Abstract

This study assesses the accuracy of the valuslaestimate (VaR). On
the basis of posterior distributions of the unkngapulation parameters,
we develop a confidence interval for VaR that mfethe genuine
information available about the portfolios for whicthe VaR is
calculated. This approach is more accurate thaininhDowd (2000) as it
avoids explaining the behaviour of the populatiangmeters on the basis
of distributions of sample parameters. We find tha accuracy of both
the confidence interval and the VaR estimate depeock dramatically
on the sample size than what Dowd’s results sugdasaddition, we not
only find that the impact of the confidence levetiahe holding period at
which the VaR is predicated are negligible compaoetthat of the sample
size (as in Dowd), but also that the confidencerirdl is far from being
symmetric.
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1. I ntroduction

The disastrous consequences of excessive expasunarket risk
experienced in the past years revitalized the kefarcearly-warning and
forward-looking indicators of financial vulneralyi The ability of
value-at-risk (VaR) models to determine maximum e=ted losses
taking into account a portfolio’s overall expostwalifferent types of risk
— e.g. exchange rate, interest rate, maturity —Ilé@dgo the widespread
use of these models for internal monitoring and agarg of market risk
exposure. Furthermore regulators have advocatedgé of VaR models
for purposes of financial solvency assessment inthe case of banks,
for capital adequacy determinatidnAt the macroeconomic level, recent
literature has proposed the use of a “macroecorfowedue-at-risk
approach that focuses on the solvency of a natiaggregate balance
sheet- in order to assess the vulnerability ofipaetr economic regimes.

The widespread and increasing reliance on VaRiligigts the
critical importance of the accuracy of the valueisit estimate. Current
implementations of VaR, however, do not recognise fact that VaR
measures are only estimates of risk. Because Vahbers are estimated
from sample data it is likely that sampling erreeds through to the VaR
figure, making the estimate risky itself. Moretically, most often VaR
numbers rely on parameters —means, standard admsatand quantiles —
estimated from historical data, which provide a rmpgaide to future
values.

Consider the following example taken from Brittemds (1999).
Assume a portfolio is composed of one risklesstamse K risky assets.

Minimum variance portfolio weightsp=(X'X)"X'1, are obtained by
running the “artificial” OLS regressioni = Xo +u, where1 is a

Tx1  (Txk)(kx1) Tx1

vector of onesX is a matrix of excess return vectoxs, andu is a
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residual vector. The dependent variabhlas interpreted as a sample
counterpart to arbitrage profits -positive excestsim with zero standard
deviation; the coefficients represent the weights on risky assets in the
portfolio; Xeorepresents excess returnand the residual vectar shows
deviations in the portfolio’s return from. Poor estimates of future
returns, such as historical returns, make the vigigbtimates -and hence
the corresponding mean and variance figures - sultfe “estimation
risk.” Note that “estimation risk” arises not onljth parametric VaR
approaches, but also with non-parametric approadhas rely on
simulated (rate of return) data but make use ofoh@l portfolio
weights.

To recognise the existence of “estimation errort’ oy provides
a decision criterion for selecting the confideneeel and the estimation
method with the best sampling characteristics,ibbatso highlights the
relevance of reporting the VaR number with confiteinterval€. The
aim of the paper is to provide a method for caliiadgpa confidence
interval for VaR that minimizes estimation risk arhat can
accommodate a wide range of probability distribngioof portfolio
returns. The paper is organized as follows: emctivo presents the
value-at-risk measure, section three summarisesdlevant literature
and section four proposes an alternative Bayesigprdach to the
estimation of a confidence interval for VaR. Tdéwimation procedure
and results are presented in sections five to seven

2. Parametric VaR

For general distributions the VaR of a portfoliondae defined as the
absolute pound loss,

VaR=W,-W =-W,r, (1)

where w, is the initial investment in the portfolio, r itate of return, and
W’ = (L+1")W, the lowest portfolio value at a given confideneeela.’

For location-scale densitfea parametric representation of VaR is
obtained by resorting to the invariance of suchsd®s to linear

® The estimated portfolio weights produce a porfoiturn that is closest in terms of
least squares distance to the arbitrage returrovéctlt is straightforward to adapt a
mean-standard deviation setting.

® See Jorion (1996), page 47.

" See Jorion (1997), page 87.



transformations. Letb:%, so thatr =bo+u, where b is the

standardised random variable, andind uthe (scale) standard deviation
and (location) mean of r, respectively. Assuwmwie=1, substituter”into
(1) and get

VaR = —(au + bo) , (2)

where a equals one and b is thea)% value of the standardised
distribution. Hence, when, i=1,...,N, are identically and independently

distributed normal with parametefiss?, r. ~ N(u,0%), and the confidence

level 10 is set at 95%, b = 1.645 is readily obtained ftbm standard
normal tabl€. To find the VaR under a Student distribution, &épn (2)
still applies, but b should be replaced by the appate le standard
Student deviate. For example, for a standarde®itudith six degrees of
freedom at the 95% confidence level, b equals 1.943

There are two convenient attributes to this apgroache first is
that it can easily accommodate distributions forclwhihe dispersion can
be adequately summarized by one parameter, thelasthrdeviation.
Even fat-tailed distributions, such as those ofclstprices, can be
accommodated as long as they are “fairly” symmetricStrongly
asymmetric distributions, such as those of denreati invalidate the
procedure, as standardisation of the distributomo longer adequate.
For large and diversified portfolios, however, thsue is one of fathess
of tails, not asymmetrif

The second compelling attribute of the “sigma-baapgroach”
presented in this section relates to efficiencyngladorion (1996) shows
that “the sample standard deviation method ha®umiy lower standard
errors and is, therefore, uniformly superior to th@mple quantile
method.™

8 A location scale density has the form'f (X—_ej where®d R! and o >0are the
o
unknown parameters. The class of such densitiesvariant under the group of

affine transformationg, . (x) =cx+ @Berger, 1980, pages 88 and 401).

® When VaR is measured relative to the meadaR = E(W) - W = -W,(R" - p), the
parametric representation of VaR for location-seatarns isvVar = -boW,, .

9 Involving the Central Limit Theorem, near-normglitan be a reasonable
assumption provided the portfolio is well diversdi and individual returns are
sufficiently independent of each other.

1 The appropriate quantile can be obtained direfttyn the historical distribution
(Quantile-based VaR) or indirectly by measuring teendard deviation and



3. A Confidence Interval for VaR

Dowd (2000% writes that the “most natural way” to gauge the
precision of a VaR estimate is to construct a dmrfce interval for it.
The simplest way to do it is to assume normalitg #mat u is known
(e.g. zero), so that the VaR estimate is given by

VaR =-bsW,.

3)

If we draw a random sample of size N from a nordisiribution,
(N -1)s?

the variable p will be distributed as a chi-squared with= N -1

degrees of freedonk{), wheres?is known ando?is unknown. One can

say that there is a%% probability that this variable will fall below the

X* 4 quantile and an%% probability that it will fall above the

2

correspondingle_g. It follows that the@l-a)% confidence interval for

2

(N -1)s?

o.2

must be:

_1\2
P, :(on{ < (N 021)5 < Xi,l—aJ =(1-a)%, (4)

2
where R, is the (1-a)% probability value calculated using the method of
Dowd.
By transformation, given a sample value of s, the
@-a)% confidence interval for the sample standard demmas is given

by:
P, =| |§° '\i_l <o< |§ N2—1 =(1-a)% (5)
Xul—E Xug
T2 ‘2

Multiplying equation (5) by-b yields a confidence interval for the VaR:

multiplying it by an appropriate scaling factord®ia-based VaR). Jorion (1997) and
(1996).

2 The confidence interval was originally developedGhappel and Dowd (1999),
however no testing was conducted in this paper.



P,=|-b ISZXNZ_l <VaR<-b |§’ ’)\:2_1 =(1-a)%, (6)
u,l—% U%

where b is a parameter reflecting the confidence levelbich the VaR
is predicated.

However, if bothuy and ¢ are unknown variables the VaR
estimate,Var = - (@ + bs), will depend on two stochastic variables, s and
7. The construction of analytic confidence intesvar this more general
case is “nearly impossible” (Kendall and Stuart73Qin Chappel and
Dowd (1999)). The alternative is to construct arfitcdence distribution
for VaR by simulating each of these terms using ih®rmation
available. This information consists of s amahd their distributions.

2 —
Statistical theory tells us that~ N[u,%j and that—(N 21)52 ~x2
(0]

T

After a little rearranging, we can therefore treand p as if they were
random in the sense that:

o~ |(N-1) N
v andp N( I~ J @)

Substituting into (2) and making a=1, the “confideristribution”
for VaR is given by:

N -1)s? _ (N -1)¢?
_p | xi) _N(r,( nxi) ] (8)

This distribution can be simulated and the confogeimtervals read
from the quantiles of the simulated distribution.

4, A Bayesian Approach

A weakness of the above procedure is that it relredistributions
of sample parametersi and s, that are conditional on unknown
population parametersy and o?, to explain the behaviour of the
unknown parameters. A more realistic approachrefécts the genuine
information that is available about the behaviodr tlee population
parameters is presented in this section.

Our procedure follows the above procedure in thabmfidence
region for vaR is estimated, assuming that and ¢* are distributed
according to some posterior probability densityctions @dfs). These



functions are estimated through an empirical Bagegroacl®, which
enables us to reduce the estimation error arisitgnwthe sample
parameters are treated as if these were the tnkegwn) parameters.
Our approach works as follows: first we tlebe i.i.d N(u,0%), and
uwando be independently distributed so thatu,o®) =n@wn(e?), n()
denotes a posterior distribution. This leads t® fibllowing confidence
distribution forvaRas specified in equation (2) and assuming a=1:

= bl (o) - M(w) 9)
4.1. Prior and Posterior Distributions

We assume that plausible functional forms jioand ¢*are given
by a conjugate family of prior distributions ancatione can draw on
prior information contained in the cross-sectiopattern of the stock
returns composing the portfolio to infer the partere specifying such
functional forms:* The assumption of a conjugate family of priors is
usually robust and simplifies calculatiohs.

We make the assumption that the individual stodkirns are
statistically independent through time and thatjeinat distribution of the
cross-section of returns is identical across tilathough unrealistic, we
make this assumption following the relevant litaratand to simplify the
calculations.

Once prior distributions have been estimated, paoste
distributions are readily calculated by applicatadBayes Theorert

n(e/x)an(e/x)i(x/6), (10)

where n(8/x) and n(6/x) are the posterior and prigdfs, respectively,
for the parameter vecta, given the sample information, andi(x/e) is
the likelihood functiony denotes proportionality.

13 See Berger (1980 a and b).

* The procedure is a direct application of the apphoof Karolyi (1993), who

estimates the stock return volatility for a giveack by drawing on prior information

from the cross-sectional pattern in the return ttiliies for a whole group of stocks.
He draws on the empirical fact that stock returfatiities are generally clustered
about some market-wide measure of volatitility aheb within subgroups of stocks
sorted by a firm’s degree of financial leverage, ligwvel of trading volume in a firm’'s
stock, and a firm’s capitalisation value.

15 See Berger (1980b).

18 See Berger (1980a).




4.1.1 Prior and Posterior Pdfs of p

In order to estimate the prior distribution qf we apply a type Il
maximum likelihood (ML-I1) prior (Berger 1980a)This empirical Bayes
approach assumes that a suitable prior is obtaasedhe result of
maximising the likelihood function of the margindistribution of the
independent components of the data given the unkntwe prior
distribution.

Consider a portfolio composed of P independentkst@turns
(r,,...r,) , each with densityf (r |u,) = N(y,,0?), and let the conjugate prior
nw) be N@u_0%)."” Then the marginal density of eagh m,( |n,) is
N(u,,02+a?). The corresponding likelihood function is

m(r | 77) = D My (1 | 77,) = [277'(0',27"‘0',?)]_E exp{i}

A0, +07)
_ o 2
* ox P(r2 u,;)
2(0-77 + af )

o P (r. -T)?
wherer=) Ltands*=>+——.
i=1 P i=1 P
Berger shows that maximisation of (11) leads toNhell prior 7i,to be

N(i.62), Wherep, =7 and 2 = max{0s® -0?}. A suitable estimator af?

is given byéa? :mii(ﬁj -1,)? (Berger (1980a) page 172).
i=1 j=1

The posteriorpdf of p is readily obtained after substituting the
prior pdf of x and the likelihood of (r|u) =N(u,0?) into the proportional

A2

(11)

—n ~ O
67 + i,
relation (10). This leads to a Normadlf with mean N and
62 +91
"N
variance l\éz (Zellner, 1971, page 15).
62+-—L

T

" In dealing with a normal mean, the class Nfu,,c2) priors is rich enough to

include approximations to most reasonable pri@se Berger (1980a) section 4.7 for
cases when this leads to unappealing conclusions.



4.1.2. Prior and Posterior Pdfs of o2

In order to estimate a suitable prior fof we follow Karolyi
(1993). Assuming independent, linear stochasicgsses for the stock

2
returns of each stock i, i=1,...,P; we know that iatistic @is
fon

distributed chi-squared withv, =N; -1 degrees of freedomyf). By
transformations? has the following density

Y

2

wherer (y) = [ x'™ exp(-x)dx , the Gamma function.

Assume now that the? are distributed in the population according
to an inverse gamma distribution (the conjugaterp@about an unknown
location parameter;, and with some unknown parameter of dispersion,

p:18

v
VT (VTJz

e |

F{ ZGiJ 2

2(%+1)
o, r[vj
2

where v,r>0 and 0<og’<w. The expected value, variance and
skewness 06?2 are given by

n(o}) = : (13)

E(o]) =, V> 2 (14)
=

V(o?) = , V>4, (15)

18 Empirical Bayes analysis is usually fairly robugth respect to the functional form
chosen forn. See Berger (1980) and Zellner (1971).



4
2(‘2—2)2
— = (16)
2+
2
Note that as gets large the medgc?) converges ta and the variance

V(c?)and skewness both converge to zero, sodhatonverges in mean

square tor. Forvgreater than four the prior far? has a rather long tail
to the right.

Pearsomeasuref skewness

VZ(G‘? =—2_ enables us
E°(cf) v-—4

to infer a suitable value for the dispersion par@mev, from prior
information. For instance, assume that the avenagatility of the
portfolio stock returns is approximately 25% andttlits variance is

approximately 3%, then is approximately eight.

The squared coefficient of variatios? =

The marginal densities

m, & [v.1) = [f, & |v,,07)1(a? |v,T)do} (17)

provide the vehicle for the estimationwénd.
A mixture of method of moments and maximum likebdo
methods are used to estimatand 1. Using the method of moments

approach, an estimator eofis given by
P

Z v;s

. Sutv+2

r:'Pl'—, (18)
>

QU +Vv+2

which simplifies to an arithmetic average of théiwdual stock’s sample

P 2

return variancesz%, whenv; is the same for each stotk.The joint
i=1

log-likelihood of v,1 from the product of the marginal conditional

densities of (17) is

1% This method is however limited to stocks with coommcharacteristics. See
footnote 14.



; ity
Log L(v,T|v, ,s°) = constant+ P% Log(v—;j + Z Log ————=
i=1

i (19)

PV +U; (Uisf+vrj
- Log
= 2 2

Replacingt with © from (18) and maximising (19) overyields
v. It is possible though that maximisation of (18ads tov=w oOr v
near zero (see Hui and Berger, 1983).

As before, the posteriopdf of ¢ is readily obtained after
substituting the likelihood equation obtained nsformation of the?

2

pdf of the statistic”c‘;" , and the priopdf of ¢? into the proportional
relation (10). This leads to an inverse gampti with parameters

2 A A

. - . _0,;s°+VT

v, =y, +V+2 ands” ==,
v

5. Data

The data employed in this study consists of dariggs for all
stocks listed in the London Stock Exchange forpgeeod January 1993
to December 2002. The prices for each day arentakehe close of
market and are adjusted for subsequent capitadrecti Stock returns are
then calculated as the difference in logarithms.

In conducting the Bayesian analysis stocks are ppouon the
basis of cross-sectional prior information. K&rql993) summarizes
the evidence supporting the idea that each of &&eervolume, and size
represents instrumental variables related to the teturn variances so
that a reasonable alternative choice of prior dgnshould include
subgroups of return variances sorted by the statkeasures of leverage,
volume and size. This study employs these threepgng criteria, in
addition to a separate group containing all stookihie LSE. The latter
takes account of the case where no prior informasibout the stock is
available, other than the fact that it comes frdma population of all
stocks in the LSE. Each one of these groups & Bivided into three
subgroups (high, medium, low), which provide thesibafor the
estimation of ten equally weighted portfolios.

The balance sheet and trading information useddopgthe stocks
Is selected in order to ensure that such informat® known at the
moment of estimating the results. Although defarcutting points are
tested, the results presented below are calcutatdtie basis of balance

10



sheet and trading information published for thedthguarter of 2002.
Prior hyperparameters are estimated for the lagtofldhe time series.
The fact that the results are virtually unchangdanvdifferent cutting
points are considered, suggests a reasonabledeseltionarity.

All data is taken from Datastream and simulatiaescanducted
using Gauss Aptech Systems.

6. Simulations

Confidence regions (8) and (9) above are estimfmiedach of the
ten portfolios described in the previous sectiorrdoyning 10,000 Monte
Carlo simulations in each caSe. This produces a histogram for each
portfolio, from which the mean and upper and loweundaries are read.
As in Dowd, the confidence intervals are estimatethe 95% confidence
level. The mean of each distribution is regardecha estimate of the
unknown “true” VaR and the 2.5% and the 97.5% qlemtof the
distributions are regarded as estimates of the riamel upper bounds.
VaRs are predicated on the 95% and 99% confidenadd and on one-
day and 30-day holding periods. The simulatiores @arried out for a
sample size (N) ranging from 100 to 2580 (the cetgpsample).

The accuracy of the VaR estimate and the lowerugper bounds
is assessed by measuring their distance (i.e.dnass) from the “true”
VaR and their sensitivity to the sample size, hwaddiperiod and
confidence level.

7. Results and Conclusions

The results of the simulations are shown in taklés 3 below for
VaRs predicated on a 30-day holding period. Tlaeditional models
were also estimated, however these were excluded fine body of the
study (and presented in Annex I) due to the weaklte obtained from
the simulations. All simulated equations are shawnAnnex Il in
functional form.

The tables show simulation results for sample sraeging from
100 to 2580. For N below 600, results are missangome portfolios as
the maximisation of equation (19) fails to convergéhese cases. This is
consistent with Hui and Berger in the sense thais ippossible that
maximisation of this equation leadsue » or v near zero.

Our results basically validate the tendencies foumdDowd,
however we find that the precision of both the Vafimate and the
confidence interval are more dramatically linkedhe sample size than

2 Dowd uses the Latin Hypercube routine in @Risk.
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what Dowd suggests. For instance, Dowd finds that conventional
VaR estimate (equation 2) suffers from a downwases,bbut this bias
gets smaller as the sample size increases. Dagpaltsethat the bias of
the conventional VaR for a 95% confidence intedetreases from 1%
when N=100 to 0.1% when N=1000. When we run Dowd¢sdel with
our sample data the bias across groups ranges dretivd5% and 1.6%
when N equals 100 and rapidly approaches zeroaffogroups) as N
increases (Table 1). Only in one case is thelbgiger that 0.1% when N
is 600 or higher.  Our model, on the other hanggests that the bias is
much larger than what Dowd reports and that it eeeses much more
dramatically as the sample size increases. Foanos, the bias of the
conventional VaR estimate for the portfolio “Lewghi decreases from
89% when N=100 to 1% when the complete sample asl.us.ikewise,
when N is maximum the bias is less than 1% in aHles, except for
portfolios “Lev high” and “Lev med.” This evideadndicates that a
“reasonably” precise VaR estimator requires a sarsfde considerably
larger than what Dowd suggests.

The accuracy of the VaR estimate also differs amrably across
portfolios in our model. We assess the variabibfythe bias across
portfolios by calculation of the standard deviatioalthough we
acknowledge that this measure of variability pregidimited information
when calculated for such a small number of datatpoiWe find that the
standard deviation of the bias across portfolio43% when N equals
600, and decreases to a mere 0.3% when all thelsaniprmation is
considered. This suggests that the impact of fffereint groupings
becomes considerably more relevant as the sample d@ecreases.
Dowd’s model does not support this conclusion asstandard deviation
of the bias across portfolios in his model is alsvigss than 0.1%, except
for N=100, when the standard deviation is 0.35%esE results remain
virtually unchanged when the VaR is predicatedhat 99% confidence
level.

Similar results can be reported for the lower apgder bounds of
the confidence interval. Both the lower and uppeund move further
away from the mean of the distribution as eacthef¢dample size and the
confidence level decreases. This tendency isdiess in both Dowd’s
and our model when the holding period increases. irfstance, for “Lev
high” when N=2580, the lower bound under both medebves closer to
the mean of the distribution when the holding pgfitcreases. The same
happens with “Size high” and “Size med” when N %¥Q or higher. In
two additional cases, “Vol high” and “Lev med”, tlever bound moves
closer to the mean of the distribution when thelimg period increases in
our model, but not in Dowd’s.

12



Similarly, the upper bound moves closer to the meérthe
distribution when N =2580 for “Vol high.” Thissd happens for “Size
high” when N is 1500 or higher and again the resglb in opposite
directions for “Lev med” when N=2580, although thiwe it is Dowd’s
model which shows the “right” direction.

The sensitivity of the lower and upper bounds te thfferent
groupings of stocks is extremely low (0.2%) andually identical in
both models for large N. As N gets smaller the@da&ad deviation across
portfolios of both the distance between the lowaurid and the mean of
the distribution and the upper bound and the mesds glightly bigger,
although it remains below the 2% level under botidets. Only when
N equals 100 does the standard deviation risevedef 12%.

Dowd concludes that the confidence interval depemaistly on the
sample size and gets smaller as N gets larger. reiderts that the
confidence interval decreases from roughly the \&dimate plus or
minus 20% when N=100 to the VaR estimate plus orusi9% when
N=1000. We verify these results when we run Dowd&del with our
data although with some variability across portfel{Table 3).  When
N is 1500 or higher, our model behaves similarlythat of Dowd,
although we find a considerable degree of asymnimttyeen lower and
upper bounds. When N is less than 1500 our mdmEomes
increasingly less precise as the VaR estimate daitside the interval in
an amount that increases as N gets smaller. Tédish@appens in one
case, “Lev med”, when N equals 1500. All of thesgses are
characterized by a very high v value, whereas whisrsmall (say below
30) the model provides precise results even fotldxha

We also verify Dowd’'s conclusion that the impact o¢me
confidence interval of the confidence level anddima period are
negligible compared to that of the sample size.

13



Confidence level = 95%

VaR (distance from mean)

ALL LSE Vol high Volmed Vollow Levhigh Levmed Leviow Size high Size med Size low
N=2580
Dowd -0.01%  -0.01%  -0.03%  -0.02%  -0.01% -0.04%  -0.03% 0.00% 0.02% 0.01%
C&S -0.34% -0.56% -0.75% -0.71% -1.00% -1.40% -0.97% -0.58% -0.48% -0.67%
N=1500
Dowd 0.04%  -0.04%  -0.04%  -0.02% -0.03% -0.04% -0.06% -0.01% -0.05%  -0.02%
C&S -2.12% -1.73% -2.23% -2.19% -3.45% -6.01% -3.00% -2.41% -1.66% -1.74%
N=1000
Dowd -0.07% 0.02% -0.02% -0.02% -0.09% -0.07% -0.08% 0.01% -0.03% -0.02%
C&S -6.72% -6.11% -7.63% -6.49% -13.99% -26.47% -10.96% -9.18% -5.81% -5.46%
N=600
Dowd -0.06% 0.02% -0.04% -0.11% -0.08% -0.02% -0.09% -0.02% -0.04% -0.21%
C&S  -31.45% -26.00% -36.00% -36.80% -52.32% -56.10% -17.38% -33.72%
N=100
Dowd -0.54% -0.78% -0.72% -0.70% -1.62% -0.84% -0.62% -0.46% -0.35% -0.63%
C&S -88.09% -30.29%
Lower boundary (distance from mean)
N=2580
Dowd 2.98% 2.80% 2.92% 3.12% 2.76% 2.73% 3.02% 2.53% 2.62% 3.15%
C&S 3.06% 2.89% 2.89% 3.15% 2.73% 2.84% 2.98% 2.59% 2.65% 3.12%
N=1500
Dowd 4.22% 4.01% 4.04% 4.68% 4.12% 3.98% 4.19% 3.52% 3.52% 4.52%
C&S 4.21% 3.95% 4.13% 4.51% 4.01% 3.97% 4.23% 3.51% 3.55% 4.37%
N=1000
Dowd 5.50% 5.69% 5.16% 5.95% 5.21% 5.08% 5.47% 4.96% 4.73% 5.71%
C&S 5.46% 5.30% 5.10% 5.64% 5.00% 4.79% 5.26% 4.52% 4.67% 5.56%
N=600
Dowd 9.95% 9.43% 8.91% 11.88% 8.84% 8.32% 9.86% 6.73% 6.74%  11.89%
C&S 8.31% 8.06% 7.34% 9.55% 6.14% 6.26% 6.23% 9.41%
N=100
Dowd 31.25% 26.75% 28.51% 39.24% 66.38% 31.98% 27.79% 19.71% 20.20% 36.87%
C&S 17.07% 14.86%
Upper boundary (distance from mean)
N=2580
Dowd -2.83%  -2.70%  -2.87%  -3.02% -2.70% -2.73%  -2.92% -2.43% -2.50%  -3.03%
C&S -2.86%  -2.68%  -2.81% -3.01% -2.72% -2.63% -2.89% -2.42% -2.49%  -3.00%
N=1500
Dowd -3.99%  -3.81% -3.87% -4.29% -3.69% -3.76% -3.95% -3.32% -3.48%  -4.26%
C&S -3.90%  -3.81% -3.90% -4.42% -3.71% -3.75% -3.93% -3.24% -3.36% -4.28%
N=1000
Dowd -5.12% -5.16% -4.71% -5.46% -5.11% -5.00% -5.08% -4.40% -4.24% -5.32%
C&S -5.05% -4.88% -4.80% -5.25% -4.81% -4.48% -4.92% -4.27% -4.37% -5.31%
N=600
Dowd -9.11% -8.25% -8.32% -10.94% -8.01% -7.32% -8.90% -6.18% -6.24% -10.76%
C&S -7.30%  -7.13%  -6.82% -8.78%  -5.66% -5.69% -5.58%  -8.38%
N=100
Dowd -23.97% -21.25% -22.95% -31.02% -52.27% -25.12% -21.82% -15.40% -15.72% -29.00%
C&S -14.23% -12.23%
Table 1
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Confidence level = 99%

VaR (distance from mean)

ALL LSE Vol high Volmed Vollow Levhigh Levmed Leviow Size high Size med Size low
N=2580
Dowd -0.02%  -0.02%  -0.02% 0.00%  -0.02%  -0.02%  -0.02%  -0.02%  -0.01%  -0.01%
C&S -0.33%  -0.56% -0.74%  -0.69%  -1.05% -1.39% -1.01% -0.59%  -0.50%  -0.66%
N=1500
Dowd -0.02%  -0.03%  -0.02% -0.04%  -0.03% -0.07% -0.05% -0.01% -0.02%  -0.04%
C&S -2.03%  -1.60% -2.16% -2.00% -3.38% -5.82% -2.89% -2.42% -1.62% -1.63%
N=1000
Dowd -0.07%  -0.09%  -0.04% 0.01%  -0.03%  -0.06%  -0.05%  -0.05%  -0.03%  -0.04%
C&S -6.36%  -5.75%  -7.35%  -6.02% -13.40% -25.61% -10.46%  -9.08%  -5.78%  -5.09%
N=600
Dowd -0.12%  -0.07%  -0.08%  -0.07%  -0.09% -0.14% -0.05% -0.04% -0.05% -0.18%
C&S  -27.73% -23.22% -32.76% -31.03% -49.02% -51.74% -16.91% -28.50%
N=100
Dowd -0.55%  -0.36%  -0.36% -0.76%  -0.89%  -0.42% -0.43% -0.35% -0.22%  -0.50%
C&S -79.07% -28.85%
Lower boundary (distance from mean)
N=2580
Dowd 3.00% 2.82% 2.86% 3.02% 2.69% 2.80% 2.95% 2.58% 2.67% 2.99%
C&S 3.04% 2.84% 2.95% 3.08% 2.71% 2.78% 2.89% 2.71% 2.66% 2.99%
N=1500
Dowd 4.10% 3.93% 3.91% 4.28% 3.86% 3.90% 4.06% 3.53% 3.63% 4.13%
C&S 3.94% 3.87% 4.01% 4.15% 3.77% 3.83% 3.94% 3.55% 3.66% 4.14%
N=1000
Dowd 5.12% 5.12% 4.98% 5.35% 5.20% 4.97% 5.12% 4.65% 4.68% 5.46%
C&S 5.22% 5.24% 5.07% 5.41% 4.90% 4.58% 5.10% 4.48% 4.61% 5.29%
N=600
Dowd 8.15% 7.97% 7.87% 9.22% 7.82% 7.36% 8.33% 6.53% 6.49% 9.18%
C&S 7.33% 7.24% 6.64% 7.79% 5.71% 5.79% 6.02% 7.74%
N=100
Dowd 24.80% 22.21% 22.91% 27.51% 34.53% 24.64% 23.13% 17.85% 18.63%  25.98%
C&S 15.60% 13.89%
Upper boundary (distance from mean)
N=2580
Dowd -2.9% -2.7% -2.7% -2.9% -2.6% -2.7% -2.8% -2.6% -2.6% -2.9%
C&S -2.8% -2.7% -2.8% -2.9% -2.7% -2.6% -2.8% -2.5% -2.5% -2.9%
N=1500
Dowd -3.9% -3.7% -3.7% -4.1% -3.6% -3.7% -3.8% -3.2% -3.4% -3.9%
C&S -3.7% -3.6% -3.7% -4.1% -3.6% -3.7% -3.8% -3.3% -3.4% -4.0%
N=1000
Dowd -5.0% -4.9% -4.6% -4.9% -4.7% -4.7% -4.8% -4.4% -4.2% -5.0%
C&S -4.7% -4.8% -4.6% -5.0% -4.6% -4.3% -4.7% -4.3% -4.2% -4.9%
N=600
Dowd -7.5% -7.3% -7.2% -8.4% -7.2% -6.7% -7.5% -6.0% -5.9% -8.2%
C&S -6.6% -6.5% -6.1% -7.2% -5.4% -5.4% -5.4% -7.0%
N=100
Dowd -19.2%  -17.2%  -18.0%  -21.8%  -26.6%  -19.2%  -17.9%  -14.2% -14.3% -20.7%
C&S -12.9% -11.3%
Table 2
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Distance from VaR estimate
ALL LSE Vol high Vol med Vollow Levhigh Levmed Levlow Size high Size med Size low
N=2580
Dowd
Lower bound 2.99% 2.81% 2.95% 3.14% 2.77% 2.77% 3.05% 2.52% 2.59% 3.14%
Upper bound -2.82%  -2.69%  -2.84%  -3.00% -2.69% -2.68%  -2.89%  -2.44%  -2.53% -3.04%
C&S
Lower bound 3.42% 3.47% 3.68% 3.89% 3.77% 4.30% 4.00% 3.20% 3.15% 3.81%
Upper bound -2.53%  -2.14%  -2.07%  -2.32%  -1.73%  -1.25%  -1.94%  -1.85% -2.01%  -2.35%
N=1500
Dowd
Lower bound 4.18% 4.05% 4.08% 4.70% 4.15% 4.02% 4.25% 3.53% 3.57% 4.54%
Upper bound -4.02%  -3.78%  -3.83%  -4.26%  -3.66%  -3.73%  -3.90%  -3.31% -3.43% -4.24%
C&S
Lower bound 6.47% 5.78% 6.51% 6.85% 7.73%  10.62% 7.46% 6.07% 5.30% 6.23%
Upper bound -1.82% -2.12% -1.71%  -2.28%  -0.27% 2.40% -0.96% -0.85% -1.73%  -2.58%

Table 3
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Appendix |: Additional Models

Three additional models were tested, however thelteobtained
from their simulations are either weaker than thals&ined for equation
(9) or they fail to achieve “normal” convergencéhe models tested are
the following:

» Confidence region fowaRon the basis of prior distributions:
~bn(c) - n(y), (20)
wheren(.) denotes some priqudf of the unknown parametepsando®.

» Confidence region fovar

Given the conditional joint distributiort (r,s|u,0%), the “unconditional”
joint distribution g(t,s) = E [f(rs|p,0°) may be estimated by taking
u,o

expectations over the unknown parametg@rsand o®*. We apply this

procedure tovar (equation 3) and obtain two alternative “uncondiét’
pdf$* for VaR:

-b Ef(s/0)]- (Ez)lf (F/u.0?), (21)
(o m(u,0

where E_ [f()] denotes the expected value of thef f() over the

unknown parameters, which are distributed accordmgsome prior

distributionsn(.).

~b E[f(s/0)]- (Ez)lf (F/u.0?), (22)
MN(o N(p,o

where E,,[f()] denotes the expected value of the pdf over the

unknown parameters, which are distributed accgréinsome posterior
distributionsn(.).

Equations (21) and (22) require estimation of thatjdistribution
of p ando®. When both parameters of an Independent Nornugiegs
are unknown, the most convenient joint distributbdrihe two variables —

2L Although the sample parameters are no longer tondl on the population
parameters, they are conditional on the hyperpaemef the prior or posterior
distributions.
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the natural conjugate of the Normal pdf — is thermi-gamma
distributior#*

Mo (1,02 /11, 7,9,%) = 11 (0210, 2, (/1. 02, R, (23)

where n, and n, are an inverse gamma and a normal ppdfs,

respectively and h is an unknown precision parameter>0. The
2

maximum likelihood estimator ofh:S% can be obtained from the

maximisation of the likelihood ofi, evaluated at, =7. As before, a
suitable estimator far is 6;.

The joint posterior is obtained by combining thé&elihood
function of the joint Normal and the joint Normadsgma prior. This
results in a joint Normal-gammpdf with parametersu ,h",s* andv’,

.~ _hi +Nr
no h' ’
h'=h+N,
&= (0% +azn)+((N —1)"32 +NP2)-h'p, 2 “and

1
? .

purposes, here we work with the inverse-ganpaiieof 0. See Raffa and Schleifer,
page 300.

2 Raffa and Schleifer work with the Gamnpalf of h= For consistency
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Appendix I1: Main Equationsin Extended Form

 Pdfsof rand s:

f(F|lp,0%) = ! — EX (-’ (24)

1 (v)z( 1 B} us®
felo®,v)=2——| = | | = | s""exg —— 2
clon.0) F(UJ(ZJ (ozj > ex’{ 202j (25)
2
Prior and posterior distributions gfand o*:

1 IRY
(4 [1,02) =~ Exg| ~ M) j (26)
210 20,

T

where n, () denotes a prior Normal distribution.
(2o 2)
! 20 ’ (27)
r(vjoz(zﬂ)
2

wheren, () denotes an inverted gamma prior distribution.

e (02 |T,v) =

» Confidence regions

The confidence regions (9) and (20)-(22) above tihlee functional
forms presented below once the estimated prior oxderior pdfs are
substituted into each equation. Closed form smhgtiare obtained for
equations (9) and (20), both of which are readimutated using the
appropriate software. Simulations of equations) @4d (22) involve
greater complication, as it is not possible tovarto a close form solution
due to the presence @f. These equations have first to be integrated
numerically, which compromises the precision of tbgults.
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Equation (20):  -bm,(a/9,%) -m, (U/{1,,62)

(VT)Z 202 1
— | € = _1{up)
2 —r
= -b 2 2\‘/+1 A~ - 1 2 e ? o
< (Vv 2Mo:
o I—=
2

e 8 5200
e . OrTEN O
Equation (9): b (a/v ,s®)-M,u/ ——, =)
52,01 &2 Ot
TN TN
2 2
1 167+ -
2 u- ~
i v’ | —j 6i+%fz
v's? 2 Vzcsxz i %67\;2
2 € z+012
=-b|2 - 1 e
(v"2+1) " s +67f2
(6) M — On N
2 2n—
- - 5291
"N

Equation (21)-b E[f(s/o]] - (Ez)[f (F/uo)
(o (Y,0
:.b[jf(s/o)n,G (G/O,T)do} ([0t 1,07/, P9, ol
o uo

u+v

u+v
r( 2 jsul[usuﬁj[z) ]

2

e (e hpz+o) (neera ) 17

1Yoty L 2 () 2 2(N +h)

(EJ(7J r(o) (Nhﬂ (N+R)(  Nr+hp, ) *
2 i 2 H N +h ]
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Equation (22): b E [f(s/ )] - (Ez)[f (F/u,0%)
Mo n(u,o

:-b[J'f (/oMo (o/v' & )do}-”f (/1,021 o (.02 1107 v 57 )dodu

uo

- b 2(_) [ j r({ j o [ s’ j _

0" +2
~ [ I a ReAT 2 1 2
, r(v +zj 1 (Nr+h u2T5+v SZ)-(Nr(JrhE.T‘)) .
1\ Vv's®)2 2 ., 2(N +
) v eanl LG N w
F[VJ u| (N+h") NF+h'i
2 2 N+h
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