[X] = NA,
which should be an integer. The field of the static theory is a section

U=, y) € DV ® Kyl

where Ké/ ?isa spin bundle on X. Each of the 1; is interpreted as an individual flavour.
Note, however, that for general N A there is no splitting

V< LeN

for a line bundle L, so the individual flavours do not really have an independent existence
(if the flavours are meant to have the same charge). Of course, one can make sense of them
locally. If A is an integer, so that NA € NZ, then L may exist, and one can make sense of
the individual flavours.

We give the flavour bundle V ® Ké/ > a backgound connection B. The total flux of B
through ¥ is fixed by the topology of the bundle to be N(A — 1+ g). The connection B
induces a holomorphic structure on V ® K;/ % Via the Dolbeault operator dp.

We extend the bundle V ® K;/ % to ¥ x S in the trivial way, pulling it back along the
projection to 3. We then think of ¢ as being a function of a periodic time component ¢.
We should also introduce a time component B; to the background gauge field B so as to
preserve gauge invariance. However, because the topology of the bundle is trivial along
the time direction, we can make the gauge choice B; = 0. This is sometimes called the
temporal gauge. As B is a background gauge field, this is completely harmless.
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In this gauge, the Lagrangian is the Pauli Lagrangian
Y1 (i0; + Ap — +F(B))Y + c.c.

where c.c. denotes “complex conjugate”, Ap is the usual B-coupled Laplacian and the
combination Ap — xF'(B) gives the Dolbeault Laplacian Ag, = 57953.

Note that if A € Z and B diagonalises, this is the Lagrangian for N fermion flavours in
the background of a (genuine) magnetic field of total flux A.

At low temperature, the theory becomes fermionic Hamiltonian mechanics on the space
of zero modes

dpy =0,
which is the zeroth vector bundle cohomology H(V ® Ké/ 2). The Riemann-Roch theorem
tells us that the ‘expected’ dimension of this space is

(Ve Ky?) = b (Ve Kd?) = N(A=1+g)+ N1 -g)
= NA,

When is h'(V ® K;m) = 0?7 Suppose that A € Z and that V splits as L%V as a
holomorphic bundle where L is a holomorphic line bundle of degree A. In that case, the
first cohomology of V' ® Ké/ 2 = (LK é/ 2)@N vanishes whenever that of L ® Ké/ ? vanishes.
By positivity, this happens for A > g — 1. It seems likely that in the general case, there
will be similar vanishing results for N.A > Ng (perhaps under some restrictions).

Suppose we are in this regime. Then we have a nonrelativistic quantum mechanics on

the odd vector space
H(DNA

where II denotes parity reversal. The geometric quantisation prescription tells us that
quantum states should be holomorphic functions on this space. Such functions are analytic
functions of the holomorphic coordinates (z1,--- ,zn.4). Because the z; are anticommuting,
a holomorphic function of the z; is a linear combination of monomials of the form

le PEEEEY sz
where 0 < k < NA. The total space of quantum states is therefore the exterior algebra

/H]?‘ermi =A* (DNA

with total dimension 2VA.
There is an overall U(1) action on the space of zero modes, acting by z; + €lz; for
each 7. This grades the Hilbert space by particle number. The k-particle space of states is

k _ AkpNA
HFermi =AC )

which has dimension (A;A) This is the expected dimension of the k-vortex Hilbert space.
This is the basic result underpinning the duality (1.1) which we gave at the start of
this paper:
ZSCS,N <> ZFermi,N -

— 41 —



We now understand the theories on both sides a little better. When A € Z, so that the
Fermi theory becomes the theory of N fermions in a magnetic field, this exactly realises
the low-energy vortex theory as the theory of the lowest Landau level for a system of N
Fermi flavours in a magnetic field of flux A. Really though, for general A, this should be
interpreted as a Landau level of charge 1/N objects (or, more accurately, a nonAbelian
Landau level).

There is a subtlety in the matching of the global symmetries in the Fermi-vortex duality
above. In the Fermi theory, the global symmetry is

U(1) x SU(N)

uWw) = ==

The U(1) factor allows us to count the number of particles, and the SU(N) factor rotates
the flavours among themselves. The discrete quotient allows us to couple to background
gauge fields for the flavour symmetry which would not be viable as U(1) x SU(V) gauge
fields. This is the reason that the ‘effective Abelian flux’ A need not be an integer, as long
as NA is.

Naively, the vortex theory has a topological global symmetry

U(1)top
which allows us to count the number of vortices, and a flavour symmetry
SU(N)fiavour-
In the Higgs phase, the flavour symmetry is locked to the colour group as
SU(NV)diag € U(NV)colour X SU(N)favour -

which rotates the possible vortex charges among themselves at the same time as the scalar
field flavours.

How do these global symmetries fit together? One way to understand this is to start
in the vortex theory and couple the scalar fields to a background gauge field for a U(V)
flavour symmetry. This may look illegal, because the overall U(1) is gauged, but there is
nothing stopping one from thinking of the scalar field as taking values in

ERV =X

where FE is the colour bundle on which there is a dynamical gauge field and V is a flavour
bundle which could have nonzero degree, d. This nonzero degree shifts the overall Chern
class of the bundle £ ® V' by Nd and so is equivalent to increasing the degree of the colour
bundle by d. This means shifting the vortex number k — k + d. This slightly roundabout
argument implies that the global symmetries fit together as

U(l)top X SU<N)ﬂav0ur
In

= U(N),

so that the global symmetries match across the duality.
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The equality of indices that we have demonstrated (as well as the matching of global
symmetries and various parameters) is good evidence for the duality, but does not constitute
a proof of the duality. To prove the duality one needs to show more.

In the Abelian case N = 1, Eriksson-Romao showed in [12] that the vector space of
k-vortex states was

Hy = AHO (3, Lo Ky?)

where L is a holomorphic line bundle of degree A as above. This result holds for all 4 € 7
and does not rely on vanishing theorems (in particular, the dimension of the Hilbert space
may be larger than the expected dimension for small A). Note that the space of vortex
states constructed in [12] is defined with respect to a line bundle on ¥ which must be taken
to be L ® Ké/ ? for the above isomorphism to be natural and even to exist in general.

This leads us to conjecture in the nonAbelian case that the k-vortex Hilbert space is,
as a vector space,

?
Hy = AMHO (3,V 0 Ky?) (6.1)

where V' is a (semi)stable holomorphic bundle of rank N and degree N.A as above, and
the vortex Hilbert space is defined with respect to the bundle V ® Ké/ 2, Proving this
conjecture would essentially constitute a proof of the Fermi-vortex duality as a genuine
duality of non-supersymmetric field theories. As mentioned above, this implies that the
bundle V' should enter the quantisation of the vortex theory. We have not attempted a true
construction of the quantum line bundle in this paper. Finding such a construction, even
formally, is an interesting avenue for future research.

The conjecture (6.1) would also imply that the true dimension of the Hilbert space

dim(H) > <N,j‘)

obeys the inequality

which follows because
(2, Ve K?) = NA+ R (2,V @ K?)
> NA.
7 Semilocal duality

7.1 What are semilocal vortices?

The outcome of the vortex count at N, =1 is (see theorem 3.3.1)

g e MA—-Kk)+d—g
E)\. — )\JNg J g .
X( k,l,Nf) jz% f (])( §—j

where 6 = N¢k + (Ny —1)(1 —g).
The simplest case is A = Ny, in which case the count is

g NfA‘F(Nf*l)(l*g) nrg NfAJr(fol)(lfg)
Nf(ka+(Nf—1)(1—g)> _Nf< Np(A— k) ) (7.1)
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The first thing to note here is the asymmetry between vortices and vortex-holes for g # 1: it
appears that vortex-holes are more natural from the perspective of state counting, reflecting
the strange-looking selection rule Ntk > (Ny —1)(g — 1) for semilocal Abelian vortices (this
is the same as the condition that the expected dimension of the vortex moduli space be
nonnegative). The second thing to note is that the count of vortex-holes is reminiscent
of the counting of states consisting of Ny anticommuting objects (that is, fermions). The
third thing to note is the appearance of the factor N, which is familiar from state counting
in Abelian Chern-Simons and in theories of anyons.

In this case, we conjecture that the vortex theory is dual to a kind of U(1)"s /U(1) gauge
theory coupled to Ny fermion flavours, each attached to flux and spin. We give a description
of this theory. Vortices are mapped to bound states of fermions under the duality.

More generally, away from A = N, topological effects become more important, exem-
plified by the fact that the index generally comes as a sum over 0,---,g. We do not give a
general field-theoretic description in this case, but expect that the vortex theory is dual to
a theory of anyons with fractional statistics exp(imrA/Ny), with vortices mapped to certain
bound states of anyons.

7.2 Global symmetries

To understand what a potential dual theory looks like, we consider the symmetries of the
semilocal theory. There is the flavour symmetry

SU(Ny)

which is broken to S(U(Nc)diag X U(Nf — N¢)) in the Higgs phase, and the vortex-counting
topological symmetry

U(1)top -
To see how the U(1) and SU(Ny) symmetries fit together, we again think of the scalar

fields as taking values in a bundle
E@V =X

where F is the colour bundle and V' is the flavour bundle. Shifting the degree of the flavour
bundle by d is formally equivalent to a shift of £ by %—id.

In general, the fractional nature of the shift means that there is something to think
about here,” but in the Abelian case this means that the topological symmetry binds to the
original flavour symmetry as

U(l)top X SU(Nf)’ (7'2)

which is the global symmetry we should aim for.

In the local case, the flavour bundle of the Fermi theory could have arbitrary degree,
reflecting the fact that the global symmetry in that case is U(N). In this semilocal case, we
must instead consider bundles with degree a multiple of Ny. In this case, we can decompose
the flavour bundle as

V=N&F

n a sense, the fact that the shift simplifies for Ny = N, or for N. = 1 is the reason why these two cases

are simple enough for us to study in detail.
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where N is a line bundle of degree B and F is a vector bundle of rank N and degree zero.
In the Fermi theory, we think of N as carrying the electromagnetic gauge potential. Unlike
in the nonAbelian local case, this can be interpreted as real electromagnetism, rather than
a nonAbelian version.

This idea is consistent with the general idea of duality: the background gauge field in
the Fermi theory can be thought of as dual to the electric condensate in the vortex theory.
If the gauge group of the vortex theory is U(1), the gauge group of the background gauge
field in the Fermi theory should also be U(1).

7.3 Flux attachment, spin attachment, and Chern-Simons theory
Consider the theory of a spin 1/2 fermion v coupled to a U(1) gauge potential a at
Chern-Simons level n, with Lagrangian

n 1
N YA NS _
5= aAda 5 (1/) (iDy +A8G®B)¢+C.C.>,

where B is a background Abelian connection, including the spin connection (often, one
incorporates B into the dyanamical connection a by including a BF coupling of the
form a A dB).

The equation of motion for a; is the Gauss law constraint

QEF(G)Z = [¢2ws . (7.3)
Y

The object on the right is the 1 particle density on Y. This equation requires the particle
number, which is the integral of this particle density, to be quantised in units of n. It also
tells us that for a given configuration of 1) particles, the moduli space of classical gauge
fields on ¥ is the Jacobian of ¥ with symplectic form scaled by n. It is well-known that
quantising this gives n9 states associated to the gauge field a.

On the other hand, the low-temperature equation of motion for ¥ on a compact surface
is the lowest Landau level equation

dawpt) = 0.

The Riemann-Roch theorem tells us that, if the background magnetic flux is sufficiently
strong, the number of possible states for the i particle is

B+m

where B is the integrated magnetic flux, and m is the number of ¢ particles divided by n.
The genus-dependent terms cancel because v has spin 1/2.

Because v is a fermion, the occupation number of each state is one or zero. This means
that, for a given compatible configuration of the gauge field, the number of 1) states is

)

This does not take into account the number of states associated to the gauge field, which
to a first approximation, gives an additional factor of n9. In general, a more detailed
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calculation is necessary to account for potential effects associated to nontrivial topology of
the moduli space.
Proceeding for now, if we set n = 1, then n9 = 1 and the (approximate) number of

(B;ﬁﬁ. (7.4)

This is the count of m-particle states in a Landau level of bosons.

quantum states in the full theory is

This carries the essence of flux attachment [82]. The equation (7.3) ‘attaches’ 1/n
units of flux to each 1 particle. Each ¢ particle is also electrically charged and the flux
attachment turns it into a flux-charge composite. By considering the Aharanov-Bohm phase
associated to a rotation of this composite, one can see that the statistical exchange phase
of ¢ is shifted by exp(imn~!). As we started with a fermion, the new statistical phase is

exp(ir(1/n —1)).

When n = 1, the composite is a boson, which agrees with what we saw with the state count
in the lowest Landau level.

There is a subtlety here. The state count (7.4) is not the count of states for spin-zero
bosons in the lowest Landau level in general, but rather the count of states for spin-half
bosons. Indeed, the number of states for a system of ¢ spin-zero bosons in the lowest Landau

<B+q+<l—g>>
) .

Of course, one can absorb 1 — g into B, shifting the total effective magnetic flux. This is a

level instead takes the form

little unsatisfactory from a geometrical perspective. It is a little more natural to think of
flux attachment as changing the statistics, but not the geometrical spin.

If we want to really change the spin of the fermion, we should introduce a BF coupling
between the dynamical connection a and the background spin connection I' on Ké/ % 50 as
to ‘eat’ the spin degrees of freedom. This term takes the general form

gf*aAdR

T
for some level p. Note that I' is not dynamical: it is a background connection. The new
flux attachment equation is

nF(a)x + pF(D)y = 2n|¢|*ws .
Integrating this, we see that the allowed number of 1 particles now takes the form
q=nm—p(l—g)

for m € Z. We have used that I" is a connection on Ké/ % and so has degree g — 1.
Setting n = p = 1, the count of states with ¢ = m — 1 + g of the fermionic 1 particles

<B+q+ﬂ—g§
q

which is the count of states for g spinless bosons, as desired.

is then
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7.4 The dual of a semilocal vortex

We now turn these ideas towards the Abelian semilocal vortex theory. For simplicity,
consider the case of A = Ny so that the vortex count is

o [NrA+ (N =11 —g)
! Ny(A—k) '

When N; = 1, this is simply a theory of fermions in a magnetic field. When Ny > 1, we
must do something a bit more clever.

Although, for consistency, we will eventually start with a theory of fermions, it is actually
easier to write down a bosonic dual in the general case. Take a theory of Ny spinless bosons
® = (®1,--- ,®n,) coupled to a background U(1) x SU(Ny) connection b (this differs from
the B above as it does not contain the spin connection, because our bosons are spinless)
and a dynamical U(1) gauge potential a. We introduce the Chern-Simons coupling

N 1
oy anda— — x a N dl,
27 27

where I' is the non-dynamical spin connection on Ké/ 2, and the usual matter terms
L (01D + 2, )0
B ( (iDy + 8a®b) + c.c.)

into the Lagrangian.
The Gauss law is
—N¢F(a)s + F(I')x = 27|®|?ws,,

which restricts the number of ® particles to take the form
q=—Nym+(1-g),

for m € 7.
At low temperatures, the equation of motion for ® is

aa®b(b = 0
which has a space of solutions of expected dimension
NiB+ Nym+ Ny(1—g).

where B is the total flux associated to the background magnetic field b. In terms of the
particle number ¢, this is

NiB—q+ (Ny—1)(1—g).

Then, because ® is bosonic, the count of ¢g-particle states is, ignoring the gauge field

for now,

(number of states + number of particles) B (NfB + (Ny—1)(1 - g))

number of particles —Nym+(1—g)
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Assuming that the gauge field states enter in the simplest way, the expected quantum
degeneracy of the low-temperature theory is then

o NB+ Ny =1)(1 —g)
f —Nym+(1—g) ’

If we identify the vortex number k with —m + 1 — g and A with B, this is the index for
semilocal vortices at A = Ny. This is a version of bosonic particle-vortex duality.

It would be nice to give this a fermionic description, which we can do by regarding the
bosonic fields in the above description as fermions attached to flux and spin. To do this,
we start with Ny spin-half fermion flavours ¢ = (¢, - - - ,1/1Nf). The fermions are charged
under the background field B, which consists of a fixed magnetic field and a fixed spin
connection. We gauge the U(1) phase of each fermion flavour individually, writing «; for
the gauge field associated to rotations of ;. We introduce an extra gauge field a, which
is associated to simultaneous rotations of all of the ;. This might look a bit strange, as
we have already gauged each U(1), but one can think of it as a shift of each of the «;.
As before, the purpose of the gauge field a is simply to implement a constraint. In this
case, the constraint can be thought of as a constraint on the sum of the «;. Thus, on 52,
we could regard the dynamical gauge field as U(1)"7 /U(1). On general backgrounds, the
situation is slightly more complicated because of the presence of nontrivial flat connections.

To attach the correct fluxes and spins, we consider the Chern-Simons terms

Ny
%a/\da— 217Ta/\d1“—iz1 (;ﬂai/\daﬁ— 217Tai/\dl“> ,
in addition to the usual matter terms for 1. The first two of these terms are exactly as for
the bosonic case, while the remaining terms exist to attach flux and spin to the fermions
(so as to ‘turn them into bosons’).
The Gauss laws for the various gauge fields impose the equations

Flay)s + FD)y = 2771/)21,!)1- (no summation)
—NyF(a)s + F(D)g =27 ol
i
These equations imply that

ZF(%)E = —NyF(a)s + (1 - Np)F(I)s.

This can be thought of as the constraint that including the field a buys us.
The Riemann-Roch theorem then tells us that ‘expected’ number of solutions to the
lowest Landau level equation 5a®a® BY =0is

NyB+ (Ny—1)(1 —g),
The total number of particles is constrained to take the form

g=-Nm+(1—-g)
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for an integer m. Thus the ‘expected’ count of g-particle fermion states is

(number of available States> B (NfB + (Ny—1)(1 - g))

number of particles —Nym+(1—g)

for an integer m.
Incorporating the N fl states associated to the gauge fields, which we again assume
enters in the simplest way, the total number of states for a given ¢ is then

o (NoB+ (N =11~ )
f —Nym+(1—-g) '

This is again the vortex state count, if we identify the vortex number k£ with —m+1—g
and A with B.

This leads us to a conjectural electric-magnetic duality, between the nonrelativistic
Chern-Simons-matter theory

U(1)n, + Ny fundamental scalars

and the fermionic theory we have just described. The Fermi theory has gauge group U(1)™V7,
but the overall U(1) is gauged twice and subject to a constraint. The gauge group is
‘morally’ U(1)N7 /U(1). Indeed, the overall U(1) should survive as a global symmetry for
the duality to hold. However, the need to bind the fermions together and the presence of
the factor N JSZ in the index make it difficult to give a direct description of the dual theory
as a U(1)Vs~! gauge theory. In any case, we schematically denote the dual theory as

U(1)" /U(1) + Ny fermions + CS and BF couplings.

The duality maps vortices to bound states of fermions.

The background gauge flux for the U(1)iop global symmetry in the vortex theory is A,
which is mapped to the background gauge flux B for the overall U(1) global symmetry in
the Fermi theory.

Stated in these terms, the duality is highly reminiscent of the mirror symmetry duality

U(1) + Ny hypermultiplets « U(1)"/U(1) + N; hypermultpliets

of three-dimensional gauge theories with A" = 4 supersymmetry [24]. Mirror symmetry is
also an electric-magnetic duality, mapping vortices to electrically charged particles.

The appearance of a Chern-Simons term in the vortex theory can be thought of from
this perspective as arising from integrating out the fermionic fields of the supersymmetric
theory. It would be interesting to understand more precisely the nature of three-dimensional
mirror symmetry in this ‘quantum Hall regime’ (a regime considered for three-dimensional
Chern-Simons theories with N = 2 supersymmetry in [83]).

In assuming that the index factorises into gauge and matter contributions we have been
rather quick. It would be good to clarify the form of the index of the dual theory to verify
the duality. It would also be nice to clarify precisely the role of the overall U(1) symmetry
in the construction of the dual gauge theory: is there a direct construction of the theory as
a U(1)M7/U(1) theory?
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8 Conclusions

By computing a fairly ‘soft’ topological invariant, we have understood aspects of the
behaviour of quantum vortices in nonrelativistic gauge theories. We have found that
nonAbelian vortices with N. = Ny = A behave as fermions in a nonAbelian Landau level.
More generally, we have found evidence that quantum vortices may be regarded as composite
objects, built of locally-defined anyonic objects.

Our results are consistent with duality: vortices in these theories are dual to the
composite particles which constitute the correct low-temperature degrees of freedom in
certain nonrelativistic electron fluids. It is plausible therefore that the general result (4.6)
contains information about rather general quantum Hall fluids.

Our results, particularly at the special point A\ = Ny, live in the shadow of three-
dimensional mirror symmetry (originally due to [24]). As we alluded to above, it seems
plausible that the duality we have discussed could be derived by a suitable deformation
of conventional mirror dualities. Conversely, if such a deformation was understood, our
results could be viewed as evidence for three-dimensional mirror symmetry. The use of
exact results in topological quantum mechanics to probe and provide evidence for mirror
symmetry has been of interest recently [84—86].

As we commented briefly for the Abelian case, it is plausible that the vortex-hole
(a)symmetry of the vortex quantum mechanics can be related to a nonrelativistic version of
the bosonisation duality of [22]. It would be interesting to develop this in detail, particularly
for the nonAbelian case. As for the relation to mirror symmetry, this would require a good
understanding of the deformation of three-dimensional gauge theories into the ‘quantum
Hall regime’.

We have seen that the expression for the index is simplest when the Chern-Simons level A
is equal to the number of flavours N¢. The general result (4.6) contains more though. In par-
ticular, in the semiclassical limit A — oo, the index becomes the volume of the vortex moduli
space (this can be seen by considering the large A limit of (2.11)). The volumes of the vortex
moduli spaces describe the statistical mechanics of vortex gases [31] and so represent inter-
esting quantities. They have been computed for standard Abelian and nonAbelian vortices
in [5, 6, 32, 33, 87], although there remains some confusion in the case of nonAbelian vortices
on surfaces of genus greater than zero, and for systems of vortices and antivortices in [88].

Our results could also be turned in a rather different direction. In [89], following ideas
of [90], it was argued out that the geometric quantisation of the moduli space of vortices in
a U(1) gauge theory with two fundamental flavours in the infrared limit of A — oo describes
the low-energy quantum dynamics of magnetic Skyrmions, which are (approximately stable)
solitons in ferromagnetic materials. The extent to which this is true is not clear, because it
is a statement that is based on the micromagnetic approximation, which may not be valid
at quantum scales. If it is a useful idea, the limit A — oo introduces an infinite infrared
degeneracy which can be regularised by putting the magnetic Skyrmions in a harmonic
trap, as discussed in subsection 3.4.

A special feature of nonrelativistic gauge theories in 2 + 1 dimensions is that one can
change the sign of the Higgs potential coupling without breaking the theory. This allows one
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to consider regimes where so-called exotic vortices, such as Jackiw-Pi or Ambjgrn-Olesen
vortices, may exist [91-94]. Some applications of the results of this paper to exotic vortices
are given in [95].
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