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Rovibrational Dynamics of Nuclei and Molecules

Jonathan Ian Rawlinson

We study quantized rotation-vibration dynamics with applications to nuclear and molecular
models. Firstly we consider small vibrations of Skyrmions (topological solitons which model
atomic nuclei), developing new approximations to their quantum energy spectra which incor-
porate both rotation-vibration and isorotation-vibration corrections. We find that the forms
of these corrections are highly restricted as a consequence of the large symmetry groups of
Skyrmions, and we determine them using representation theory. We explore the implications
for the Helium-4 nucleus and the Lithium-7/Beryllium-7 isodoublet, comparing our findings
with experimental data.

We propose a model for the Carbon-12 nucleus based on point ↵-particles restricted
to isosceles triangular configurations, inspired by linear chain and equilateral triangular
Skyrmions. The configuration space is not a manifold but has a graph-like structure, and we
make use of Quantum Graph Theory to study the quantized dynamics. The resulting energy
spectrum reproduces the experimental data rather well.

Nuclear physicists are interested in more than just the quantum energy spectrum: elec-
tromagnetic transition rates, for instance, measure �-decay between two nuclear states and
can be measured in the laboratory. We develop a formalism to compute electromagnetic
transition rates within rotation-vibration models and compare the results of our Carbon-12
model and a recent Oxygen-16 model to experimental data. We go on to propose some ways
in which the Oxygen-16 model might be improved.

Finally, we turn from nuclear physics to molecular physics and study the protonated
methane molecular ion, introducing a quantum graph model for the complex rotation-vibration
dynamics. We find good agreement with other numerical work where available and compute
states up to angular momentum J = 4 for the first time.
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Chapter 1

Introduction

This thesis is concerned with rotational-vibrational (or rovibrational) dynamics. Rovibra-
tional dynamics are of relevance to many physical systems: we focus on problems in nuclear
physics in Chapters 2 to 5 before turning to molecular physics in Chapter 6. The rovibra-
tional point of view is more familiar in the latter area of physics. We begin, therefore, by
giving a brief outline of molecular vibrations and rotations.

Molecules are complex systems of atomic nuclei and electrons with many degrees of free-
dom. It is often possible to separate the electronic motion from the nuclear motion through
the Born-Oppenheimer approximation. This results in a simpler problem: the atomic nuclei
move in the presence of a Born-Oppenheimer potential V which captures the average effect
of the electrons. If V has a deep minimum then the molecule stays close to this equilibrium.
Methane (CH4), for example, has a definite tetrahedral shape as illustrated in Figure 1.1.
The molecule is free to rotate in space and perform small vibrations about the tetrahedral
shape. If these vibrations are small enough then a further simplification is possible, namely
the separation of vibrational and rotational degrees of freedom. Separability is taken as a
first approximation and, if necessary, some corrections such as centrifugal effects and Coriolis
couplings can be introduced to account for rovibrational interactions.

The separation of rotations and vibrations is often a very good approximation. However,
there are systems of physical importance for which it breaks down. Phosphorus pentafluoride
(PF5) is a famous example. The equilibrium shape for PF5 is illustrated in Figure 1.2. This
arrangement involves two different kinds of P � F bonds (axial and equatorial), owing to
its trigonal bipyramidal structure. However, there is a relatively low energy barrier to the
exchange of fluorine atoms between equatorial and axial positions via a continuous change
of shape known as Berry pseudorotation [1]. This is thought to explain why NMR studies of
PF5 find only one type of 19F resonant frequency instead of the naive two expected from the
equilibrium structure [2].

A more dramatic breakdown occurs for protonated methane (CH+
5 ): here, even just the

1



Figure 1.1: Tetrahedral structure of CH4. C and H atoms are coloured red and blue respec-
tively.

Figure 1.2: Trigonal bipyramidal structure of PF5. P and F atoms are coloured red and
blue/green respectively. In the left-hand configuration, green denotes equatorial F atoms
while blue denotes axial F atoms. The axial atoms can easily become equatorial atoms by a
motion called Berry pseudorotation, giving the right-hand configuration.
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zero-point energies of the lowest vibrational modes are sufficiently large to overcome the
energy barrier for exchange of the protons, allowing essentially free movement between the
various minima on the Born-Oppenheimer potential energy surface [3]. Thus, even at zero
temperature, CH+

5 should not be pictured as having a definite shape but rather as constantly
moving between the minima. The conventional techniques of molecular physics do not apply
to such systems and the treatment of CH+

5 has required creative new models such as the
molecular superrotor [4] and the quantum graph model [5]. We will revisit CH+

5 in Chapter
6.

Wheeler proposed long ago that light ↵-conjugate nuclei such as Carbon-12 and Oxygen-
16 should be thought of as molecules of ↵-particles [6]. Carbon-12, for example, is based
on an equilateral triangular arrangement of ↵-particles and Oxygen-16 on a tetrahedral ar-
rangement. The only difference is that, in the absence of the Born-Oppenheimer potential of
molecular physics, there is some freedom in choosing the potential energy. Once the potential
energy is fixed, one can derive the quantum states of nuclei such as Carbon-12 and Oxygen-16
as rovibrational excitations in just the same way as in molecular physics. More generally, in
nuclear models such as the Skyrme model, where nuclei appear as topological solitons, one
pictures atomic nuclei as having some definite equilibrium shape with the possibility of vibra-
tions and rotations about this shape. Thus a clear understanding of rovibrational dynamics
is of importance for a variety of problems within nuclear physics as well as in molecular
physics.

Recent work inspired by Skyrmion dynamics suggests that, even at low energies, the
Oxygen-16 nucleus knows about shapes other than the minimal-energy tetrahedron of the
traditional ↵-particle model [7]. These include a flat square, another highly symmetric ar-
rangement of ↵-particles. In Chapter 3 we make an analogous proposal for Carbon-12. These
models suggest it is better to compare Oxygen-16 and Carbon-12 to floppy molecules such
as CH+

5 than to rigid molecules such as CH4. We will explore some more of the physical con-
sequences of these models in Chapter 4, deriving electromagnetic transition rates between
nuclear states.

Much of the literature on rovibrational dynamics is tied to the traditional small-vibration
picture of molecular physics. From this perspective, it is hard to understand the complicated
interplay between rotations and shape-deforming degrees of freedom that occur in more
general nuclear and molecular models. We aim to clarify some of these issues by adopting
a geometric approach, as described in Section 1.1 and Chapter 2. Chapters 3 to 6 involve
a novel approximation, based on Quantum Graph Theory (QGT), relevant for situations
where a molecule or nucleus can move between several different equilibria on a potential
energy surface of the kind described above. We review some essential material from QGT in
Section 1.2.

3



1.1 Geometric approach to deformable body dynamics

A novel approach to deformable body dynamics emerged in the 1980s in the work of Shapere
and Wilczek [8]. Their work made it clear that the appropriate mathematical setting for
the discussion of rotations and vibrations is that of principal bundles. The key idea is the
following: the configuration space C of a deformable body, consisting of oriented shapes, has
the structure of an SO(3)-bundle. The SO(3) action simply rotates configurations in physical
space. Thus the base space is the space of unoriented shapes and the fibre above a given
unoriented shape represents all the possible orientations of that shape in space.

Suppose one is interested in computing the net rotation undergone by a deformable body,
under conditions of vanishing angular momentum, as the body changes its shape to traverse
a closed loop in shape space. Shapere and Wilczek showed that this net rotation can be com-
puted as the holonomy associated with a certain connection A on the bundle. In particular,
the net rotation depends only on the path in shape space and is independent of the rate at
which the body changes its shape. This elegant result illustrates the power of the geometric
formulation of deformable body dynamics.

Many concepts in the traditional molecular physics literature such as Coriolis corrections
and the subtleties of body-fixed frame definitions are most easily visualised and expressed
in the language of principle bundles, becoming simple consequences of geometric facts such
as the existence of the non-trivial connection A or the freedom to choose different gauges.
In this thesis we aim to show how these concepts can be useful in developing molecular
and nuclear models. In Chapter 2, in which we study the Coriolis corrections of molecular
physics and their analogues in nuclear physics, we make use of a formulation of the quantum
Hamiltonian for deformable body dynamics in which natural geometric objects such as the
connection A are manifest.

1.2 Quantum graph theory

In QGT one is interested in describing the dynamics of a quantum particle confined to the
edges of a metric graph �, consisting of vertices v 2 V and edges e 2 E . In later chapters
these vertices will represent equilibrium shapes of a molecule or nucleus, with the edges
corresponding to low-energy paths between them. Suppose for now we are interested in free
motion on the graph � for a particle of unit mass. On each edge e 2 E , it is natural to write
down the time-independent Schrödinger equation (in units where ~ = 1)

H e (s) ⌘ �
1

2

d2

ds2
 e (s) = E e (s) , (1.1)

4



1

2

n

3

Figure 1.3: Star graph �S.

where s is a coordinate along the edge and  e is the wavefunction. But this is not enough
to set up the quantum mechanical problem: we also need to specify appropriate boundary
conditions at the vertices v 2 V . Here, by appropriate we mean boundary conditions which
preserve familiar requirements of quantum theory such as self-adjointness of the Hamiltonian.
We may wonder what is the complete set of such boundary conditions. This question can
be answered using the mathematical theory of self-adjoint extensions. For our purposes,
however, it will suffice to consider a simple example.

1.2.1 Quantum particle on a star graph

Consider the graph �S illustrated in Figure 1.3, consisting of a single vertex which joins n

edges. We define a coordinate si on edge i with the vertex at si = 0 and we demand that the
wavefunction  i (si) satisfies the Schrödinger equation

✓
�
1

2

d2

ds2i
+ V (si)

◆
 i (si) = E i (si) (1.2)

which possibly involves a potential V (si). Then the most common boundary conditions are
the so-called free or Kirchoff boundary conditions

NX

i=1

 0
i (0) = 0 (1.3)

 1 (0) =  2 (0) = . . . N (0) . (1.4)

In words: the wavefunction is continuous at the vertex, with outgoing derivatives summing
to zero. These are the vertex boundary conditions usually adopted in physical applications
of QGT and will be our boundary conditions of choice whenever we talk about quantum
mechanics on a graph. We now compute the spectrum for a free particle on a simple compact
graph to illustrate how quantization proceeds.

5



A B

si = 0 si = 1

1

2

3

Figure 1.4: Three-edged graph �3.

1.2.2 Quantum particle on compact three-edged graph

Consider the graph �3 in Figure 1.4. �3 has three edges labelled 1, 2, 3 with coordinates
s1, s2, s3 respectively, with each coordinate si ranging from si = 0 (vertex A) to si = 1

(vertex B). We take the Schrödinger equation on each edge to be

�
1

2

d2

ds2i
 i (si) = E i (si) . (1.5)

It follows that the wavefunction on edge i must take the form

 i (si) = ai exp (iksi) + bi exp (ik (1� si)) (1.6)

with E = 1
2k

2. We will refer to k as the edge momentum. The vertex boundary conditions
described in the previous section lead to linear constraints on the ai and the bi: continuity
at vertex A implies

a1 + b1 exp (ik) = a2 + b2 exp (ik) = a3 + b3 exp (ik) (1.7)

while continuity at vertex B implies

a1 exp (ik) + b1 = a2 exp (ik) + b2 = a3 exp (ik) + b3. (1.8)

Finally, the condition on the sum of the outgoing derivatives at A and B leads to the condi-
tions (for k 6= 0)

(a1 + a2 + a3)� (b1 + b2 + b3) exp (ik) = 0 (1.9)

and
(a1 + a2 + a3) exp (ik)� (b1 + b2 + b3) = 0 (1.10)
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respectively. The above equations constitute, for generic k, a set of 6 linearly independent
constraints on the ai and the bi giving no non-trivial solutions. However, for special values
of k there will be a linear dependence between the constraints.

Explicitly, the above constraints are easily recast in matrix form as
0

BBBBBBBBB@

eik eik eik �1 �1 �1

1 1 1 �eik �eik �eik

1 �1 0 eik �eik 0

1 0 �1 eik 0 �eik

eik �eik 0 1 �1 0

eik 0 �eik 1 0 �1

1

CCCCCCCCCA

0

BBBBBBBBB@

a1

a2

a3

b1

b2

b3

1

CCCCCCCCCA

=

0

BBBBBBBBB@

0

0

0

0

0

0

1

CCCCCCCCCA

(1.11)

and the matrix on the left has a non-trivial kernel if and only if it has vanishing determinant,
that is if and only if

0 = 9
�
1� e2ik

�3 (1.12)

which is true precisely when
k = n⇡ (1.13)

for n 2 Z+. So the discrete energy spectrum is

E =
n2⇡2

2
(1.14)

where n 2 Z+, together with the special case

E = 0 (1.15)

associated with the constant wavefunction (k = 0).
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Chapter 2

Coriolis terms in Skyrmion quantization

This chapter is based on the single-author paper [9].

2.1 Introduction

In the Skyrme model approach to nuclear physics, atomic nuclei are identified with topo-
logical solitons in a nonlinear field theory of pions. These topological solitons are known as
Skyrmions. Given a Skyrmion, one may use insights from the field theory dynamics to identify
a small number of collective coordinates which are relevant at low energies. The collective
coordinates chosen will typically include both rotations and isorotations of the Skyrmion
together with other, shape-deforming, degrees of freedom: the nucleus is viewed as a de-
formable body which is free to rotate in space as well as isorotate in isospace. These degrees
of freedom of the Skyrmion are then quantized, hopefully giving a reasonable description of
the corresponding nucleus.

Naively one may hope to separate the zero modes (rotations and isorotations, corre-
sponding to the action of the symmetry group SU(2)spin ⇥ SU(2)isospin on the Skyrmion)
when quantizing this system. In some cases a complete factorisation is possible, but gen-
erally one has to live with interactions between zero modes and shape-deforming degrees of
freedom. This kind of interaction is already understood in the molecular physics literature,
where so-called Coriolis effects are known to play an important role in rovibrational spectra.
Skyrmion quantization involves a slight generalisation: a molecule can rotate and vibrate,
but a Skyrmion can additionally isorotate. Mathematically it is not difficult to incorpo-
rate isorotations, provided we have a clear understanding of the usual Coriolis effects. We
choose to take a geometric perspective, as described in Chapter 1. A useful review article
for quantization within the geometric point of view is [10] which we follow closely in this
chapter.

In Section 2.2 we set up the general formalism before exploring various applications in the
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following sections. In Section 2.3 we consider small vibrations of a Skyrmion and show how
the problem simplifies in this case. Using these ideas, we compute the quantum spectrum of
a vibrating and rotating B = 4 Skyrmion (with cubic symmetry) in section 2.4, finding good
agreement with the observed excited states of the ↵-particle. Finally, we study the lowest-
frequency vibration of the B = 7 Skyrmion, leading to a suggestion that the surprisingly low
energy of the Lithium-7/Beryllium-7 spin 3

2 ground state may be in part due to an isospin
Coriolis effect.

2.2 Quantization of Skyrmions

2.2.1 Skyrme Lagrangian

Skyrmions are static soliton solutions to the field equations associated with the Skyrme
Lagrangian. In more detail, pion fields ⇡(x, t) are combined into an SU(2)-valued field on
spacetime U : R4

!SU(2)

U(x, t) = �(x, t)I2 + i⇡(x, t) · ⌧ (2.1)

and the Lagrangian defining the classical field theory is (in Skyrme units)

L =

Z
d3x


1

2
Tr(LµL

µ) +
1

16
Tr([Lµ, L⌫ ][L

µ, L⌫ ]) +m2Tr(U � I2)
�

(2.2)

with Lµ = U †@µU. Isospin symmetry corresponds to transformations U ! C†UC for any
constant matrix C 2 SU(2). Skyrmions are classified by an integer B 2 Z which is identified
with the baryon number of the nucleus. The integer B is conserved as a consequence of
boundary conditions: we demand that

U ! I2 (2.3)

at spatial infinity which means that the static field U can be regarded as a continuous map
from the one-point compactification S3 of spatial R3, i.e. U : S3

! S3. Such maps are
classified by a homotopy class B 2 ⇡3 (S3) ⇠= Z which is preserved under continuous time
evolution. We will see explicit examples of Skyrmions in Section 2.4 and Section 2.5.

2.2.2 Restricted configuration space

Given a Skyrmion, we are often interested in constructing a restricted configuration space C

of deformations. C should in principle capture the field configurations which are relevant at
low energies. A natural first choice is given by the rigid-body approximation: only rotations
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and isorotations of the Skyrmion are included. One then quantizes geodesic motion on
the corresponding submanifold C ' SU(2) ⇥ SU(2) with respect to the metric induced
from the full field theory. The resulting problem is equivalent to a (generalised) rigid rotor,
with quantum states classified by spin and isospin. Comparisons to nuclear data have been
promising in many cases, but recent work suggests that to model real nuclei it is necessary
to take additional deformations of the Skyrmion into account: we need to include more than
just the zero modes.

One can study vibrations of Skyrmions and find their normal modes [11]. Then a natural
next step beyond rigid-body quantization is to include those modes with the lowest non-zero
frequency (the first N of them, say). Within a harmonic approximation we can think of
the resulting configuration space as C ' SU(2) ⇥ SU(2) ⇥ RN . More generally we may
be interested in larger collective motions (not just small vibrations). For example, in [7]
Oxygen-16 was modelled by motion on C ' SU(2) ⇥ SU(2) ⇥ M with M a quotient of a
six-punctured sphere.

The examples given so far have the product structure C ' SU(2)⇥ SU(2)⇥ Cshapes, but
one could imagine a restricted configuration space C which includes zero modes (generated
by SU(2)⇥SU(2)) but which is not globally a product of the above form. C should really be
thought of as a principal SU(2)⇥ SU(2)-bundle, with rotations and isorotations generating
the fibres. Locally it will be a product but this might not be true globally.

2.2.3 Quantum Hamiltonian

For clarity, we will at first ignore isorotations. Our configuration space comes with an action
of the rotational symmetry group SU(2), and we can think of the configuration space C as a
principal SU(2)-bundle

⇡ : C ! Cshapes

with rotations generating the fibres. For every point in the base space Cshapes (which we will
refer to as shape space) there is an open neighbourhood V ✓ Cshapes containing the point
such that ⇡�1 (V ) can be identified with SU(2)⇥V (one should think of this identification as
making a particular choice of reference orientation for each fibre). Working locally, we think
of a point in configuration space as a pair (✓i, sj) with sj, the coordinates on V ✓ Cshapes,
specifying the shape of the field configuration and with ✓i Euler angles parametrising its
orientation in space.

Our configuration space inherits a metric g̃ from the full Skyrme field theory. SU(2)

symmetry implies that this inherited metric must be symmetric under (left) translations in

10



the SU(2) factor. Thus the most general form of the inherited metric is

g̃ =
⇣
� dsi

⌘ ⇤ ⇤Aj

AT
i ⇤ gij +Ai · ⇤ ·Aj

! 
�

dsj

!
(2.4)

where the � = (�1, �2, �3) are left-invariant one forms on SU(2) and where ⇤, Ai and gij only
depend on the shape coordinates si. Note that we have suppressed the index on �, that ⇤ is
a 3⇥ 3 matrix, and that a bold font is used to indicate that Ai is a 3-component vector for
each i. The suggestive notation Aj has been used as it will turn out that this corresponds
to a particular connection on the principal bundle C.

We now construct a quantum Hamiltonian by computing the Laplace-Beltrami operator
on C. Recall that the Laplace-Beltrami operator � corresponding to a metric G has an
expression in local coordinates

�f =
1p
|G|

@i
⇣p

|G|Gij@jf
⌘
. (2.5)

For the calculation of � it is useful to note that g̃ can be rewritten as

g̃ =
⇣
d✓ dsi

⌘
G

 
d✓

dsj

!
(2.6)

(here we closely follow [10]) where

G =

 
�T 0

AT
i I

! 
⇤ 0

0 gij

! 
� Aj

0 I

!
. (2.7)

� is the matrix which captures the relationship between the left-invariant one forms � and
the (coordinate) one forms d✓. Thus we can compute |G| = |�|2 |⇤| |gij| and then use the
expression (2.5) to obtain a quantum Hamiltonian

H =
1

2
L · ⇤�1

· L+
1

2
(pi � L ·Ai) g

�1
ij (pj � L ·Aj) + V2 (s) + V (s) (2.8)

where we have included both the kinetic term �~2� and a potential V (s) on configuration
space. L is the (usual) body-fixed angular momentum operator familiar from rigid-body
theory (J will denote the space-fixed angular momentum operator) and pi = �i~ @

@si
. Also

appearing in the kinetic term is

V2 (s) =
~2
2
(|⇤| |gij|)

� 1
4 @i
⇣
g�1
ij @j (|⇤| |gij|)

1
4

⌘
. (2.9)
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2.2.4 Effective problem on Cshapes

Exploiting rotational symmetry, we can classify the energy eigenstates of (2.8) by J (where
J (J + 1) is the eigenvalue of J2 in the usual way) and J3. Recall from rigid-body theory
that a complete set of commuting operators for the rotational part of the problem is given
by J2, J3, L3 and so within a particular (J, J3) sector we can expand the total wavefunction

 =
+JX

L3=�J

�L3(s) |JJ3L3i . (2.10)

Within this sector, we see that  can be thought of as a complex vector-valued function
0

BB@

��J(s)
...

�J(s)

1

CCA

on V ✓ Cshapes. Of course, we have only been working locally, i.e. in some patch of C

which looks like a product SU(2) ⇥ V . The total wavefunction, defined on all of C, isn’t a
vector-valued function on the base space but is more precisely a section of a (complex) vector
bundle of rank 2J+1. These two notions coincide for the case of trivial bundles. In the more
general case, we would work with functions in separate patches and then impose appropriate
conditions on the overlaps to ensure they give a genuine section. An explicit example of this
process will be given in Chapter 5.

Given the expansion for  above, we obtain the Schrödinger equation

1

2
L · ⇤�1

· L

0

BB@

��J(s)
...

�J(s)

1

CCA+
1

2
(pi � L ·Ai) g

�1
ij (pj � L ·Aj)

0

BB@

��J(s)
...

�J(s)

1

CCA (2.11)

+(V2 (s) + V (s)� E)

0

BB@

��J(s)
...

�J(s)

1

CCA = 0

where now the operators L act by matrix multiplication. This is the effective problem on
Cshapes. It is equivalent to the motion of a particle on Cshapes coupled to an SU(2) gauge field,
with the particle transforming in the (2J + 1)-dimensional irrep of the gauge group and with
the gauge field (or connection) corresponding to Ai. Gauge transformations are equivalent
to redefining our choice of reference orientation for each s 2 Cshapes.

Note that the rotational motion influences the motion on Cshapes through the familiar
minimal coupling pj �L ·Aj of the momentum pj to the gauge field. To completely separate
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out rotational motion would require us to find a gauge where Ai vanishes. Ai, while gauge
dependent, has gauge-invariant properties such as (possibly non-vanishing) curvature. The
curvature of Ai can therefore be viewed as an obstruction to complete separation of rotational
motion from the other degrees of freedom.

2.2.5 Including isospin

The above derivation is easily modified to include the possibility of isospin. Once again the
metric must take the form

g̃ =
⇣
� dsi

⌘ ⇤ ⇤Aj

AT
i ⇤ gij +Ai · ⇤ ·Aj

! 
�

dsj

!
(2.12)

where now � =
�
�J
1 , �

J
2 , �

J
3 , �

I
1 , �

I
2 , �

I
3

�
includes both left-invariant one forms

�
�J
1 , �

J
2 , �

J
3

�

associated with rotations and
�
�I
1 , �

I
2 , �

I
3

�
associated with isorotations. ⇤ and Ai have now

become a 6⇥ 6 matrix and (for each i) a 6-component vector respectively. One ends up with
the Hamiltonian

H =
1

2

 
L

K

!
· ⇤�1

·

 
L

K

!
+

1

2

 
pi �

 
L

K

!
·Ai

!
g�1
ij

 
pj �

 
L

K

!
·Aj

!
+ V2 + V (2.13)

where
V2 (s) =

~2
2
(|⇤| |gij|)

� 1
4 @i
⇣
g�1
ij @j (|⇤| |gij|)

1
4

⌘
. (2.14)

We will make use of this Hamiltonian later. For now, we will go back to only including
rotations.

2.3 Equilateral triangle in R3

We will be interested in small vibrations of Skyrmions, ultimately applying the above ideas
to the quantization of the B = 4 and B = 7 Skyrmions. But let us start with a simpler
problem which illustrates the main ideas: as a model for a Skyrmion, consider an equilateral
triangular arrangement of point particles in R3, with particle i having unit mass and position
vector ri. We imagine these are attached by identical springs.

This (equilateral) arrangement has symmetry group D3h, and so its vibrations can be
classified by irreps of this group. There are three normal modes (not including zero modes),
which split into the irreps A � E 0 under the action of D3h. For the spring model, the E

0

vibration has the lowest frequency with !
E
0

!A
= 1p

2
. Suppose we are interested in a config-

uration space C ' SO(3) ⇥ R2 which includes only this doubly-degenerate vibration (E 0)
together with rotations. This is clearly a trivial bundle. We will use coordinates s = (s1, s2)
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on Cshapes, and Euler angles ✓i to specify orientation. Let d be the distance from each particle
to the centre of mass in the equilibrium configuration, and work in units where ~ = 1, d = 1.
Let the coordinates (✓i = 0, s) correspond to the configuration

r1 =

0

B@
0

1

0

1

CA+ s1

0

B@
0
1p
3

0

1

CA+ s2

0

B@

1p
3

0

0

1

CA (2.15)

r2 =

0

B@

p
3
2

�
1
2

0

1

CA+ s1

0

B@
�

1
2

�
1

2
p
3

0

1

CA+ s2

0

B@
�

1
2
p
3

1
2

0

1

CA (2.16)

r3 =

0

B@
�

p
3
2

�
1
2

0

1

CA+ s1

0

B@

1
2

�
1

2
p
3

0

1

CA+ s2

0

B@
�

1
2
p
3

�
1
2

0

1

CA . (2.17)

This is our gauge choice. A general configuration (✓i, s) with ✓i 6= 0 can be deduced from
a rotation of the corresponding reference configuration (0, s). We will assume V (s) = 1

2!
2s2.

We can compute the metric induced from the Euclidean metric on R9 (three point particles)
which leads, by comparison to the expression

g̃ =
⇣
� dsi

⌘ ⇤ ⇤Aj

AT
i ⇤ gij +Ai · ⇤ ·Aj

! 
�

dsj

!
, (2.18)

to

⇤ =

0

B@

3
2 +

p
3s1 +

1
2 (s

2
1 + s22) �

p
3s2 0

�
p
3s2

3
2 �

p
3s1 +

1
2 (s

2
1 + s22) 0

0 0 3 + s21 + s22

1

CA , (2.19)

gij =
1

3 + s21 + s22

 
3 + s21 s1s2

s1s2 3 + s22

!
, (2.20)

and

A1 =

0

BB@

0

0
s2

3+s21+s22

1

CCA A2 =

0

BB@

0

0

�
s1

3+s21+s22

1

CCA . (2.21)
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We can already see that the gauge field takes a familiar form for small (s1, s2): we have

A1 ⇠

0

B@
0

0
s2
3

1

CA ,A2 ⇠

0

B@
0

0

�
s1
3

1

CA (2.22)

and so the effective motion on Cshapes will appear as if coupled to a constant magnetic field
(of strength 1

3L3) pointing out of the (s1, s2)-plane. For this example, it is also simple to
compute

V2 (s) =
1

2
(|⇤| |gij|)

� 1
4 @i
⇣
g�1
ij @j (|⇤| |gij|)

1
4

⌘
(2.23)

=
1

2

�6 + s21 + s22
(3� s21 � s22)

2 .

Recall that the full quantum Hamiltonian is

H =
1

2
L · ⇤�1

· L+
1

2
(pi � L ·Ai) g

�1
ij (pj � L ·Aj) + V2 (s) + V (s). (2.24)

We now make the following approximation: assume that the vibrational frequency ! is large
so that the most important terms in the above Hamiltonian give a harmonic oscillator

H0 =
1

2

�
p21 + p22

�
+

1

2
!2
�
s21 + s22

�
. (2.25)

We will expand the full Hamiltonian in 1
! , keeping the leading corrections to the H0 system.

Note that H0 has eigenvalues ⇠ !. Also note that, schematically, s2 ⇠ 1
! and p2 ⇠ ! for the

harmonic oscillator from which the orders of other terms in H can be deduced. Expanding
out the full Hamiltonian, we have

H = H0 +
1

3

✓
L2

�
1

2
L2
3

◆
+

1

3
L3Js +

1

6
J2
s �

1

3| {z }
+ . . .

⇠ !1
⇠ !0

⇠ higher

(2.26)

where Js = s1p2 � s2p1 is an operator which will be referred to as the vibrational angular
momentum. To this order, the only effect of V2 (s) is to contribute an additive constant (here,
�

1
3) to the Hamiltonian. This will be the case more generally and so we will neglect V2 (s)

in later examples. So the terms that remain are H0 (a harmonic oscillator corresponding to
vibrations), 1

3

�
L2

�
1
2L

2
3

�
(the familiar rigid-body Hamiltonian, corresponding to rotations)

and finally the term 1
3L3Js +

1
6J

2
s which comes from the gauge field. It gives the leading

correction due to rotation-vibration coupling. This is referred to as a Coriolis term in the
molecular physics literature.

15



2.3.1 Symmetry arguments

Before moving on, let’s reflect on what we have done in this example. The coordinates (✓i, s)
were actually carefully chosen so that the metric took the form

g̃ =
⇣
� dsi

⌘ ⇤0 ⇤0Aj

AT
i ⇤0 �ij

! 
�

dsj

!
(2.27)

where to the order we are interested in, ⇤ = ⇤0 a constant matrix (the moment of inertia
tensor for the equilibrium configuration) and the bottom-right entry is �ij (normal coordinates
for the vibration) and the off-diagonal entry ⇤Ai vanishes at the equilibrium configuration
(this says that rotations and vibrations are orthogonal at the equilibrium configuration).
Then, to the order we are interested in, Ai is linear in the shape coordinates.

Now recall that the equilibrium configuration has D3h symmetry and that the vibration
we are interested in transforms in the E 0 representation of D3h, ⇢vib ⇠= E 0. In particular,
the metric g̃ enjoys a D3h symmetry and so the gauge field Ai is not just an arbitrary linear
function of the shape coordinates but corresponds to a singlet of D3h under an action of
D3h isomorphic to ⇢vib ⌦ ⇢vib ⌦ ⇢rot where ⇢rot denotes the representation in which rotations
(Rx, Ry, Rz) transform under D3h (for our example ⇢rot = A0

2 � E 00). This observation is
equivalent to Jahn’s rule, which is known in molecular physics as a necessary condition for
the existence of non-trivial first-order Coriolis terms [12]. In the present case, a simple
character theory calculation shows that ⇢vib ⌦ ⇢vib ⌦ ⇢rot contains precisely one copy of the
trivial irrep of D3h. So the gauge field Ai is determined by a single constant ⌘. It has to
transform trivially under ⇢vib ⌦ ⇢vib ⌦ ⇢rot, which in this case means that the Ai must satisfy

8g 2 D3h : ⇢rot (g) (⇢vib (g))ik Ak

⇣
(⇢vib (g))

�1
jl sl

⌘
= Ai (sj) (2.28)

so that

A1 = ⌘

0

B@
0

0

s2

1

CA A2 = ⌘

0

B@
0

0

�s1

1

CA . (2.29)

The only reason to do the explicit calculation of the previous section was to determine that
⌘ = 1

3 . We might more generally take ⌘ to be a free parameter. This insight will prove useful
in situations where it is not so easy to compute the gauge field explicitly, and all we have
is knowledge of the relevant symmetry group together with the transformation properties of
the vibration.
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Figure 2.1: B=4 Skyrmion with Oh symmetry. Figure courtesy of Dankrad Feist.

2.4 B = 4 Skyrmion and the ↵-particle

We now apply our insights from the previous section to the problem of a vibrating and
rotating Skyrmion. The minimal energy B = 4 Skyrmion has Oh symmetry and is illustrated
in Figure 2.1. The isospin 0 quantum states of this Skyrmion correspond to the ↵-particle.
In [13] the authors performed rigid-body quantization of the Oh-symmetric B = 4 Skyrmion,
finding a ground state with spin J = 0 and a first excited state with J = 4. The spin 4

excitation (at roughly 40 MeV) has not yet been experimentally observed. In addition, there
are numerous observed excited states with lower spin in the 20 � 30 MeV range [14] which
are not captured by the rigid-body picture. The Oh symmetry group of the rigid B = 4

Skyrmion is too large to allow such excitations (which have spins 0, 1 and 2) and so the data
suggests that vibrations must be included if we want to describe these states.

2.4.1 Vibrations of the B = 4 Skyrmion

The lowest four vibrational modes [11, 15] of the B = 4 Oh-symmetric Skyrmion are listed
in Table 2.1. The associated frequencies are those calculated in [11] for a dimensionless
pion mass of m = 1. These vibrations have been classified using Oh representation theory.
As a group, Oh is generated by a 3-fold rotation C3, 4-fold rotation C4 together with an
inversion element �I. Oh has 10 irreps with the corresponding character table given in Table
2.2. Following a similar approximation scheme to the previous section, we aim to compute
the quantum spectrum of a vibrating and rotating B = 4 Skyrmion. We assume that the
vibrations in Table 2.1 are the most important and neglect any other degrees of freedom. We
will ignore isorotations as we are interested in isospin 0 states corresponding to the ↵-particle.
(We will include isorotations when we look at the B = 7 Skyrmion in the next section).
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Frequency Irrep of Oh Description
0.46 E+ Two opposite faces pull away

from each other to form two B = 2 tori.
In the other direction, four edges pull

away to become four B = 1 Skyrmions.
0.48 F+

2 An opposing pair of square-symmetric
faces deform to become rhombus-shaped.

0.52 A�
2 Four vertices of the cube pull away,

retaining tetrahedral symmetry. These
then come in again and the other four

vertices pull away to form the dual tetrahedron.
0.62 F�

2 Two opposite edges from the same face
pull away from the origin. On the opposite
face, the perpendicular edges also pull away.

Table 2.1: Vibrations of B = 4 Skyrmion. Frequencies (in Skyrme units) and descriptions
from [11].

Oh E 8C3 6C2 6C4 3C2 = (C4)
2 i 6S4 8S6 3�h 6�d

A+
1 1 1 1 1 1 1 1 1 1 1

A+
2 1 1 �1 �1 1 1 �1 1 1 �1

E+ 2 �1 0 0 2 2 0 �1 2 0

F+
1 3 0 �1 1 �1 3 1 0 �1 �1

F+
2 3 0 1 �1 �1 3 �1 0 �1 1

A�
1 1 1 1 1 1 �1 �1 �1 �1 �1

A�
2 1 1 �1 �1 1 �1 1 �1 �1 1

E� 2 �1 0 0 2 �2 0 1 �2 0

F�
1 3 0 �1 1 �1 �3 �1 0 1 1

F�
2 3 0 1 �1 �1 �3 1 0 1 �1

Table 2.2: Oh character table [16].
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2.4.2 The F�

2 vibration

To start, we consider just the triply degenerate F�
2 vibration of the B = 4 Skyrmion along

with rotations, C ' SU(2) ⇥ R3. As in the case of the equilateral triangle, we assume the
vibrations are small. The equilibrium configuration has symmetry group Oh, which acts on
physical space as follows:

C4 : (x, y, z) ! (�y, x, z)

C3 : (x, y, z) ! (y, z, x) (2.30)

�I : (x, y, z) ! (�x,�y,�z) .

Note that this action of Oh is isomorphic to F�
1 . Introduce coordinates (✓i, s) such that the

total metric takes the form (to the order we are interested in)

g̃ =
⇣
� dsi

⌘ ⇤0 ⇤0Ai

AT
i ⇤0 �ij

! 
�

dsj

!
(2.31)

with

⇤0 =

0

B@
I 0 0

0 I 0

0 0 I

1

CA , (2.32)

Ai linear and vanishing at the equilibrium configuration s1 = s2 = s3 = 0. We still have some
freedom in which vibrational coordinates s = (s1, s2, s3) we choose, and we will choose them
so that they transform under Oh as follows:

C4 : (s1, s2, s3) ! (s2,�s1,�s3)

C3 : (s1, s2, s3) ! (s2, s3, s1) (2.33)

�I : (s1, s2, s3) ! (�s1,�s2,�s3) .

Note at this point that, unlike in the point particle example of the previous section, we
do not have explicit expressions for the Skyrme field configurations corresponding to each
s = (s1, s2, s3). However, it is always possible to pick coordinates so that the action of Oh

is realised exactly as above (since the representation ⇢vib of Oh given in (2.33) is indeed
isomorphic to F�

2 ). As in the point particle model of the previous section, it turns out that
⇢vib ⌦ ⇢vib ⌦ ⇢rot = F�

2 ⌦ F�
2 ⌦ F+

1 contains precisely one singlet, and that the gauge field is
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therefore determined up to a single multiplicative scalar ⌘�:

A1 =
⌘�
2I

0

B@
0

�s3

s2

1

CA A2 =
⌘�
2I

0

B@
s3

0

�s1

1

CA A3 =
⌘�
2I

0

B@
�s2

s1

0

1

CA . (2.34)

Substituting this into the general expression in (2.24), we arrive at the Hamiltonian

H ⇡
1

2
p2 +

1

2
!2
F�
2
s2 +

1

2I
L2

�
⌘�
2I

L · Js +
⌘2�
8I

J2
s (2.35)

where pi = �i~ @
@si

and Js = s⇥ p. A similar picture to that in equation (2.26) emerges: we
have a harmonic oscillator system and a rigid-body system which are coupled through the
additional term �

⌘�
2IL · Js +

⌘2�
8I J

2
s involving the usual body-fixed angular momentum L and

a vibrational angular momentum Js. In principle ⌘� could be calculated from the Skyrme
model given explicit Skyrme field configurations, much like how we calculated ⌘ = 1

3 in the
preceding (point particle) example. We will take it to be a free parameter.

2.4.3 Computing the spectrum

We are interested in the Hamiltonian

H =
1

2
p2 +

1

2
!2
F�
2
s2 +

1

2I
L2

�
⌘�
2I

L · Js +
⌘2�
8I

J2
s. (2.36)

It will help to rewrite the Hamiltonian using the fact that, as Js and L commute,

L · Js =
1

2
L2 +

1

2
J2
s �

1

2
M2 (2.37)

where we have introduced a new angular momentum operator M = Js � L. (Note that
�L, not +L, obeys the usual angular momentum commutation relations: L is the vector of
body-fixed angular momentum operators so its commutation relations differ by a minus sign
compared to space-fixed angular momentum operators). Then

H =
1

2
p2 +

1

2
!2
F�
2
s2 +

✓
1

2I
�
⌘�
4I

◆
L2 +

⌘�
4I

M2 +

✓
⌘2�
8I

�
⌘�
4I

◆
J2
s. (2.38)

Energy eigenstates  can be classified by M2,J2
s,L

2 and the vibrational phonon-number
NF�

2
, and additionally by their transformation under the Oh symmetry group, where Oh acts

on a state by transforming the vibrational coordinates, and then performing a compensating
rotation:

 ! ⇢rot (g)⌦ ⇢vib (g) . (2.39)

20



Explicitly, this action is generated by

C4 :  ! Pe�
2⇡i
4 n4·M 

C3 :  ! e�
2⇡i
3 n3·M (2.40)

�I :  ! P 

where n4 =

0

B@
0

0

1

1

CA, n3 = 1p
3

0

B@
�1

�1

�1

1

CA and where P is the parity operation on the vibrational

coordinates s ! �s.

Finkelstein-Rubinstein constraints restrict the allowed quantum states. They come from
requiring that the B = 1 Skyrmion (whose quantum states give rise to the proton/neutron
isodoublet) is quantized as a fermion, and involve working out whether the symmetries of
the classical Skyrme field configurations correspond to contractible or non-contractible loops,
as explained in [17]. They have been worked out in detail [18] for all the minimal-energy
Skyrmions we will be interested in, within the context of rigid-body quantization. Actually we
are interested in vibrations which take us away from the minimal-energy Skyrmions. So long
as these vibrations are small, it is clear that the F-R constraints follow from the rigid-body
constraints by a simple continuity argument.

In the present case, the F-R constraints are that physical states should be taken to
transform trivially under the action of hC4, C3i

⇠= O  Oh, the subgroup consisting of
rotations. Recall Oh

⇠= O ⇥ Z2, a direct product of groups, with Z2 the subgroup generated
by the parity operation �I 2 Oh. So such representations fall into two classes, A+

1 or A�
1 ,

depending on their transformation under the Z2. This determines the parity of the state as
+ or �. Within each fixed M2,J2

s,L
2, NF�

2
sector, we compute the character of the action of

Oh and then look for representations of type A1.
As an example, suppose we are interested in one-phonon states (i.e. states with one

quantum of vibrational energy). Such states have Js = 1. We might look for states with
J = L = 2. Adding these angular momenta, we have several possibilities for the total
angular momentum M = Js � L = 3, 2, 1. So, if we are interested say in M = 3, we have
narrowed down to a seven-dimensional subspace. We now look at how this seven-dimensional
subspace transforms under the action above, computing the associated character �. We then
find that

⌦
�, A+

1

↵
= 0 and

⌦
�, A�

1

↵
= 1 giving a single negative parity 2� state.

2.4.4 Other vibrations

We now include the vibrations transforming as F�
2 , F+

2 , A�
2 , treating the vibrational frequen-

cies as free parameters, and fit the resulting spectrum to data in the < 30 MeV range. We
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could also include the E+ vibration but it turns out that including it gives no improvement
to the fit to experimental data. In fact it will turn out that almost all of the data can be
explained solely in terms of F�

2 and F+
2 modes, with a higher frequency A�

2 mode important
for a couple of higher energy (⇠ 28 MeV) states. The F�

2 and F+
2 can have Coriolis terms

whereas symmetry considerations exclude any non-trivial Coriolis term for the A�
2 . This

leads to the Hamiltonian

H =
1

2
p2
s +

1

2
!2
F�
2
s2 +

1

2
p2
t +

1

2
!2
F+
2
t2 +

1

2
p2u +

1

2
!2
A�

2
u2 (2.41)

+
1

2I
L2

�
⌘�
2I

L · Js +
⌘2�
8I

J2
s �

⌘+
2I

L · Jt +
⌘2+
8I

J2
t.

where coordinates s, t, u correspond to the vibrations F�
2 , F+

2 , A�
2 respectively. As in our

analysis of (2.36), it will be useful to introduce a total angular momentum operator M =

Js+Jt�L combining vibrational angular momentum operators Js,Jt with body-fixed angular
momentum L. Energy eigenstates  can be classified by M2 = (Js + Jt � L)2, J2

s, Jt
2, L2

and vibrational phonon-numbers NF�
2
, NF+

2
, NA�

2
, and additionally by their transformation

under the Oh symmetry group, where Oh acts on a state by transforming the vibrational
coordinates and then performing a compensating rotation of the state:

 ! ⇢rot (g)⌦ ⇢vib (g) . (2.42)

Explicitly, this action is generated by

C4 :  ! PsPtPue
� 2⇡i

4 n4·M 

C3 :  ! e�
2⇡i
3 n3·M (2.43)

�I :  ! PuPs 

where n4 =

0

B@
0

0

1

1

CA, n3 = 1p
3

0

B@
�1

�1

�1

1

CA and where Ps, Pt, Pu are parity operators on the vibra-

tional coordinates.

We demand that states transform trivially under the subgroup hC4, C3i
⇠= O consisting

of rotations. Within a fixed M2 = (Js + Jt � L)2, J2
s, J2

t, L2, NF�
2

, NF+
2
, NA�

2
sector, we

perform character theory calculations and determine A1 summands as before. Calculating the
resulting spectrum, and then fitting the frequencies, Coriolis parameters ⌘+/� and moment
of inertia ⇤ of the B = 4 to nuclear data, we obtain the best fit (in a least-squares sense) for
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the values
~!F�

2
⇡ 9.7MeV ~2

I ⇡ 4MeV

~!F+
2
⇡ 11.7MeV ⌘+ ⇡ 0.71

~!A�
2
⇡ 15.1MeV ⌘� ⇡ 0.13

. (2.44)

In Table 2.3 and Figure 2.2, we display all allowed states up to 30 MeV for the parameter
values in (2.44). The states in this energy range consist of both 1-phonon and 2-phonon
excitations. With these 6 parameters we can describe 11 of the 12 experimentally observed
Helium-4 states below 30 MeV complete with the correct spin and parity assignments, and we
predict one further 0+ state at 23.4 MeV. A column E⌘=0 is included to show the spectrum
when Coriolis effects are neglected: the Coriolis corrections have a particularly large effect on
the 2+ states, raising the energy of the lowest 2+ excitation by as much as 3.3 MeV (comparing
favourably to experiment). Note that the ordering of the fitted frequencies does not agree
with that of the Skyrme model values in Table 2.1, which put the E+ as the lowest-energy
vibration. This discrepancy can perhaps be understood by considering behaviour beyond
small vibrations: recall that the E+ vibration is associated with the breakup of the B = 4

Skyrmion into two B = 2 or four B = 1 Skyrmions. Physically, the breakup energy for
4He !

2H+ 2H is 23.8 MeV, higher than the breakup energy for 4He !
3H+p (which should

be associated with the F2 modes) at 20.3 MeV.
Our picture suggests that the 20.2 MeV 0+ state should be identified with a two-phonon

excitation of the F�
2 mode of the cube. Promisingly, electron scattering measurements [19]

of the transition form factor for the 0+ suggest collective behaviour, as noted by the authors
of [20]. More recent work based on an ab initio study gives further evidence for the collective
interpretation of this state, suggesting a breathing mode [21]. We agree on the collective
nature of this state but, based on the B = 4 cube, suggest that the breathing mode should
be assigned a higher frequency than our F�

2 mode. To compare these two interpretations it
would be worthwhile computing transition form factors from our model. This would require
the explicit form of the Skyrme fields at each point in our configuration space which, while
possible in principle, is beyond the scope of our work. There have also been studies of the
negative parity excited states making use of Wigner’s theory based on approximate SU(4)

symmetry [22]. Our novel picture has the advantage of giving a unified understanding of
almost all observed excited states, both positive and negative parity, in terms of simple
vibrations of the B = 4 cube.

2.5 The B = 7 Skyrmion and vibration-isospin coupling

The lowest-energy B = 7 Skyrmion is a dodecahedron with symmetry group Ih (illustrated in
Figure 2.3) and its normal modes were studied in detail in [23]. If vibrations are not included,
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Figure 2.2: Energy level diagram for Helium-4, constructed from the data in Table 2.3. We
omit the 0 MeV ground state. The rightmost levels correspond to turning off Coriolis effects.
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JP NF�
2

NF+
2

NA�
2

J2
s J2

t L2 M2 E Eexp E⌘=0

0+ 0 0 0 0 0 0 0 0 0 0
0+ 2 0 0 0 0 0 0 19.4 20.2 19.4
0� 1 1 0 2 2 0 0 21.9 21.0 21.4
2� 1 0 0 2 0 6 12 22.2 21.8 21.7
0+ 0 2 0 0 0 0 0 23.4 23.4
1� 1 1 0 2 2 2 0 24.2 24.3 25.4
2+ 0 1 0 0 2 6 12 27.0 27.4 23.7
1+ 1 0 1 2 0 2 0 28.3 28.3 28.8
1� 0 1 1 0 2 2 0 28.5 28.4 30.8
2� 1 1 0 2 2 6 0 28.9 28.4 33.4
0� 28.6
2+ 0 2 0 0 6 6 0 28.4 28.7 35.4
2+ 2 0 0 6 0 6 0 29.9 29.9 31.4

Table 2.3: Vibrating B = 4 spectrum up to 30 MeV.

the high degree of symmetry of the B = 7 means that the lowest energy isospin 1
2 state has

spin 7
2 . In reality, the observed ground state of the Lithium-7/Beryllium-7 isodoublet has spin

3
2 . It was suggested in [24] that to capture this state one should include a five-fold degenerate
vibration which transforms in the H5

g irrep of Ih and which is generated by pairs of opposite
pentagonal faces pulling away from the centre of the Skyrmion. In [25] this vibration was
treated within a harmonic approximation and interactions between rotations and vibrations
were neglected. Here we extend that analysis to include the Coriolis corrections.

We take our configuration space C ' SU(2) ⇥ SU(2) ⇥ R5 to include the H5
g vibration

along with rotations and isorotations. Recalling (2.13), we should now take Ai to be a 6-
component vector for each i as we are including isorotations. Introduce coordinates such that
the total metric takes the form (to the order we are interested in)

g̃ =
⇣
� dsi

⌘ ⇤0 ⇤0Ai

AT
i ⇤0 �ij

! 
�

dsj

!
(2.45)

with

⇤0 =

 
⇤LI3 0

0 ⇤KI3

!
, (2.46)

Ai linear and vanishing at the equilibrium configuration s1 = s2 = s3 = 0. Recall Jahn’s
rule from the end of section 2.3. Now that we are including isorotations, Jahn’s rule should
be generalised: the gauge field Ai now corresponds to a singlet of Ih under an action of Ih
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Figure 2.3: B=7 Skyrmion with Ih symmetry. Figure courtesy of Chris Halcrow.

isomorphic to ⇢vib⌦⇢vib⌦(⇢rot � ⇢isorot) where ⇢isorot denotes the representation in which isoro-
tations transform under Ih. In the present case, rotations transform as T 3

1g and isorotations
transform as T 3

2g. An easy calculation shows that

H5
g ⌦H5

g ⌦
�
T 3
1g � T 3

2g

�
u 2A1

g � · · · (2.47)

so there is the possibility of non-trivial Coriolis terms coupling vibrations to spin and isospin
(note that we have two copies of the trivial representation and so the coupling will be de-
termined up to two arbitrary constants). We wish to find the symmetry-allowed form of Ai,
and for this we need explicit coordinates: note that the usual action of Ih on R3 = he1, e2, e3i

is isomorphic to T 3
1u and that the symmetric square T 3

1u ⌦S T 3
1u

⇠= A1
g �H5

g contains a copy
of the H5

g irrep we are interested in. So we pick vibrational coordinates s1, s2, s3, s4, s5 (and
conjugate momenta pi) such that the action of Ih is just like the action of Ih on this H5

g

subspace with basis

1p
2
(e2 ⌦ e3 + e3 ⌦ e2) ,

1p
2
(e1 ⌦ e3 + e3 ⌦ e1) ,

1p
2
(e1 ⌦ e2 + e2 ⌦ e1) ,

1p
6
(2e3 ⌦ e3 � e1 ⌦ e1 � e2 ⌦ e2) ,

1p
2
(e1 ⌦ e1 � e2 ⌦ e2) .

(2.48)

In these coordinates we can compute singlets, giving

A1 =
⌘L
2⇤L

⇣
�s5 �

p

3s4,�s3, s2, 0, 0, 0
⌘T

+
⌘K
2⇤K

(0, 0, 0,�s5,�s3, 2s2)
T (2.49)
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A2 =
⌘L
2⇤L

⇣
s3,

p

3s4 � s5,�s1, 0, 0, 0
⌘T

+
⌘K
2⇤K

(0, 0, 0,�s3, s5,�2s1)
T (2.50)

A3 =
⌘L
2⇤L

(�s2, s1, 2s5, 0, 0, 0)
T +

⌘K
2⇤K

⇣
0, 0, 0, s2 �

p

3s4, s1,�s5
⌘T

(2.51)

A4 =
⌘L
2⇤L

⇣p
3s1,�

p

3s2, 0, 0, 0, 0
⌘T

+
⌘K
2⇤K

⇣
0, 0, 0,

p

3s3,
p

3s5, 0
⌘T

(2.52)

A5 =
⌘L
2⇤L

(s1, s2,�2s3, 0, 0, 0)
T +

⌘K
2⇤K

⇣
0, 0, 0, s1,�s2 �

p

3s4, s3
⌘T

(2.53)

where ⌘L and ⌘K are constants. This leads to a Hamiltonian

H =
1

2
p2 +

1

2
!2s2 +

1

2⇤L
L2 +

1

2⇤K
K2 (2.54)

�

✓
⌘L
2⇤L

L · JL
s +

⌘K
2⇤K

K · JK
s

◆
+

✓
⌘2L
4⇤L

JL
s · JL

s +
⌘2K
4⇤K

JK
s · JK

s

◆
.

involving the vibrational angular momentum operators

JL
s =

0

B@
�M23 +M15 +

p
3M14

M13 �
p
3M24 +M25

�M12 � 2M35

1

CA (2.55)

and

JK
s =

0

B@
M15 +M23 +

p
3M34

M13 �M25 �
p
3M45

�2M12 +M35

1

CA (2.56)

where Mij = sipj � sjpi. JL
s and JK

s generate rotations in what is now a five-dimensional
vibrational space and generalise the vibrational angular momentum Js of (2.35). We are
interested in eigenstates of (2.54), which can be classified by L2, K2 and vibrational phonon-
number. Consider one-phonon states: with respect to a Cartesian basis {sk exp (�↵s2)} of
vibrational wavefunctions, it is clear how the Mij act:

Mijsk exp
�
�↵s2

�
= �i (�il�jk � �jl�ik) sl exp

�
�↵s2

�
(2.57)

and thus how JL
s and JK

s act. We diagonalise H numerically. The relevant group for imposing
the F-R constraints is the universal cover of the icosahedral group I, namely the binary
icosahedral group 2I ⇢ SU (2), which has presentation

⌦
a, b| (ab)2 = a3 = b5

↵
. (2.58)

F-R constraints tell us that physical states must transform trivially under the action of the
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generators a and b, given in our coordinates by

s :  ! e
2⇡i
3 nL

a ·L ⌦ e
2⇡i
3 nK

a ·K
⌦ ⇢vib (a) (2.59)

t :  ! e
2⇡i
5 nL

b ·L ⌦ e
6⇡i
5 nK

b ·K
⌦ ⇢vib (b) 

where

nL
a =

0

BB@

q
2
15

�
5�

p
5
�

0q
1
15

�
5 + 2

p
5
�

1

CCA ,nK
a =

0

BB@

�

q
2
15

�
5 +

p
5
�

0

�

q
1
15

�
5� 2

p
5
�

1

CCA ,nL
b =

0

B@
0

0

1

1

CA ,nK
b =

0

B@
0

0

1

1

CA . (2.60)

The first few allowed states are listed in Table 2.4 along with the expectation values of the
Coriolis terms. These Coriolis terms represent our corrections to the spectrum found in [25]
which assumed complete separation of rotations and vibrations. That work focused on the
isospin 1

2 sector: within this sector one obtains a zero-phonon state with spin 7
2 (identified

with a 4.6 MeV excitation of Lithium-7) and one-phonon states with spins 3
2 ,

5
2 , and 7

2

(identified with 0, 6.7 and 9.7 MeV excitations of Lithium-7). Ignoring Coriolis terms, the
one-phonon states form a rotational band with energies following a simple J (J + 1) pattern.
The experimental data doesn’t fit this pattern particularly well: the rotational band energy
ratio

E
�
J = 7

2

�
� E

�
J = 3

2

�

E
�
J = 5

2

�
� E

�
J = 3

2

� =
7⇥ 9� 3⇥ 5

5⇥ 7� 3⇥ 5
= 2.4 (2.61)

which is to be compared with the experimental result 9.7
6.7 ⇡ 1.4. We now consider the effect

of including Coriolis terms for these isospin 1
2 states. Recall that, for the B = 7 Skyrmion,

⇤K
⇤L

⇠ 0.1 as found in [13]. So it is reasonable to assume that, for the one-phonon states,
the most important effect of the Coriolis terms is the energy splitting of size ⌘K

⇤K
which (for

⌘K > 0) lowers the energy of the spin 3
2 state while raising the energies of the spin 5

2 and 7
2

states. We now get

E
�
J = 7

2

�
� E

�
J = 3

2

�

E
�
J = 5

2

�
� E

�
J = 3

2

� =
7⇥ 9� 3⇥ 5 + 8⌘K⇤L

⇤K

5⇥ 7� 3⇥ 5 + 8⌘K⇤L

⇤K

(2.62)

which reproduces the experimental ratio of 1.4 for a Coriolis parameter of ⌘K ⇡
25
4
⇤K
⇤L

⇠ 0.5.
It would be interesting to calculate ⌘K explicitly from the Skyrme model and compare to this
value.

We have learnt from this example that, in situations where the isospin moment of inertia is
much smaller than the spin moment of inertia, the isospin Coriolis corrections can compete
with the usual 1

2⇤L
J (J + 1) rotational band splittings. This kind of effect is particularly

important for odd B Skyrmions like the B = 7, where non-zero isospin is inevitable (isospin
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Spin/Isospin Energy without Coriolis terms Coriolis terms
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Table 2.4: B = 7 Skyrmion energy spectrum including one-phonon H5
g excitations.

taking half-integer values). This fits with the fact that the rotational band picture has been
much more successful for even B nuclei than for odd B nuclei.

2.6 Conclusions and further work

We have developed a model of Helium-4 based on F2 and A2 vibrations of the cubic B = 4

Skyrmion. Our model includes interactions between rotations and vibrations in the form of
Coriolis terms. The spectrum gives a good match to the experimental data, with the Coriolis
terms significantly improving the fit. The lowest state not captured by the model is a 0�

state at 28.6 MeV, and we predict one so far unobserved 0+ state at 23.4 MeV. We have also
extended these ideas to the B = 7 Skyrmion, clarifying the role of isospin-vibration coupling.

The example in section 2.5 suggests a general feature which should occur in vibrational
quantization of Skyrmions with non-zero isospin. It has been noted (e.g. in [26]) that for large
B the isospin moments of inertia for Skyrmions are much smaller than the spin moments
of inertia, with ⇤K ⇠ B and ⇤L ⇠ B

5
3 . So, for large B, isospin Coriolis corrections can

become more important than the usual 1
2⇤L

J (J + 1) rotational band splittings. The stable
large nuclei all have large isospin and so these ideas are important for the Skyrme model
description of many real nuclei.

It would be interesting to calculate the actual values for the Coriolis coefficients ⌘ nu-
merically within the Skyrme model. This requires explicit field configurations for vibrating
Skyrmions but such configurations have been calculated before in e.g. [11]. It would also
be interesting to study the effect of the gauge field Ai for a situation in which shape space
includes large deformations (not just small vibrations).

Finally, it should be noted that, while our ideas have been outlined within the context of
the Skyrme model, this work is very general and these ideas could be applied to other soliton
systems in which one is interested in the interplay between zero and non-zero modes.
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Chapter 3

An ↵-particle model for Carbon-12

This chapter is based on the single-author paper [27].

3.1 Motivation

Theoretical studies of the Carbon-12 nucleus have a long and interesting history. Most
famously, in the 1950s Fred Hoyle predicted that Carbon-12 should have a positive-parity
resonance just above the threshold for breakup into Beryllium-8 and Helium-4 [28]. He argued
that such a state would lead to resonant enhancement of Carbon-12 production during stellar
nuclear synthesis, explaining the abundance of Carbon-12 in our universe. His prediction was
confirmed experimentally with the discovery of the 7.7 MeV 0+ excitation [29, 30], now known
as the Hoyle state.

It is widely agreed that Carbon-12 can be usefully thought of in terms of ↵-clusters. There
is a band in the observed energy spectrum containing states with the characteristic spin and
parity combinations 0+, 2+, 3�, 4±,... , often referred to as the ground state band. These
are exactly the states which arise from a rotating equilateral triangle of ↵-particles, and are
physically interpreted as such. There has been less agreement on the physical interpretation
of the Hoyle state (and the other observed low-lying excited states outside of the ground
state band) with many interpretations offered including a rigid linear chain [31], a bent arm
[32], a breathing vibration [33] of an equilateral triangle and even a diffuse gas of ↵-particles
[34].

The Skyrme model, which we introduced in Chapter 2, has two well-known Skyrmion
solutions with Baryon number B = 12. They have symmetry groups D3h and D4h and can
be viewed as three B = 4 Skyrmions (analogous to ↵-particles) arranged in an equilateral
triangle and a linear chain respectively (Figure 3.1). When quantized individually as rigid
bodies, each contributes a rotational band to the energy spectrum. The allowed spin and
parity combinations of the quantum states appearing in each band are determined by the
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corresponding symmetry group (D3h or D4h).

Figure 3.1: B = 12 Skyrmions with D3h symmetry (left) and D4h symmetry (right). Figures
courtesy of Dankrad Feist.

The energy levels found by this approach [31] match some of the experimentally observed
Carbon-12 states [14]. The D3h-symmetric Skyrmion gives rise to a rotational band with
spin and parity combinations 0+, 2+, 3�, 4�, 4+ (and higher spins). This is a feature of any
model based on an equilateral triangle of ↵-particles. A particular success of the Skyrme
model prediction is the characteristic pattern 0+, 2+, 4+ of the Hoyle band [35], which arises
from rotational excitations of the D4h-symmetric linear chain. An alternative possibility is to
identify the Hoyle band with rotational excitations of a breathing (symmetrically vibrating)
equilateral triangle, as has been done within the context of the algebraic cluster model (ACM)
[36]. However, this would imply the existence of additional 3� and 4� states within the
rotational band which have not been observed. It is the D4h symmetry group of the Skyrmion
which excludes such states. This suggests that a linear chain configuration of alpha particles
could play an important role in the structure of the low-lying states of Carbon-12, as well as
the more familiar equilateral triangular configuration.

However, the rigid body picture is overly restrictive: several low-lying states (seen in
addition to the rigid body rotational bands) are completely missing as all of the configurations
considered have a lot of symmetry. Large symmetry groups lead to severe restrictions on the
possible spin and parity combinations. It is clear that we need to go beyond rigid body
quantization: we need to allow the nucleus to deform. Such an approach has been successful
in studying the excited states of other nuclei such as Oxygen-16 [7].

We propose a simplified model for the Carbon-12 nucleus, viewed as three point particles.
Building on the ideas outlined above, we allow both the equilateral triangle and the linear
chain. The difference is that they sit within a larger configuration space which includes shapes
that interpolate between these two highly symmetric configurations. This extra degree of
freedom allows more spin and parity combinations than rigid body quantization.

A key assumption is that the potential energy landscape is quite flat in the shape-
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deforming direction where the equilateral triangle becomes a linear chain. If it is not so
flat, then for sufficiently low energies an analysis of small vibrations about the equilateral
triangle (or about the linear chain) should be appropriate. This approximation leads to far
more low-lying states than have been experimentally observed. We propose that this ap-
proximation is inappropriate: at the energies we are interested in, the triangle can deform
significantly and a global approach is required.

3.2 The configuration space, C

We start with the configuration space for three point particles,

{(x1,x2,x3) 2 R9
}

equipped with the Euclidean metric. We can separate the centre of mass motion, as usual,
restricting to

P3
i=1 xi = 0. We further restrict to configurations where the area of the tri-

angle formed by the three particles has a particular shape-dependent value. Physically, this
is reasonable if we assume that the energy associated with the triangle expanding compared
to some equilibrium size is large compared to the energies we are interested in. The equi-
librium size will be taken to vary in such a way that the ratio of the moments of inertia
for the equilateral triangle and the linear chain (which determines the ratio of slopes of the
corresponding rotational bands) reproduces the result from the Skyrme model.

reflection plane

x1

x2

x3

Figure 3.2: Ci consists of isosceles configurations with particle number i lying in the plane of
reflection symmetry. Thus C2 contains the above configuration.
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x2

x2
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x3

S3

Figure 3.3: Graph structure of C = [iCi.

Finally, we make one further restriction: we will consider only a certain subset of config-
urations, in which the three particles lie at the vertices of an isosceles triangle. The shapes
we restrict to are precisely those isosceles triangles which interpolate between an equilateral
triangle and a linear chain. Thus we only include the direction in which the equilateral
triangle becomes an obtuse triangle, assuming that changing shape in the other direction
corresponds to a sharp increase in potential energy due to trying to bring two ↵-particles
very close together. The resulting configuration space, denoted C, is best pictured as the
union of three 4-manifolds, C = [iCi. Here Ci corresponds to those isosceles configurations
with particle number i lying in the plane of reflection symmetry. This is illustrated in Figures
3.2 and 3.3. The Ci intersect at a 3-manifold corresponding to the equilateral triangles (this
intersection can be thought of as a copy of the group manifold SO(3), since this group acts
on the set of equilateral triangular configurations).

The particles should be indistinguishable: this will be imposed at the quantum level by
demanding that states are taken to lie in the trivial representation of the group S3 which
acts on C by permuting the three particles.

The structure of C is reminiscent of configuration spaces appearing in QGT. We will
use ideas from that area to motivate our definition of quantum mechanics on C, thinking
of the Ci as edges which intersect at a vertex [37]. Approximating a quantum system as a
graph is an idea that dates back to Pauling [38], who studied the dynamics of free electrons in
hydrocarbons by considering motion in a network with edges corresponding to carbon-carbon
bonds and vertices corresponding to carbon atoms.
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3.3 The metric on C1

We begin by focusing on C1. This is the only part of C that we need to think about since all
points in C are generated by the action of S3 on C1. The group of rotations in physical space
acts on C1 as a symmetry, so we pick coordinates (s, ✓,�, ) consisting of a shape parameter
s together with Euler angles ✓,�, specifying the orientation of the shape. Corresponding
to ✓ = � =  = 0, we need to pick a set of reference orientations for each SO(3) orbit.
These reference configurations give a submanifold Cshapes . We define Cshapes as follows: let
the choice (s, 0, 0, 0) correspond to the configuration

x1 = (0, s, 0), x2 =

✓
�
1

2

p

2� 3s2,�
1

2
s, 0

◆
, x3 =

✓
1

2

p

2� 3s2,�
1

2
s, 0

◆
. (3.1)

i.e. we rotate the triangle so that particle 1 lies on the positive y-axis with the plane of
reflection symmetry being the y � z-plane. The range we consider is s 2 [0, smax] where
smax = 1p

3
. Note that s = 0 gives a linear chain and as we increase s we approach an

equilateral triangle at s = smax. This particular choice of reference orientations has the nice
property that the metric on C1, in these coordinates, takes the simple block-diagonal form

GC1 =

 
grot 0

0 g

!
. (3.2)

In the principal bundle language of the previous chapter, we have picked a gauge in which the
connection A (which is related to the cross-terms between rotations and vibrations) vanishes.
This simplification can be seen as follows: as we move through the reference configurations,
there is enough symmetry (reflection in the xy-plane and in the yz-plane) that no angular
momentum is generated by the corresponding motion of the particles. Therefore the motion
in shape space decouples from the rotational motion (no cross-terms in the metric) and its
only effect is through the shape-dependent moments of inertia which appear in grot. The
function g corresponds to the pull-back of the Euclidean metric on R9 arising from the
inclusion Cshapes ,�! R9.

3.4 Quantum Mechanics on C

3.4.1 Computing the quantum Hamiltonian

Recall that in Chapter 2, we showed that a general metric of the form

g̃ =
⇣
� dsi

⌘ ⇤ ⇤Aj

AT
i ⇤ gij +Ai · ⇤ ·Aj

! 
�

dsj

!
(3.3)
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leads, via computation of the Laplace-Beltrami operator, to a quantum Hamiltonian

H =
1

2
L · ⇤�1

· L+
1

2
(pi � L ·Ai) g

�1
ij (pj � L ·Aj) + V2 (s) + V (s) (3.4)

where
V2 (s) =

~2
2
(|⇤| |gij|)

� 1
4 @i
⇣
g�1
ij @j (|⇤| |gij|)

1
4

⌘
. (3.5)

In the present context, we have only one shape degree of freedom s = si along the graph
edge and we have also argued in Section 3.3 that the connection A vanishes due to our gauge
choice. So we see that the metric (3.2) leads to a quantum Hamiltonian

H =
1

2
L · ⇤�1

· L+
1

2
pg�1p+ V2 (s) + V (s) (3.6)

where we have also included a potential V (s) on configuration space and where

V2 (s) =
~2
2
(|⇤| |g|)�

1
4 @s

⇣
g�1@s (|⇤| |g|)

1
4

⌘
. (3.7)

Using the explicit particle positions given in 3.1, we can compute the functions appearing in
(3.6) such as the moment of inertia tensor

⇤ij (s) =
3X

k=1

(x2
k�ij � (xk)i (xk)j) =

0

B@

3
2s

2 0 0

0 1� 3
2s

2 0

0 0 1

1

CA (3.8)

and the pull-back of the Euclidean metric to shape space

g (s) =
3X

i=1

✓
dxk

ds

◆2

=
3

2
+

9s2

2 (2� 3s2)
. (3.9)

Exploiting rotational symmetry, we can classify the energy eigenstates of (3.6) by J (where
J (J + 1) is the eigenvalue of J2 in the usual way) and J3. Recall from rigid-body theory
that a complete set of commuting operators for the rotational part of the problem is given
by J2, J3, L3 and so within a particular (J, J3) sector we can expand the total wavefunction

 =
+JX

L3=�J

�L3(s) |JJ3L3i . (3.10)

Substituting the expansion for  above into the Hamiltonian, we obtain the Schrödinger
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equation

1

2
L · ⇤�1

· L

0

BB@

��J(s)
...

�J(s)

1

CCA+
1

2
pg�1p

0

BB@

��J(s)
...

�J(s)

1

CCA (3.11)

+(V2 (s) + V (s)� E)

0

BB@

��J(s)
...

�J(s)

1

CCA = 0

where now the operators L act by matrix multiplication.

3.4.2 Discrete symmetries

There are additional discrete symmetries present: the system is symmetric under permuta-
tions of the three particles and the action of parity. Note that parity is realised by a rotation
through ⇡ about the body-fixed 3-axis since the configurations are planar. The parity trans-
formation commutes with the permutations and so together these transformations generate
a symmetry group isomorphic to S3 ⇥ C2 which acts on each (J, J3) sector. Thus we can
further classify states into irreducible representations of the discrete group S3 ⇥ C2. These
are precisely the tensor products ⇢S3 ⌦ ⇢C2 of irreducible representations ⇢S3 and ⇢C2 of S3

and C2 respectively. We want the particles to be indistinguishable, so we choose those repre-
sentations for which the first factor is the trivial representation: ⇢S3 = 1. If we let ⇢trivial and
⇢sign denote the (familiar) irreducible representations of C2, then this means that states can
be taken to lie in representations isomorphic to 1 ⌦ ⇢trivial or 1 ⌦ ⇢sign. Those transforming
in the representation 1 ⌦ ⇢trivial will be referred to as positive parity states, J+, and those
transforming in 1⌦ ⇢sign as negative parity states J�.

Note that equation (3.11) is a system of coupled equations for the effective one-dimensional
problem on shape space. The simplest case to consider is J = 0. Note that in this subspace
only positive parity states 0+ exist. L acts on these states as the zero operator which leaves
us with a single ordinary differential equation in s:

✓
1

2
pg�1p

◆
�0 = (E � V � V2)�0. (3.12)

Solving this equation for �0 gives the total wavefunction

 (s, ✓, , ) = �0(s) |0, 0i . (3.13)

(From here on we suppress the space-fixed angular momentum label J3). For higher J the
term of the form (L · ⇤�1

· L) appearing in the Schrödinger equation will mix states with
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different L3 values, leading to systems of coupled ordinary differential equations. Let us
consider J = 2 as an example. We begin by writing down the most general element in the
J = 2 sector:

 = ��2 |2,�2i+ ��1 |2,�1i+ �0 |2, 0i+ �1 |2, 1i+ �2 |2, 2i . (3.14)

Suppose we are interested in positive parity states 2+. Such states transform in the rep-
resentation 1 ⌦ ⇢trivial of S3 ⇥ C2. In particular, they should transform trivially under the
action of both exp(i⇡L2) (swapping particles 2 and 3) and exp(i⇡L3) (parity). So they lie in
a two-dimensional subspace spanned by the set {|2, 0i , |2,�2i+ |2, 2i}. In other words, the
2+ states have the restricted form

 = �0 |2, 0i+ �2(|2,�2i+ |2, 2i). (3.15)

It can be checked that the combination L ·⇤�1
·L appearing in (3.11) then takes the explicit

form

(L · ⇤�1
· L) =

 
3(⇤�1

11 + ⇤�1
22 )

p
6(⇤�1

11 � ⇤�1
22 )p

6
2 (⇤�1

11 � ⇤�1
22 ) ⇤�1

11 + ⇤�1
22 + 4⇤�1

33

! 
�0

�2

!
. (3.16)

The off-diagonal terms in the matrix are non-zero so we have a coupled system for the two
functions �0 and �2.

More generally, for spin J states the operator exp(i⇡L2) has the following diagonal matrix
form with respect to the basis {|J,�Ji , . . . , |J, Ji}:

exp(i⇡L2) = (�1)J

0

BBBBBBBBBBBBBBBBB@

(�1)J

...
1

�1

1

�1

1
...

(�1)J

1

CCCCCCCCCCCCCCCCCA

. (3.17)

This observation makes it very easy to compute a basis for allowed states of a given spin and
parity, summarised in Table 3.1.

3.4.3 Boundary conditions

We can solve these equations numerically, once we have specified suitable boundary conditions
on the wavefunction. The boundary conditions we impose at the intersection of the Ci are
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JP basis JP basis
0+ |0, 0i 0�

1+ 1� |1,�1i+ |1, 1i
2+ |2,�2i+ |2, 2i 2� |2,�1i � |2, 1i

|2, 0i
3+ |3,�2i � |3, 2i 3� |3,�3i+ |3, 3i

|3,�1i+ |3, 1i
4+ |4,�4i+ |4, 4i 4� |4,�3i � |4, 3i

|4,�2i+ |4, 2i |4,�1i � |4, 1i
|4, 0i

5+ |5,�4i � |5, 4i 5� |5,�5i+ |5, 5i
|5,�2i � |5, 2i |5,�3i+ |5, 3i

|5,�1i+ |5, 1i

Table 3.1: Bases for allowed states.

as described in Chapter 1: following the quantum graph literature, we demand that the
wavefunction is continuous at the equilateral triangle (s = smax = 1p

3
⇡ 0.58) with outgoing

derivatives along the three edges (the Ci) summing to zero. The latter condition ensures the
conservation of the probability current [39]. By the outgoing derivative along an edge we
mean the derivative in the direction orthogonal to the fibre generated by the action of the
rotation group: in the case of C1, for which we have constructed explicit coordinates, this
just means the partial derivative with respect to the coordinate s (the block-diagonal form
of the metric GC1 makes it clear that this direction is orthogonal to the action of rotations).

In our problem, we have the additional requirement of indistinguishability: S3 must act
trivially on physical states. This means that the wavefunction on C2 and C3 is determined
by the wavefunction on C1, and so these boundary conditions are in every case equivalent
to some boundary condition on the �L3 (which are functions defined only on the smaller set
C1). To make this clearer, consider Figure 3.4.

Suppose we have constructed local coordinates (t, ✓,�, ) on C3 just as on C1 and that the
illustrated configurations correspond to the cross-section of C given by ✓ = � =  = 0. It is
clear from the diagram that indistinguishability implies that the wavefunction on C3 should
be related to the wavefunction on C1 by

 C3 = exp

✓
i
2⇡

3
L3

◆
 C1 , (3.18)

i.e. if we rotate the configurations shown in C1 by 2⇡
3 then they agree with the configurations

shown in C3 up to relabelling of particle number and so are physically indistinguishable.
Going back to our 2+ example, we had that

 C1 = �0 |2, 0i+ �2(|2,�2i+ |2, 2i). (3.19)
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Figure 3.4: Cross-section of part of C with ✓ = � =  = 0.

So

exp

✓
i
2⇡

3
L3

◆
 C1 = �0 |2, 0i+ �2(exp

✓
�i

4⇡

3

◆
|2,�2i+ exp

✓
i
4⇡

3

◆
|2, 2i). (3.20)

Continuity of the wavefunction then implies �2 vanishes at the equilateral triangle while
the derivative condition implies the derivative of �0 vanishes at the equilateral triangle. An
example of such a solution can be seen later in Figure 3.7.

3.5 Wavefunctions and energy levels

We want a potential V (s) which has local minima at the linear chain and the equilateral
triangle. A simple choice is a quartic polynomial (Figure 3.5). This involves picking five
coefficients, but the two conditions just mentioned together with the freedom to specify a
zero-point energy means that such a potential has only two free parameters. These can be
thought of as the energy difference between the two minima and the height of the potential
barrier between them.

We fix our energy units by matching the energy difference between the lowest-lying 0+

and 2+ states of Carbon-12 to experiment, and adjust the values of the two parameters in
the potential to give a spectrum which is closest to the experimentally observed energies.
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Figure 3.5: Potential V (s). This particular V corresponds to our final choice of parameters,
and is expressed in MeV.

The potential illustrated in Figure 3.5 corresponds to our choice of parameters.

3.5.1 Asymptotic rigid body regime

Before presenting our results, we pause to explore the limit of our model where we take the
barrier height between the equilateral and the linear chain to be much larger than in Figure
3.5. In this limit, we recover the usual rigid body picture [27], whose spectrum is shown in
Figure 3.6.
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Figure 3.6: Energy spectrum in the rigid body regime.

The rigid body picture is inadequate as it is unable to explain the experimentally observed
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low-lying 1� and 2� states, both of which are known to have energies less than 15 MeV. In this
asymptotic regime, the wavefunctions become concentrated on either the equilateral triangle
(blue, often referred to as the ground state band) or the linear chain (yellow, often referred
to as the Hoyle band) for spins and parities that are allowed at those shapes. Recall that the
energy levels of a symmetric top (having moments of inertia V11 = V22, V33) are given by

E =
1

2V11
J(J + 1) +

✓
1

2V33
�

1

2V11

◆
L2
3. (3.21)

The Hoyle band states in the plot all have body-fixed spin projection |L3| = 0 and so the
corresponding energy values lie on a straight line. The ground state band includes states
with |L3| = 0 and |L3| = 3, with the |L3| = 0 states lying on a straight line and the |L3| = 3

states just below this line. Some examples of these wavefunctions are in Figure 3.7.
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Figure 3.7: Wavefunctions of the lowest-lying 2+ states in the rigid body regime, concentrated
on the equilateral triangle (left) and the linear chain (right).

Our model allows additional states, including spin and parity combinations such as 1�,
2� and 3+. These new states have the same quantum numbers as (some of) those found
by the ACM approach [36]. However, in the rigid body regime, they have high energy since
they must vanish at both the equilateral triangle and linear chain. They are peaked at
intermediate configurations which have very high energy.

3.5.2 Results

Starting from parameters corresponding to the rigid body regime, we consider the effect of
lowering the size of the barrier. States concentrated at the equilateral triangle or the linear
chain start to mix if they have the same quantum numbers. This means that the 0+ and
2+ states concentrated at the equilateral triangle become a superposition of triangular and
linear chain states (Figure 3.8). Very little mixing can occur for states such as the 3� and
5�, however, as they are only allowed at the equilateral triangle and not at the linear chain
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Figure 3.8: Wavefunction of the lowest-lying 2+ states: these correspond to superpositions
of the equilateral triangle and linear chain states in Figure 3.7, reflecting the relaxation of
the rigid body assumption.

(Figure 3.9).
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Figure 3.9: Wavefunctions of the 3� state and the 5� state. Note that they must vanish at
the linear chain s = 0.

The energy of the new 1� state decreases and we stop lowering the barrier when the
experimental value is reached. The final spectrum is displayed in Figure 3.10.

This is a significant improvement on the rigid body spectrum previously discussed. Many
observed states that were missing are now present. These include the low-lying 1� and 2�

states as well as a second 3� state and a third 2+ state slightly higher up (Figure 3.11).
The spectrum also includes a 3+ state and a 4�, 4+ pair (at energies 19.8 MeV, 21.3 MeV
and 22.2 MeV), which have not yet been observed experimentally. There is an approximate
correspondence between these states and the ACM rotational band labelled by

�
v1, v

l2
2

�
=

(0, 11), which has the same sequence of allowed spin and parity combinations. In the ACM
picture, these states are associated with the doubly degenerate vibration of the equilateral
triangle with E symmetry (with v2 = 1 denoting one unit of vibrational excitation).

Our wavefunctions give further insight into the nature of the excited states. The 1�,
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Figure 3.10: Spectrum of our model (blue points) compared to experimental data (red points).
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Figure 3.11: Wavefunctions of the second 3� state and the third 2+ state.

2� and 3+ are concentrated at a bent arm configuration (Figure 3.12), a shape between
the equilateral triangle and the linear chain in our configuration space. They vanish at the
equilateral triangle and the linear chain, with their wavefunction peaking at s ⇡ 0.4 which
corresponds to an approximately right-angled triangle. The different spins correspond to
rotational excitations of such a state.

The remaining low-lying states do involve the equilateral triangle and the linear chain.
The wavefunctions of the 0+ ground state and the 0+ Hoyle state are plotted in Figure 3.13.
It is interesting to compare these wavefunctions with the findings of recent lattice calculations
[32] which suggest the 0+ ground state and the 0+ Hoyle state have a strong overlap with
a compact triangular and a bent arm configuration respectively. Our wavefunctions are
consistent with this picture: the ground state wavefunction peaks at the equilateral triangle
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Figure 3.12: Wavefunctions of the lowest 1�, 2� and 3+ states.

and falls away fairly rapidly towards the linear chain, while the Hoyle state wavefunction
peaks at the linear chain and is more spread out, remaining significant over a range of bent
arm configurations.

3.6 Conclusions

We have improved upon a previous analysis which attempted to explain the low-lying spec-
trum of Carbon-12 in terms of a rigidly rotating equilateral triangle or linear chain [27]. This
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Figure 3.13: Wavefunctions of the 0+ ground state (left) and the 0+ Hoyle state (right).

analysis assumed a high degree of symmetry for the configurations relevant at low energies,
leading to very few low-lying states and missing out several spin and parity combinations.
By contrast, a model based on a local analysis of small vibrations leads to a spectrum with
too many low-lying states [36].

These problems are resolved once we allow shapes which interpolate between the equilat-
eral triangle and the linear chain. The model presented in this chapter, which utilises QGT,
takes larger deformations seriously and gives us a different picture of the excited states.
States which were considered independent in the rigid body picture can mix in our model,
leading to superpositions of equilateral triangular and linear chain states. Other states which
were not present in the rigid body picture have wavefunctions peaked at an intermediate bent
arm configuration, rather than looking like a vibrational excitation of an equilateral triangle.
We also predict three new energy levels for the Carbon-12 nucleus at around 20 MeV, with
spin and parity combinations 3+, 4� and 4+.
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Chapter 4

Electromagnetic transition rates of

Carbon-12 and Oxygen-16 in

rovibrational models

This chapter is based on the joint paper with C. J. Halcrow [40].

4.1 Introduction

Understanding the intrinsic structure of nuclei is one of the central problems in nuclear
physics. There is still much debate about the nature of light nuclei, even for stable abun-
dant nuclei such as Carbon-12 and Oxygen-16. These are often described using ↵-particle
models [6]. Here, nucleons cluster into groups of four (↵-particles) and the nuclei have the
symmetry of a simple geometric shape – the ↵-particles lying on the shape’s vertices. Carbon-
12 and Oxygen-16 are described as a triangle and tetrahedron respectively. The triangular
model, as discussed in the previous chapter, includes a low lying rotational band with spins
0+, 2+, 3�, 4±, ... for Carbon-12 while the tetrahedral model has one with spins 0+, 3�, 4+, ...

for Oxygen-16. Both are seen experimentally, confirmed after the recent clarification of a
4� state at 11.83 MeV for Carbon-12 [41]. There is much debate about the higher energy
states. For example, Carbon-12 has an approximate higher energy rotational band with
spins 0+, 2+, 4+, ... . In Chapter 3 we modelled this band in terms of admixtures of several
shapes but other suggestions include a “breathing” excitation of the triangle [33] or a chain
of ↵-particles [31]. All these models can reproduce the energy spectrum reasonably well.

Rotational bands are not the only indicator of collective, geometric behaviour. Electro-
magnetic (EM) transition rates measure �-decay between two nuclear states. Here, the higher
energy state emits a photon which carries away spin and energy. This type of electromagnetic
decay is only seen below (or nearby) the strong decay threshold. Above this threshold, strong
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interactions dominate the decay paths. Theoretically the EM rates depend on the overlap of
wavefunctions and the charge density multipole tensor. Generically, a large transition rate
indicates collective behaviour. For instance, the large E3 transition rate between the low
lying 3� and 0+ states of Oxygen-16 is a motivation for the continuing interest in ↵-particle
models [42]. Its size is unexplained in the basic shell model, where the decay strength should
be close to a single Weisskopf unit. Its size is also not described in basic collective models,
where the nucleus is described as a vibrating bag of nuclear matter [43].

Just as the EM transitions can help differentiate collective behaviour from single-particle
behaviour, in this paper we will try and use them to differentiate between particular ↵-particle
models. Since the transition rates depend on the structure of the wavefunctions, physically
different models should provide different results. To see these differences, we calculate the
EM rates for the Quantum Graph Model (QGM) for Carbon-12 and a recently proposed
model for Oxygen-16 [7], both of which were inspired by nuclear dynamics in the Skyrme
model. In these, sets of configurations are constructed which include several low lying shapes:
the triangle and chain for Carbon-12 and the tetrahedron and square for Oxygen-16. The
wavefunctions take values across the entire set of shapes, and can be interpreted physically
as mixtures of the different geometric shapes.

The wavefunctions are rotational-vibrational states. The rotational symmetry of space
manifests itself through rigid body wavefunctions and these are combined with vibrational
wavefunctions, which account for deformations. We develop a formalism to calculate the
transition rates for wavefunctions of this kind. The formalism applies to any model with an
underlying “shape” degree of freedom. The rigid-body case, a common simplifying assumption
in the Skyrme model [44] and ↵-particle models [45], is a limiting case in our calculation.
After developing this formalism in Section 4.2, we apply it to models of Carbon-12 and
Oxygen-16 in Sections 4.3 and 4.4 respectively. These applications show the general nature
of our work. The models are based on very different shape spaces: one is a one-dimensional
graph made up of three edges joined at a single vertex while the other is a two-dimensional
manifold. We compare our results to experimental data, as well as other nuclear models.
Overall, each model gives very different results with different successes and failures when
compared to data. We hope this theoretical work may motivate new experimental progress,
as the latest data was taken in the early 1980s [46, 47]. We conclude with some further work
and ideas in Section 4.5.

4.2 General formalism

We wish to describe nuclear dynamics by considering a large set of nuclear configurations
with many possible shapes (the shape can be thought of as the nucleon distribution). We then
choose a low energy subset of these configurations which we parametrise by a set of shape
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coordinates s. We also consider all possible orientations of these configurations in physical
space. Define coordinates as follows: for each shape, choose a certain standard orientation of
that shape in space (equivalently, a body-fixed frame). Then parametrise all rotated versions
of that shape by Euler angles ✓i which specify the rotation that relates the body-fixed frame
to a space-fixed frame. In this fashion, we can define coordinates (s, ✓i).

The rotational symmetry of space means that quantum states can be classified by a
total angular momentum J together with a space-fixed angular momentum projection J3 2

{�J, . . . ,+J}. States | i within a given (J, J3) sector take the form

| i =
+JX

L3=�J

�L3
(s) |JJ3L3i , (4.1)

where we have expanded in a basis {|JJ3L3i} of rigid-body wavefunctions which involve
the body-fixed angular momentum projection L3 2 {�J, . . . ,+J}. These capture the ✓i
dependence of the state. The coefficient wavefunctions �L3

(s) satisfy a Schrödinger equation
defined on the space of shapes. We will see examples of this in the specific models for
Carbon-12 and Oxygen-16 considered in Sections 4.3 and 4.4.

4.2.1 Electromagnetic transition rates

In the long-wavelength limit, the reduced transition probability for electric multipole radia-
tion between an initial state |ii of spin J and a final state |fi of spin J̃ is given by

B (El, i ! f) =
1

2J + 1

X

J3,J̃3,m

����
Z

d3r hf | ⇢ (s, r, ✓i) r
lY ⇤

lm (⌦) |ii

����
2

(4.2)

where r are space-fixed coordinates (with ⌦ the angular coordinates in r-space) and where
⇢ (s, r, ✓i) is the charge density of the configuration with shape s in orientation ✓i. Note
that the above expression involves a sum over space-fixed spin projections J̃3 for the final
state and an average over space-fixed spin projections J3 for the initial state. The quantity
B(El, i ! f) is related to the total transition rate T (E, i ! f) (decays per second) for
electric multipole radiation by

T (E, i ! f) =
X

l

8⇡(l + 1)

l[(2l + 1)!!]2
k2l+1

~ B (El, i ! f) (4.3)

where k is the wavenumber of the emitted photon. This sum is dominated by the contribution
from the lowest-allowed l [48] for each transition and so we only calculate these.

We wish to calculate transition probabilities using (4.2) for states of the form (4.1). The
rigid-body wavefunctions |JJ3L3i depend on Euler angles ✓i and so it will help if we first
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simplify the ✓i dependence of the charge density ⇢. Expand ⇢, evaluated at ✓i = 0, in terms
of spherical harmonics:

⇢ (s, r,0) =
1X

l0=0

l0X

m0=�l0

cl0m0 (r)Yl0m0 (⌦) (4.4)

where
cl0m0 (r) =

Z
d⌦Y ⇤

l0m0 (⌦) ⇢ (s, r,0) . (4.5)

The spherical harmonics transform in a simple way under rotations, giving the expression

⇢ (s, r, ✓i) =
X

l0

X

m0

X

m00

cl0m0 (r)Yl0m00 (⌦)Dl0

m00m0 (✓i) (4.6)

for the charge density in an arbitrary orientation ✓i. Substituting this into our original
expression for B (El, i ! f) gives

B (El, i ! f) =
1

2J + 1

X

J3,J̃3,m

�����hf |
X

m0

Dl
mm0 (✓i)Qlm0 (s) |ii

�����

2

(4.7)

where
Qlm (s) =

Z
d3r⇢ (s, r,0) rlY ⇤

lm (⌦) (4.8)

is the multipole tensor associated with the charge density. This means that, for the initial
state

|ii =
+JX

L3=�J

�L3
(s) |JJ3L3i (4.9)

and final state

|fi =
+J̃X

L̃3=�J̃

�̃L̃3
(s) |J̃ J̃3L̃3i , (4.10)
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we have that

B (El, i ! f) =
1

2J + 1

X

J3,J̃3,m

�����
X

m0

hf |Dl
mm0 (✓i)Qlm0 (s) |ii

�����

2

=
1

2J + 1

X

J3,J̃3,m

������

Z
ds

X

m0,L3,L̃3

�̃⇤
L̃3

(s)�L3
(s)Qlm0 (s) hJ̃ J̃3L̃3|D

l
mm0 (✓i) |JJ3L3i

������

2

=
2J̃ + 1

(2J + 1)2
X

J3,J̃3,m

������

Z
ds

X

m0,L3,L̃3

�̃⇤
L̃3

(s)�L3
(s)Qlm0 (s)

⌦
J̃ J̃3lm

��JJ3
↵⌦
J̃ L̃3lm

0��JL3

↵
������

2

=
2J̃ + 1

2J + 1

������

Z
ds

X

m0,L3,L̃3

�̃⇤
L̃3

(s)�L3
(s)Qlm0 (s)

⌦
J̃ L̃3lm

0��JL3

↵
������

2

(4.11)

where
⌦
J̃ J̃3lm

��JJ3
↵

are Clebsch-Gordan coefficients and in the final equality we have used
the fact that X

J3,J̃3,m

���
⌦
J̃ J̃3lm

��JJ3
↵���

2

= 2J + 1 (4.12)

whenever J = J̃ + l, . . . , |J̃ � l|. For values of J outside of this range, the Clebsch-Gordan
coefficients all vanish and the transition rate is zero. We have now written the original expres-
sion in terms of an overlap between vibrational wavefunctions, weighted by the charge density
multipole tensor and some Clebsch-Gordan coefficients. All these are relatively straightfor-
ward to calculate, even if the expression is rather complicated. Note that for J̃ = 0 the
expression (2.10) simplifies (using

⌦
00lm0

��JL3

↵
= �Jl�L3m0) to give

B (El, i ! f) =
�Jl

2J + 1

�����

Z
ds �̃⇤

0 (s)
X

L3

�L3
(s)QlL3

(s)

�����

2

, (4.13)

which mimics the structure of the initial wavefunction (4.9).

We also note here that

B (El, f ! i) =
2J + 1

2J̃ + 1

������

Z
ds

X

m0,L3,L̃3

�̃⇤
L3

(s)�L̃3
(s)Qlm0 (s)

⌦
JL3lm

0��J̃ L̃3

↵
������

2

=

������

Z
ds

X

m0,L3,L̃3

�̃⇤
L3

(s)�L̃3
(s)Qlm0 (s) (�1)m

0 ⌦
J̃ L̃3l (�m0)

��JL3

↵
������

2

=
2J + 1

2J̃ + 1
B (El, i ! f) , (4.14)

where we have used symmetry properties of the Clebsch-Gordan coefficients together with
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the identity Y ⇤
lm (⌦) = (�1)mYl(�m) (⌦).

4.2.2 Estimating Q for point ↵-particle models

The nuclear models we will consider in Sections 4.3 and 4.4 are based on configurations of
↵-particles. For the purposes of calculating electromagnetic transition rates, we will treat
these ↵-particles as point charges. For ↵-particles at positions x1 (s) , . . . ,xN (s), we therefore
approximate the charge density by

⇢ (s, r,0) =
NX

i=1

2�(3) (xi (s)� r) . (4.15)

This leads to the multipole tensor

Qlm (s) =
NX

i=1

2xi (s)
l Y ⇤

lm (x̂i (s)) . (4.16)

4.3 The Quantum Graph Model for Carbon-12

4.3.1 Introduction

In Chapter 3 we introduced the Quantum Graph Model (QGM) for Carbon-12 which is based
on the quantized dynamics of three point ↵-particles. We recall some of the details of the
model here. The QGM allows for isosceles triangles of ↵-particles which interpolate between
the equilateral triangle and linear chain clusters and so includes both of these highly sym-
metric configurations along with the intermediate bent arm (obtuse triangle) configurations.
There are three ways in which an equilateral triangle cluster of ↵-particles can be deformed
into a chain because any one of the three ↵-particles can become the middle ↵-particle in
the chain. Thus the space of allowed shapes corresponds to a three-edged graph as shown in
Figure 4.1.

The equilateral triangle corresponds to the vertex of the graph. The equilateral triangle
can deform in three ways, corresponding to the three edges leaving the vertex. Focusing on a
particular edge, C1, we define a shape coordinate s on this edge such that the positions xi (s)

of the three ↵-particles are

x1 = (0, s, 0) (4.17)

x2 =

✓
�
1

2

p

2� 3s2,�
1

2
s, 0

◆
(4.18)

x3 =

✓
1

2

p

2� 3s2,�
1

2
s, 0

◆
. (4.19)
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Figure 4.1: The graph of shapes for the QGM of Carbon-12. The central shape is an equi-
lateral triangle. This becomes three different chains along the three graph edges.

The xi determine the standard orientation at the point s on the graph. We use coordinates
(s, ✓i) with Euler angles ✓i describing the rotation relating a given configuration to these
standard configurations. The wavefunction on edge C1 can be expanded in terms of rigid
body states as

| i =
+JX

L3=�J

�L3
(s) |JJ3L3i (4.20)

where the �L3
satisfy a Schrödinger equation, and QGT boundary conditions are imposed at

the vertex.

The allowed states, relevant for our calculation, are listed in Table 4.1. For each state,
we calculate a shape probability density, defined as

P (s) =
JX

L3=�J

|�L3
(s)|2 . (4.21)

We plot the shape probability density function for each of the wavefunctions in Figure 4.2.
The physical interpretation of states can be seen by looking at which shapes these are con-
centrated at. For example, the 0+1 state is interpreted as an equilateral triangular state while
the 0+2 state is concentrated at the linear chain. The 1�1 state is forbidden at both of these
shapes and is instead concentrated at an intermediate bent arm configuration.
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JP Wavefunction E Eexp

(MeV) (MeV)
0+1 �(01)

0 (s) |0, 0i 0 0

0+2 �(02)
0 (s) |0, 0i 7.9 7.7

1�1 �(11)
1 (s) (|1, 1i+ |1,�1i) 11.2 10.8

2+1 �(21)
2 (s) (|2, 2i+ |2,�2i) + �(21)

0 (s) |2, 0i 4.6 4.4

2+2 �(22)
2 (s) (|2, 2i+ |2,�2i) + �(22)

0 (s) |2, 0i 8.4 9.9

2+3 �(23)
2 (s) (|2, 2i+ |2,�2i) + �(23)

0 (s) |2, 0i 17.4 16.1

3�1 �(31)
3 (s) (|3, 3i+ |3,�3i) + �(31)

1 (s) (|3, 1i+ |3,�1i) 5.6 9.6

4+1 �(41)
4 (s) (|4, 4i+ |4,�4i) + �(41)

2 (s) (|4, 2i+ |4,�2i) 11.8 13.3

+�(41)
0 (s) |4, 0i

4+2 �(42)
4 (s) (|4, 4i+ |4,�4i) + �(42)

2 (s) (|4, 2i+ |4,�2i) 15.6 14.1

+�(42)
0 (s) |4, 0i

Table 4.1: The wavefunctions, in terms of vibrational wavefunctions and spin states, for each
of the states considered in this chapter. Each model state is identified with an experimental
state, whose energy is also tabulated. We suppress the J3 label for ease of reading.

Figure 4.2: Shape probability densities. The colours red and yellow correspond to regions
of high and low probability density. Each density is rescaled so that the maximum of the
wavefunction is red. Hence, for example, the 0+2 state is highly concentrated while the 1�1
state is more evenly spread.

4.3.2 Calculating B (El) transition rates

As an example, suppose we are interested in calculating B
�
E3, 3�1 ! 0+1

�
where 3�1 denotes

the lowest energy JP = 3� state and 0+1 denotes the lowest JP = 0+ state. The initial and
final state wavefunctions are

|3�1 i = �(31)
3 (s) (|3J33i+ |3J3 � 1i) + �(31)

1 (s) (|3J31i+ |3J3 � 1i) (4.22)

and
|0+1 i = �(01)

0 (s) |000i . (4.23)
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The expression (2.10) from Section 2 gives

B
�
E3, 3�1 ! 0+1

�
=

1

7

�����

Z
ds�(01)

0

⇤
(s)�(31)

3 (s)
�
Q33 (s) +Q3�3 (s)

�
(4.24)

+ �(01)
0

⇤
(s)�(31)

1 (s)
�
Q31 (s) +Q3�1 (s)

�
�����

2

.

To evaluate this integral we use the analytic expression for

Qlm (s) =
3X

i=1

2Ri (s)
l Y ⇤

lm (x̂i (s)) , (4.25)

treating the ↵-particles as point particles as described in Section 2. The integration against
the numerical wavefunctions �L3

(s) takes place over a single edge of the graph.

4.3.3 Results

The electromagnetic transition rates for the QGM are displayed in Table 4.2. We pick the
conversion factor between fm and the length units in our model to be  =

p
10. Our results

are displayed alongside results from an ab initio calculation [32] and the Algebraic Cluster
Model (ACM) [33], along with a comparison to available experimental data. The ACM
makes use of a bosonic quantization approach to the many-body problem. It is based on an
equilibrium configuration of ↵-particles at the vertices of an equilateral triangle, although
allowing for large rotation-vibration effects. The ab initio results are from Monte Carlo
lattice calculations based on chiral effective field theory. The authors only consider four
states: 0+1 , 2+1 , 0+2 and 2+2 . The 0+1 and 2+1 states have a large overlap with a compact
triangular arrangement of ↵-particles, so are interpreted physically as triangular states. In
particular, the 2+1 is interpreted as a rotational excitation of the 0+1 state. The 0+2 and 2+2
states have a large overlap with a bent arm configuration (an obtuse triangle) of ↵-particles
and are interpreted as the first two states on a rotational band of this shape.

Along the ground state band (0+1 , 2+1 , 3�1 , ...) there is no major discrepancy between the
various models. The agreement is expected as all the models have a similar interpretation of
the ground state band as arising from a rotating equilateral triangle. The results along the
ground state band are also in broad agreement with experimental data, although all models
slightly underestimate the E3 transition.

The B (E1, 2+ ! 3�) and B (E1, 2+ ! 1�) transition strengths come out as zero in our
model due to the symmetries of the wavefunctions. This is consistent with the very small
observed values ⇠ 10�3 e2fm2. For the states that have been experimentally measured, there
is little to distinguish the models. Because of this, we must instead look at transitions for
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B (El, i ! f) QGM ab ACM [33] experiment�
 =

p
10
�

initio [32]
⇥
e2fm2l

⇤
[46]

B
�
E2, 2+1 ! 0+1

�
11.7 5 8.4 7.6± 0.42

B
�
E3, 3�1 ! 0+1

�
62.4 44 103± 13.7

B
�
E4, 4+1 ! 0+1

�
170 73

B
�
E2, 2+2 ! 0+1

�
1.16 2

B
�
E4, 4+2 ! 0+1

�
11.6

B
�
E2, 2+3 ! 0+1

�
0.408 0.67± 0.13

B
�
E2, 2+1 ! 0+2

�
1.10 1.5 0.26 2.7± 0.28

B
�
E2, 2+2 ! 0+2

�
24.7 6

B
�
E1, 2+3 ! 1�1

�
0 (3.1± 0.78)⇥ 10�3

B
�
E1, 2+3 ! 3�1

�
0 (1.1± 0.20)⇥ 10�3

B
�
E1, 2+1 ! 3�1

�
0

Table 4.2: EM transition rates B (El, i ! f) for Carbon-12. We tabulate the results for the
model described in this section, the ab initio calculation and the algebraic cluster model, as
well as the available experimental data. All values are in units of e2fm2l.

states that have not yet been measured. The B(E2; 2+2 ! 0+2 ) transition is four times larger
for us compared to the ab initio prediction. We expect the transition will also be smaller in
the ACM. This transition is, therefore, a key data point which would distinguish the various
models.

The most significant difference between experiment and theory is seen for the transition
between the Hoyle state and the ground state band B

�
E2, 2+1 ! 0+2

�
. Here the ACM value

is too small by a factor of 10 or so. Our model and the ab initio calculation do better than
the ACM here, although we still underestimate the value slightly. Recall that the ab initio
approach finds a large overlap of the Hoyle state with an obtuse triangular configuration.
Our work supports this interpretation, with the 0+2 wavefunction peaking at the linear chain
but allowing a superposition of shapes near to the chain. The picture in the ACM is different,
with the Hoyle state interpreted as a breathing excitation of the equilateral triangle. More
data is needed, both experimental and from competing models, to make further comparisons
and we hope that our calculations will stimulate further work in this direction.

4.4 Oxygen-16

Since Wheeler’s pioneering work, Oxygen-16 has often been modelled as a tetrahedron of
↵-particles [6]. Later, sophisticated ↵-models found that other low energy geometric con-
figurations exist, including the 4↵-chain, the flat square and the bent square [49]. There is
general agreement on the tetrahedral nature of the 0+ ground state of Oxygen-16, but the
structure of the excited states continues to pose a challenge for nuclear physicists. The lowest
excitation is a 0+ state, analogous to the Hoyle state of Carbon-12, and various suggestions
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have been made for its structure including a breathing mode excitation of the tetrahedron
or a state based on a flat square or bent rhomb configuration.

A recent ↵-particle model constructed by Halcrow, King and Manton [7] includes all of
these shapes. We give a brief review of the model here. Like the QGM for Carbon-12, it
is inspired by Skyrme field configurations which have a clear interpretation in terms of ↵-
particles. Consider the dynamical mode illustrated in Figure 4.3. Reading the figure from
left to right, two pairs of ↵-particles approach each other and form a tetrahedron, then a
flat square, then the dual tetrahedron before separating into two pairs of ↵-particles again.
Now note that the tetrahedron has three distinct pairs of opposing edges which can pull
apart. Together, the different possibilities generate a two-dimensional space of deformations
which we will refer to as the E-manifold. It is an extension of the local two-dimensional E-
vibration of the tetrahedron to a global two-dimensional manifold of shapes which includes
the important tetrahedron, flat square and bent rhomb configurations.

The E-manifold is modelled as the 6-punctured sphere with negative constant curvature.
The position on the punctured sphere (x, y, z) corresponds to the position of one of the ↵-
particles. The other three then lie at (x,�y,�z), (�x, y,�z) and (�x,�y, z). This fixes
the standard orientation of the configurations. For instance, the point (x, y, z) = (1, 1, 1)

corresponds to a tetrahedron, while the point (x, y, z) = (1, 1, 0) represents a flat square.

Figure 4.3: A numerically generated scattering path which links asymptotic configurations
to the tetrahedron, the flat square and the dual tetrahedron. Time evolution is read left to
right.

Since knowing one particle’s position automatically fixes the other three, one can focus
on a quarter of the sphere. Using hyperbolic geometry this quarter sphere is projected onto
a portion of the complex plane. This mapping is displayed in Figure 4.4, where the positions
of the geometric shapes, as well as the dynamical path from Figure 4.3, are also plotted.
⇣ = ⌘ + i✏ are coordinates on the complex plane.

The EM transition rates depend on the wavefunction and the multipole moments of the
charge density, Qlm. Hence we must write these in terms of ⌘ and ✏. As explained in Section
2.2, we can write Qlm in terms of the positions of the particles, so we must find the mapping
between the particle positions and the complex variables. We do this now. Given a point ⇣
on the complex plane, the position on a unit sphere is given by

(X, Y, Z) =
1

1 + |H(⇣)|2
�
2Re(H(⇣)), 2 Im(H(⇣)), 1� |H(⇣)|2

�
, (4.26)
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Figure 4.4: The relation between a quarter of the six-punctured sphere (left) and a portion of
the complex plane (right). Tetrahedral configurations are at the points where three coloured
regions meet while the square configurations are at points where four coloured regions meet.
The scattering mode from Fig. 4.3 is represented by the thick black lines.

where

H(⇣) =

✓
⇥3 (⇡/4, exp (i⇡⇣))

exp (⇡i(1 + ⇣)/4)⇥3 (⇡(1 + 2⇣)/4, exp(i⇡⇣))

◆2

, (4.27)

and ⇥3 is a Jacobi theta function. This is the unique metric-preserving map, up to Möbius
transformations on C. Having found the positions on a unit sphere, these should now be
projected onto a sphere with punctures. We have some choice in this map but are constrained
physically. We know the moments of inertia of the tetrahedron and square within the Skyrme
model [25]. Additionally, once the configuration breaks into two clusters (as in the far left
and far right of Figure 4.3) one of the moments must become constant and the other two
grow quadratically with distance. The following projection satisfies all the aforementioned
conditions

x1 =
p

1� (max(X, Y, Z))2
(X, Y, Z) . (4.28)

The constant  gives the scale of the configuration. As an example, to calculate the positions
of the ↵-particles at ⇣ = 0 + i, we first calculate H(i) = 1 +

p
2, giving a unit sphere

coordinate (2�1/2, 0,�2�1/2). We then map this to the position x1 = (1, 0,�1). This is the
position of one of the particles; the other three lie at x2 = (1, 0, 1),x3 = (�1, 0,�1) and
x4 = (�1, 0, 1). Hence the point ⇣ = i corresponds to a flat square, lying in the x-z plane.
We use these values of xi to calculate Qlm(⇣) using equation (4.16). The scale parameter 
is later fixed, to match the B(E3; 3�1 ! 0+1 ) transition rate.

To find quantum states we must first calculate vibrational wavefunctions on the complex
plane. These satisfy a Schrödinger equation which in turn depends on a metric and potential
on the E-manifold of configurations. These were fixed in [7] and the Schrödinger equation
takes the form

�
~2
2
✏2
✓
@2

@⌘2
+

@2

@✏2

◆
 + ✏2

 
1

2
!2

✓
⌘ �

1

2

◆2

+ µ2

!
 = Evib , (4.29)
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JP Wavefunction E Eexp

(MeV) (MeV)
0+1  +

T0 |0, 0i 0 0
0+2  +

T2 |0, 0i 6.1 6.0
2+1

1p
8
(u+

1 � v+1 ) (|2, 2i+ |2,�2i)�
p
3
2 (u+

1 + v+1 ) |2, 0i 6.7 6.9
3�1  �

S0
1p
2
(|3, 2i � |3,�2i) 6.5 6.1

4+1

q
5
24 

+
T0

⇣
|4, 4i+

q
14
5 |4, 0i+ |4,�4i

⌘
10.4 10.4

4+2

q
7
32(u

+
1 + v+1 )(|4, 4i+ |4,�4i) 12.6 11.1

�
1p
8
(u+

1 � v+1 )(|4, 2i+ |4,�2i)�
p
5
4 (u+

1 + v+1 ) |4, 0i

Table 4.3: The wavefunctions, in terms of vibrational wavefunctions and spin states, for each
of the states considered in this chapter. Each model state is identified with an experimental
state, whose energy is also tabulated. We suppress the J3 label for ease of reading.

where ! and µ are phenomenological parameters. The potential was chosen so that the
tetrahedra have minimal energy, the squares have higher energy (by around 6 MeV) and the
asymptotic configurations have even higher energy. The expression (4.29) is only valid in the
red region of the complex plane (for the colouring, see Figure 4.4). The wavefunctions were
calculated in [7] and classified further in [50]. Four of them will be relevant for our calculation
- labelled  +

T0, 
+
T1, 

�
S0 and (u+

1 , v
+
1 ). These are combined with rigid-body wavefunctions to

create physical states. The allowed states, relevant for our calculation, are listed in Table
4.3. We plot the shape probability density function on the complex plane for each of the
wavefunctions in Figure 4.5. We sometimes say that a state is “tetrahedral” or “square-like”.
This means that the corresponding probability density is concentrated at those configurations.
The states 0+1 , 3

�
1 , 4

+
1 are all tetrahedral and form an approximate rotational band. The

states 2+1 and 4+1 are both strongly concentrated at the squares and should be thought of as
rotational excitations of a square configuration. The 0+2 state is concentrated at both the
squares and tetrahedra and is interpreted as an admixture of both these geometries.

To help analyse and compare results, it is helpful to introduce the idealised rigid body
as a benchmark model. Here, the nucleus is described as four ↵-particles that form a rigid
geometric shape which is allowed to rotate as a whole. This rotational motion is quantised
and leads to rotational bands. Different shapes can lead to different rotational bands. For
Oxygen-16, the 0+1 , 3�1 , 4+1 states are understood as the rotational band of a tetrahedron while
the 0+2 , 2

+
1 , 4

+
2 states arise as the rotational band of a square (or possibly a chain [49], though

this idea was recently dismissed experimentally [51]). The most important parameter in this
model is the ratio of the separation between the particles which form the tetrahedron rt and
the separation between the particles which form the square rs. We take

rs
rt

= 1.5 , (4.30)
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Figure 4.5: Shape probability densities for each wavefunction, plotted on a region of the
complex ⇣-plane. Blue regions correspond to large densities while pale regions have small
densities.

and then fix rt to match the B(E3; 3�1 ! 0+1 ) transition. This is likely not a realistic model
but displays some important features that highlight the physics at play.

4.4.1 Results

The electromagnetic transition rates for our model, the rigid body model, the ab initio
calculation [52] and the ACM [53] are displayed in Table 4.4. They should be compared to
the experimental data, which is also tabulated.

The transition rates along the lowest-lying band are in good agreement with experimental
data in our model. These states are constructed from  +

T0, which is concentrated at the
tetrahedron. Hence, this result supports the idea that these states are tetrahedral. The
value for the E6 transition is close to the value from the ACM. This is to be expected, as
the states have similar descriptions in both models.

The rigid body model highlights some important physics, though is an extreme approxi-
mation as can be seen from the enormous E6 transition. Since the square is more spread out
than the tetrahedron, the square-like states (such as 0+2 , 2+1 and 4+2 ) have large transition rates
between them. Similarly, the states in our vibrational model which contain significant square
contributions lead to larger transition rates. For instance B(E2; 2+1 ! 0+2 ) > B(E2; 2+1 !

0+1 ), since 0+2 is physically a mixture of the two shapes while 0+1 contains little square contri-
bution. This ordering is seen experimentally but the magnitudes of the transition rates are
wrong in our model. For instance, the B(E2, 2+1 ! 0+2 ) is too small.

This shortcoming may be due to the approximations made in constructing the wavefunc-
tions. We neglect the effect that a changing shape has on the structure of the wavefunction.
This is because we take a constant moment of inertia tensor over the space of configurations.
Hence, the 2+1 wavefunction doesn’t account for the fact that the square is much flatter than
the tetrahedron. If we did account for this, the wavefunction would be more concentrated at
the square and the transition rate would be enhanced. Note that the Carbon-12 calculation
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B (El, i ! f) our rigid “rescaled” ACM [45] experiment
model body ab

⇥
e2fm2l

⇤
[47]

model initio [52]
B
�
E3, 3�1 ! 0+1

�
205 205 215 205± 11

B
�
E4, 4+1 ! 0+1

�
320 633 425 378± 133

B
�
E6, 6+1 ! 0+1

�
11263 23764 9626

B
�
E1, 2+1 ! 3�1

�
0 0 < 1.6⇥ 10�5

B
�
E1, 4+1 ! 3�1

�
0 0 < 1.2⇥ 10�5

B
�
E1, 4+2 ! 3�1

�
0 0 (2.4± 1)⇥ 10�5

B
�
E2, 2+1 ! 0+1

�
16 0 6.2± 1.6 26 7.4± 0.2

B
�
E2, 2+1 ! 0+2

�
22 70 46± 8 6 65± 7

B
�
E2, 2�1 ! 3�1

�
– 0 10 13.4± 3.8

B
�
E2, 4+1 ! 2+1

�
13 0 0 146± 17

B
�
E2, 4+2 ! 2+1

�
7 100 36 2.4± 0.7

B
�
E4, 4+1 ! 0+2

�
24 0

B
�
E4, 4+2 ! 0+1

�
592 0

B
�
E4, 4+2 ! 0+2

�
1632 8801

Table 4.4: EM transition rates B (El, i ! f) for Oxygen-16. We tabulate the results for the
model described in this section, the ab initio calculation and the algebraic cluster model, as
well as the available experimental data. All values are in units of e2fm2l.

does account for this effect. To do the same calculation for the Oxygen-16 case, it would
be necessary to solve the full Schrödinger equation on the two-dimensional six-punctured
sphere or develop a quantum graph model. This partially explains the discrepancy be-
tween the vibrational and rigid body models. The problem is even more pronounced in the
B(E2; 4+2 ! 2+1 ) transition rate. Naively, one would expect this to be large: physically, both
states are square-like. As we can see from the rigid body model, this should lead to a large
transition rate. But the wavefunctions are both diminished due to our approximation.

Although the rigid body model can generate large transition rates (which are seen in
nature), it also predicts many erroneous zero results. This is easily understood: states can
only decay along rotational bands. This is not seen in the experimental data and suggests the
model is too constrained. Similarly, the ACM predicts many small or zero results which are
not in agreement with data. The vibrational model allows for greater overlap between wave-
functions and hence there are no zero results for any transitions, except the E1 transitions.
Unfortunately, the true amount of mixing is underestimated in all models.

There is one major discrepancy between all models and data. The B(E2; 4+1 ! 2+1 )
transition has a value of (146± 17)e2fm4, while the rigid body, ACM and vibrational models
give predictions of 0, 0 and 13 respectively: at best an order of 10 out. Such a large transition
rate is very rare, so to find any possible explanation is worthwhile. One idea is that the 4+1
state has been historically mischaracterised as a tetrahedral state. Suppose instead that the
low lying 0+2 , 2

+
1 , 4

+
1 band is a rotational band, of either the square or chain configurations.
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Then there is the following relationship for transition rates between states on the band

B(E2; 4+1 ! 2+1 )

B(E2; 2+1 ! 0+2 )
=

10

7
⇡ 1.43 . (4.31)

In reality, the experimental ratio is

146± 17

65± 7
= 2.25± 0.5 . (4.32)

This large ratio highlights the difficulty in describing the B(E2; 4+1 ! 2+1 ) transition. The
rigid body model, which should exaggerate this type of transition, still underestimates it.
If one were to re-characterise the 4+1 state as a rotational excitation of the square, the 4+2
would then be interpreted as a tetrahedral state. The energy difference between the 4+1 and
4+2 states is only 0.74 MeV, so their relabeling is reasonable on energetic grounds. As can be
seen in Table 4.4, the 4+2 state can still have a large E4 transition in the vibrational model,
so this new interpretation may not spoil the positive results along the ground state band. To
investigate further, one should improve the vibrational model to allow for a changing moment
of inertia tensor, as described above. This should give more accurate results and will avoid
underestimation. Secondly, it may be worthwhile to redo the transition rate experiments.
These were last undertaken in the 1970s and early 1980s. Modern techniques would allow us
to fill out Table 4.4 more fully. We are suggesting the spin 4 states may be mischaracterised,
so having more information about the decay from the spin 4 states would be particularly
useful.

4.5 Summary and further work

Electromagnetic transition rates offer a wealth of information about the intrinsic structure
of atomic nuclei. EM transitions help us to differentiate between the vast number of nuclear
models on offer: shell model approaches, collective models, and the ACM to name a few. In
this chapter we developed a general formalism for computing EM transition rates within the
framework of rotational-vibrational nuclear models.

Within this formalism, we calculated EM transition rates for two models of Carbon-
12 and Oxygen-16 inspired by nuclear dynamics in the Skyrme model. We found reasonable
agreement with experimental data and highlighted important differences between our model’s
predictions and those of other models.

For Carbon-12 both our model and other models reproduce the existing data well. To
differentiate the models more data is needed. We hope that this study provides fresh motiva-
tion to measure more EM transition rates for Carbon-12. The results for Oxygen-16 are less
promising, for all models. We suggested that some discrepancies between experimental data
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and our model could be traced to our approximations. These may be improved by including
a varying moment of inertia in our Schrödinger equation, or by developing a quantum graph
model for the nucleus. We will explore this possibility in Chapter 5. No model comes close
to full agreement with experimental data so there is still work to be done, even for these
abundant nuclei. Further experimental data will help us to uncover their detailed structure.

We have focused on E transitions but M transitions are also seen experimentally. While
E transitions depend on the charge density of the nucleus, the M transitions depend on the
current density. These have been studied for Helium-3 and Hydrogen-3 within the Skyrme
model [54] but are not well understood in general.
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Chapter 5

Quantum graphs and Oxygen-16

In the previous chapter we introduced the E-manifold model for Oxygen-16 originally pro-
posed by Halcrow, King and Manton [7]. In this chapter we explore a simple quantum graph
model for Oxygen-16 inspired by their work. The original model is an ↵-particle model in
which the local E-vibration of the tetrahedron is extended to a global two-dimensional man-
ifold of shapes. We construct a graph � which is designed to capture the most important
shapes on the E-manifold, namely the paths connecting the tetrahedron to its dual via a
flat square. In this simple toy model, we explore some of the subtleties involved in picking
a body-fixed frame convention for each of the shapes on �. In the language of principal
bundles, this means picking a section of an SO(3)-bundle over �. We find that the choice
made by the authors of [7] does not lead to a globally well-defined section. This subtlety was
overlooked in more recent extensions to the model [50], and we suggest that some states have
been missed as a consequence.

5.1 Quantum graph model for E-manifold

Recall the E-manifold model for Oxygen-16, outlined in Chapter 4. The model is based on
the quantized dynamics of four (point) ↵-particles which are restricted to take shapes in the
so-called E-manifold. We are interested in a subset of these shapes, with the subset taking
the form of a three-edged graph which can be embedded in the two-dimensional E-manifold.
We consider shapes which interpolate between a tetrahedron and its dual via a flat square,
inspired by the corresponding dynamical mode in the Skyrme model. The ↵-particles are
indistinguishable, but we take them to be distinguishable (indistinguishability can always
be imposed at the end by only considering quantum states which transform trivially under
permutation of the particles). The relevant graph of shapes, �, is illustrated in Figure 5.1.
Vertex A corresponds to a tetrahedron and vertex B its dual. The midpoints of each edge
represent square configurations. This is illustrated in Figures 5.2 and 5.3. We emphasise
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A B

si = 0 si = 1

1

2

3

Figure 5.1: Shape space �.

that the square configurations on distinct edges are not related to each other by rotations
since the particles are distinguishable.

Including all possible orientations, the resulting configuration space C has the structure
of an SO(3)-bundle, with the projection

⇡ : C ! �

sending an oriented configuration to its (unoriented) shape s 2 �. We call � shape space.
Picking coordinates on C amounts to specifying a (reference) orientation, or equivalently

a body-fixed frame, for each point on �. This is just the same thing as specifying a section
of the SO (3)-bundle C. Following Halcrow, King and Manton, we choose these reference
orientations in a way which preserves a fixed D2-symmetry. This choice is illustrated in
Figures 5.2 and 5.3.

Note, however, that this choice isn’t well-defined globally on �: starting at A, the orien-
tation we arrive at when we get to B depends on which edge we traverse. This is clear from
considering the rightmost configurations in Figure 5.2. In other words, this body-fixed frame
convention doesn’t amount to a global section of the bundle C. This subtlety was not men-
tioned in the original analysis presented in [7] as the authors worked with indistinguishable
particles from the start. We will see, however, that it matters once we introduce additional
vibrations which take the shape away from �.

We can still work with this choice even though it isn’t globally well-defined: we simply
choose to work on two separate patches, with one excluding vertex B and the other excluding
vertex A. Within each patch, we can write down sensible coordinates by following the body-
fixed frame convention just described. Appropriate transition functions relate the coordinates
where these patches overlap. For our choice of local sections, illustrated in Figures 5.2 and
5.3, these transition functions correspond to rotations by ⇡ about the 1, 2, 3-axes on edges
1, 2, 3 respectively.

The main motivation for the D2-symmetric body-fixed frame convention of Halcrow, King
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(a) edge 1

(b) edge 2

(c) edge 3

Figure 5.2: Reference orientations in patch excluding B (left to right corresponds to moving
from vertex A to vertex B).
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(a) edge 1

(b) edge 2

(c) edge 3

Figure 5.3: Reference orientations in patch excluding A (left to right corresponds to moving
from vertex A to vertex B).
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and Manton is that it guarantees that there is no rotation-vibration coupling: in this gauge,
vibrations are orthogonal to rotations (i.e. the fibres). To simplify the model even further
we will assume that the dynamics are given by free motion on the graph edges together with
spherical top motion in the orientational coordinates:

H = �
1

2

d2

ds2
+

1

2I
L2. (5.1)

Here s is a coordinate along the edge with range s 2 (0, 1) and I is a constant moment of
inertia. Energy eigenfunctions (in a particular patch) therefore take the form

(a exp (iks) + b exp (ik (1� s))) |JJ3L3i

on each edge. The corresponding energy eigenvalue is

E =
k2

2
+

J (J + 1)

2I
(5.2)

which depends only on the angular momentum J and the edge momentum k.

We impose quantum graph boundary conditions at the vertices of the graph, which implies
linear constraints on the various coefficients like a and b (as outlined in the introduction to
QGT in Chapter 1). Also, we require compatibility of the wavefunctions in different patches
in the usual sense, with the wavefunctions agreeing on the overlaps after application of the
relevant transition function.

The resulting states can be classified by parity and by S4 symmetry (corresponding to
permutations of the ↵-particle identities). An example of this type of calculation is presented
in Section 5.2. The resulting spectrum is shown in Table 5.1. For Oxygen-16 states, we want
the trivial irrep A1 of S4 so we see that we obtain 0+, 2+ and 3� states for the range of J
and k considered in the table. The states transforming in the other irreps of S4 will be of
use when we include the A and F vibrations later on.

5.2 Example calculation

Suppose we are looking for a spin 1 state. Parametrise each edge by s which ranges from
s = 0 (vertex A) to s = 1 (vertex B). On the patch which excludes vertex B, suppose we
seek a state with wavefunction of the form

(ai exp (iks) + bi exp (ik (1� s))) |1, 0i
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k J SP
4

0 0 A+
1

2 E+

3 A+
2

4 A+
1 � E+

⇣ 1 F�
2

2 F�
1

3 F�
1 � F�

2

4 F�
1 � F�

2

⇡ � ⇣ 1 F+
1

2 F+
2

3 F+
1 � F+

2

4 F+
1 � F+

2

⇡ 0 A�
2 � E+

1 F�
2

2 E�
� E+

� A+
1 � A+

2 � F�
1

3 A�
1 � E+

� F�
1 � F�

2

4 E+
� E�

� E+
� A+

1 � A+
2 � F�

1 � F�
2

⇡ + ⇣ 1 F+
1

2 F+
2

3 F+
1 � F+

2

4 F+
1 � F+

2

2⇡ � ⇣ 1 F�
2

2 F�
1

3 F�
1 � F�

2

4 F�
1 � F�

2

2⇡ 0 A+
1 � E�

1 F+
1

2 E+
� A�

1 � A�
2 � E�

� F+
2

3 A+
2 � E�

� F+
1 � F+

2

4 A+
1 � E�

� E+
� A�

1 � A�
2 � E�

� F+
1 � F+

2

Table 5.1: States up to angular momentum J = 4 and edge momentum k = 2⇡. The final
column SP

4 gives the parity P of the states together with the S4 irrep corresponding to
permutations of the four ↵-particles.
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on each edge i. (For clarity we have suppressed the space-fixed angular momentum J3 which
can freely take any of the values 1, 0,�1). The transition functions act as

exp (�i⇡L1) ,

exp (�i⇡L2) ,

and
exp (�i⇡L3)

on edge 1, 2 and 3 respectively. The matrix representations for these operators are

0

B@
�1 0 0

0 �1 0

0 0 1

1

CA ,

0

B@
1 0 0

0 �1 0

0 0 �1

1

CA

and 0

B@
�1 0 0

0 1 0

0 0 �1

1

CA

with respect to the basis
n

1p
2
(|1, 1i+ |1,�1i) , |1, 0i , 1p

2
(|1, 1i � |1,�1i)

o
. Therefore our

wavefunction
(ai exp (iks) + bi exp (ik (1� s))) |1, 0i

picks up a minus sign under the action of the transition functions on edges 1 and 2 but
is invariant on edge 3. It follows that in the other patch, which excludes vertex A, the
wavefunction must have the form

(�a1 exp (iks)� b1 exp (ik (1� s))) |1, 0i

(�a2 exp (iks)� b2 exp (ik (1� s))) |1, 0i

(a3 exp (iks) + b3 exp (ik (1� s))) |1, 0i

on edges 1, 2 and 3 respectively. The vertex conditions (see Chapter 1) at B imply the linear
constraints

�a1 exp (ik)� b1 = �a2 exp (ik)� b2 = a3 exp (ik) + b3 (5.3)
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and
�a1 exp (ik) + b1 � a2 exp (ik) + b2 + a3 exp (ik)� b3 = 0 (5.4)

which are to be combined with the linear constraints at vertex A, which are

a1 + b1 exp (ik) = a2 + b2 exp (ik) = a3 + b3 exp (ik) (5.5)

and
a1 � b1 exp (ik) + a2 � b2 exp (ik) + a3 � b3 exp (ik) = 0. (5.6)

Altogether,
0

BBBBBBBBB@

�eik �eik eik 1 1 �1

1 1 1 �eik �eik �eik

1 �1 0 eik �eik 0

1 0 �1 eik 0 �eik

eik �eik 0 1 �1 0

eik 0 eik 1 0 1

1
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1

CCCCCCCCCA
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These are very similar conditions to those considered for the three-edged graph in Chapter
1 - the only difference is the appearance of extra minus signs coming from the action of the
transition functions. The determinant of the matrix on the LHS is simply

det = �9 (exp (2ik)� 1)

 
exp (2ik) +

7 + 4i
p
2

9

! 
exp (2ik) +

7� 4i
p
2

9

!
(5.8)

which is zero when k
⇡ 2 Z+ or when k differs from an integer multiple of ⇡ by ⇣ where

⇣ = tan�1
⇣
2
p

2
⌘
. (5.9)

Each of these values of the edge momentum k leads to a spin 1 state. These are included in
Table 1 along with their transformation properties under the action of S4 permutations and
parity.

5.3 A and F

In addition to C, we may include other vibrations which take the shape away from those on
the graph �. In [50] the authors considered additional vibrations A and F corresponding
to vibrations of the tetrahedron which transform as A and F irreps under the tetrahedral
symmetry group. The A vibration corresponds to a simple global rescaling. The F vibration
corresponds to a three-dimensional space of deformations and a basis {v1, v2, v3} for this
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Figure 5.4: One direction in the three-dimensional F -vibration space: red and black move
together while blue and green move apart.

space can be defined as follows:

v1: particles 1 and 4 move together while particles 2 and 3 move apart.

v2: particles 2 and 4 move together while particles 1 and 3 move apart.

v3: particles 3 and 4 move together while particles 1 and 2 move apart.

One such vector is illustrated in Figure 5.4, with the different colours representing the
different particle labels.

Suppose we treat A and F in a harmonic approximation, giving the enlarged configuration
space

C ⇥ R⇥ R3.

We want to construct states on this enlarged space. We can treat the three factors
independently: the total wavefunction belongs to the tensor product space VC ⌦ VA ⌦ VF

where VC, VA and VF denote the spaces of wavefunctions on C, R and R3 respectively. For
Oxygen-16, we seek singlets under the combined action of S4 on VC ⌦ VA ⌦ VF . We have
already classified wavefunctions on C by their S4 representations.

Consider states with nF F -phonons and nA A-phonons. Note that particle permutations
in S4 act on the R3 as F2 and so harmonic oscillator states in VF with nF phonons transform as
the symmetric tensor product F⌦SnF

2 (since vibrational phonons behave as identical bosons).
Similarly, S4 acts on the R as the trivial irrep A1 and so harmonic oscillator states in VA

with nA phonons transform as A1. To give a singlet overall, we need to combine these with
a wavefunction on C which transforms as R such that the tensor product R ⌦ F⌦SnF

2 ⌦ A1

contains a singlet.

For example, suppose we seek a state with one F -phonon and one A-phonon. Then we
require a wavefunction on C which transforms as F2 under S4. Looking at Table 5.1, we find
that we can make 1�, 3�, 2+, 3+, 2�, 3� states (for angular momentum J  3 and ordered by
ascending edge momentum k).
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5.4 Discussion

It would be possible to derive a full energy spectrum from this model and fit parameters such
as the moment of inertia I and the vibrational frequencies by comparison to experimental
data for Oxygen-16. However, our model is very crude (including assumptions such as free
motion along the edges and a constant spherical top moment of inertia) and so further
refinements would be required to give an accurate model. The main purpose of this chapter
was to illustrate some subtleties present in the E-manifold model for Oxygen-16 which have
so far gone unnoticed. In particular, we argued that the body-fixed frame convention for
E-manifold shapes (here approximated by our three-edged graph �) used in previous work
does not correspond to a genuine global section of the total configuration space. The E-
manifold (and the extension by small vibrations such as A and F ) should be thought of as
the base space of an SO (3)-bundle. One consequence is that the total wavefunction should
not be thought of as simply a product of a shape wavefunction and a rotational wavefunction
(i.e. a product of a function on the base space and a function on the fibre). Rather, the
shape wavefunction should be thought of as a section of a bundle over shape space satisfying
appropriate compatibility conditions involving bundle transition functions. As a result, in
[50] states have been missed including all those states in Table 5.1 which transform in the
F1 or F2 irreps of S4. We hope that our approach, making the bundle structure of the
configuration space explicit, clarifies these subtleties and that these ideas will be of use in
future rovibrational nuclear models.
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Chapter 6

Rovibrational states of protonated

methane

This chapter is based on the single-author paper [55].

6.1 Introduction

In this chapter we turn to molecular physics, using QGT to model the low-energy dynam-
ics of the protonated methane molecular ion (CH+

5 ). CH+
5 was discovered in 1950 by mass

spectrometry [56]. There is great interest in the rovibrational states of CH+
5 [57] as it has as-

trochemical significance, appearing as an intermediate in reactions which produce polyatomic
molecules in interstellar clouds [58]. The associated Born-Oppenheimer potential energy sur-
face has a global minimum with Cs symmetry [59], usually thought of as a H2 unit sitting
on top of a CH+

3 tripod. The next highest saddle points have Cs and C2v symmetry, with
energies larger than the minimum by roughly 40cm�1 and 280cm�1 [60]. Thus the potential
energy surface is extremely flat. In fact, it has been shown that even the quantum zero-point
energies for the nuclear vibrations [61] are sufficiently large to completely overcome these
energy barriers. This implies that, even in the quantum ground state, CH+

5 does not have
a single definite structure but moves between the various stationary points of the potential
energy surface.

In the following sections, we outline and extend the quantum graph model for CH+
5 which

was first introduced in [5]. This model uses QGT to describe the low-energy dynamics of CH+
5

in a similar spirit to the nuclear models of the previous chapters. The original calculations
were restricted to J = 0 states as orientational degrees of freedom were neglected. We extend
these calculations to the J > 0 sector, allowing us to explore fully rovibrational states in the
quantum graph model for the first time.

High-resolution infrared (IR) spectra of CH+
5 in the region relevant to the C-H stretching
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band have been measured several times including in [62] and [63]. These spectra contain
thousands of lines and are difficult to interpret as the traditional ideas in vibrational spec-
troscopy do not apply to this floppy molecular ion. Great progress was made in recent
experimental work [63] in which samples were probed at temperatures as low as 10K and
4K. At these temperatures only the very lowest quantum states are occupied, and so it is
possible to infer the energy differences between them through the method of combination
differences (comparing two transitions which involve a single common state). Despite this
recent success, the experimental data concerning the low-energy rovibrational states is too
sparse to make a comparison with our model worthwhile, and so we will compare our model
results to the sophisticated quantum-chemical calculations of [64] which found states up to
spin J = 3. The drastic reduction in the number of degrees of freedom in our model compared
to other approaches allows us to compute states which have been inaccessible to all previous
calculations. We illustrate this by computing J = 4 rovibrational states for the first time.

6.2 Quantum graph model

In [5] it was proposed that the low-energy vibrational states of CH+
5 can be understood

using QGT. The authors computed the energies and symmetry properties of the vibrational
states, comparing the results with more sophisticated quantum-chemical calculations. The
agreement is remarkable given the simplicity of the quantum graph model, in which only two
kinds of bending motion for CH+

5 are considered (to be compared with seven-dimensional
[64, 65] and even twelve-dimensional calculations [66]).

The 120-vertex metric graph � (see Figure 1), introduced in [5], is illustrated in Figures
6.1 and 6.2. Each point on the graph represents a possible molecular shape for CH+

5 , with
the vertices corresponding to the 120 distinct versions of the equilibrium structure and the
edges representing low-energy paths between them. The equilibrium structure (the minimum
on the Born-Oppenheimer potential energy surface) of CH+

5 has a Cs point-group symmetry
and can be thought of as a H2 unit sitting on top of a CH+

3 tripod. Each version of the
equilibrium structure is connected to three other versions, with two different kinds of paths
occurring, indicated by the red and blue edges. Blue edges have length L1 and red edges have
length L2. The blue edges correspond to internal rotation of the H2 relative to the tripod
(this motion takes the configuration through a Cs-symmetric saddle point). The red edges
correspond to a flip motion which exchanges a pair of protons between the H2 and CH+

3 units
(taking the configuration through a C2v-symmetric saddle point). These paths are illustrated
in Figure 6.2.

We assume that, even at low energies, the molecule can explore all of this graph by
changing its shape. The molecule also has rotational degrees of freedom. So the space C of
all possible configurations of the molecule can be thought of as an SO(3)-bundle with base
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Figure 6.1: Quantum graph �. Figure courtesy of Csaba Fábri and Attila G. Császár.

space �. Our strategy is to map the (very complex) quantum dynamics of CH+
5 onto the

motion of a particle confined to C.

6.2.1 Motion on C and symmetries

The motion of a particle confined to C is already a drastic simplification compared to the full
quantum dynamics of CH+

5 . However, by exploiting symmetries, we can make the problem
even simpler. The Molecular Symmetry (MS) group of CH+

5 is S⇤
5 , generated by permutations

of the 5 protons together with spatial inversion. Each permutation ⇡ 2 S⇤
5 acts on C, taking

configurations at a given point p on the graph � and mapping them to configurations at a new
point ⇡ (p) on the graph. In fact, by acting with permutation elements of S⇤

5 we can generate
the entire graph from only two edges, or even one edge and one half-edge. An example of
a choice is highlighted in green in Figure 6.1. We will refer to this green part of C as the
fundamental domain, and the vertex where the two green edges meet as V . Note that S⇤

5 is a
symmetry of C and so the quantum states can be classified by irreps of S⇤

5 . Working within a
particular irrep, the wavefunctions on C must transform in a definite way under the action of
S⇤
5 and this allows us to deduce the value of the wavefunction on all of C so long as we know

the value of the wavefunction on the fundamental domain. So we only need to determine the
wavefunction on the fundamental domain (once an irrep has been chosen), not on all of C:
the rest is determined by symmetry.
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x1

x2

x3

Figure 6.2: Low-energy paths between distinct versions of the equilibrium structure.

6.2.2 Defining the problem on the fundamental domain

We need to write down an appropriate Hamiltonian on each edge. This should involve a
kinetic energy contribution and a potential. To make the model as simple as possible we will
set the potential to zero. In general, one expects the kinetic energy to involve contributions
from both vibrational motion (motion along the graph) and rotational motion as well as
rovibrational cross-terms, as we have seen in the previous chapters. But there is quite a lot
of freedom in which coordinates we choose and so we can exploit this freedom to eliminate the
cross-terms: essentially, we want vibrational motions to be orthogonal to rotational motions.

Start by picking a coordinate x0 along the edge of the graph. We will use Euler angles
for the orientational degrees of freedom, so altogether we have coordinates (x0, ✓,�, ). The
Euler angles (✓,�, ) tell us (in the usual way) the rotation relating the body-fixed frame of
the molecule to a space-fixed frame. But we must still specify a choice of body-fixed frame
for each shape along the edge. In the language of Chapter 2, we need to make a gauge
choice. It is clear that we can make this choice, as we go along the edge, in such a way
that makes the gauge field A vanish on this edge and so eliminates any cross-terms. So we
may assume that in the coordinates (x0, ✓,�, ) the kinetic energy operator has only a purely
vibrational contribution and a purely rotational contribution. Now we can further transform
the coordinate x0

! x (x0) to make the vibrational kinetic operator simply �
1
2

d2

dx2 (this relies
on the fact that the vibration is only one-dimensional). As for the rotational kinetic energy,
we assume that the moments of inertia do not vary much and so we use the approximate
kinetic energy operator 1

2I Ĵ
2 where Ĵ is the generator of body-fixed rotations and I is a
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constant moment of inertia. Thus we have

H = �
1

2

d2

dx2
+

1

2I
Ĵ2. (6.1)

We are now in a position to set up the problem on the fundamental domain.

A vicinity of the fundamental domain is shown in Figure 2, consisting of the vertex V

together with the three edges leaving it. Let x1, x3 2 [0, L1] and x2 2 [0, L2] be coordinates
along the edges leaving the vertex, with the (green) fundamental domain corresponding to
x1 2 [0, L1] and x2 2

⇥
0, L2

2

⇤
. Suppose  (T ) is a state which transforms in the irrep T of S⇤

5

(so has degeneracy dimT ) and that for every permutation ⇡ 2 S⇤
5 we have the corresponding

matrix action on the state

 (T )
n !

dimTX

m=1

T (⇡)nm 
(T )
m . (6.2)

On edge j 2 {1, 2, 3} the Hamiltonian is

Hj = �
1

2

d2

dx2
j

+
1

2I
Ĵ2. (6.3)

Rotational symmetry implies that states can be classified by quantum numbers J (total
angular momentum) and M 2 {�J, . . . ,+J} (space-fixed angular momentum projection).
So we assume that  (T )

n is a (J,M) state. We can expand the wavefunction on edge j in
terms of (J,M) symmetric-top eigenfunctions (with body-fixed angular momentum projection
K 2 {�J, . . . ,+J}) and plane waves:

JX

K=�J

⇣
anjKe

ikxj + bnjKe
ik(Lj�xj)

⌘
|JKMi (6.4)

with corresponding energy eigenvalues E = 1
2k

2 + 1
2IJ (J + 1).

Now recall that we have S⇤
5 symmetry: for example, the permutation (12) (543) 2 S⇤

5 maps
configurations on edge 1 with x1 = x to configurations on edge 3 with x3 = L1 � x. The
orientations differ by some rotation R = exp

⇣
�i↵n̂ · Ĵ

⌘
(↵ and n̂ are estimated in Appendix

6.A). We can, therefore, deduce the wavefunction on edge 3 from the wavefunction on edge
1. Explicitly, it is

dimTX

m=1

JX

K0=�J

JX

K=�J

T ((12) (543))nm exp
⇣
�i↵n̂ · Ĵ

⌘

KK0
(6.5)

�
am1K0eik(L1�x3) + bm1K0eikx3

�
|JKMi .
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Now we impose quantum graph boundary conditions at the vertex V joining edges 1, 2 and
3. As we have expressed the wavefunction on edge 3 in terms of its values on edges 1 and
2, these boundary conditions give us some new conditions relating just the wavefunctions on
edges 1 and 2 which have to be satisfied. For example, continuity of the wavefunction at V

(x1 = x2 = x3 = 0) leads to

dimTX

m=1

JX

K0=�J

T ((12) (543))nm exp
⇣
�i↵n̂ · Ĵ

⌘

KK0

�
am1K0eikL1 + bm1K0

�

=
�
an1K + bn1Ke

ikL1
�
=
�
an2K + bn2Ke

ikL2
�
. (6.6)

A similar calculation, considering the permutation (23) (45), gives boundary conditions
at the midpoint of edge 2. Thus we end up with a set of linear equations in the variables
an1K , an2K , bn1K , bn2K which, as we see in (6.6), depend on momentum k. These are our
quantization conditions and can be handled numerically.

The parities of the resulting states can be deduced by noting that, on edge 2, spatial
inversion can be realised by the combined action of the permutation (45) 2 S5 followed by a
rotation by ⇡ about the axis normal to the plane of Cs reflection symmetry.

6.3 Results and discussion

We display the lowest-lying rovibrational states in Tables 1-5, listed against reference data
from the seven-dimensional variational calculation in [64]. The states which are Pauli-allowed
are indicated in bold. Recall that CH+

5 involves five identical protons (fermions) and so, by
Pauli-allowed, we mean rovibrational states which are compatible with Pauli exchange statis-
tics. In more detail, the total wavefunction involves both rovibrational degrees of freedom as
well as spin degrees of freedom for the protons. The five protons have spin 1

2 and so the spin
wavefunction for the total system lies in the irrep

Vspin =
1

2
⌦

1

2
⌦

1

2
⌦

1

2
⌦

1

2
⇠=

5

2
� 4

3

2
� 5

1

2
.

The permutation group S5 acts on the proton identities, under which the above space has
the irrep decomposition

Vspin = 6A1 � 4G1 � 2H1.

Spin states lying in this space are to be combined with our rovibrational wavefunctions in a
way which reflects the correct statistics for identical protons: the combined wavefunction must
transform as A2 under S5 permutations. One finds that spin states in the irreps A1, G1, H1

can be combined with rovibrational states in the irreps A2, G2, H2 respectively. Therefore
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Irrep E(cm�1) Eref Irrep E(cm�1) Eref
A+

1 0.0 0.0 G�
2 11.4 9.9

H+
1 22.2 20.4 H�

2 39.6 41.1
G+

1 44.8 49.4 I� 49.7 58.4
H+

2 50.2 59.3 H�
1 96.0 113.7

I+ 95.2 112.0 G�
2 100.9 112.7

H+
1 112.4 122.0 H�

2 148.8 139.4

Table 6.1: Lowest J = 0 states for quantum graph model (exactly reproducing the results
in [5]), together with a comparison to reference data Eref up to 150 cm�1 taken from [64].
Pauli-allowed states are in bold.

only the rovibrational states which transform in the irreps A±
2 , G±

2 and H±
2 are physically

allowed and these are the states which are in bold in our tables.
We have used the values L1 = 61.2

p
mea0 and L2 = 1.0

p
mea0, following the suggestion

in [5], to give the best fit to the J = 0 data (here me is the electron mass and a0 the Bohr
radius). For the moment of inertia, we have picked a physically reasonable value 1

I = 8 cm�1

[67].
We see that the quantum graph states give a good qualitative fit to the reference data

even when we extend to J > 0, with correct S⇤
5 irrep assignments along with reasonable

energy values. The agreement is remarkable considering the simplicity of the quantum graph
model. We expect the model to break down at higher energies, where neglected degrees of
freedom become important, but these results demonstrate that the graph model is sufficient
to understand many states in the low-energy regime. Our J = 4 states go beyond those
computed in [64], in which only states with J  3 were considered. Based on the agreement
in the J  3 sector, we expect our J = 4 data to give a reliable description of the states of
CH+

5 .

6.4 Summary and conclusions

In this chapter we have introduced a rovibrational quantum graph model for the nuclear
dynamics of the CH+

5 molecular ion. The model is based on just two low-energy bending
motions which take the molecular ion between versions of its equilibrium structure. These
distinct versions are represented as the vertices of a metric graph, with the low-energy path-
ways represented as edges of the graph. We have shown that the rovibrational quantum
graph model can describe a large number of rovibrational states in good agreement with
reference data. Our computed states go beyond other calculations and we have reported our
predictions for the J = 4 Pauli-allowed states of CH+

5 .
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Irrep E Eref Irrep E Eref
I+ 15.3 14.7 G�

1 11.6 11.3
G+

2 25.5 23.0 H�
2 27.3 24.9

H+
2 32.5 31.9 I� 30.9 29.7

I+ 43.9 46.5 H�
1 38.4 40.3

G+
2 51.4 57.9 A�

1 49.9 55.4
H+

1 53.4 57.1 G�
2 52.6 62.1

G+
1 54.1 61.3 I� 55.3 59.6

H+
2 62.9 72.0 H�

1 57.3 67.1
I+ 64.1 72.1 G�

1 58.8 62.3
H+

1 92.7 115.1 H�
2 66.6 75.5

G+
2 101.4 117.1 I� 94.9 115.0

H+
2 103.1 117.2 H�

1 96.8 115.9
I+ 107.2 122.7 G�

2 107.8 122.5
G+

1 112.3 126.5 H�
2 109.9 122.6

A+
2 113.5 125.8 G�

1 113.8 126.3
H+

2 137.0 138.7 I� 127.1 134.0
I+ 154.2 145.2 H�

1 149.9 143.4

Table 6.2: Lowest J = 1 states for quantum graph model, together with a comparison to
reference data Eref up to 150 cm�1 taken from [64]. Pauli-allowed states are in bold.
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Irrep E Eref Irrep E Eref
H+

1 29.5 29.1 H�
2 32.1 31.6

G+
1 32.2 32.2 I� 34.2 33.2

H+
2 40.7 39.5 H�

1 36.4 36.9
H+

1 46.3 46.7 A�
2 50.9 45.0

G+
2 52.7 48.5 G�

2 52.2 50.0
I+ 53.4 53.9 I� 53.3 54.6
H+

2 54.8 59.3 H�
2 55.3 56.4

G+
1 55.8 59.2 G�

2 58.1 64.8
A+

2 62.0 73.3 G�
1 60.8 66.1

I+ 68.5 76.5 H�
1 67.4 73.4

H+
2 72.5 78.9 I� 68.8 74.5

H+
1 74.3 82.6 H�

1 76.9 82.5
G+

1 74.9 78.1 H�
2 79.8 86.7

I+ 82.5 88.5 I� 84.0 94.4
H+

1 86.8 95.0 G�
2 87.7 96.4

G+
2 88.5 98.5 G�

1 87.8 92.0
A+

1 90.4 92.2 A�
2 99.7 126.2

G+
1 102.1 126.1 G�

1 101.6 126.8
G+

2 102.6 127.9 H�
2 103.4 126.3

I+ 105.7 126.5 I� 108.0 128.0
H+

1 111.5 129.8 H�
2 117.6 132.9

H+
2 115.4 134.7 G�

2 118.2 133.3
I+ 127.2 138.8 H�

1 121.1 137.6
H+

2 128.7 140.9 I� 127.6 141.3
G+

2 140.1 147.6 A�
1 139.9 150.6

G+
1 146.8 152.7 G�

2 148.8 152.0
H+

1 151.3 151.6 H�
1 152.4 155.2

I+ 154.6 154.3 I� 155.1 154.8
G+

1 158.0 157.0 G�
1 157.8 152.4

A+
1 161.8 148.4 H�

2 171.1 162.3

Table 6.3: Lowest J = 2 states for quantum graph model, together with a comparison to
reference data Eref up to 170 cm�1 taken from [64]. Pauli-allowed states are in bold.
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Irrep E Eref Irrep E Irrep E Eref Irrep E
I+ 56.1 G+

1 113.1 H�
1 54.6 A�

2 115.9
H+

1 59.0 H+
1 115.3 G�

1 56.4 I� 115.9
G+

2 61.6 60.2 G+
2 118.6 I� 59.2 H�

2 117.7
H+

2 61.9 61.1 I+ 119.8 G�
2 66.9 65.0 I� 117.8

I+ 63.0 H+
1 120.2 H�

1 67.2 G�
1 118.7

G+
1 68.1 A+

1 121.1 A�
1 68.0 H�

2 122.8
H+

2 78.4 83.5 I+ 122.1 I� 68.7 G�
2 124.4

G+
2 79.3 81.1 H+

2 125.6 H�
2 74.6 74.8 H�

1 124.8
I+ 80.4 H+

1 131.9 H�
1 79.3 G�

1 125.4
A+

2 82.0 81.6 G+
2 140.0 G�

1 79.7 I� 135.7
I+ 83.3 H+

2 143.3 H�
2 81.5 84.5 H�

2 140.6
G+

1 88.1 I+ 143.9 G�
2 81.6 84.5 H�

1 152.5
G+

2 89.6 88.1 I+ 151.4 G�
2 90.0 98.1 H�

2 154.3
H+

1 90.0 G+
1 156.4 I� 92.8 G�

1 156.6
H+

2 92.3 97.2 G+
1 171.4 I� 97.5 G�

2 157.7
H+

1 99.5 H+
1 171.4 H�

1 98.0 A�
1 170.8

I+ 103.8 G+
2 173.6 G�

1 99.7 G�
1 176.0

G+
2 111.7 H+

2 174.5 H�
2 106.0 H�

1 176.8
H+

2 112.7 H�
1 112.3

Table 6.4: Lowest J = 3 states for quantum graph model, compared to reference data Eref
from [64] where available (and only for the Pauli-allowed states). Pauli-allowed states are in
bold.

Irrep E Irrep E Irrep E Irrep E
H+

2 89.1 H+
2 147.0 G�

2 90.0 H�
2 136.2

A+
2 97.5 G+

2 151.0 H�
2 91.1 G�

2 140.5
G+

2 101.1 H+
2 153.0 H�

2 95.7 H�
2 144.3

H+
2 101.4 G+

2 154.2 G�
2 96.4 G�

2 150.2
H+

2 111.3 H+
2 156.1 A�

2 111.2 H�
2 151.8

G+
2 114.9 G+

2 171.3 G�
2 113.7 H�

2 158.0
G+

2 124.2 H+
2 190.7 H�

2 119.2 A�
2 172.0

H+
2 127.6 A+

2 193.7 H�
2 123.5 G�

2 172.8
H+

2 135.6 H+
2 226.5 G�

2 130.7 H�
2 175.0

Table 6.5: Lowest J = 4 Pauli-allowed states for quantum graph model.
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Figure 6.3: Choice of body-fixed axes.

6.A Appendix

Estimating R

Here we estimate the rotation R appearing in Section 6.2.2 which relates the orientations of
the configurations appearing at each end of an edge. A reasonable approximation is to take
the positions of the protons to be on the surface of a sphere (centred on the carbon nucleus)
as illustrated in Figure 6.3. We take the bond angles to be those which give the closest match
of the proton positions to ab initio values: the polar angle of the H2 unit (in radians) is taken
to be 0.42 while the polar angle of the other three protons is taken to be 1.89.

Consider configurations along edge 1. Our choice of body-fixed axes (x, y, z) are indicated
in the picture: notice that as the H2 unit rotates relative to the CH3 tripod, the entire
molecule also rotates at a rate such that the total angular momentum vanishes. The vanishing
of the angular momentum ensures that, for this choice of body-fixed axes, there are no kinetic
rotation-vibration cross-terms. The rates of rotation are related by the ratio of the moments
of inertia, I1 and I2, of the H2 and of the whole molecule. In particular, by the point that
the H2 unit has rotated a full 2⇡

6 with respect to the CH3 tripod, the molecule as a whole
will have rotated in the opposite sense by �✓ =

⇣
I1
I2

⌘ �
2⇡
6

�
. Then the rotation relating the

configurations at the two endpoints of edge 1 is a rotation by 2⇡
3 + �✓ ⇡ 2.21 about the

body-fixed z-axis, and so we take R = exp
⇣
�i↵n̂ · Ĵ

⌘
with ↵ ⇡ 2.21, n̂ = (0, 0,�1) in our

boundary conditions.
Edge 2 is treated similarly, giving a rotation

R̃ = exp
⇣
�i⇡ (0, 0, 1) · Ĵ

⌘
exp

⇣
�i�m̂ · Ĵ

⌘

where � ⇡ 1.39, m̂ = (�1, 0, 0).
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Chapter 7

Conclusions

In this thesis we investigated a variety of problems in both nuclear physics and molecular
physics with an emphasis on rovibrational dynamics. In Chapter 2 we introduced the Skyrme
model, a nonlinear field theory in which atomic nuclei are identified with topological solitons.
We developed models of Helium-4 (i.e. the ↵-particle) and the Lithium-7/Beryllium-7 isodou-
blet based on quantised small vibrations of the corresponding Skyrmions. We incorporated
Coriolis effects which had been previously neglected, deriving the form of these rotation-
vibration interactions within a geometric point of view. The results match the experimental
data very well, particularly for the ↵-particle, with the Coriolis terms significantly improving
the fit. The model explains all observed ↵-particle states up to 28.6 MeV, and we predict one
so far unobserved 0+ state at 23.4 MeV. Our analysis of Lithium-7/Beryllium-7 clarifies the
role of isospin-vibration coupling in Skyrmion quantization and we believe that the inclusion
of such effects may be crucial for the Skyrme model description of large nuclei.

Having studied the ↵-particle in Chapter 2, we went on to study ↵-particle models for
Carbon-12 and Oxygen-16 in Chapters 3, 4 and 5. These involve particular arrangements
of ↵-particles which are known to correspond to low-energy Skyrmion solutions. The QGM
for Carbon-12 was introduced in Chapter 3. This model is a significant improvement on a
previous analysis which attempted to explain the low-lying states of Carbon-12 in terms of
rigidly rotating Skyrmions with the symmetries of an equilateral triangle and a linear chain.
Allowing for more general isosceles triangular arrangements with smaller symmetry groups,
our model permits states with spins and parities which were previously unexplained within
the Skyrme model approach. The associated wavefunctions are often peaked at a bent arm
arrangement, consistent with the findings of sophisticated lattice calculations based on chiral
effective field theory. Also, we predict three new energy levels for the Carbon-12 nucleus at
around 20 MeV, with spin and parity combinations 3+, 4� and 4+.

In Chapter 4 we developed a formalism for calculating electromagnetic transition rates
between nuclear states. Within this formalism, applicable to a broad class of rovibrational
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models, we calculated rates in the QGM as well as in a similar ↵-particle model for Oxygen-
16 inspired by nuclear dynamics in the Skyrme model. For Carbon-12 both our model and
other competing models reproduce the available experimental data well, and more experi-
mental work is needed to further differentiate the models. The results for Oxygen-16 are
less promising, although the situation may be improved by relaxing certain approximations.
One way this might be done is by developing a quantum graph model for Oxygen-16. We
began to explore this possibility in Chapter 5, in which we used a toy quantum graph model
to illustrate some shortcomings of previous work. In particular, we showed that the body-
fixed frame convention usually adopted is not globally well-defined. We offered a geometric
perspective on the problem, regarding the total configuration space as an SO(3)-bundle and
clarifying how to consistently construct sensible wavefunctions on this space.

Finally, we turned from nuclear to molecular physics. In Chapter 6 we used our in-
sights developed in the previous chapters to model the low-energy rovibrational dynamics
of protonated methane in terms of a quantum particle on a graph, or more precisely on an
SO(3)-bundle over a graph. This led to a simple model for the very complex dynamics of
protonated methane, allowing us to calculate rovibrational states up to spin J = 4 for the
first time. Computation of these states was only possible as a result of the drastic reduction
in the number of degrees of freedom offered by the novel quantum graph model. We found
an excellent match to available reference data over a large number of rovibrational states
up to J = 3. Our computed states go beyond the regime studied in other calculations, and
we presented our predictions for over 30 new Pauli-allowed states with angular momentum
J = 4. We hope that comparison to experiment (or at least other theoretical approaches)
will be possible in the near future.
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