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SUMMARY 

Anti-mitotic drugs such as paclitaxel are successful chemotherapeutics, but their utility 

is limited by toxicity and resistance. My research aimed to identify novel therapeutic 

strategies combining current drugs with aurora kinase inhibitors (AKI) in pre-clinical 

models and then to design a clinical trial to assess these in patients with bladder cancer.  

Particular interest was stimulated by the correlation between over-expression of aurora 

kinases (AKs) with aggressive clinical behaviour in many cancers and the network of 

interactions which AKs have with other key proteins.  Pre-clinical studies suggested that 

the use of AKIs in combination with other drugs, particularly other anti-mitotic agents, 

might increase efficacy but this had not been studied in bladder cancer.  

As over-expression of AK-A can induce resistance to paclitaxel, I hypothesised that an 

AK-A inhibitor would synergistically enhance the cytotoxicity of paclitaxel. Human 

bladder cancer cell lines were used in cytotoxicity assays to study a range of novel AKIs 

as single agents and in combination with paclitaxel. Application of mathematical 

models identified regions of synergy when AK-A specific inhibitors were combined 

with low concentrations of paclitaxel in T24, RT112 and UM-UC-3 cell lines, with 80-

100% growth inhibition. The effects of these combinations on non-cancer cell lines and 

in neutrophil precursor cells demonstrated differential toxicity, with a reduced risk of 

myelotoxicity compared with higher dose paclitaxel, suggesting they may provide a 

better therapeutic window. Mechanistic investigations included live cell imaging, which 

showed a correlation between the time cells spent in mitosis and cell fate, and an 

assessment of the potential contribution of AK-A expression in sensitivity to the drug 

combination. Combinations of MLN8237 (an AK-A inhibitor) with paclitaxel and 

docetaxel were studied in a T24 bladder cancer xenograft model, and these confirmed 

tolerability with evidence of efficacy in tumour growth inhibition. 

Published clinical trials have now demonstrated the potential efficacy of AK-A 

inhibitors in combination with taxanes but at the expense of additive toxicity. My work 

suggests that using AK-A inhibitors with lower concentrations of paclitaxel could 

reduce toxicity, highlighting the need to explore a range of combinations. Existing early 

phase clinical data have emerged from trials using traditional rule-based trial designs, 

where limited dose ranges were explored. Therefore, an alternative novel Bayesian 

adaptive design should be considered to fully assess the efficacy of the combination of 

MLN8237 and paclitaxel. 

 



 

iv 

 



 

     v 

ACKNOWLEDGEMENTS 

Firstly I am grateful to my funding bodies: Cancer Research UK and the Cancer 

Research UK Cambridge Research Institute for giving me the opportunity to undertake 

laboratory based research. I would also like to acknowledge the gifts of cell lines and 

constructs received from Professor Stephen Taylor, Dr Ultan McDermott and Dr 

Masashi Narita, and to thank Astex Pharmaceuticals and Cyclacel for use of their 

compounds under material transfer agreements.  

I know how fortunate I have been to use the facilities at Cancer Research UK 

Cambridge Institute, and to benefit from the expertise of the staff in the core facilities, 

in particular the Biological Resources Unit, Microscopy and Histopathology. In addition, 

I am grateful to Dr Penny Wright for her advice on analysis of mouse bone marrows, 

and to Dr David Perera for his practical advice and assistance. Professor Ashok 

Venkitaraman gave valuable feedback, particularly early in my project. Dr Adrian 

Mander, Dr Mike Sweeting and Dr Graham Wheeler have aided my understanding of 

Phase 1 clinical trial design. 

I would like to thank all the members of the Jodrell lab, both past and present, for their 

support and friendship during my research. In particular, discussions and collaboration 

with Dr Siang Boon Koh, Dr Yao Lin and Dr Tashinga Bapiro was much appreciated. I 

have learned a great deal about mathematical modelling of drug combinations from Dr 

Ben-Fillippo Krippendorff and Dr Giovanni Di Veroli. I would like to particularly thank  

Jo Bramhall for her unfailing practical support and advice and her patience in 

explaining experimental techniques to someone who struggled to even pipette in the 

early days.  

My research has been complicated and prolonged by health issues. The University of 

Cambridge Disability Resource Centre gave invaluable advice and I would like to thank 

all the staff at Cancer Research UK Cambridge Institute who made it possible for me to 

continue, despite my ongoing challenges. Dr Ann Kaminski’s support throughout has 

been much appreciated. The encouragement of my family and friends has been crucial 

through the most challenging times, particularly from Eric, my husband, and my parents 

together with lots of hugs from my daughter, Meredith. Above all, I could not have 

completed this work without the incredible understanding and compassion from my 

supervisor Professor Duncan Jodrell and my laboratory head, Dr Fran Richards. Their 

support has meant so much to me and I am extremely grateful to them both. 

  



 

vi 

  



 

     vii 

 

CONTENTS 

 INTRODUCTION ................................................................................................... 1 

1.1 CELL CYCLE ....................................................................................................... 1 

1.2 AURORA KINASES ............................................................................................... 3 

1.3 AK-A AND BLADDER CANCER ............................................................................ 5 

1.4 AK-A AND ITS INTERACTIONS ............................................................................ 7 

1.5 ANTI-MITOTIC CANCER DRUGS ........................................................................... 8 

1.6 EFFECTS OF AK-A AND AK-B INHIBITION ....................................................... 10 

1.7 CLINICAL DEVELOPMENT OF AKI .................................................................... 11 

1.7.1 Pan-AKI ...................................................................................................... 12 

1.7.2 AK-A specific ............................................................................................... 12 

1.7.3 AK-B specific ............................................................................................... 13 

1.7.4 Summary of single agent AKI clinical trials ............................................... 13 

1.8 COMBINATION STUDIES WITH AKI ................................................................... 27 

1.8.1 Techniques to assess combinations ............................................................. 27 

1.8.2 Pre-clinical studies combining AKI with other drugs ................................. 27 

1.8.3 Combination clinical trials with AKI .......................................................... 29 

1.9 AIMS AND OBJECTIVES ..................................................................................... 36 

 MATERIALS AND METHODS ......................................................................... 37 

2.1 MATERIALS ...................................................................................................... 37 

2.1.1 Manufacturers ............................................................................................. 37 

2.1.2 Buffers ……………………………………………………………………………..38 

2.1.3 Cell lines ..................................................................................................... 38 

2.2 METHODS ......................................................................................................... 39 

2.2.1 Sulforhodamine B Assay (SRB) ................................................................... 39 

2.2.2 Drug formulation for in vitro studies .......................................................... 42 

2.2.3 Live cell imaging with IncuCyte™ .............................................................. 43 

2.2.4 Propidium Iodide (PI) staining and flow cytometry ................................... 43 

2.2.5 Western blotting .......................................................................................... 44 

2.2.6 Colony forming assay .................................................................................. 46 

2.2.7 Live cell imaging with time-lapse microscopy ............................................ 47 

2.2.8 Immunofluorescence and immunostaining .................................................. 47 

2.2.9 Human CFU-GM colony forming assay ..................................................... 48 



 

viii 

2.2.10 Generation of tetracycline inducible HeLa over-expressing Aur A cell line

 ............. ........................................................................................................ 48 

2.2.11 Analysis of paclitaxel, CYC3 and MLN8237 by Liquid chromatography-

mass spectrometry (LC-MS/MS) ............................................................................. 49 

2.3 ANIMAL STUDIES .............................................................................................. 51 

2.3.1 Xenograft model .......................................................................................... 52 

2.3.2 Mid-term bleeds .......................................................................................... 52 

2.3.3 Necropsy...................................................................................................... 52 

2.3.4 Histology methods ....................................................................................... 53 

2.3.5 Image analysis............................................................................................. 55 

2.3.6 Drug formulation for in vivo studies ........................................................... 56 

2.3.7 Mouse CFU-GM assay................................................................................ 58 

2.3.8 M30/M65 ELISA ......................................................................................... 59 

 DETERMINING THE IN VITRO EFFICACY OF AURORA KINASE 

INHIBITORS AS SINGLE AGENTS AND IN COMBINATION WITH 

TAXANES ..................................................................................................................... 60 

3.1 INTRODUCTION ................................................................................................ 60 

3.2 COMPARISON OF THE EFFICACY IN VITRO OF AKI INHIBITORS WITH DIFFERENT 

SELECTIVITY IN T24 BLADDER CANCER CELLS ............................................................. 60 

3.2.1 Single agent response to AKI in T24 cells .................................................. 60 

3.2.2 Combination of AKI with paclitaxel in T24 cells to select best agent for 

combinations…… .................................................................................................... 63 

3.2.3 Validation of synergy seen with combination CYC3 and paclitaxel in T24 

cells…………… ....................................................................................................... 67 

3.2.4 Scheduling of CYC3 and paclitaxel combination in T24 cells .................... 69 

3.3 INVESTIGATING THE COMBINATION OF CYC3 AND PACLITAXEL IN A BLADDER 

CANCER CELL LINE PANEL ............................................................................................ 70 

3.3.1 Single agent response to CYC3 in bladder cancer cell line panel .............. 71 

3.3.2 Testing of other cytotoxic drugs in bladder cancer cell line panel ............. 73 

3.3.3 Combination of CYC3 and paclitaxel in bladder cancer cell line panel .... 75 

3.3.4 Summary of CYC3 experimental data in bladder cancer cell lines ............ 77 

3.4 ASSESSMENT OF MLN8237 IN BLADDER CANCER CELL LINES ......................... 77 

3.4.1 Effect of MLN8237 in T24 cells .................................................................. 78 

3.4.2 Effect of MLN8237 in bladder cancer cell line panel ................................. 80 



 

     ix 

3.4.3 Validation of synergy seen with MLN8237 and paclitaxel in bladder cancer 

cell lines……… ........................................................................................................ 83 

3.4.4 Scheduling of MLN8237 and paclitaxel combination in T24 cells ............. 90 

3.4.5 Colony forming assay with the combination of MLN8237 and paclitaxel .. 94 

3.4.6 Assessment of the combination of MLN8237 and docetaxel in bladder 

cancer cell line panel .............................................................................................. 98 

3.5 SUMMARY OF CHAPTER .................................................................................. 100 

 ASSESSMENT OF THE EFFECT OF AK-A SPECIFIC INHIBITORS IN 

NON-CANCER CELL LINES COMPARED TO T24 CELLS ............................. 102 

4.1 INTRODUCTION............................................................................................... 102 

4.2 COMPARISON OF THE EFFICACY IN VITRO OF AK-A INHIBITORS AND PACLITAXEL 

IN IMR-90 AND ARPE-19 CELL LINES ....................................................................... 102 

4.2.1 Single agent response to paclitaxel and AKI ............................................ 103 

4.2.2 Combination of AK-A inhibitors with paclitaxel ....................................... 104 

4.2.3 Investigation of SRB findings in ARPE-19 cells exposed to paclitaxel and 

MLN8237……. ...................................................................................................... 106 

4.3 COMPARISON OF EFFECTS OF MLN8237 AND PACLITAXEL IN ARPE-19 AND 

T24 CELLS USING LIVE CELL IMAGING AND IMMUNOSTAINING ................................... 109 

4.3.1 Live cell imaging in T24 and ARPE-19 cells exposed to MLN8237 and 

paclitaxel…….. ...................................................................................................... 109 

4.3.2 Immunostaining in T24 and ARPE-19 cells exposed to MLN8237 and 

paclitaxel…….. ...................................................................................................... 114 

4.3.3 Summary of data in ARPE-19 and IMR-90 cell lines ............................... 119 

4.4 MYELOTOXICITY OF COMBINATION OF AK-A INHIBITORS AND PACLITAXEL . 119 

4.5 SUMMARY OF CHAPTER .................................................................................. 122 

 EXPLORING THE INFLUENCE OF AK-A EXPRESSION ON RESPONSE 

TO AKI AND PACLITAXEL ................................................................................... 124 

5.1 INTRODUCTION............................................................................................... 124 

5.2 RELATIVE LEVELS OF AK-A IN THE CELL LINES TESTED ................................ 124 

5.3 USE OF IN VITRO HELA CELL MODEL TO ASSESS AK-A OVER-EXPRESSION ..... 125 

5.3.1 Creation of HeLa AK-A inducible cell line ............................................... 125 

5.3.2 Effects of AK-A over-expression on sensitivity to MLN8237 and paclitaxel

 …………………………………………………………………………………….127 

5.3.3 Live cell imaging in HeLa AK-A cells with paclitaxel .............................. 131 

5.3.4 Colony forming assay in HeLa AK-A cells with paclitaxel ....................... 134 



 

x 

5.3.5 Western blotting with the combination of MLN8237 and paclitaxel ........ 135 

5.4 SUMMARY OF CHAPTER .................................................................................. 136 

 IN VIVO STUDIES ............................................................................................. 138 

6.1 INTRODUCTION .............................................................................................. 138 

6.2 ESTABLISHMENT OF T24 BLADDER CANCER XENOGRAFT MODEL ................... 138 

6.3 INITIAL PILOT STUDIES WITH AKI AND PACLITAXEL ...................................... 139 

6.3.1 CYC3 pilot studies in MIA PaCa-2 and T24 xenograft models ................ 140 

6.3.2 MLN8237 pilot study in T24 xenograft model .......................................... 143 

6.3.3 Paclitaxel pilot study in T24 xenograft model .......................................... 145 

6.3.4 Summary of pilot studies ........................................................................... 146 

6.4 SINGLE AGENT EFFICACY STUDIES IN T24 XENOGRAFT MODEL ...................... 147 

6.4.1 Efficacy of single agent paclitaxel and docetaxel ..................................... 147 

6.4.2 Efficacy of single agent MLN8237 ............................................................ 152 

6.4.3 Summary of single agent efficacy studies ................................................. 161 

6.5 MLN8237 AND PACLITAXEL COMBINATION STUDIES ..................................... 161 

6.5.1 Study to assess tolerability of MLN8237 and paclitaxel in combination .. 161 

6.5.2 Efficacy of MLN8237 and paclitaxel in combination ............................... 169 

6.5.3 Summary of MLN8237 and paclitaxel combination studies ..................... 174 

6.6 MLN8237 AND DOCETAXEL COMBINATION STUDIES ..................................... 175 

6.6.1 Assessment of tolerability of MLN8237 and docetaxel combination in non-

tumour-bearing nude mice .................................................................................... 175 

6.6.2 Efficacy of MLN8237 and docetaxel combination in T24 xenografts ....... 182 

6.6.3 Summary of MLN8237 and docetaxel combination studies ...................... 194 

6.7 SUMMARY OF CHAPTER .................................................................................. 195 

 TRANSLATION OF AK-A SPECIFIC INHIBITORS INTO CLINICAL 

TRIALS ........................................................................................................................ 199 

7.1 INTRODUCTION .............................................................................................. 199 

7.2 PRINCIPLES OF PHASE 1 CLINICAL TRIALS ...................................................... 199 

7.3 SUMMARY OF MLN8237 AND TAXANES CLINICAL TRIALS ............................. 203 

7.3.1 Paclitaxel .................................................................................................. 203 

7.3.2 Nab-paclitaxel ........................................................................................... 204 

7.3.3 Docetaxel .................................................................................................. 204 

7.3.4 Summary of results from clinical trials ..................................................... 205 

7.4 PROPOSED TRIAL PROTOCOL FOR THE COMBINATION OF MLN8237 AND 

PACLITAXEL ............................................................................................................... 206 



 

     xi 

7.4.1 Starting doses of MLN8237 and paclitaxel ............................................... 206 

7.4.2 Trial design ............................................................................................... 206 

7.5 USE OF PHARMACODYNAMIC AND PHARMACOKINETIC DATA ......................... 207 

7.5.1 Single agent MLN8237 PK, PD and efficacy models ............................... 208 

7.5.2 Models for combination of MLN8237 and taxanes ................................... 208 

7.6 ALTERNATIVE CLINICAL TRIAL DESIGNS ........................................................ 209 

7.6.1 Alternative dual-agent clinical trial designs ............................................. 210 

7.6.2 Phase 1 combination trial designs assessing toxicity and efficacy ........... 210 

7.7 SUMMARY OF CHAPTER .................................................................................. 211 

 DISCUSSION ...................................................................................................... 213 

 REFERENCES .................................................................................................... 219 

 APPENDICES ..................................................................................................... 244 

  



 

xii 

LIST OF TABLES 

Table 1-1: Review of evidence linking aurora kinases with solid tumours ...................... 5 

Table 1-2: Published clinical trials in pan-AKI. ............................................................. 19 

Table 1-3: Published clinical trials in AK-A specific inhibitors. .................................... 25 

Table 1-4: Published clinical trials with AK-B specific inhibitors. ................................ 26 

Table 1-5: Published clinical trials of AKI in combination with other drugs. ................ 35 

Table 2-1 List of manufacturers of materials used in this research, together with 

headquarters ............................................................................................................ 38 

Table 2-2: List of cell lines used in research. ................................................................. 39 

Table 2-3: Cell line seeding densities/well in 96 well plates for SRB assay. ................. 40 

Table 2-4: Cytotoxic drugs used in research together with supplier and catalogue 

number. ................................................................................................................... 43 

Table 2-5: List of primary antibodies used for Western blotting. ................................... 46 

Table 2-6: Antibodies and antigen retrieval used in immunohistochemistry studies. .... 54 

Table 3-1 In vitro IC50 activity of AKI used together with other key kinases targeted. . 60 

Table 3-2: IC50 and GI50 of AKI tested in T24 cells ....................................................... 62 

Table 3-3: IC50 and GI50 of paclitaxel, gemcitabine and docetaxel in T24 cells. ........... 62 

Table 3-4: T24 growth inhibition following different scheduling of CYC3 and 

paclitaxel. ................................................................................................................ 70 

Table 3-5: Mutation status of bladder cancer cell lines tested. ....................................... 71 

Table 3-6: Growth inhibition seen in bladder cancer cell lines exposed to CYC3 10µM.

 ................................................................................................................................. 72 

Table 3-7: GI50 and maximum growth inhibition seen for bladder cancer cell lines 

exposed to paclitaxel, gemcitabine and docetaxel. ................................................. 73 

Table 3-8: Summary of SRB assay data for bladder cell lines with CYC3 together with 

paclitaxel. ................................................................................................................ 76 

Table 3-9: Maximum growth inhibition seen in bladder cancer cell lines exposed to 

MLN8237 300 nM. ................................................................................................. 81 

Table 3-10: Summary of SRB assay data for bladder cell lines with the combination of 

MLN8237 and paclitaxel. ....................................................................................... 81 

Table 3-11: Final cell confluency relative to DMSO at 72 hours for T24, RT112 and 

UM-UC-3 cells. ....................................................................................................... 87 

Table 3-12: Summary of SRB assay data for bladder cell lines with MLN8237 together 

with docetaxel. ........................................................................................................ 98 



 

     xiii 

Table 4-1: Proportion of cell fates for each T24 cell entering mitosis for each drug 

treatment. ............................................................................................................... 112 

Table 4-2: Fate of T24 daughter cells following first mitosis in cells exposed to drug 

treatments as labelled. ........................................................................................... 112 

Table 4-3: Proportion of cell fates for each ARPE-19 cell entering mitosis for each drug 

treatment. ............................................................................................................... 114 

Table 4-4: Fate of ARPE-19 daughter cells following first mitosis in cells exposed to 

drug treatments as labelled. ................................................................................... 114 

Table 5-1: IC50 and GI50 of paclitaxel and MLN8237 in HeLa AK-A inducible cell line.

 ............................................................................................................................... 128 

Table 5-2: Cell fate for HeLa AK-A cells exposed to paclitaxel 1 nM and 2 nM with and 

without doxycycline (dox) induction. ................................................................... 134 

Table 6-1: Vehicle formulation used for each dosing level of paclitaxel and docetaxel.

 ............................................................................................................................... 147 

  



 

xiv 

LIST OF FIGURES 

Figure 1-1: The cell cycle. ................................................................................................ 2 

Figure 1-2: The role of Aurora A and Aurora B during mitosis. ...................................... 3 

Figure 1-3: The effects of AK-A over-expression in cancer. ........................................... 8 

Figure 1-4: The competing networks model. .................................................................... 9 

Figure 1-5: Differential effects of AK-A and AK-B inhibition on mitosis. ................... 10 

Figure 1-6: The effects of paclitaxel on the percentage of apoptotic cells in mock 

transfected HeLa cells against those transfected with AK-A. ................................ 28 

Figure 2-1: Combination of AT9283 and paclitaxel in T24 cells. .................................. 42 

Figure 2-2: Sample histogram plot of flow cytometry data. ........................................... 44 

Figure 2-3: Example of tissue classifier algorithm for analysis of T24 xenograft 

tumours. .................................................................................................................. 55 

Figure 3-1: Publically available chemical structures of initial AKI used. ...................... 61 

Figure 3-2: Dose response curves for T24 cells exposed to AKI. .................................. 61 

Figure 3-3: Dose response curves for T24 cells exposed to A. Paclitaxel B. Gemcitabine 

C. Docetaxel. ........................................................................................................... 62 

Figure 3-4: Combination of AT9283 and paclitaxel in T24 cells. .................................. 63 

Figure 3-5: Combination CYC1 and paclitaxel in T24 cells. ......................................... 64 

Figure 3-6: Combination of CYC3 and paclitaxel in T24 cells. ..................................... 65 

Figure 3-7: Combination CYC116 and paclitaxel in T24 cells. ..................................... 66 

Figure 3-8: Relative cell confluency over time for CYC3 and paclitaxel as single agents 

and in combination. ................................................................................................. 67 

Figure 3-9: Western blots in T24 cells treated with CYC3 and paclitaxel. .................... 69 

Figure 3-10: Dose response curves for bladder cancer cell line panel exposed to CYC3.

 ................................................................................................................................. 72 

Figure 3-11: Dose response curves for bladder cancer cell line panel exposed to 

paclitaxel. ................................................................................................................ 74 

Figure 3-12: Dose response curves for bladder cancer cell line panel exposed to 

docetaxel. ................................................................................................................ 75 

Figure 3-13: Combination of CYC3 and paclitaxel in UM-UC-3 cells. ......................... 76 

Figure 3-14: Combination of CYC3 and paclitaxel in RT4 cells. .................................. 77 

Figure 3-15: Chemical structure of MLN8237 ............................................................... 78 

Figure 3-16: Dose response curves for T24 cells exposed to MLN8237 ........................ 79 

Figure 3-17: Combination of MLN8237 and paclitaxel in T24 cells. ............................ 79 



 

     xv 

Figure 3-18: Dose response curves for bladder cancer cell line panel exposed to 

MLN8237. ............................................................................................................... 80 

Figure 3-19: Combination of MLN8237 and paclitaxel in RT112 cells. ........................ 82 

Figure 3-20: Combination of MLN8237 and paclitaxel in UM-UC-3 cells. .................. 82 

Figure 3-21: Flow cytometry analysis of the cell cycle profiles of T24 cells after 

treatment with MLN8237. ....................................................................................... 83 

Figure 3-22: Flow cytometry analysis of the cell cycle profiles of T24 cells after 

treatment with paclitaxel for six hours. ................................................................... 84 

Figure 3-23: Flow cytometry analysis of the cell cycle profiles of T24 cells exposed to a 

range of paclitaxel and MLN8237 concentrations as single agent and in 

combination for 24 hours. ....................................................................................... 85 

Figure 3-24: Flow cytometry analysis of the cell cycle profiles of UM-UC-3 and RT112 

exposed to paclitaxel and MLN8237 as single agents and in combination. ........... 86 

Figure 3-25: Relative cell confluency over time for T24, RT112 and UM-UC-3 exposed 

to paclitaxel and MLN8237. ................................................................................... 87 

Figure 3-26: Western blots of T24 cell pellets following exposure to drugs as indicated 

for 24 hours. ............................................................................................................ 89 

Figure 3-27: Western blots of UM-UC-3 cell pellets following exposure to drugs as 

indicated for 24 hours. ............................................................................................ 89 

Figure 3-28: Western blots of RT112 cell pellets following exposure to drugs as 

indicated for 24 hours. ............................................................................................ 90 

Figure 3-29: Combination of MLN8237 and paclitaxel in T24 cells with cells initially 

exposed to paclitaxel for six hours, followed by MLN8237 for remaining 66 hours.

 ................................................................................................................................. 91 

Figure 3-30: Combination of MLN8237 and paclitaxel in T24 cells with cells initially 

exposed to paclitaxel for 24 hours, followed by MLN8237 for remaining 48 hours.

 ................................................................................................................................. 92 

Figure 3-31: Combination of MLN8237 and paclitaxel in T24 cells with cells initially 

exposed to MLN8237 for six hours, followed by paclitaxel for remaining 66 hours.

 ................................................................................................................................. 93 

Figure 3-32: Combination of MLN8237 and paclitaxel in T24 cells with cells initially 

exposed to MLN8237 for 24 hours, followed by paclitaxel for remaining 48 hours.

 ................................................................................................................................. 93 

Figure 3-33: Colony forming assay in T24 cells exposed to paclitaxel and/or MLN8237.

 ................................................................................................................................. 95 



 

xvi 

Figure 3-34: Colony forming assay in RT112 cells exposed to paclitaxel and/or 

MLN8237. ............................................................................................................... 96 

Figure 3-35: Colony forming assay in UM-UC-3 cells exposed to paclitaxel and/or 

MLN8237. ............................................................................................................... 97 

Figure 3-36: Western blots for proteins of interest in T24 cells exposed to docetaxel, 

paclitaxel and MLN8237 as labelled for 24, 30 and 48 hours. ............................... 99 

Figure 4-1: Dose response curves for IMR-90 cells exposed to paclitaxel, MLN8237 

and CYC3. ............................................................................................................. 103 

Figure 4-2: Dose response curves for ARPE-19 cells exposed to paclitaxel and 

MLN8237. ............................................................................................................. 104 

Figure 4-3: Combination of CYC3 and paclitaxel in IMR-90 cells. ............................. 104 

Figure 4-4: Combination of MLN8237 and paclitaxel in IMR-90 cells. ...................... 105 

Figure 4-5: Combination of MLN8237 and paclitaxel in ARPE-19 cells. ................... 106 

Figure 4-6: Relative cell confluency over time in ARPE-19 cells exposed to drugs as 

indicated. ............................................................................................................... 107 

Figure 4-7: Relative number of colonies observed after 24 hours and 72 hours exposure 

to paclitaxel and/or MLN8237 in ARPE-19 cells together with representative 

photographs of the colony plates. ......................................................................... 108 

Figure 4-8: Diagram depicting the various fates of a cell and its daughter cells after first 

mitosis. .................................................................................................................. 110 

Figure 4-9: Representative images of T24 cells undergoing each different mitotic fate.

 ............................................................................................................................... 110 

Figure 4-10: T24 live cell imaging. .............................................................................. 111 

Figure 4-11: ARPE-19 live cell imaging. ..................................................................... 113 

Figure 4-12: Percentage of total mitotic T24 cells exposed to drug treatments as 

labelled. ................................................................................................................. 115 

Figure 4-13: Percentage of T24 in interphase with normal or aberrant nuclei following 

exposure to drug treatments as labelled. ............................................................... 116 

Figure 4-14: Percentage of total mitotic ARPE-19 cells exposed to drug treatments as 

labelled. ................................................................................................................. 117 

Figure 4-15: Percentage of ARPE-19 cells in interphase with normal or aberrant nuclei 

following exposure to drug treatments as labelled................................................ 118 

Figure 4-16: CFU-GM assay for CYC3, MLN8237 and paclitaxel. ............................ 120 

Figure 4-17: CFU-GM assay results for combinations of CYC3 or MLN8237 together 

with paclitaxel. ...................................................................................................... 121 



 

     xvii 

Figure 5-1: Total AK-A quantification in cell lines tested as labelled. ........................ 125 

Figure 5-2: Western blot showing total AK-A (green channel) with actin as control (red 

channel). ................................................................................................................ 126 

Figure 5-3: Western blot showing total AK-A (green channel) with actin as control (red 

channel). ................................................................................................................ 126 

Figure 5-4: Immunofluorescence staining of mitotic HeLa AK-A inducible cells with 

and without doxycycline. ...................................................................................... 127 

Figure 5-5: Dose response curves for HeLa AK-A inducible cells, with and without 

induction of AK-A expression with doxycycline. ................................................ 128 

Figure 5-6: Combination of MLN8237 and paclitaxel in HeLa AK-A inducible cells 

without doxycycline. ............................................................................................. 129 

Figure 5-7: Combination of MLN8237 and paclitaxel in HeLa AK-A inducible cells 

with doxycycline. .................................................................................................. 130 

Figure 5-8: Relative cell confluency for HeLa AK-A inducible cells exposed to 

paclitaxel and MLN8237 as labelled. ................................................................... 131 

Figure 5-9: Mitotic duration of HeLa AK-A inducible cells with or without doxycycline 

in cells exposed to DMSO or paclitaxel. ............................................................... 132 

Figure 5-10: Representative photographic images of HeLa AK-A inducible cells 

undergoing different mitotic phenomena when exposed to paclitaxel 1 nM and 

paclitaxel 2 nM. ..................................................................................................... 133 

Figure 5-11: Mitotic duration and cell fate for HeLa AK-A cells exposed to paclitaxel 1 

nM and 2 nM with and without doxycycline induction. ....................................... 133 

Figure 5-12: HeLa AK-A inducible cell line daughter cell fate following paclitaxel 

treatment. ............................................................................................................... 134 

Figure 5-13: Relative number of colonies observed after 24 hours exposure to paclitaxel 

in HeLa AK-A inducible cells. ............................................................................. 135 

Figure 5-14: Western blots of HeLa AK-A cells with and without doxycycline after 24 

or 48 hours of exposure to MLN8237 or paclitaxel. ............................................. 136 

Figure 6-1: Tumour growth over time in T24 xenografts. ............................................ 139 

Figure 6-2: Pharmacokinetic analysis of CYC3 concentrations in plasma and tumour in 

T24 and MIA PaCa-2 xenografts. ......................................................................... 141 

Figure 6-3: Time course experiment to establish PD parameters following single dose of 

CYC3 in T24 xenografts. ...................................................................................... 142 

Figure 6-4: Time course experiment to establish PD parameters following single dose of 

CYC3 in MIA PaCa-2 xenografts. ........................................................................ 143 



 

xviii 

Figure 6-5: Pharmacokinetic analysis of MLN8237 concentrations in plasma and 

tumour of T24 xenografts. .................................................................................... 144 

Figure 6-6: Time course experiment to establish PD parameters in T24 xenografts after 

a single dose of MLN8237 30 mg/kg OG. ............................................................ 144 

Figure 6-7: Pharmacokinetic analysis of paclitaxel concentrations in plasma and tumour 

of xenografts. ........................................................................................................ 145 

Figure 6-8: Time course experiment to establish PD parameters following single dose of 

paclitaxel in T24 xenografts. ................................................................................. 146 

Figure 6-9: Percentage body weight relative to Day 1 of dosing over days since first 

dose for each individual mouse dosed with paclitaxel and docetaxel on days 1, 7, 

14 and 21. .............................................................................................................. 148 

Figure 6-10: Blood counts for study comparing the effect of multiple dosing of 

paclitaxel or docetaxel on days 1, 7, 14 and 21, compared with vehicle. ............. 149 

Figure 6-11: Relative tumour growth expressed as volume measured over time since 

start of dosing in mice dosed weekly with either vehicle, paclitaxel  or docetaxel, 

on days 1, 7, 14 and 21. ........................................................................................ 151 

Figure 6-12: Pharmacodynamic analysis of T24 xenograft tumours of mice treated with 

either vehicle, paclitaxel or docetaxel on days 1, 7, 14 and 21. ............................ 152 

Figure 6-13: Percentage body weight relative to Day 1 of dosing over days since first 

dose for each individual mouse dosed with MLN8237 once daily for five 

consecutive days of a weekly cycle for five weeks. ............................................. 153 

Figure 6-14: Blood counts for study comparing the effect of multiple dosing (once daily 

for five consecutive days of a weekly cycle for five weeks) of MLN8237 30 mg/kg 

or MLN8237 15 mg/kg compared to vehicle. ....................................................... 154 

Figure 6-15: Representative bone marrow images of femurs of mice comparing the 

effect of multiple dosing (once daily for five consecutive days of a weekly cycle 

for five weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg compared to 

vehicle. .................................................................................................................. 156 

Figure 6-16: Myeloperoxidase (MPO) positive cells in bone marrow of femurs of  mice 

with T24 xenografts comparing the effect of multiple dosing (once daily for five 

consecutive days of a weekly cycle for five weeks) of MLN8237 30 mg/kg or 

MLN8237 15 mg/kg compared to vehicle. ........................................................... 157 

Figure 6-17: Relative tumour growth expressed as volume measured over time since 

start of dosing comparing the effect of multiple dosing (once daily for five 



 

     xix 

consecutive days of a weekly cycle for five weeks) of MLN8237 30 mg/kg or 

MLN8237 15 mg/kg compared to vehicle. ........................................................... 158 

Figure 6-18: Waterfall plot of percentage change in tumour volume at endpoint 

comparing the effect of multiple dosing (once daily for five consecutive days of a 

weekly cycle for five weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg 

compared to vehicle. ............................................................................................. 158 

Figure 6-19: Relationship between tumour volume and tumour weight comparing the 

effect of multiple dosing (once daily for five consecutive days of a weekly cycle 

for five weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg compared to 

vehicle. .................................................................................................................. 159 

Figure 6-20: Pharmacodynamic markers measured at endpoint comparing the effect of 

multiple dosing (once daily for five consecutive days of a weekly cycle for five 

weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg compared to vehicle. .... 160 

Figure 6-21: Percentage body weight relative to Day 1 of dosing over days since first 

dose for each individual mouse study assessing the tolerability of combinations of 

MLN8237 and paclitaxel in T24 xenografts. ........................................................ 163 

Figure 6-22: Endpoint blood counts for study assessing the tolerability of combinations 

of MLN8237 and paclitaxel in T24 xenografts. .................................................... 164 

Figure 6-23: Representative images bone marrow images of femurs of mice in study 

assessing the tolerability of combinations of MLN8237 and paclitaxel in T24 

xenografts. ............................................................................................................. 166 

Figure 6-24: Tumour growth expressed as volume measured over time since start of 

dosing (days) in study assessing the tolerability of combinations of MLN8237 and 

paclitaxel in T24 xenografts. ................................................................................. 167 

Figure 6-25: Pharmacodynamic markers measured at endpoint in study assessing the 

tolerability of combinations of MLN8237 and paclitaxel in T24 xenografts. ...... 168 

Figure 6-26: Percentage body weight relative to Day 1 of dosing over days since first 

dose for each individual mouse in study assessing the efficacy of combinations of 

MLN8237 and paclitaxel in T24 xenografts. ........................................................ 170 

Figure 6-27: Tumour growth expressed as volume measured over time since start of 

dosing (days) in study assessing the efficacy of combinations of MLN8237 and 

paclitaxel in T24 xenografts. ................................................................................. 171 

Figure 6-28: Waterfall plot of percentage change in tumour volume at endpoint 

compared to Day 1 of dosing in mice in MLN8237 and paclitaxel efficacy study.

 ............................................................................................................................... 172 



 

xx 

Figure 6-29: Pharmacodynamic markers measured at endpoint in study assessing the 

efficacy of combinations of MLN8237 and paclitaxel in T24 xenografts. ........... 173 

Figure 6-30: Representative images from HALO™ analysis of two different tumours, 

one with progressive disease and the other with a partial response with PD 

markers. ................................................................................................................. 174 

Figure 6-31: Percentage body weight relative to Day 1 of dosing over days since first 

dose for each mouse in study assessing the tolerability of combinations of 

MLN8237 and docetaxel in non-tumour bearing nude mice. ............................... 176 

Figure 6-32: Day 22 blood counts for study assessing the tolerability of combination of 

MLN8237 and docetaxel in non tumour bearing nude mice. ............................... 177 

Figure 6-33: Day 26 blood counts for study assessing the tolerability of combination of 

MLN8237 and docetaxel in non tumour bearing nude mice. ............................... 178 

Figure 6-34: Endpoint blood counts for study assessing the tolerability of combination 

of MLN8237 and docetaxel in non tumour bearing nude mice. ........................... 179 

Figure 6-35 Representative images bone marrow images of femurs of mice in study 

assessing the tolerability of combinations of MLN8237 and docetaxel in T24 

xenografts. ............................................................................................................. 180 

Figure 6-36: Results from mouse CFU-GM pilot in study assessing tolerability of 

MLN8237 and docetaxel ....................................................................................... 182 

Figure 6-37: Percentage body weight relative to Day 1 of dosing over days since first 

dose for each individual mouse dosed in MLN8237 and docetaxel efficacy study.

 ............................................................................................................................... 184 

Figure 6-38: Endpoint blood counts for study assessing the efficacy of combination of 

MLN8237 and docetaxel in T24 xenografts. ........................................................ 186 

Figure 6-39: Tumour growth expressed as volume measured over time since start of 

dosing (days) in study assessing the efficacy of combinations of MLN8237 and 

docetaxel in T24 xenografts. ................................................................................. 187 

Figure 6-40: Waterfall plot of percentage change in tumour volume at endpoint 

compared to Day 1 of dosing in mice in MLN8237 and docetaxel efficacy study.

 ............................................................................................................................... 188 

Figure 6-41: Pharmacodynamic markers measured at endpoint in MLN8237 and 

docetaxel efficacy study ........................................................................................ 189 

Figure 6-42: Analysis of skin samples of mice treated in efficacy study of MLN8237 

and docetaxel. ....................................................................................................... 191 



 

     xxi 

Figure 6-43: Assessment of M30 and M65 in MLN8237 and docetaxel efficacy study.

 ............................................................................................................................... 193 

Figure 6-44: Comparison of M30 and M65 results with CC3 and percentage necrosis in 

MLN8237 and docetaxel efficacy study. .............................................................. 194 

Figure 7-1: Example of a 2D dose surface formed by Drug A and Drug B. ................ 201 

Figure 7-2: Example of dose escalation studies. ........................................................... 202 

Figure 7-3: Admissable dose levels for proposed MLN8237 and paclitaxel clinical trial.

 ............................................................................................................................... 207 

 

 

 





 

     1 

 INTRODUCTION 
Effective new cancer treatments are urgently required, particularly for cancers such as 

metastatic bladder cancer where there is a paucity of systemic treatment options. 

Increasingly combinations of drugs are used, aiming to target cancer cells with differing 

drug sensitivities and reduce the likelihood of drug resistance (1). In the era of 

molecularly targeted agents, an understanding of the pre-clinical behaviour of these 

agents in combination is critical when translating promising in vitro and in vivo work 

into successful clinical trials. My research focuses on aurora kinase inhibitors (AKI) and 

the potential to combine these with other anti-cancer agents targeting mitosis in bladder 

cancer. It was stimulated by the finding that over-expression of aurora kinase A (AK-A) 

could lead to resistance to a commonly used anti-mitotic agent, paclitaxel (2), 

suggesting there could be potential to overcome this in combination with AKI.  

Cancer is a disease characterised by a deregulated cell cycle and therefore firstly I will 

briefly review the cell cycle and process of mitosis. Next I describe the aurora kinase 

family, their role in mitosis and the evidence that led to interest in them as a therapeutic 

target in bladder cancer. Based on this, multiple AKI have been developed, targeting 

either aurora kinase A (AK-A), aurora kinase B (AK-B) or both AK-A and AK-B. The 

evidence for potential efficacy both pre-clinically and in clinical trials is then 

summarised, before considering the combination of an AKI with other drugs and how 

best to design clinical trials to assess drug combinations.  

 
The cell cycle consists of four distinct stages: Gap phase 1 (G1), DNA synthesis phase 

(S) during which DNA replication takes place, Gap phase 2 (G2) and the mitosis (M) 

phase, during which the cell divides into two daughter cells (Figure 1-1). Phases G1, S 

and G2 are also collectively known as interphase. Not all cells are continually 

replicated, and the G0 phase is a period in the cell cycle where cells may be quiescent or 

senescent. This complex process is carefully regulated with a series of checkpoints. The 

G1 checkpoint is the first defence in the cell cycle, sensing DNA damage and 

preventing cells from entering the S phase by inhibiting the initiation of DNA 

replication. However, it is frequently compromised in cancer due to mutations in 

tumour suppressor genes such as p53. This makes these cells dependent on the G2 

checkpoint to detect cells which have escaped the G1 checkpoint with DNA damage 
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and prevent mitotic entry. Although the G1/S phase checkpoint is designed to ensure 

DNA is fully repaired prior to progression, the intra-S checkpoint also exists to respond 

to damage during S phase (3). It is critical that mitosis, the process of cell division, is 

performed accurately, and there is an additional checkpoint at metaphase, the spindle 

assembly checkpoint (SAC). Despite these tight control mechanisms, disruption can 

occur, leading to genetic instability and aneuploidy, hallmarks of cancer (4).   

 

Figure 1-1: The cell cycle. 
This illustrates the stages G1 (Gap 1), S (Synthesis), G2 (Gap 2) and M (mitosis) together with the 
key checkpoints.  

Mitosis (M phase) consists of five distinct stages. During prophase, chromosomes 

condense, the two centrosomes separate to the poles of the cell and the mitotic spindle 

starts to form, made up of microtubules. Pro-metaphase starts with the breakdown of the 

nuclear envelope and continues until all sister chromatids are attached to the spindle and 

have moved to the equator of the cell. When all chromosomes are aligned correctly in 

metaphase, the cells progress into anaphase, where sister chromatids are separated. 

Mitosis ends with telophase, where a new nuclear envelope forms around each set of 

chromosomes, which have begun to de-condense. Finally cytokinesis takes place, 

during which the cell divides. The SAC delays the metaphase to anaphase transition 

until all the chromatids have formed correct microtubule attachments (5, 6). Failure to 

satisfy the SAC leads to mitotic arrest to allow time for correct kinetochore-microtubule 

attachments to form. A great deal is now known about the SAC and the complex 

interactions of multiple molecules in its regulation, fully reviewed in (7). These include 

the important role of the aurora kinases. 
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This family of three serine-threonine protein kinases, Aurora A, B and C, share a high 

degree of sequence conservation. Despite this, they have distinct localisations and 

functions, partly explained by their strict regulation through intricate networks of 

interactions (8). AK-A and AK-B have been shown to be important for multiple events 

during mitosis (Figure 1-2). 

 
Figure 1-2: The role of Aurora A and Aurora B during mitosis.  
Image used from Meraldi et al. (9) 

AK-A is encoded by AURKA (Aurora-2/BTAK/STK15) on Chromosome 20q13.2. It 

regulates cell cycle events occurring from late S-phase through M phase, including 

centrosome maturation, mitotic entry, centrosome separation, bipolar spindle assembly, 

chromosome alignment, cytokinesis, and mitotic exit (reviewed in (10)). Its expression 

rises rapidly during G2, peaking in early mitosis (11).  

AK-B is encoded by AURKB on Chromosome 17p13.1. It forms the catalytic 

component of the chromosomal passenger complex. This complex regulates 

chromosome condensation via direct phosphorylation of histone H3 at Ser10 (12) and 
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Ser28 by AK-B (13). Subsequently it directs the proper orientation of the chromosomes, 

correct assembly of the mitotic spindle and cytokinesis.  

Aurora C is largely involved in meiosis, although it does appear to have an overlapping 

role with AK-B in mitosis and potentially tumour formation when over-expressed (14, 

15). It has been less studied and is not discussed further in this review. 

Expression of AK-A and AK-B are closely linked to proliferation, with inappropriately 

high or low levels of AK activity associated with genetic instability. As the AKs are 

cell-cycle associated genes, they would be expected to be expressed at higher levels in 

rapidly dividing cells. Thus, elevated expression of AK-A and AK-B could purely 

reflect this proliferation. However, the AKs are more diffusely expressed in malignant 

cells rather than just around the nucleus. This is thought to promote aberrant 

phosphorylation of cytoplasmic proteins (16).  

Over-expression, amplification and polymorphisms in both AK-A and AK-B have been 

found in many tumour types (Table 1-1). A meta-analysis of the prognostic significance 

of AK-A over-expression showed a significant association with shorter overall survival 

and progression free survival in solid tumours (17). Several studies have also suggested 

that gene polymorphisms in AURKA are associated with cancer risk; for example the 

AURKA (F31I) polymorphism has been identified as a low penetrance cancer 

susceptibility allele affecting multiple cancer types (18). 



 

     5 

Cancer type Alteration Aurora 
Kinase 

Correlation 

Bladder (19-25) Over-expression, 
amplification 

A, B Grade, stage, prognosis, 
recurrence 

Brain (26-30) Over-expression, 
amplification 

A, B Grade, outcome, survival 

Breast (31-45) Over-expression, 
amplification, 
polymorphisms 
 

A, B, C  Chromosomal instability, high 
grade, ER/PR negativity, 
nuclear grade, BRCA2, cancer 
risk, prognostic 

Cervix (46, 47) Over-expression A, B  Also increased in cervical 
intraepithelial neoplasia, no 
correlation with survival 

Colon (48-52) Over-expression, 
Amplification 

A Cancer risk, aneuploidy, 
chromosomal instability, 
transformation of adenomas 

Endometrium  
(53, 54) 

Over-expression, 
Amplification 

A, B Poor prognosis 

Gastric (55-59) Over-expression, 
amplification, 
polymorphisms 

A, B Cancer risk, progression 

Head/Neck (60-
62) 

Over-expression, 
amplification 

A, B 
 

Progression, survival 

Hepatocellular  
(63-67) 

Over-expression A Grade, stage 

Lung (68-76) Over-expression, 
polymorphisms 

A, B Poor differentiation, genetic 
instability 

Melanoma (77) Over-expression, 
amplification 

A  

Oesophagus (78-
83) 

Over-expression, 
amplification 
polymorphisms 

A Also associated with Barrett’s, 
response to treatment 

Ovary (84-90) Over-expression, 
polymorphisms 

A Survival, cancer risk 

Pancreas (91, 
92) 

Over-expression A Over-expression 

Prostate (93-95) Over-expression A, B Grade, proliferation, prognosis 
Renal (96-98) Over-expression A  
Thyroid (99, 
100) 

Over-expression B Grade, proliferation 

T-cell 
lymphoma (101, 
102) 

Over-expression A  

Table 1-1: Review of evidence linking aurora kinases with solid tumours

 
As seen in Table 1-1, there is evidence of a link between AK-A and bladder cancer. 

Transitional cell carcinoma (TCC) of the bladder is the tenth most common malignancy 

in the UK, with approximately 10,000 new cases a year in the UK (103). There are two 
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distinct types of tumours, arising by different biological pathways (104). The most 

common are low grade papillary tumours, with a low rate of progression to muscle 

invasive disease, but high frequency of local recurrence. However, 20-30% of patients 

have a more aggressive tumour type, marked by aneuploidy and loss of p53 mutations 

(105), showing high rates of both progression and metastases (106). More recently, 

comprehensive molecular characterisation of bladder tumours has provided detailed 

information about the molecular pathways involved (107).  

In patients with advanced unresectable or metastatic disease, outcomes even with the 

most active chemotherapy treatment of cisplatin and gemcitabine chemotherapy are 

poor. Despite an initial response rate of 50%, median overall survival is only 13-15 

months (108). Multiple agents have been tested in the second line setting demonstrating 

limited activity, with single agent anti-mitotics such as vinflunine, paclitaxel and 

docetaxel commonly used, despite response rates of only 5-20% (109). Immunotherapy 

is now showing promise an alternative to chemotherapy (110). 

The first observation suggesting a role for AK-A in bladder cancer came from evidence 

of increased copies of Chromosome 20q, with amplification of the region in invasive 

bladder cancers with significant aneuploidy (111-113). Once the AURKA gene was 

identified in this region, analysis of human bladder cancers confirmed that increasing 

levels of AK-A amplification correlated with aneuploidy (24) and it proved possible to 

reproduce the chromosome mis-segregation and aneuploidy observed by forced over-

expression of AK-A (114).  High AK-A over-expression was prevalent in cells showing 

dysregulation of the DNA damage response genes such as BRCA1 and Chk2 (113) and 

was also associated with functional suppression of p53 (113, 115, 116).  

A comparison of AK-A expression between normal bladder, non-invasive cancers and 

muscle-invasive bladder cancers found abnormal levels even in the early stages of 

bladder cancer, with significant upregulation in invasive tumours (21), with evidence 

that AK-A over-expression could independently predict tumour recurrences in early 

stage tumours (117). In addition, increased tumour expression of AK-A was a poor 

prognostic factor (118), strongly associated with risk of recurrence (22, 119), and 

decreased survival (24). A FISH test for AK-A gene copy number performed on urine 

samples was shown to have potential as a diagnostic biomarker for bladder cancer with 

high specificity and sensitivity (114). A census of amplified and over-expressed human 

cancer genes identified AURKA as a gene important for bladder cancer (120). Together 
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these studies support the hypothesis that AK-A is functionally important in advanced 

stage bladder cancer.   

At the time my research began, there was no published research exploring AK-A 

inhibition in bladder cancer. However, subsequent to my experimental work, others 

have explored the role of AK-A in bladder cancer. Zhou et al. confirmed upregulation 

of genes involved in the spindle assembly checkpoint including AK-A and AK-B in 

human bladder cancer samples (121). An AK-A specific inhibitor, MLN8237, was 

tested in two human bladder cancer cell lines (T24 and UM-UC-3) and induced cell 

cycle arrest and apoptosis. In a mouse T24 bladder cancer xenograft model, MLN8237 

induced tumour growth arrest. Their findings will be compared with mine in later 

chapters. Another recent study has shown that AK-A over-expression enhanced the 

invasiveness of bladder cancer cells through modulation of the transcription factor Pax-

3, causing the downregulation of the nicotinamide N-methyltrasferase (NNMT) gene, 

resulting in the downstream over-expression of matrix metalloproteinases. Analysis of 

tissue microarrays of bladder cancer identified a subset of aggressive tumours, 

characterised by AK-A over-expression and downregulation of NNMT (122), 

suggesting that AK-A inhibition may be of particular value for this group. 

 
Interest in AK-A intensified after its activation resulted in in vitro and in vivo 

transformation of rodent fibroblast cells (123). However, over-expression is not 

generally tumorigenic in vivo (124), suggesting dysregulation of other pathways is 

required for malignant transformation. AK-A has complex interactions with other key 

molecules implicated in carcinogenesis, including p53, BRCA, Ras and Myc.  

Of these, p53 is of particular interest, given the frequency of mutations in p53 in bladder 

cancer and its important role in the G1 checkpoint. AK-A has been shown to interfere 

with p53 function by direct phosphorylation at Ser-315, facilitating its MDM-2 

mediated degradation (116) and inactivating its transcriptional activity (125). 

Phosphorylation of p53 at Ser-106 decreases its interaction with MDM2 and actually 

prolongs the half-life of p53 in contrast to the effect of phosphorylation at Ser-215 and 

Ser-315 (126). Mechanistic studies have shown that p53 negatively regulates AK-A 

expression level via both transcriptional and post-translational changes (127). p53 itself 

binds to AK-A to directly inactivate its kinase function (128).   
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The P53 family also comprises TP63 and TP73. AK-A has been shown to 

phosphorylate p73 at Ser-235, facilitating inactivation of the SAC and mitotic exit 

(129). TP73 has been shown to be important in determining cell fate in p53 deficient 

cells exposed to AK-A inhibitors (129-132), with p73 potentially able to compensate for 

lack of p53 function in tumour cells. 

There are many other important substrates that interact with AK-A that have now been 

identified. In particular, AK-A interacts with BRCA1 and BRCA2 (133, 134) and with 

the Ras signalling pathway (135-138). AK-A over-expression enhanced both the 

expression level and transcriptional activity of c-Myc (139, 140). These processes are 

highly regulated and have now been extensively researched, identifying reasons why 

AK-A over-expression can contribute to cancer development. These are reviewed in 

detail by Nikonova et al (141), summarised in the schematic in Figure 1-3. 

 
Figure 1-3: The effects of AK-A over-expression in cancer.  
Image used from Nikonova et al. (141). 

 
The value of cytotoxic drugs targeting mitosis in cancer has already been demonstrated. 

The two most common classes of these disrupt microtubule dynamics. The taxanes 

(paclitaxel and docetaxel) stabilise microtubules inducing multi-polar spindles and the 
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vinca alkaloids inhibit microtubule assembly. Through SAC activation, cell cycle arrest 

is triggered at the G2/M checkpoint and cells accumulate in pro-metaphase. Cells may 

die during mitotic arrest, or slip out of arrest into a tetraploid G1 state from which they 

may die, arrest in G1 or continue the cell cycle with a variety of subsequent fates (142). 

This is dictated by two competing but independent networks – one involving activation 

of cell death pathways, the other dependent on the level of cyclin B1 (which 

progressively falls during prolonged mitotic arrest) (143). By working in opposite 

directions, the fate of the cell is dictated by which threshold is reached first (Figure 1-4). 

If cyclin B1 levels fall below the threshold required to maintain mitotic arrest, slippage 

occurs, leading to potential cell survival. In contrast, if cyclin B1 levels remain high 

enough for activation of apoptosis, cells will die in mitosis. 

 
Figure 1-4: The competing networks model.  
Image used from Gascoigne KE and Taylor SS (142).  

It is now known that multiple proteins are important in determining fate once cells have 

arrested in mitosis on exposure to drugs such as taxanes (144, 145), with increasing 

interest in the Bcl-2 family, particularly Mcl-1 and Bcl-xL (146-148). 

Anti-mitotic drugs such as taxanes rely on rapid tumour cell cycling to preferentially 

kill tumour cells and have proved effective with wide clinical use. However, 

proliferative normal tissues such as the bone marrow are also affected and neurotoxicity 

is a significant issue (149). Resistance can also develop. Drug development of newer 

anti-mitotic agents has aimed to design compounds which specifically target protein 

kinases such as AKs which control cell division. The hope was that these would reduce 

off-target effects such as neurotoxicity, hence giving a better efficacy-to-toxicity ratio 

(therapeutic index).  
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Pre-clinical experiments have investigated the consequences of interfering with AK 

function using a range of techniques including RNA interference (RNAi), together with 

small molecule aurora kinase inhibitors (AKI) as these were developed. AK-A 

inhibition leads to delayed entry into mitosis, due to arrest at G2/M by SAC activation, 

and abnormal spindle formation. This can result in defects in chromosome segregation 

and aneuploidy. In contrast, AK-B inhibition inactivates the SAC, allowing cells to 

over-ride mitotic arrest despite misaligned chromosomes. Continued suppression leads 

to further rounds of genome replication without division (endoreduplication), and 

ultimately cell death (150). Dual AK-A and AK-B inhibition causes a phenotype similar 

to that of inhibiting AK-B alone (151, 152). These effects together with the range of 

potential cell fates are summarised in Figure 1-5.  

 
Figure 1-5: Differential effects of AK-A and AK-B inhibition on mitosis.  
Image used from Hilton JF and Shapiro GI (153).  

Normal cells with intact p53 arrest at the G1 checkpoint, whereas in cells with defective 

p53, AKI-induced mitotic abnormalities are exacerbated (154). This differential effect 
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could  allow the use of higher doses of chemotherapeutics without significant impact on 

normal tissues (155, 156), with non-cancer cells (with intact p53) not subject to the 

effects of AKI. This is of particular interest in bladder cancer, where p53 mutations are 

linked to the development of muscle invasive disease (105). Myc amplification and loss 

of Rb can also influence cell fate (153), particularly in response to AK-B inhibition.  

There remains debate about whether the best therapeutic target is AK-A or AK-B or in 

fact the use of a pan-AKI (157, 158).  For example, in one study the effects of AK-A 

and AK-B anti-sense oligonucleotides were compared in pancreatic cancer cells (159). 

Although induction of apoptosis was faster with AK-A inhibition, both AK-A and AK-

B inhibition led to potentially useful therapeutic effects with cell cycle arrest and 

apoptosis. In colorectal cancer cells, a similar study compared the effects of RNAi and 

AKI and concluded that the cells were more sensitive to AK-B inhibition (150). 

Therefore drug development of AKI involved attempts to find both AK-A and AK-B 

specific inhibitors, together with pan-AKI, with the knowledge that dual AK-A and AK-

B inhibition would produce a biological effect and phenotype similar to AK-B 

inhibition alone. 

 
Many of the AKI developed inhibit all three AK, due to a highly conserved catalytic 

domain between AK-A and AK-B, meaning that higher doses of AK specific inhibitors 

have a pan-aurora inhibitory effect (160). Therefore, they have been sub-divided into 

three general classes, those with selectivity for AK- A over AK-B, AK-B over AK-A or 

both (reviewed in (160-162)), although most show some cross-reactivity with other 

kinases. Work to develop new AKI has been ongoing using a range of screening 

techniques (reviewed in (163)), for both pan-AKI (164, 165), selective AK-A inhibitors 

(166, 167), selective AK-B inhibitors (168) and for multi-targeted agents aiming for 

therapeutic synergy within a single drug with examples including AK-A and CDK-1 

inhibition (169) and pan-AKI with Src (170).   

I next review the leading clinical candidates, concentrating on those with AK 

selectivity, which have shown sufficient pre-clinical efficacy to be tested in clinical 

trials, together with toxicities reported (161, 171). Phase 1 clinical trials assess the 

safety of a novel drug or drug combination, allowing both the Maximum Tolerated 

Dose (MTD) and the Recommended Phase 2 Dose (RP2D) to be identified. Patients are 

recruited sequentially and based upon the occurrence of dose limiting toxicities (DLTs), 
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subsequent patients receive a dose equal to or higher than the previous patient until the 

RP2D is defined (172), with the assumption that the probability of observing DLTs in 

patients increases with dose. The RP2D can then be evaluated in Phase 2 clinical trials 

which aim to determine activity against specific cancer types, together with further 

safety evaluation.  Adverse events (AE) are graded in severity from 0-5 according to 

National Cancer Institute Common Terminology Criteria. Those considered drug related 

and Grade ≥3 are usually dose limiting, although this depends on pre-specified DLT 

criteria.  

Whilst the AKI have shown promise in non-solid haematological malignancies 

(reviewed in (173)), my focus is on advanced solid tumours, and only trials in this 

category are covered in this review. The majority of these have been reported since my 

research commenced. Single agent studies are reviewed in this section, with 

combinations with other agents assessed in 1.8. The tables show the IC50 for the AK 

together with other key targets, toxicities seen in trials and evidence of efficacy.  

 

Given the differing roles of AK-A and AK-B in cell division, it was hypothesised that a 

dual AK inhibitor might be the most effective drug in cancer. Pre-clinically these pan-

AKI showed a phenotype consistent with AK-B inhibition as expected, and several 

candidates showed in vivo efficacy and therefore proceeded to clinical trials. Table 1-2 

summarises the published results of clinical trials with seven different pan-AKI as 

single agents. The majority of these showed stable disease as the best response, with the 

main DLTs haematological, particularly neutropenia. Several phase 2 trials were 

terminated due to toxicity or lack of anti-tumour activity, and the majority of further 

clinical development of these pan-AKI has been in non-solid haematological 

malignancies (174, 175).  

 

Table 1-3 summarises the published clinical trials with four AK-A specific inhibitors as 

single agents. MLN8054 was the first AKI reported to be selective for AK-A over AK-

B, with little cross reactivity with other kinases. However, due to its structural similarity 

to benzodiazepines, off-target toxicities occurred and it was replaced with MLN8237 

(alisertib), with increased AK-A selectivity and reduced benzodiazepine-like effects.  

Although considered AK-A specific, at concentrations above 250 nM in vitro, AK-B 

inhibition was seen. Multiple clinical trials have been performed with MLN8237 with 
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evidence of limited clinical activity, with the main toxicity neutropenia. Based on the 

overall response rate in T cell lymphoma, a phase 3 study in relapsed/refractory T cell 

lymphoma comparing MLN8237 with investigator’s choice of alternative therapy 

commenced (176). However, this was discontinued following a pre-specified interim 

analysis, which indicated that the study was unlikely to demonstrate improved 

progression-free survival (PFS) over the standard-of-care (177).   

Although there had been no published pre-clinical data in bladder cancer at the time my 

research began, a Phase 2 trial of MLN8237 in patients with metastatic bladder cancer, 

following failure of at least one platinum based chemotherapy regimen has now been 

performed (178). The primary endpoint was an objective response with the plan to 

continue to a randomised trial of paclitaxel plus either MLN8237 or placebo. However, 

although objective responses were seen (partial response in two patients and seven with 

stable disease), these did not meet the criteria for the planned combination study. 

Significant toxicity was seen in the twenty patients evaluable for response with two 

treatment related deaths due to septic shock and Grade 3-4 AE including mucositis 

(41%), fatigue (36%) and neutropenia (18%) with febrile neutropenia in 14%.  

A more recent candidate MK-5108 is a highly specific AK-A inhibitor, which did not 

show DLT as a single agent. Although ENMD-2076 was initially reported as a selective 

AK-A inhibitor, it also inhibits multiple other kinases, including VEGFR and FGFR and 

hence has combined anti-proliferative and anti-angiogenic properties (179), reflected in 

the additional toxicity of hypertension in the trials.  

 

The majority of AK-B specific inhibitors were found to be pan-AKI but three 

compounds have been tested in clinical trials. Table 1-4 summarises the published 

results of clinical trials with these as single agents. Dose limiting toxicities were similar 

to those seen with both pan-AKI and AK-A specific inhibitors, with neutropenia the 

main DLT. 

 

The AKI were generally well tolerated as single agents with reversible neutropenia the 

main DLT due to anti-proliferative effects in the bone marrow. Although some activity 

was seen in solid tumours, the majority have had stable disease as their best response 

using standard tumour response radiological criteria. Therefore, the potential to combine 
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AKI with other drugs, including those that depend on the SAC such as taxanes was 

assessed to see if this could increase anti-tumour activity. 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 

Patients 
(tumour type, 

no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

AMG900 (180, 
181) 

5 4 1 (182) 1 

Dose escalation: 
Advanced solid  
Dose expansion: 
taxane- and 
platinum-
resistant 
epithelial 
ovarian cancer, 
taxane-resistant 
triple-negative 
breast cancer, or 
castration-
resistant and 
taxane- or 
cisplatin-
etoposide-
resistant stage 
IV prostate 
cancer 

Oral od Days 
1-4 every 14 
days 

24 mg od 
without 
GCSF, 
40 mg od 
with GCSF 

Neutropenia, febrile 
neutropenia, 
thrombocytopenia 

Dose 
escalation: 1 
PR 
(ovarian),13 
SD 
Dose 
expansion: 1 
PR (ovarian), 
7 PR ovarian 
by  Ca125 
Disease 
control rate 
ovarian (PR + 
SD) 83% 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 

Patients 
(tumour type, 

no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

AT9283 (183) 3  3 NA 

Include 
BCR-Abl 
T315I, 
JAK2, 
JAK3, 
GSK3 β 
(184) 

1 
Advanced solid; 
40 

72 hr 
continuous iv 
infusion every 
21 days 

27 mg/m2/72 
hrs 

Febrile neutropenia 4 SD ≥ 6 mo. 

AT9283 (185) 3  3 NA 

Include 
BCR-Abl 
T315I, 
JAK2, 
JAK3, 
GSK3 β 

1 
Advanced solid 
or NHL; 35 

24 hr 
continuous iv 
infusion days 
1, 8 of 21 day 
cycle 

47 mg/m2/day 
Febrile neutropenia, 
neutropenia with 
Grade 3 infection 

1 PR (SCC 
anus), 4 SD 
(median 2.6 
mo.) 

Danusertib 
(PHA-739358) 
(186)  

13  79  61 

Includes 
VEGF, 
FLT3, 
BCR-Abl 
T315I 
(187) 

1 
Advanced solid; 
50 

3 hr or 6 hr iv 
infusion Days 
1, 8, 15 of 28 
day cycle  

330 mg/m2 
for 6 hr 
infusion (3 hr 
not 
identified) 

Neutropenia 
(with/without fever), 
hypertension, 
fatigue 

5 SD ≥ 6 mo. 
(1 NSCLC for 
2 yrs.) 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 

Patients 
(tumour type, 

no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

Danusertib 
(PHA-739358) 
(188)  

13  79  61 

Includes 
VEGF, 
FLT3, 
BCR-abl 
T315I 
(187) 

1 
Advanced solid; 
40 in part 1, 16 
in part 2 

24 hr infusion 
every 14 days 
without GCSF 
(part 1) or 
with (part 2) 

500 mg/m2 
without 
GCSF, 
750 mg/m2 
with GCSF 

Neutropenia (part 1, 
without GCSF), 
escalation halted 
due to elevated 
creatinine (part 2) 

1 PR (SCLC), 
1 PR with 
CA125 
decline 
(ovarian), 
42% SD with 
4 pts 
prolonged SD 
(24-52 wks.) 

Danusertib 
(PHA-739358) 
(189) 

13  79  61 

Includes 
VEGF, 
FLT3, 
BCR-abl 
T315I 
(187) 

2 

Advanced solid, 
disease cohorts 
breast, ovarian, 
colorectal, 
pancreatic, 
SCLC, NSCLC; 
219 total 

24 hr 500 
mg/m2 iv 
infusion every 
14 days 

NA 
NA but note Grade 
3 neutropenia 83% 

PFS at 4 mo 
18% breast 
12% ovarian 
10% 
pancreas 
10% NSCLC, 
0% SCLC and 
colorectal 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 

Patients 
(tumour type, 

no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

Danusertib 
(PHA-739358) 
(190) 

13  79  61 

Includes 
VEGF, 
FLT3, 
BCR-abl 
T315I 
(187) 

2 

Castrate-
resistant 
prostate cancer; 
88 total, A (43), 
B (38) 

Two 
schedules: A - 
330 mg/m2 6 
hr iv infusion 
days 1, 8 and 
15 every 4 
weeks or B.  
24 hr 500 
mg/m2 iv 
infusion days 
1 &15 every 4 
wks. 

NA 

NA but most 
common Grade 3 or 
4 AE neutropenia 
(A: 37%, B: 16%) 

PFS 12 wks. 
21 SD 
including 11 
SD ≥ 6 mo. 

MSC1992371A 
(AS703569 
R763) (191) 

4 4.8 6.8 

Include 
FLT3, 
BCR-
ABL, 
JAK2 
(192) 

1 
Advanced solid, 
92 

A. Days 1 and 
8 every 21 
days 
B. Days 1-3 
every 21 days 
C. Days 1, 2, 
3 and Days 8, 
9, 10 every 21 
days, oral 

Schedules 
A&B 74 
mg/m2/cycle 
Schedule C: 
60 
mg/m2/cycle 

Neutropenia, febrile 
neutropenia, 
thrombocytopenia, 
nausea and vomiting 

SD ≥ 3 mo. 11 
pts 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 

Patients 
(tumour type, 

no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

PF-03814735 
(193) 

0.8 5 NA 

Flt1, FAK, 
Met, 
FGFR1 
(194) 

1 

Advanced solid; 
57, 32 schedule 
A, 25 schedule 
B 

Schedule A: 
Days 1-5 od 
of 21 day 
cycle 
Schedule B: 
Days 1-10  od 
of 21 day 
cycle, oral 

Schedule A: 
80 mg od 
Schedule B: 
50 mg od 

Febrile neutropenia, 
increased AST, LV 
dysfunction 

19 SD, 4 SD ≥ 
6 mo. 

SNS-314 (195) 9 31 3 (196) 1 
Advanced solid, 
32 

3 hr iv 
infusion Days 
1, 8, 15 of 28 
day cycle 

Not 
established – 
Grade 3 
neutropenia 
at 1440 
mg/m2 

Not established – 
Grade 3 neutropenia 
at 1440 mg/m2 

6 SD 

Tozasertib 
(VX-680, MK-
0457) (197) 

0.7 18 4.6 

FLT3, 
BCR-Abl 
T315I, 
JAK(198) 

1 
Advanced solid, 
27 

24 hr infusion 
every 21 days 

64 mg/m2/hr 
24 hr infusion 

Neutropenia, herpes 
zoster 

12 SD, 1 SD 
11 mo. 
(ovarian) 

Table 1-2: Published clinical trials in pan-AKI.  
Abbreviations: GCSF (granulocyte colony stimulating factor), hr (hour), iv (intravenous), LV (left ventricle), mo (months), MTD (maximum tolerated dose), NA (not 
applicable), NHL (non-Hodgkin's lymphoma), NSCLC (non-small cell lung cancer), od (once daily), PFS (progression free survival), PR (partial response), RP2D 
(recommended Phase 2 dose), SCC (squamous cell carcinoma), SCLC (small cell lung cancer), SD (stable disease). 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

ENMD-
2076 (199) 

14 350 NA 

VEGF2, 
FGFR1, 
FGFR2, 
Src, c-
kit, 
FAK 
(179) 

1 Advanced solid; 67 
Continuous 
oral dosing 
od 

160 mg/m2 
Hypertension, 
neutropenia 

2 PR (platinum 
refractory/resistant 
ovarian), SD 49 
pts, 26 ≥ 3 mo. 

ENMD-
2076 (200)  

14 350 NA 

VEGF2, 
FGFR1, 
FGFR2, 
Src, c-
kit, 
FAK 

2 

Platinum-resistant 
ovarian, fallopian 
tube or peritoneal 
cancer; 64 

325 mg/day 
reduced to 
275 mg/day 

 

NA. Most common 
Grade 3 or 4 
hypertension, 
fatigue, Note: need 
for dose reduction 
in schedule due to 
toxicity.  

PFS 6 mo. 22%, 
58% SD or PR 
with 5 PR  

MLN8054 
(201) 

4  172 NA (202) 1 Advanced solid, 61 

Oral od for 
7, 14 or 21 
days with 14 
day 
treatment 
rest period 

60 mg daily 
(as 4 divided 
doses) Days 
1-14 of 28 
day cycle 

Benzodiazepine-
like effects incl. 
somnolence, 
confusion 

3 SD ≥ 6 mo. 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

MLN8054 
(203) 

4  172 NA  1 Advanced solid, 43 
Oral od Days 
1-14 of 28 
day cycle 

70 mg daily 
(as 4 divided 
doses) Days 
1-14 of 28 
day cycle 

Somnolence, 
transaminitis 

3 SD ≥ 4 cycles 

MLN8237  
(alisertib) 
(204) 

61 >200 NA (205) 1 Advanced solid, 87 

Oral od or bd 
for 7, 14 or 
21 days with 
14 day 
treatment 
rest period 

50 mg bd for 
7 days in 21 
day cycle 

Febrile 
neutropenia, 
thrombocytopenia, 
somnolence, 
confusion, memory 
impairment 

1 PR (ovarian) 2.9 
yrs., 20 pts SD ≥ 3 
mo. 

MLN8237 
(alisertib) 
(206) 

61 >200 NA  1 Advanced solid, 59 

Oral od or bd 
for 7, 14 or 
21 days with 
14 day 
treatment 
rest period 

50 mg bd for 
7 days in 21 
day cycle 

Neutropenia, 
thrombocytopenia, 
stomatitis 

22 SD, SD ≥ 6 mo. 
6 pts 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) 
(207) 

61 >200 NA  1 
Multiple myeloma, 
NHL, CLL, 58 

Oral od (then 
bd) Days 1-
14 or Days 
1-21 with 14 
or 7 day 
treatment 
rest period 
powder-in-
capsule 
formulation, 
then changed 
to enteric 
coat Days 1-
14 of 28 day 
cycle 

50 mg bd for 
Days 1-7 of 
21 day cycle, 
enteric 
coated 
formulation 

Neutropenia, 
thrombocytopenia, 
anaemia, 
leucopenia 

6 PR, 13 SD 

MLN8237 
(alisertib) 
(208) 

61 >200 NA  1 Advanced solid, 24 

Oral bd Days 
1-7 of 21 day 
cycle, new 
enteric 
coated 
formulation 

50 mg bd for 
Days 1-7 of 
21 day cycle 

Neutropenia, 
febrile neutropenia 

9 SD 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) 
(209) 

61 >200 NA  1 
Advanced solid, 
East Asian 
population, 36 

Oral bd Days 
1-7 of 21 day 
cycle, new 
enteric 
coated 
formulation 

30 mg bd for 
Days 1-7 of 
21 day cycle 

Neutropenia, 
fatigue 

1 PR (lymphoma), 
18 SD 

MLN8237 
(alisertib) 
(210) 

61 >200 NA  2 

Epithelial ovarian, 
fallopian tube, 
primary peritoneal, 
31 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
neutropenia, 
leucopenia 

3 PR, 16 SD 

MLN8237 
(alisertib) 
(211) 

61 >200 NA  2 

Cohorts breast, 
SCLC, NSCLC, 
head and neck, 
gastro-oesophageal 
adenocarcinoma, 
249 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
neutropenia, 
leucopenia, 
anaemia. Dose 
reductions in 28% 

Breast 18% PR, 
51% SD 
SCLC 21% PR, 
33% SD 
NSCLC PR 4%, 
SD 74% 
Head and neck 9% 
PR, 49% SD 
Gastro-
oesophageal PR 
9%, SD 38% 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) 
(212) 

61 >200 NA  2 Sarcoma, 72 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
neutropenia, 
thrombocytopenia, 
anaemia, 
mucositis, 
leucopenia 

PFS 12 wks., 2 pts 
with prolonged SD 

MLN8237 
(alisertib) 
(213) 

61 >200 NA  2 
Recurrent/metastatic 
leiomyosarcoma, 21 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
neutropenia, 
leucopenia, 
anaemia 

SD 38%, PFS 1.7 
mo. 

MLN8237 
(alisertib) 
(178) 

61 >200 NA  2 

Recurrent/metastatic 
bladder cancer, at 
least 1 prior 
platinum, 20 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
mucositis, fatigue, 
neutropenia, febrile 
neutropenia, 2 
deaths due to 
septic shock. Dose 
reductions in 18%. 

2 PR, 7 SD (2 ≥6 
mo.) 
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Compound 

AK 
A 

IC50 
nM 

AK 
B 

IC50 
nM 

AK 
C 

IC50 
nM 

Other 
targets, 

pre-
clinical 

ref Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D 
Dose limiting 

toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) 
(214)  

61 >200 NA  2 
B and T cell NHL, 
48 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
neutropenia, 
leucopenia, 
anaemia, fatigue, 
diarrhoea. Dose 
reductions in 52% 

Overall RR 27% 
(10% CR, 17% 
PR), 33% SD 

MLN8237 
(alisertib) 
(215) 

61 >200 NA  2 

Relapsed/refractory 
T cell NHL and 
mycosis fungoides, 
37 

MLN8237 
50 mg bd for 
Days 1-7 of 
21 day cycle 

NA 

NA, most common 
Grade 3 or 4 
neutropenia, 
anaemia, 
thrombocytopenia, 
febrile neutropenia, 
mucositis 

None in mycosis 
fungoides 
Overall RR in T 
cell NHL 30% 
(7% CR, 23% PR) 

MK-
5108/VX-
689 (216) 

0.064 14 12 (217) 1 
Advanced solid, 18 
 

MK-5108 
oral bd Day 
1-2 in 14-21 
day cycles 
 

MTD not 
determined 
for 
monotherapy 
(no DLT ) 
 

None 9 SD 

Table 1-3: Published clinical trials in AK-A specific inhibitors.  
Abbreviations: bd (twice daily), GCSF (granulocyte colony stimulating factor), hr (hour), iv (intravenous), mo (months), MTD (maximum tolerated dose), NA (not 
applicable), NHL (non-Hodgkin's lymphoma), NSCLC (non-small cell lung cancer), od (once daily), PFS (progression free survival), PR (partial response), RP2D 
(recommended Phase 2 dose), SCC (squamous cell carcinoma), SCLC (small cell lung cancer), SD (stable disease). 
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Compound 

AK 
A 
IC50 
nM 

AK 
B 
IC50 
nM 

AK 
C 
IC50 
nM 

Other 
targets/pre-
clinical ref Phase 

Patients 
(tumour 
type, no.) Schedule MTD/RP2D 

Dose limiting 
toxicity 

Anti-tumour 
activity 

Barasertib 
(AZD1152) 
(218) 1369 0.36 17 (219) 1 

Advanced 
solid; 59, 
19 
schedule A, 
40 
schedule B 

Two schedules: A 
2 hr infusion 
every 7 days or B. 
2 hr infusion 
every 14 days 

200 mg in 2 hr 
infusion every 
7 days or 450 
mg every 14 
days 

Neutropenia 
with or 
without fever 

SD 15 pts, 2 SD 
≥6 mo. (adenoid 
cystic carcinoma 
and 
adenocarcinoma 
unknown primary) 

BI811283 (220) NA 9 NA (221) 1 

Advanced 
solid, 121, 
63 
(schedule 
A), 58 
(schedule 
B)  

24 hr infusion on 
Days 1 and 15 of a 
4-week cycle 
(schedule A) or 
Day 1 of a 3-week 
cycle (schedule B) 

Schedule A: 
125 mg 
Schedule B: 
230 mg 

Neutropenia, 
febrile 
neutropenia 

SD 38 pts, 10 ≥10 
cycles 

BI811283 (222) NA 9 NA (221) 1 
Advanced 
solid, 25 

24 hr infusion 
Days 1 and 15 of 
4 week cycle Not reached 

1 febrile 
neutropenia 
Terminated 
prior to 
further 
escalation.  

1 PR (cervical), 4 
SD 

GSK1070916A 
(223) 490 0.38 1.5  1 

Advanced 
solid, 32 

1 hour iv infusion 
days 1 – 5, every 
21 days 85 mg/m2/day 

Neutropenia, 
febrile 
neutropenia 

1 PR (ovarian), 19 
SD 

Table 1-4: Published clinical trials with AK-B specific inhibitors.  
Abbreviations: hr (hour), iv (intravenous), mo (months), MTD (maximum tolerated dose), PR (partial response), RP2D (recommended Phase 2 dose), SD (stable disease). 
 



 

     27 

 

 

Traditionally three types of drug interactions are described - additive, antagonistic or 

synergistic. The total effect may be lower than expected –antagonistic, or greater than 

expected - synergistic (224). A synergistic combination may target tumour cells with 

differing drug susceptibilities, achieve a higher intensity of dose with non-overlapping 

toxicities and reduce the likelihood of drug resistance (1). To determine the extent of 

interaction between two drugs, the simplistic combination index (CI) defines a value of 

either CI<1 (synergy), CI=1 (additive) or CI>1 (antagonism) (225). However, a 

combination could produce different results according to the ratios of each drug used. 

Various mathematical models have been developed (reviewed in detail in (226)), with 

the most commonly used the Bliss and Loewe models (227). The Bliss model assumes 

that drugs act independently with different modes of action, but each contributes to a 

common result. In contrast, Loewe additivity assumes an additive behaviour of the two 

drugs, with similar modes of action and requires parallel dose-response curves with 

identical slopes. Because of this, the resulting effect can be described by different 

equipotent dose ratios.  

 

To increase the anti-tumour activity of AKI, combination therapy with cytotoxic anti-

cancer agents, radiotherapy, and other targeted agents has shown potential, but my focus 

here is on the evidence for combinations with other cytotoxics. At the time I started my 

research, two early pre-clinical studies demonstrated the potential of AK-A inhibitors in 

combination with other drugs. Nocodazole destabilises microtubules and should lead to 

activation of the SAC. However AK-A over-expression led to a failure of nocodazole- 

exposed cells to arrest at the metaphase–anaphase transition despite improper 

attachments of kinetochore to microtubules, allowing them to override the SAC. 

Propidium iodide staining and flow cytometry showed an increased 4N population (due 

to polyploidy) and a reduced sub G1 population (<2N DNA content) regarded as 

apoptotic, suggesting cell death was also reduced (228). This report was consistent with 

another study, using cells over-expressing AK-A up to five times higher than 

endogenous levels, within a range seen in cancer cells with AURKA gene 

amplifications (123). When mock transfected and AK-A over-expressing cells were 
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treated with paclitaxel, there was a significant reduction in the percentage of apoptotic 

cells (again measured using flow cytometry to identify the sub G1 population), 

indicating resistance to paclitaxel (2), as seen in Figure 1-6. Others report that ectopic 

expression of AK-A is associated with resistance to paclitaxel, together with two other 

commonly used chemotherapeutics etoposide and cisplatin (229).  

 
Figure 1-6: The effects of paclitaxel on the percentage of apoptotic cells in mock transfected HeLa 
cells against those transfected with AK-A.  
From Anand et al. (2). 

Therefore this work suggested that AK-A inhibition could potentially sensitise cells to 

the effects of taxanes. Indeed RNAi knockdown of AK-A synergistically enhanced the 

cytotoxic effects of both paclitaxel and docetaxel in pancreatic cancer cell lines (230). 

In mantle cell lymphoma models, low dose combinations of MLN8237 and docetaxel 

increased the percentage of apoptotic cells (sub G1 population) three to four fold 

compared to single agents. Whilst single agent MLN8237 showed limited anti-tumour 

effects in vivo, the combination showed significantly greater tumour growth inhibition, 

associated with improved survival (231). When MK-5108 was combined with 

docetaxel, increased growth inhibition and apoptosis was seen across a range of cancer 

cell lines and in docetaxel-resistant xenograft models, the combination showed 

increased efficacy without excess toxicity (217).  Subsequent work which also used 

flow cytometry and quantification of the sub-G1 population showed synergy with low 

concentrations of docetaxel and MLN8237 in upper gastrointestinal tumour models 

(232), consistent with other reports (233). 

The majority of AKI are pan-AKIs and these have also been investigated in 

combination with anti-mitotic drugs such as paclitaxel and docetaxel. For example, in 

ovarian cancer models, pre-treatment of cells with MK-0457 followed by docetaxel led 

to enhanced cytotoxicity and increased apoptosis, and efficacy in taxanes and platinum-
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resistant xenograft models (234). AMG900 inhibited proliferation in cell lines including 

those resistant to paclitaxel and to other AKI, with anti-tumour activity in paclitaxel and 

docetaxel resistant xenograft models (182). In a triple negative breast cancer model, 

paclitaxel or ixabepilone administered 24 hours prior to AMG900 for 48 hours showed 

synergistic growth inhibition and in vivo the combination of docetaxel followed by 

AMG900 showed increased efficacy (235). At low doses of VE-465 (reported as 

specific for AK-A inhibition) synergy was seen in combination with paclitaxel, with 

increased apoptosis, even in paclitaxel-resistant cell lines (236).  

The mechanism for the enhanced cytotoxicity between AKI and taxanes is not yet fully 

understood. It is likely to be influenced by the length of mitotic arrest. For example, the 

fate of cells exposed to concurrent treatment with ZM447439 (pan-AKI) and paclitaxel 

or nocodazole was critically influenced by their mitotic age, linking to the competing 

networks model discussed in 1.5. When cells were pre-treated with paclitaxel, adding 

ZM447439 drove all cells out of mitosis within 0.5-2 hours. However, whilst cells that 

were blocked for ≥15 hours died shortly after being driven out of mitosis, cells blocked 

for <15 hours showed variable fates (237). AK-A inhibition using either MLN8054 or 

by RNAi AK-A knockdown in cells treated with paclitaxel or nocodazole accelerated 

mitotic slippage, and induced polyploidy, a phenotype similar to that seen with AK-B 

inhibition (although they demonstrated that AK-B was not inhibited at the concentration 

of MLN8054 used) (233).  

 

The in vitro results combining both AK-A specific AKI and pan-AKI suggested it could 

be effective at overcoming paclitaxel and docetaxel resistance but also indicate that the 

scheduling of the combination may be important. Whilst there were no clinical trials of 

combinations reported at the time my research commenced, there were concerns about 

synergistic toxicity, particularly neutropenia based on the single agent data available. 

Since then, combination clinical trials have been performed, with published results 

summarised in Table 1-5.  

Other current studies include the combination of MLN8237 with fulvestrant in patients 

with hormone receptor positive locally advanced or metastatic breast cancer 

(NCT02219789), the combination of MLN8237 with vorinostat in patients with 

Hodgkin, B-cell non-Hodgkin or peripheral T cell lymphomas (NCT01567709) and the 

combination of MLN8237 with romidepsin in patients with relapsed or refractory B or 

T cell lymphomas (NCT01897012). In addition, a range of targeted agents are now 
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being tested in combination with MLN8237, including the combination of a pan-RAF 

kinase inhibitor plus either a TORC1/2 inhibitor, MLN8237, paclitaxel, cetuximab or 

irinotecan NCT02327169 (238). A Phase 1b study combining MLN8237 with 

MLN0128 (dual TORC1/2 inhibitor) is also active, with a planned expansion cohort in 

metastatic triple-negative breast cancer (NCT02719691). The potential for MLN8237 to 

act as a radiosensitiser is also being investigated, with one study studying the effects of 

MLN8237 combined with stereotactic radiosurgery in patients with recurrent high-grade 

gliomas (NCT02186509) and another the combination with cetuximab and definitive 

radiation in patients with head and neck cancer (NCT01540682).  

As seen in Table 1-5, the majority have tested AK-A specific inhibitors (mainly 

MLN8237) in combination with taxanes (paclitaxel and docetaxel). Whilst there have 

been encouraging tumour responses, overlapping toxicities, particularly neutropenia 

have prevented dose escalation when administering the taxanes at full dose and dose 

reductions have been required, usually in the AK-A inhibitor as investigators have been 

reluctant to reduce the taxane dose. Thus the combination with MK-5108 was 

terminated early due to DLT below the pharmacokinetic (PK) target (216).  

In the published phase 2 trial of MLN8237 in combination with paclitaxel, despite 

reducing both drug starting doses, increased AE have been seen, with patients coming 

off trial due to toxicity (239).  Another phase 2 trial of MLN8237 in combination with 

paclitaxel is ongoing in patients with metastatic or locally recurrent breast cancer, with 

patients randomised to either paclitaxel 90 mg/m2 (a higher than normal single agent 

dose) on days 1, 8 and 15 of a 28-day cycle or paclitaxel 60 mg/m2 on days 1, 8 and 15 

of a 28-day cycle together with MLN8237 40 mg bd on days 1-3, 8-10, and 15-17 of a 

28-day cycle (NCT02187991).  
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Compound Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D Dose limiting toxicity 
Anti-tumour 

activity 

MSC1992371A 
(AS703569 R763) 
(240) 

1 Advanced solid, 66 

Schedule 1: 1000 
mg/m2 gemcitabine 
days 1 & 8 and 
MSC1992371A on 
days 2 and 9 of 21 
day cycle 
Schedule 2: 
MSC1992371A on 
days 1 and 8, 1000 
mg/m2 gemcitabine 
days 2 and 9 of 21 
day cycle 

MSC1992371A 37 
mg/m2 

Neutropenia 

2 confirmed PR 
(HCC, NSCLC), 1 
unconfirmed PR 
(spindocellular 
skin ca), 5 SD ≥ 6 
mo. 

MK-5108/VX-689 
(216) 

1 Advanced solid, 17 

MK5108 oral bd 
Days 1-2 in 
combination with 
docetaxel 60 mg/m2 
iv Day 1 every 21 
days 

MK-5108 150 mg bd 
Days 1-2 in 
combination with 
docetaxel 60 mg/m2 
Day 1 iv in 21 day 
cycle 

Febrile neutropenia, 
Grade 3 infection. 
Terminated early as DLT 
below PK exposure 
target 

1 PR, 7 SD 
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Compound Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D Dose limiting toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) (241) 

1/2 

Ovarian, fallopian 
tube, primary 
peritoneal and 
breast, 49 

Paclitaxel 80 mg/m2 

iv Days 1, 8 and 15, 
oral MLN8237 bd 
days 1-3, 8-10, 15-
17 in 28 day cycles 

MLN8237 10 mg bd 
with paclitaxel 80 
mg/m2 AND 
MLN8237 40 mg bd 
with paclitaxel 60 
mg/m2 but RP2D 
MLN8237 40 mg bd 
with paclitaxel 60 
mg/m2  based on 
biological activity 

Neutropenia with or 
without fever, diarrhoea, 
stomatitis 

Ovarian 1 CR, 9 
PR, 11 SD 
Breast 6 PR, 3 SD  

MLN8237 
(alisertib) (242) 

1 

Castrate refractory 
prostate cancer, 
amended to all 
advanced solid, 41 

Docetaxel 75 mg/m2 
iv Day 1 and 
MLN8237 bd Days 
1-7 of 21 day cycle 

Docetaxel 75 mg/m2 
Day 1 with MLN8237 
20 mg bd Days 1-7 
without GCSF 
*Due to toxicity, 
range of dosing tried 
including MLN8237 
days 1-5 only, 
reduction in docetaxel 
dose and use of GCSF 

Febrile neutropenia, 
neutropenia, stomatitis 

7 PR, 11 SD 

MLN8237 
(alisertib) (243) 

1 

Advanced solid 
(part 1), 17 pts 
pancreatic or 
neuroendocrine 
(part 2), 16 pts 

Nab-paclitaxel 100 
mg/m2 iv Days 1, 8, 
15 and MLN8237 
oral bd Days 1-3, 8-
10, 15-17 of 28 day 
cycle 

Nab-paclitaxel 100 
mg/m2 with 
MLN8237 40 mg bd 
Days 1-3, 8-10, 15-17 

Febrile neutropenia, 
neutropenia 

1 PR (SCLC), 9 
SD 
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Compound Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D Dose limiting toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) (244) 

1 

Advanced solid, 21 
Pre-planned 
expansion into 
pancreatic cancer 
ongoing 

Gemcitabine 1000 
mg/m2 iv Days 1, 8 
and 15 and 
MLN8237 bd Days 
1-3, 8-10 and 15-17 
of 28 day cycle 

Gemcitabine 1000 
mg/m2 iv Days 1, 8 
and 15 and MLN8237 
50 mg bd Days 1-3, 
8-10 and 15-17 of 28 
day cycle 

Neutropenia, mucositis, 
infection 

10 SD 

MLN8237 
(alisertib) (245) 

1/2 

Castrate refractory 
prostate cancer, 
progressing on 
abiraterone, only 9 
enrolled 

Abiraterone 1 g od 
and prednisone and 
MLN8237 days 1-7 
of 21 day cycle 

Terminated due to 
toxicity and lack of 
clinical benefit 

Fatigue with memory 
impairment, febrile 
neutropenia, diarrhoea 

 

MLN8237 
(alisertib) (246) 

1 
Relapsed or 
refractory 
neuroblastoma, 22 

MLN8237 oral od 
Days 1-7, irinotecan 
50 mg/m2 iv and 
temozolamide 100 
mg/m2 oral od Days 
1-5 of 21 day cycle 

MLN8237 60 mg/m2 
oral od Days 1-7, 
irinotecan 50 mg/m2 
iv and temozolamide 
100 mg/m2 oral od 
Days 1-5 of 21 day 
cycle – but with 
mandatory GCSF and 
cephalosporin 
prophylaxis for 
diarrhoea 

Neutropenia, diarrhoea, 
nausea 

Overall response 
rate 32%, PFS 52%  
NB patients 
irinotecan naive 
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Compound Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D Dose limiting toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) (247) 

1 
Metastatic 
gastrointestinal 
tumours, 13 

MLN8237 oral bd 
Days 1-3, 
leucovorin and 
oxaliplatin 85 
mg/m2 Day 2, 
continuous 5-
flurouracil 2400 
mg/m2 Days 2-14 in 
14 day cycles 

MLN8237 10 mg bd, 
Days 1-3, leucovorin 
and oxaliplatin 85 
mg/m2 Day 2, 
continuous 5-
flurouracil 2400 
mg/m2 Days 2-14 in 
14 day cycles 

Fatigue, nausea and 
vomiting 

1 PR, 6 SD 
NB eligible 
patients could be 
FOLFOX naïve 
and FOLFOX 
active treatment 

MLN8237 
(alisertib) (248)  

1 Advanced solid, 27 

MLN8237 oral bd 
Days 1-7, pazopanib 
od Days 1-21 of 21 
day cycle 

MLN8237 20 mg bd, 
pazopanib 600 mg od 

Grade 3 colonic 
obstruction, rise in liver 
enzymes, 
thrombocytopenia, 
mucositis 

2 PR, 14 SD 

MLN8237 
(alisertib) (249) 

1 
Advanced NSCLC, 
18 

MLN8237 oral bd 
Days 1-7, erlotinib 
od Days 1-21 of 21 
day cycle 

MLN8237 40 mg bd, 
erlotinib 150 mg od 

Febrile neutropenia, 
neutropenia 

1 PR, 5 SD 

MLN8237 
(alisertib) (239) 

2 
Ovarian, fallopian 
tube or primary 
peritoneal, 149 

Randomised to 
MLN8237 40 mg bd 
Days 1-3, 8-10, 15-
17 with paclitaxel 
60 mg/m2 iv Days 1, 
8 and 15 vs 
paclitaxel 80 mg/m2 
iv Days 1, 8 and 15 
of 21 day cycle 

 

NA, at time of interim 
report increased toxicity 
with combination 
including  ≥Grade 3 
neutropenia 64% vs 9%, 
with 14% vs 1% 
discontinued due to 
toxicity 

Median PFS 
increased with 
combination 7 mo. 
vs 4.4 mo. 
(p=0.021) 
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Compound Phase 
Patients (tumour 

type, no.) Schedule MTD/RP2D Dose limiting toxicity 
Anti-tumour 

activity 

MLN8237 
(alisertib) (250) 

2 
Small cell lung 
cancer, 178 

Randomised to 
MLN8237 40 mg 
orally bd on days 1-
3, 8-10, 15-17 and 
paclitaxel 60 mg/m2 
iv on days 1, 8, 15 
(Arm A) or matched  
placebo + paclitaxel 
80 mg/m2 (Arm B) 
in 28- 
day cycles. 

 

NA, Drug related ≥ 
grade 3 AE 67% 
combination vs 25%; 
neutropenia (all grades) 
in 49% combination  

median PFS 101 
days in 
combination vs 66 
days, HR 0.71 
(0.51, 0.99, 
p=0.038);  
median OS 186 vs 
165 days HR 0.79 
(0.55, 1.10, 
p=0.20); disease 
control rate 58% vs 
46% 

Table 1-5: Published clinical trials of AKI in combination with other drugs.  
Abbreviations: GCSF (granulocyte colony stimulating factor), hr (hour), HR (hazard ratio), iv (intravenous), mo (months), MTD (maximum tolerated dose), NA (not 
applicable), NHL (non-Hodgkin's lymphoma), NSCLC (non-small cell lung cancer), od (once daily), PFS (progression free survival), PR (partial response), RP2D 
(recommended Phase 2 dose), SD (stable disease). 
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Based on the evidence presented, the aims of my research were to study AKI in bladder 

cancer, particularly in combination with paclitaxel as a potential therapeutic option.  

Aim 1 (Chapter 3) was to assess a range of novel AKI in the human bladder cancer cell 

line T24, in order to determine whether the cells were most sensitive to specific AKI 

(AK-A or AK-B) or pan-AKI. Having established single agent activity and selected the 

AKI of most interest, I then characterised the effects of combining the AKI with 

paclitaxel in vitro, using response-surface modelling to determine the combined drug 

action over the full concentration-combination ranges of both drugs (226). Synergistic 

combinations were explored further, with findings expanded to a wider panel of bladder 

cancer cell lines. 

Aim 2 (Chapter 4) was to investigate the therapeutic window for the combination of 

AKI and paclitaxel, specifically to determine in vitro whether non-cancer cells were less 

sensitive than tumour cells.  

Aim 3 (Chapter 5) was to explore whether the extent of AK-A expression in cell lines 

may contribute to synergy with the combination of AKI with paclitaxel and identify 

whether AK-A expression level could be used as a predictive biomarker in clinical 

trials. 

Aim 4 (Chapter 6) was to assess the efficacy of the AKI and taxane combination in 

bladder cancer xenografts in vivo, with a particular focus on the effects of the 

combination on the bone marrow. Potential pharmacodynamic endpoints were assessed. 

Aim 5 (Chapter 7) was to design an early phase clinical trial of the combination of AKI 

with taxanes, using Bayesian adaptive design with the choice of strategy informed from 

my pre-clinical response surfaces and in vivo work. 
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 MATERIALS AND METHODS 

 

 

Company Headquarters 
Abcam Cambridge, UK 
Abnova Taipei City, Taiwan 
Alfa Aesar Massachusetts, USA 
Aperio (Leica Biosystems) Nussloch, Germany 
Applied Biosystems California, USA 
America Type Culture Collection (ATCC) Virginia, USA 
Astex Pharmaceuticals Cambridge, UK 
BD Bioscience California, USA 
Beckman Coulter California, USA 
Bethyl Laboratories Texas, USA 
BioRad Hemel Hempstead, UK 
BioTek Instruments, Inc Vermont, USA 
BMG LabTech Ortenberg, USA 
Cayman Chemicals Michigan, USA 
Cell Signaling Technology Massachusetts, USA 
Charles River Laboratories Kent, UK 
Cell Lines Service (CLS) Eppelheim, Germany 
CTC Analytics AG Zwingen, Switzerland 
Corning Life Sciences Massachusetts, USA 
Cyclacel Pharmaceuticals, Inc New Jersey, USA 
Dako Glostrup, Denmark 
Dechra Vetinerary Products Northwich, UK 
European Collection of Cell Cultures Salisbury, UK 
Essen Bioscience Michigan, USA 
Fisher Scientific UK Ltd Loughborough, UK 
FlowJo Oregon, USA 
GE Healthcare Buckinghamshire, UK 
Gibco™ (now part of Thermo Fisher 
Scientific) 

Massachusetts, USA 

Horizon Discovery Ltd Cambridge, UK 
Ibidi Munich, Germany 
Indica Labs New Mexico, USA 
Invitrogen California, USA 
InvivoGen California, USA 
Leica Microsystems GmbH Wetzler, Germany 
LI-COR Biosciences Nebraska, USA 
MEDIpoint inc New York, USA 
Merck Millipore Massachusetts, USA 
Nikon New York, USA 
Ontario Chemicals Ontario, Canada 
Oxford Optronix Oxfordshire, UK 
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Company Headquarters 
Peviva via BIOAXXESS Gloucestershire, UK 
Precellys Versailles, France 
Promega Wisconsin, USA 
QMX Laboratories Essex, UK 
Scantibodies Laboratory Ltd California, USA 
Scientifc Laboratory Supplies Yorkshire, UK 
Selleck Chemicals Texas, USA 
Sigma-Aldrich Missouri, USA 
Stem Cell Technologies British Columbia, Canada 
Thermo Fisher Massachusetts, USA 
Tocris Bristol, UK 
Vector Laboratories California, USA 
Woodley Equipment Lancashire, UK 
Table 2-1 List of manufacturers of materials used in this research, together with headquarters 

 

 Phosphate-Buffered Saline (PBS 1x): 11.9mM phosphate, 137mM Sodium 

Chloride, 2.7mM Potassium Chloride, pH7.4 

 Tris-Buffered Saline (TBS 1x): 137mM Sodium Chloride, 2.7mM Potassium 

Chloride, 25mM Tris, pH7.4 

 RIPA buffer: 25 mM Tris-HCl pH 7.6, 150mM NaCl, 1% Igepal (Nonidet), 1% 

sodium deoxycholate, 0.1% SDS 

 

Cell lines were obtained from commercial sources or as kind gifts from Dr Ultan 

McDermott, Wellcome Trust Sanger Institute (WTSI) or Dr Masashi Narita’s group at 

CRUK Cambridge Institute (CRUK-CI) as indicated in Table 2-2. Each cell line was 

grown in media obtained from Gibco® as listed in Table 2-2. Cells were incubated at 

37ºC and 5% CO2/air (apart from IMR-90 which are grown in hypoxic conditions at 5% 

O2 and 5% CO2) and passaged before confluence in the usual manner. Cells were 

counted using Vi-CELL XR™ 2.03. Cell lines were authenticated by the CRUK-CI 

Biorepository core facility, by genetic profiling of polymorphic short tandem repeat 

(STR) loci using either Promega GenePrint® 10 System or Promega PowerPlex® 16HS 

kit together with Applied Biosystems Gene Mapper® software (version 3.2.1 or 4.0) for 

fragment analysis. All cell lines were grown up to a maximum of 20 passages and for 

fewer than six months following resuscitation. They were routinely verified to be 

mycoplasma-free by the CRUK-CI Biorepository core facility, using the MycoProbe® 

Mycoplasma Detection Kit (R&D Systems, Cat. CUL001B). 
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Cell line Tissue of origin Source Media 
ARPE-19 Human retinal 

pigment epithelial 
cells 

ATCC DMEM/F12 (1:1) + 10% 
FBS 

HeLa Aur A Modified HeLa cells 
with over-expression 
of Aur A 

Created in 
house (see 
section 2.2.10) 

DMEM+10% FBS + 4 
µg/ml blasticidin +200 
µg/ml  hygromycin 

HT1197 Human bladder cell 
carcinoma 

WTSI DMEM/F12 (1:1) + 10% 
FBS 

IMR90 Human primary 
fibroblasts 

Narita Group, 
CRUK CRI 

DMEM + 10% FBS. 

J82 Human bladder cell 
carcinoma 

WTSI DMEM/F12 (1:1) + 10% 
FBS 

MIA PaCa-2 Human pancreatic 
carcinoma 

ECACC 
 

DMEM + 10%FBS 

RT4 Human bladder cell 
carcinoma 

WTSI DMEM/F12 (1:1) + 10% 
FBS 

RT112 Human bladder cell 
carcinoma 

WTSI RMPI-1640 + 10% FBS 

SW780 Human bladder cell 
carcinoma 

WTSI DMEM/F12 (1:1) + 10% 
FBS 

T24 Human bladder 
carcinoma 

CLS DMEM/F12 (1:1) + 5% 
FBS 

UM-UC-3 Human bladder cell 
carcinoma 

WTSI DMEM/F12 (1:1) + 10% 
FBS 

Table 2-2: List of cell lines used in research. 
Cell lines used together with tissue of origin, source and media used for culture (WTSI: Wellcome 
Trust Sanger Institute, CRUK CI: Cancer Research UK Cambridge Institute, ECACC (European 
Collection of Cell Cultures), CLS (Cell lines service). 

 

 

The SRB assay was used for in vitro cytotoxicity testing (251). Cells were seeded in 96-

well assay plates (Corning® 96 well flat clear bottom black wall polystyrene TC-

Treated microplates, Cat. 3603, Corning) at an appropriate seeding density (detailed in 

Table 2-3) for each cell line and incubated at 37ºC in 5% CO2/air (apart from IMR-90 

incubated at 5% O2 and 5% CO2).  
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Cell line Seeding density (cells/well) 
ARPE-19 2500 
HeLa and HeLa Aur A 2500 
HT1197 2500 
IMR-90 5000 
J82 2500 
MIA PaCa-2 2500 
RT4 5000 
RT112 2500 
SW780 4000 
T24 2500 
UM-UC-3 2000 

Table 2-3: Cell line seeding densities/well in 96 well plates for SRB assay. 

Twenty-four hours later, cells were treated with serial dilutions of the relevant drug or 

drug combinations and incubated for the appropriate time period. Three wells were 

treated with DMSO alone at the same concentration used for drug dilution as a solvent 

control. A positive control was also added to the plate layout using a concentration 

expected to suppress growth by at least 90%, typically gemcitabine. 

At the end of the experimental time (typically 72 hours), the media was removed from 

cells and they were washed with pre-warmed PBS. Cells were then fixed by the addition 

of 100 µl of ice cold 3% Trichloracetic acid (TCA) (Sigma Aldrich, Cat. 91228) and 

incubated at 4ºC for 90 minutes. After fixation, the TCA was removed and the plate was 

rinsed once with ice-cold water manually and dried overnight. Wells were then stained 

with 50 µl of Sulforhodamine B solution (Sigma Aldrich, Cat. S1402) (0.057% in 1% 

acetic acid (in deionised water) (Sigma Aldrich, Cat. 27221)) for 30 minutes. The plate 

was then rinsed four times with 1% acetic acid (either manually or using a plate washer 

(Biotek ELx405™ Microplate Washer Select CW, Biotek Instruments) to remove the 

unbound dye and left to dry. On the day of analysis, 200 µl of 10 mM Tris base solution 

pH 10.5 (Tris-Base from Fisher Scientific, Cat. BP152) was added to each well and the 

plate shaken on a gyratory shaker to solubilise the protein bound dye. Fluorescence was 

then quantified using a Tecan Infinite M200 plate-reader at excitation and emission 

wavelengths of 488 and 585 nm, respectively.  

 

Further data and statistical analysis was performed using GraphPad Prism software 

Versions 5.03 or 6.  Data sets were transformed with the formula: x=log(x) and a non-

linear regression curve fitted to the data. The concentration of drug that resulted in 50% 

of the cell growth of the solvent control was designated as the GI50 concentration. The 
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IC50 was calculated by the software, defined as the concentration of compound that 

provokes a response halfway between the minimum and maximum response to the drug. 

At least three biological replicates were performed for each assay. 

 

After SRB staining to obtain the growth inhibition data, we used software developed by 

Dr Giovanni Di Veroli (CRUK-CI Jodrell lab) to identify synergistic drug combinations 

– Combenefit (252). The single agent inhibition values are used to calculate a drug 

combination surface under the assumption of an additive effect. To obtain this additive 

surface, two different models were applied – Bliss and Loewe as described in 1.8. 

Regions of synergy are then detected by comparing obtained data from a combination 

with the calculated additive effect. This is done by subtracting the calculated additive 

inhibition values from the measured inhibition to obtain the final difference values. In 

the final synergy surface, positive values indicate synergy, whereas negative values 

identify antagonism. 

I initially analysed the data with the Bliss and Loewe models to examine differences in 

results. As discussed in 1.8, each model makes different assumptions. Loewe additivity 

assumes that two inhibitors act through a similar mechanism on the same biological site, 

differing only in potency. This leads to the concept of dose substitution in which the 

effects of each inhibitor and the inhibitor combination are related through consistent 

equipotent dose ratios, requiring similar dose-response curves. As this was not seen 

across the different AKI, the Bliss independence model, which can be used regardless of 

the shape of the single-agent dose-response curves, was considered the most appropriate 

to allow consistent analysis and comparisons across multiple drug combinations and 

therefore the combination data is only shown for this model. 

An example is shown in Figure 2-1 where the Bliss model has been applied to data with 

the combination of AT9283 and paclitaxel in T24 cells. The mean and standard 

deviation (SD) of growth relative to solvent control from at least three replicates is 

shown in Plot (A), with the first column and last row treated with the single agent 

AT9283 and paclitaxel respectively. All other wells have varying concentrations of the 

two agents in combination. Plot (B) shows the predictions made by the Bliss additivity 

model and Plot (C) shows the difference between the model prediction and experimental 

data. Areas with positive values indicate growth inhibition greater than predicted i.e. 

synergy, with blue areas showing the strongest regions. Areas with negative values 

indicating growth inhibition less than predicted i.e. antagonism are represented in red. 
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As I aimed to identify combinations which showed synergistic effects, I considered 

combinations with a difference value (synergy score (SS)) of ≥25 potentially significant. 

The model also tested for the statistical significance of findings (with significant areas 

marked with a *). Of note, areas of synergy or antagonism at points where the SD was 

≥10 are not shown in blue or red by the automated software, for example the 

combination of AT9283 30 nM with paclitaxel 0.3 nM where the synergy score is 

16±11. 

 
Figure 2-1: Combination of AT9283 and paclitaxel in T24 cells.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel and AT9283 for 
72 hours. The experimental data (mean of 3 replicates) is shown in (A). The Bliss model was then 
applied to the experimental data (B) and the tabulated difference values between the model and 
experimental data are presented in (C). Synergy spots are in blue and antagonism in orange/red in 
these “Data-additivity” tables. 

 

The AT9283 and Cylacel compounds were supplied under material transfer agreements. 
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Drug Supplier Catalogue number 
AT9283 Astex Pharmaceuticals N/A 
CYC1 Cyclacel Pharmaceuticals, Inc N/A 
CYC116 Cyclacel Pharmaceuticals, Inc N/A 
CYC3 Cyclacel Pharmaceuticals,  Inc N/A 
Docetaxel Sigma Aldrich O1885 
Gemcitabine 
hydrochloride 

TOCRIS Bioscience 3259 

MLN8237(alisertib) Stratech Scientific S1133 
Paclitaxel Sigma Aldrich T7191 
Paclitaxel TOCRIS Bioscience 1097 
Table 2-4: Cytotoxic drugs used in research together with supplier and catalogue number.  
Note two different suppliers of paclitaxel were used during the project. 

For all compounds, “master” stock solutions were prepared in Dimethyl Sulfoxide 

(DMSO) (Sigma Aldrich, D2348) and stored in aliquots at -20ºC for a maximum of 

three months. These were diluted further in appropriate media to create “working” 

solutions for dosing. Final DMSO concentrations (0.2%) were kept constant in all 

experiments.  

 

Images were acquired with the IncuCyte™ Live Cell Imaging systems either 

IncuCyte™ FLR 10x or IncuCyte Zoom® (Essen Bioscience) every three hours under 

cell culture conditions. Averaged bright field cell confluence was calculated from three 

random fields of view per well using the IncuCyte™ in-built algorithm. Relative 

confluence values were obtained by normalizing each value to the time zero value in 

each sample.  

 

Cells were plated in Petri dishes in an appropriate volume of media and incubated for 24 

hours. The medium was then removed, drug was added with fresh media and the dish 

incubated for the necessary time before harvesting. Controls of untreated cells and 

solvent control were also analysed. Cells were harvested with 0.05% trypsin, retaining 

the culture media containing floating cells. They were then washed twice with PBS and 

fixed with 70% ice-cold ethanol for at least 30 minutes and kept at 4ºC until analysed. 

On the day of analysis, the Flow Stain solution was prepared as follows: 10 ml PBST 

(PBS + 0.1% (v/v) Triton-X-100 (Sigma Aldrich, Cat, T9287)), 200 µL of 1 mg/mL 

Propidium Iodide (PI) Solution (Sigma Aldrich, Cat. D4864) and 40 µL of 50 mg/mL 
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ribonuclease A dissolved in water (Sigma Aldrich, Cat. R6513). This was kept in the 

dark on ice. 

Samples were re-suspended in this solution to a concentration of 1x106 cells/ml. The 

solution was then transferred to the cell strainer lid of a Falcon tube (Corning Life 

Sciences, Cat: 352235 tube) and allowed to flow through. The cell samples were kept in 

the dark on ice until required for flow cytometry analysis. Each sample was vortexed 

before being analysed and 20000 cells were read for each cell cycle profile. A BD™ 

Biosciences FACS-Calibur flow cytometer was used in analysis, with an FL-2 detector 

(564-606 nM) for PI and a 488 nM excitation laser. The cell cycle distribution of the 

samples was determined using FlowJo version 7.6.1. Pseudocolour dot plots were 

generated from the raw data, and manually gated to exclude outliers and capture the 

subset of cells of interest. From this subset, the plots depicting the cell cycle profiles 

were created and the percentage of cells in each stage of the cell cycle was determined.  

On these plots, the y axis is the cell count and the x axis shows the intensity of 

fluorescence in the FL2-H channel, propidium iodide; a measure of DNA content 

(sample plot shown in Figure 2-2). 

 
Figure 2-2: Sample histogram plot of flow cytometry data.  
The y axis is the cell count and the x axis shows the intensity of fluorescence in the FL2-H channel, 
propidium iodide. The peaks representing G1, S and G2/M phase are marked. 

The Watson pragmatic cell cycle model was applied to these data to quantify changes in 

cell cycle profiles. 

 

 

Proteins were extracted from cell pellets using RIPA buffer. Protein quantification was 

calculated using either the Bio-RAD DC Protein Assay Kit I Bradford assay reagent 

(Biorad, Cat. 500–011) or the Direct Detect™ Spectrometer (Merck Millipore). Equal 
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amounts were then loaded on Nu PAGE™ Novex™ Bris-Tris 4-12% gels 

(ThermoFisher Scientific, Cat. NP0336BOX, NP0329BOX, WG1403BOX) in 

NuPAGE® MOPS SDS running buffer (ThermoFisher Scientific, Cat. NP001) and 

separated by SDS-PAGE. They were then transferred to nitrocellulose membranes using 

the iBlot® system (iBlot™ Transfer Stack, nitrocellulose, regular size, Cat. IB301001, 

ThermoFisher Scientific). After blocking with Odyssey blocking buffer (LI-COR 

Biosciences, Cat. 927-50000), the membrane was stained with the appropriate primary 

antibody diluted in Odyssey block buffer with 0.1% Ultra Pure Tween 20 (Scientific 

Laboratory Supplies, Cat. EC-607) and rocked overnight at 4ºC. The following day, the 

membrane was washed four times on a rotary shaker with either Tris-buffered saline or 

phosphate-buffered saline with 0.1 % Tween (TBS-T or PBS-T). It was then incubated 

with fluorescently-labelled secondary antibody in Odyssey block buffer with 0.1% 

Tween for 1 hr at room temperature on a rocker platform before being washed three 

times with either TBS-T or PBS-T for five minutes and a final wash with TBS/PBS to 

remove residual Tween. The blots were imaged using the Odyssey® CLx Infrared 

Imaging System (LI-COR Biosciences). Quantification of Western blots was then 

performed using LI-COR® Odyssey® software and results normalised to DMSO 

treated controls. 

 

Table 2-5 shows the primary antibodies used for Western blotting. 
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Target Description Supplier Cat. No. Dilution 
Anti-Myc tag, 
clone 4A6 

Mouse 
monoclonal 

Millipore 05-724 1:5000 

Aurora A Rabbit 
monoclonal 

Cell Signaling 4718 1:500 

Aurora B Rabbit 
polyclonal 

Cell Signaling 3094 1:1000 

β-Actin Mouse 
monoclonal 

Abcam Ab6276 1:5000 

β-Actin Rabbit 
polyclonal 

Abcam Ab1801 1:5000 

Cleaved 
caspase 3 (Asp 
175) 

Rabbit 
polyclonal 

Cell Signaling 9661 1:1000 

Cleaved 
caspase 9 (Asp 
330) 

Rabbit 
monoclonal 

Cell Signaling 7237 1:1000 

Cleaved PARP 
(Asp 14) 

Rabbit 
monoclonal 

Cell Signaling 5625 1:1000 

Phospho-Aur 
A (Thr288) 

Rabbit 
monoclonal 

Cell Signaling 3079 1:500 

Phospho-Aur 
A 
(Thr288)/Aur 
B 
(Thr232)/Aur 
C (Thr198) 

Rabbit 
monoclonal 

Cell Signaling 2914 1:500 

Phospho-
histone H3 
(Ser10) 

Rabbit 
monoclonal 

Cell Signaling 3377 1:1000 

Total Aur A Rabbit 
polyclonal 

Cell Signaling 3092 1:500 

Table 2-5: List of primary antibodies used for Western blotting. 
Primary antibodies are listed together with supplier, catalogue number (Cat. No.) and dilution. 

 

Secondary antibodies used for Western blots were IRDye 680- or 800CW conjugated 

goat anti-mouse or anti-rabbit IgGs (LiCOR, Cat. 926–32210, 926–32211, 926–32220, 

926–32221) at 1:5000 dilution.  

 

Cells were plated 24 hours prior to treatment in six-well plates (Falcon® 6 well culture 

plates, Corning Life Sciences, Cat. 351146) at a density of 50000 cells/well. After 24 

hours, the cells were treated with drugs for the designated length of time. Following 

treatment, cells were harvested using trypsin and counted using Vi-CELL XR™ 2.03. 

Equal numbers of viable cells (500 and 1000 cells) from each sample were seeded in 
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triplicate in their usual medium into six-well plates and incubated. Seven days later, 

cells were fixed with 70% methanol and stained with 5% Giemsa (Sigma-Aldrich, Cat. 

48900). Colonies were imaged using GelCount colony counter (Oxford Optronix) and 

quantified using the ImageQuant TL software (GE Healthcare).  

 

The work in this section was performed with assistance from the staff of CRUK-CI 

Microscopy core. These experiments were designed together with Dr Yao Lin (T24 and 

ARPE-19 cell lines) and Dr Siang Boon Koh (HeLa Aur A cell line) and performed by 

them with my assistance.  

Cells were seeded in eight-well chamber slides (Ibidi, Cat. 80826) at a density of 5000 

cells/well. After 24 hours incubation, cells were treated with drugs and sent for 72h 

live-cell imaging detection. They were kept in a humidified chamber under cell culture 

conditions (37°C, 5% CO2). Images were taken from three or more fields of view per 

well, every five minutes, using a Nikon Eclipse TE2000-E microscope with a 20X long-

working distance air objective, equipped with a sCMOS Andor Neo camera acquiring 

2048x2048 images with a binning factor of two. After acquisition, the data were 

analysed in NIS-Elements manually. Mitotic duration was defined as the time between 

cell rounding (i.e. prophase) and either cell separation, cell flattening without separation 

(i.e. failed mitosis) or cell death. One daughter cell was chosen at random from a 

successful mitotic division and tracked for its fate over the following 72 hours. 

 

These experiments were designed in collaboration with Dr Yao Lin (T24 and ARPE-19 

cell lines) and Dr Siang Boon Koh (HeLa Aur A cell line) and performed by them with 

my assistance.  

For HeLa Aur A experiments, 2500 cells were seeded in normal growth medium either 

with or without 1 µg/ml doxycycline in 8-well chamber slides (Ibidi, Cat. 80826) for 24 

hours. After that, cells were fixed with 4% paraformaldehyde in PBS, permeabilised 

with 0.3% Triton-X-100 in PBS, stained with antibodies and counterstained with DAPI. 

The primary antibodies used were anti-Myc tag at 1:250 dilution (Cat. 4A6, Merck 

Millipore) and total Aur A (Cat.3092, Cell Signaling) at 1:500 dilution. Secondary 

antibodies used were anti-rabbit IgG Alexa 647 (Cat. 4414, Cell Signaling 

Technologies) and anti-mouse IgG Alexa 488 (Cat. 4408, Cell Signaling Technologies) 

used at 1:1000 dilution. The confocal images were taken using a Leica IR Laser 
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microscope. The images were then merged to determine localisation of Myc-tagged 

AK-A.  

For T24 and ARPE-19 cell lines, a total of 5000 cells were seeded in 8-well chamber 

slides (Ibidi, Cat. 80826) and treated with drugs 24 h later. After treatment, cells were 

fixed with 4% paraformaldehyde in PBS, permeabilised with 0.3% Triton X-100 in 

PBS, then stained with antibodies and counterstained with DAPI. The primary 

antibodies were anti--tubulin at 1:1000 dilution (Cat. T5168, Sigma) and anti-

CDK5RAP2 at 1:1000 dilution (Cat. A300-554A, Bethyl Laboratories); secondary 

antibodies were anti-rabbit IgG Alexa 647 (Cat. 4414, Cell SignalingTechnologies) and 

anti-mouse IgG Alexa 488 (Cat. 4408, Cell SignalingTechnologies). CompuCyte Icys® 

imaging cytometer was used for calculations. 

 

Methylcellulose-based culture medium (Stem Cell Technologies, Cat. MethoCult 

H4035 Optimum without EPO) was thawed overnight at 4ºC. Frozen human bone 

marrow mononuclear cells (Stem Cell Technologies, Cat. ABM007 F) were thawed at 

37ºC and then re-suspended in Iscove’s  MDM with 2% FBS (Stem Cell  Technologies, 

Cat. 07700) and counted with a haemocytometer. A cell suspension between 1-2 x 105 

was prepared (depending on the experiment). Four mls of MethoCult medium was 

dispensed into 15ml sterile tubes and 0.4 ml of cells was added to allow triplicate 

samples. The tubes were then vortexed and left to stand for five minutes at room 

temperature to allow bubbles to dissipate. The mixture was drawn up using a 16 gauge 

blunt end needle and 1.1ml dispensed per 35 mm dish giving a total of 1-2x104 cells. 

They were then cultured for 14 days at 37ºC as described in the manufacturer’s manual 

(Stem Cell Technologies, Cat. 28404). Colonies (aggregates with more than 30 cells) 

were then counted manually using a Nikon TS100 microscope. The experimental part of 

this assay was performed jointly with Dr Yao Lin. Colonies were counted by both 

myself and Dr Yao Lin, blinded to the treatment group. 

 

This cell line was generated with Dr David Perera at the Medical Research Council 

Cancer Unit, Cambridge, using the Flp-In T-REx system from Invitrogen as described 

before (253). The parental HeLa LacZeo/TO line, and pOG44 and pcDNA5/FRT/TO 

plasmids, were kindly provided by Professor Stephen Taylor, University of Manchester.  
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The parental line grows under selection with 50 µg/ml Zeocin™ (InvivoGen, Cat. Ant-

zn-1) and 4 µg/ml Blasticidin (Invitrogen, Cat.  B21001). 

Cells were plated in a six-well dish at a concentration of 1.5x105 cells/well in triplicate. 

The following day, they were co-transfected with the following plasmids: pOG44, 

which encodes the Flp recombinase, and pcDNA5/FRT/TO/Myc-Aur-A (kind gift from 

Dr David Perera), a modified pcDNA5/FRT/TO vector encoding full-length Aurora-A 

tagged with a single amino-terminal Myc tag. Transfection was performed using 

jetPRIME® (Polyplus- transfection S.A, Cat. 114-01) as recommended in the 

manufacturer protocol and the Flp-In™ T-REx™ Core Kit (Invitrogen, Cat. K6500-01). 

The media was changed after four hours and the cells split at a 1:10 ratio after 24 hours. 

The following day the media was changed to media containing 200 µg/ml Hygromycin 

(Invitrogen, Cat. 10687-010) and 4 µg/ml Blasticidin, and the cells were grown with 

fresh media changes every three days until colonies appeared. Individual colonies were 

then selected using cloning cylinders (Sigma, Cat. C7983). Nine clones and one pooled 

sample were then grown individually and banked at -80ºC. Transgene expression was 

achieved by treatment with 1 µg/ml tetracycline (Sigma Aldrich, Cat. T7660), and then 

Western blots were performed with antibodies specific for Aurora A and anti-Myc tag. 

 

The work in this section was performed with the assistance of Dr Tashinga Bapiro, who 

performed the LC-MS/MS. 

 

A CTC PAL HTS-xt autosampler (CTC Analytics AG) was used for sample injection. 

Chromatography was performed on an Accela pump (Thermo Fisher Scientific, USA). 

LC-MS/MS used a TSQ Vantage triple stage quadrupole mass spectrometer (Thermo 

Scientific) fitted with a heated electrospray ionisation (HESI-II) probe operated in 

positive mode at a spray of 5000, capillary temperature of 350ºC, vaporizer temperature 

of 400 ºC, sheath gas pressure of 50 (arbitrary units) and Aux gas pressure set at 20 

(arbitrary units). Quantitative data acquisition was done using LC-Quan 2.5.6 (Thermo 

Fisher Scientific). 

 

Sample preparation for cells and tumours was performed by me as detailed below. 
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Cells were harvested by trypsinisation, an aliquot was counted using Vi-CELL XR™ 

2.03 and the remaining cells were washed with ice-cold PBS and centrifuged. After 

removing PBS, the cell pellet was re-suspended in ice-cold methanol (70% v/v) and 

vortexed vigorously. The suspension was sonicated for 10 min in an ice bath and an 

aliquot (50 µl) was processed for LC-MS/MS analysis. 

 
Tumour samples, stored at -80ºC, were transferred onto dry ice. A piece was cut and 

weighed in Precellys 24 homogeniser tubes (Precellys, Cat. KT03961-1-002.2). The 

tumour pieces were homogenised in ice-cold acetonitrile (200 µl, 50% v/v) (Fisher 

Scientific, Cat. A955-1) in a Precellys 24 homogeniser (Precellys) for 2 x 50 seconds at 

5700 rpm and more acetonitrile was added to give a final concentration of 0.05 mg/µl of 

tumour. An aliquot (50 µl) of the tumour homogenate was processed for LC-MS/MS 

analysis. 

 

Sample analysis was performed by Dr Tashinga Bapiro. An aliquot of either cell lysate, 

tumour homogenate or plasma was added to 200 µl of ice-cold acetonitrile (100 %) 

containing the internal standards 2H5-paclitaxel (QMX Laboratories, Cat. 158112/0001) 

or CYC1 (25 ng/ml) (Cyclacel Pharmaceuticals, Inc). After vortex-mixing, the mixture 

was centrifuged for 20 min at 20000 xg. The supernatant was transferred to a clean tube 

and evaporated to dryness under air. The residue was reconstituted in 100 µl of 0.1% 

acetic acid: [Acetonitrile:methanol, (1:1)] 70:30 and 15 µl was injected into the mass 

spectrometer. The analytes were separated on an Acquity T3 column (Waters) (50 x 2 

mm, 1.8 µm, column temperature 30ºC) with A. 0.1 % acetic acid: 

[Acetonitrile:Methanol, (1:1) 70:30] and B. 0.1 % acetic acid: [Acetonitrile:Methanol, 

(1:1)]10:90 as mobile phases. The gradient, at a flow rate of 300 µl/min, was 100% A 

for 0.6 mins, then 100% B from 0.8-3 mins, then 100% A from 3 to 4.5 mins. The mass 

spectrometry parameters were optimised for the analytes by Dr Tashinga Bapiro, with 

multiple-reaction monitoring of the transition 881-308 mass to charge ratio (m/z) for 

Paclitaxel-2H5, 876-308 m/z for paclitaxel, 454-390 m/z for CYC3 and 438-112 m/z for 

CYC1. 
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Sample analysis was performed by Dr Tashinga Bapiro. An aliquot of the samples was 

added to 200 µl ice-cold acetonitrile containing the internal standard stable labelled 

MLN8054 (kind gift from Dr Hiroyoshi Hattori (Medical Research Council Cancer 

Unit, Cambridge)). After vortex-mixing, the mixture was centrifuged for 20 min at 

20000 xg. The supernatant was transferred to a clean tube and 15 µl was injected into 

the mass spectrometer set an ion spray voltage of 2500 V with the rest of the parameters 

the same as stated above. The analytes were separated on an Acquity T3 column 

(Waters) (50 x 2 mm, 1.8 µm, column temperature 30ºC) with A. 0.1% formic acid in 

water and B. 0.1% formic acid in acetonitrile as mobile phases. The gradient, at a flow 

rate of 250 µl/min, was 80% A and 20% B for 0.5 mins, then 10% A and 90% B from 

0.7-4.2 minutes and then 80% A, 20% B from 4.2 to 5.5 minutes. The mass 

spectrometry parameters were optimised for the analytes by Dr Tashinga Bapiro, with 

multiple-reaction monitoring of the transition 519-328 m/z for MLN8237 and 478 to 

316 for MLN8054 m/z.  

 

The concentrations in tumour homogenate in ng/ml obtained from the LC-MS/MS 

analysis were converted to ng/mg tissue and then µg/g tissue. The assumption was made 

that tissue density is 1 g/ml to give a value in mg/litre of tissue. This was then divided 

by the molecular weight of each drug to give a millimolar concentration. These figures 

are shown for the PK experiments.  

 
The work in this section was performed with assistance from the staff of CRUK-CI 

Biological Resources Unit (including drug dosing) and Dr Frances Richards (drug 

formulation and performing mouse necropsies). All mouse studies were performed in 

accordance with UK Animals (Scientific Procedures) Act 1986, under project licence 

number 80/2346, with approval from the CRUK-CI animal ethics committee and 

following the 2010 guidelines from the United Kingdom Coordinating Committee on 

Cancer Research (254). Balb/c nude mice were obtained from Charles River 

Laboratories and enrolled on studies between six to twelve weeks old. Female mice 

were used for each protocol apart from the first study which used male mice. Mice were 

housed in groups in individually ventilated cages. 
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Balb/c nude mice were injected subcutaneously with either 2x106 T24 cells (in 0.1 ml 

1:1 Matrigel (BD Bioscience, Cat: 354234): PBS) or 5x106 cells MIA PaCa-2 cells (in 

0.1 ml 1:1 matrigel: PBS) into one flank. Long (L) and short (S) axes of each tumour 

were measured with calipers approximately twice a week. Tumour volume (V) 

measurements were calculated in mm3 using the formula: V= π/6 x S2 x L. Once the 

tumour was >100 mm3, mice were dosed with drug according to the specific study 

protocol. For studies with more than one potential drug treatment option, mice were 

randomised to different treatment groups using the spiral randomisation method (255), 

recommended by Hazel Jones at Cancer Research Technology. Their health was 

assessed daily and they were weighed twice a week. Animals were killed humanely 

either at pre-specified time points as per study protocol, if tumours approached 10% of 

body weight or if clinical signs of toxicity approached the limit of moderate severity. 

 

Mid-term bleeds were performed in some studies. The preference was for tail vein 

bleeds. The mouse was restrained, the tail nicked with a scalpel and a drop of blood 

(approximately 50 µl) collected into an EDTA (Invitrogen, Cat: 15575020)-treated glass 

capillary tube. The capillary tube was then put into an open 0.5 ml Eppendorf tube 

containing 17.5 µl 100mg/ml EDTA on ice and the blood expelled using a 200 µl 

pipette tip. Blood was mixed thoroughly before counting on the Mythic 18 Vet 

Haematology Analyser (Woodley Equipment Company Limited). Due to difficulties 

with obtaining sufficient blood, live submandibular vein bleeds were performed in some 

mice. The mouse was restrained and a lancet (MediPoint Inc, Cat. Goldenrod 4 mm) 

used to nick the vein. Approximately 40-100 µl of blood was collected directly into a 

0.5 ml Eppendorf tube containing 17.5 µl 100 mg/ml EDTA on ice. 

 

Animals were killed using standard home office humane methods. Mice were weighed 

and tumours measured at the endpoint.  Cardiac puncture was performed under terminal 

anaesthesia to collect blood using a 26G needle with a 1 mL syringe. Kill was 

completed by cervical dislocation. 

The blood sample was collected into a micro-centrifuge tube containing K2 EDTA. The 

tube was stored on wet ice for no more than 30 minutes.  A Mythic 18 Vet Haematology 

Analyser (Woodley Equipment Company Limited, UK) was used to determine the full 
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blood count using 50 µl of this blood sample, with duplicate or triplicate samples 

measured if possible. The remaining blood sample was then centrifuged at 14000 rpm at 

4ºC for 5 minutes. The plasma was then carefully removed from the blood cell pellet 

using a pipette and snap frozen in liquid nitrogen. 

Following the blood draw, a piece of skin was dissected from the back of the mouse 

(approximately 1-2 cm in diameter), placed wet side down onto a piece of Invitrolon™ 

Polyvinylidene difluoride (PVDF) filter paper (Invitrogen, Cat. LC2005) and then fixed 

for 24 hours at room temperature in 10% neutral buffered formalin solution (NBF)  

(Sigma Aldrich, Cat. HT501128). The tumour was excised (and weighed in some 

studies). If possible, half the tumour was fixed in formalin for histology and 

immunohistochemistry (IHC) with the remaining tumour being snap frozen. Intestines, 

liver and spleen were also fixed in 10% NBF.  Fixative was replaced with 70% ethanol 

after 24 hours.  

Tissue was then cassetted, paraffin embedded, sectioned and stained by the histology 

core facility at the Cancer Research UK Cambridge Research Institute, as described 

further in 2.3.4. 

In some studies, the femurs were also collected either into PBS (if required for bone 

marrow aspirate or CFU-GM with methods further detailed in 2.3.7) or into formalin 

(for histological sections, described below).  

 

The work in this section was performed by the staff of the CRUK-CI Histopathology, 

particularly Jodi Miller (optimisation of staining), Leigh-Anne McDuffus and Cara 

Brodie (analysis algorithm optimisation). 

 

Tissues were fixed in 10% NBF for 24 hours at room temperature, and transferred to 

70% ethanol.  Tissues were dehydrated in an ascending series of ethanol solutions from 

90% to 100%, then into xylenes and paraffin wax using a Leica ASP300S overnight 

processor. Femurs were demineralised with two changes of 0.5M EDTA over seven 

days first before being processed as above. Paraffin embedded blocks were then stored 

until needed.  
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Wax sections of 3 µm were cut from each block and placed on glass slides. Sections 

were de-waxed and rehydrated using a Leica/CV5030 autostainer and routine 

hematoxylin and eosin staining was performed. Additional sections were stained with 

the antibodies listed in Table 2-6 using Leica’s Bond Polymer Refine Detection Kit 

(Leica, Cat: DS9800) on their automated IHC with DAB Enhancer (Leica, Cat: 

AR9432), according to manufacturer instructions. Antigen retrieval used either sodium 

citrate (pH 6) or tris EDTA (pH 9) (Table 2-6) and was performed at 100°C on the 

Bond™ platform (Leica). 

Antibody Manufacturer Cat. No. Antibody 
Dilution 

Antigen 
Retrieval 

Ki67 (hu) Dako M7240 1:200 Tris EDTA, 30 
minutes 

Ki67 (ms) Bethyl 
Laboratories 

IHC-
00375 

1:1000 Sodium Citrate, 
20 minutes 

pH3 (hu/ms) Merck Millipore 06-570 1:200 Sodium Citrate, 
10 minutes 

CC3 (hu/ms) Cell Signaling 
Technology 

9664 1:200 Tris EDTA, 20 
minutes 

Myeloperoxidase 
(ms) 

Dako A0398 1:1000 Sodium Citrate, 
20 minutes 

Table 2-6: Antibodies and antigen retrieval used in immunohistochemistry studies.  
Abbreviations: hu (human), ms (mouse) 

To detect human Ki67 in xenograft samples, a mouse on mouse protocol was required 

as the antibody is a mouse monoclonal antibody. An additional block with mouse Ig 

block solution (Vector, Cat: MKB-2213) and an isotype specific secondary antibody 

was required using rabbit anti-mouse IgG1 diluted 1:1500 (Abcam, Cat: ab125913). 

The protocol for myeloperoxidase (MPO) in mouse bone marrows was developed and 

optimised with Jodi Miller, using spleen and bone marrow. Firstly three retrieval 

conditions were tested with MPO diluted 1:100 consisting of sodium citrate (pH6) for 

20 mins, tris EDTA (pH 9) for 20 mins (both at 100°C) and proteinase K enzyme 

digestion for ten mins at 37°C. A “no primary” control for each retrieval condition was 

also run to determine whether any unwanted staining was coming from the primary 

antibody or the detection system/pre-treatment. The “no primary” controls were clean 

and specific signal was seen in the red pulp of the spleen with the sodium citrate and tris 

EDTA treatments. Due to over-staining, both were further investigated with antibody 

dilutions with sodium citrate selected for antigen retrieval with the primary diluted 1: 

1000 determined optimal, with the best signal to noise ratio. 
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Slides were scanned using a Leica Aperio ScanScope AT2 (Leica) at 20 X 

magnification (resolution 0.5 µm per pixel). Scanned images were viewed using Aperio 

Imagescope v12.2 (Aperio Technologies Inc.) and subsequently also using Indica labs 

HALO software (V2.0.1145.30). 

 

 

Image analysis algorithms for each stain were developed and optimised by the CRUK-

CI histopathology core facility based on positive nuclear staining (Aperio Imagescope 

Nuclear version 7) apart from CC3 where positive pixel counts were used (Aperio 

Imagescope Positive Pixel Count version 9), as positive staining was seen both in the 

nuclei and surrounding cytoplasm and it was difficult for the algorithm to capture the 

staining. On each slide the “Region of Interest” (the tumour) was individually 

highlighted manually prior to automated image analysis using the appropriate algorithm. 

Subsequently algorithms were also developed using Indica labs HALO software 

(V2.0.1145.30), due to the degree of necrosis seen in T24 tumours. Initially a tissue 

classifier was applied that was developed to detect viable tumour, areas of necrosis and 

glass. The appropriate algorithm was then only applied to the remaining viable tumour 

as illustrated in Figure 2-3.  

 
Figure 2-3: Example of tissue classifier algorithm for analysis of T24 xenograft tumours. 
In A. a representative tumour section stained with pH3 is seen with the tumour area outlined in 
yellow. The tumour classified is then applied and B. shows this with viable tumour shown in green, 
areas of glass in red and areas of necrosis in yellow. C. shows the areas of the tumour which were 
then analysed for pH3 stain. D. shows an example of an area classified by the algorithm as necrotic. 
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Due to the nature of serial sections through the tumour and batch staining variability, 

there was a degree of variability in the percentage of necrosis across the different stains 

for some individual tumours. After review of all the data with Cara Brodie 

(Histopathology Core), the pH3 stained slides were the most consistent and hence the 

data shown for percentage necrosis is from these slides.   

For the HALO analysis, the following algorithms were used: Ki67- Multiplex IHC v1.1, 

CC3–Area quantification v1.0, and pH3– Cytonuclear v1.4. The algorithms scored the 

tissue for strong, moderate and weak staining. After review, only the strong and 

moderate staining was scored as positive for Ki67 due to some non-specific staining 

being classified as weakly positive. 

 

For skin samples, three randomly chosen 20 X fields were chosen and the basal 

epithelial layer in these was highlighted manually prior to automated image analysis 

using the appropriate algorithm.  

 

H&E stained femurs were initially scanned at 20X magnification but subsequently also 

scanned at 40X magnification to aid visualisation of cell types.   

The myeloperoxidase (MPO) stain was optimised as described in 2.3.4.2. The HALO™ 

platform (Indica labs) was then used to specifically identify the areas of bone marrow 

within the sections of the femur before the MPO algorithm was applied (Halo 

Cytonuclear version 1). The analysis reported the total number of positive cells, divided 

into weak, moderate and strong staining as well as the number of negative cells. To 

ensure cells of monocytic origin were excluded, positive cells were considered those 

with either strong or moderate staining and those which were weakly positive were 

counted as negative. 

 

CYC3 was provided by Cyclacel Pharmaceuticals, Inc. CYC3 was initially dissolved in 

100% 1-Methyl-2-pyrrolidinone (NMP) (Sigma Aldrich, 328634) to a concentration of 

100 mg/ml. It was then diluted for dosing to a final concentration of 10% 1-Methyl-2-

pyrrolidinone (NMP) (Sigma Aldrich, 328634), together with 30 or 40% Polyethylene 

glycol molecular weight 400 Da (PEG400) (Sigma Aldrich, Cat: 81172), citrate buffer 

pH3 (Sigma Aldrich, S1804) for oral gavage or 10% NMP, 40% PEG400, 60% 
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Vetivex™1 (Dechra, Cat. VO1M) saline for intra-peritoneal (IP) dosing. As the IP 

dosing was not well tolerated (due to the vehicle) for the subsequent experiment with a 

50 mg/kg dose of CYC3 IP, the vehicle was changed to 10% NMP, 40% PEG400, 60% 

citrate buffer pH 3.  

Paclitaxel was obtained from Tocris (Cat: 1097) or Cayman Chemicals via Cambridge 

Bioscience (Cat: CAY10). A concentrated solution was obtained by dissolving 50 mg 

paclitaxel in 1.25 ml of 1:1 Cremophor EL (Sigma Aldrich, Cat: C5135) and 10ml 

Ethanol (Sigma Aldrich, Cat: 41322). The mixture was then stirred at room temperature 

until it had dissolved. If it did not dissolve fully, it was sonicated in cold water at 35 

KHz for 2 + 5 + 10 mins. It was then stored at 4ºC for duration of study. On the day of 

dosing, for lower concentrations of paclitaxel, this stock solution was further diluted to 

give a final vehicle concentration of 5% Cremophor EL, 5% ethanol, 90% sterile saline 

(CES vehicle). For 20 mg/kg paclitaxel, the vehicle consisted of 25% Cremophor EL, 

25% ethanol, 50% saline. Vehicle only group received 5% Cremophor EL, 5% ethanol, 

90% saline. 

MLN8237 was obtained from Ontario Chemicals (Cat: M630). It was administered by 

oral gavage (OG), suspended in 10% hydroxypropyl-beta-cyclodextrin and 1% sodium 

bicarbonate in water. 1% sodium bicarbonate was made by dissolving 5 g of sodium 

bicarbonate (Sigma Fluka, Cat: 71631) in 500 ml sterile milli Q water and stored at 

room temperature. Each week 50 ml of this solution was added to 5 g of 2-

hydroxypropyl-beta-cyclodextrin, (Sigma Aldrich, Cat: 332607). The mixture was then 

stirred vigorously for approximately 30 minutes until dissolved and stored at 4ºC.  

When this vehicle was added to MLN8237, it was then stirred for several hours and 

stored at 4ºC between dosing schedules. Prior to administration, it was warmed and 

mixed well. 

Docetaxel (Alfa Aesar, Cat: J60174) was prepared in a vehicle consisting of 5% 

ethanol, 5% polysorbate 80 and 90% sterile saline (EPS). Firstly the solvent vehicle 

(EP) was prepared by mixing equal volumes of ethanol (Sigma Aldrich, Cat: 41322) 

and polysorbate 80 (Sigma Aldrich, Cat: 59924). It was then stored at 4ºC for the 

duration of the study. A concentrated 40 mg/ml docetaxel solution was made by adding 

the exact amount of EP solvent and stirring until dissolved. This was then stored at 4ºC. 

On the day of dosing, this concentrated stock docetaxel was diluted to 4 mg/ml with 

pre-warmed Vetivex™1 (Dechra, Cat. VO1M) saline and mixed thoroughly. It was kept 

at room temperature until dosing. Solvent vehicle was also diluted so that both drug and 
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vehicle had a final concentration of 5% ethanol, 5% polysorbate 80, 90% saline for 

dosing. 

 

A pilot study was performed to determine the colony-forming cell ability of the cells in 

the bone marrow of mice. The method was based on that published by Stem Cell 

Technologies; Technical Manual 3.1.1 “Mouse Colony-Forming Cell Assays using 

MethoCult”. 

To obtain bone marrow cells from mice at necropsy, the abdominal skin was wet with 

70% ethanol to decrease the probability of contamination. The femur was dissected and 

placed in a pre-chilled Bijou tubes filled with 7 mls of D-PBS with 200 U/ml 

Penicilllin-Streptomycin and 2.5 µg/ml amphotericin  (prepared by adding 20 ml of 

Penicillin-Streptomycin (5,000 U/mL) (Gibco 15070-063) and 5 ml of Amphotericin 

B (Sigma Aldrich, Cat. A2942-50ml) to a 500 ml bottle of D-PBS). The femur tubes 

were then placed on ice for no more than 30 minutes before cells were isolated.  

Using a 3 cc syringe with a 21 gauge needle, 5 ml of cold Iscove’s MDM with 2% FBS 

(Stem cell technologies, Cat:  07700) was drawn up. The bevel of the needle was 

inserted into the marrow shaft, twisted and the marrow was flushed into a sterile 15ml 

culture tube with BD Falcon Cell strainer 70 µm (Fisher Scientific, Cat: 352350) placed 

on top. A single cell suspension was then made by gently drawing the medium and cells 

up and down. 20 µl was taken for a cell count and the remaining cells were centrifuged 

at 300 G for 8 minutes.  

A nucleated cell count was performed using Vicell after cells were diluted 1:50 in 3% 

acetic acid with methylene blue mix (Stem Cell Technologies, Cat: 07060). The value 

for viable cells/ml was used to re-suspend cells in Iscove’s MDM with 2% FBS at 10x 

final concentration required. The manufacturer recommended seeding 2-3x104 cells per 

35 mm plate to give an expected number of between 60-100 CFU-GM colonies. 

However, as we had experienced low numbers of colonies in our experiments with 

human CFU-GM assays, we decided to use 2x105 cells per well. 

Four mls of MethoCult medium (Stem Cell Technologies, Cat: 03534) was dispensed 

into 15ml sterile tubes and 0.4 ml of cells was added to allow triplicate samples. The 

tubes were then vortexed and left to stand for five minutes at room temperature to allow 

bubbles to dissipate. The mixture was drawn up using a 16 gauge blunt end needle and 

1.1 ml dispensed per 35 mm dish. Three 35 mm dishes (Stem Cell Technologies, Cat: 

27100) were placed in a 150 mm petri dish and a fourth uncovered 60 mm dish 
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containing sterile water added to help maintain humidity. The petri dishes were placed 

in an incubator at 37°C and 5% CO2, undisturbed for twelve days. Images of the plates 

were then taken using GelCount™ (Oxford Optronix) and the number of colonies 

quantified using an algorithm developed in GelCount™, with results manually checked.  

 

M30 and M65 are ELISA assays which detect different circulating forms of the protein 

cytokeratin 18 (CK18), a marker of epithelial cell death. The M30 antibody recognises a 

neo-epitope (CK18 Asp396) which is only exposed after caspase cleavage of the protein. 

In contrast, M65 uses two monoclonal antibodies to detect soluble full length as well as 

apoptotic fragments of cytokeratin 18 and hence gives a measure of total cell death by 

any cause (256). The M30 Apoptosense® ELISA (Peviva, Cat. 10011) and M65 

EpiDeath® ELISA (Peviva, Cat. 10040) assays specifically detect tumour cell apoptosis 

and cell death in mice carrying human tumour xenografts (257).  

For this pilot study, plasma samples from mice enrolled in the MLN8237 and docetaxel 

efficacy study were used. Due to limited capacity on the kit, 27 from the efficacy study 

(selected to represent each treatment group) were chosen. Plasma samples were thawed 

and then analysed in duplicate with the M30 Apoptosense® ELISA and M65 

EpiDeath® ELISA kits according to manufacturer’s protocol apart from the following 

additional step. Previous studies have identified significant levels of background when 

the M30 and M65 ELISAs were run on mouse or rat plasma, which was reduced by the 

use of a blocking reagent (257). Therefore, in addition to the normal incubation mixture 

of 25 µl sample and 75 µl of antibody conjugate, 0.4 µl of heterophilic blocking reagent 

HBR-Plus purified at concentration 10mg/ml (kind gift from Scantibodies Laboratory, 

Cat. 3KC545) was used per sample. Absorbance at 450 nM was measured on the 

PHERAstar microplate reader (BMG LabTech). As per protocol, a standard curve was 

then plotted using the known standard concentrations versus measured absorbance. This 

allowed the amount of antigen in each sample to be calculated in units/litre (U/L). I 

designed this experiment but it was performed by Jo Bramhall under my supervision, 

and I analysed the results. 
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 DETERMINING THE IN VITRO EFFICACY 

OF AURORA KINASE INHIBITORS AS 

SINGLE AGENTS AND IN COMBINATION 

WITH TAXANES  

 
Based on the evidence in Chapter 1, I first assessed the effect of a range of aurora kinase 

inhibitors (AKI), using a panel of inhibitors with different selectivity, together with the 

effects of other cytotoxic drugs including paclitaxel in the T24 human bladder cancer 

cell line. Combination studies were then explored to select the optimum schedule, with 

the findings expanded to a wider panel of bladder cancer cell lines. Subsequently the 

AK-A inhibitor, MLN8237, was assessed as a specific AK-A inhibitor in combination 

with paclitaxel. 

Contribution of others to this experimental work: All experiments in this chapter were 

performed by me. 

 

 

The data provided by the pharmaceutical companies show that all four provided AKIs 

are potent inhibitors of AK-A in the low nanomolar range but also target other kinases 

(Table 3-1). 

Compound AK-
A 

(nM) 

AK-
B 

(nM) 

CDK2/  
cyclin E 

(nM) 

CDK7/  
cyclin H 

(nM) 

CDK9/ 
cyclin T1 

(nM) 

VEGFR2 
(nM) 

CYC1 4 4 150 410 100 43 
CYC3 6 154 >20000 >20000 >20000 557 
CYC116 8 9 380 >10000 480 49 
       
Compound AK-

A 
(nM) 

AK-
B 

(nM) 

JAK3 
(nM) 

JAK2 
(nM) 

ABL 
(T315I) 

(nM) 

 

AT9283 3 3 1.1 1.2 4  
Table 3-1 In vitro IC50 activity of AKI used together with other key kinases targeted.  
Data provided by Cyclacel and Astex Pharmaceuticals. 
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The publically available chemical structures of the AKI are shown in Figure 3-1. The 

structure of CYC1 is confidential. 

 
Figure 3-1: Publically available chemical structures of initial AKI used. 
A. AT9283, B. CYC3 and C. CYC116 

The SRB assay was used to assess the cytotoxicity of these agents in T24 cells treated 

with varying doses of each drug and incubated for 72 hours. The IC50 and GI50s of the 

relevant compounds were then calculated and the individual dose response curves are 

shown in Figure 3.2. 

 
Figure 3-2: Dose response curves for T24 cells exposed to AKI. 
Dose response curves for T24 cells treated with A. CYC1 B. CYC3 C. CYC116 D. AT9283. T24 cells 
were exposed to a range of concentrations of each drug for 72 hours, then analysed using SRB 
assay. Each graph shows the data for percentage control cell growth at each concentration of three 
replicates with standard deviation and then a curve fitted to the data using GraphPad Prism to 
calculate IC50. The dotted line shows 50% cell growth and this was used to identify the GI50 from 
the graph. IC50 and GI50 are shown in Table 3-2. 
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Drug IC50 (nM) GI50 (nM) 
CYC1 570 480 
CYC3 1500 1900 
CYC116 1000 1000 
AT9283 54 60 

Table 3-2: IC50 and GI50 of AKI tested in T24 cells 

Of the AKI tested, AT9283 was the most potent. CYC1, CYC3 and CYC116 all showed 

potency in the T24 cell line, although with higher IC50s.  

Having established the single agent activity of the AKI in T24 cells, I also tested the 

effects of gemcitabine, which is commonly used in the current management of bladder 

cancer and the taxanes, both paclitaxel and docetaxel (Figure 3-3 and Table 3-3.)  

 
Figure 3-3: Dose response curves for T24 cells exposed to A. Paclitaxel B. Gemcitabine C. 
Docetaxel. 
T24 cells were exposed to a range of concentrations of A. Paclitaxel B. Gemcitabine C. Docetaxel 
for 72 hours, then analysed using SRB assay. Each graph shows the data for percentage control cell 
growth at each concentration of at least three replicates with standard deviation and then a curve 
fitted to the data using GraphPad Prism to calculate IC50. The dotted line shows 50% cell growth 
and this was used to identify the GI50 from the graph. IC50 and GI50 are shown in Table 3-3. 

Drug IC50 (nM) GI50 (nM) 
Paclitaxel 3.5 3.8 
Gemcitabine 4.9 5.6 
Docetaxel 2.6 3.3 

Table 3-3: IC50 and GI50 of paclitaxel, gemcitabine and docetaxel in T24 cells. 

Gemcitabine, paclitaxel and docetaxel demonstrated nanomolar potency against T24 

cells, consistent with their use in bladder cancer treatment.  
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As the hypothesis was that AKI would synergistically enhance the cytotoxicity of 

paclitaxel as over-expression of AK-A can induce resistance to paclitaxel (2), I next 

investigated the combination of these AKI with paclitaxel. Each AKI was tested in an 

eight by eight concentration grid to fully explore the interactions between the two drugs, 

with the concentration range selected to explore synergy in the regions around the IC50s 

of both drugs and the data analysed with the Bliss model as described in 2.2.1.2. 

Figure 3-4 to Figure 3-7 depict the results of SRB assays combining the AKI with 

paclitaxel, with the actual data (plot A) subtracted from that predicted (plot B) to show 

differences between the model prediction and experimental data (plot C), as detailed in 

2.2.1.2.  

When either AT9283 (Figure 3-4) or CYC1 (Figure 3-5) were combined with paclitaxel 

there was a largely additive picture, with some antagonism at higher concentrations of 

both drugs.  

   
Figure 3-4: Combination of AT9283 and paclitaxel in T24 cells.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel and AT9283 for 
72 hours.  
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Figure 3-5: Combination CYC1 and paclitaxel in T24 cells.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel and CYC1 for 
72 hours.  

 

With CYC3 (a more specific AK-A inhibitor) (Figure 3-6), a statistically significant 

region of synergy was identified between CYC3 500 nM to 1500 nM and paclitaxel 2 

nM to 6 nM, with the strongest synergy seen at CYC3 1000 nM and paclitaxel 2 nM, 

with 52±2% growth compared to control i.e. 48±2% growth inhibition, compared to the 

additive prediction of 93% of control, giving a synergy score of 41±2. Antagonism was 

again seen with the higher concentrations of paclitaxel and CYC3. 

 

 

 

 

 

 

 

 

 



 

     65 

 

 

Figure 3-6: Combination of CYC3 and paclitaxel in T24 cells.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel and CYC3 for 
72 hours.  

With CYC116 (Figure 3-7), there were no significant regions of synergy, with areas of 

antagonism also identified at higher concentrations of both drugs. 
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Figure 3-7: Combination CYC116 and paclitaxel in T24 cells.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel and CYC116 for 
72 hours.  

 

There was no therapeutically relevant synergy with paclitaxel and any of the dual AK-A 

and AK-B inhibitors (AT9238, CYC1 and CYC116). With CYC3, which was the most 

AK-A-specific compound, with 25-fold selectivity for AK-A over AK-B (Table 3-1), a 

region of synergy with paclitaxel was seen. Of particular interest was the lack of 

synergy seen with higher concentrations (10 and 30 nM) of paclitaxel combined with 

CYC3. This emphasises the utility of investigating a range of concentration-

combinations to generate a surface of interaction.  

When the same drugs were also studied in pancreatic cancer cell lines, the combination 

of CYC3 and paclitaxel looked particularly promising, and was explored further 

together with Dr Yao Lin. I generated the data on combinations of CYC3 with 

paclitaxel and we jointly performed the CFU-GM colony forming experiments in the 

paper that we published (Appendix 1 (258)). In the MIA PaCa-2 cell line, maximal 

synergy was seen with CYC3 1000 nM and paclitaxel 3 nM, with growth inhibition of 

89±7%, approaching that of paclitaxel 30 nM as a single agent (99±5%) but with 

reduced toxicity to the bone marrow.  
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I next assessed the effect of the combination of CYC3 and paclitaxel in T24 cells with 

IncuCyte™ live cell imaging and Western blotting.  

 

Incucyte™ time lapse microscopy was used to evaluate the effect of CYC3 and 

paclitaxel on cell confluency over time, both as single agents and in combination. With 

CYC3 (Figure 3-8 A), the dose response curve is relatively steep between CYC3 1000 

nM and CYC3 1500 nM, but growth inhibition plateaued at concentrations above CYC3 

1500 nM, similar to the results seen in the SRB assay (Figure 3-6). With paclitaxel 

(Figure 3-8 B), the dose response curve was steep between paclitaxel 2 nM and 

paclitaxel 6 nM. Both combinations (Figure 3-8 C and D) significantly suppressed cell 

growth with growth inhibition approaching the efficacy of paclitaxel 30 nM. 

 
Figure 3-8: Relative cell confluency over time for CYC3 and paclitaxel as single agents and in 
combination. 
A. CYC3 single agent B. Paclitaxel single agent C. Combination of paclitaxel 2 nM & CYC3 1000 
nM and D. Combination of paclitaxel 4 nM & CYC3 1000 nM. T24 cells were seeded in 96-well 
plates and allowed to grow for 24 hours. They were then dosed with drugs as indicated and imaged 
using IncuCyte™ for 72 hours. Percentage confluency relative to the start of imaging was then 
calculated and plotted. Experiments performed in triplicate with mean and standard deviation 
plotted. 
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Western blots were performed in order to investigate pharmacodynamic markers of the 

response to AKI.  CYC3 was tested as single agent after 24 and 48 hours exposure to 

drug, with paclitaxel assessed at 24 hours before the effect of the combination of CYC3 

1000 nM and paclitaxel 3 nM was assessed at 24 hours.  

After 24 hours (Figure 3-9 A), the total AK-A signal was similar across the CYC3 and 

paclitaxel samples. A phospho-AK-A signal was barely detectable even in the DMSO 

sample, despite experimenting with different conditions and amounts of protein loaded 

and therefore this phosphoprotein is not shown.  In many other publications using AKI, 

Western blots use cells pre-synchronised with nocodazole to amplify p-AK-A to 

detectable levels, but we preferred not to take this approach as it would be less reflective 

of the normal state within a tumour when cells would be at different points in the cell 

cycle.  

AK-B phosphorylates phospho-histone H3 (pH3) at serine 10 as cells enter mitosis and 

pH3 has been widely used as a marker of both AK-A and AK-B inhibition. 

Phosphorylation rises when cells enter mitosis and therefore in the presence of a drug 

leading to G2/M arrest (as seen with AK-A inhibitors and paclitaxel), pH3 signal 

increases. In contrast, with AK-B inhibition, this phosphorylation is prevented and 

hence pH3 signal falls. With CYC3, there was an increase in pH3 over control at 

concentrations ≥2000 nM, consistent with the expected effects of an AK-A inhibitor 

causing G2/M arrest. Similarly paclitaxel showed higher signal than control at all 

concentrations, but strongly at concentrations ≥3 nM, consistent with arrest of the cells 

in early mitosis at the SAC. At 24 hours, there was no induction of c-PARP (apoptosis 

marker) with CYC3. It was only seen with concentrations of paclitaxel of 10 and 30 

nM.  

As longer exposures would allow more cells in an unsynchronised cell population to 

enter G2 and be affected by an AK-A inhibitor, CYC3 was assessed after 48 hours. At 

48 hours (Figure 3-9 B), increasing levels of c-PARP were evident at concentrations 

from CYC3 1000 nM, suggesting induction of apoptosis. There was an increase in pH3 

compared to control at concentrations ≥1000 nM, supportive of AK-A inhibition after 

this longer exposure to drug.  

Next I assessed the combination of CYC3 1000 nM and paclitaxel 3 nM at 24 hours 

(Figure 3-9 C). There was induction of p-H3, indicating mitotic arrest with the 

combination but no significantly detectable c-PARP signal, whereas c-PARP was seen 
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with paclitaxel 30 nM. This is consistent with the IncuCyte™ data in Figure 3-8 C, 

where there was little effect of the combination at 24 hours, confirming the Western blot 

data that significant apoptosis occurs later. 

 
Figure 3-9: Western blots in T24 cells treated with CYC3 and paclitaxel. 
Western blots showing the expression of c-PARP, AK-A, p-H3 with drugs as indicated. A. CYC3 
and paclitaxel as single agents for 24 hours. B. CYC3 for 48 hours. C. single agent paclitaxel 3 nM 
and CYC3 1000 nM, the combination of CYC3 1000 nM and paclitaxel 3 nM and paclitaxel 30 nM 
for 24 hours. Actin used as loading control. 

 

Having observed synergy in T24 cells with the combination of CYC3 and paclitaxel, I 

wished to investigate the impact of different scheduling. Of particular interest was 

whether the initial induction of cell cycle arrest with either agent could potentiate the 

effect of the second agent. The combination of CYC3 1000 nM and paclitaxel 3nM was 
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selected as the maximum synergy was seen between paclitaxel 2 nM and 4 nM (Figure 

3-6). Using the SRB assay, I assessed the effect of either agent given first for a short 

exposure of six hours or 24 hours, followed by washout and a media change before the 

second drug was added for the remaining time period to 72 hours, with the end result 

compared to continuous dosing of both drugs (Table 3-4). In this series of experiments, 

none of the sequential schedules resulted in more than 40±15% inhibition, whereas 

continuous concomitant dosing showed maximum inhibition of 72±4% (greater than 

that seen with CYC3 1000 nM and paclitaxel 2 nM of 48±2). 

Treatment Mean growth 
inhibition (%) 

with SD 
PTX 3 nM for 72 hours 39±5 
CYC3 1000 nM for 72 hours 23±2 
PTX 3 nM and CYC3 1000 nM for 72 hours 72±4 
PTX 3 nM for 6 hours, then CYC3 1000 nM 31±14 
PTX 3 nM for 24 hours, then CYC3 1000 nM 40±15 
CYC3 1000 nM for 6 hours, then PTX 3 nM 35±12 
CYC3 1000 nM for 24 hours, then PTX 3 nM 27±9 
Table 3-4: T24 growth inhibition following different scheduling of CYC3 and paclitaxel. 
T24 cells were either dosed continuously or with the schedules indicated for a total time of 72 hours. 
The end result was then measured using the SRB assay. Growth inhibition calculated from 
percentage growth compared to control, with mean and standard deviation shown (n=3). 
Abbreviations: PTX=paclitaxel, SD=standard deviation. 

Others have studied sequential versus concurrent administration of AKI with other 

chemotherapeutics, largely with pan-AKI (reviewed in 1.8.2). With an alternative AK-A 

specific AKI, MLN8237, the greatest reduction in cell viability was seen when the AKI 

was given first, followed by gemcitabine or paclitaxel (121) in contrast to my findings. I 

explored this further with MLN8237 and will discuss the differences in experimental 

design in 3.4.4. 

 

Whilst the combination of CYC3 and paclitaxel looked interesting in T24 bladder 

cancer cells, it was important to assess its effect in other bladder cancer cell lines. A 

panel of cell lines with different genotypes (listed in Table 3-5) were selected to assess 

this drug combination. They were chosen to represent both a range of grades and stages 

of bladder cancer, with the most commonly seen mutations (259). 
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Cell line Grade Gene AA 
mutation 

CDS Mutation 

T24 
 

3 HRAS  p.G12V c.35G>T 

TP53 p.Y126* c.378C>G 

J82 
 
 
 
 
 

3 FGFR3  p.K650E  c.1948A>G 

PIK3CA  p.P124L c.371C>T 

PTEN p.N212fs*1  c.635_1212del578 

RB1  p.? c.2107-2A>G 

TP53 p.K320N c.960G>C 

TP53 p.? c.783_919del137 

UM-UC-3 
 
 
 
 

3 CDKN2A p.0? c.1_471del471 

CDKN2a(p14) p.0? c.1_522del522 

KRAS  p.G12C c.34G>T 

PTEN p.0? c.1_1212del1212 

TP53 p.F113C  c.338T>G 

RT4 
 
 

1 CDKN2A p.0? c.1_471del471 

CDKN2a(p14) p.0? c.1_522del522 

TSC1  p.L557fs*72  c.1669delC 

RT112 
 
 
 

2 CDKN2A p.0? c.1_471del471 

CDKN2a(p14) p.0? c.1_522del522 

TP53 p.R248Q c.743G>A 

TP53 p.S183* c.548C>G 

HT1197 
 

4 NRAS  p.Q61R c.182A>G 

PIK3CA  p.E545K c.1633G>A 

SW780 
 

1 CDKN2A p.0? c.1_471del471 

CDKN2a(p14) p.0? c.1_522del522 

Table 3-5: Mutation status of bladder cancer cell lines tested.  
Data from COSMIC database (260). *RT4 described as Grade 1 but also as transitional cell 
papilloma. Abbreviations: AA=amino acid, CDS=coding DNA sequence. 

 

GI50 was not reached when any of these cell lines were treated with CYC3 (Figure 

3-10). They were proliferating, with T0 subtracted from the final SRB value, so do 

appear to be resistant to CYC3. The percentage of growth inhibition compared to 

control achieved with CYC3 10 µM was less than 30% in all these cell lines, in contrast 

to T24 where 81±11% growth inhibition was seen (Table 3-6).  
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A B

C D

E F

 
Figure 3-10: Dose response curves for bladder cancer cell line panel exposed to CYC3. 
Each cell line was exposed to a range of concentrations of CYC3 for 72 hours, then analysed using 
SRB assay. A. HT1197 B. J82 C. RT4 D. RT112 E. SW780 F. UM-UC-3. Each graph shows the data 
for percentage control cell growth at each concentration of at least three replicates with SD and 
then a curve fitted to the data using GraphPad Prism to calculate IC50. The dotted line shows 50% 
cell growth.  

Cell line Mean growth 
inhibition (%) 

with SD 
HT1197 23±5 
J82 22±6 
RT4 15±8 
RT112 20±1 
SW780 14±8 
UM-UC-3 28±1 
T24 81±11 

Table 3-6: Growth inhibition seen in bladder cancer cell lines exposed to CYC3 10µM.  
Growth inhibition calculated from percentage growth compared to control with mean and standard 
deviation shown (n=3). Data from Figure 3-2 C reproduced here for comparison. Abbreviation: 
SD=standard deviation 
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Given the limited growth inhibition with CYC3 in these cell lines, prior to testing any 

combinations, I assessed the sensitivity of each cell line to paclitaxel and docetaxel in 

addition to gemcitabine. The GI50 for all the cell lines for each drug together with the 

maximum growth inhibition seen is summarised in Table 3-7, with T24 shown for 

comparison. 

Cell line 
 Paclitaxel 

(nM) 
Docetaxel 

(nM) 
Gemcitabine 

(nM) 
HT1197 GI50 NR NR NR 

Maximum 
GI (%) 

46±8 42±5 36±7 

J82 GI50 234 12 12.6  
Maximum 
GI (%) 

61±17 61±4 73±17 

RT4 GI50  19  4.2 7.7  
Maximum 
GI (%) 

53±7 59±8 87±2 

RT112 GI50  3.7  9.8  1.2  
Maximum 
GI (%) 

81±9 91±1 73±4 

SW780 GI50  47  NR 10 
Maximum 
GI (%) 

56±7 64±9 43±7 

T24 GI50 3.8 3.3 5.6 
Maximum 
GI (%)  

89±2 84±6 87±5 

UM-UC-3 GI50 3.4  14  1.1  
Maximum 
GI (%)   

74±4 83±1 84±6 

Table 3-7: GI50 and maximum growth inhibition seen for bladder cancer cell lines exposed to 
paclitaxel, gemcitabine and docetaxel.  
Calculations made using dose response curves for each cell line exposed to range of concentrations 
of each drug, with GI50 identified from the point on curve at 50% control growth. Growth 
inhibition calculated from percentage growth compared to control with mean and standard 
deviation shown (n=3). Data for T24 cells from Figure 3-3 included for comparison. Abbreviations: 
GI= growth inhibition, NR=not reached.  

The dose response curves for each cell line for paclitaxel and docetaxel are shown 

individually in Figure 3-11 and Figure 3-12. As can be seen from Table 3-7 and these 

figures, each cell line had a different profile of sensitivity to these drugs. For example, 

HT1197 was relatively resistant to all three drugs. Compared to other cell lines, J82 

cells were relatively resistant to paclitaxel with a GI50 of 234 nM but they were sensitive 

to an alternative taxane, docetaxel with a GI50 of 12 nM.  The response seen in RT4 was 

of particular interest given that they represent the lowest grade of bladder cancer so may 

be a closer guide to the effect of drugs on normal bladder cells. The GI50 with 
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gemcitabine was similar to that seen with T24 but the cells seemed more resistant to the 

effects of paclitaxel and docetaxel, although not as resistant as J82 cells. The RT112 cell 

line showed a relatively similar profile to T24 cells, although it was more sensitive to 

docetaxel. The SW780 cell line showed sensitivity to both taxanes but the GI50 was not 

reached with gemcitabine. UM-UC-3 cells were particularly sensitive to docetaxel and 

paclitaxel with a steep dose response. 

 
Figure 3-11: Dose response curves for bladder cancer cell line panel exposed to paclitaxel.  
Each cell line was exposed to a range of concentrations of paclitaxel for 72 hours, then analysed 
using SRB assay. A. HT1197 B. J82 C. RT4 D. RT112 E. SW780 F. UM-UC-3. Each graph shows 
the data for % control cell growth at each concentration of at least three replicates with SD and 
then a curve fitted to the data using GraphPad Prism. The dotted line shows 50% cell growth.  
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Figure 3-12: Dose response curves for bladder cancer cell line panel exposed to docetaxel.  
Each cell line was exposed to a range of concentrations of docetaxel for 72 hours, then analysed 
using SRB assay A. HT1197 B. J82 C. RT4 D. RT112 E. SW780 F. UM-UC-3. Each graph shows 
the data for % control cell growth at each concentration of at least three replicates with SD and 
then a curve fitted to the data using GraphPad Prism. The dotted line shows 50% cell growth.  

 

Each cell line was then tested with the combination of CYC3 and paclitaxel. 

Concentrations of up to paclitaxel up to 300 nM were tested. The results are 

summarised in Table 3-8, where the Synergy Score (SS) is the point where maximum 

synergy seen and the maximum growth inhibition at this point is also given. As can be 

seen, a SS>25 was only identified in T24 (Figure 3-6) and UM-UC-3 cells (with similar 

maximum growth inhibition of 46±9%). The grids showed largely additive effects in the 

other cell lines. The detailed experimental combination grids for UM-UC-3 and for RT4 

as a comparator are shown in Figure 3-13 and Figure 3-14. 
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Cell line SS GI at maximum 
SS point (%) 

[CYC3] at this point 
(nM) 

[Paclitaxel] at 
this point (nM) 

HT1197 None n/a n/a n/a 
J82 14+/-12 36+/-12 2000 10 
RT4 9+/-14 19+/-14 3000 0.3 
RT112 16±9 37+/-9 10000 0.3 
SW780 6±5 10±10 5000 1 
T24 41±2 48±2 1000 2 
UM-UC-3 33+/-9 46±9 1000 1 
Table 3-8: Summary of SRB assay data for bladder cell lines with CYC3 together with paclitaxel.  
The highest synergy score is shown, together with the extent of growth inhibition at this point and 
the relevant CYC3 and paclitaxel concentrations. Growth inhibition calculated from percentage 
growth compared to control with mean and standard deviation shown (n=3). Abbreviations: 
SS=synergy score, GI=growth inhibition. 

 

 
Figure 3-13: Combination of CYC3 and paclitaxel in UM-UC-3 cells.  
UM-UC-3 cells were seeded in 96-well plates and treated with 8 x 8 combinations of paclitaxel and 
CYC3 for 72 hours.  
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Figure 3-14: Combination of CYC3 and paclitaxel in RT4 cells.  
RT4 cells were seeded in 96-well plates and treated with 8 x 8 combinations of paclitaxel and CYC3 
for 72 hours.  

 

These investigations indicated that an AK-A specific inhibitor would be preferable to a 

pan-AKI, and confirmed that an AK-A inhibitor combined with paclitaxel could show 

synergy in bladder cancer cell lines, although only in T24 and UM-UC-3. This is 

consistent with multiple reports in the literature of enhanced cytotoxicity when 

concentrations of paclitaxel ≤ 10 nM were combined with either siRNA knockdown of 

AK-A or with AK-A specific inhibitors in a range of cancer cell lines (217, 230, 231, 

234, 236). At the time of my findings, there were no reports of the assessment of the 

combination in bladder cancer. However, there was increasing evidence of the 

effectiveness of an alternative AK-A inhibitor which was already being tested in clinical 

trials – MLN8237 (alisertib). Although CYC3 was a pre-clinical candidate, since the 

aim of my research was to identify a promising combination to take forward into 

clinical trials, I therefore decided to assess MLN8237 in future experiments. 

 
MLN8237 (alisertib) was developed as an AK-A specific inhibitor. In enzymatic assays 

the IC50 against recombinant AK-A and AK-B was 1.2 nM vs 400 nM, with this 
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selectivity confirmed in HeLa cell based assays where the IC50 for AK-A was 6.7 nM vs 

1500 nM for AK-B (205). Its structure is shown in Figure 3-15. 

 
Figure 3-15: Chemical structure of MLN8237 

I initially assessed it as a single agent and then in combination in T24 bladder cancer 

cells, before expanding its assessment in the same bladder cancer cell line panel 

previously used with CYC3. A subsequent publication from a competitor laboratory 

explored MLN8237 in T24, UM-UC-3 and RT4 cells (121) and comparisons are made 

to their data. 

 

A consistent biphasic dose-response effect was seen with MLN8237 (Figure 3-16 A). 

This led to problems with curve fitting so the data was re-plotted without the higher 

concentrations (above 300 nM), giving an IC50 of 20 nM and a GI50 of 30 nM (Figure 

3-16 B). These are similar to the data subsequently reported in T24 cells using the MTS 

assay and 96 hours exposure with an IC50 of 31 nM (121). The biphasic effect may be a 

reflection of the SRB assay giving a measure of total protein content – at higher 

concentrations, MLN8237 can act as an AK-B inhibitor which would lead to polyploidy 

and larger cells with more protein per cell.   
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Figure 3-16: Dose response curves for T24 cells exposed to MLN8237 
T24 cells were exposed to a range of concentrations of MLN8237 for 72 hours, then analysed using 
SRB assay with A. Concentrations up to 30 µM. B. Concentrations up to 100 nM. Each graph 
shows the data for percentage control cell growth at each concentration of three replicates with SD 
and then a curve fitted to the data using GraphPad Prism to calculate IC50. The dotted line shows 
50% cell growth and this was used to identify the GI50 from the graph.  

Next MLN237 was combined with paclitaxel to compare the response with that seen 

with CYC3. The data were encouraging, with a region of strong statistically significant 

synergy seen between concentrations of paclitaxel 1-3 nM and MLN8237 30-100 nM, 

(Figure 3-17). Maximal synergy of 35±1 was seen with the combination of paclitaxel 2 

nM and MLN8237 50 nM, with percentage growth compared to control of only 19±1%, 

similar to that seen with paclitaxel 30 nM (11±2%). Antagonism was seen with 

concentrations of paclitaxel ≥ 5 nM and MLN8237 ≥ 100 nM. 

 
Figure 3-17: Combination of MLN8237 and paclitaxel in T24 cells.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel and MLN8237 
for 72 hours.  



 

80 

 

With MLN8237 as a single agent, GI50 was only reached in RT112 cells at 105 nM 

(Figure 3-18 D), which contrasts with a reported IC50 in UM-UC-3 cells of 45 nM and 

of RT4 cells of 120 nM (121). These published experiments were done after 96 hours 

rather than 72 hours but the main difference was that they used the MTS assay. This 

provides a quantification of viable cells’ metabolic activity versus the SRB assay which 

provides a measure of cellular protein content.  
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Figure 3-18: Dose response curves for bladder cancer cell line panel exposed to MLN8237. 
Each cell line was exposed to a range of concentrations of MLN8237 for 72 hours, then analysed 
using SRB assay. A. HT1197 B. J82 C. RT4 D. RT112 E. SW780 F. UM-UC-3. Each graph shows 
the data for % control cell growth at each concentration of at least 3 replicates with SD and then a 
curve fitted to the data using GraphPad Prism. The dotted line shows 50% cell growth and this was 
used to identify the GI50 from the graph.  

The maximum growth inhibition achieved with MLN8237 300 nM is shown in Table 

3-9, with the greatest seen in RT112 cells (55±6%) and UM-UC-3 cells (42±6%). 
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Cell line Maximum 
growth 

inhibition (%) 
with SD 

HT1197 26±3 
J82 24±8 
RT4 34±8 
RT112 55±6 
SW780 27±5 
UM-UC-3 42±6 

Table 3-9: Maximum growth inhibition seen in bladder cancer cell lines exposed to MLN8237 300 
nM. 

Each cell line was then tested with the combination of MLN8237 and paclitaxel. As 

Table 3-10 demonstrates, no significant synergy was seen in HT1197, SW780 or RT4 

cells. Although two combinations in J82 cells showed synergy, there was no consistent 

region and it was only seen with MLN8237 300 nM. However, in RT112 (Figure 3-19) 

and UM-UC-3 (Figure 3-20) cells, a region of synergy was seen between paclitaxel 1-3 

nM and MLN8237 30-100 nM similar to T24 (Figure 3-17). Antagonism was also seen 

with  higher concentrations of MLN8237 (≥150 nM) and paclitaxel (≥5 nM). 

Cell line SS GI at max SS 
point (%) 

[MLN8237] 
at this point 

(nM) 

[Paclitaxel] 
at this point 

(nM) 
T24 35±1 81±1 50 2 
UM-UC-3 31±12 59±12 30 2 
RT112 28±7 67±7 75 2 
J82 31±5 53±5 300 1 
RT4 9.1±14 17±14 50 2 
HT1197 9.4±12 12±12 75 1 
SW780 3.3±4 19±4 30 1 

Table 3-10: Summary of SRB assay data for bladder cell lines with the combination of MLN8237 
and paclitaxel.  
The highest synergy score is shown, together with the extent of growth inhibition at this point and 
the relevant MLN8237 and paclitaxel concentrations. Growth inhibition calculated from 
percentage growth compared to control with mean and standard deviation shown (n=3). 
Abbreviations: SS=synergy score, GI=growth inhibition. 
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Figure 3-19: Combination of MLN8237 and paclitaxel in RT112 cells.  
RT112 cells were seeded in 96-well plates and treated with 8 x 8 combinations of paclitaxel and 
MLN8237 for 72 hours.  

 
Figure 3-20: Combination of MLN8237 and paclitaxel in UM-UC-3 cells.  
UM-UC-3 cells were seeded in 96-well plates and treated with 8 x 8 combinations of paclitaxel and 
MLN8237 for 72 hours.  
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Having seen a significant region of synergy in T24, RT112 and UM-UC-3 cells, I next 

explored this further with other experimental techniques, with the focus on the 

combination of MLN8237 50 nM with paclitaxel 2 nM where growth compared to 

control was 19±1% in T24 cells, 42±7% in RT112 cells and 35±8% in UM-UC-3 cells. 

 

 

 
 The characteristic reported features of treatment with both paclitaxel and an AK-A 

specific inhibitor are an increase in G2/M population due to cell cycle arrest. With 

MLN8237 as a single agent, there was an increase in G2/M population at both 12 and 

24 hours at concentrations of MLN8237 ≥30 nM at both 12 and 24 hours, consistent 

with its reported role as an AK-A inhibitor (Figure 3-21). Zhou et al. observed cell 

cycle arrest at increasing concentrations of MLN8237 but also commented on 

aneuploidy (DNA content >4N) at 48 hours (54% with MLN837 1 µM), which I did not 

observe (121). This may be due to the longer exposure of cells to MLN8237 in their 

experiment, or a difference in gating strategies. My methods (2.2.4) mean that both 

debris and doublets were gated out and hence a significant sub G1 population is not 

shown, which others have reported as a surrogate for cell death (2).  

 
Figure 3-21: Flow cytometry analysis of the cell cycle profiles of T24 cells after treatment with 
MLN8237. 
Cells treated with MLN8237 at concentrations indicated for either A. 12 hours or B. 24 hours. Cell 
count is shown on the y axis plotted as a histogram to FL2-H (propidium iodide) on the x axis. 
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When paclitaxel was assessed as a single agent, a shift in the cell cycle profile was seen 

after just six hours exposure to the drug (Figure 3-22). The G2/M population increased 

from 13% in the control cell population to 18% with paclitaxel 3 nM, 33% with 

paclitaxel 10 nM and 46% with paclitaxel 30 nM. 

 
Figure 3-22: Flow cytometry analysis of the cell cycle profiles of T24 cells after treatment with 
paclitaxel for six hours. 
Cells treated with paclitaxel at concentrations indicated for six hours. Cell count is shown on the y 
axis plotted as a histogram to FL2-H (propidium iodide) on the x axis. 

A range of combinations of paclitaxel 1-3 nM and MLN8237 30-100 nM were then 

examined (Figure 3-23). For the single agent paclitaxel, the cell cycle profile remains 

very similar to control at concentrations 1-3 nM but the percentage of cells in G2/M 

with paclitaxel 30 nM increased from 46% at six hours (Figure 3-22) to 84% at 24 

hours. The data for single agent MLN8237 was similar to that seen in Figure 3-21, with 

the G2/M population increasing at concentrations ≥30 nM. Whilst I might have 

expected the combination of MLN8237 and paclitaxel to lead to an increase in G2/M 

population, with all of these combinations few cells survived and therefore the model 

was unable to calculate a percentage of cells in G2/M. 
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Figure 3-23: Flow cytometry analysis of the cell cycle profiles of T24 cells exposed to a range of 
paclitaxel and MLN8237 concentrations as single agent and in combination for 24 hours. 
Cells exposed to paclitaxel and MLN8237 as indicated. Cell count is shown on the y axis plotted as a 
histogram to FL2-H (propidium iodide) on the x axis. 

 
The results for the combination of MLN8237 50 nM and paclitaxel 2 nM in T24 cells 

were compared in UM-UC-3 and RT112 cells (Figure 3-24). In both cell lines, the cell 

cycle profile was similar to control with paclitaxel 2 nM. With MLN8237, the G2/M 

population increased from 13% in DMSO to 39% in the UM-UC-3 cells (Figure 3-24 

A), whereas in the RT112 cells the G2/M population did not increase to the same extent 

(Figure 3-24 B). With the combination, very few cells survived in either cell line. 
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Figure 3-24: Flow cytometry analysis of the cell cycle profiles of UM-UC-3 and RT112 exposed to 
paclitaxel and MLN8237 as single agents and in combination. 
Cell cycle profiles of A. UM-UC-3 and B. RT112 cells exposed to either paclitaxel 2 nM, MLN8237, 
paclitaxel 30 nM or the combination of MLN8237 50 nM and paclitaxel 2 nM for 24 hours. Cell 
count is shown on the y axis plotted as a histogram to FL2-H (propidium iodide) on the x axis. 

Therefore in all three cell lines where synergy was seen using the SRB assay, the 

combination of paclitaxel 2 nM and MLN8237 50 nM is associated with a loss of 

normal cell cycle profile. 

 

To further validate the synergy seen with MLN8237 and paclitaxel in the SRB assay, 

time lapse microscopy was used to evaluate the effect of the single agents and 

combination over time in the cell lines where synergy had been seen – T24, RT112 and 

UM-UC-3. Figure 3-25 shows the changes in relative cell confluency compared to T=0 

over the 72 hours of the experiment. The final cell confluencies are summarised in 

Table 3-11. 

For the T24 cells (Figure 3-25 A), growth with the combination was suppressed from 

the start of imaging, suggesting an early and sustained response in the presence of the 

combination. Similar to the result seen in the SRB assay (Figure 3-17) where the 

combination achieved comparable growth inhibition (81±1%) to paclitaxel 30 nM 

(89±2%), the actual cell confluency at endpoint with paclitaxel 30 nM was similar to the 

combination (Table 3-11).  
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Figure 3-25: Relative cell confluency over time for T24, RT112 and UM-UC-3 exposed to paclitaxel 
and MLN8237. 
Cells were seeded in 96-well plates and allowed to grow for 24 hours. They were then dosed with 
drugs as indicated and imaged using IncuCyte™ for 72 hours. Percentage confluency relative to the 
start of imaging was calculated and plotted. These data are the mean of six replicates with SD for 
T24 and five replicates with SD for RT112 and UM-UC-3. 

Drug T24 RT112 UM-UC-3 
Paclitaxel 2 nM 63±15 % 28±4% 15±1% 
MLN8237 50 nM 45 ± 4 % 25±2% 51±3% 
Combination 15±1 % 10±2 % 11±1% 
Paclitaxel 30 nM 9±1% 6±2% 8 ±1%. 

Table 3-11: Final cell confluency relative to DMSO at 72 hours for T24, RT112 and UM-UC-3 cells. 
T24, RT112 and UM-UC-3 cells treated with paclitaxel 2 nM, MLN8237 50 nM, the combination of 
MLN8237 50 nM and paclitaxel 2 nM or paclitaxel 30 nM.  

With the RT112 cells (Figure 3-25 B), the growth inhibitory effect of both paclitaxel 

and MLN8237 as single agents (<30% of control growth) was greater than might have 

been anticipated by the SRB assay, where little growth inhibition had been seen (16±5% 

with paclitaxel 2 nM and 13±10% with MLN8237 (Figure 3-19). With the combination, 

cell growth was almost completely suppressed from the start of imaging similar to 

paclitaxel 30 nM, again greater than predicted from the SRB assay where 42±7% 

growth had been seen. 
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In the UM-UC-3 cells, the combination final cell confluency was also similar to that 

achieved with paclitaxel 30 nM and greater than that predicted from the SRB assays 

where 35±8% growth was shown (Figure 3-25 C). Notably the effect of paclitaxel 2 nM 

was greater than anticipated from the SRB assays (where only 19±8% growth inhibition 

was seen, Figure 3-20)). The dose response curve of UM-UC-3 with  paclitaxel is steep 

between paclitaxel 1 to 3 nM (a separate experiment showed final confluency of 

64±10% with paclitaxel 1 nM at 69 hours compared to 18±3% with paclitaxel 2 nM), so 

this may be the reason for the difference seen, particularly as different stock batches of 

paclitaxel were used.  

Taken together these IncuCyte™ experiments confirm the SRB data that MLN8237 in 

combination with low concentrations of paclitaxel is at least as effective as paclitaxel 30 

nM in these three cell lines. 

 

Next Western blotting was used to assess the effect of MLN8237 and paclitaxel as 

single agents and in combination, analysing total AK-A, phospho-AK-A, c-PARP and 

pH3. 

 
The total AK-A signal was similar across the samples, other than an increase in the 

paclitaxel 30 nM (seven times that of DMSO), potentially consistent with G2/M arrest 

(Figure 3-26). As in previous experiments, a phospho-AK-A signal was barely 

detectable even in the DMSO sample despite experimenting with different conditions 

and amounts of protein loaded and therefore this phosphoprotein is not shown.  

Although there was a small increase in cPARP with single agent MLN8237, it was 

induced strongly with the combinations, particularly paclitaxel 2 nM and MLN8237 50 

nM, together with paclitaxel 30 nM. Consistent with mitotic arrest (and AK-A 

inhibition), pH3 signal was increased compared to DMSO with MLN8237 30 nM and 

50 nM, and with the combinations of paclitaxel 1 or 2 nM with MLN8237 30 or 50 nM. 

It was strongly induced with paclitaxel 30 nM, consistent with the mitotic arrest 

observed with flow cytometry (Figure 3-23). However, pH3 signal fell to 20% of the 

DMSO sample with MLN8237 100 nM and with the combination of paclitaxel 1 nM 

and MLN8237 100 nM suggesting that in the T24 cell line, AK-B may start to be 

inhibited by MLN8237 at 100 nM concentration, although this contrasts with the other 

report where p-H3 signal was constant at concentrations up to 1 µM (121).  

 



 

     89 

  
Figure 3-26: Western blots of T24 cell pellets following exposure to drugs as indicated for 24 hours. 
Actin was used as a loading control. 

 
In UM-UC-3 cells (Figure 3-27) the levels of total, phospho-AK-A and c-PARP were 

all higher in the paclitaxel 30 nM sample at 24 hours. There was no cPARP induction 

with the combination, potentially because induction of apoptosis is occuring later. pH3 

appeared to be strongly induced in the MLN8237 50 nM sample (over 1000 times 

stronger than DMSO) and stronger than  in the combination and paclitaxel 30 nM 

samples. This is consistent with the mitotic accumulation seen in Figure 3-24A but 

contrasts with a report that pH3 levels remained constant in UM-UC-3 cells (121). 

 
Figure 3-27: Western blots of UM-UC-3 cell pellets following exposure to drugs as indicated for 24 
hours.  
Actin was used as a loading control. 

 
In RT112 cells (Figure 3-28) the level of both total AK-A and phospho-AK-A only 

increased with paclitaxel 30 nM. Whilst there was a small increase in c-PARP signal 

with single agent paclitaxel 2 nM and MLN8237 50 nM, in the combination this was 
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thirty times greater, indicating significant induction of apoptosis, and close to that of 

paclitaxel 30 nM. The lack of induction of pH3 signal with the single agents was 

consistent with lack of mitotic accumulation in flow cytometry (Figure 3-24 B) but 

signal was increased with the combination, suggestive of G2/M arrest, even though this 

was difficult to identify by flow cytometry due to the low numbers of surviving cells. 

As expected, pH3 was significantly induced with paclitaxel 30 nM. 

 
Figure 3-28: Western blots of RT112 cell pellets following exposure to drugs as indicated for 24 
hours.  
Actin was used as a loading control. 

 
In T24 cells, the increase in pH3 was consistent with AK-A inhibition with MLN8237 

50 nM. With the combination of MLN8237 50 nM and paclitaxel 2 nM, cPARP was 

induced consistent with apoptosis with the combination (similar to that seen with 

paclitaxel 30 nM). Whilst cPARP signal was not significantly enhanced with the 

combination in UM-UC-3 cells, the increase in pH3 cells suggests mitotic accumulation 

and a later timepoint may have shown apoptosis. The cPARP signal seen in RT112 cells 

was much greater with the combination that the single agents.  

 

With CYC3 and paclitaxel, maximum synergy was seen with concurrent dosing (3.2.4).  

To explore this with MLN8237 and paclitaxel in T24 cells, rather than selecting just the 

combination of most interest as before, I chose to look at the whole concentration-

combination grid as this would also allow me to see shifts in dose response. Flow 

cytometry data had shown that changes to the cell cycle profile could be seen after only 

six hours exposure to paclitaxel (Figure 3-22). As before, cells were first treated with 
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either agent for six or 24 hours, followed by washout and a media change before the 

second drug was added for the remaining time period to 72 hours (ie either 66 hours (for 

initial six hour treatment) or 48 hours (for initial 24 hour treatment). The end result was 

measured using SRB assay and compared to continuous dosing of both drugs (Figure 

3-17). 

For the combinations where paclitaxel was dosed first for six hours, a shift in the single 

agent dose response curve for paclitaxel was seen, with 64±15% growth with paclitaxel 

30 nM compared to 11±2% after 72 hours continuous exposure (Figure 3-29). However, 

a significant area of synergy was still observed when MLN8237 was combined with 

higher concentrations of paclitaxel.  

 
Figure 3-29: Combination of MLN8237 and paclitaxel in T24 cells with cells initially exposed to 
paclitaxel for six hours, followed by MLN8237 for remaining 66 hours.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel for six hours 
followed by MLN8237 for the remaining time period to 72 hours.  

When paclitaxel was dosed first for 24 hours (Figure 3-30), only 2±3% growth was seen 

for paclitaxel 30 nM, indicating nearly 100% growth inhibition. A similar region of 

synergy was seen with only 24 hours exposure to paclitaxel, followed by 48 hours 

MLN8237 compared to 72 hours continuous exposure to the combination (Figure 3-30). 

The schedule of 2 nM paclitaxel for 24 hours followed by  MLN8237 50 nM for 48 

hours reached a synergy score of 37±10 (very similar to the score of 33±1 seen with 

combined continuous 72 hour exposure to the combination in Figure 3-17), but 40±10% 
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cell growth was seen at this point compared to 19±1% seen with the continuous 72 hour 

exposure to both drugs (i.e 60±10% growth inhibition compared to 81±1%).  

 
Figure 3-30: Combination of MLN8237 and paclitaxel in T24 cells with cells initially exposed to 
paclitaxel for 24 hours, followed by MLN8237 for remaining 48 hours.  
T24 cells were seeded in 96-well plates and treated with combinations of paclitaxel for 24 hours 
followed by MLN8237 for the remaining time period to 72 hours.  

For the experiments where MLN8237 was dosed first for six hours, followed by 66 

hours of paclitaxel, there was no significant inhibition with single agent MLN8237. 

However, it may have had some effect as a region of synergy was seen, maximal with 

MLN8237 75 nM and paclitaxel 3 nM, with growth of 33±2% (Figure 3-31).  

When cells were exposed to MLN8237 alone for 24 hours, followed by 48 hours of 

paclitaxel, the dose response curve for MLN8237 after 24 hours exposure was similar to 

that seen with 72 hours (Figure 3-32). However, a largely additive picture was seen with 

no significant synergy. 
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Figure 3-31: Combination of MLN8237 and paclitaxel in T24 cells with cells initially exposed to 
MLN8237 for six hours, followed by paclitaxel for remaining 66 hours.  
T24 cells were seeded in 96-well plates and treated with combinations of MLN8237 for six hours 
followed by paclitaxel for the remaining time period to 72 hours.  

 
Figure 3-32: Combination of MLN8237 and paclitaxel in T24 cells with cells initially exposed to 
MLN8237 for 24 hours, followed by paclitaxel for remaining 48 hours.  
T24 cells were seeded in 96-well plates and treated with combinations of MLN8237 for six hours 
followed by paclitaxel for the remaining time period to 72 hours.  
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On comparison of these results with the continuous 72 hour dosing (Figure 3-17), it is 

notable that the antagonism seen with concentrations of paclitaxel ≥5 nM and 

MLN8237 ≥ 100 nM was reduced when either paclitaxel or MLN8237 were dosed first 

(Figure 3-29 to Figure 3-32). However, to achieve maximal growth inhibition at 

synergistic concentrations, I concluded that simultaneous dosing with MLN8237 and 

paclitaxel was the optimal schedule, as used in the majority of reports. In contrast, Zhou 

et al. report that maximal synergy (calculated using the combination index) was 

achieved when cells were exposed to MLN8237 first followed by paclitaxel, and 

reported antagonism with concurrent treatment (121). However, their experimental 

design compared single agent or concurrent combination exposure for 48 hours 

(measured at 48 hours) with sequential exposure where one drug was added for 48 

hours, followed by the second drug for a further 48 hours (measured at 96 hours). I 

believe this difference in the duration of the assay will affect the results and thus was a 

flawed approach.  In my experiments, I ensured the total cell incubation period was kept 

the same. Certainly subsequent translational exposure-efficacy modeling of the 

combination of MLN8237 and taxanes using in vivo data by others showed additive and 

synergistic effects in a range of mouse models with concurrent dosing (261). 

 

To gain insight into the longer term effects of exposure to paclitaxel and MLN8237 

both as single agents and as a combination in the three cell lines where synergy had 

been seen, the colony forming assay was used.  

 

After 24 hours (Figure 3-33A), 57±7% colonies survived exposure to paclitaxel 2 nM 

with only 19±5% remaining with MLN8237 50 nM. Both these results contrast to the 

SRB assay after 24 hours of exposure to paclitaxel 2 nM (90±16% cell growth, Figure 

3-30) and after MLN8237 50 nM for 24 hours (61±5% cell growth, Figure 3-32). 

Colony formation was inhibited with the combination of MLN8237 50 nM and 

paclitaxel 2 nM to a similar extent to paclitaxel 30 nM with 2±1% colonies surviving 

(no significant difference p=0.39).  

After exposure to drugs for 72 hours (Figure 3-33 B) whilst 45±9% colonies survived 

exposure to paclitaxel 2 nM, only 3±1% remained in those exposed to single agent 

MLN8237 50 nM, again far less than predicted from the SRB assay (57±7%, Figure 
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3-17). No colonies remained with either the combination treatment or paclitaxel 30 nM. 

The only other report of long term viability of T24 cells post-exposure to treatment 

comes from single agent data after 48 hours exposure to MLN8237 100 nM and 

MLN8237 1 µM, where less than 10% and 1% cells survived respectively (121). My 

data shows greater effect than that publication, with effective colony inhibition with 

MLN8237 50 nM at 24 hours. The combination of paclitaxel 2 nM and MLN8237 50 

nM is at least as effective as that seen by them at higher concentrations.  
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Figure 3-33: Colony forming assay in T24 cells exposed to paclitaxel and/or MLN8237. 
Relative number of colonies observed after A. 24 hours and B. 72 hours exposure to either 
paclitaxel 2 nM, MLN8237 50 nM, the combination of MLN8237 50 nM and paclitaxel 2 nM or 
paclitaxel 30 nM. After drug exposure, equal numbers of viable cells were re-plated in fresh 
medium and allowed to grow for seven days. The quantification of the plates using GelCount is 
presented. These data are the mean of three replicates with SD shown. Representative photographs 
of the colony plates are shown during quantification using GelCount. Abbreviations: 
PTX=paclitaxel, combo/combination=combination MLN8237 50 nM and paclitaxel 2 nM.  

 

After exposure to drugs for 24 hours (Figure 3-34 A), 77±4 % colonies survived with 

paclitaxel 2 nM and with MLN8237 50 nM, more colonies were present than in DMSO 

control (130±4%). However, when the two drugs were combined, 23±6% colonies 

survived, compared to paclitaxel 30 nM at 3.1%±1. Even after 72 hours (Figure 3-34 B), 

69±19 % colonies survived exposure to paclitaxel 2 nM and 54±14% colonies survived 
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MLN8237 50 nM, results less than the cell growth seen at 72 hours for the single agents 

in the SRB assay (84±5% with paclitaxel 2 nM and 87±10% with MLN8237 50 nM, 

Figure 3-19). No colonies survived in either the combination or paclitaxel 30 nM 

groups, whereas 42±7% cell growth had been seen in the SRB assay with the 

combination. The difference between the relatively high percentages of cells which 

survived the single agent treatments and the combination was marked. 
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Figure 3-34: Colony forming assay in RT112 cells exposed to paclitaxel and/or MLN8237. 
Relative number of colonies observed after A. 24 hours and B. 72 hours exposure to either 
paclitaxel 2 nM, MLN8237 50 nM, the combination of MLN8237 50 nM and paclitaxel 2 nM or 
paclitaxel 30 nM. After drug exposure, equal numbers of viable cells were re-plated in fresh 
medium and allowed to grow for seven days. The quantification of the plates using GelCount is 
presented. These data are the mean of three replicates with SD shown. Representative photographs 
of the colony plates are shown during quantification using GelCount. Abbreviations: 
PTX=paclitaxel, combo/combination=combination MLN8237 50 nM and paclitaxel 2 nM. 

 

After exposure to drugs for 24 hours (Figure 3-35 A), the colonies appeared particularly 

sensitive to paclitaxel 2 nM with only 29±3% colonies surviving compared to 

MLN8237 50 nM with 74±5%. With the combination 6.0±3% colonies survived, 

compared to paclitaxel 30 nM at 0.62%±0.32. After exposure to drugs for 72 hours 

(Figure 3-35 B) 34±8% colonies survived with paclitaxel 2 nM compared to MLN8237 

50 nM with 40±5% (cell growth of 81±5% for paclitaxel 2 nM and 85±14% for 

MLN8237 50 nM in SRB assay, Figure 3-20). In both the combination and paclitaxel 30 
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nM groups, no colonies survived, whereas 35±8% cell growth had been seen with the 

combination in the SRB assay. 
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Figure 3-35: Colony forming assay in UM-UC-3 cells exposed to paclitaxel and/or MLN8237. 
Relative number of colonies observed after A. 24 hours and B. 72 hours exposure to either 
paclitaxel 2 nM, MLN8237 50 nM, the combination of MLN8237 50 nM and paclitaxel 2 nM or 
paclitaxel 30 nM. After drug exposure, equal numbers of viable cells were re-plated in fresh 
medium and allowed to grow for seven days. The quantification of the plates using GelCount is 
presented. These data are the mean of three replicates with SD shown. Representative photographs 
of the colony plates are shown during quantification using GelCount. Abbreviations: 
PTX=paclitaxel, combo/combination=combination MLN8237 50 nM and paclitaxel 2 nM. 

 

Therefore across all three cell lines where synergy had been seen in the SRB assay, the 

strongest reduction in clonogenic ability of cells was with the combination of MLN8237 

50 nM and paclitaxel 2 nM. Greater sensitivity was seen using this clonogenic assay 

than in the SRB data, perhaps reflecting that cells were viable but had lost proliferative 

potential at the end of the 72 hour incubation period of the SRB assay. Thus the SRB 

assay may have underestimated the efficacy of the combination. The colony assay also 

demonstrated that 24 hours of treatment with the combination was sufficient to have 

extensive growth inhibitory effect, strengthening the interest in taking this combination 

into pre-clinical and clinical studies. 
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Docetaxel is an alternative taxane, with a similar structure and mechanism of action, 

which can be used as a second line option in metastatic bladder cancer following 

cisplatin and gemcitabine, similarly to paclitaxel (262). I was therefore interested in 

comparing the results I had seen with paclitaxel. The combination of MLN8237 and 

docetaxel has been reported to enhance apoptosis and anti-tumour activity in 

oesophageal cancer, breast cancer and mantle cell lymphoma (231, 232, 261). Similar 

results have been seen with the combination of alternative AK-A inhibitors and 

docetaxel (217, 263) but not in bladder cancer.  

 

 The results are summarised in Table 3-12 (the individual plots are not shown for 

brevity) and show synergy was seen with RT112, T24 and UM-UC-3 cells, albeit with a 

lower synergy score than with paclitaxel. The synergy seen in these three cell lines was 

in the range of MLN8237 30-75 nM and docetaxel 0.3-3 nM. Therefore this 

combination may show promise in the same cell lines as seen with paclitaxel – T24, 

UM-UC-3 and RT112.  

Cell line SS GI at max 
SS point 

(%) 

[MLN8237] 
at this 

point (nM) 

[Docetaxel] 
at this point 

(nM) 
HT1197 7.2±9 17±9 50 0.3 
J82 14±7 44±7 50 1 
RT4 17±1 41±1 30 1 
RT112 33±4 77±4 75 0.3 
SW780 4.1±8 33±8 100 0.3 
T24 22±9 69±9 75 1 
UM-UC-3 24±12 55±12 10 1 
Table 3-12: Summary of SRB assay data for bladder cell lines with MLN8237 together with 
docetaxel.  
The highest synergy score is shown, together with the extent of growth inhibition at this point and 
the relevant MLN8237 and docetaxel concentrations. Growth inhibition calculated from percentage 
growth compared to control with mean and standard deviation shown (n=3). Abbreviations: 
SS=synergy score, GI=growth inhibition. 

 

In T24, UM-U-3 and RT112 cells, cPARP signal consistent with apoptosis had been 

seen after 24 hours exposure to the combination of MLN8237 50 nM and paclitaxel 2 

nM. Death in mitosis involves the intrinsic (mitochondrial mediated) apoptotic pathway, 

initiated by CC9 ultimately causing activation of caspases such as CC3 and then cPARP 

cleavage. To investigate the effect of the combination of MLN8237 and docetaxel on 
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T24 cells and compare this with that already seen with MLN8237 and paclitaxel, I 

performed Western blotting of T24 cells following exposure to the drugs of interest 

assessing CC9 and CC3 as well as cPARP at 24, 30 and 48 hours. The combination of 

MLN8237 50 nM and docetaxel 1 nM was selected as this allowed the same 

concentration of MLN8237 to be assessed and it had shown growth inhibition of 67±9% 

and a SS of 20±9, very similar to the results at the highest SS with MLN8237 75 nM 

and docetaxel 1 nM (Table 3-12).  

Whilst little effect was seen with either paclitaxel 2 nM, docetaxel 1 nM or MLN8237 

50 nM at 24 or 30 hours, by 48 hours there had been a slight increase in CC9 and CC3 

signal and cPARP was visible with docetaxel 1 nM (lane 3) and MLN8237 50 nM (lane 

4). With the combinations, CC3 and CC9 signal was present by 24 hours, corresponding 

to  the cPARP signal seen but was stronger with the higher concentration of single agent 

taxanes. By 48 hours, the cPARP signal was very similar between either combination or 

higher concentration of single agent taxanes, suggesting that both the low concentration 

of paclitaxel and docetaxel combinations with MLN8237 50 nM were as effective in 

terms of inducing apoptosis. 

 
Figure 3-36: Western blots for proteins of interest in T24 cells exposed to docetaxel, paclitaxel and 
MLN8237 as labelled for 24, 30 and 48 hours.  
T24 cells exposed to the following drug treatments 1. DMSO 2. Paclitaxel 2 nM 3. Docetaxel 1 nM 4. 
MLN8237 50 nM 5. Combination of paclitaxel 2 nM and MLN8237 50 nM 6. Combination of 
docetaxel 1 nM and MLN8237 50 nM 7. Paclitaxel 30 nM 8. Docetaxel 30 nM for 24, 30 and 48 
hours. Proteins of interest shown in green channel with actin as control (red channel). 

The CC9 signal confirms the activation of the intrinsic apoptosis pathway. CC3 is a 

marker that can be detected in tumours by immunohistochemistry and this would be an 

appropriate indicator of apoptosis that can be used for future in vivo studies. This 

experiment confirms that either paclitaxel 2 nM or docetaxel 1 nM in combination with 

MLN8237 50 nM can induce a similar degree of apoptosis to that seen with a higher 

concentration of single agent taxanes. 
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In this chapter, I initially tested a range of novel aurora kinase inhibitors in the T24 

bladder cancer cell line as at the time of this work it was unclear whether an AK-A, AK-

B or pan-AKI would be most effective. I identified that AK-A-specific inhibitors, 

exemplified by CYC3, were the most potent in synergy with paclitaxel. The use of a 

matrix to test a range of eight by eight concentration combinations proved particularly 

helpful as synergy was seen at low concentrations of paclitaxel (GI20 to GI40) with 

antagonism at higher concentrations. Subsequent investigations including live cell 

imaging confirmed the cytotoxic effect of the combination. A range of schedules were 

examined but concurrent dosing seemed the most effective. Although some synergy was 

seen in the other bladder cancer cell lines, it appeared most apparent in the T24 cell line. 

At the time, CYC3 was the best AK-A inhibitor available to me and therefore it was 

used in further experiments comparing the combination in non-cancer cell lines 

(Chapter 4) and it was taken forward into initial in vivo studies (Chapter 6). 

However, later in my research, I was able to obtain access to an alternative AK-A 

inhibitor, MLN8237. Synergy was seen in T24, UM-UC-3 and RT112 cell lines with 

the combination of MLN8237 and paclitaxel, again with concentrations of paclitaxel 

≤GI50. Enhanced cell death was confirmed using live cell Incucyte™ imaging, flow 

cytometry, Western blotting and long term clonogenic assays. Docetaxel also showed 

potential in combination with MLN8237 in the same cell lines. These results are 

consistent with reports of synergy between AK-A specific inhibitors and taxanes, 

reported during my studies. Given its improved AK-A selectivity and the more 

promising synergy seen in multiple cell lines, together with the fact that MLN8237 was 

further developed and entering clinical trial testing, all further experiments and the 

majority of my in vivo work was performed using MLN8237 instead of CYC3.  

Whilst T24 and UM-UC-3 are derived from high grade tumours (Grade 3), RT112 cells 

are from a Grade 2 tumour (Table 3-5). Synergy was not seen in the other four bladder 

cell lines, including other high grade tumours (such as J82). The variability between cell 

line responses to each anti-cancer drug as a single agent and in combination reflects the 

heterogeneity seen within each cancer type, now comprehensively studied in bladder 

cancer (107). Both the TP53 and TP73 status of cell lines may be important in 

determining the cell fate of cells in response to AKI, with some studies showing cell 

lines with a compromised p53/p21 post-mitotic checkpoint or with p53 mutations are 

more sensitive to pan-AKI and AK-A specific AKI and more likely undergo apoptosis 
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than cells with intact checkpoint function (264-266). In the bladder cancer cell panel I 

studied, T24, RT112 and UM-UC-3 had p53 mutations considered deleterious (whilst 

J82 does have mutations in p53, these have been reported as neutral in terms of effect 

on cells (IARC database, http://p53.iarc.fr/ version R18 (267)). TP73 has been shown to 

play a significant role in determining cell fate in p53 deficient cells exposed to AK-A 

inhibitors (129-132), with p73 potentially able to compensate for lack of p53 function in 

tumour cells. To investigate the role of TP53 and TP73 in the response seen, I did 

perform experiments attempting siRNA knockdown of p73 in T24 cells and with 

isogenic p53 mutant/null HCT116 cell lines, but the results were not sufficiently robust 

to draw definitive conclusions. A subsequent study combining MLN8237 and docetaxel 

in upper gastro-intestinal cancer models concluded that the combination was effective 

independent of p53 status (232).  

In parallel studies that we have published (Appendix 1), we demonstrated that CYC3 

synergised with low concentration paclitaxel to suppress the growth and viability of 

pancreatic cancer cells, with the combination approaching the efficacy of higher 

concentrations of single agent paclitaxel (258). The concept of dose reduction potential 

where a combination can achieve similar responses but with reduced toxicity is also 

important when assessing combination effects. These results suggested the combination 

of concentrations of paclitaxel below GI50 and AK-A inhibitors may provide a better 

therapeutic window compared to high concentration paclitaxel. Therefore, I next 

examined the combination in “normal” cell line models and with the CFU-GM assay to 

confirm whether a therapeutic window could be achieved. 
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 ASSESSMENT OF THE EFFECT OF AK-A 

SPECIFIC INHIBITORS IN NON-CANCER 

CELL LINES COMPARED TO T24 CELLS 

 
With promising results from the cytotoxicity assays showing synergy between low 

concentrations of paclitaxel and two different AK-A specific AKI, CYC3 and 

MLN8237 in some bladder cancer cell lines, it was important to assess the effect of 

these combinations in non-cancer cell lines. Differences between cancer cell lines and 

non-transformed cell lines in their response to various anti-mitotic drug treatments have 

been previously reported using live cell imaging techniques (268-270). Encouragingly 

these have all shown a differential response, with an increase in cell death seen in the 

cancer cell lines compared to the non-transformed cell lines. This could translate into an 

effective treatment with reduced toxicity to normal cells. However, neutropenia was 

frequently dose limiting in the Phase 1 single agent studies (Table 1-2 to Table 1-4) and 

the combination with a taxane could increase this further. Hence the effect of these 

combinations was assessed in non-cancer cell lines. I then tested the combination in the 

CFU-GM assay using primary bone marrow cells, which has been validated as a useful 

predictor of the risk of neutropenia from drug regimens (271, 272). 

Contribution of others to this experimental work: Live cell imaging and immunostaining 

(4.3) was performed in collaboration with Dr Yao Lin. He also assisted with manual 

colony counting (4.4). 

 

Two different cell lines were used for comparisons with the T24 cell line using  the 

SRB assay – IMR-90 and ARPE-19. IMR-90 is a primary diploid lung fibroblast line 

(273) and ARPE-19 is a human retinal pigment epithelial cell line with differentiated 

properties (274). Initial experiments were performed with both CYC3 and MLN8237 in 

IMR-90 cells. However, IMR-90 cells have a tendency to senesce with repeated 

passaging and need to be grown in low oxygen conditions, meaning that assays such as 

live cell imaging were not technically possible. Given this and the synergy seen in 
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MLN8237 in several bladder cancer cell lines, I subsequently concentrated on the 

combination of MLN8237 and paclitaxel in ARPE-19 cells. 

 

IMR-90 cells were sensitive to single agent paclitaxel, with a GI50 of 3.2 nM (Figure 4-1 

B), comparable to that seen in the T24 bladder cancer cell line (GI50 3.8 nM). IMR-90 

cells were resistant to both MLN8237 (Figure 4-1 B) and CYC3 (Figure 4-1 C) with 

only 20% maximum inhibition seen with either drug, even when higher concentrations 

of drug were tested (data not shown).   
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Figure 4-1: Dose response curves for IMR-90 cells exposed to paclitaxel, MLN8237 and CYC3. 
IMR-90 cells were exposed to a range of concentrations of A. Paclitaxel B. MLN8237 and C. CYC3 
for 72 hours, then analysed using SRB assay. Each graph shows the data for % control cell growth 
at each concentration of three replicates with SD and then a curve fitted to the data using 
GraphPad Prism. The dotted line shows 50% cell growth and this was used to identify the GI50 
from the graph.  

ARPE-19 cells were sensitive to paclitaxel, with a GI50 of 1.4 nM (Figure 4-2 A). 

MLN8237 did show an effect in ARPE-19 cells (GI50 50 nM)  but this plateaued at 50% 

growth inhibition (Figure 4-2 B).  
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Figure 4-2: Dose response curves for ARPE-19 cells exposed to paclitaxel and MLN8237.  
ARPE-19 cells were exposed to a range of concentrations of A. Paclitaxel B. MLN8237 for 72 hours, 
then analysed using SRB assay. Each graph shows the data for % control cell growth at each 
concentration of three replicates with SD and then a curve fitted to the data using GraphPad 
Prism. The dotted line shows 50% cell growth and this was used to identify the GI50 from the 
graph.  

 

When the combination of CYC3 and paclitaxel was studied in IMR-90 cells (Figure 

4-3), there were a few concentration-combinations associated with synergy (for example 

CYC3 2000 nM and paclitaxel 1 nM) but no consistent region.  Synergy was detected 

with very high concentrations of CYC3 (10000 nM), but these are concentrations at 

which it is likely to be also targeting other kinases such as AK-B.  

 
Figure 4-3: Combination of CYC3 and paclitaxel in IMR-90 cells.  
IMR-90 cells were seeded in 96-well plates and treated with combinations of paclitaxel and CYC3 
for 72 hours.  
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There was no significant synergy seen with MLN8237 and paclitaxel (Figure 4-4), with 

the effects seen close to single agent paclitaxel at the same concentrations, consistent 

with the limited dose response seen in Figure 4-1.  

 

 
Figure 4-4: Combination of MLN8237 and paclitaxel in IMR-90 cells.  
IMR-90 cells were seeded in 96-well plates and treated with combinations of paclitaxel and 
MLN8237 for 72 hours.  

With the combination of MLN8237 and paclitaxel in ARPE-19 cells (Figure 4-5), no 

significant synergy was seen, despite the fact that the GI50 was reached for both drugs.  

Indeed the areas of yellow and orange seen in the Bliss model (Figure 4-5 C) suggest 

antagonism, particularly at paclitaxel concentrations ≥5 nM. At the concentration-

combination of MLN8237 50 nM and paclitaxel 2 nM where maximum synergy was 

seen in T24 cells, growth inhibition was 60±8% compared to 81±1% in T24 cells. 
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Figure 4-5: Combination of MLN8237 and paclitaxel in ARPE-19 cells.  
ARPE-19 cells were seeded in 96-well plates and treated with combinations of paclitaxel and 
MLN8237 for 72 hours. 

 

To further explore the combination of MLN8237 and paclitaxel, the ARPE-19 cell line 

was used. 

 

The paclitaxel dose response curve was relatively steep, particularly between 1 nM 

(final confluency  80±18%) and 2 nM (final confluency 29±3%) (Figure 4-6 A). There 

was a more gradual dose-response effect with MLN8237: the final cell confluency was 

59±10% with MLN8237 30 nM, 50±11% MLN8237 50 nM and 42±5% with MLN8237 

100 nM. With the combination of MLN8237 50 nM and paclitaxel 2 nM (Figure 4-6 B), 

the final cell confluency with the combination at endpoint was suppressed at 24±2%, a 

greater effect than seen in the SRB assay (40±8% (Figure 4-5)). 
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Figure 4-6: Relative cell confluency over time in ARPE-19 cells exposed to drugs as indicated. 
ARPE-19 cells were seeded in 96-well plates and allowed to grow for 24 hours. They were then 
dosed with A. a range of concentrations of MLN8237 and paclitaxel as single agents B. single agent 
paclitaxel 2 nM, MLN8237 50 nM, the combination of MLN8237 50 nM and paclitaxel 2 nM or 
paclitaxel 30 nM. They were imaged using IncuCyte™ for 66 hours and percentage confluency 
relative to the start of imaging was calculated and plotted. These data are the mean of three 
replicates with SD. Combination= MLN8237 50 nM and paclitaxel 2 nM. 

The ARPE-19 IncuCyte™ results are  comparable to the findings in T24 cells where the 

final cell confluency with the same combination was 15±1% of control at endpoint 

(Figure 3-25 A). This suggests that there may not be a large therapeutic window for the 

combination, with similar effects on bladder cancer cells and on highly proliferative 

normal epithelia.  Therefore, to gain some insight into the longer term effects of 

exposure to both drugs both as single agents and as a combination, the colony forming 

assay was used. 

 

After exposure to drugs for 24 hours, 50±5% colonies survived with paclitaxel 2 nM 

and 15±8% with MLN8237 50 nM, compared to  the combination with 0.71±0.5% 

(Figure 4-7). Whereas the SRB and IncuCyte™ data had suggested approximately 50% 

cell growth in the presence of MLN8237 50 nM for up to 72 hours, after 24 hours 

exposure the surviving fraction was only 15%. One explanation for this could be that 

although cells were able to maintain their protein content (as measured by SRB) in the 

presence of MLN8237 and maintain cell confluency (as seen in the IncuCyte™ assay), 

their ultimate cell fate was already determined and in longer term assays this became 

clear. After exposure to drugs for 72 hours, 39±5% colonies survived with paclitaxel 2 
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nM and 27±11%  with MLN8237 50 nM, compared to  combination with 0.64±0.5% 

(Figure 4-7 B).  

 
Figure 4-7: Relative number of colonies observed after 24 hours and 72 hours exposure to 
paclitaxel and/or MLN8237 in ARPE-19 cells together with representative photographs of the 
colony plates.  
Relative number of colonies observed after A. 24 hours and B. 72 hours exposure to either 
paclitaxel 2 nM, MLN8237 50 nM, the combination of MLN8237 50 nM and paclitaxel 2 nM or 
paclitaxel 30 nM. After drug exposure, equal numbers of viable cells were re-plated in fresh 
medium and allowed to grow for seven days. The quantification of the plates using GelCount is 
presented. These data are the mean of three replicates with SD shown. Representative photographs 
of the colony plates are shown during quantification using GelCount. Abbreviations: 
PTX=paclitaxel, combo/combination=combination MLN8237 50 nM and paclitaxel 2 nM. 

Therefore after both 24 and 72 hours exposure to the combination of MLN8237 and 

paclitaxel 2 nM, the combination appeared as toxic as paclitaxel 30 nM. These results 

are similar to those seen in T24, UM-UC-3 and RT112 cells in the colony forming 

assay, suggesting that there is potential for synergistic toxicity in non-cancer epithelial 

cells. Certainly on review of the SRB assay data (Figure 4-5), although no synergy was 

seen with this combination, 60±8% growth inhibition was seen, which is not dissimilar 

to that seen in RT112 (68±7%) and UM-UC-3 (65±8%) cells (where significant synergy 

was identified). 
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The SRB assay showed additivity with the combination of MLN8237 and paclitaxel in 

ARPE-19 cells, but the IncuCyte™ and colony forming assays both showed that the 

combination of MLN8237 50 nM and paclitaxel 2 nM suppressed cell growth.  The 

differential responses between non-transformed cell lines and cancer cell lines 

previously reported have used time-lapse live cell imaging to allow the individual fate 

of cells to be studied (268-270), so we utilised this technique together with 

immunostaining to further explore the effects on mitosis of this combination in both 

T24 and ARPE-19 cells. These experiments were devised and carried out in 

collaboration with Dr Yao Lin.  

 

Live cell imaging with bright field morphology analysis was performed in both T24 and 

ARPE-19 cells, exposed to paclitaxel 2 nM and 30 nM, MLN8237 50 nM and the 

combination of MLN8237 50 nM and paclitaxel 2 nM. The mitotic fates of cells 

entering their first mitosis were divided into four categories, either normal mitotic 

division with two daughter cells, division with more than two daughter cells, one cell 

remaining, or mitotic death (Figure 4-8 with representative images in Figure 4-9). Of 

note, for the cells labelled as one daughter cell, the cell rounded up and entered mitosis 

but after a period of time, it exited but remained one cell (example shown in Figure 

4-9). Whilst these are categorised in our analysis as cells having passed into mitosis into 

the next G1 with only one daughter cell, without definite evidence to prove this, it is 

also possible that the original cell failed mitosis and flattened out again but still in G2. 

The fates of daughter cells at their next division were either death, being able to divide 

again or viable but without further division. In this analysis, for each of the cells that 

divided, one daughter cell was selected at random and its fate was determined.  
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Figure 4-8: Diagram depicting the various fates of a cell and its daughter cells after first mitosis. 

 
Figure 4-9: Representative images of T24 cells undergoing each different mitotic fate. 
Cell fates - normal division with two daughter cells (2DCs), only one daughter cell (1 DCs), division 
with more than two daughter cells (>2DCs) or mitotic death (MD). T24 cells were seeded in Ibidi 
eight-chamber slides at 5000 cells/chamber. After 24 hours, cells were exposed to drugs and sent for 
72 hour live cell imaging detection with five minute gaps between frames. 

 

I have shown that paclitaxel 2 nM alone did not induce strong growth inhibition in T24 

cells in SRB experiments (12±7% in the combination data in Figure 3-17 and 

IncuCyte™ data in Figure 3-25 A). Here Figure 4-10 and Table 4-1 demonstrate that 

although it did not induce any mitotic death, it did significantly extend the average 

mitotic duration (149±52 mins vs 54±10 mins in DMSO) and was capable of inducing 

aberrant divisions leading to >2 daughter cells (30% vs 0% in DMSO). This indicates 

that cells can undergo multi-polar mitosis when exposed to paclitaxel 2 nM. The 
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average mitotic duration with MLN8237 alone (265±136 mins) was five times longer 

than in control (as expected for an AK-A inhibitor) but no mitotic death occurred. With 

the combination, the average time in mitosis extended further to 405±217 minutes. This 

compared to 641±319 minutes with paclitaxel 30 nM. When cells were co-treated with 

MLN8237, induction of mitotic death was observed compared to either single agent 

alone (23% vs 0%), and with paclitaxel 30 nM it was 43% (Table 4-1). It is clear there 

is a threshold of time spent in mitosis of around 500 minutes, above which the cells are 

more likely to undergo mitotic death (Figure 4-10), consistent with previous 

observations (144). 

 
Figure 4-10: T24 live cell imaging.  
T24 cells were seeded in Ibidi 8-chamber slides at 5000 cells/chamber. After 24h, cells were exposed 
to drugs as labelled (Combo=combination of MLN8237 50 nM and paclitaxel 2 nM) and sent for 
72h live cell imaging detection with five minutes gap between frames. For each treatment, 30 cells 
were counted and the fate of cells using the four categories illustrated in Figure 4-8 is shown. The 
duration of mitosis is defined as the time between nuclear envelope breakdown and chromatin 
decondensation and is shown for each treatment together with SD. The p value was calculated using 
the two-column t-test in GraphPad Prism. 
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Cell fate DMSO Paclitaxel 
2 nM 

MLN8237 
50 nM 

Combination Paclitaxel 
30 nM 

2 DCs (%) 100 67 57 33 7 
1 DCs (%) 0 3 17 7 17 
>2DCs (%) 0 30 27 37 33 
MD (%) 0 0 0 23 43 
Table 4-1: Proportion of cell fates for each T24 cell entering mitosis for each drug treatment. 
Fate of cells determined according to the categories in Figure 4-8 (two daughter cells (2DCs), only 
one daughter cell (1 DCs), division with more than two daughter cells (>2DCs) or mitotic death 
(MD)), with 30 cells counted for each treatment. Drug treatments as labelled, 
combination=MLN8237 50 nM and paclitaxel 2 nM. 

The proportion of cells dying in mitosis in each of the different treatment groups, as 

assessed here by live cell imaging correlates well with the c-PARP levels observed in 

western blots shown in Figure 3-26.  

Even in the cells exposed to the combination which successfully exited mitosis, none of 

the daughter cells were able to divide again, with the majority dying (63% with 

combination, 82% with paclitaxel 30 nM) and the rest not able to undergo mitosis, 

whilst looking viable (Table 4-2).  

Drug treatment Divide again 
(%) 

Viable, 
no division 

(%) 

Dead 
(%) 

DMSO 100 0 0 
Paclitaxel 2 nM 80 0 20 
MLN8237 50 nM 30 49 21 
MLN8237 50 nM and paclitaxel 2 nM  0 37 63 
Paclitaxel 30 nM 0 18 82 

Table 4-2: Fate of T24 daughter cells following first mitosis in cells exposed to drug treatments as 
labelled.  
For each of the cells that divided, one daughter cell was selected at random and its fate determined, 
n=30. 

 

Previous experiments had shown growth inhibition with paclitaxel 2 nM alone in the 

SRB assay in ARPE-19 cells (39±14%) (Figure 4-5). Here although the average mitotic 

duration significantly increased (to a similar extent to that seen in T24) from 39±6 

minutes in DMSO to 166±137 minutes, only one abnormal division was observed and 

no cell death (Figure 4-11 and Table 4-3). Although these cells successfully divided, 8% 

of the daughter cells died in the subsequent mitosis and 51% did not divide whilst 

appearing viable (Table 4-4). MLN8237 50 nM did not extend time in mitosis to the 

same degree (74±47 minutes) and little abnormal division was observed (Figure 4-11 

and Table 4-3), although again the daughter cells were affected with 5% dying and 42% 

appearing viable but not dividing again (Table 4-4). 
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With the combination, time in mitosis was extended to 279±255 minutes (a shorter 

duration to that seen in T24 cells), with 50% of divisions aberrant (Figure 4-11 and 

Table 4-3). Whilst only 2% of the daughter cells divided again, the majority appeared 

viable but not dividing and only 17% died (Table 4-4), in contrast to T24 cells where 

63% of cells died. It was particularly striking that with both the combination and 

paclitaxel 30 nM treated cells, no mitotic death was seen in the initial mitosis whereas 

the treatments had induced 23% and 43% cell death respectively in T24 cells. In the 

paclitaxel 30 nM treated cells, this was despite mitosis being extended much further 

(1050±497 minutes) (Figure 4-11 and Table 4-3). However,  aberrant division occurred 

in 67% of cells exposed to paclitaxel 30 nM and none of the daughter cells divided 

again, although 38% appeared viable. There was a difference in the fate of daughter 

cells when the combination treatment was compared to paclitaxel 30 nM between the 

two cell lines. A greater proportion of ARPE-19 cells appeared viable (81% vs 37% of 

T24 cells) with the combination and compared to paclitaxel 30 nM (38% still appeared 

viable compared to 18% of T24 cells). 

 
Figure 4-11: ARPE-19 live cell imaging. 
ARPE-19 cells were seeded in Ibidi 8-chamber slides at 5000 cells/chamber. After 24h, cells were 
exposed to drugs as labelled (Combo=combination of MLN8237 50 nM and paclitaxel 2 nM)  and 
sent for 72h live cell imaging detection with five minutes gap between frames. For each treatment, 
30 cells were counted and the fate of cells using the four categories illustrated in Figure 4-8 is 
shown. The duration of mitosis is defined as the time between nuclear envelope breakdown and 
chromatin decondensation and is shown for each treatment together with SD. The p value was 
calculated using the two-column t-test in Graphpad Prism. 
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Cell fate DMSO Paclitaxel 
2 nM 

MLN8237 
50 nM 

Combination Paclitaxel 
30 nM 

2 DCs (%) 100 97 93 50 33 
1 DCs (%) 0 3 3 37 47 
>2DCs (%) 0 0 4 13 20 
MD (%) 0 0 0 0 0 
Table 4-3: Proportion of cell fates for each ARPE-19 cell entering mitosis for each drug treatment. 
Fate of cells determined according to the categories in Figure 4-8 (two daughter cells (2DCs), only 
one daughter cell (1 DCs), division with more than two daughter cells (>2DCs) or mitotic death 
(MD)), with 30 cells were counted for each treatment. Drug treatments as labelled, 
combination=MLN8237 50 nM and paclitaxel 2 nM. 

Drug treatment Divide again 
(%) 

Viable, 
no division 

(%) 

Dead 
(%) 

DMSO 100 0 0 
Paclitaxel 2 nM 41 51 8 
MLN8237 50 nM 53 42 5 
MLN8237 50 nM and paclitaxel 2 nM 2 81 17 
Paclitaxel 30 nM 0 38 62 
Table 4-4: Fate of ARPE-19 daughter cells following first mitosis in cells exposed to drug 
treatments as labelled.  
For each of the cells that divided, one daughter cell was selected at random and its fate determined 
(n=30). 

The combination was less toxic to the ARPE-19 cells than the T24 cells, raising the 

possibility that in ARPE-19 cells although mitosis is still significantly prolonged, the 

cells remain viable after drug exposure with the opportunity to recover whereas T24 

cells are more likely to die in subsequent cell divisions. This is consistent with 

observations by others. When non-transformed human RPE-1 cells are exposed to low 

concentrations of paclitaxel 5 nM, mitosis is prolonged but 99% of cells survived, by 

constructing abnormal but functional spindles which were able to satisfy the SAC, and 

allow subsequent aneuploid division in 90% daughter cells (275). Further experiments 

confirmed a differential response between cancer cell lines such as HeLa and U2OS and 

non-transformed RPE-1 cells. The cancer cell lines were less likely to survive their first 

mitosis when exposed to microtubule poisons and even those that were able to satisfy 

the SAC are more likely to die shortly after entering the next G1 (268, 269).  

 

To further explore the observations that non-transformed cell lines were better able to 

construct functional bipolar spindles than cancer cell lines, immunostaining was used to 

investigate the spindles and centrosomes of the T24 and ARPE-19 cells exposed to the 

same drug treatments. 
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When the mitotic cells were assessed, 80% of cells exposed to DMSO underwent a 

normal bipolar mitosis (Figure 4-12). In contrast paclitaxel 2 nM alone was sufficient to 

induce acentrosomal multipolar mitosis (62% of mitotic cells vs 17% in DMSO 

control), with an example of a multipolar division, with three poles but only two 

centrosomes (CDK5RAP2 spots) shown in Figure 4-12 A.  MLN8237 50 nM also led to 

abnormal mitosis but here 52% of cells were monopolar and 24% multipolar. With both 

the combination and paclitaxel 30 nM, no bipolar division was seen, with the majority 

of divisions multi-polar (80% and 92% respectively) (Figure 4-12).  
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Figure 4-12: Percentage of total mitotic T24 cells exposed to drug treatments as labelled.  
A total of 5000 cells were seeded in eight-well Ibidi slides and treated with the indicated drugs for 
24 hours before immunofluorescent detection of CDK5RAP2 (red), α-tubulin (green) and DAPI 
(blue). Representative images of bipolar, monopolar and multipolar mitoses are shown in A. The 
proportions of cells in different stages were calculated using CompuCyte Icys® imaging cytometer 
and are shown in B together with further merged images of each cell fate captured by Icys®. At 
least 30 cells were counted for each treatment. Immunostaining performed by Dr Yao Lin. 
Abbreviation: PTX=paclitaxel. 
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When the nuclei of interphase cells were examined, aberrant nuclei were seen even in 

DMSO cells (19%) but the proportion increased with the drug treatments- 44% with 

paclitaxel 2nM, 58% with MLN8237 50 nM, 72% with the combination and 93% with 

paclitaxel 30 nM (Figure 4-13).  
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Figure 4-13: Percentage of T24 in interphase with normal or aberrant nuclei following exposure to 
drug treatments as labelled.  
A total of 5000 cells were seeded in eight-well Ibidi slides and treated with the indicated drugs for 
24 hours before immunofluorescent detection of α-tubulin (green) and DAPI (blue). Representative 
images of normal and aberrant nuclei are shown in A. The proportions of cells that were the 
products of aberrant division were calculated using CompuCyte Icys® imaging cytometer and are 
shown in B together with further merged images of each cell fate captured by Icys®. At least 30 
cells were counted for each treatment. Immunostaining performed by Dr Yao Lin. Abbreviation: 
PTX=paclitaxel. 

In summary, the combination of paclitaxel 2nM and MLN8237 50nM was shown to 

greatly induce multipolar mitosis and abnormal interphase nuclei formation in T24 

cells, achieving similar effects as paclitaxel 30nM. 
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Paclitaxel 2 nM  and MLN8237 50 nM as single agents led to largely bipolar divisions 

(77% and 71% respectively compared to 90% in DMSO control) (Figure 4-14). With 

the combination this fell to 39%, with the aberrant divisions being either mono- or 

multi-polar, and paclitaxel 30 nM showed the greatest change with only 17% bipolar 

divisions (Figure 4-14).  
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Figure 4-14: Percentage of total mitotic ARPE-19 cells exposed to drug treatments as labelled.  
A total of 5000 cells were seeded in eight-well Ibidi slides and treated with the indicated drugs for 
24 hours before immunofluorescent detection of CDK5RAP2 (red), α-tubulin (green) and DAPI 
(blue). Representative images of bipolar, monopolar and multipolar mitoses are shown in A. The 
proportions of cells in different stages were calculated using CompuCyte Icys® imaging cytometer 
and are shown in B together with further merged images of each cell fate captured by Icys®. At 
least 30 cells were counted for each treatment. Immunostaining performed by Dr Yao Lin. 
Abbreviation: PTX=paclitaxel. 

However, the proportion of cells undergoing bipolar division despite exposure to the 

combination or paclitaxel 30 nM differs to the result in T24 cells where no bipolar 
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divisions were seen (Figure 4-12). Although less aberrant nuclei were seen with the 

single agents paclitaxel 2 nM (36%) and MLN8237 (26%) compared to T24 cells, 74% 

were observed with the combination, compared to 91% with paclitaxel 30 nM (Figure 

4-15), similar to T24 cells (Figure 4-13). Hence whilst the combination and paclitaxel 

30 nM treatments did not induce the same degree of multi-polar division in ARPE-19 as 

in T24 cells, the results of the interphase cells are very similar, with aberrant nuclei.  

 
Figure 4-15: Percentage of ARPE-19 cells in interphase with normal or aberrant nuclei following 
exposure to drug treatments as labelled.  
A total of 5000 cells were seeded in eight-well Ibidi slides and treated with the indicated drugs for 
24 hours before immunofluorescent detection of α-tubulin (green) and DAPI (blue). Representative 
images of normal and aberrant nuclei are shown in A. The proportions of cells that were the 
products of aberrant division were calculated using CompuCyte Icys® imaging cytometer and are 
shown in B together with further merged images of each cell fate captured by Icys®. At least thirty 
cells were counted for each treatment. Immunostaining performed by Dr Yao Lin. Abbreviation: 
PTX=paclitaxel. 
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With the combination of an AK-A inhibitor and paclitaxel, no synergy was seen in 

ARPE-19 or IMR-90 cells in the SRB assay but the combination did still reduce cell 

growth and long term viability as assessed by IncuCyte™ and colony forming assays. 

Others have commented that under experimental conditions where a significant 

proportion of cells die in the first mitosis (as seen here), many of the cell based assays 

traditionally used, where cancer cell lines are exposed to drugs for up to 72 hours, may 

be contaminated with dead or dying cells (269). Hence live cell imaging offers the best 

opportunity to assess early drug response. This showed a differential response, with 

more ARPE-19 cells remaining viable after exposure to the combination than T24 cells. 

Immunostaining confirmed ARPE-19 cells exposed to the combination were able to 

undergo bipolar mitotic division, whereas no T24 cells could. However, a similar 

proportion of cells in interphase with aberrant nuclei were seen. The reason for this may 

centre around the mechanism by which centrosomes become clustered (hence leading to 

bipolar mitosis) in the two cell lines. The T24 cell line has been recently reported to 

have 23% aberrant centrosomes (276) but further experiments to explore this were not 

performed in this work. 

Since these experiments were performed, clinical trials of single agent MLN8337 have 

largely shown dose-limiting haematological rather than epithelial cell toxicity. For 

example, in a large Phase 2 study the most common Grade 3-4 toxicities were 

neutropenia (43%) and leucopenia (21%) compared to stomatitis (8%) or diarrhoea 

(1%) (211). This suggests that although ARPE-19 cells may be able to give some 

information about normal cell toxicity, the effect of the combination on the bone 

marrow may be the most relevant. 

 

Given the incidence of neutropenia seen with AK-A specific AKI in clinical trials, I 

investigated the impact of the combination of an AK-A inhibitor with paclitaxel 

compared to the high-concentration single-agent paclitaxel on the bone marrow using 

the CFU-GM assay with human bone marrow cells. Firstly the single agent dose 

responses of paclitaxel, CYC3 and MLN8237 were assessed (Figure 4-16). These 

experiments were performed with Dr Yao Lin, who assisted with the manual colony 

counting (CYC3 data published in (258)). 
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With single agent paclitaxel, there is a steep dose response in colony inhibition from 3 

nM to 10 nM (GI50 10 nM, Figure 4-16), consistent with previous reports (258, 277, 

278). Shallower dose response curves are seen with CYC3 and MLN8237 and the GI50 

are slightly lower to those in T24 cells (CYC3 1100 nM compared to 1900 nM  and 

MLN8237 20 nM compared to 30 nM, Figure 4-16). 

 
Figure 4-16: CFU-GM assay for CYC3, MLN8237 and paclitaxel. 
Human bone marrow cells were exposed to a range of concentrations of A. CYC3 B. MLN8237 and 
C. paclitaxel for 14 days in CFU-GM assays. Each graph shows the data for percentage control 
colony growth at each concentration of three replicates with SD and then a curve fitted to the data 
using GraphPad Prism. The dotted line shows 50% colony growth and this was used to identify the 
GI50 from the graph.  

Having confirmed the sensitivity of bone marrow cells to paclitaxel, I next investigated 

combinations of CYC3 and MLN8237 with paclitaxel. Concentrations of paclitaxel 

ranging from 1-3 nM were used, which showed little impact on colony growth as a 

single agent (Figure 4-17). Whereas no colonies survived with paclitaxel 30 nM 

treatment, the combinations with CYC3 and paclitaxel were less toxic, with similar 

colony numbers to those seen with the single agent CYC3 (Figure 4-17 A and B). For 

the MLN8237 and paclitaxel combinations, more colonies actually survived than with 

the single agent MLN8237 (Figure 4-17 C-F), reaching significance for MLN8237 100 

nM with paclitaxel 1 nM (p=0.0019) and MLN8237 100 nM and paclitaxel 3 nM 
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(p=0.026).

 
Figure 4-17: CFU-GM assay results for combinations of CYC3 or MLN8237 together with 
paclitaxel.  
Human bone marrow cells were treated with the combination of A. CYC3 1000 nM and paclitaxel 3 
nM B. combination of CYC3 1500 nM and paclitaxel 3 nM C. MLN8237 30 nM and paclitaxel 1 nM 
D. MLN8237 30 nM and paclitaxel 3 nM E. MLN8237 100 nM and paclitaxel 1 nM F. MLN8237 
100 nM and paclitaxel 3 nM. No colonies grew in the presence of paclitaxel 30 nM. These data are 
the mean of three replicates with SD. The p value was calculated using the two-column t-test in 
Graphpad Prism. Abbreviations: PTX=paclitaxel, combo=combination of AKI and paclitaxel as 
labelled in graph title. 

Hence whereas the combinations of AK-A specific inhibitors with low concentrations of 

paclitaxel showed synergistic cytotoxicity in cancer cell lines, antagonism was seen in 

the CFU-GM assay when MLN8237 was combined with low concentrations of 

paclitaxel. Whilst in cancer cells the combination could be as effective as high 

concentration paclitaxel, high dose paclitaxel is much more toxic than the combination 

in the CFU-GM assay. This suggests there may be reduced clinically relevant toxicity 

with the combination, compared to high dose single agent taxanes.  
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Comparing the effect of CYC3 and MLN8237 in two non-transformed cell lines in the 

SRB assay suggested that rather than the synergy seen in some bladder cancer cell lines, 

an additive or even antagonistic effect may be seen with the combination of an AK-A 

inhibitor and paclitaxel. However, subsequent IncuCyte™ imaging showed the final cell 

confluency with the combination at endpoint was suppressed to a greater extent than 

expected, comparable to that seen in T24 cells, and with the colony forming assay, very 

few colonies survived.  This suggests that there may not be a large therapeutic window.  

Live cell imaging in T24 and ARPE-19 cells demonstrated a differential response, with 

more cells remaining viable after exposure to the combination in ARPE-19 cells 

compared to T24 cells, as discussed in 4.3.3. Further analysis to track the cell cycle 

phase in more detail (particularly to clarify the mitotic status of those labelled in our 

analysis as “one daughter cell”) could include use of techniques such as FUCCI-

labelling of cells. Immunostaining confirmed less non-bipolar cell division in ARPE-19 

cells than T24, despite a similar degree of aberrant nuclei in interphase, suggesting the 

potential for more normal cells to recover after exposure to these drugs. These results 

suggest that the combination may be more able to effectively target transformed cells 

with a lesser effect on normal cells, compared to a higher concentration of single agent 

paclitaxel.  

Although ARPE-19 cells are non-transformed and have been used in many studies as a 

model, the process of isolating and culturing cells causes adaptation to culture 

conditions (279), and it remains to be determined how valid this cell line is as a model 

for toxicity testing and predicting clinical effects. Efforts have previously been made to 

develop in vitro toxicity assays for predicting therapeutic index, made harder by the 

difficulty of culturing primary cells. When a panel of four types of normal cells (renal 

(HRPTEpiC), epithelial (hTERT-RPE1), lymphocyte and FMCA-GM14 (CD34(+) 

progenitor cells)) was tested against anti-cancer drugs, they were shown to largely 

reflect known clinical renal and bone marrow toxicity profiles (280). These may form 

an increasing part of the assessment of new drugs prior to their translation to the clinic, 

as may the use of new organoid models for toxicity testing (281).  

Given the haematological toxicity seen with MLN8237 as a single agent, the results of 

the CFU-GM assay were promising, indicating that the MLN8237 combination with 

low concentration paclitaxel may be less myelotoxic than higher paclitaxel as a single 

agent. However, whilst the assay has been validated and shown to have a high 
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predictive potential, there are technical issues with the method. A prolonged incubation 

period is required to allow colonies to grow to a sufficient size to be counted, and this 

has to be in the continued presence of drug because the cells cannot be washed and re-

plated. Thus the assay does not reflect clinical pharmacokinetics of the drugs being 

tested. Scoring is done manually using an inverted microscope, which can be difficult, 

with considerable inter-individual variability, and heterogeneity in colony morphology. 

Although media and growth factors were selected to optimise the growth of CFU-GM 

colonies and specifically looked for their distinctive appearance, it is possible that other 

progenitors were also represented in these colony counts. The viscosity of the 

MethoCult™ medium also made analysis of images using GelCount difficult, but this 

was the best equipment available to us at the time. Stem Cell Technologies have now 

developed the STEMvision™ automated instrument and computer system, which has 

shown promise in standardising counts. Other techniques to model chemotherapy-

induced myelosuppression have been published (282) but most models require in vivo 

data. A specific model for MLN8237 in combination with docetaxel has now been 

developed, discussed in 7.5.2 (283).  

I have now not only demonstrated synergy in bladder cancer cell lines with the 

combination of two different AK-A inhibitors with low concentrations of paclitaxel (in 

Chapter 3) but also identified a potential differential response between cancer and non-

cancer cells. A potential factor that may influence both the specificity and selectivity of 

the combination may be the extent of AK-A expression in the cell lines, which could be 

a potential biomarker to test in future in vivo studies and this will therefore be explored 

next.  
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 EXPLORING THE INFLUENCE OF AK-A 

EXPRESSION ON RESPONSE TO AKI AND 

PACLITAXEL 

 
The work in previous chapters has demonstrated synergy with MLN8237 and paclitaxel 

in some bladder cancer cell lines, which appears to be selective compared to a non-

cancer cell line. This is similar to the effect we observed with CYC3 in both bladder and 

pancreatic cancer cells (258), suggesting the synergy between AK-A inhibition and low 

concentration paclitaxel may apply to multiple tumour types. I investigated whether the 

extent of AK-A expression in the cell lines contributed to sensitivity to the drug 

combination. An in vitro cell model was created to assess in more detail the effect AK-

A over-expression had on the response to taxanes. 

Contribution of others to this experimental work: Dr David Perera assisted with the 

creation of the HeLa AK-A inducible cell line (5.3.1). Dr Siang Boon Koh performed the 

immunofluorescence experiment shown in Figure 5-4 and the live cell imaging 

experiments in 5.3.3 were performed and analysed with him.  

 
The AK-A expression in the bladder cancer cell line panel I used has not been 

published. Therefore, to explore the relationship between the relative baseline level of 

AK-A in the cell lines tested and whether there was any correlation with the dose 

response curves seen in Chapter 3, I compared the relative AK-A expression in the cell 

lines used in this work using Western blotting.  

The total AK-A signal was relatively low in all the bladder cancer cell lines and in 

ARPE-19 cells compared to HeLa cells (Figure 5-1). The signal in J82 cells was higher 

than in the other bladder cancer cell lines – this may have contributed to its insensitivity 

to AK-A inhibitors (GI50 not reached with either CYC3 or MLN8237). However, the 

AK-A signal was similar between the T24 and HT1197 cell lines, yet for MLN8237, the 

GI50 in the T24 cell line was 30 nM and it was not reached in HT1197 cells. There did 

not appear to any relationship to cell line doubling time. 
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Figure 5-1: Total AK-A quantification in cell lines tested as labelled.  
Cells were grown for 24 hours before harvesting and preparation. A. shows Western blot for total 
AK-A. Cell lines are 1. RT112, 2. J82, 3. SW780, 4. RT4, 5. T24, 6. HT1197, 7. UM-UC-3 8. ARPE-
19 9. HeLa. Actin used as loading control. B. shows total AK-A signal for each signal normalised to 
its actin signal using Image Studio. 

Others have reported only a weak association between the level of AK-A in cell lines 

and response to pan-AKI (265). Given this apparent lack of correlation and to 

investigate this further, I created a cell line where it was possible to induce expression 

of AK-A. 

 

 

Whilst I would have liked to use a bladder cancer cell line for this model, it proved 

difficult to source an appropriate parent line. Therefore, a tetracycline inducible HeLa 

cell line was created with the assistance of Dr David Perera and with the gift of 

constructs from Professor Stephen Taylor. A Myc tag allowed the inducible AK-A to be 

identified on Western blots. A pooled sample and individual clones were tested to select 

the cell line with the greatest inducible AK-A expression and conditions were optimised 

for experiments.  
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Early time point experiments showed that following addition of doxycycline, induced 

AK-A signal started to rise at two hours and was strongly present from four hours 

(Figure 5-2). Concentrations of both 1 µg/ml and 2 µg/ml doxycycline produced a 

similar degree of AK-A expression.  

 
Figure 5-2: Western blot showing total AK-A (green channel) with actin as control (red channel). 
Endogenous AK-A is a green band in all samples, the doxycycline-inducible AK-A appears as a 
larger band due to the Myc-tag.  Experiment shows AK-A levels at 0.25, 0.5, 1, 2, 4 and 6 hours 
either without doxycycline or with doxycycline 1 µg/ml (indicated as +) or 2 µg/ml (indicated as ++). 
Note: technical issue with the 2 hour 2 µg/ml doxycycline sample, which was not seen in repeat 
experiments. 

When the degree of AK-A induction was assessed at 24, 48 and 72 hours, maximal 

expression of exogenous AK-A was achieved by 24 hours, such that the sum of the 

exogenous and endogenous levels of AK-A was five times that of the non-induced cells 

(Figure 5-3). By 72 hours, the signal fell to around two-fold above baseline and similar 

expression was seen at 96 hours. Re-induction with the addition of fresh doxycycline 

every 24 hours did not make a significant difference to the degree of AK-A expression 

seen. Overall the expression of AK-A in the induced cells was at least two fold for 96 

hours.  

 
Figure 5-3: Western blot showing total AK-A (green channel) with actin as control (red channel). 
The doxycycline-inducible AK-A appears as a larger band than the endogenous  due to the Myc-
tag. Experiment shows AK-A levels at 24, 48, 72 and 96 hours with and without doxycycline and the 
effect of re-induction with repeated dosing of doxycycline every 24 hours on levels at 72 and 96 
hours. 

Immunofluorescence showed that AK-A over-expression and presence of the Myc-tag 

did not affect protein localisation, with the Myc tag co-localised with AK-A in the over-

expressing (induced) cells, and its location at the mitotic spindle poles matching that of 

AK-A in the non-induced cells (Figure 5-4, experiment performed by Dr Siang Boon 

Koh).  
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Figure 5-4: Immunofluorescence staining of mitotic HeLa AK-A inducible cells with and without 
doxycycline. 
Cells stained for AK-A, Myc, DAPI and then merged images. Experiment performed and images 
processed by Dr Siang Boon Koh. Abbreviation: DOX=doxycycline 

Therefore, given reports of two to five fold increase of AK-A expression in most cancer 

cell lines (123), the HeLa AK-A inducible cells should be a physiologically relevant in 

vitro model to use further. 

 

 

To ensure that the effects on HeLa AK-A inducible cells of drug treatments in the SRB 

assay were assessed during the time period when AK-A expression was elevated, cells 

were plated as normal and left overnight. Doxycycline was added the following day, 

followed by the drugs of interest four to six hours later as induced AK-A expression 

was rising.  

When MLN8237 and paclitaxel were assessed as single agents, the IC50 and GI50 were 

not significantly different between the cells with or without AK-A over-expression for 

either drug after 72 hours (Figure 5-5 and Table 5-1).  

 



 

128 

1 10 100 1000
0

20

40

60

80

100

120

Concentration Paclitaxel (nM)

%
 o

f 
c

o
n

tr
o

l g
ro

w
th

HeLa plus dox
HeLa no dox

Paclitaxel

10 100 1000
0

20

40

60

80

100

120

Concentration MLN8237 (nM)

%
 o

f 
c

o
n

tr
o

l g
ro

w
th

HeLa plus dox
HeLa no dox

MLN8237A B

 
Figure 5-5: Dose response curves for HeLa AK-A inducible cells, with and without induction of 
AK-A expression with doxycycline. 
Cells were exposed to a range of concentrations of A. Paclitaxel B. MLN8237 for 72 hours, then 
analysed using SRB assay. Each graph shows the data for percentage control cell growth at each 
concentration of at least three replicates with SD and then a curve fitted to the data using 
GraphPad Prism to calculate IC50. The dotted line shows 50% cell growth and this was used to 
identify the GI50 from the graph. Abbreviation: Dox=doxycycline. 

Drug IC50 (nM) GI50 (nM) 
Paclitaxel (no dox) 1.3 1.4 
Paclitaxel (plus dox) 1.5 1.5 
MLN8237 (no dox) 25 26 
MLN8237 (plus dox) 26 28 
Table 5-1: IC50 and GI50 of paclitaxel and MLN8237 in HeLa AK-A inducible cell line. 
Measured from dose response curves shown in Figure 5-5. Abbreviation: Dox=doxycycline. 

I had expected AK-A over-expression would induce paclitaxel resistance based on 

previous reports (1.8.2). In the most cited publication, when mock transfected and AK-

A over-expressing cells (reported to have level of expression of AK-A about five-fold 

greater than endogenous cells) were exposed to paclitaxel for 72 hours, less apoptosis 

was seen in the AK-A over-expressing cells; 45% with paclitaxel 150 nM in the AK-A 

overexpressing cells compared to 65% apoptotic cells in the mock transfected cells (2). 

However, the method of assessment was different from mine: the percentage of 

apoptotic cells (defined as sub G1 population) was calculated using propidium iodide 

staining and flow cytometry. Quantification of the sub G1 population is no longer 

accepted as a valid method for quantification of apoptotic cells, and the sensitivity to 

paclitaxel appears surprisingly low in that study. Despite these differences in study 

endpoint, I had expected that a cell line over-expressing AK-A would have been more 

resistant to an AK-A inhibitor such as MLN8237.  

 

Next I explored whether there was a difference when both drugs were combined, in 

cells with and without the addition of doxycycline. Initially a concentration range 
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covering up to 30 nM paclitaxel was selected (images not shown) but as the cell growth 

inhibition at 2 nM was around 80%, this range did not allow scope to see any dose 

response to the combination and the narrow range of 0.1 to 2 nM was used. 

In the HeLa AK-A inducible cells without doxycycline (Figure 5-6), a significant region 

of synergy was seen with the combination, with a maximum synergy score of 36±4 with 

paclitaxel 1 nM and MLN8237 15 nM, and 74±4% growth inhibition.  

 
Figure 5-6: Combination of MLN8237 and paclitaxel in HeLa AK-A inducible cells without 
doxycycline.  
HeLa AK-A inducible cells were seeded in 96-well plates and treated with eight x eight 
combinations of paclitaxel and MLN8237 for 72 hours.  

With the addition of doxycycline to induce AK-A expression, synergy was still seen in 

the same region but to a slightly lesser extent (Figure 5-7), with a synergy score of 25±9 

with paclitaxel 1 nM and MLN8237 15 nM and 66±9% growth inhibition. Thus AK-A 

over-expression may have resulted in cells being marginally more resistant to the 

synergistic combination, but there was no appreciable difference in the dose response 

curves to single agents, as measured by the SRB assay.    
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Figure 5-7: Combination of MLN8237 and paclitaxel in HeLa AK-A inducible cells with 
doxycycline.  
HeLa AK-A inducible cells were seeded in 96-well plates and treated with eight x eight 
combinations of paclitaxel and MLN8237 for 72 hours.  

 

Using IncuCyte™ imaging to directly determine the growth profile of the cells, 

concentrations of paclitaxel and MLN8237 around the region of synergy (paclitaxel 0.5, 

0.75 and 1 nM and MLN8237 15, 25 and 30 nM) were tested as single agents and in 

combination, with the combination of paclitaxel 1 nM and MLN8237 15 nM shown 

(Figure 5-8).  

The growth curves for the DMSO treated cells with or without doxycycline are very 

similar. For the paclitaxel single agent, the curves for 0.5 nM and 0.75 nM were also 

similar with a small growth advantage in the over-expressing cells (not shown) but after 

24 hours there was a significant difference in the curves with paclitaxel 1 nM where the 

cells with doxycycline reached higher relative confluency at each timepoint (suggesting 

resistance to paclitaxel) (p<0.0001). Repeat experiments done by myself and Dr Siang 

Boon Koh confirmed that at concentrations of paclitaxel up to 3 nM, paclitaxel appeared 

to inhibit proliferation slightly less in the AK-A over-expressing cells than in the non-

induced cells. At concentrations above this, almost total growth inhibition was seen 

even in the AK-A over-expressing cells.  
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Over-expression of AK-A did appear to lead to some resistance to the effect of 

MLN8237 with slightly higher confluency in the induced cells, illustrated here with 

MLN8237 15 nM (p<0.0001). However, the small growth advantage in the over-

expressing cells exposed to the single agents was abolished with both the combination 

of MLN8237 15 nM and paclitaxel 1 nM and with paclitaxel 10 nM, with no significant 

difference seen in the cells over-expressing AK-A. Growth was suppressed in the 

combination after 24 hours with final cell confluency relative to DMSO of 19±6% in the 

induced cells vs 17±4%. The combination was almost as effective as paclitaxel 10 nM. 
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Figure 5-8: Relative cell confluency for HeLa AK-A inducible cells exposed to paclitaxel and 
MLN8237 as labelled. 
HeLa AK-A inducible cells were seeded in 96-well plates and allowed to grow for 24 hours. They 
were then dosed with drugs as indicated and imaged using IncuCyte™ for 72 hours. Percentage 
confluency relative to the start of imaging was calculated and plotted for DMSO, paclitaxel 1 nM, 
MLN8237 25 nM, the combination and paclitaxel 10 nM (with and without doxycycline). These 
data are the mean of eight replicates with SD. Statistical analysis performed in GraphPad Prism 
using matched 2 way ANOVA over time. Abbreviation: Dox=doxycycline. 

Thus, induced AK-A over-expression only caused a modest reduction in drug sensitivity 

with low concentrations of either paclitaxel or MLN8237 as single agents and did not 

significantly change sensitivity to the combination. 

 

To investigate if there was a difference in longer term mitotic fate in the HeLa AK-A 

over-expressing cells, time-lapse microscopy was used to directly quantify the mitotic 
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duration of the HeLa AK-A cells with and without doxycycline induction. These 

experiments were devised and analysed together with Dr Siang Boon Koh.  

Based on the differences seen with the IncuCyte™ data (Figure 5-8), paclitaxel 1 nM, 2 

nM and 10 nM were selected. In cells treated with DMSO alone, the mitotic duration in 

the HeLa AK-A induced cells (54±20 minutes) was significantly shorter than that of the 

non-overexpressing cells (74±32 minutes) (p=0.0002), consistent with the hypothesis 

that over-expression of AK-A would allow cells to override the spindle assembly 

checkpoint (Figure 5-9). Paclitaxel 1 nM was sufficient to increase the average time in 

mitosis to a greater extent in non-induced (191±219 minutes) than  induced cells 

(120±141), although considerable variability was seen. Mitotic duration was extended 

further with paclitaxel 2 nM to 205±194 minutes in non-induced versus 125±109 

minutes in the induced cells. Paclitaxel 10 nM increased the time in mitosis compared to 

DMSO in cells both with (448±160 minutes) and without AK-A over-expression 

(502±167 minutes) but there was no significant difference between the groups.   

 
Figure 5-9: Mitotic duration of HeLa AK-A inducible cells with or without doxycycline in cells 
exposed to DMSO or paclitaxel.  
Cells were seeded in eight-well Ibidi chamber slides (5000 cells/chamber) and DMSO or paclitaxel 
added 24 hours later. Imaging was performed using phase-contrast time-lapse microscopy every 
five minutes. Each dot represents a single cell with mean and standard deviation derived from three 
independent experiments, 60 cells in total for each condition. Mitotic duration was defined as the 
time between nuclear envelope breakdown and chromatin decondensation. Statistical analysis 
performed in GraphPad Prism and p value for unpaired t test comparing each treatment with cells 
with and without doxycycline in shown. Abbreviation: Dox=doxycycline. 

A range of cell fates were seen (Figure 5-10), with a time in mitosis greater than 200 

minutes associated with either aberrant/failed division or mitotic death (Figure 5-11).   
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Figure 5-10: Representative photographic images of HeLa AK-A inducible cells undergoing 
different mitotic phenomena when exposed to paclitaxel 1 nM and paclitaxel 2 nM.  
Images show A. normal division with two daughter cells, B. Aberrant division either with more 
than two daughter cells (upper panel) or or pseudo-tripolar division (lower panel) where three 
daughter cells arose transiently before fusing into two C.  Mitotic death. D. examples  of failed 
division which occurred as pseudo-division (upper panel) where separation was momentarily 
observed but failed eventually, or when cell returned to interphase-like state following a mitotic 
attempt. 
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Figure 5-11: Mitotic duration and cell fate for HeLa AK-A cells exposed to paclitaxel 1 nM and 2 
nM with and without doxycycline induction. 
Mitotic duration and cell fate for cells exposed to A. Paclitaxel 1 nM with and without doxycycline 
induction B. Paclitaxel 2 nM with and without doxycycline induction. Cells were seeded in eight-
well Ibidi chamber slides (5000 cells/chamber) and drugs added 24 hours later. Imaging was 
performed using phase-contrast time-lapse microscopy every five minutes. Each bar represents a 
single cell with the length of the bar indicating mitotic duration and the colour of the bar indicating 
cell fate, with 60 cells in total for each condition derived from three independent experiments. 
Abbreviation: Dox=doxycycline. 

Cells over-expressing AK-A had a survival advantage, with more normal divisions and 

less mitotic death when exposed to paclitaxel 1 nM and paclitaxel 2 nM (Table 5-2). 
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Drug treatment Normal 
division 

(%) 

Aberrant 
division 

(%) 

Failed 
division 

(%) 

Mitotic 
death 
(%) 

Paclitaxel 1 nM (no dox) 45 20 8 23 
Paclitaxel 1 nM (plus dox) 65 13 3 18 
Paclitaxel 2 nM (no dox) 25 42 13 20 
Paclitaxel 2 nM (plus dox) 38 47 8 7 
Table 5-2: Cell fate for HeLa AK-A cells exposed to paclitaxel 1 nM and 2 nM with and without 
doxycycline (dox) induction.  

When the fate of daughter cells whose parents successfully underwent mitosis in the 

presence of paclitaxel was analysed, the percentage of daughter cells that entered 

mitosis was also greater in the AK-A over-expressing cells (87% vs 73% with paclitaxel 

1 nM, 53% vs 45% with paclitaxel 2 nM), and less cell death was seen (4% versus 20% 

with paclitaxel 1 nM, and 35% versus 50% with paclitaxel 2 nM) (Figure 5-12)
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Figure 5-12: HeLa AK-A inducible cell line daughter cell fate following paclitaxel treatment. 
Cells were seeded in eight-well Ibidi chamber slides (5000 cells/chamber) and drugs added 24 hours 
later. Imaging was performed using phase-contrast time-lapse microscopy every five minutes. One 
daughter cell was chosen at random from a successful mitotic division and tracked for its fate over 
the following 72 hours. Results were pooled from two independent experiments. Bracketed n 
represents number of daughter cells tracked in each population. Abbreviation: Dox=doxycycline. 

In summary, these experiments demonstrated that the cells with induced AK-A over-

expression had a significantly shorter mitotic duration when exposed to paclitaxel 1 nM 

and 2 nM, with more normal division and less mitotic death. The daughter cells with 

AK-A over-expression also had a survival advantage at low concentrations of paclitaxel.  

 

Given the survival advantage seen in the live cell imaging, the colony forming assay 

was used to assess whether this affected proliferative potential, using the same 

concentrations of paclitaxel. With both paclitaxel 1 nM and paclitaxel 2 nM, more 

colonies survived in the HeLa AK-A induced cells compared to the non-induced cells, 

reaching significance with paclitaxel 1 nM (p=0.015), confirming the modest survival 
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advantage seen in the other assays in the presence of AK-A over-expression. (Figure 

5-13).  
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Figure 5-13: Relative number of colonies observed after 24 hours exposure to paclitaxel in HeLa 
AK-A inducible cells.  
HeLa AK-A inducible cells were incubated with or without doxycycline with paclitaxel for 24 hours 
and were then re-seeded in duplicate without drug. The quantification of the plates after seven days 
using GelCount is presented. The results are expressed as a percentage of control. Mean and 
standard deviation as shown, n=5. Statistical analysis performed in GraphPad Prism with unpaired 
t test. Abbreviation: Dox=doxycycline. 

 

To assess if the small survival advantage seen with paclitaxel 1 nM was reflected in 

differences seen in pH3, CC3 and cPARP, I assessed the synergistic combination of 

MLN8237 15 nM and paclitaxel 1 nM. Paclitaxel 10 nM was used as a comparator as 

100% growth inhibition had been seen in initial SRB assays.  

Consistent with previous experiments, total AK-A (exogenous and endogenous) 

expression was three times greater in the induced vs non-induced control samples at 24 

and 48 hours. Induction of cell death as measured by CC3 and cPARP was most 

prominent in the combination and paclitaxel 10 nM samples at 48 hours, and when the 

intensity of signal for these proteins was quantified in ImageQuant,  it was three times 

greater in the non-induced cells (Figure 5-14). This suggests that there was again a 

small survival advantage in the cells over-expressing AK-A.   
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Figure 5-14: Western blots of HeLa AK-A cells with and without doxycycline after 24 or 48 hours 
of exposure to MLN8237 or paclitaxel. 
HeLa AK-A inducible cells were exposed to either 1. DMSO 2. Paclitaxel 1 nM 3. MLN8237 15 nM 
4. Combination of MLN8237 15 nM and paclitaxel 1 nM 5. Paclitaxel 10 nM for 24 or 48 hours as 
labelled. Proteins of interest (green channel) with actin as control (red channel). Note: in the pH3 
samples at 48 hours, there was an experimental error with the DMSO sample, with the lane 
merging with the previous paclitaxel 10 nM lane where high pH3 expression had been seen. 
Abbreviation: Dox=doxycycline. 

 
In this chapter, I firstly explored whether there was an association between the extent of 

AK-A expression in the cell lines and the response I had seen with the combination of 

MLN8237 and paclitaxel, concluding that the total AK-A expression did not correlate 

with the response seen. To further investigate this, I created a HeLa AK-A inducible cell 

line, with AK-A over-expression at a similar level to that seen clinically. Although no 

clear difference was seen between the HeLa AK-A inducible cells with or without AK-

A over-expression in the SRB assay, when the cells were examined in real time using 

live cell imaging, there was a modest survival advantage in cells which over-express 

AK-A in the presence of low concentrations of paclitaxel. However, the small 

magnitude of effect is unlikely to be clinically significant in determining the response to 

an AK-A inhibitor/taxane combination in tumours with AK-A over-expression. 

Certainly this degree of taxane resistance was not overcome by the addition of 

MLN8237 when assessed using IncuCyte™ imaging, although it would have been 

interesting to have used live cell imaging to study cell fates with the combination. 
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These findings are contrary to the accepted dogma that AK-A over-expression is likely 

to induce resistance to taxanes, which is largely based on publications using flow 

cytometry methods which would not now be considered sufficient (2, 232).  

My work suggests that the combination of MLN8237 and paclitaxel is likely to be 

equally effective in tumours whether or not AK-A is over-expressed, and therefore AK-

A expression is unlikely to be useful as a biomarker for patient selection in clinical 

trials. Indeed when subsequent clinical trials with MLN8237 attempted to correlate 

response with tumour AK-A expression levels and AK-A gene copy number in archived 

tumour samples, no association was found between these and response (210). In the 

MLN8237 trial in patients with bladder cancer, pre-treatment tumour samples were 

assessed for AK-A expression, with high  nuclear immunoreactivity for AK-A seen in 

the majority of tumours meaning no correlation could be seen between expression and 

response (178).  

Therefore, with the data on scheduling of the drug combination from Chapter 3, and the 

information on the drug-induced phenotype from live cell imaging in Chapter 4, I next 

chose to explore the tolerability and efficacy of an AK-A inhibitor with taxanes in vivo. 

However, based on the work in this Chapter, I decided not to assess AK-A expression. 
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 IN VIVO STUDIES 

 
To explore the combination of an AK-A inhibitor in combination with paclitaxel 

further, I established a T24 bladder cancer subcutaneous xenograft model in Balb/c 

nude mice, together with the CRUK-CI BRU. CYC3 and taxanes were then tested as 

single agents for pharmacokinetics (PK), potential pharmacodynamic (PD) markers of 

response and tolerability. Subsequently MLN8237 was substituted as the AK-A 

inhibitor of choice and studies carried out with it, both as a single agent and in 

combination with taxanes, assessing evidence of tolerability, particularly on the bone 

marrow, and anti-tumour efficacy. 

Contribution of others to this experimental work: As described in 2.3, staff of the 

CRUK-CI Biological Resources Unit were responsible for the routine care of the 

animals, including health assessments, weights and assessment of tumour volumes. They 

also administered the drugs tested in these experiments and assisted with the mid-term 

bleeds. Dr Frances Richards assisted with drug formulation and performed the mouse 

necropsies. The CRUK-CI histopathology department sectioned and stained tissues and 

also developed and optimised the image analysis algorithms. LC-MS/MS analysis was 

performed by Dr Tashinga Bapiro (2.2.11). Jo Bramhall performed the M30/M65 

ELISA experiment. All other sample preparation and all the data analysis was 

performed by me. 

 
Whilst there have been previous publications using T24 xenografts, the original paper 

reported that T24 cells are non-tumorigenic (284).  Subsequent cytogenetic studies have 

shown different T24 sublines and that the tumorigenic subline contains fewer 

chromosomes (285). I therefore carried out a pilot study in thirty mice injected 

subcutaneously with 2x106 T24 cells (obtained directly from CLS and STR genotyped). 

There was variability in the growth rate between mice, with an 80% take rate (Figure 

6-1). Of the tumours that grew, the mean doubling time was 8.4±6.4 days (Figure 6-1 

B). The mice in which tumours grew were used between Days 30-45 for PK studies. 
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Figure 6-1: Tumour growth over time in T24 xenografts.  
A. shows the individual tumour growth curves for the 30 tumours. B. shows the mean tumour 
growth over time and standard deviation with the fitted curve giving the tumour doubling time.  

 
Based on cell culture medium concentrations of CYC3 and paclitaxel that showed 

synergy in vitro in T24 cells, target PK profiles were identified as CYC3 1 µM 

sustained for 72 hours and paclitaxel 3 nM sustained for at least 24 hours. As we had 

also shown synergy in vitro in MIA PaCa-2 cells and this was an established tumour 

xenograft in our institution, PK studies were also performed using this model. Time 

course experiments were undertaken in both T24 and MIA PaCa-2 xenografts with 

CYC3 and paclitaxel, with mice killed at set time points after a single dose of drug, 

collecting plasma and tumour tissue for LC-MS/MS analysis of drug concentrations as 

detailed in 2.2.11. Having decided to proceed further with AK-A inhibitor MLN8237 

instead of CYC3, PK studies were also performed with MLN8237, aiming to identify a 

dose schedule to achieve the target PK profile of 50 nM for 72 hours.  

In these initial pilot studies, tumour sections were stained by the CRUK-CI 

Histopathology Core Facility for Ki67 (to assess tumour cell proliferation), cleaved 

caspase 3 (CC3) (as a marker of apoptosis) and phospho-histone H3 (pH3) (as both a 

marker of mitosis and AK-A inhibition). Given that there were only two or three mice 

per treatment group, with intra-group variation, statistical testing was not performed but 

these experiments allowed me to test which would be most useful for analysis in 

subsequent studies and gave helpful information about the magnitude of change that 

could be seen with each stain. 

At necropsy, all of the T24 tumours were pink and soft, and many of the tumours were 

cystic, with large regions of necrosis. This has implications for future studies as it may 

lead to an over-estimate of tumour growth due to the serous component of the tumour. It 

also meant that the analysis algorithms in Aperio were scoring aberrant positive cells 
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within the areas of necrosis. Therefore, after discussion with the CRUK-CI 

Histopathology core facility, the T24 studies were re-analysed using HALO as 

described in 2.3.5.1 to allow necrotic areas to be identified and excluded from analysis.  

 

 

To assess oral bioavailability, a single dose of CYC3 20 mg/kg was administered either 

by intraperitoneal injection (IP) or oral gavage (OG) in the MIA PaCa-2 xenograft mice. 

In the mice dosed IP, both with vehicle only and with CYC3, the mice exhibited signs 

of discomfort after half the volume of solution had been injected. With the CYC3 IP-

dosed mice, four of the mice became somnolent 15 minutes after dosing and one mouse 

became hunched and hypomotile within 10 minutes of dosing and was killed early. As 

the IP route was not tolerated, only the OG route (which was tolerated) was used with 

the T24 xenograft mice and future studies. 

 

With CYC3 20 mg/kg OG, sampling in the T24 xenografts showed that the plasma Cmax 

at 1 hour was 6.5 µM, with levels in the tumours over 3 µM (for example 1.5 ng/mg 

estimated at 3.4 µM) (Figure 6-2 A). However, CYC3 was present at levels above the 

target concentration of 1 µM for less than eight hours.  

Although the T24 xenografts were more cystic, similar findings were seen in the MIA 

PaCa-2 xenografts. With the CYC3 20 mg/kg dosing, the highest tumour concentration 

achieved for CYC3 OG was less than 2 µM and the tumour concentration remained 

above 1 µM for less than four hours (Figure 6-2 B). Cmax for IP dosing was higher at 

around 5 µM but again the concentration was sustained above 1µM for less than four 

hours (Figure 6-2 C). As the IP dose was not well tolerated, a further cohort of mice 

with MIA PaCa-2 xenografts were given a single dose of 50 mg/kg of CYC3 OG 

(Figure 6-2 D). Tumour concentration varied at one hour and again the tumour 

concentration remained above 1µM for less than four hours. 

Even with 50 mg/kg CYC3, the target tumour concentration of >1 µM was not 

sustained for more than two hours. With this formulation, it is unlikely a higher dose 

could be given. With this PK profile, CYC3 would probably need to be dosed three or 

four times per day in an efficacy study to maintain the target concentration. This 

schedule was not considered feasible. 

 



 

     141 

 
Figure 6-2: Pharmacokinetic analysis of CYC3 concentrations in plasma and tumour in T24 and 
MIA PaCa-2 xenografts.  
A. plasma and tumour PK following single dose of CYC3 20 mg/kg OG in T24 xenografts, n=9, B. 
plasma and tumour PK following single dose of CYC3 20mg/kg OG in MIA PaCa-2 xenografts, 
n=18, C. plasma and tumour PK following single dose of CYC3 20 mg/kg IP in MIA PaCa-2 
xenografts, n=12, D. plasma and tumour PK following single dose of CYC3 50 mg/kg OG in MIA 
PaCa-2 xenografts, n=8. Note: tumour values measured in ng/mg tissue and converted to a molar 
concentration. Abbreviation: OG=oral gavage. 
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In the T24 xenografts given a single dose of CYC3 20 mg/kg (Figure 6-3), the 

percentage of Ki67 positive cells was reduced at each timepoint compared to vehicle but 

was similar across the timepoints, indicating a potential drug effect in reducing 

proliferation. The percentage of CC3 positive tissue reduced over the timepoints 

compared to vehicle, suggesting there was no significant induction of apoptosis from a 

single dose of CYC3. With pH3, there was an increase in the percentage of positive 

cells from eight hours, maintained at 48 hours. Whilst the difference is small, this may 

indicate AK-A inhibition as an increase in pH3 positive cells has been shown in tumour 

samples previously with other AK-A inhibitors (205). As seen in Figure 6-3 D, the 

percentage of tissue identified as necrotic using the HALO™ classifier was higher in all 

the CYC3 treated tumours, peaking at two hours post-dose. 
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Figure 6-3: Time course experiment to establish PD parameters following single dose of CYC3 in 
T24 xenografts.  
Analysis of A. percentage positive cells for Ki67, B. percentage positive tissue for CC3 and C. 
percentage positive cells for pH3 after a single dose of CYC3 20 mg/kg OG, analysed in HALO™ 
(as described in 2.3.5.1). D. shows percentage of necrosis for slides analysed in HALO™, n=11. 

For the MIA PaCa-2 xenografts, the data is shown for the CYC3 50 mg/kg OG dosing 

cohort (Figure 6-4). There were no clear trends in the percentage of Ki67 or CC3 

positive cells, although the percentage of CC3 positive cells was higher at 48 hours 

compared to vehicle, suggesting induction of apoptosis. An increase in the percentage 

of pH3 positive cells was seen between four and twenty-four hours, consistent with AK-

A inhibition but by 48 hours this difference was not seen.   
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Figure 6-4: Time course experiment to establish PD parameters following single dose of CYC3 in 
MIA PaCa-2 xenografts. 
Analysis of percentage positive cells for A. Ki67, B. CC3 and C. pH3 after a single dose of CYC3 20 
mg/kg OG, using Aperio (as described in 2.3.5.1), n=22. 

 

 

The maximum tolerated dose of MLN8237 in other mouse xenograft models was 

reported as 20 mg/kg twice a day or 30 mg/kg once daily when dosed continuously for 

21 days. Intermittent dosing had also demonstrated anti-tumour activity (205, 286). 

Analysis of tumour tissue from HCT-116 xenografts treated with increasing doses of 

MLN8237 suggested a plasma concentration between 1–2 µM was required to inhibit 

AK-A in vivo (205). Here the T24 xenograft mice tolerated a single dose of 30 mg/kg 

MLN8237 well with no adverse effects seen. 

 

The PK profile showed that the concentration of MLN8237 in both tumour and plasma 

was at its maximum 0.5 hours after a single dose of MLN8237 30 mg/kg OG but 

remained above 1 µM after 24 hours (Figure 6-5). Hence the levels achieved appear to 

be in the range previously reported to cause AK-A inhibition in HCT-116 xenografts. 



 

144 

0.5 1 2 4 8 24
0

10

20

30

40 MLN8237 30 mg/kg

Time (h)

P
la

s
m

a
 M

L
N

8
2

3
7

 (
M

)

0.5 1 2 4 8 24
0

10

20

30

40

Time (h)

T
u

m
o

u
r 

M
L

N
8

2
3

7
 (
M

)

MLN8237 30 mg/kg
PLASMA TUMOUR

 
Figure 6-5: Pharmacokinetic analysis of MLN8237 concentrations in plasma and tumour of T24 
xenografts. 
Plasma and tumour PK after single dose of MLN8237 30 mg/kg OG, n=21. Note: tumour values 
measured in ng/mg tissue and converted to a molar concentration. 

 

There were no clear changes in the percentage of Ki67, CC3 or pH3 positive cells 

(Figure 6-6). There was considerable variability in the percentage necrosis seen for 

example ranging from 12-73% in the vehicle group consistent with my earlier 

observations surrounding the degree of necrosis seen in these tumours, even when 

untreated (Figure 6-6 D).  
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Figure 6-6: Time course experiment to establish PD parameters in T24 xenografts after a single 
dose of MLN8237 30 mg/kg OG.  
Analysis of A. percentage positive cells for Ki67, B. percentage positive tissue for CC3 and C. 
percentage positive cells for pH3 after a single dose of MLN8237 30 mg/kg OG, analysed in 
HALO™ (as described in 2.3.5.1). D. shows percentage of necrosis for slides analysed in HALO™, 
n=29. 
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Prior to in vivo combination experiments, paclitaxel PK were assessed in T24 

xenografts. Doses of 20 mg/kg intravenously have been previously reported to be well 

tolerated (287), and no acute toxicities were seen here after a single intravenous dose. 

 

Plasma concentrations were above 2000 nM at one hour and remained above 1000 nM 

at two hours. However, by 24 hours, paclitaxel was barely detectable (2-3 nM) and it 

could not be detected at 48 hours. In contrast, peak concentrations in tumour (around 

3000 nM) were seen at two hours, remained around 1000 nM 24 hours later, and were 

still ≥50 nM at 48 hours (Figure 6-7).   
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Figure 6-7: Pharmacokinetic analysis of paclitaxel concentrations in plasma and tumour of 
xenografts. 
Plasma and tumour PK after single dose of paclitaxel 20 mg/kg in T24 xenografts, dosed 
intravenously, n=10. Note: tumour values measured in ng/mg tissue and converted to a molar 
concentration. 

Hence paclitaxel was sustained in the tumour at much greater concentrations than those 

targeted when given at 20 mg/kg.  Previous reports had shown paclitaxel concentrated 

intracellularly, reaching micromolar levels (288, 289). Since these experiments were 

performed, analysis of plasma and tumour samples from patients with breast cancer 

confirmed intra-tumoural concentration of paclitaxel, up to 70 fold that of plasma and 

indicated that clinically relevant plasma levels of paclitaxel are in the low nM range 

(290).  

 

After a single dose of paclitaxel 20 mg/kg the percentage of Ki67 positive cells was 

reduced in all the treated samples, particularly at 48 hours (Figure 6-8 A). The 

percentage of CC3 positive cells was slightly reduced compared to vehicle in the treated 
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tumours (Figure 6-8 B). The percentage of pH3 positive cells was less than 1% as seen 

with CYC3 but did increase between two and 24 hours compared to vehicle control, 

suggestive of cells arrested in mitosis (Figure 6-8 C). Necrosis (as measured with the 

tissue classifier in HALO™) was increased in the treated tumours, peaking at eight 

hours (apart from the single tumour at 24 hours). These data suggest an active intra-

tumoural concentration of paclitaxel was achieved, but with only two samples per 

timepoint no statistical signficance could be calculated. 
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Figure 6-8: Time course experiment to establish PD parameters following single dose of paclitaxel 
in T24 xenografts. 
Analysis of A. percentage positive cells for Ki67, B. percentage positive tissue for CC3 and C. 
percentage positive cells for pH3 after a single dose of paclitaxel 20 mg/kg iv, analysed in HALO™ 
(as described in 2.3.5.1), n=11 as it was not possible to fix all of the tumours from the 24 hour 
timepoint. D. shows percentage of necrosis for slides analysed in HALO™. 

 

In the CYC3 studies, the target CYC3 concentrations were not achieved in tumour for a 

sufficient time period with once daily dosing and the dosing schedule likely to be 

required of three to four times a day was not feasible. In contrast, with MLN8237 30 

mg/kg once daily dosing by oral gavage, target PK concentrations were achieved and 

hence this AK-A inhibitor was selected for further investigation. With paclitaxel 20 

mg/kg, concentrations in both plasma and tumour were sustained at levels above the 

target range for 24 hours. My earlier work supported a combination of an AK-A 

inhibitor with low concentrations of paclitaxel. Hence rather than pursue further dosing 

with paclitaxel 20 mg/kg alone, I chose to investigate lower concentrations of paclitaxel 

in my further experiments. The preliminary PD analysis did not show any clear trends in 
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the MLN8237 timecourse experiments, but there was potentially evidence of a PD 

effect in the percentage necrosis and pH3 results in the paclitaxel study.   

 

 

Because of its poor aqueous solubility, paclitaxel is formulated in Cremophor EL. 

Severe hypersensitivity reactions were seen in Phase 1 clinical trials with paclitaxel (due 

to Cremophor EL) and therefore pre-medication is administered with steroids and anti-

histamines (291). Efficacy studies with multiple doses of paclitaxel in vivo can therefore 

be complicated by an anaphylaxis reaction. Although the mice tolerated a single dose of 

paclitaxel intravenously in the pilot experiments, I also tested the efficacy of docetaxel 

which is more soluble, can be formulated without Cremophor EL and can be dosed 

intraperitoneally.  

Mice were randomised into groups on Day 21 after T24 cell implantation and dosed 

with either intravenous paclitaxel or intraperitoneal docetaxel at a range of dose levels 

(as detailed in Table 6-1 together with the vehicle formulations) once weekly for a total 

of four doses (Days 1, 7, 14 and 21) and compared to vehicle. As can be seen in Table 

6-1, the concentration of Cremophor EL required for the paclitaxel 20 mg/kg group was 

25% compared to 5% at lower dosing levels. 

Treatment group Vehicle 
Vehicle 5:5:90 ethanol:polysorbate80: saline (sterile) 
Paclitaxel 20 mg/kg 25% Cremophor EL, 25% ethanol, 50% saline (sterile) 
Paclitaxel 6 mg/kg 5% Cremophor EL, 5% ethanol, 90% saline (sterile) 
Paclitaxel 2 mg/kg 5% Cremophor EL, 5% ethanol, 90% saline (sterile) 
Docetaxel 20 mg/kg 5:5:90 ethanol:polysorbate80: saline (sterile) 
Docetaxel 6 mg/kg 5:5:90 ethanol:polysorbate80: saline (sterile) 
Table 6-1: Vehicle formulation used for each dosing level of paclitaxel and docetaxel. 

 

There were no significant changes in weight during dosing across groups with none of 

the weights falling by more than 10% relative to weight on the first day of dosing, over 

the course of 4 weeks of dosing (Figure 6-9). Adverse events were seen in the paclitaxel 

20 mg/kg group after only one dose. Three of the five mice in this cohort were 

hypomotile for 10 minutes after their first dose but recovered. A similar period of 

hypomotility was seen in one mouse after the second dose was administered, and 

another mouse died immediately following the second dose. Because of these reactions 

(presumed to be due to hypersensitivity), further doses of paclitaxel 20 mg/kg were not 
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given. In the paclitaxel 2 mg/kg group, one mouse had to be killed after two doses due 

to a necrotic tail at the intravenous injection point, and another because the large cystic 

tumour was impeding movement (but after all four doses of drug had been successfully 

administered). 

 
Figure 6-9: Percentage body weight relative to Day 1 of dosing over days since first dose for each 
individual mouse dosed with paclitaxel and docetaxel on days 1, 7, 14 and 21. 
Individual mouse body weight plotted for each group for A. Vehicle B. Paclitaxel 20 mg/kg C. 
Paclitaxel 6 mg/kg D. Paclitaxel 2 mg/kg E. Docetaxel 20 mg/kg F. Docetaxel 6 mg/kg. Mice were 
weighed prior to each weekly dose, with vertical black dotted lines indicating each weekly dose, n=5 
for each group. Paclitaxel dosed intravenously, Docetaxel dosed using intraperitoneal route. Only 
two doses of paclitaxel 20 mg/kg administered – final weight taken at day 29, the endpoint of study. 

Endpoint blood tests were taken on Day 29 (eight days after the last dose of drug for the 

groups apart from the paclitaxel 20 mg/kg group where last dose was on Day 7 and in 

cases where mice were killed early due to tumour size). Of particular interest given the 

clinical concern about neutropenia with the combination of AK-A inhibitors and 

paclitaxel were the overall white cell count (WBC) and the granulocyte count (as 

neutrophils are the most abundant type of granulocytes). However, the timing of testing 
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may mean the bone marrow had sufficient time to recover from weekly drug dosing 

(292).  

 
Figure 6-10: Blood counts for study comparing the effect of multiple dosing of paclitaxel or 
docetaxel on days 1, 7, 14 and 21, compared with vehicle.  
Mice were dosed with either Vehicle, 1. Paclitaxel 20 mg/kg 2. Paclitaxel 6 mg/kg 3. Paclitaxel 2 
mg/kg 4. Docetaxel 20 mg/kg 5. Docetaxel 6 mg/kg, with paclitaxel dosed intravenously and 
docetaxel dosed using intraperitoneal route. Only two doses of paclitaxel 20 mg/kg administered.  
Samples were taken at Day 29 (eight days after last dose for vehicle and groups 2-5 but 22 days 
after last dose for group 1). Parameters measured are A. total white blood cell count (WBC), B. 
granulocytes (gra), C. lymphocytes (lym), D. monocytes (mon), E. haemoglobin (HGB) and F. 
platelets (plts). Mice killed early with higher overall WBC and lymphocyte count are indicated with 
red dots. Statistical analysis performed with ordinary one way ANOVA and Dunnett’s multiple 
comparison test compared to vehicle in GraphPad Prism. 

As seen in Figure 6-10, the overall WBC count was slightly suppressed in the treatment 

groups compared to vehicle (although not statistically significant, p=0.31) with a 

corresponding trend towards a reduction in granulocytes (p=0.11) and lymphocytes.  

Despite the time since last dose of paclitaxel, in the paclitaxel 20 mg/kg group (group 

1), WBC remained suppressed to a similar extent to the other groups, although this was 
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not statistically significant (p=0.31). Both of the mice killed on Day 23 (one in the 

paclitaxel 2 mg/kg group and one in the vehicle group) due to tumour size had a raised 

white cell count with lymphocytosis (indicated in Figure 6-10 with red spots), 

potentially due to infection. Haemoglobin was stable across the treatment groups. There 

was variability in the platelet count, but with an apparent non-significant increase in 

treatment groups compared to vehicle (p=0.35).  

Therefore, both paclitaxel 6 mg/kg or 2mg/kg and docetaxel 20  mg/kg or 6 mg/kg were 

tolerated as measured by the blood cell counts, with a non-significant reduction in WBC 

and granulocyte counts. 

 

As can be observed in Figure 6-11 A, there was variance in tumour volumes, even 

within the vehicle group.  This is partly because many of the tumours contained fluid-

filled cysts and necrotic areas and so the total volume of the subcutaneous nodules did 

not always correlate precisely with the amount of tumour cellular tissue.  Despite this, 

there was a significant difference in tumour growth (p<0.0001) between the treatment 

groups compared to vehicle. Although we could only give two of the planned four doses 

of paclitaxel 20 mg/kg, tumour growth was suppressed compared to vehicle (p=0.0064, 

Figure 6-11 B). Paclitaxel 6 mg/kg given weekly for four weeks also reduced tumour 

growth significantly (p=0.031, Figure 6-11 C) but paclitaxel 2 mg/kg did not suppress 

tumour growth (p=0.19, Figure 6-11 D). With docetaxel, there was  significant tumour 

growth inhibition with docetaxel 20 mg/kg (p=0.0001, Figure 6-11 E) but little 

difference between the vehicle and docetaxel 6 mg/kg group (p=0.85, Figure 6-11 F). 

These results confirm the known utility of both paclitaxel and docetaxel in bladder 

cancer at the higher dose levels (20 mg/kg) but also reveal potential efficacy at a lower 

dose (6 mg/kg) of paclitaxel. 
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Figure 6-11: Relative tumour growth expressed as volume measured over time since start of dosing 
in mice dosed weekly with either vehicle, paclitaxel  or docetaxel, on days 1, 7, 14 and 21. 
Mice were dosed with either A. vehicle B. paclitaxel 20 mg/kg C. paclitaxel 6 mg/kg D. paclitaxel 2 
mg/kg E. docetaxel 20 mg/kg or F. docetaxel 6 mg/kg on days 1, 7, 14 and 21. Only two doses of 
paclitaxel 20 mg/kg administered. Mice were dosed with paclitaxel intravenoulsy, docetaxel dosed 
using intraperitoneal route. Tumour volumes were measured approximately every 72 hours after 
dosing using calipers. Endpoint was at Day 29. Statistical testing was performed using ordinary two 
way ANOVA with Dunnett’s multiple comparison test comparing each treatment group to vehicle 
in GraphPad Prism. 

 

Despite the effects on tumour growth demonstrated in Figure 6-11, there were no 

significant differences in Ki67, CC3 and pH3 for the treatment groups compared to 

vehicle, although there was a non-significant slight increase in both CC3 positive tissue 

and pH3 positive cells in the paclitaxel 6 mg/kg group (Figure 6-12). The amount of 

time that had elapsed after the last dose (eight days) may have masked changes in these 

dynamic measures. The percentage of necrosis was variable both within and between 

treatment groups, with a non-significant increase in necrosis in the paclitaxel treatment 

groups (most pronounced with paclitaxel 6 mg/kg) and decrease in the docetaxel 

treatment groups. 
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D. Docetaxel 20 mg/kg E. Docetaxel 6 mg/kg  

Figure 6-12: Pharmacodynamic analysis of T24 xenograft tumours of mice treated with either 
vehicle, paclitaxel or docetaxel on days 1, 7, 14 and 21. 
A. percentage positive cells for Ki67 B. percentage positive tissue for CC3 and C. percentage 
positive cells pH3 after dosing with either vehicle, paclitaxel or docetaxel on days 1, 7, 14 and 21 as 
described in Figure 6-11. Tumour samples were taken at the endpoint of the study, Day 29 from 
start of dosing. Three mice were killed early and samples were not collected. Slides analysed in 
HALO™ (as described in 2.3.5.1). D. shows percentage of necrosis for slides analysed in HALO™. 
Statistical testing was performed using ordinary one way ANOVA with Dunnett’s multiple 
comparison test comparing each treatment group to vehicle in GraphPad Prism. 

 

Based on these results, the greatest effect on tumour growth was achieved by docetaxel 

20 mg/kg. Although repeated dosing of paclitaxel 20 mg/kg was not possible due to 

issues with tolerability, growth was still significantly suppressed. Paclitaxel 6 mg/kg 

still showed an effect on tumour growth and was better tolerated. Both paclitaxel 2 

mg/kg and docetaxel 6 mg/kg showed no significant anti-tumour effect.  

 

MLN8237 was my AK-A inhibitor of choice for combination studies and was assessed 

as a single agent at both the reported maximum tolerated dose of 30 mg/kg and at a 

lower dose level of 15 mg/kg in case of toxicities when the drugs were combined. Mice 

with T24 xenografts received five cycles of either MLN8237 30 mg/kg, MLN8237 15 

mg/kg or vehicle with a cycle consisting of dosing by oral gavage once daily for five 

consecutive days per week for five weeks, with eleven mice in each treatment group. A 
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final dose of MLN8237 was given between two to six hours prior to the study endpoint 

to evaluate PD biomarkers.  

 

The treatment appeared reasonably well tolerated but statistical testing of body weight 

relative to Day 1 dosing showed a significant difference in weight for both treatment 

groups compared to vehicle (p=0.0001 for both). One mouse in the MLN8237 30 mg/kg 

group was found dead at the end of the second cycle. There had been no abnormal 

clinical signs, although it had lost 10% of body weight based on the weight the day 

before it died (blue dot marked in Figure 6-13 B at Day 11). One other mouse in the 

MLN8237 30 mg/kg group had lost 10% of body weight at the end of study with body 

weight close to this from Day 25 (blue dots marked in Figure 6-13 B). 
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Figure 6-13: Percentage body weight relative to Day 1 of dosing over days since first dose for each 
individual mouse dosed with MLN8237 once daily for five consecutive days of a weekly cycle for 
five weeks. 
Individual mouse body weight plotted for each group for A. Vehicle B. MLN8237 30 mg/kg C. 
MLN8237 15 mg/kg. Mice were weighed prior to each cycle, with vertical black dotted lines 
indicating the start of each cycle. Blue dots used to indicate body weights meeting loss of 10% body 
weight. MLN8237 dosed daily by oral gavage for five consecutive days of a weekly cycle for total of 
five cycles with final dose administered on day 36 two to six hours prior to endpoint. Statistical 
testing was performed using ordinary one way ANOVA with Dunnett’s multiple comparison test 
comparing each treatment group to vehicle in GraphPad Prism. 

On the endpoint blood tests (Figure 6-14), the overall white blood count (WBC) was 

significantly lower than vehicle following administration of either MLN8237 treatment 

(p=0.038). As two of the mice in the vehicle group had a raised total white cell count 

with lymphocytosis (shown in red dots in Figure 6-14 A), these outliers were excluded. 

When  the data was re-analysed, the difference between the MLN8237 treatment groups 



 

154 

compared to vehicle remained significant (p=0.041), although there was not a 

significant difference between each individual group compared to vehicle (p=0.062 for 

MLN8237 30 mg/kg, p=0.099 for MLN8237 15 mg/kg). When the components of the 

WBC count were analysed, there was a decrease in granulocytes, lymphocytes and 

monocytes in the MLN8237 treatment groups, compared to vehicle. This reached 

significance for granulocytes (p=0.0012) and monocytes (p=0.0007).  

 

Figure 6-14: Blood counts for study comparing the effect of multiple dosing (once daily for five 
consecutive days of a weekly cycle for five weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg 
compared to vehicle.  
MLN8237 dosed as described in Figure 6-13. Samples were taken at Day 36 (between two and six 
hours after last dose of MLN8237). Parameters measured are A. total white blood cell count 
(WBC), B. granulocytes (gra), C. lymphocytes (lym), D. monocytes (mon), E. haemoglobin (HGB) 
and F. platelets (plts). Two mice with higher overall WBC and lymphocyte count in the vehicle 
group are indicated with red dots. Statistical testing was performed using ordinary one way 
ANOVA with Dunnett’s multiple comparison test comparing each treatment group to vehicle in 
GraphPad Prism. 
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These results are consistent with reports of lower white cell counts and neutropenia 

(granulocytes reduced) with single agent MLN8237 in clinical trials (204). There was 

no significant difference in haemoglobin. There was a very wide range of platelet counts 

within each treatment group, with no obvious increase or decrease induced by 

MLN8237.  

The results from the endpoint blood tests with the lower WBC in the MLN8237 treated 

mice indicated an effect of the drugs on the bone marrow, which was therefore assessed 

in the mouse femurs. I reviewed these and an opinion on a blinded series was sought 

from a histopathologist, Dr Penny Wright. She commented that in mice treated with 

MLN8237 30 mg/kg, haemosiderin staining was seen, indicative of haemosiderin-laden 

macrophages involved in phagocytosis of dead/dying cells. More megakaryocytes were 

identified (bone marrow cells responsible for production of platelets). There was also a 

shift in the normal myeloid/erythroid cell ratio – a so called “left shift” where more 

immature WBC are seen, particularly myeloid precursors. These changes are consistent 

with the effect of drugs on the bone marrow, which is then recovering. Whilst 

occasional haemosiderin staining was seen in the MLN8237 15mg/kg group, a “left 

shift” was not seen. Representative images are shown in Figure 6-15. 
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Figure 6-15: Representative bone marrow images of femurs of mice comparing the effect of 
multiple dosing (once daily for five consecutive days of a weekly cycle for five weeks) of MLN8237 
30 mg/kg or MLN8237 15 mg/kg compared to vehicle.  
MLN8237 dosed as described in Figure 6-13. In both MLN8237 15 mg/kg and MLN8237 30 mg/kg, 
reduced cellularity and increase in megakaryocytes and myeloid precursors seen as labelled. 
Images stained with H&E.  Left hand side scale bars 200 µm, right hand scale bar 100 µm. Femurs 
from mice prepared and stained as described in 2.3.5.3. 

Dr Wright also suggested staining the bone marrow slides for anti-Myeloperoxidase 

(MPO), which detects granulocytes and monocytes in blood and precursors of 

granulocytes in the bone marrow. It strongly labels myeloid cells at all stages of 

maturation, whereas cells of monocytic origin are typically weakly positive or negative 

and erythroid precursors, megakaryocytes, lymphoid cells, plasma cells and blood 

vessels are negative (293) and hence could have given a useful indicator of relevant 

changes in the bone marrow. However, there was no significant different in the 

percentage of MPO positive cells between treatment groups (Figure 6-16). Thus, this 
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marker did not identify the MLN8237-induced change in myeloid precursors identified 

on the H&E stains and hence could not replace individual image analysis by an expert 

pathologist in these studies. 
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Figure 6-16: Myeloperoxidase (MPO) positive cells in bone marrow of femurs of  mice with T24 
xenografts comparing the effect of multiple dosing (once daily for five consecutive days of a weekly 
cycle for five weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg compared to vehicle.  
MLN8237 dosed as described in Figure 6-13. Samples were taken at Day 36 (between two and six 
hours after last dose of MLN8237.) Statistical testing was performed using ordinary one way 
ANOVA with Dunnett’s multiple comparison test comparing each treatment group to vehicle in 
GraphPad Prism. 

 

There was a significant difference in tumour growth between vehicle and MLN8237 

treated mice (p<0.0001 for both MLN8237 30 mg/kg and 15 mg/kg), despite the 

variable growth in the vehicle group (Figure 6-17). There was no significant difference 

in tumour growth between the two different doses of MLN8237 (p=0.98). 

In clinical practice, tumour response to treatment is assessed using RECIST criteria 

(294). These are: 

 Complete response (CR): Disappearance of all target lesions 

 Partial Response (PR): At least a 30% decrease in the sum of the longest 

diameter (LD) of target lesions, taking as reference the baseline sum LD 

 Stable Disease (SD): Neither sufficient shrinkage to qualify for PR nor sufficient 

increase to qualify for PD, taking as reference the smallest sum LD since the 

treatment started 

 Progressive Disease (PD): At least a 20% increase in the sum of the LD of target 

lesions, taking as reference the smallest sum LD recorded since the treatment 

started or the appearance of one or more new lesions 

When the change in tumour volume was compared to Day 1 of dosing using a waterfall 

plot (Figure 6-18),  9/11 vehicle tumours showed PD, the MLN8237 30 mg/kg group 

had 6/10 PD, 3/10 PR and 1/10 SD; and the MLN8237 15 mg/kg group had 5/10 PD, 
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2/10 CR, 1/10 PR and 3/10 SD. This confirms the differences seen in mean tumour 

growth over time illustrated in Figure 6-17. 

 
Figure 6-17: Relative tumour growth expressed as volume measured over time since start of dosing 
comparing the effect of multiple dosing (once daily for five consecutive days of a weekly cycle for 
five weeks) of MLN8237 30 mg/kg or MLN8237 15 mg/kg compared to vehicle. 
Mice were dosed with either A. vehicle B. MLN8237 30 mg/kg, C. MLN8237 15 mg/kg. MLN8237 
dosed as described in Figure 6-13, with vertical black lines indicating start of each cycle. Tumour 
volumes were measured approximately every 72 hours after dosing using calipers. Endpoint was at 
day 36. Statistical testing was performed using ordinary two way ANOVA with Tukey’s multiple 
comparison test comparing each treatment group in GraphPad Prism. 

 
Figure 6-18: Waterfall plot of percentage change in tumour volume at endpoint comparing the 
effect of multiple dosing (once daily for five consecutive days of a weekly cycle for five weeks) of 
MLN8237 30 mg/kg or MLN8237 15 mg/kg compared to vehicle. 
Percentage tumour volume at endpoint compared to Day 1 dosing in mice dosed with vehicle, 
MLN8237 30 mg/kg or MLN8237 15 mg/kg. MLN8237 dosed dosed as described in Figure 6-13. 
Tumour volumes were measured approximately every 72 hours using calipers. The black dotted 
lines indicate progressive disease (PD) with 20% increase in tumour volume, partial response (PR) 
with 30% decrease in tumour volume and complete response (CR) with complete regression of 
tumour. 
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Given the issue with fluid-filled cysts in the tumours, the tumours were also weighed 

after dissection, once the cyst fluid had drained out to investigate if there was a 

relationship between endpoint tumour volume and tumour weight. There was a 

significant correlation between tumour volume and tumour weight, with a of r=0.925 

(CI 0.8506 to 0.963, p<0.0001) (Figure 6-19 A). Although there was a difference in 

mean tumour weight between the groups, this was non-significant, with variation 

reflected in the standard deviations (mean and SD vehicle 0.42±0.22 g, MLN8237 30 

mg/kg 0.21±0.15 g and MLN8237 15 mg/kg 0.30±0.33 g). However, tumour inhibition 

rate (calculated using the formula = (1-mean tumour weight treated/mean tumour 

weight control as in (261)) confirmed a treatment effect. This was 54% in the MLN8237 

30 mg/kg group versus 27% in the MLN8237 15 mg/kg group showing MLN8237 30 

mg/kg was more effective overall, even though there were two CR in the MLN8237 15 

mg/kg group.  
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Figure 6-19: Relationship between tumour volume and tumour weight comparing the effect of 
multiple dosing (once daily for five consecutive days of a weekly cycle for five weeks) of MLN8237 
30 mg/kg or MLN8237 15 mg/kg compared to vehicle. 
Tumour volume compared with tumour weight in each treatment group at end of study in mice 
dosed with vehicle (shown in black), MLN8237 30 mg/kg (shown in red) or MLN8237 15 mg/kg 
(shown in brown). A. shows the relationship between tumour weight and tumour volume at 
endpoint, B. shows the tumour weights for each group. MLN8237 dosed dosed as described in 
Figure 6-13. Tumour volumes were measured using calipers every 72 hours,  tumour weights 
measured following drainage of any cysts after dissection at endpoint of study. Pearson correlation 
coefficient calculated by GraphPad Prism. 

 

There was a statistically significant increase in the percentage of CC3 positive tissue 

between the vehicle and MLN8237 treatment groups (Figure 6-20 B, p=0.040) with the 

difference remaining significant when MLN8237 30 mg/kg alone was compared with 

vehicle (p=0.039) but not for MLN8237 15 mg/kg (p=0.089), suggesting that with 

MLN8237 30 mg/kg an active anti-tumoural concentration may have been achieved. 

There was no significant difference in Ki67 or pH3 between the vehicle and MLN8237 

treated groups (Figure 6-20 A and C). Whilst others have reported a reduction in Ki67 
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positive cells, the exact timing of their endpoint compared to last dose of drug is not 

clear as they state “on completion of treatment” (121), which could potentially 

influence results seen. The percentage of necrosis was very variable within each group 

and there was no significant difference between groups (Figure 6-20 D). 
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Figure 6-20: Pharmacodynamic markers measured at endpoint comparing the effect of multiple 
dosing (once daily for five consecutive days of a weekly cycle for five weeks) of MLN8237 30 mg/kg 
or MLN8237 15 mg/kg compared to vehicle. 
A. percentage positive cells for Ki67, B. percentage positive tissue for CC3, C. percentage positive 
cells pH3, after dosing with either vehicle, MLN8237 30 mg/kg or MLN8237 15 mg/kg as described 
in Figure 6-13. Tumour samples were taken at the endpoint of the study, Day 36 from start of 
dosing with a final dose of MLN8237 administered two to six hours prior to endpoint. Slides 
analysed in HALO™ (as described in 2.3.5.1). D. shows percentage of necrosis for slides analysed in 
HALO™. One mouse in the MLN8237 30 mg/kg was found dead after the second cycle and samples 
were not collected. Two of the mice in MLN837 15 mg/kg group had a complete response and no 
tumour remained for analysis. Statistical testing was performed using ordinary one way ANOVA 
with Dunnett’s multiple comparison test comparing each treatment group to vehicle. 

 

The MLN8237 treatments were tolerated, although two mice in the MLN8237 30 mg/kg 

did show a reduction in weight. With both the MLN8237 30 mg/kg and 15 mg/kg 

treatment groups, a significant reduction in overall WBC and granulocytes was seen 

compared to vehicle, consistent with previous reports. There was a significant 

difference in tumour growth for both treatment groups compared to vehicle, but a 

greater tumour inhibition rate was seen in the 30 mg/kg group compared to the 15 

mg/kg group. The increase in CC3 positive tissue seen with MLN8237 30 mg/kg 

suggests sufficient tumour concentrations may have been achieved to show an anti-

tumour effect. 
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Whilst repeated dosing of paclitaxel 20 mg/kg was not tolerable, paclitaxel 6 mg/kg 

showed some evidence of anti-tumour effect. Docetaxel 20 mg/kg was tolerated and 

showed the greater anti-tumour effect. Although no anti-tumour efficacy was seen with 

either paclitaxel 2 mg/kg or docetaxel 6 mg/kg, it is possible that they could provide a 

synergistic combination with an AK-A inhibitor, as seen in the in vitro studies with low 

concentrations of paclitaxel and docetaxel.  

MLN8237 30 mg/kg and 15 mg/kg led to tumour responses but the greatest effect was 

seen with MLN8237 30 mg/kg where target PK was achieved. The endpoint blood 

results correlated with clinical reports of neutropenia, highlighting the concern in 

combining MLN8237 with full dose taxane, but I predicted this would be less when 

combined with lower concentrations of paclitaxel. Therefore, I chose to use MLN8237 

30 mg/kg for my combination studies with both paclitaxel and docetaxel.   

Traditional combination studies would use the full normal single agent dose of the most 

established drug (here this would be taxanes) and then increase the dose of the newer 

agent (MLN8237). However, my in vitro work in Chapters 3 and 4 suggest that 

exploring a wider range of doses may allow synergy to be detected and reduce toxicity. 

Therefore in these studies, I aimed to achieve a similar anti-tumour effect between the 

combination and full dose taxane but with reduced toxicity. 

 

 

As paclitaxel 20 mg/kg was not tolerated, paclitaxel 6 mg/kg was used for these studies, 

with 2 mg/kg also assessed. Emerging data suggested that intermittent MLN8237 could 

be an effective strategy to reduce toxicity and hence the effect of reducing dosing from 

Days 1-5 per week to Days 1-3 per week was compared. For this tolerability study, 

three or four mice were randomised to four cycles of the treatments listed.  

1. MLN8237 30 mg/kg once daily for five consecutive days and paclitaxel 6 mg/kg 

weekly 

2. MLN8237 30 mg/kg once daily for three consecutive days and paclitaxel 6 

mg/kg weekly 

3. MLN8237 30 mg/kg once daily for five consecutive days and paclitaxel 2 mg/kg 

weekly 
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4. MLN8237 30 mg/kg once daily for three consecutive days and paclitaxel 2 

mg/kg weekly 

5. MLN8237 30 mg/kg once daily for five consecutive days  

6. Paclitaxel 6 mg/kg weekly 

7. Vehicle 

Paclitaxel was dosed first followed by MLN8237 on the days when both treatments 

were given. Single agent paclitaxel 2 mg/kg was not repeated as it had previously been 

shown to be tolerable (6.4.1) and to minimise the numbers of mice required. For 

logistical reasons, the mice were divided into two cohorts, with mice in the first cohort 

killed approximately 20 hours after the last dose of MLN8237 and 96 hours after the 

last dose of paclitaxel of that cycle and mice in the second cohort killed approximately 

three hours after the last dose of MLN8237 and 72 hours after the last dose of paclitaxel 

of that cycle. As this could have had an effect on blood counts and PD markers, the 

cohort killed 20 hours after the last dose of MLN8237 are marked in blue on these 

graphs. 

 

The mice appeared to tolerate the dosing well apart from one mouse in the 6mg/kg 

paclitaxel group which had a seizure after the first dose of paclitaxel but recovered 

within 30 minutes and remained on study without adverse effects after subsequent 

doses. Body weight remained stable as seen in Figure 6-21. 
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Figure 6-21: Percentage body weight relative to Day 1 of dosing over days since first dose for each 
individual mouse study assessing the tolerability of combinations of MLN8237 and paclitaxel in T24 
xenografts. 
Mice were dosed with four cycles of A. Vehicle B. MLN8237 30 mg/kg once daily for five days per 
week C. paclitaxel 6 mg/kg weekly D. MLN8237 30 mg/kg once daily for five days per week and 
paclitaxel 6 mg/kg weekly E. MLN8237 30 mg/kg once daily for three days per week and paclitaxel 
6 mg/kg weekly F. MLN8237 30 mg/kg once daily for five days per week and paclitaxel 2 mg/kg 
weekly G. MLN8237 30 mg/kg once daily for three days per week and paclitaxel 6 mg/kg weekly. 
MLN8237 dosed by oral gavage and paclitaxel dosed intravenously weekly. Mice were weighed 
prior to each cycle, with vertical black dotted lines indicating the start of each cycle. 

 
The time since the last dose of MLN8237 and paclitaxel did not appear to affect the 

results, with no difference seen between the two cohorts (green dots 20 hours after last 

dose of MLN8237, black dots three hours after last dose of MLN8237) (Figure 6-22).  
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Figure 6-22: Endpoint blood counts for study assessing the tolerability of combinations of 
MLN8237 and paclitaxel in T24 xenografts.  
Mice were dosed with four cycles of treatments as detailed in Figure 6-21. Samples were taken on 
Day 24 three hours after last dose of MLN8237 and 72 hours after last dose of paclitaxel where 
applicable in samples shown with black dots and on Day 25 approximately twenty hours after last 
dose of MLN8237 and 96 hours after last dose of paclitaxel where applicable in samples shown with 
green dots. Parameters measured are A. total white blood cell count (WBC), B. granulocytes (gra), 
C. lymphocytes (lym), D. monocytes (mon), E. haemoglobin (HGB) and F. platelets (plts). One 
mouse in vehicle group had higher WBC count with increase granulocytes (marked with red dot). 
Due to technical issues with the blood samples, no full result was valid for three mice – two in  the 
MLN8237 30 mg/kg once daily for three days and paclitaxel 2 mg/kg group and one in the 
MLN8237 30 mg/kg once daily for five days group and these were excluded. Statistical testing was 
performed using ordinary one way ANOVA with Dunnett’s multiple comparison test comparing 
each treatment group to vehicle in GraphPad Prism. 

There was one mouse in the vehicle group which had a higher WBC with increased 

granulocytes (marked in red in Figure 6-22 A), possibly due to occult infection. 

Analysis of the data with and without this outlier showed no significant differences 



 

     165 

between the treatment groups for either overall WBC or the individual components. 

Haemoglobin and platelet counts were also similar across treatments.   

These results suggest that the combinations appear to tolerable and did not cause a 

significantly greater reduction in granulocytes, which might have been expected, since 

both MLN8237 and paclitaxel can cause neutropenia as single agents. 

 
As in the earlier MLN8237 efficacy study, the bone marrow was examined, with an 

opinion on a blinded series from Dr Penny Wright. In both groups of mice treated with 

the combination of MLN8237 30 mg/kg together with paclitaxel 6 mg/kg weekly, 

haemosiderin staining was seen, with more megakaryocytes, a “left shift” in the 

myeloid/erythroid cell ratio with few mature forms and more pronounced fat spaces 

indicative of reduced cellularity, compared to the single agents. In the combinations of 

MLN8237 30 mg/kg with paclitaxel 2 mg/kg, the bone marrow appeared very similar to 

single agent MLN8237 30 mg/kg. Dr Wright commented that the combination 

treatments did not show as much additional myelotoxicity as she might have expected 

over the single agent groups. Representative images highlighting these findings are 

shown in Figure 6-23.  
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Figure 6-23: Representative images bone marrow images of femurs of mice in study assessing the 
tolerability of combinations of MLN8237 and paclitaxel in T24 xenografts.  
Sample images are shown of bone marrow images from vehicle, MLN8237 30 mg/kg once daily for 
five days/week, paclitaxel 6 mg/kg weekly and the combination of MLN8237 30 mg/kg once daily 
for five days and paclitaxel 6 mg/kg weekly stained with H&E. Scale bars: left = 200 µm, right = 50 
µm. Femurs from mice prepared and stained as described in 2.3.5.3. PTX=paclitaxel. 
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In this study, one of the three tumours did not grow in the vehicle group (Figure 6-24 

A). With only three mice per group, this tolerance study was not designed to quantify 

tumour growth inhibition. However, there was an indication that all of the treatments 

may reduce tumour growth compared to the growth seen in the other two vehicle mice.  

Time since start of dosing (days)

R
el

at
iv

e 
tu

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30
0

500

1000

1500
Vehicle

Time since start of dosing (days)

R
e

la
ti

v
e

 t
u

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30
0

500

1000

1500
MLN8237 30 mg/kg for 5 days/wk

Time since start of dosing (days)

R
e

la
ti

v
e

 t
u

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30
0

500

1000

1500
Paclitaxel 6 mg/kg weekly

Time (days)

R
e

la
ti

ve
 t

u
m

o
u

r 
vo

lu
m

e 
(%

)

0 10 20 30
0

500

1000

1500

MLN8237 30 mg/kg once daily for 5
days/wk and paclitaxel 6 mg/kg weekly

Time (days)

R
e

la
ti

ve
 t

u
m

o
u

r 
v

o
lu

m
e 

(%
)

0 10 20 30
0

500

1000

1500

MLN8237 30 mg/kg once daily for 5
days/wk and paclitaxel 2 mg/kg weekly

Time (days)

R
el

at
iv

e 
tu

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30
0

500

1000

1500

MLN8237 30 mg/kg once daily for 3
days/wk and paclitaxel 2 mg/kg weekly

Time (days)

R
e

la
ti

v
e

 t
u

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30
0

500

1000

1500

MLN8237 30 mg/kg once daily for 3
days/wk and paclitaxel 6 mg/kg weekly

A

D E

F G

B C

 
Figure 6-24: Tumour growth expressed as volume measured over time since start of dosing (days) 
in study assessing the tolerability of combinations of MLN8237 and paclitaxel in T24 xenografts. 
The individual mice tumour growth plots are shown for A. Vehicle B. MLN8237 30 mg/kg once 
daily for five days per week C. paclitaxel 6 mg/kg weekly D. MLN8237 30 mg/kg once daily for five 
days per week and paclitaxel 6 mg/kg weekly E. MLN8237 30 mg/kg once daily for three days per 
week and paclitaxel 6 mg/kg weekly F. MLN8237 30 mg/kg once daily for five days per week and 
paclitaxel 2 mg/kg weekly G. MLN8237 30 mg/kg once daily for three days per week and paclitaxel 
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2 mg/kg weekly. Mice were dosed with four cycles of treatments as detailed in Figure 6-21. Tumour 
volumes were measured prior to each dosing using calipers and weekly in vehicle group. 

 

When the tumour sections were stained for all the PD markers previously explored, 

there was no difference in the results depending on the time samples were collected, or 

across the treatment groups for any of these markers or percentage necrosis (Figure 

6-25). 
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Figure 6-25: Pharmacodynamic markers measured at endpoint in study assessing the tolerability of 
combinations of MLN8237 and paclitaxel in T24 xenografts.  
A. percentage positive cells for A. Ki67, B. percentage positive tissue for CC3, C. percentage 
positive cells pH3 after dosing with four cycles of treatments as detailed in Figure 6-21. D. shows 
percentage of necrosis for slides analysed in HALO™. Tumour samples were taken at the endpoint 
of the study, Day 24 three hours after last dose of MLN8237 and 72 hours after last dose of 
paclitaxel where applicable in samples shown with black dots and on Day 25 approximately twenty 
hours after last dose of MLN8237 and 96 hours after last dose of paclitaxel where applicable in 
samples shown with green dots. Slides analysed in HALO™ (as described in 2.3.5.1). Statistical 
testing was performed using ordinary one way ANOVA with Dunnett’s multiple comparison test 
comparing each treatment group to vehicle in GraphPad Prism. 

 

In this study, all of the combinations tested appeared tolerable, with less effect on 

endpoint blood tests and bone marrow analysis than may have been anticipated. As 

there was no significant difference in tolerability between the dosing of MLN8237 for 
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Days 1-3 and Days 1-5, I decided to use Days 1-5 for the efficacy study to maximise 

MLN8237 exposure and to test both concentrations of paclitaxel. 

 

Mice were randomised to one of the following treatment groups (N = 10 per group):  

1. MLN8237 30 mg/kg once daily for five days/week OG and vehicle iv 

2. Vehicle OG and Paclitaxel 6 mg/kg iv weekly 

3. Vehicle OG and Paclitaxel 2 mg/kg iv weekly 

4. Combination of MLN8237 30 mg/kg once daily for five days/week and 

Paclitaxel 6 mg/kg iv weekly 

5. Combination of MLN8237 30 mg/kg once daily for five days/week and 

Paclitaxel 2 mg/kg iv 

6. Vehicle OG and vehicle IV weekly 

Five full cycles of each treatment was delivered. Mice then received Days 1 and 2 of a 

sixth cycle and were killed on Day 39, 24 hours after the last dose of MLN8237 (groups 

1, 4 and 5) and 48 hours after the last dose of paclitaxel (groups 2, 3, 4 and 5). 

 

Two mice died in the restrainer tube, with no obvious reason –one prior to any injection 

in the vehicle group and one prior to the second dose of paclitaxel 2 mg/kg. Their data 

has been removed. All other mice remained well during the study with stable weights 

throughout in all groups (Figure 6-26). Given the tolerability of these combinations in 

6.5.1, endpoint blood counts and bone marrows were not performed in this study. 
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Figure 6-26: Percentage body weight relative to Day 1 of dosing over days since first dose for each 
individual mouse in study assessing the efficacy of combinations of MLN8237 and paclitaxel in T24 
xenografts. 
Percentage body weight relative to Day 1 of dosing over days since first dose for each individual 
mice dosed with five cycles of A. Vehicle B. MLN8237 30 mg/kg once daily for five days per week C. 
paclitaxel 6 mg/kg weekly D. MLN8237 30 mg/kg once daily for five days per week and paclitaxel 6 
mg/kg weekly E. paclitaxel 2 mg/kg weekly F. MLN8237 30 mg/kg once daily for five days per week 
and paclitaxel 2 mg/kg. Mice were weighed prior to each cycle, with vertical black dotted lines 
indicating the start of each cycle. MLN8237 dosed daily by oral gavage for five consecutive days of 
a weekly cycle and paclitaxel dosed intravenously weekly. 

 

 
Despite variable tumour growth, there was a significant difference for all the drug 

treatments compared to vehicle (p<0.0001 overall and for each group) (Figure 6-27). 

Whilst there were no significant differences between the treatment groups, the spider 

plots of individual tumours suggested that MLN8237 30 mg/kg once daily for five days 

and paclitaxel 6 mg/kg weekly (Figure 6-27 D) suppressed growth most consistently. 



 

     171 

Time since start of dosing (days)

R
e

la
ti

v
e

 t
u

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30 40
0

500

1000

1500
Vehicle

Time since start of dosing (days)

R
e

la
ti

v
e 

tu
m

o
u

r 
v

o
lu

m
e

 (
%

)

0 10 20 30 40
0

500

1000

1500
MLN8237 30 mg/kg for 5 days/wk

Time since start of dosing (days)

R
el

at
iv

e
 t

u
m

o
u

r 
vo

lu
m

e 
(%

)

0 10 20 30 40
0

500

1000

1500 Paclitaxel 6 mg/kg weekly

Time since start of dosing (days)
R

e
la

ti
v

e 
tu

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30 40
0

500

1000

1500

MLN8237 30 mg/kg for 5 days/wk and
paclitaxel 6 mg/kg weekly

Time since start of dosing (days)

R
e

la
ti

v
e

 t
u

m
o

u
r 

vo
lu

m
e

 (
%

)

0 10 20 30 40
0

500

1000

1500 Paclitaxel 2 mg/kg weekly

Time since start of dosing (days)

R
e

la
ti

v
e

 t
u

m
o

u
r 

v
o

lu
m

e
 (

%
)

0 10 20 30 40
0

500

1000

1500

MLN8237 30 mg/kg for 5 days/wk and
paclitaxel 2 mg/kg weekly

A B

C D

E F

 
Figure 6-27: Tumour growth expressed as volume measured over time since start of dosing (days) 
in study assessing the efficacy of combinations of MLN8237 and paclitaxel in T24 xenografts.  
The individual mice tumour growth plots are shown for A. Vehicle B. MLN8237 30 mg/kg once 
daily for five days per week C. paclitaxel 6 mg/kg weekly D. MLN8237 30 mg/kg once daily for five 
days per week and paclitaxel 6 mg/kg weekly E. paclitaxel 2 mg/kg weekly F. MLN8237 30 mg/kg 
once daily for five days per week and paclitaxel 2 mg/kg. Mice were dosed with five cycles of 
treatment as detailed in Figure 6-26. Tumour volumes were measured prior to each dosing using 
calipers and weekly in vehicle group. Statistical analysis was performed using two way ANOVA 
with Tukey’s multiple comparison test to compare each of the treatments in GraphPad Prism. 

 
When the change in tumour volume was compared to Day 1 of dosing (Figure 6-28),  all 

the vehicle tumours showed PD. For the single agents, in the MLN8237 30 mg/kg group 

2/10 had a CR, 8/10 PD,  in the paclitaxel 6 mg/kg group, 1/10 CR, 3/10 SD, 6/10 PD, 

and in the paclitaxel 2 mg/kg cohort, there was 1/10 CR, 1/10 PR and 8/10 PD. With the 

combination of MLN8237 30 mg/kg and paclitaxel 6 mg/kg, there were 3/10 PR, 7/10 

PD and in the MLN8237 30 mg/kg and paclitaxel 2 mg/kg group, there was 1/10 CR, 

1/10 PR, 8/10 PD.  
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Figure 6-28: Waterfall plot of percentage change in tumour volume at endpoint compared to Day 1 
of dosing in mice in MLN8237 and paclitaxel efficacy study.  
Mice were dosed with five cycles of treatment as detailed in Figure 6-26. Tumour volumes were 
measured approximately using calipers. The black dotted lines indicate progressive disease (PD) 
with 20% increase in tumour volume, partial response (PR) with 30% decrease in tumour volume 
and complete response (CR) with complete regression of tumour. 

Tumour inhibition compared to vehicle (calculated as in (261)) confirmed a treatment 

effect across all groups compared to vehicle. For the single agent groups it was 46% in 

the MLN8237 30 mg/kg group, 41% in the paclitaxel 6 mg/kg group and 33% in the 

paclitaxel 2 mg/kg group. Of the combinations, the combination with paclitaxel 6 mg/kg 

was more effective with 52% tumour inhibition compared to 40% in the paclitaxel 2 

mg/kg combination.  

 

Similarly to the tolerability study, no significant differences were seen across the 

treatment groups for any of these markers, despite evidence of efficacy on tumour 

growth (Figure 6-29 A-C). These data are confounded by the fact that in the cases where 

there was a complete response to treatment, no tumour remained to analyse (two mice in 

group 1, and one mouse in groups 2, 3 and 4). The percentage of necrosis varied within 

all treatment groups (Figure 6-29 D).  
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Figure 6-29: Pharmacodynamic markers measured at endpoint in study assessing the efficacy of 
combinations of MLN8237 and paclitaxel in T24 xenografts.   
A. percentage positive cells for A. Ki67, B. percentage positive tissue for CC3, C. percentage 
positive cells pH3 after mice were dosed with five cycles of treatment as detailed in Figure 6-26 D. 
shows percentage of necrosis for slides analysed in HALO™. Tumour samples were taken at the 
endpoint of the study, Day 39- 24 hours after the last dose of MLN8237 (groups 1, 3 and 5) and 48 
hours after the last dose of paclitaxel (groups 2, 3, 4 and 5). Slides analysed in HALO™ (as 
described in 2.3.5.1). Statistical testing performed using ordinary one way ANOVA with Dunnett’s 
multiple comparison test comparing each treatment group to vehicle in GraphPad Prism. 

Even in tumours with a PR to treatment, there was no clear relationship between any of 

the markers tested and tumour response. For example, in Figure 6-30 in one tumour 

with progressive disease (on the left) there was far more necrosis than the tumour where 

a partial response was seen (on the right). However, the percentage of positive 

cells/tissue for pH3, CC3 and Ki67 were very similar between the two tumours. 



 

174 

 
Figure 6-30: Representative images from HALO™ analysis of two different tumours, one with 
progressive disease and the other with a partial response with PD markers.  
pH3, CC3 and Ki67 stains shown. For each marker, the left hand image shows the necrosis 
algorithm applied to the whole tumour (green – viable tumour, red- glass, yellow – necrosis) and 
the stained slide on the right. 

 

In both the tolerability and efficacy studies, the combinations were well tolerated, with 

no significant changes in body weight or blood parameters and with the bone marrow 

analysis showing less additional myelotoxicity than might have been expected. Tumour 

growth was significantly reduced compared to vehicle in all treatment groups, 

particularly in the MLN8237 30 mg/kg and paclitaxel 6 mg/kg group, indicating this 

combination was both effective and well tolerated. However, there were no significant 

differences in PD markers between treatment groups and vehicles in either study, 

despite only analysing the non-necrotic areas.  

As we were limited in our ability to compare full dose paclitaxel 20 mg/kg with other 

treatment groups due to hypersensitivity reactions, to attempt to prove equal efficacy 

between the combination of MLN8237 and a lower concentration of taxane compared to 

a full dose taxane, I therefore decided to also investigate the combination of MLN8237 

and docetaxel, where hypersensitivity was not an issue. 



 

     175 

 

 

T24 tumour growth inhibition had been seen in the single agent docetaxel 20 mg/kg 

study (Figure 6-11) and docetaxel has shown efficacy as a single agent in bladder cancer 

(262). To assess tolerability of the combination of MLN8237 30 mg/kg combined with 

docetaxel 20 mg/kg, I performed a study with twenty non tumour bearing mice 

comparing four treatment groups with five cycles of treatment administered. In the 

studies with paclitaxel, there had not been a significant difference seen in tumour 

growth inhibition between the groups treated with MLN8237 for three days or five days 

per week when in combination with lower concentrations of paclitaxel. Given that the 

maximum tolerated dose of docetaxel was being used, the MLN8237 30 mg/kg once 

daily for three days regimen was selected as it was predicted to reduce toxicity (283). 

The groups were: 

1. MLN8237 30 mg/kg once daily for three days OG and vehicle IP 

2. Docetaxel 20 mg/kg IP and vehicle OG weekly 

3. MLN8237 30 mg/kg once daily for three days and docetaxel 20 mg/kg 

weekly 

4. Vehicle OG and IP 

 

Many of the mice exhibited peritoneal guarding (sucking in the abdomen) 

approximately 15 minutes after IP docetaxel suggestive of some irritation but otherwise 

no adverse effects were seen. Body weights were stable across the groups during the 

study with no mice losing ≥10% of body weight (Figure 6-31). 
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Figure 6-31: Percentage body weight relative to Day 1 of dosing over days since first dose for each 
mouse in study assessing the tolerability of combinations of MLN8237 and docetaxel in non-tumour 
bearing nude mice. 
Percentage body weight for each mouse dosed with five cycles of A. Vehicle B. MLN8237 30 mg/kg 
once daily for three days per week C. Docetaxel 20 mg/kg weekly D. MLN8237 30 mg/kg once daily 
for three days and docetaxel 20 mg/kg weekly. Mice were weighed prior to each cycle, with vertical 
black dotted lines indicating the start of each cycle. MLN8237 dosed daily by oral gavage for three 
consecutive days of a weekly cycle and docetaxel dosed IP weekly. 

 
In the previous studies, endpoint blood counts had been taken as a measure of 

tolerability. As I was particularly interested in how blood cell counts changed over time 

with repeated courses of treatment, a pilot feasibility study of interim blood tests was 

performed. The initial plan was to take bloods from the tail vein but when this was 

attempted on Day 22 (day of start of cycle 4), it proved challenging to get a sufficiently 

large drop of blood and several attempts were required. Therefore, for Day 26 (Day 5 of 

cycle 4, two days after the last MLN8237 dose or four days after the last docetaxel 

dose) the submandibular vein was used, which proved technically easier. Endpoint 

bloods were taken by cardiac puncture as in previous studies (day 31).   

At day 22 (seven days after the cycle 3 docetaxel dose and four days after the last cycle 

3 MLN8237 dose), the combination treatment did not appear to be more toxic then 

either of the single agents (Figure 6-32). Indeed the white cell count was higher than 

that seen in the single agents, with a mean of 8.0 x 103/µl compared to 5.4 x 103/µl in 

the vehicle group, although this was not significant. There was no significant difference 

across the groups in the WBC differential values, although both lymphocytes and 
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granulocytes were lower in the MLN8237 single agent group.  There was variability in 

haemoglobin values, including some low readings, which may have been due to small 

sample volumes leading to issues with measurements as discussed. Platelet counts 

tended to be higher in the treatment groups, particularly in the combination, although 

some much lower values were seen (potentially due to platelet clumping rather than 

thrombocytopenia). This difference was statistically significant between vehicle and the 

combination group (mean of 310±190x103/µl in vehicle, 633±280x103/µl in 

combination, p=0.030).  
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Figure 6-32: Day 22 blood counts for study assessing the tolerability of combination of MLN8237 
and docetaxel in non tumour bearing nude mice. 
Mice were dosed with five cycles of treatments as detailed in Figure 6-31. Samples were taken on 
Day 22 seven days after last dose of docetaxel and four days after last dose of MLN8237 where 
applicable. Parameters measured are A. total white blood cell count (WBC), B. granulocytes (gra), 
C. lymphocytes (lym), D. monocytes (mon), E. haemoglobin (HGB) and F. platelets (plts).  
Statistical testing performed using ordinary one way ANOVA with Dunnett’s multiple comparison 
test comparing each treatment group to vehicle in GraphPad Prism. 
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On Day 26 (Day 5 of cycle 4, two days after the last MLN8237 dose or four days after 

the last docetaxel dose), there were no significant differences in any of the parameters 

between the groups (Figure 6-33). The platelet counts were higher in all groups 

compared to Day 22 bloods (For example 570±78 x 103/µl in vehicle), with the highest 

counts in the combination group, although this was not statistically significant.  

 
Figure 6-33: Day 26 blood counts for study assessing the tolerability of combination of MLN8237 
and docetaxel in non tumour bearing nude mice.  
Mice were dosed with five cycles of treatments as detailed in Figure 6-31. Samples were taken on 
Day 26 two days after last dose of MLN8237 and four days after last dose of docetaxel where 
applicable. Parameters measured are A. total white blood cell count (WBC), B. granulocytes (gra), 
C. lymphocytes (lym), D. monocytes (mon), E. haemoglobin (HGB) and F. platelets (plts).  
Statistical testing performed using ordinary one way ANOVA with Dunnett’s multiple comparison 
test comparing each treatment group to vehicle in GraphPad Prism. 

Finally endpoint blood counts were analysed as in previous studies (Figure 6-34). Here 

there were no significant differences between groups and the increased platelet count 

seen in the combination group at Days 22 and Day 26 was not seen.  
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Figure 6-34: Endpoint blood counts for study assessing the tolerability of combination of MLN8237 
and docetaxel in non tumour bearing nude mice.  
Mice were dosed with five cycles of treatments as detailed in Figure 6-31. Samples were taken on 
Day 31, 24 hours after last dose of MLN8237 and four days after last dose of docetaxel where 
applicable. Parameters measured are A. total white blood cell count (WBC), B. granulocytes (gra), 
C. lymphocytes (lym), D. monocytes (mon), E. haemoglobin (HGB) and F. platelets (plts).  
Statistical testing performed using ordinary one way ANOVA with Dunnett’s multiple comparison 
test comparing each treatment group to vehicle in GraphPad Prism. 

In summary, the interim blood counts did not show a significant difference in WBC or 

granulocytes during treatment but did show an increase in platelet count (significant at 

Day 22). The combination of MLN8237 30 mg/kg with docetaxel 20 mg/kg was well 

tolerated and did not cause overt neutropenia. 

 
Review of the H&E slides showed reduced cellularity with more frequent fat spaces, 

particularly in the combination group and an increase in megakaryocytes in treated mice 
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(consistent with the raised platelet counts found in the interim blood tests) (Figure 

6-35), similar findings to those described in Figure 6-23. 

 
Figure 6-35 Representative images bone marrow images of femurs of mice in study assessing the 
tolerability of combinations of MLN8237 and docetaxel in T24 xenografts.  
Sample images are shown of bone marrow images from vehicle, MLN8237 30 mg/kg once daily for 
five days/week, docetaxel 20 mg/kg weekly and the combination of MLN8237 30 mg/kg once daily 
for five days and docetaxel 20 mg/kg weekly stained with H&E. Scale bars: left = 300 µm, right = 
100 µm. Femurs from mice prepared and stained as described in 2.3.5.3. 

These samples were taken four days after the last dose of docetaxel and 24 hours after 

the last dose of MLN8237 where applicable so it is possible that the bone marrow may 

have shown a greater difference if taken straight after the docetaxel dosing. However, 
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these results appear to confirm the tolerability of the combination on the bone marrow, 

with its ability to compensate for the drug treatments.  

 

As the MPO stain had not shown the differences in immature myeloid cells expected 

from manual review of the H&E slides in previous MLN8237 and paclitaxel studies 

(Figure 6-16), I decided to explore a further technique to assess the toxicity of the drug 

treatments on the bone marrow. The CFU-GM assay has been validated for use in fresh 

mouse femoral bone marrow cells (295) and was piloted in this study.  

In contrast to our previous results with human bone marrow cells where fewer colonies 

had been seen than predicted with the manufacturer’s recommended seeding (4.4), there 

were many CFU-GM colonies (range 224-1474) and it proved impossible to accurately 

count these manually (example images are shown in Figure 6-36 A). I therefore used 

GelCount™ to scan the dishes and developed an algorithm to identify colonies, which 

was manually checked. The MethoCult®  medium selected is formulated to support 

optimal growth of granulocyte and macrophage progenitors (CFU-GM, CFU-M, CFU-

G). However, due to the viscous nature of the media causing blurring of images, it 

proved difficult to use the GelCount™ images to distinguish different haematopoietic 

progenitors and therefore all types of colonies seen were counted. The analysis showed 

that there was no significant difference between the groups (Figure 6-36 B).  

Therefore, this appears to again suggest that the combination of MLN8237 30 mg/kg 

once daily for three days and docetaxel 20 mg/kg weekly is no more myelotoxic than 

the single agent exposure, although this experiment would have to be repeated at a 

lower seeding density to confirm this. 



 

182 

Treatment group

M
e

a
n

 n
u

m
b

e
r 

o
f 

c
o

lo
n

ie
s

/d
is

h

Vehicle 1 2 3
0

500

1000

1500
Treatment groups

Vehicle
1. MLN8237 30 mg/kg once
daily for 3 days/wk
2. Docetaxel 20 mg/kg weekly
3. MLN8237 30 mg/kg once
daily for 3 days/wk and
docetaxel 20 mg/kg weekly

A

B

 
Figure 6-36: Results from mouse CFU-GM pilot in study assessing tolerability of MLN8237 and 
docetaxel 
Following drug treatment with either vehicle, MLN8237 30 mg/kg once daily for three days, 
docetaxel 20 mg/kg weekly or the combination of both drugs, femurs of the mice were dissected. 
Bone marrow cells were flushed from these, counted and 2x105 cells plated into MethoCult® GF 
M3534 medium, with three dishes per mouse femur. After twelve days, the resulting dishes were 
imaged using GelCount™. A. shows two representative images, showing the large number of 
colonies seen and B. shows the mean number of colonies seen for each treatment group. 

 

As the pilot study indicated that the combination of MLN8237 and docetaxel was 

tolerable, an efficacy study with ten mice per group was performed.  Two dose levels of 

docetaxel were tested – the maximum dose of 20 mg/kg which had shown efficacy and 

the lower dose of 6 mg/kg to investigate whether this was effective when combined 

with MLN8237 (there had been little difference from vehicle in tumour growth in 

Figure 6-11). In this study mice were randomised to five cycles of the following 

treatment groups: 

1. MLN8237 30mg/kg once daily for three days OG and vehicle IP 

2. Docetaxel 20 mg/kg IP and vehicle OG weekly 

3. MLN8237 30 mg/kg once daily for three days and docetaxel 20 mg/kg 

weekly 

4. Docetaxel 6 mg/kg IP and vehicle OG weekly 
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5. MLN8237 30 mg/kg once daily for three days and docetaxel 6 mg/kg 

weekly 

6. Vehicle OG and IP 

 

Despite the tolerability in non-tumour bearing mice, toxicity was seen within some of 

the groups in this study, largely towards the end of the five cycles of treatment. Weight 

loss was seen in some mice (Figure 6-37) with one mouse killed on day 31 in the 

docetaxel 20 mg/kg group and two in the combination MLN8237 30 mg/kg and 

docetaxel 20 mg/kg group (on days 30 and 31) because of weight loss >10%. One 

mouse in the MLN8237 30 mg/kg group also reached >10% weight loss on the final day 

of the study (day 32).  

One mouse had an abnormal gait and was clinically dehydrated in the docetaxel 20 

mg/kg group and was killed at Day 30. In the vehicle group, one mouse was killed on 

day 22 because a blood filled cyst connected to the tumour was impeding movement. 

Overtly impacted intestines were seen in six mice at necropsy, all of which had received 

docetaxel 20 mg/kg – four in the single agent group (with one killed on day 22 due to a 

swollen abdomen and three others killed on day 30 due to health concerns) and two 

found at endpoint necropsy in the combination of MLN8237 30 mg/kg with docetaxel 

20 mg/kg. Splenomegaly was also seen in one mouse in MLN8237 30 mg/kg, one 

mouse in docetaxel 20 mg/kg, one in the combination of MLN8237 30 mg/kg and 

docetaxel 20 mg/kg and one in the vehicle group. 
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Figure 6-37: Percentage body weight relative to Day 1 of dosing over days since first dose for each 
individual mouse dosed in MLN8237 and docetaxel efficacy study. 
Mice were treated with five cycles of A. Vehicle B. MLN8237 30 mg/kg once daily for three days per 
week C. Docetaxel 20 mg/kg weekly D. MLN8237 30 mg/kg once daily for three days/wk and 
docetaxel 20 mg/kg E. Docetaxel 6 mg/kg weekly F. MLN8237 30 mg/kg once daily for three 
days/wk and docetaxel 6 mg/kg. Mice were weighed prior to each cycle, with vertical black dotted 
lines indicating the start of each cycle. MLN8237 dosed daily by oral gavage for three consecutive 
days of a weekly cycle and docetaxel dosed IP weekly. 

 
Two mice had very high WBC > 60 x103/µl (normal range reported by Charles River 

laboratories for these mice is 8.4 x103/µl (range 2.97 to 16 x103/µl), one in the docetaxel 

20 mg/kg group and one in the vehicle group (Figure 6-38 A). In both cases, the profile 

consisted of a granulocytosis (approximately 75% of WBC). Both mice had 

splenomegaly at autopsy but stable weights throughout the study. Given that one of 

these was seen in a vehicle treated mouse, these results would be suggestive of a 

myeloproliferative disorder, extra-medullary haemopoiesis, infection or tumour burden 

rather than treatment related. An enlarged spleen was also seen in one mouse in the 

MLN8237 group accompanied by an increased WCC (21 x103/µl) and one mouse in the 
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combination of MLN8237 30 mg/kg and docetaxel 20 mg/kg) (normal WCC). Another 

mouse in the MLN8237 30 mg/kg group had an elevated white cell count, although no 

splenomegaly.   

Due to these two outliers (marked in red in Figure 6-38 A), there were no significant 

differences in the white cell counts between groups, although if they were excluded 

(assuming an alternative pathological process was the cause), this difference was 

significant (Figure 6-38 B, p=0.0033). Across the groups, WBC were significantly 

reduced in both the combination with docetaxel 20 mg/kg (p=0.020) and the 

combination with docetaxel 6 mg/kg (p=0.012) compared with vehicle but there were 

no significant differences between the treatment groups. The granulocyte count 

appeared reduced overall in the MLN8237 30 mg/kg group and the two docetaxel 

combinations (Figure 6-38 C), although this effect was not significant even when the 

two very high granulocyte counts were excluded (Figure 6-38 D). There was a 

significant reduction in the lymphocyte count between the treatment groups compared 

to vehicle (p=0.0009, significant for the combination with docetaxel 20 mg/kg 

(p=0.0028) and with docetaxel 6 mg/kg (p=0.0028)). 

There was a significant difference in haemoglobin between the treatment groups 

compared to vehicle (p=0.0090), although this is unlikely to be clinically significant 

given that the values across all groups remained within the normal range reported by 

Charles River laboratories (mean 15, range 13-18 g/dl). There was no significant 

difference in platelets. 

Therefore, these results show a reduction in WCC and granulocytes in the docetaxel 20 

mg/kg and combination groups, although there was not a significant difference when 

these groups were compared. These results are consistent with the reports from clinical 

studies and the bone marrow findings in the tolerability study.  
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Figure 6-38: Endpoint blood counts for study assessing the efficacy of combination of MLN8237 
and docetaxel in T24 xenografts.  
Mice were dosed with five cycles of treatments as described in Figure 6-37. Samples were taken on 
Day 32, 24 hours after last dose of MLN8237 and four days after last dose of docetaxel where 
applicable. Parameters measured are A. total white blood cell count (WBC), B. WBC with two 
outliers marked in A in red excluded. C. granulocytes (gra), D. granulocytes with two outliers 
marked in B. in red excluded E. lymphocytes (lym), F. monocytes (mon), G. haemoglobin (HGB) 
and H. platelets (plts).  Blood counts were not available for four of the mice killed early due to 
weight loss. Statistical testing performed using ordinary one way ANOVA with Tukey’s multiple 
comparison test comparing each treatment group in GraphPad Prism. 
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There was a significant difference between the treatment groups compared to vehicle 

(p<0.00010, Figure 6-39).  
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Figure 6-39: Tumour growth expressed as volume measured over time since start of dosing (days) 
in study assessing the efficacy of combinations of MLN8237 and docetaxel in T24 xenografts.  
The individual mice tumour growth plots for mice treated with five cycles of A. Vehicle B. 
MLN8237 30 mg/kg once daily for three days per week C. Docetaxel 20 mg/kg weekly D. MLN8237 
30 mg/kg once daily for three days/wk and docetaxel 20 mg/kg E. Docetaxel 6 mg/kg weekly F. 
MLN8237 30 mg/kg once daily for three days/wk and docetaxel 6 mg/kg. each group as labelled. 
Tumour volumes were measured prior to each dosing using using calipers and weekly in vehicle 
group. Statistical testing was performed using ordinary two way ANOVA with Tukey’s multiple 
comparison test comparing each treatment group in GraphPad Prism.  

When the individual groups were compared with vehicle, both MLN8237 30 mg/kg 

(p=0.05) and docetaxel 6 mg/kg (p=0.89) as single agents did not significantly reduce 

tumour growth compared to vehicle even though complete responses were seen in these 

groups whereas docetaxel 20 mg/kg and both of the combinations did (p<0.00010 for 

each). Docetaxel 20 mg/kg as a single agent and  the combination of MLN8237 30 

mg/kg and docetaxel 20 mg/kg appear the most effective from the plots in Figure 6-39, 
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but there was no significant difference between them (p=0.76). The difference between 

the combinations with either docetaxel 20 mg/kg or docetaxel 6 mg/kg was not 

significant (p=0.10), and there was not a statistically significant difference between 

docetaxel 20 mg/kg as a single agent and the combination of MLN8237 30 mg/kg and 

docetaxel 6 mg/kg. Therefore, despite no significant reduction in tumour growth with 

docetaxel 6 mg/kg or MLN8237 30 mg/kg as single agents, the effect of the 

combination with docetaxel 6 mg/kg was no different to either docetaxel 20 mg/kg as a 

single agent or the combination with docetaxel 20 mg/kg. 

 
The waterfall graph (Figure 6-40) demonstrates that 10/10 vehicle tumours showed PD, 

the MLN8237 30 mg/kg group had 2/10 CR with 6/10 PD, the docetaxel 20 mg/kg 

group had 1/10 CR, 1/10 PR, 1/10 SD and 7/10 PD whilst the docetaxel 6 mg/kg group 

had 2/10 CR and 8/10 PD. In the combination with docetaxel 20 mg/kg, there was 1/10 

CR, 2/10 PR, 1 SD and 6/10 PD and with the docetaxel 6 mg/kg combination there was 

1/10 CR, 1/10 PR and 8/10 PD.  
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Figure 6-40: Waterfall plot of percentage change in tumour volume at endpoint compared to Day 1 
of dosing in mice in MLN8237 and docetaxel efficacy study.  
Mice were dosed with five cycles of treatments as described in Figure 6-37. Tumour volumes were 
measured approximately using calipers. The black dotted lines indicate progressive disease (PD) 
with 20% increase in tumour volume, partial response (PR) with 30% decrease in tumour volume 
and complete response (CR) with complete regression of tumour. 

Tumour inhibition compared to vehicle (calculated as in (261)) confirmed a statistically 

different treatment effect across all groups compared to vehicle (p=0.013). For the 

single agent groups it was 32% in the MLN8237 30 mg/kg group, 80% in the docetaxel 

20 mg/kg group and 26% in the docetaxel 6 mg/kg group. With the combinations, the 
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combination with docetaxel 20 mg/kg was most effective with 91 % tumour inhibition 

compared to 65 % in the docetaxel 6 mg/kg combination.  

These results suggest that the addition of MLN8237 30 mg/kg to docetaxel 20 mg/kg 

does not significantly increase anti-tumour efficacy compared to docetaxel 20 mg/kg 

alone. Adding MLN8237 30 mg/kg to docetaxel 6 mg/kg appears more effective than 

docetaxel 6 mg/kg alone, although it does not equate to the effect of docetaxel 20 mg/kg 

as a single agent.   

 

As in the MLN8237 and paclitaxel efficacy study, the variability between treatment 

groups meant that there were no significant differences in Ki67, pH3 or CC3, and no 

tumour remained to analyse in the tumours with a complete response (Figure 6-41).  
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Figure 6-41: Pharmacodynamic markers measured at endpoint in MLN8237 and docetaxel efficacy 
study 
Percentage positive cells for A. Ki67, B. percentage positive tissue for CC3, C. percentage positive 
cells pH3, after mice were dosed with five cycles of treatments as described in Figure 6-37.  D. 
shows percentage of necrosis for slides analysed in HALO™. Tumour samples were taken at the 
endpoint of the study, day 32, 24 hours after the last dose of MLN8237 in cycle 5 or three days after 
the last dose of docetaxel where applicable). No tumour was available for mice where complete 
response seen – two mice in MLN8237 30 mg/kg group and one in each of other treatment groups. 
Slides analysed in HALO™ (as described in 2.3.5.1). Statistical testing performed using ordinary 
one way ANOVA with Dunnett’s multiple comparison test comparing each treatment group to 
vehicle in GraphPad Prism. 
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However, the percentage of necrosis was significantly different (Figure 6-41 D, 

p=0.028) with less necrosis overall between treatment groups compared to vehicle. 

Whilst I might have assumed more necrosis would be present in tumours responding to 

drug treatment, in more rapidly growing T24 xenograft tumours, their size may have led 

to more necrosis as seen in Figure 6-30. 

 

As has been seen across all of my in vivo studies, I have not been able to identify clear 

differences in proliferation as measured by Ki67, induction of apoptosis as measured by 

CC3 or AK-A inhibition as measured by pH3 in tumour sections. Therefore, in this 

study, I investigated two further alternative methods to assess response. 

 

Although variability has been observed, skin biopsies have been reported as a useful 

pharmacodynamic marker of AK-A inhibition in clinical trials, detecting accumulation 

of mitotic cells within the basal epithelial layer using immunofluorescent staining for 

pH3 and MPM2. They have the advantage of being less invasive than repeated tumour 

biopsies and allowing changes during treatment to be assessed (204, 206, 296). As none 

of my in vivo studies above had shown pH3 to be a useful PD marker of AK-A 

inhibition when taken at study endpoint (partly due to the extent of variability between 

groups to identify clear trends), a pilot study was performed to assess Ki67 and pH3 in 

skin from the efficacy study endpoint  (methods described in 2.3.5.2). As seen in Figure 

6-42, there were no significant differences seen between groups, with very infrequent 

pH3 positive cells observed. 
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Figure 6-42: Analysis of skin samples of mice treated in efficacy study of MLN8237 and docetaxel. 
Pharmacodynamic markers measured at endpoint in study of MLN8237 and docetaxel with  
A. Ki67 B. pH3 in skin samples of mice after mice were dosed with five cycles of treatments as 
described in Figure 6-37. C. shows an example of an H&E slide and then the same area highlighted 
for analysis for pH3 and Ki67. Skin samples were taken from the back of each mouse at the 
endpoint of the study, day 32, 24 hours after the last dose of MLN8237 in cycle 5 or three days after 
the last dose of docetaxel where applicable). Slides were analysed using Aperio as described in 
2.3.5.2.  

However, these samples were taken at the study endpoint, day 32 (24 hours after the last 

dose of MLN8237 or three days after the last dose of docetaxel where applicable) study.  

At 24 hours, my MLN8237 single agent PK analysis (6.3.2.2) showed MLN8237 levels 

were around 1 µM at 24 hours, a level at which an increase in pH3 has previously been 

reported (205) but the peak in pH3 levels is likely to have been earlier when higher 

concentrations were seen around six hours. Therefore, this timepoint may well have 

been too late to identify changes between groups, as the most consistent results in the 

Phase 1 trials had been seen with samples taken six to eight hours post dose. 

Whilst it might be technically possible to take small skin punch biopsies in mice during 

a course of treatment, there were concerns about wound healing and I have not found 

any studies which have used this methodology. Therefore, whilst skin biopsies have the 

potential to provide evidence of AK-A inhibition in clinical studies, it is difficult to 

translate these to the pre-clinical setting. 
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One of the challenges in interpretation of the tumours across the studies has been the 

cystic areas within the tumours and the degree of necrosis. Although I have quantified 

the degree of necrosis and only applied the biomarkers to the non-necrotic areas, this 

has not shown consistent changes, which have correlated either with treatment response 

or treatment group. Using CC3 as a measure of apoptosis has not shown significant 

differences between treatment groups. An alternative strategy to tumour biopsies 

developed to demonstrate drug induced apoptosis is the M30/M65 assay (described in 

2.3.8), where the ratio of M30:M65 can reflect the type of cell death, with a higher ratio 

in apoptosis (256). The assay has been used in pre-clinical studies with AZD1152 (an 

AK-B inhibitor) where a rise in M30 levels correlated with increased apoptosis seen on 

immunohistochemistry at three to five days after treatment and M65 plasma levels 

correlated with changes in tumour growth (256). In a clinical trial with AT9283 (an AKI 

used in my initial studies), increased M30 and M65 levels were observed during and 

following infusion of AT9283 (183).   

Due to limited capacity on the kit, 26 plasma samples obtained at study endpoint 

(selected to represent each treatment group and to give examples of a range of responses 

from complete responses to progressive disease) were chosen for this pilot study. A 

highly significant correlation (p<0.0001) was seen between the final tumour volume and 

both M30 (r=0.87 (95% CI 0.73-0.94), Figure 6-43 A) and M65 (r=0.84 (95% CI 0.67-

0.92), Figure 6-43 B). Many of the larger tumours with progressive disease showed 

regions of central necrosis (Figure 6-30). Given my choice of a range of samples from 

each group consisting of mixed responses, there were no clear trends in M30 (Figure 

6-43 C) or M65 (Figure 6-43 D) across the treatment groups but surprisingly tumours 

with a complete response had a lower M30 value, whereas I might have expected these 

samples to show increased apoptosis. This may relate to the timing of endpoint 

sampling, and kinetics of apoptosis. A clear correlation was seen between M30 and 

M65 levels (Figure 6-43 E), with a correlation coefficient of 0.92 (95% CI 0.84-0.97, 

p<0.0001).  

When the ratio of M30 to M65 were grouped by tumour response (Figure 6-43 F), there 

was a statistically significant difference between groups (p<0.0001), particularly when 

the tumours with a CR were compared to those with a PR (p=0.0004), SD (p=0.0005) or 

PD (p<0.0001). This ratio has been reported to show prognostic significance in 

predicting response to paclitaxel in non-small cell lung cancer (297). 
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Figure 6-43: Assessment of M30 and M65 in MLN8237 and docetaxel efficacy study.  
Correlation between M30 (A) and M65 (B) values with final tumour volume and by treatment 
groups (M30 in C and M65 in D). E shows M30/M65 ratio and F. shows relationship between 
M30/M65 ratio and tumour response compared with tumour response. Plasma samples taken from 
a selection of mice treated with either vehicle, MLN8237 or docetaxel as single agents or in 
combination after five cycles of treatments as described in Figure 6-37. Plasma samples were taken 
at the endpoint of the study, day 32, 24 hours after the last dose of MLN8237 in cycle 5 or three 
days after the last dose of docetaxel where applicable) and analysed as described in 2.3.8. Tumour 
response to treatments are CR (complete response), PR (partial response), SD (stable disease) and 
PD (progressive disease). Statistical testing performed using GraphPad Prism to calculate Pearson 
correlation coefficients and ordinary one way ANOVA with Tukey’s multiple comparison test used 
to compare each treatment group in F.  

When the percentage of CC3 positive tissue (for apoptosis detection) was compared 

with the M30 value, there was no significant correlation between M30 values and CC3 

positivity (Figure 6-44 A). Whilst others have shown rises in M30 are correlated with 

increased numbers of apoptotic cells seen at immunohistochemistry, these used a 

specific M30 CytoDEATH antibody (256, 257). However, there was a significant 
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correlation between the M65 level and the degree of necrosis seen in the tumours 

(r=0.612, p=0.0042) (Figure 6-44 B).  
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Figure 6-44: Comparison of M30 and M65 results with CC3 and percentage necrosis in MLN8237 
and docetaxel efficacy study. 
Correlation between A. CC3 positive staining vs M30 and B. % necrosis vs M65. Plasma samples 
taken from a selection of mice treated with either vehicle, MLN8237 or docetaxel as single agents or 
in combination after five cycles of treatments as described in Figure 6-37. Plasma samples were 
taken at the endpoint of the study, day 32, 24 hours after the last dose of MLN8237 in cycle 5 or 
three days after the last dose of docetaxel where applicable) and analysed as described in 2.3.8. 
Tumour response to treatments as labelled (PR=partial response, SD=stable disease, 
PD=progressive disease). Mice with complete response are excluded as no tumour remaining to 
analyse. Slides analysed in HALO™ for CC3 and percentage necrosis (as described in 2.3.5.1). 
Statistical testing performed using GraphPad Prism to calculate Pearson correlation coefficients. 

In summary, this pilot study on a limited number of samples has shown that M30 and 

M65 can be measured in plasma. The results show significant correlation with final 

tumour volume and the M30 and M65 values in plasma at the endpoint. The M30/M65 

ratio was significantly associated with tumour response. Although the CC3 IHC did not 

correlate with M30 results, there was a correlation between the percentage of necrosis 

seen and the M65 results.  

 

The combination of MLN8237 and docetaxel was tolerable in non-tumour bearing mice 

with stable weights on treatment. Blood tests, bone marrows and CFU-GM assays did 

not suggest significant additional toxicity between treatment groups compared to 

vehicle. In contrast, in the T24 xenograft mice in the efficacy study, toxicity was seen, 

largely in the mice receiving docetaxel 20 mg/kg either as a single agent or in 

combination.  

In terms of tumour response, there was a significant difference between the treated mice 

compared to vehicle in all groups. However, the key outcome was that the anti-tumour 

effect of  the combination of MLN8237 30 mg/kg for three days with docetaxel 6 mg/kg 

was not statistically different to that seen with docetaxel 20 mg/kg and was more 
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tolerable, as predicted by my in vitro CFU-GM studies (4.4). The M30/M65 assay also 

showed promise as a marker of response, with a higher M30/M65 ratio seen in tumours 

with a CR. 

 
Having selected MLN8237 as the AK-A inhibitor of choice based on the PK profile of 

CYC3, the single agent PK studies for both MLN8237 and the taxanes showed target 

plasma and tumour concentrations were achieved. Whilst paclitaxel and docetaxel 

suppressed tumour growth as single agents at full dose, a significant reduction was also 

seen with paclitaxel 6 mg/kg, although there was little difference in tumour growth 

compared to vehicle with docetaxel 6 mg/kg. We were unable to compare the full dose 

paclitaxel 20 mg/kg and MLN8237 combination due to hypersensitivity reactions, but 

the combinations with both paclitaxel 6 mg/kg and 2 mg/kg were well tolerated and 

showed a significant reduction in tumour growth, particularly in the MLN8237 30 

mg/kg and paclitaxel 6 mg/kg group.  

As my hypothesis was that the combination of MLN8237 with lower concentrations of a 

taxane could produce a synergistic response which was similar to full dose taxane but 

with reduced toxicity, combination studies with docetaxel were performed. Although 

docetaxel 6 mg/kg did not show significant suppression of tumour growth, it did show 

efficacy when combined with MLN8237 30 mg/kg. Whilst the tumour inhibition rate 

was maximal with the docetaxel 20 mg/kg combination, this was at the expense of 

toxicity. There was not a statistically significant difference in tumour growth between 

either combination compared to docetaxel 20 mg/kg as a single agent and in addition, 

no significant difference between the combination with 20 mg/kg and that with 6 

mg/kg.  

Hence for both MLN8237 30 mg/kg in combination with paclitaxel 6 mg/kg or 

docetaxel 6 mg/kg, anti-tumour efficacy was seen with reduced toxicity, as predicted by 

my in vitro work. Following my in vivo studies,  others have explored combination dose 

and schedule strategies with MLN8237 and taxanes in both the MDA-MB-231 and 

PHTX-02B breast cancer xenograft models. Combinations of MLN8237 with docetaxel 

10 mg/kg (MTD docetaxel 15 mg/kg)  or with paclitaxel 10 or 20 mg/kg (MTD for 

paclitaxel 30 mg/kg) led to either additive or synergistic anti-tumour activity, with 

tumour regression only seen in the combination (261). These results support my 
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conclusion that use of a concentration of taxane below the MTD together with 

MLN8237 can be an effective combination. 

The lack of a relationship between the PD markers I tested and tumour responses was 

disappointing. In the Western blots in T24 cells with MLN8237 and paclitaxel, an 

increase in pH3 had been seen with MLN8237 as a single agent and with paclitaxel 30 

nM consistent with mitotic arrest and I had also seen an increase in cPARP signal for 

the combination of MLN8237 50 nM and paclitaxel 2 nM and for paclitaxel 30 nM 

(Figure 3-26). Ki67 as a marker of proliferation was not significantly reduced in 

treatment groups compared to vehicle, CC3 did not show increased apoptosis in cases 

where tumours responded to treatment and pH3 did not show a significant rise 

consistent with AK-A inhibition. The study in breast cancer mouse models also found 

no marked change in mitotic index and only a small difference in CC3 in treated 

tumours (261). Potential reasons for the lack of differences seen could include the 

variability in tumour responses between groups, the degree of necrosis and also the 

timepoints at which mice were killed (although in the study of MLN8237 and 

paclitaxel, there was no difference in markers between mice killed at three hours after 

the last dose and 20 hours (Figure 6-25)).  

Therefore, although my PK analysis with MLN8237 showed plasma concentrations in 

the range reported to cause AK-A inhibition in HCT-116 xenografts (Figure 6-5), I do 

not have any clear evidence that AK-A was successfully inhibited in vivo and there was 

only a modest anti-tumour effect of MLN8237 as a single agent. A number of 

publications investigating PD biomarkers of AK-A inhibition both in pre-clinical and 

clinical studies have also reported challenges in assessing the effects of AK-A inhibition 

The technique of most value uses immunofluorescent staining of tumours for α-tubulin 

and DNA and then imaging reconstruction to create 3D images to assess mitotic cells 

for chromosome alignment and spindle bipolarity, demonstrating an exposure related 

decrease in these markers at day 7 (296). Hence whilst an alternative approach could be 

to do further immunhistochemical staining for AK-A, exploration of this 

immunofluorescent technique shows the most potential.  

Since we performed this study, one publication has investigated MLN8237 in T24 

xenografts at MLN8237 30 mg/kg for five days a week for four weeks (121). A 

comparison of our results points to a difference in tumour behaviour. Although they 

only injected 1x106 cells (compared to our 2x106 T24 cells), they did this bilaterally and 

therefore appear to have assessed two tumours in each mouse, meaning that there were 
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only four mice in each group. Tumour growth in their control mice was so rapid that the 

mice had to be killed by day 15 due to tumour size, whereas the tumour doubling time 

observed in my studies was eight days (Figure 6-1). In their study, the tumours in the 

mice treated with MLN8237 30 mg/kg showed growth arrest, with no statistical 

difference in tumour size when compared between Day 1 and after four weeks of 

dosing. Whilst I did see some efficacy with single agent MLN8237 30 mg/kg with a 

tumour inhibition rate of 54%, tumour growth was still observed in the majority of 

mice. There are several potential explanations for this. As discussed in 6.2, there have 

been reports of subtypes of the T24 cell line which are more or less tumorigenic. Their 

line was sourced from ATCC with cells grown in RPMI-1640 media with 10% FBS 

whereas our cell line was obtained from CLS and grown in DMEM-F12/Ham with 5% 

FBS. We also genotyped our cell line to ensure that it matched the ATCC reference 

genotype as there have been particular issues with cell line contamination with T24 cells 

(298-300). Their sample size was small and if two tumours were assessed for each 

mouse, this could have also contributed to the lack of variability in their results. They 

also do not report how mice were randomised to the treatment groups. Differences 

between animal houses (including temperature, feed, microbiota) can also affect tumour 

growth, and lack of reproducibility in experiments has been reported frequently in 

recent years (301, 302).   

They also harvested the tumours at the study endpoint and stained them with H&E, and 

analysed Ki67 and TUNEL, although using immunofluorescent techniques. They report 

that treated tumours showed decreased cellularity compared to tumours from control 

mice, as well as regions of cell death and fibrosis, but do not comment on the tumours 

being particularly cystic or necrotic, whereas this was a particular issue for our T24 

xenograft studies. Tumours showed a 50% reduction in Ki67 positive cells (using 

fluorescent labelling) compared to control and TUNEL staining was 10-fold greater, 

whereas I saw no significant difference in Ki67 positive cells. Potential reasons for 

differences may include the different technology used, and their analysis technique. 

They calculated the percentage of positive cells in five visual fields per group, whereas I 

analysed staining across the whole tumour (excluding necrotic areas). The time point 

that they used to harvest after the last dose is not clear from their paper so this may have 

contributed to differences in results. It is also not stated whether they were blinded to 

treatment group when quantifying the biomarkers – all analysis in my studies was 

performed blinded to avoid bias.  
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Given the variability in T24 xenograft tumour growth even amongst the vehicle controls 

and the cystic nature of the tumours, together with the degree of necrosis seen, in 

hindsight the choice of a different bladder cancer model may have shown more 

consistent results within groups and therefore a greater magnitude of benefit, although 

despite this variation significant changes were seen. T24 xenografts have been used by 

others but alternative cell lines such as UM-UC-3 have also been successfully used in 

xenograft studies and performing pilot studies in vivo with UM-UC-3 or RT112 cells 

(which showed  synergy in vitro) may have been worthwhile to see if more consistent 

tumour growth was seen. Given the  known limitations of xenograft models (including 

their inability to recapitulate tumour microenvironment or to metastasise), there are now 

other animal models available such as genetically engineered mouse models which 

could be considered (303). One option considered was to perform studies in MIA-PaCa-

2 xenografts, given that this was an established model in our institution. However, 

whilst in vitro work showed synergy with CYC3 and paclitaxel in MIA-PaCa-2 cells, 

synergy was not seen with MLN8237 and paclitaxel.  

Although tolerability of the combinations was a concern, they were well tolerated apart 

from those with docetaxel 20 mg/kg where there was evidence of toxicity. Since these 

experiments, a PK-PD model modeling haematological toxicity with the combination of 

MLN8237 and docetaxel predicted that an intermittent schedule of MLN8237 dosing 

once daily three times a week concomitantly with weekly docetaxel (as used in my 

studies) (instead of daily MLN8237 dosing) would decrease the incidence of dose 

limiting neutropenia compared with a seven-day continuous schedule, whilst 

maintaining efficacy (283), consistent with my findings in blood tests, bone marrows, 

MPO staining and the pilot CFU-GM study. These findings were confirmed in an in 

vivo study which confirmed significant anti-tumour activity with this combination 

regimen compared to the single agents (261). 

Therefore my results of improved tolerability with the combination of MLN8237 with 

lower concentrations of paclitaxel and docetaxel are consistent with those of others, 

using different xenograft models. As outlined in 1.7 and 1.8.3, a range of clinical trials 

have now been performed with AKI, both as single agents and in combination. In 

Chapter 7, I review this evidence, specifically assessing how pre-clinical data can guide 

clinical trial design with drug combinations.  
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 TRANSLATION OF AK-A SPECIFIC 

INHIBITORS INTO CLINICAL TRIALS 

 
The work in previous chapters suggests that MLN8237 both as a single agent and in 

combination with either paclitaxel or docetaxel has potential efficacy. Reducing the 

dose of the taxanes in combination with MLN8237 may maintain efficacy but with 

reduced toxicity compared to higher doses of single agent taxanes. As part of this 

project, I planned to design a phase 1 clinical trial of the combination of an AKI and 

taxanes, using the results of my pre-clinical work to guide my dosing strategy. Since 

then, clinical trials have been published with AK-A inhibitors such as MLN8237, both 

as single agents (Table 1-3) and in combination (Table 1-5) with other drugs. In this 

chapter, I outline the principles of clinical trial designs, particularly for combination 

trials and review the clinical trials now published for the combination of MLN8237 and 

taxanes. I then present a clinical trial design for the combination of MLN8237 and 

paclitaxel (developed in conjunction with Dr Adrian Mander’s group at MRC 

Biostatistics Unit Hub for Trials Methodology Research), before reviewing how PK and 

PD modelling could be used to aid clinical trial design and the potential of alternative 

clinical trial designs.  

Contribution of others to this experimental work: The proposed trial protocol described 

in 7.4 was developed with Dr Adrian Mander’s group at MRC Biostatistics Unit Hub 

for Trials Methodology Research, particularly with Dr Graham Wheeler. 

 
Dose-escalation trials can be either rule- or model-based. Rule-based designs have set 

rules that allocate cohorts of patients to one of several pre-determined doses based on 

the DLT responses of the last cohort. The majority are “up-and-down” e.g. the 3+3 

design (304, 305); here cohorts of three patients are assigned sequentially to increasing 

dose levels. If one DLT is observed in the first three patients, the cohort is expanded by 

a further three patients. Dose-escalation is stopped when at least two out of three or six 

patients experience a DLT. The design is simple and easy to implement since dose 

escalation and trial termination are governed by fixed rules. However, there are many 

issues with the 3+3 design, including slow dose-escalation, with many patients treated 
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at sub-therapeutic doses, and the design only considers the outcome of the last cohort to 

guide dose escalation (306-310). 

Alternatively, model-based designs assume a dose-toxicity relationship, characterised 

by one or more parameters. As information accrues during the trial, this relationship is 

re-evaluated, with subsequent patients allocated to dose levels that best satisfy chosen 

decision criteria (e.g. the dose whose estimated probability of DLT is closest to the 

Target Probability of Toxicity (TPT)) (306). Many of the models proposed are Bayesian 

adaptive designs, where prior estimates/beliefs of DLT probabilities are elicited from 

experts familiar with the pre-clinical data (311-314) and can be combined with available 

historical data to generate prior probabilities of DLT for each agent. For example, in the 

Continual Reassessment Method (CRM) (315), the probability of a patient experiencing 

a DLT is dependent on a model chosen by the investigators, which requires the dose of 

the agent (or alternatively a “skeleton dose”, often the prior probability of DLT at that 

dose (316)) and a single model parameter as inputs. Given a prior distribution for the 

parameter and previous patients’ DLT responses, an updated distribution of the drug’s 

dose-toxicity relationship is obtained and the next patient is given the dose with an 

estimated posterior probability of DLT closest to the TPT. This adaptive procedure 

continues for future patients, adjusting the relationship based on the accrued data, hence 

aiming to allow both a more accurate MTD estimate and safety assessment. Use of this 

prior information aids the dose-escalation decision-making process, meaning fewer 

patients may be required relative to a trial with no prior information. 

The design of combination clinical trials is a particular challenge with guidelines 

emphasising the need for a strong scientific rationale, with pre-clinical evidence and the 

requirement to consider PK/PD and overlapping toxicities (317). Although prior 

knowledge of individual drug’s toxicity is usually available, this may be of limited use 

when two agents are combined, as there are multiple potential RP2D combinations in a 

two-dimensional dose-toxicity surface, which may have the same probability of DLT. 

Figure 7-1 illustrates this with the RP2D contour showing all the possible dose 

combinations of Drug A and Drug B with a probability of DLT of 0.3.  
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Figure 7-1: Example of a 2D dose surface formed by Drug A and Drug B.  
The RP2D contour is shown for a target probability of toxicity of 0.3 (bold line) and is the line of all 
the dose combinations that have a probability of DLT equal to 0.3. Adapted from (318). 

At present the majority of combination trials fix the level of one drug either at its single 

agent RP2D or at a dose close to this (normally the drug with most prior information, 

Drug A here). The novel agent is then escalated with the initial aim of reaching its 

single agent RP2D dose, typically using the single-agent 3+3 design and hence only a 

limited number of dose levels are explored (Figure 7-2) – referred to as the “standard 

method” in this chapter. This is based on the assumption that if the agents to be 

administered in combination have different mechanisms of action or non-overlapping 

toxicities, reaching the RP2D of each single agent would be the optimal drug 

combination (306). It also assumes that the optimal dose of Drug A is known, even 

when used in combination with another agent.  
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Figure 7-2: Example of dose escalation studies.  
Standard method of dose escalation, with drug A fixed at its RP2D when administered alone 
(RP2DA). Adapted from (318). 

Any reductions in either agent’s dose due to tolerability are regarded as compromises, 

with decisions made based on multiple factors, including ethical, regulatory, safety, and 

scientific concerns. A problem with this approach is that the full dose single agent may 

already cause significant toxicity and hence assessing the tolerability of an additional 

and presumably toxic drug is challenging, a particular concern here with the known 

overlapping toxicity of neutropenia with both taxanes and MLN8237. Unless a PD 

readout is available, the occurrence of DLT may halt dose escalation of the second drug 

and lead to suboptimal target inhibition, such as occurred in the trial of MLN8237 and 

docetaxel (242). By not fully exploring the surface of interactions within the two-

dimensional plane, a trial may overlook the most efficacious dose combinations, or dose 

combinations with reduced toxicity (319).  

With respect to toxicity, any of the dose combinations upon the RP2D contour could be 

taken forward into phase 2 testing. Currently the majority of trials choose not to 

evaluate multiple doses/schedules due to practical concerns regarding time, cost and the 

additional patient numbers required together with the pragmatic view that one 

dose/schedule is preferred. However, it may be that more than one RP2D combination is 

equally effective at target inhibition, and these could then be compared in a randomised 

phase 2 trial for efficacy.  

Adopting this “standard method” based on toxicity alone is a particular challenge with 

the small numbers of patients typically seen within a dose cohort and with oncology 

patients who are often heavily pre-treated, and hence may be more susceptible to 

additional toxicity. A review of phase 1 oncology combination trials showed that 88% 

of trials used the “standard method”, only approximately one third of potential 
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combinations were considered and the DLT rate at the RP2D was 6%, well below the 

target rate of 33% (320). 

 
Before discussing my proposed clinial trial design, I firstly review the studies now 

published with MLN8237 in combination with both docetaxel and paclitaxel, with a 

focus on trial design and DLT. 

 

A combination study with MLN8237 and paclitaxel enrolled 49 patients with ovarian or 

breast cancer with paclitaxel given on days 1,8 and 15 and MLN8237 given on Days 1-

3, 8-10, 15-17 of a 28 day cycle (241, 321). The design fixed the dose of paclitaxel at  

80 mg/m2 (full single agent dose), and dose escalated MLN8237 from 10 mg bd, a 

conventional approach to dual-agent trials. At dose level 2 (MLN8237 20 mg bd), two 

patients suffered DLT (Grade 4 diarrhoea and Grade 3 stomatitis) and a protocol 

amendment was required to reduce the paclitaxel to 60 mg/m2. Two separate MTDs 

were identified – MLN8237 10 mg bd with paclitaxel 80 mg/m2 and MLN8237 40 mg 

bd with paclitaxel 60 mg/m2, with neutropenia the DLT, but biologically active 

concentrations of MLN8237 were not achieved with the MLN8237 10 mg dose. Hence 

the RP2D was MLN8237 40 mg bd Days 1-3, 8-10, 15-17 with paclitaxel 60 mg/m2 

Days 1, 8 and 15 of a 28 day cycle, a dose reduction of both agents compared to single 

agent schedules.  

Two randomised phase 2 studies have now reported their interim analysis, comparing 

this combination against standard dose single agent paclitaxel 80 mg/m2. In a study of 

142 patients with ovarian, fallopian tube or primary peritoneal cancer, the median PFS 

(measured by RECIST and CA-125 criteria) was significantly longer with the 

combination at 7.6 versus 4.6 months (HR 0.55; 80% CI 0.40, 0.77; p=0.021) (239). 

However, increased toxicity was reported with the combination, with 14% vs 1% 

discontinuing treatment due to toxicity. Drug related AE  ≥Grade 3 were seen in 85% vs 

20% of patients, including neutropenia (64% vs 9%), and febrile neutropenia (14% vs 

0%). However, less peripheral neuropathy was seen in the combination compared to 

single agent paclitaxel (8% vs 19%) and they state that the toxicities were largely 

manageable. 
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 In a study of 178 patients with small cell lung cancer, the combination was again more 

effective with median PFS of 101 days vs 66 days (HR 0.72; 95% CI 0.52, 1.0; 

p=0.038) and a disease control rate of 58% versus 46% (250). Similar increased toxicity 

was seen with the combination (drug related AE ≥ Grade 3 of 67% compared to 25% 

and trial discontinuation in 15% vs 6%), with neutropenia in 49% (grade not specified 

in report). Despite the increased toxicity seen, the improvements in PFS lend some 

support to the activity of the combination compared to single agent paclitaxel. 

 

An alternative formulation of paclitaxel is nab-paclitaxel (nanoparticle albumin bound 

paclitaxel). In an ongoing phase 1 study, nab-paclitaxel 100 mg/m2 (full single agent 

dose)  given weekly Days 1, 8 and 15 was combined with escalating doses of MLN8237 

from 20 mg bd given Days 1-3, 8-10, 15-17 of a 28 day cycle (17 patients). The most 

frequent drug related AE (all grade/grade 3-4) were nausea (65%/6%) and  neutropenia 

(61%/18%). Two of three patients experienced DLT with the combination of MLN8237 

50 mg bd and nab-paclitaxel 100 mg/m2 (grade 4 neutropenia; febrile neutropenia) with 

the MTD established as MLN8237 40 mg bd with nab-paclitaxel at full dose. In the 

dose expansion cohort (16 patients), patients with advanced pancreatic or high grade 

neuroendocrine cancer were enrolled and at the time of report, twenty patients were 

evaluable with one partial response and nine with stable disease after two cycles (243), 

suggesting the combination may be effective. It is notable that with nab-paclitaxel, it 

was possible to maintain the full single agent dose, consistent with reports of its reduced 

toxicity compared to paclitaxel (322).  

 

A trial investigating the combination of MLN8237 with docetaxel recruited 41 patients 

(242). As with paclitaxel, the aim was to maintain the taxane at its standard dose 

(docetaxel 75 mg/m2 on Day 1) with dose escalation of MLN8237 from 10 mg bd but 

using the original MLN8237 single agent regimen (Days 1-7 of a 21 day cycle). In the 

first two dose levels, single DLTs were observed and in the third cohort (MLN8237 30 

mg bd), two of five patients had a DLT with Grade 3 stomatitis and grade 4 

neutropenia. The number of days of MLN8237 was reduced from seven to five days but 

two out of the three patients developed febrile neutropenia (Grade 3 and Grade 4). A 

decision was then made to reduce the dose of docetaxel to 60  mg/m2 with MLN8237 30 

mg bd for seven days but both patients had Grade 4 febrile neutropenia. A cohort with 
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MLN8237 for five days and docetaxel 60 mg/m2 was closed early because the 

investigators were concerned that the single agent docetaxel dose was too low for 

patient benefit, despite the fact that docetaxel 60 mg/m2 has previously been shown to 

be effective (323). Instead prophylactic GCSF support was added, but despite this two 

of the four patients had DLT with MLN8237 40 mg bd and docetaxel 75 mg/m2; Grade 

3 stomatitis and Grade 4 febrile neutropenia. They report an overall response rate of 

29%, with seven PR, including one in bladder cancer with MLN8237 30 mg bd for five 

days and docetaxel 60 mg/m2.  

The RP2D was recommended as MLN8237 20 mg bd for seven days with docetaxel 75 

mg/m2 because GCSF was not required. Although there was one PR and six SD in the 

nine patients treated at the RP2D with assessable disease, the PR and three of the SD 

were in metastatic castrate refractory prostate cancer where no previous taxane therapy 

was permitted. Although the authors speculate MLN8237 20 mg could still have an 

additive or synergistic effect, the anti-tumour responses in this combination are likely to 

have been largely due to docetaxel 75 mg/m2 as a single agent. 

 

The single agent MLN8237 DLT is myelosuppression, with high rates of Grade 3 or 4 

neutropenia. Whilst in most cases this was reversible and therefore the majority of trials 

have not used prophylactic GCSF, in the combination trials with overlapping toxicities 

it proved more problematic. The amended intermittent scheduling of MLN8237 was 

predicted to lower the risk of myelosuppression but unplanned dose modifications to 

paclitaxel were required. Despite this additional toxicity, improved PFS was seen in 

Phase 2 trials with the RP2D combination, compared to full dose single agent paclitaxel 

and with lower incidence of neuropathy, indicating that the combination may provide 

clinical benefit. Interestingly it was possible to maintain nab-paclitaxel at full dose with 

MLN8237 40 mg bd. Due to the investigators’ concerns about using lower doses of 

docetaxel, their recommended RP2D combination is unlikely to have given additional 

benefit over single agent full dose docetaxel alone. None of these trials planned to 

investigate lower concentrations of taxanes and all used the “standard method”. In 

contrast, I proposed using a model-based approach to attempt to fully explore the RP2D 

contour and reduce toxicity with lower doses of paclitaxel. 
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My in vivo work demonstrated that paclitaxel 2 mg/kg and 6 mg/kg (human equivalent 

dose approximately 6 mg/m2 and 18 mg/m2 (calculated as per (324)) were tolerable and 

showed anti-tumour efficacy in combination with MLN8237 (6.5). Hence the starting 

dose of paclitaxel for my trial design was 10 mg/m2 administered on Days 1, 8 and 15 of 

a 28 day cycle (1/8 of the standard single agent dosage). The expected maximum dose 

of paclitaxel was 40 mg/m2, since my work suggested that aiming to achieve the full 

weekly dose of paclitaxel would lead to additional toxicity, could prevent dose 

escalation of MLN8237 and may not provide the synergy desired. The maximum 

tolerated dose in man for MLN8237 as a single agent is 50 mg bd for seven days of a 21 

day cycle (204, 206). In mice MLN8237 15 mg/kg and MLN8237 30 mg/kg (human 

equivalent dose approximately 25 mg bd and 45 mg bd) had shown an effect on tumour 

growth, without a significant difference in response between the two dose levels 

(6.4.2.2). I selected a starting dose of MLN8237 10 mg bd with the same dosing 

schedule due to the potential for unknown PK/PD interactions with the combination.  

 

Having considered the potential advantages of different trial designs, a model-based 

design was proposed to allow the identification of the MTD combination, utilising 

toxicity data and following a modified CRM approach (325, 326). Information was 

available for single agent paclitaxel, particularly for the risk of neutropenia, the most 

likely predicted overlapping toxicity. Dr Graham Wheeler used a random intercept, 

random slope model (327) to combine the data and obtain a prior for this risk, which 

was incorporated into the modelling. However, we did not have any detailed toxicity 

information available at the start for the combination other than a vague prior. 

Therefore, there was an initial rule-based start-up, before the full dose escalation 

commenced with a minimum of three patients/cohort (Figure 7-3). Although initial 

admissable combinations are shown, the model could allocate to any combinations 

along the contour (providing the TPT was ≤0.3). As the data from each patient became 

available at the end of cycle 1, the accumulated toxicity data would be used to update 

the model (as described in 7.2) and recommend dose escalation (if the toxicity of the 

current dose level is acceptable) or de-escalation (if the current dose level is too toxic) 
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to neighbouring dose levels with the dose level for the next patient estimated to be 

closest to the TPT of 0.3. Intermediate dose levels could be selected or further splitting 

of the dose into eight hourly (t.d.s.) or six hourly (q.d.s.) dosing could be considered 

depending on the emerging safety information and/or PK and PD data. Hence my 

proposed design would have explored a wider range of combinations to that seen in the 

published clinical trials. 
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Figure 7-3: Admissable dose levels for proposed MLN8237 and paclitaxel clinical trial.  
Initial rule based start up phase with three cohorts (red dots and black arrows) before dose 
escalation (black dots for initial admissable levels with blue arrows). Green curved lines show how 
any combinations along the contour could be explored. 

An important consideration when attempting to translate promising pre-clinical work 

into novel therapeutic strategies is the use of biomarkers to demonstrate target effect 

and identify appropriate patient populations. My protocol included detailed PK studies 

to assess the PK of MLN8237 and paclitaxel when given in combination and 

characterise the effect of concomitant administration of the PK of both drugs. I 

proposed mandatory tumour biopsies pre-trial entry and following seven days of dosing, 

with the assessment of mitotic cells within tumours for misaligned chromosomes and 

the absence of properly formed bipolar mitotic spindles hoped to be of greater utility 

than methods I had trialed in my in vivo studies.   

 
Increasingly modelling  has been used to incorporate both PK and PD data and these 

can be useful with drug combinations, with the ability to investigate the optimal 

sequencing of these drugs (328). Models have been created for MLN8237 both as a 

single agent and in combination, but the extent to which this has been used to influence 

clinical trial design varies. 
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A model created by Yang et al. which incorporated PK, PD (mitotic index in tumour 

samples) and efficacy (tumour growth inhibition) data from xenograft studies revealed 

that optimal PD effects were seen with a MLN8237 plasma concentration ≥1 µM for at 

least 8-12 hours and estimated an oral dose in man of 103 mg od or 62 mg bd, close to 

the eventual single agent RP2D of 50 mg bd (329).  Despite this, the starting dose for 

Phase 1 trials was 5 mg/day, with the dose doubled in successive cohorts until two or 

more patients experienced a grade 2 drug-related toxicity, or one patient experienced a 

grade ≥3 DLT which did not occur until 110 mg od (204). Analysis of the Phase 1 trials 

showed very similar PK to that predicted with steady-state average plasma 

concentration of 2.7 µM at the RP2D of 50 mg bd, with PD effects on the mitotic index 

seen at this dose. This demonstrates the challenge in translating modelling data into the 

clinic for first in human studies as many patients were treated at doses well below those 

anticipated to have any clinical effect. 

Using data from several single agent studies, further PK and PD analysis demonstrated 

a significant steady-state PD effect at the MLN8237 MTD of 50 mg bd, with predicted 

decreases in chromosome alignment of 75% (68-80%) and spindle bipolarity of 62% 

(55-70%) (330). Whilst there was a low probability of DLT at the RP2D (7%, consistent 

with the 10% observed), modelling showed that dose modifications to either 40 mg bd 

or 30 mg bd reduced the expected DLT probability (to 2% at 30 mg bd) whilst still 

showing tumour PD effects (50-60% decrease in chromosome alignment and spindle 

bipolarity), meaning that the dose modification to MLN8237 to 40 mg bd seen in the 

MLN8237 and paclitaxel trials would still be predicted to be effective. This work 

provides useful information about toxicity profiles and inputs for combination studies, 

although additional factors need to be considered for these, including the potential for 

overlapping toxicities and drug-drug interactions.  

 

Whilst there was interest in combining MLN8237 and taxanes, there was particular 

concern about the risk of neutropenia. Hence a PK-absolute neutrophil count model was 

created by Le et al. for the combination of MLN8237 and docetaxel, using in vivo data 

(283).  An intermittent schedule of MLN8237 (three days on, four days off twice daily) 

gave a predicted incidence of Grade 4 neutropenia in humans of 1.4% compared to 17% 

when dosed twice daily for seven days (fixed total dose of 700 mg/cycle). When 
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combined with a single dose of docetaxel 75 mg/m2, this rose to 72% for the 

intermittent dosing compared to 91% with the seven day continuous regimen, indicating 

that this was a preferable option, although still with high predicted rates of neutropenia, 

consistent with the actual issues seen in the Phase 1 combination trial. 

Building on this work, a model was created by Huck et al. using pre-clinical anti-

tumour data to predict the most effective combination of MLN8237 and paclitaxel, 

creating an exposure-efficacy surface plot and an isobologram where the effect of each 

combination could be assessed (261). Using pre-clinical anti-tumour efficacy and the 

results of the phase 1 trial of the combination of MLN8237 and paclitaxel (241), they 

demonstrated that similar efficacy was seen for both paclitaxel single agent 60 or 80 

mg/m2, supportive of other trials which have shown anti-tumour effects with paclitaxel 

60 mg/m2 (331). The addition of increasing doses of MLN8237 from 10 mg up to 50 mg 

bd would lead to increased efficacy. Their plot suggests that reducing the dose of 

paclitaxel to 60 mg/m2 could still allow increased efficacy compared to single agent 

paclitaxel 80 mg/m2. They state that as no patients were dosed with paclitaxel at a lower 

dose than this, modelling of this scenario was not possible, although extrapolation could 

have been used. Given synergy in their in vivo work with paclitaxel doses as low as 5 

mg/kg, further reductions in paclitaxel could well still provide synergy in combination 

with MLN8237. 

 
In the era of molecularly targeted agents, the focus is shifting towards using clinical 

trials to identify the optimal biological dose rather than the MTD. This requires changes 

in trial design with a focus on efficacy rather than toxicity alone, and increasingly 

biomarker driven clinical trials (332, 333). This may require trials to incorporate 

emerging results of PD endpoints whether toxicity, biological or efficacy-related to 

identify one or more doses/schedules for further evaluation. All the Phase 1 studies with 

MLN8237 used a standard rule based 3+3 design, both in single agent and combination 

studies. In this section, the potential to improve upon this, particularly with adaptive 

designs is reviewed in the Phase 1 setting (reviews which discuss adaptive designs for 

all phases of clinical trials including Phase 2 biomarker adaptive designs include (334-

336)). I co-wrote a review of adaptive designs for dual-agent phase 1 dose escalation 

studies, covering this topic in detail (318) (Appendix 2). 
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Rather than adopting the standard approach of fixing the dose of one drug and dose-

escalating the other (Figure 7-2 A), different designs can be used. Rule-based strategies 

for dose escalation include 1) alternate escalation of the agents in the series of dose 

levels; 2) simultaneous escalation of both agents; and 3) performing two trials using the 

standard method, holding different agents constant for each trial. Although these aim to 

improve upon the standard method, several limitations remain and the probabilities of 

DLT associated with the selected RP2D combinations may be well below – or indeed 

above – values deemed acceptable (310). Hence model-based adaptive designs are 

attractive. Because of the lack of prior information, many use an initial rule based start-

up stage to obtain preliminary data that can be fed into the statistical model (as proposed 

in my MLN8237 and paclitaxel design), followed by a second stage, implementing the 

model, modified CRM in this case. Entirely model-based two-stage dual-agent dose-

escalation designs do exist when information about both drugs as single agents is 

available (for example (325)). 

 

The standard indicator of efficacy has been tumour shrinkage identified on imaging, 

normally measured at periodic intervals well after cycle 1 toxicity assessments. As 

eligible patients in oncology trials generally have advanced refractory disease and 

progress after only a few cycles, efficacy data has not been widely incorporated into 

decisions about dose escalation, with toxicity endpoints alone used to define RP2Ds in 

the majority of phase 1 trials (306, 337). However, with targeted agents this hypothesis 

may be invalid both because such agents may be cytostatic and not lead to tumor 

shrinkage, and because surrogate measures such as target inhibition or PK endpoints can 

be used with results available to researchers rapidly. Certainly in the trials of MLN8237 

comment was made that response often occurred in cycles three or four (210), 

potentially because adequate cell divisions in the presence of drug are required for 

disease stabilization.  

In this context, an ideal model would recommend RP2D based on both toxicity and 

efficacy (338, 339). This should minimise toxicity which may occur with off-target 

effects at higher concentrations of the drug (306, 340). A range of designs have been 

proposed to achieve this. Several two-step designs initially consider the toxicity of dose 

combinations (achieved using either 3+3 or CRM designs), followed by assessing 
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efficacy of a subset of dose combinations chosen from the first stage (341, 342). 

Entirely model based designs which can distinguish between the probabilities of toxicity 

and efficacy have shown utility in clinical trials (343, 344). More complex models 

include one where surrogate measures of efficacy (such as real time PD data) can be 

used until confirmatory efficacy data is obtained from for example imaging, allowing 

improved dose selection and shorter trial duration (345). 

 
This chapter highlights the importance of clinical trial design in translating promising 

pre-clinical work into clinical trials, particularly with drug combinations. Whilst the 

“standard method” has identified a RP2D combination for MLN8237 and paclitaxel, 

toxicity has been an issue, largely myelosuppression, emphasising the importance of my 

work investigating this in the pre-clinical setting. The longer PFS with the combination 

of MLN8237 and paclitaxel in the phase 2 trials suggest that the combination may have 

value, but the increased myelotoxicity was problematic. By considering lower doses of 

paclitaxel as proposed in my trial design, this toxicity may have been reduced but with 

similar efficacy.  

The PK and PD modelling studies show their potential value in predicting efficacious 

doses both in single agent studies and in combinations. Using in vivo studies, generating 

such exposure-efficacy correlations can allow multiple combinations to be assessed by a 

model. Combining these with safety data could ensure prioritisation of dosing schedules 

which are most likely to be both safe and effective. It is not clear how much of these 

data were available at the time the clinical trials were designed, particularly the Phase 1 

combination studies. For example, in the combination study with MLN8237 and 

docetaxel the investigators struggled to maintain dosing of either drug using a seven day 

continuous MLN8237 dosing regime and ultimately chose to prioritise maintaining 

docetaxel dose over MLN8237 dose escalation (242). However, use of intermittent 

MLN8237 and dose reducing docetaxel is likely to have been equally effective, but with 

reduced toxicity, based on the work modelling neutropenia for the combination of 

MLN8237 and docetaxel (283) and the translational work with MLN8237 and paclitaxel 

(261).  

The use of model-based designs when assessing drug combinations provides a 

framework to incorporate additional data - both prior and accrued – into dosing and 

schedule decisions that rule-based designs (particularly the “standard method”) often 
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lack. With these adaptations, more information per patient is provided and the chances 

of placing patients on doses or schedules that are dangerously toxic are reduced (346, 

347). Concurrently, the extra information provided can lead to more accurate estimation 

of the RP2D contour (348) and – in trials concerned with efficacy endpoints also – more 

accurate estimation of the therapeutic window. However, their implementation in 

clinical practice is still infrequent, partly due to the relative novelty of these designs, the 

need for the presence and input of statistical experts together with concerns about 

support from regulatory agencies (339, 349, 350). By escalating both agents and 

exploring the dose-combination surface, more patients may be required but this would 

allow the efficacy-toxicity trade-off of both agents to be better evaluated.  
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 DISCUSSION 
I have demonstrated that the combination of specific AK-A inhibitors with low 

concentrations of paclitaxel (GI20) are synergistic in T24, RT112 and UM-UC-3 cell 

lines. Initial studies were performed with a novel AK-A inhibitor, CYC3, and these 

finding were confirmed using the more clinically relevant MLN8237. The use of 

response-surface modelling allowed a range of concentration-combinations to be 

studied and identified maximal synergy with concentrations of paclitaxel which had 

little effect as single agents (GI20 to GI40). These results are consistent with the reports 

of synergy between AK-A specific inhibitors and taxanes in other cancer cell lines that 

emerged during my studies. In one of these publications, MLN8237 was evaluated in 

similar bladder cell lines in combination with paclitaxel. Those studies also suggested 

that exposure to MLN8237 followed by paclitaxel led to maximal synergy.  However, in 

my studies, I show that that simultaneous exposure to MLN8237 and paclitaxel is the 

optimal schedule, which is a more convenient regimen to administer clinically. My 

scheduling findings are similar to those of others both in vitro and in vivo evaluating the 

combination of MLN8237 and taxanes (261). 

Assessment of synergy is crucial in evaluating new drug combinations, with most 

studies using either the Loewe additivity model or Bliss independence model, although 

both have limitations (227). In my work, I used the Bliss independence model because it 

could be used on any data set, regardless of the shape of the single-agent dose-response 

curves and several of the AKI did not show the typical dose-response relationship as 

single agents required to use the Loewe model. However, the Bliss model assumes that 

both drugs act independently and therefore given that both AKI and taxanes target 

mitosis, albeit in different ways, there is a potential issue in my use of this model.  

Alternative ways of assessing combinations are required and remain in development, 

including a model developed by Dr Giovanni Di Veroli in our group called “Synergy, 

Antagonism or Neutrality Estimation” (unpublished). 

I chose to use a bladder cancer cell line panel selected to represent a range of grades and 

stages of the disease and with different mutations (Table 3-5). It is notable that the cell 

lines where synergy was seen with the combination of MLN8237 and paclitaxel (T24, 

UM-UC-3 and RT112) all had p53 mutations, known to be a marker of a more 

aggressive tumour type (105). However, it is difficult to fully capture the clinical 

heterogeneity of cancer, particularly when metastatic, from cell lines alone. Recent 
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publications with more comprehensive molecular characterisation of tumours has 

suggested bladder cancers can be divided into luminal and basal subtypes, with 

aggressive tumours and AK-A over-expression seen in the basal subtype (107, 122). 

The status of all the cell lines in my panel has not been reported but UM-UC-3 is 

described as basal and T24 as mixed luminal/basal. Therefore, with this new 

knowledge, it may have been particularly beneficial to assess the combination in basal 

subtype bladder cancer cell lines. 

With the combination of MLN8237 and paclitaxel, a differential response was seen 

between cancer cell lines (T24) and non-cancer cell lines (ARPE-19), as simply additive 

and even antagonistic effects were seen with the combination of an AK-A inhibitor and 

paclitaxel in ARPE-19 cells. A similar phenomenon has been identified clinically, when 

paclitaxel and carboplatin are combined, leading to less thrombocytopenia than would 

have been predicted (351).  Identifying such differences between cancer and non-cancer 

cells was a major driver to the design of my combination studies and the development 

of the software that was used to analyse the combination data (252). Live cell imaging 

was used to provide new insights into the mechanistic differences between ARPE-19 

cells and T24 cells. More cells remained viable after exposure to the combination of 

MLN8237 50 nM and paclitaxel 2 nM in ARPE-19 cells compared to T24 cells, with 

the potential for more ARPE-19 cells to recover after exposure, compared to a higher 

concentration of single agent paclitaxel.  

Advances in technology since I performed my experimental work have shown the 

increasing promise of time-lapse live cell imaging in assessing the individual fate of 

cells. Performing the analysis manually was very time consuming and meant that only a 

limited number of cells could be studied. Automation to analyse more cells would be 

very beneficial and I worked together with Dr Joana Grah to develop a workflow which 

can detect and track mitotic cells, allowing time in mitosis to be assessed and avoiding 

the need for fluorescent markers. Initial experiments showed promising results assessing 

the fate of T24 cells treated with different drugs and the tools have now been published 

(Appendix 3, (352)). In addition, my colleague Dr Siang Boon Koh was involved in 

developing an alternative live cell imaging technique which uses fluoresence-

ubiquination based cell cycle reporters to analyse cells exposed to drugs, which would 

again have been of interest to use in my work (353). 

Using the CFU-GM assay, more colonies survived with the combinations of MLN8237 

and paclitaxel 1-3 nM than MLN8237 as a single agent and they were less myelotoxic 
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than higher paclitaxel concentrations as a single agent. This was also the case in studies 

that we have already published, assessing CYC3 in combination with paclitaxel in this 

assay ((258) Appendix 1). The indication that the combination may be less myelotoxic 

than higher concentrations of paclitaxel as a single agent is encouraging, particularly as 

neutropenia has been shown to be the dose limiting toxicity in the clinical trials 

performed to date. 

In my studies, AK-A expression in cell lines (measured by total AK-A Western 

blotting) did not correlate with the degree of growth inhibition associated with exposure 

to single agent AK-A inhibitors. However, in the HeLa AK-A inducible cell line, at 

clinically relevant degrees of AK-A over-expression, a modest reduction in sensitivity 

to paclitaxel, and less growth inhibition was observed with the combination of 

MLN8237 and paclitaxel. These differences were small and certainly contrast with the 

report that AK-A over-expression leads to substantial taxane resistance (2). Therefore, 

AK-A expression in tumours may not be a useful biomarker for patient selection in 

clinical trials of AKI. Supporting this conclusion, subsequent clinical trials with 

MLN8237 have not been able to show a correlation between baseline tumour AK-A 

expression levels and anti-tumour response (210).  

Based on my in vitro data, I hypothesised that the combination of MLN8237 with lower 

doses of a taxane could provide a synergistic response which was similar to full dose 

(MTD) taxane, but with reduced toxicity. Therefore, I proceeded to evaluate the 

combination of MLN8237 with a taxane in T24 xenograft experiments. With paclitaxel 

20 mg/kg iv (reported MTD), hypersensitivity reactions were seen with weekly dosing 

and therefore combination studies directly comparing paclitaxel 20 mg/kg with 

combinations of MLN8237 and paclitaxel were not possible. However, the 

combinations of MLN8237 30 mg/kg (OG) once daily for five days/week with 

paclitaxel weekly (iv) at either 2 mg/kg or 6 mg/kg  were well tolerated and showed a 

significant reduction in tumour growth.  

It was possible to deliver docetaxel at its reported MTD (20 mg/kg weekly iv), allowing 

this to be compared against combinations of MLN8237 and docetaxel. Whilst maximal 

tumour inhibition was seen with docetaxel 20 mg/kg either as a single agent or in 

combination with MLN8237 30 mg/kg, toxicity was seen with weight loss and 

incidences of overtly impacted intestines.  I was able to demonstrate that there was no 

statistically significant difference in tumour growth inhibition when MLN8237 30 

mg/kg (OG) once daily for three days a week was combined with weekly 6 mg/kg 
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docetaxel (IP), compared to weekly docetaxel 20 mg/kg (IP) as a single agent and that 

this combination was tolerable. Indeed, other studies have also concluded that doses of 

taxanes below the MTD together with MLN8237 demonstrate additive or synergistic 

anti-tumour activity using different xenograft models (261). Hence my results for both 

MLN8237 30 mg/kg dosed intermittently in combination with paclitaxel 6 mg/kg or 

docetaxel 6 mg/kg weekly were encouraging, suggesting that clinical trials should 

explore sub-“standard of care” dosages of taxanes, in combination with MLN8237 to 

potentially maximise therapeutic benefit, whilst minimising toxicity.  

As discussed in Chapter 6, there were issues with the use of the T24 xenograft model, 

particularly significant variability in tumour growth even in vehicle controls. Given the 

synergy seen in UM-UC-3 cell lines and with the additional knowledge that it is a basal 

subtype cell line, it would have been helpful to perform pilot studies in vivo with this 

cell line as this may have been a better model to test the drug combinations. In addition, 

it would have been interesting to compare the results with paclitaxel and docetaxel with 

the alternative taxane nab-paclitaxel, both in vitro and in vivo based on the interim 

report of the Phase 1 trial where it proved possible to maintain full single agent dose in 

combination with MLN8237 40 mg bd (243). 

Clinical trial design is critical when translating promising pre-clinical work into clinical 

trials, particularly with drug combinations. Whilst Phase 1 clinical trials did identify a 

RP2D combination for MLN8237 and paclitaxel, toxicity has been an issue in Phase 2 

trials, largely myelosuppression. Notably the randomised Phase 2 trials revealed that 

PFS was longer for the RP2D combination compared to paclitaxel 80 mg/m2, but with 

additional toxicity. A protocol which explores the combination effect surface more fully 

may have allow a greater range of synergistic combinations to be identified. It is 

possible that if the trial designs had considered combinations with lower doses of 

paclitaxel, to more fully explore the dose surface (as proposed in our trial design), 

similar anti-tumour efficacy may have been seen with reduced toxicity. Whilst the 

majority of current combination trial designs may provide reassurance that patients are 

at least receiving one drug at its full dose and hence gaining potential benefit from 

enrolling in the trial, modelling has shown that the dose of paclitaxel and MLN8237 

could be adjusted whilst maintaining a predicted anti-tumour effect.  

Whilst 23 studies remain active using MLN8237 (alisertib) in combination with a range 

of drugs, including one comparing paclitaxel alone compared to MLN8237 and 

paclitaxel (clinicaltrials.gov, accessed 21 December 2017), MLN8237 no longer forms 
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part of Takeda Oncology’s development pipeline. AK-A appeared a relevant therapeutic 

target, with evidence of over-expression in many cancers, its important interactions with 

p53 and BRCA1 and with promising in vitro and in vivo results with AK-A specific 

inhibitors in multiple cancer types. Whilst AKI were once described as  potential 

“shining lights on the therapeutic horizon” (354), overall they have shown disappointing 

results as single agents in solid tumours, although they have shown more promise in 

haematological malignancies. It has been proposed that tumour heterogenity and the 

low proliferative index in solid tumours, with a doubling time usually exceeding 100 

days, compared to 3 to 6 days for many xenografts (355) may account for this.  In a 

recent publication, when the mitotic index was compared between patient samples from 

bladder tumours and T24 cells, the mitotic index was eight fold higher in the cell line 

(276). Therefore, a large proportion of the tumour may not be affected by exposure to 

the drug during any one cycle of therapy, consistent with the observation that responses 

to MLN8237 were seen after cycles three or four (210). 

Identifying patients who may benefit from treatment with AKI is crucial. Tumour AK-A 

expression alone has not proved useful in predicting response to AKI. Two recent 

publications have assessed two functional single nucelotide polymorphisms in AURKA. 

In the Phase 2 MLN8237 study in bladder cancer, targeted gene sequencing showed a 

longer PFS in carriers of the minor allele A of rs2273535 in AURKA than in patients 

who were homozygous for the major allele T, although the significance of this is not 

clear given the small numbers in this pilot study (356). Another publication combining 

the data from two of the larger phase 2 studies (391 patients in total) showed that 

amongst patients treated with MLN8237, those with a single nucleotide polymorphism 

at codon 57 in AURKA (VV alleles) had a significantly longer PFS than those with VI 

or II alleles (357). Further work is required to see if AURKA genotype could prove a 

useful biomarker for patient selection. 

To enhance the effect of AK-A inhibition, focus has turned to increasing understanding 

of the multiple interactions AK-A has with other critical signalling pathways.  Examples 

include the role AK-A plays in DNA-damage response with a recent pre-clinical study 

reporting synergy with combined AK-A and CHEK-1 inhibition, which enhanced the 

response of ovarian cancer cells to docetaxel (358), and the interaction between 

AURKA and KRAS (359).  There has been renewed interest in AK-A as a drug target, 

since its interactions with MYC in cancers such as neuroblastoma and small cell lung 
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cancer has been identified and it has proved possible to disrupt the protein-protein 

interaction with AK-A inhibitors (360, 361).  

My original hypothesis was that the combination of an AK-A inhibitor and a taxane 

could provide a therapeutic option for patients with metastatic bladder cancer. My in 

vitro and in vivo studies have suggested that using combinations of AK-A inhibitors 

with taxanes at concentrations below the GI50 and hence lower doses may show anti-

tumour efficacy with reduced toxicity compared to full dose taxanes. Published clinical 

trials  have struggled to translate similar findings into a new treatment approach for 

patients. I suggest that to fully define the efficacy and tolerability of the combination, a 

combination phase 1 trial design which prospectively explored full dose combination-

surface, as proposed in my trial design, would have been more efficient and effective. 

However, given the toxicity seen with MLN8237 as a single agent in patients with 

metastatic bladder cancer and with new treatment options such as immunotherapy now 

available, exploring the combination in an unselected patient population is no longer 

appropriate. Instead research needs to focus on better identifying patients most likely to 

respond to AK-A inhibitors, either potentially with a taxane or most probably with a 

molecularly targeted agent. To identify true synergistic activity with regards to efficacy 

and potentially simultaneously less-toxic combinations, the flexibility of adaptive 

designs should be used more frequently in the development of promising new drug 

combinations.  
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