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Finite-amplitude manifestations of stratified shear flow instabilities and their spatio-
temporal coherent structures are believed to play an important role in turbulent geo-
physical flows. Such shear flows commonly have layers separated by sharp density
interfaces, and are therefore susceptible to the so-called Holmboe instability, and its finite-
amplitude manifestation, the Holmboe wave. In this paper, we describe and elucidate
the origin of an apparently previously unreported long-lived coherent structure in a
laboratory stratified shear flow generated by exchange flow through an inclined square
duct connecting two reservoirs filled with fluids at different densities. Using a novel
measurement technique allowing for time-resolved, near-instantaneous measurements of
the three-component velocity and density fields simultaneously over a three-dimensional
volume, we describe the three-dimensional geometry and spatio-temporal dynamics of
this structure. We identify it as a finite-amplitude, nonlinear, asymmetric confined
Holmboe wave (CHW), and highlight the importance of its spanwise (lateral) confinement
by the duct boundaries. We pay particular attention to the spanwise vorticity, which
exhibits a travelling, near-periodic structure of sheared, distorted, prolate spheroids with
a wide ‘body’ and a narrower ‘head’. Using temporal linear stability analysis on the
two-dimensional streamwise-averaged experimental flow, we solve for three-dimensional
perturbations having two-dimensional, cross-sectionally confined eigenfunctions and a
streamwise normal mode. We show that the dispersion relation and the three-dimensional
spatial structure of the fastest growing confined Holmboe instability are in good agreement
with those of the observed confined Holmboe wave. We also compare those results
with a classical linear analysis of two-dimensional perturbations (i.e. with no spanwise
dependence) on a one-dimensional base flow. We conclude that the lateral confinement
is an important ingredient of the confined Holmboe instability, which gives rise to
the CHW, with implications for many inherently confined geophysical flows such as in
valleys, estuaries, straits or deep ocean trenches. Our results suggest that the CHW is an
example of an experimentally observed, inherently nonlinear, robust, long-lived coherent
structure which has developed from a linear instability. We conjecture that the CHW is
a promising candidate for a class of exact coherent states underpinning the dynamics of
more disordered, yet continually forced stratified shear flows.
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1. Introduction

The onset of instabilities triggering the transition to turbulence and consequent ir-
reversible mixing in stratified shear flows, is a fundamental problem in fluid mechanics
and was first recognised as such by Osborne Reynolds who observed instabilities on
an interface between two immiscible fluids. In his classic paper, usually cited for his
pipe flow experiments, Reynolds (1883) established a shear flow in a two-layer fluid by
tilting a closed tube. He noted it was ‘a very pretty experiment’ which showed that
‘there is a critical velocity ... at which direct motion becomes unstable’ and that ‘the
instability ... did not depend on the magnitude of the disturbances’. The first application
of linear stability theory to stratified shear flows was described by G. I. Taylor in his
Adams Prize essay of 1915 entitled ‘Turbulent motion in fluids’. Though Taylor published
his stability predictions ‘without waiting for experimental results’ (Taylor 1931), the
influential and beautiful ‘tilting tank’ experiments by Thorpe (1971) demonstrated that
the development and turbulent break down of classical linear instabilities of stratified
shear flows can be observed and measured in the laboratory. Since the pioneering work
of Woods (1968), observational evidence has also accumulated that finite amplitude
manifestations of stratified shear flow instabilities occur frequently in the oceans and
atmosphere (see e.g. van Haren et al. 2014, Mahrt 2014). The mixing induced by the
turbulence following these instabilities is thought to play a key role in diapycnal transport
(see Ivey et al. 2008 for a review). Since turbulent mixing occurs on small scales relative
to the current resolution of general circulation and climate models, the development of
subgrid-scale parameterisations to model diapycnal mixing remains essential. However,
there is still uncertainty concerning the causal relationship between bulk flow properties,
spatio-temporally intermittent turbulence, and irreversible mixing.

A promising avenue of research to address this uncertainty is to analyse stratified
turbulence in a dynamical systems framework, focusing on spatio-temporal structures
rather than statistics. Within this approach, an interesting hypothesis is that the dy-
namics of turbulence can be described as an, in general complicated, trajectory in phase
space that spends significant periods in the vicinity of a set of unstable nonlinear exact
solutions of the Navier-Stokes equations called ‘exact coherent states’ (see e.g. Gibson
et al. 2008). In certain circumstances, these exact coherent states can be traced back,
generically through a sequence of bifurcations, to linear instabilities (Lucas et al. 2017).
They can also provide useful insights into the properties of the turbulent attractor,
for example by allowing for reduced-order-modelling of key quantities such as energy
dissipation (Lucas & Kerswell 2015) and irreversible mixing in stratified flows (Lucas
& Caulfield 2017). It is, however, proving extremely challenging to identify such exact
coherent states in numerical simulations of flows prone to vigorous turbulence. This issue
is particularly significant in stratified flows relevant to the ocean due to the large values
of the Prandtl number Pr ≡ ν/κ ≈ 7 and Schmidt number Sc ≡ ν/κs ≈ 700, where
ν is the kinematic viscosity, κ is the thermal diffusivity and κs is the salt diffusivity.
The tendency of those flows to develop well-mixed layers separated by sharp density
gradients (at least intermittently; see Salehipour et al. 2016), makes their direct numerical
simulation beyond current computational capabilities. Therefore, laboratory experiments
have an important role to play in guiding theoretical and numerical work towards the
identification of dynamically important exact coherent states, under the hypothesis that
they leave a distinctive signature in experimental turbulent flow, as observable, inherently
nonlinear, yet relatively long-lived coherent structures.

In this paper, we describe an apparently previously unidentified coherent structure in
a laboratory stratified shear flow. The stratified inclined duct experiment, described by
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Meyer & Linden (2014), generates a two-layer stratified exchange flow in an inclined duct
connecting two reservoirs containing fluids of different densities. As discussed in more
detail by Meyer & Linden (2014), variations in the density difference and/or inclination
angle (a few degrees at most) lead to four qualitatively different observed flow states:

(i) laminar flow, characterised by a thin, flat density interface;
(ii) a largely coherent, but non-parallel flow state characterised by robust, propagating,

quasi-periodic waves on the interface;
(iii) spatio-temporally intermittent turbulence with small-scale structures and mixing;
(iv) fully-developed turbulence with significant small-scale structures and a thick mixed

interfacial density layer.
Here we focus on the coherent wave state (ii), which Meyer & Linden (2014) described

as the ‘Holmboe regime’, since the waves observed using a shadowgraph were very
similar in appearance to the finite amplitude manifestation of this instability predicted by
Holmboe (1962), observed experimentally by Thorpe (1968) in tilting tank experiments,
and numerically simulated (in two-dimensional flows) first by Smyth et al. (1988). As
we shall see, the coherent structure that we observe has close connections to the finite
amplitude waves arising from the traditional (two-dimensional) Holmboe instability, but
exhibits three-dimensionality and spanwise confinement within our experimental duct.
Therefore, we refer to this structure as a ‘confined Holmboe wave’ (CHW). The aim of
this paper is to characterise this structure, and to understand how it originates, in the
specific sense of identifying and understanding the underlying physical mechanisms that
lead to the observed behaviour.

We characterise the three-dimensional structure of the CHW using a novel technique
allowing time-resolved near-instantaneous measurements of all three velocity components
and density field over a three-dimensional volume. We demonstrate that many aspects of
the observed CHW are consistent with the predictions of a linear normal mode stability
analysis of the experimentally measured, quasi-steady background flow which develops
within the flow. We call this instability the ‘confined Holmboe instability’ (CHI). Note
that, in the rest of the paper, we aim to distinguish in general between

(i) an infinitesimally small perturbation that is linearly unstable, which we typically
refer to as an instability ;

(ii) a finite amplitude, nonlinear wave, which we typically refer to as a wave.
To address our above-mentioned aim of characterising and identifying the physical

mechanisms at the origin of the CHW observed in the stratified inclined duct, the
remainder of this paper is organised as follows. In § 2 we review relevant previous work,
particularly on the traditional, two-dimensional Holmboe instability, to contextualise and
motivate our study. In § 3 we describe the experiment and measurement technique, and
present the experimental results to characterise the CHW in § 4. In § 5 we describe
our linear stability analyses and compare their predictions (including the CHI) with our
experimental data in § 6. Finally we present our conclusions, and suggest possible future
research directions in § 7.

2. Context and motivation

2.1. Holmboe instabilities

Holmboe (1962) first considered the stability of an idealised two-layer stratification
embedded within a shear layer of finite depth, and demonstrated that, for sufficiently
strong stratification, such inviscid flows are always linearly unstable over a finite band
of wavenumbers. He considered a symmetric configuration, with the density interface
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located at the midpoint of the shear layer, so there are two normal modes (with equal and
opposite phase speeds) with equal growth rates in this instability band of wavenumbers.

This instability, which we refer to as the ‘traditional’ Holmboe instability, can be
interpreted physically as being due to a resonance between infinitesimal internal wave-like
perturbations localised at the density interface and infinitesimal Rayleigh (or ‘vorticity’)
wave-like perturbations localised at the edges of the shear layers (Caulfield 1994; Baines
& Mitsudera 1994). This interpretation is a particular example of the ‘wave interaction
theory’ for the identification and classification of instabilities (see Carpenter et al. 2013
for a review). The symmetric problem considered by Holmboe (1962) has two such
resonances simultaneously, leading to two instabilities: one localised in the upper half
of the shear layer, the other in the lower half of the shear layer. However, this physical
internal wave–vorticity wave interaction instability mechanism is generic and gives rise to
instabilities sharing the same essential features as the traditional Holmboe instability in
more general stratified shear flows with finite depth shear layers with embedded ‘sharp’
density interfaces. It is this generic class of instabilities that we, for simplicity, refer to
as Holmboe instabilities (HIs).

Lawrence et al. (1991) generalised the original stability calculations of Holmboe to
consider asymmetric flows where the sharp density interface and the midpoint of the shear
layer are not coincident. This breaks the symmetry of the traditional stability problem,
giving rise to two instabilities with different growth rates, phase speeds and wavenumber
bands for a given stratification. For flows in domains that are not bounded vertically,
the resonance between the infinitesimal internal wave-like perturbation localised at the
density interface and the vorticity wave-like perturbation localised at the further edge of
shear layer gives rise to the assumed dominant instability band, with larger maximum
predicted growth rate, smaller magnitude phase speed and smaller wavenumbers. Haigh
& Lawrence (1999) further demonstrated that vertical confinement by sufficiently close
top and bottom boundaries could switch the dominant branch of instability, consistent
with the seminal work of Hazel (1972).

2.2. Holmboe waves: laboratory observations and numerical simulations

Finite amplitude manifestations of HIs, which we refer to as Holmboe waves (HWs),
have been observed experimentally in a wide range of shear flows containing relatively
sharp density interfaces (see e.g. Macagno & Rouse 1961; Thorpe 1968; Browand &
Winant 1973; Maxworthy & Browand 1975; Caulfield et al. 1995; Zhu & Lawrence 2001;
Hogg & Ivey 2003; Tedford et al. 2009; Carpenter et al. 2010; Meyer & Linden 2014).
Generically, cusped waves are observed at the interface, propagating at a phase speed
intermediate between the propagation speed of the density interface and the maximum
speed of the sheared fluid, in qualitative agreement with linear stability theory.

Zhu & Lawrence (2001) observed both symmetric (up-down) and asymmetric (only up
or only down) HWs in a laboratory exchange flow. They compared their observations with
two different normal mode stability calculations. One calculation used the piecewise-linear
profiles originally considered by Holmboe (1962), while the other used smooth parallel
velocity and density profiles, calculated as solutions to the Taylor-Goldstein equation by
Nishida & Yoshida (1990). They found only qualitative agreement with the predicted
phase speeds and wavelengths, perhaps unsurprisingly due to the highly idealised nature
of the theoretical calculations compared to the actual laboratory flows. Tedford et al.
(2009) and Carpenter et al. (2010) conducted further experiments, and the latter made
the first comparison with three-dimensional direct numerical simulations (DNS). They
attributed the discrepancy between experiments and linear theory to wave stretching
(increasing wavelength by the streamwise convective acceleration of the mean flow), and
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the discrepancy between DNS and linear theory to wave merging (increasing wavelength
by vortex merging events). They also found that the wave amplitude was larger in the
DNS than in the experiments, although the simulations did not correspond exactly to
the experimental situation, in particular in the choice of the Schmidt number.

In the first two-dimensional DNS of HWs, Smyth et al. (1988) established that
the counter-propagating trains of HWs above and below the (symmetrically located)
density interface accelerate when the crests of the characteristic cusped waves are aligned
vertically, and slow down when they are laterally far apart. As is apparent in their figure 7,
this behaviour is associated with the relative location of the elliptical spanwise vortices
that develop in front of the density crests, with the slowing occurring when the two
vortices are close to being aligned vertically (corresponding to density crests being far
apart). Indeed, for sufficiently weak stratification, these two vortices ‘lock’ and then roll
up the interface into an array or ‘train’ of elliptical billows, i.e. the finite amplitude
manifestation of the Rayleigh instability of a finite-depth shear layer (see Rayleigh 1879,
and for further discussion of this phenomenon for ‘marginal’ HWs, Smyth & Peltier
1991). Such structures are commonly referred to as ‘Kelvin-Helmholtz billows’, even
though Kelvin (Thomson 1871) and Helmholtz (1878) only considered a discontinuous
velocity profile, which does not exhibit the scale selection characteristic of billow trains.

The elliptical vortices of HWs develop close to the critical layers of the linear instability
(i.e. where the predicted phase speed of the linear instability matches the flow speed).
Due to the relatively strong baroclinic vorticity generation associated with the cusped
waves, these vortices do not typically correspond to the maximum vorticity magnitude
within the flow, although they typically induce the entrainment of ‘wisps’ of fluid from
the crest of the propagating cusped waves.

Smyth & Peltier (1991) used secondary linear Floquet stability analysis, (i.e. the linear
stability analysis of non-parallel flow fields extracted from two-dimensional numerical
simulations under the assumption that these flow fields were ‘frozen’ in time) in an
attempt to understand how a two-dimensional saturated HW becomes three-dimensional,
breaks down, and hence has the potential to undergo the transition to turbulence.
Simulations at moderate Reynolds number suggested that HWs could be robust and
identifiable over relatively long times (see for example Smyth & Winters 2003, Carpenter
et al. 2007 and Smyth et al. 2007). However, through simulations at significantly higher
Reynolds number, Salehipour et al. (2016) demonstrated that finite amplitude symmetric
HWs are prone to a wide range of secondary instabilities of both convective and shear-
driven types, which destroy the coherence of the primary instability and trigger a
relatively long period (at least in comparison to KH billow trains) of turbulent motions
characterised by enhanced turbulent dissipation and irreversible mixing. Nevertheless,
these behaviours at higher Reynolds numbers may well be inherently linked to the
transient run-down nature of such simulations, with no forcing acting to re-energise
the initial shear flow, and the initial profiles and computational domain geometry being
chosen to be susceptible to specific (and typically monochromatic) linear instabilities.

2.3. Limitations of previous research

In this paper, we attempt to address some of the limitations of the previous stud-
ies of HWs, which we classify in three categories: steadiness; dissipation; and three-
dimensionality.

2.3.1. Steadiness

To the best of our knowledge, all numerical calculations have considered the time
evolution of an initially unstable state, analogous to the time-dependent instabilities
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observed in ‘tilting tank’ experiments of Reynolds (1883) and Thorpe (1971). This setup is
convenient for comparison with the predictions of linear stability theory in an initial value
problem. However, many geophysically relevant flows – such as exchange flows in straits,
estuaries (e.g. Geyer et al. 2010), coastal inlets (e.g. Farmer & Armi 1999), deep ocean
overflows (e.g. van Haren et al. 2014) and stratified flows in the atmospheric boundary
layer (e.g. Mahrt 2014) – are sustained in time through slowly-varying forcing, such
that a quasi-steady nonlinear state can exist. Such natural flows are not the product of
carefully designed initial conditions chosen to trigger specific primary instabilities, which
as noted above lead to inherently transient flow evolution and, in particular, preclude
any possibility of finite-amplitude coherent structures emerging which are both robust
and long-lived.

In contrast, the stratified inclined duct experiment sets up a statistically steady flow
that is not the inevitable result of carefully designed initial conditions. HWs propagate
throughout the duct and nonlinearly influence the mean flow that sustains them. This
situation is more representative of environmental flows, yet there is no a priori rigorous
argument justifying a connection between observed saturated nonlinear waves and linear
instabilities predicted to grow from infinitesimal perturbations using the horizontally-
averaged mean flow as a notional, though not actually realised, base flow. In this paper
we show that despite the undoubted challenge to this modelling approach, the comparison
is, perhaps fortuitously, good.

2.3.2. Dissipation

The majority of the experiments and numerical calculations of which we are aware
considered flows at relatively low Reynolds number of O(10−100) (based on the definition
(3.4) adopted later in this paper), with the recent exception of Salehipour et al. (2016).
Moreover, the ‘run-down’ character means that a strictly restricted amount of energy, set
at the beginning of the flow evolution, is available to dissipate, and that this dissipation is
inherently limited in time. Indeed, the stratified turbulence literature (see e.g. the review
of Ivey et al. 2008) increasingly highlights the importance of the ‘buoyancy Reynolds
number’ Reb, defined as

Reb ≡
ε0
νN2

0

. (2.1)

Here, ε0 is a characteristic (volume-averaged) value of the rate of dissipation of total
kinetic energy ε ≡ 2νsijsij (where sij ≡ (∂xiuj + ∂xjui)/2 is the symmetric strain rate

tensor) and N0 is a characteristic value of the buoyancy frequency N ≡
√
−(g/ρ0)∂zρ.

This nondimensional number, sometimes referred to as the ‘activity parameter’ or Gn
(Portwood et al. 2016), is the (square) ratio of the frequencies associated with kinetic
energy dissipation

√
ε/ν and buoyancy N . An alternative and illuminating interpretation

is to express Reb as a ratio of length scales: Reb = (Lo/Lk)4/3 where Lo = (ε/N3)1/2 is
the Ozmidov scale, the vertical scale below which turbulent eddies are not significantly
affected by stratification, and Lk = (ν3/ε)1/4 is the Kolmogorov scale, below which
viscous dissipation dominates. The ratio Reb therefore measures the range of scales that
are not significantly affected either by stratification (suppressing vertical scales & Lo)
or by viscosity (damping scales . 10Lk). Although caution needs to be exercised when
comparing different studies and flow geometries where Reb may be defined in different
ways, consensus is developing, not least motivated by the arguments of Gibson (1980)
and Gibson (1999), that Reb & 20− 30 is required for the flow to exhibit any of the key
characteristics of stratified turbulence (see Portwood et al. 2016; Bartello & Tobias 2013
for further discussion).
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In the stratified inclined duct experiment, we estimate the volume-averaged Reb ≈
Re sin θ (see (3.4) and (3.6)) and CHWs are found to exist for Reb up to ≈ 50, controlled
by increasing either the Reynolds number Re or the tilt angle of the duct θ (see § 3.4.1
for more details). We are therefore able to generate waves that maintain relatively
high dissipation for hundreds of advective times units, making this experiment a viable
attempt to reproduce inertia-dominated flows of geophysical relevance in the laboratory.

2.3.3. Three-dimensionality

Temporal linear stability analyses of parallel shear flows with a background streamwise
velocity U(z)x̂ focus on wave-like disturbances, i.e. normal modes, of the form

Ψ ′(x⊥, z, t) ≡ Ψ̂(z) exp(ik · x⊥ + σt), (2.2)

where Ψ̂(z) is the one-dimensional complex eigenfunction of any perturbation variable;
z is the vertical coordinate; x⊥ ≡ xx̂ + yŷ is the horizontal coordinate vector; k ≡
|k|(cosβx̂ + sinβŷ) is the real horizontal wave vector; and σ is the complex growth rate.
Conventionally, k is taken to be aligned with the background flow along x, i.e. β = 0.
In this paper, we refer to such an analysis as ‘2P-1B’, for two-dimensional perturbations
on a one-dimensional base flow and to the more general analysis with β 6= 0 as ‘2.5P-
1B’, for its intermediate character between two- and three-dimensional perturbations.
The focus on 2P-1B analyses can generically be justified by appealing to a corollary of
‘Squire’s theorem’ (Squire 1933) in unstratified flows at finite Reynolds number, and the
analogous ‘Yih’s theorem’ (Yih 1955; Smyth et al. 1988) in (inviscid) stratified flow.

Both theorems rely on the observation that ‘three-dimensional’ normal modes aligned
at some angle β 6= 0 to the background flow, having growth rate σ, wavenumber |k| in a
flow with Reynolds number Re and bulk Richardson number Ri are equivalent to ‘two-
dimensional’ normal modes having β = 0 with lower growth rate (σ cosβ) and larger
wavenumber (|k|/ cosβ) in an equivalent flow with lower Reynolds number (Re cosβ)
and higher bulk Richardson number (Ri/ cos2 β). This statement is summarised by the
relation (see Smyth & Peltier 1990):

σ(|k|, β, Re,Ri) = cosβ σ
( |k|

cosβ
, 0, Re cosβ,

Ri

cos2 β

)
. (2.3)

It is then natural to consider the locus of the two-dimensional modes (β = 0) with
maximum growth rate σm across all wavenumbers for given values of the external flow
parameters Re and Ri. For an unstratified flow, if σm(Re) decreases more slowly than
1/Re (i.e. σm(Re) × Re increases with Re), then the most unstable two-dimensional
modes have higher growth rates than any three-dimensional mode, a circumstance which
is generic for shear flow instabilities. In particular, if instability occurs only above a
critical Reynolds number (i.e. for Re > Rec), this condition implies that the marginal
instability mode must be two-dimensional (as any three-dimensional mode in a flow with
Re = Rec experiences an equivalent flow with Re < Rec, and hence is stable).

The equivalent statement for (inviscid) stratified flows is, if σm(Ri) increases more
slowly than

√
Ri (i.e. σm(Ri)/

√
Ri decreases with increasing Ri), then the most unstable

two-dimensional modes have higher growth rates than any three-dimensional mode. For
stratified flows, the dominance of two-dimensional modes is not so clear-cut, as HIs (for
example) only occur in stratified flows, and occur for all bulk Richardson numbers, thus
making it at least plausible that σm(Ri) increases more rapidly than

√
Ri. Indeed, in

a stratified flow at finite Reynolds number, Smyth & Peltier (1990) identified a small
parameter range in Re − Ri space where σm(Ri) does increase more rapidly than

√
Ri
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and HIs at an angle β 6= 0 were predicted to be dominant, but it has proved difficult to
test these predictions either experimentally or numerically.

It is important to recognise that such ‘three-dimensional’ modes considered by the
2.5P-1B analysis (in this precise sense of travelling at angle β 6= 0 to the background flow)
are strictly only well-defined in infinite domains with translational invariance in x and y.
As another example of a ‘three-dimensional’ stability analysis, Drazin (1974) considered
the linear instability of an inviscid flow with two layers of different density, where the
upper layer has a non-zero streamwise velocity which varies slowly in the spanwise
direction. This flow is prone to a (truly) three-dimensional variant of the conventional
Kelvin-Helmholtz instability, yet the background flow was still not confined or localised in
any sense. Such flow instabilities, just like the flow instabilities ‘propagating at an angle’,
are therefore unlikely to be observed experimentally. Furthermore, the modal structure
(2.2) assumed for such perturbations inevitably imposes the same spanwise periodicity
on the perturbation density and velocity components, thereby strongly restricting their
possible spatial structure. As we discuss in more detail in this paper, perturbations
with a more complex spatial structure are actually consistent with our experimental
observations.

Indeed, experimental observations of HWs are typically compared to HI ‘2P-1B’
predictions (often representing U(z) by hyperbolic-tangent or error-function vertical
profiles in unbounded domains). Analogously, three-dimensional numerical simulations
typically consider periodic boundary conditions in both of the horizontal directions,
avoiding potential issues with horizontal boundary conditions interacting with HWs.
However, viscous effects and the presence of confining side walls in an experimental tank
make any experimental mean flow inherently dependent on the spanwise (y) and vertical
(z) coordinates and affect any waves which may develop by requiring the perturbations
to decay to zero at these walls. Many of the geophysical flows mentioned in § 2.3.1 also
exhibit two- or three-dimensional base flows and significant spatial confinement. It is
therefore desirable to understand the effects of this inherent three-dimensionality and
confinement and model them appropriately. Our experimental apparatus is designed to
obtain data to achieve this.

3. The experiment

3.1. The stratified inclined duct

We consider the flow in a duct connecting two reservoirs containing aqueous salt
solutions at densities ρ0 ± ∆ρ/2 (figure 1). The seal, between the duct and the barrier
separating the two reservoirs, is made of flexible rubber, allowing the duct to tilt at a
relatively small angle θ from the horizontal. The duct has length L = 1350 mm and has
a square cross-section of height and width H = 45 mm (aspect ratio L/H = 30). At the
start of the experiment, the duct is opened, initiating an exchange flow (with zero net
volume flux) between the reservoirs.

This flow is a two-layer stratified shear flow, forced by gravity in two distinct ways. The
first contribution is a hydrostatic pressure gradient in each layer, resulting from the end
of each duct sitting in reservoirs containing fluids of different densities, and is sufficient
to drive an exchange flow at θ = 0◦. The second contribution depends on the tilt angle:
the resulting non-zero projection of gravity along the duct provides additional buoyancy
forces. A positive angle θ > 0◦ (defined here by the duct being raised in the denser
reservoir) reinforces the exchange flow by accelerating the light layer up (to the left) and
the heavy layer down (to the right). Each individual reservoir measures 1×0.2×0.5 m and



Confined Holmboe waves 9

Side view

Top view

2. 3. 

4.  

5.  

6.   

1.   

U

Measurement
volume

7.   

8.                                  9.  
10.  

Figure 1. Experimental flow geometry: An inclined duct (1) connects a reservoir of dense fluid
(2) and a reservoir of light fluid (3). All fluid is seeded with particles for sPIV, and fluid initially
in (3) is dyed for PLIF. The laser beam emitted from (4) is directed to the pair of oscillating
mirrors in (5), before entering the light sheet producing optics mounted on the linear traverse
(6). The scanning light sheet sweeps a measurement volume (7) whose successive planes are
imaged for sPIV by cameras (8) and (9) and for PLIF by camera (10).

holds approximately 100 litres, allowing us to maintain a statistically-steady exchange
flow for several minutes. This steady flow continues until the controls at the ends of the
duct (see below) are flooded by the accumulation of fluid of a different density coming
from the other reservoir.

As outlined in § 1, Meyer & Linden (2014) described and mapped four qualitatively
different flow states obtained by varying the main parameters ∆ρ/ρ0 and θ, using
shadowgraph observations and a larger square duct with length L = 3000 mm and
height H = 100 mm. At low ∆ρ/ρ0 and θ, the flow is laminar with an undistorted
interface. At larger values of either or both parameters, persistent coherent HWs distort
the interface. Higher values of the forcing give rise to spatio-temporally intermittent
turbulence at the interface, and eventually, fully developed turbulence with a thick
mixing layer. Their measurements of layer-averaged velocities through mass flux balances
support the hypothesis that the flow is hydraulically controlled at both ends of the duct
for θ & 1◦. The flow is subcritical (with respect to long, small amplitude, interfacial
disturbances) inside the duct, and undergoes two transitions at each end: a smooth one to
a supercritical state shortly after exiting the duct, and an abrupt one further downstream
(in the form of a jump) from supercritical to subcritical, to match the reservoir conditions.
These hydraulic controls ensure that the exchange flow taking place through the duct is
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maximal, i.e. that its layer-averaged velocities obey the Froude number condition (3.1)
(see Armi 1986).

The practical consequence of this hydraulic control is that positive angles cannot
increase the exchange flow rate, or mean flow velocities, beyond a certain value. The
additional kinetic energy input provided by gravity through a positive tilt angle must be
dissipated by the flow within the duct, either by increased wave activity or turbulence.
We are therefore able to control the dissipation rate by the tilt angle, and to maintain
target dissipation rates in a statistically steady sense for extended periods of times. The
dissipation achieved is expressed non-dimensionally as a buoyancy Reynolds number in
§ 3.2, and depends on two free experimental parameters: the Reynolds number (when
appropriately defined as below) and the tilt angle.

The inclined duct experiment is thus ideally suited to study HWs for the following
reasons:

(i) It naturally sets up a flow with large shear layer thickness/density interface thick-
ness ratio. The low diffusivity of salt compared to momentum (or high Schmidt number
Sc ≈ 700, as defined in § 1), and the continuous supply of unmixed fluid from both
reservoirs in the open duct mean that the interface thickness ratio resulting from inter-
facial diffusion of vorticity compared to interfacial diffusion of density is of the order of√
Sc = O(10).
(ii) It naturally sets up a flow with large bulk Richardson number. The hydraulic control

sets an upper bound for the speeds achieved inside the duct and, as we shall see in § 3.2
and from (3.5), effectively sets the overall or bulk Richardson number to an O(0.1 − 1)
constant, regardless of the forcing parameters.

(iii) Both symmetric and asymmetric HWs can be observed. Experiments at low angles
θ . 2◦ typically exhibit flows where the density interface is (close to) the centre of the
shear layer and so is prone to symmetric HWs (i.e. two waves propagating in opposite
directions with similar amplitude). In contrast, experiments at higher angles θ & 2◦

exhibit an offset between the midpoint of the shear layer and the density interface
sufficient to give rise to asymmetric (i.e. one-sided) HWs, where the instability with
smaller growth rate is apparently being sufficiently suppressed such that it does not
reach an observable ‘wave’ with finite amplitude. The mechanism leading to the offset of
the interface is thought to be related to the complex pressure adjustment necessary to
match the different hydrostatic pressures in each reservoirs when the duct is tilted. We
will use this empirical knowledge to our advantage in this paper, deliberately selecting
parameters for which asymmetric HWs are observed.

3.2. Notation and nondimensional parameters

The notation we use in the paper is shown in the measurement volume insert in figure
1. The streamwise x axis is aligned along the duct and the spanwise y axis across the
duct, making the z axis tilted at an angle θ from the vertical (resulting in a non-zero
streamwise projection of gravity). All coordinates are centred in the middle of the duct,
such that −L/2 6 x 6 L/2 and −H/2 6 y, z 6 H/2. The velocity vector field has
components u(x, y, z, t) = (u, v, w) along x, y, z, respectively, and we denote the density
field by ρ(x, y, z, t).

Only a limited number of parameters are believed to play important roles in this
experiment. The geometrical parameters are L, H, θ and the dynamical parameters
are the acceleration due to gravity g, the non-dimensional density difference ∆ρ/ρ0,
the kinematic viscosity of water ν and the molecular diffusivity of salt κs. The relative
density difference (< 0.1% in the experiment reported here) is sufficiently small so that
the Boussinesq approximation requiring that ∆ρ/ρ0 � 1 is valid and density differences
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only play a dynamically relevant role through the reduced gravity g′ ≡ g∆ρ/ρ0. Since
the six free parameters L,H, θ, g′, ν, κs have two independent dimensions (of length and
time), it is possible to construct four independent nondimensional parameters, as we do
below.

It is important to note at this point that the experiment does not have any imposed
velocity scale. However, to a good approximation, the hydraulic controls at the ends of
the duct require that the composite Froude number

G2 ≡ F 2
1 + F 2

2 = 1, (3.1)

where F 2
i ≡ 〈u2i 〉y,z/(g′hi) is the Froude number of layer i and 〈·〉y,z denotes spanwise

and vertical averaging over the depth hi of each layer. The symmetry of this Boussinesq
exchange flow implies that both layers have equal depth and Froude number in the central
section of the duct

F 2 ≡ F 2
1 (x = 0) = F 2

2 (x = 0), (3.2)

such that for each layer

F =
〈u〉y,z√
g′(H/2)

= ± 1√
2
, or 〈u〉y,z = ±

√
g′H

2
. (3.3)

Due to the moderate values of Re, the mean velocity profile is affected by viscosity
and we find that the peak velocities in each layer are approximately twice the layer-
averaged values, i.e. max |u| ≈

√
g′H. We choose to nondimensionalise velocities by this

characteristic peak value, or half the total (peak-to-peak) velocity jump ∆U/2 ≡
√
g′H.

We define (ũ, ṽ, w̃) ≡ (u, v, w)/(∆U/2) such that −1 . ũ . 1 (note that in general
|ṽ|, |w̃| � |ũ|; see § 6.1.2). For consistency, we choose H/2 as the length scale, such
that −1 6 ỹ, z̃ 6 1, and −L/H 6 x̃ 6 L/H. Consequently, the natural time scale
for nondimensionalisation is the advective time H/∆U = H/(2

√
g′H). The resulting

nondimensional time units will be referred to as advective time units (ATU). The relevant
Boussinesq density field is ρ̃ ≡ (ρ−ρ0)/(∆ρ/2), where we use ∆ρ/2 to nondimensionalise
density such that −1 6 ρ̃ 6 1.

Using the previously defined scales, it is natural to construct the following Reynolds
number

Re ≡
∆U
2

H
2

ν
=

√
g′HH

2ν
, (3.4)

which, for a given duct geometry and fluid, is a function of the driving density difference
∆ρ alone.

The Froude condition (3.1) artificially adds another dimensional parameter, the ve-
locity scale, to our previous set of six parameters. It will prove useful in the rest of the
paper (e.g. for the governing equations (5.1)) to define the overall Richardson number
of the flow, expressed as the nondimensional product of the density, length and inverse
square velocity scales

Ri ≡
g
ρ0

∆ρ
2
H
2(

∆U
2

)2 =
1

4
, (3.5)

by definition of ∆U . Note that the value of Ri is set and not a free parameter; it is
simply an equivalent formulation of the Froude condition (3.1): Ri = 1/(8F 2) = 1/(4G2)
and G2 = 1. We choose the Schmidt number Sc (defined in § 1), L/H and θ as the last
parameters. In summary, we have a total of four free independent nondimensional pa-
rameters: Sc, L/H, θ, Re, and one imposed parameter Ri. For the apparatus considered,
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we have Sc = 700, L/H = 30, Ri = 1/4, and we have the freedom to vary θ and Re
(through varying ∆ρ).

A characteristic buoyancy Reynolds number Reb (see § 1 and (2.1)) can be estimated
for θ > 0◦, assuming complete dissipation of the instantaneous power gained by the fluid
moving at a layer-averaged velocity ∆U/4 in the streamwise gravity field g′ sin θ, i.e. the
characteristic dissipation scale is ε0 ≈ g′(∆U/4) sin θ. Using the characteristic buoyancy
frequency N2

0 = g∆ρ/(2ρ0)/(H/2) = g′/H, we find that

Reb ≈
g′∆U4 sin θ

ν g
′

H

=
∆UH

4ν
sin θ = Re sin θ. (3.6)

Note that this is a volume-averaged estimate that includes the dissipation due to viscous
stresses on the duct walls, and that the actual dissipation can be highly heterogeneous
in space. Therefore, it is necessary to be cautious when comparing the specific numerical
values of Reb reported here with other studies where other definitions have been used.
For positive angles θ > 0◦, the three main qualitative bifurcations in flow regimes have
been found to scale with Re sin θ over a wide range of Re and θ. Based on hundreds of
shadowgraph observations, HWs are observed for 20 . Reb . 50, intermittent turbulence
is observed for 50 . Reb . 100 and steady turbulence for Reb & 100 (Lefauve 2018).

Henceforth, we drop the tildes and, unless explicitly stated otherwise, use nondimen-
sional variables throughout.

3.3. Three-dimensional volumetric sPIV/PLIF measurements

We obtained time-resolved, three-dimensional, volumetric measurements of the three-
components of velocity using a novel method that combines successive two-dimensional
planar stereo particle image velocimetry (sPIV) measurements to construct a volume.
The flow was illuminated by a thin, pulsed, vertical laser sheet, which was rapidly
scanned back and forth in the spanwise y direction (figure 1), sweeping the volume
of interest. The fundamental technical challenge with this approach is to obtain pairs of
images, separated by a small time interval appropriate for PIV, at the same spanwise
locations without relying on the overlap of successive laser sheets achieved either from
the continuous traverse of an excessively thick laser sheet (which would compromise the
spanwise resolution) or from a very slow scanning speed (which would compromise the
near-instantaneous character of the measurements). The novelty of the system employed
here is the conversion of the continuous motion of the traverse into a discontinuous
motion of the light sheet. The laser beam was directed onto a pair of oscillating mirrors
controlled by galvanometers (for accurate and fast positioning) that deflect its position
before entering the optics mounted on the fast-moving linear traverse. This allowed us to
control the successive positions of the pulsed laser sheet independently of the traverse, and
thus obtain pairs of images at the same spanwise location while continuously scanning the
thin laser sheet across the measurement volume. A detailed description of the scanning
system and other aspects of the sPIV/PLIF measurements can be found in Partridge
et al. (2018)).

The disadvantage of this approach is that the measurements are not instantaneous as
successive planes have a time lag. However, this time lag can be made very small by
increasing the scanning speed while maintaining the co-location of laser sheet pairs. As
discussed in more detail in Partridge et al. (2018), this method has three main advantages
over existing methods for obtaining three-dimensional experimental diagnostics of a
stratified flow across a volume: it is less sensitive to unavoidable residual refractive



Confined Holmboe waves 13

index variations; it yields a higher spatial resolution; and crucially, it allows simultaneous
measurements of the density field.

Simultaneous measurements of the density field were achieved by combining successive
planar laser induced fluorescence (PLIF) measurements in the same fashion. PLIF
requires an additional camera imaging the concentration of a fluorescent dye marking
one of the fluids (in our case, the less dense solution, initially in region (3) of figure
1). The dye emits light at a slightly longer wavelength than the wavelength of the laser
light which the dye absorbs. Narrow bandpass filters in front of the PIV cameras and a
suitable longpass filter for the PLIF camera allow separation of both signals.

3.4. Experimental details

3.4.1. Flow parameters

As discussed in § 3.2, HWs are observed for a wide range of parameters (θ,Re). For
θ = 0◦, the HWs are typically symmetric and are observed for 2000 . Re . 4500. For
θ = 5◦ the HWs are typically asymmetric and observed for 300 . Re . 600.

In order to gain insight into the three-dimensional structure of CHWs, analysing the
propagation of an asymmetric Holmboe wave train, propagating only in one direction
proves more straightforward. Moreover, the current limitation of our system in terms
of scanning speed and the maximum displacement that can be achieved by the oscil-
lating mirror means that a forward or backward scan cannot be achieved in less than
approximately one second. At the current values of H and ν, a one-second scanning
duration corresponds to ∆U/H = 4νRe/H2 = Re/482 ATU, making the measurement
of flows with, for example, Re = O(500) in O(1 ATU) more reasonably assumed to be
near to instantaneous than those with Re = O(5000) in O(10 ATU). For these reasons,
the principal experiment discussed in this paper was carried out at θ = 5◦, Re = 440,
corresponding to Reb = 38.

Four additional experiments were carried out with the same parameters except for
slightly different Re ∈ [400, 490] and initial transients resulting from different experimen-
tal initialisation procedures. The data from these additional experiments confirm that
the conclusions drawn from the principal experiment presented in this paper are robust.
For the sake of brevity, and also because the data from these additional experiments are
of inferior quality by comparison to the data from the principal experiment, we do not
discuss these experiments further.

3.4.2. Fluids

The success of both the sPIV and PLIF measurements relies on both fluids having
very similar refractive indices, such that both particles and dye concentration can be
accurately imaged without aberrations. Two salt solutions were used for that purpose:
sodium chloride (NaCl) for the light layer and sodium nitrate (NaNO3) for the heavy
layer. Using a handheld refractometer (Reichert Technologies Goldberg) it was possible
to obtain the desired density difference ∆ρ while matching refractive indices within a
relative error of∆n/n ≈ 10−4, small enough to obtain sharp and accurate particle images.
The difference in diffusivity of these solutions is negligible, and does not introduce any
additional dynamics, as discussed in Olsthoorn & Dalziel (2017).

Densities were measured at the temperature of 20 ◦C (at which the experiment was
carried out) using a density meter (Anton Paar DMA 5000). Here ρ0−∆ρ/2 = 1.003242
g cm−3 and ρ0 + ∆ρ/2 = 1.004190 g cm−3, giving ∆ρ/ρ0 = 9.44 × 10−4 and Re = 440
using an average viscosity ν = 1.05 × 10−6 m2 s−1. The angle of the duct was set to
θ = 5.0◦ using a digital inclinometer (Digi-Pas DWL-280Pro).
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Both fluids were seeded with polyamide particles of diameter dp = 50 µm and density
ρp = 1.03 g cm−3 for PIV. Their small size and near-neutral density ensured that
they accurately followed the flow, as evidenced by the small ratio of settling to mean
flow velocities, or Stokes number Sk = (ρp − ρ0)gd2p/(9ρ0ν∆U) = 1.7 × 10−3. The less
dense layer was dyed with rhodamine 6G at 1.5× 10−8 g cm−3 for PLIF, a low enough
concentration to produce no visible attenuation of the laser sheet over the height of the
duct, nor to affect the density of the fluid.

3.4.3. Optics

The light sheet was produced by a dual-cavity Litron Nano L 100 Nd:YAG laser,
providing 50 mJ per pulse of duration O(10 ns) for each head, here used at a frequency
of 50 Hz. The thickness of the laser sheet varied between ≈ 2 mm at the centre and ≈
1 mm at the edges of the measurement volume.

Experiments were recorded using three 8 MPixel Teledyne Dalsa Falcon2 cameras, each
connected to a workstation and triggered by a timing system for accurate laser pulse -
camera trigger synchronisation, handled via the DigiFlow software. The same timing
system controlled the galvo-mirrors and traverse responsible for scanning the laser sheet.
The two PIV cameras were fitted with Micro Nikkor 60 mm f/2.8D lenses at aperture
f/8 and were positioned at a distance of 0.6 m from the measurement volume. As those
cameras must image the flow at an angle (figure 1), Scheimpflug adaptors were fitted in
order to keep focus on oblique planes. The PLIF camera was fitted with a Nikkor 50 mm
f/1.2D at aperture f/1.2 and positioned at a distance of 1 m from the measurement
volume. With these parameters, all cameras maintained good focus on all the planes
scanned. As explained above, the cameras were equipped with filters to separate the
signals from either the particles or the dye.

To ensure that particles in the reservoir did not interfere with PLIF measurements by
blocking light coming from the duct, a box filled with pure water was inserted between
the duct outer wall and the reservoir inner wall (not shown in figure 1) to allow an
unobstructed view of the test section. This box, as well as the duct and reservoirs, is
made of smooth, transparent Perspex (acrylic) sheets with good optical clarity.

3.4.4. Scanning parameters and coordinates

The scanning system was set up so that a measurement volume was spanned by 30
parallel planes to avoid redundancy of data by overlapping light sheets (average spanwise
separation = 45/30 = 1.5 mm, which is the average light sheet thickness). Therefore, to
construct each volume, a forward scan or a backward scan captured 60 frames (noting
that two frames are needed for each velocity slice). At a camera speed, or capture rate,
of 50 fps (for adequate particle displacement between frames) each forward or backward
scan therefore took 1.2 s to complete, or 1.1 advective time units (ATU). This proved to
be fast enough to ‘freeze’ adequately the structure of waves travelling at the (relatively
small) phase speed of the order of 5−10 % of the maximum advective speed, as our data
will show.

A total of 309 volumes were captured, spanning 370 s or 335 ATU and representing
150 GB of raw data. The recording was started at an arbitrary time origin t = 0 once
the flow was established, a few seconds after the gravity current following the opening of
one end of the duct had exited the other open end of the duct. The measurement volume
spanned 248 mm in the streamwise direction and the full cross-section 45 × 45 mm, or
11× 2× 2 in non-dimensional units. The corresponding coordinates of our measurement
volume are (x, y, z, t) ∈ [−17.5,−6.5]×[−1, 1]×[−1, 1]×[0, 335], where (x, y, z) = (0, 0, 0)
is the centre of the duct.
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3.4.5. Data processing and resolution

In order for multi-plane measurements in pixel coordinates from three cameras to be
mapped into a three-dimensional volume with real world coordinates, a careful calibration
technique was employed. It relied on using a two-plane calibration target, each plane
containing approximately 100 white circles on a black background at known positions,
inserted inside the duct prior to the experiment. The process of capturing still images of
the target was repeated by shifting the target in the spanwise direction to three different
(x, z) planes inside the duct to obtain a set of approximately 600 points used to fit a
least-square polynomial mapping between pixel and (x, y, z) world coordinates. Given the
importance of an accurate mapping for sPIV reconstruction, and since the light sheet is
not infinitely thin, a further step of coordinate mapping refinement was used, as discussed
in Partridge et al. (2018).

Initial, two-dimensional, sPIV processing for each camera was carried out using the
DigiFlow software using a multi-pass adaptive algorithm that includes the distortion of
interrogation windows. Here we used a nominal window size of 31×31 pixels and a spacing
of 8 pixels. The pixel-based velocity fields from each camera were then combined using the
coordinate system, again in DigiFlow, to produce the three-dimensional velocity field for
each plane. By aggregating fields from across a scan, a final resolution of 440×30×70×309
is achieved in x, y, z, t, corresponding to a vector spacing of 0.025× 0.067 × 0.028 × 1.08
(or 0.55 mm × 1.5 mm × 0.64 mm × 1.2 s). For comparison, the Kolmogorov scale (see
§ 2.3.2) in this flow is measured as Lk = 0.032 (or 0.72 mm), hence our streamwise and
vertical resolutions are better than Lk, while our spanwise resolution is around 2Lk. Prior
to computing vorticity using second-order finite differences, the velocity field is filtered in
each (x, z) plane using an isotropic two-dimensional Gaussian filter with modest standard
deviation of 1 vector spacing. Vorticity data are then shown raw, except for the three-
dimensional isosurfaces, which were smoothed by an isotropic three-dimensional Gaussian
filter with standard deviation of 1 vector spacing.

PLIF post-processing was used to deduce the density field from the imaged dye
fluorescence. A careful calibration step was required, using full volume scans of images in
which the duct is empty and then full of dye. The minimum (background) and maximum
light intensity were used to rescale the dye images, in order to account for non-uniformity
and divergence of the light sheet. Particles sitting in the tank below the duct interfered
with the incoming light sheet and generated spatio-temporally dependent tilted rays,
fanned out by the cylindrical sheet-producing optics. These artefacts were removed on
all frames by first projecting the processed images into ray coordinates (making the
rays vertical), then normalising by a reference image produced by vertically averaging
a section in the upper layer (which should always be of uniform density in this two-
layer flow) before finally being projected back to world coordinates. Only one of the two
PLIF planes obtained for each sPIV plane was used, as the second one was found to
contain little additional information. Due to its higher (x, z) resolution compared with
the velocity field (around six times higher in both x and z), the density field was first
filtered in each plane using a median filter of size 3 × 3 pixels, before being interpolated
onto the grid of the sPIV data.

4. Experimental results

4.1. Instantaneous snapshots

Figure 2 shows four snapshots of the flow (in nondimensional units), in the vertical
mid-plane of the duct y = 0. The spanwise component of vorticity ωy = ∂zu− ∂xw (left
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Figure 2. Snapshots of spanwise vorticity ωy (left column) and density ρ (right column) in the
mid-plane y = 0 at t = 0 (a-b), t = 250 (c-d), t = 300 (e-f) and t = 335 (g-h). Axes are to scale.
Throughout the paper, all data are shown in nondimensional units.

panels) is shown together with the density field ρ (right panels) at four different times
t = 0, 250, 300, 335 (our choice of times is motivated by the analysis in § 4.3). A movie
showing the full dynamics is available as supplementary movie 1. Both fields exhibit
a quasi-periodic wave pattern corrugating the interface by upward-pointing cusps that
propagate leftwards (with negative phase speed), as will be shown in § 4.2. The vorticity
field shows concentration of negative vorticity that spans the interface downward to
the right in tilde-shaped bands. The wavelength of these patterns shows some temporal
variation, but both fields are coupled in the sense that their wavelength changes together.
It is this wave that we refer to as a confined Holmboe wave (CHW).

A small amount of mixed fluid is present above the sharp interface, consistent with
thin wisp-like ejections characteristic of asymmetric HWs, as discussed by Carpenter
et al. (2007) (see their figure 19). No wisp ejection was detected within the measurement
volume; mixed fluid was either advected from other regions inside the duct where ejection
took place and/or was a residual from the start of the experiment that had not been
flushed out due to small velocities at the density interface.

To gain insight into the three-dimensional structure of the vorticity field, figure 3
shows, for the same times, the isosurface ωy = −ωmax/2 = −2.5, where ωmax = 5.0
is the maximum value of |ωy| found in the domain. This value represents a good
intermediate value that shows the structure of interest. (Values ωy & −2 mostly show
the x-independent mean shear while values ωy . −3 show only a small part of the wave
structure.) To make observation easier, the z axis is stretched by a factor of three, so it is
important to remember that the actual structure is closer to horizontal than displayed.

The vorticity structure is confined both in the spanwise (y) and vertical (z) directions
and takes the form of inclined, distorted, prolate spheroids with a wide (in y) ‘body’ and
a progressively (in the negative x direction) narrower ‘head’ (as indicated by the arrows
in figure 3(a)). A chevron shape at the posterior side of the body is partially visible
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in figures 3(c) and (d). The structures overlap one another and are connected by their
bodies at the edges (the extent of the connection between structures naturally depends
on the chosen isosurface). It is unknown whether the observed regular annular banding
of the isosurface is a real, coherent signal or the result of the isosurface rendering of noise
in the data. A movie showing the full dynamics is available as supplementary movie 2.

4.2. Spatio-temporal behaviour

Figure 4 shows the spatio-temporal behaviour of the CHW. Slices of the vorticity field
(figure 4(a)) and density field (figure 4(b)) taken at the mean positions of the respective
interfaces (z = −0.11 for the velocity interface, z = −0.22 for the density interface) are
stacked in time to form a spatio-temporal (Hovmöller) diagram.

The wave propagates mostly leftwards in both fields, i.e. with phase speed c < 0.
The coupling of the fields is confirmed, as both travel at the same instantaneous phase
speed and undergo the same gradual change in wavelength. The range of wavelengths
observed from this figure is λ ∈ [3.5, 6.0], corresponding to a range in wavenumber k ∈
[1.05, 1.80]. The range of phase speeds, as determined by the slope of the characteristics,
is c ∈ [−0.18, 0.05].

There is evidence of a preferred wavelength, as splitting events occur when the wave-
length becomes ‘too large’, presumably due to wave stretching (e.g., at t ≈ 180 and
t ≈ 270), consistent with some development in x of the mean flow (Tedford et al. 2009;
Carpenter et al. 2010). This development of the mean flow along x is an inevitable
consequence of the convective acceleration of the flow as it travels along the duct. In
experiments for which gravity forcing dominates over the longitudinal pressure gradient
(θ & tan−1(H/L) ≈ 2◦, as in the present case) this effect is small and the flow is
nearly parallel. Splitting events require a difference in phase speed between the parent
and daughter structures (stretching-splitting) and we indeed observe for a short time a
daughter wave propagating with slightly positive phase speed while the parent continues
at unchanged, negative phase speed (at x ≈ −10, t ≈ 180 and x ≈ −13, t ≈ 270 in
figure 4).

4.3. Phase-averaged properties

To characterise the ‘typical’ structure of the CHW and reduce its spatio-temporal
complexity, we phase-average the flow variables over a single wavelength by following the
wave along a characteristic, an operation denoted by 〈·〉. To make this calculation, we
determine the phase speed c and wavelength λ by considering the interval t ∈ [300, 335] at
the end of the experiment. This period, indicated by solid horizontal lines in figures 4(a)
and (b), was selected as it is during this period that the wave has reached a very nearly
constant negative phase speed and a steady wavelength, making the analysis easier and
more meaningful. We determine the phase speed c = −0.078 and wavelength λ = 4.30
(wavenumber k = 1.46) by fitting in time the location of the vorticity minimum contained
within the wavelength denoted by two thick solid sloping lines in figures 4(a) and (b).
The dashed sloping lines having slope c and spacing λ, drawn half a wavelength from
the solid lines, extend over the entire spatio-temporal plot and demonstrate that the
phase-averaged properties are representative of the flow at earlier times.

The three-dimensional structure of the resulting phase-averaged vorticity in the region
x ∈ [0, 4.30] is shown in figure 4(c) and (d), using the same isosurface level 〈ωy〉 = −2.5
as in figure 3. For better visualisation, this region has been replicated to x ∈ [4.30, 8.60])
to show two wavelengths for the structure. The two panels show views from different
angles. Naturally, we recover the features identified in figure 3, but are able to discern
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Figure 3. Isosurfaces of spanwise vorticity ωy = −2.5 at the same times as in figure 2. The z
axis is stretched by a factor of 3 and only z ∈ [−0.5, 0.3] is shown.
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Figure 4. (a-b) Spatio-temporal diagrams taken in the vertical mid-plane and horizontal
interfacial plane: (a) ωy(y = 0, z = −0.11) and (b) ρ(y = 0, z = −0.22). characteristics
with phase speed c=-0.078 and wavelength λ = 2π/1.46 = 4.3. Start (t = 300) and end
(t = 335) of the phase averaging window, represented by . (c)-(d) Two views of the isosurface
of phase-averaged spanwise vorticity 〈ωy〉 = −2.5. Two wavelengths are shown by repeating the
structure along x. Note the slight lack of periodicity evidenced by the discontinuity at x = 4.30.
The z axis is stretched by a factor of 3 and only z ∈ [−0.5, 0.3] is shown.

further details. The structure is remarkably symmetrical about y = 0 and very nearly
periodic (see the small discontinuity at x = λ = 4.30 where the replicated structures
join), despite the slow stretching in x discussed above. It is also triply connected, and its
tilt with respect to x (the duct axis) is 10◦ (maximum angle at the inflection point).

We discuss further details of the phase averaged structure of the CHW (including the
other flow variables ρ, u, v, w) in § 6 when comparing it with the linear confined Holmboe
instability (CHI) predicted by the stability analysis introduced in the next section § 5.

5. Linear stability: formulation

In this section, we derive the eigenvalue problem describing the linear stability of the
experimental flow from the governing equations. We model the flow by the incompress-
ible Navier-Stokes equations under the Boussinesq approximation. The non-dimensional
equations of motion under the notation and conventions adopted in § 3.2 are

∇ · u = 0, (5.1a)

∂tu + u ·∇u = −∇p+Ri (− cos θ ẑ + sin θ x̂)ρ+Re−1∇2u, (5.1b)

∂tρ+ u ·∇ρ = (ReSc)−1∇2ρ, (5.1c)
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where, for the experiment considered, θ = 5◦, Re = 440, Ri = 0.25, Sc = 700 (see
§ 3.4.1).

We first consider the general case of three-dimensional perturbations on a two-
dimensional base flow (3P-2B) in § 5.1 before showing how the equations can be
simplified to the more commonly-used study of two-dimensional perturbations on a
one-dimensional base flow (2P-1B) in § 5.2. We discuss our choice of base flow in § 5.3.

5.1. Three-dimensional perturbations, two-dimensional base flow (3P-2B)

We assume a steady parallel two-dimensional base flow U ≡ [U(y, z), 0, 0] and one-
dimensional density distribution R(z) (note that (5.1) do not support steady states with
this base flow and R(y, z)). We superimpose three-dimensional infinitesimal perturba-
tions, so that the full velocity field is

u ≡

U(y, z)
0
0

+ ε

u′(x, y, z, t)v′(x, y, z, t)
w′(x, y, z, t)

 , (5.2)

and similarly ρ ≡ R(z) + ερ′(x, y, z, t), p ≡ P (z) + εp′(x, y, z, t), (|ε| � 1). We assume
that each perturbation variable ψ′ has periodic wavelike behaviour in x and t:

ψ′(x, y, z, t) ≡ ψ̂(y, z) exp(ikx+ σt), (5.3)

where the real part is implied. Note the fundamental distinction between this 3P-2B form
and the 2.5P-1B form in (2.2). We tackle the temporal stability problem by specifying
the perturbation wavelength k > 0 ∈ R and solve the following eigenvalue problem for
the (temporal) growth rate σ ∈ C and eigenfunctions ψ̂(y, z) ∈ C:

σ

∇2

∇2

I

 v̂ŵ
ρ̂

 =

 Lv Lvw Lvρ
Lwv Lw Lwρ

Lρw Lρ

 v̂ŵ
ρ̂

 , (5.4)

where

Lv ≡ −ikU∇2 + ik(∂yyU − ∂zzU)− 2ik∂zU∂z +Re−1∇4, (5.5a)

Lw ≡ −ikU∇2 + ik(∂zzU − ∂yyU)− 2ik∂yU∂y +Re−1∇4, (5.5b)

Lvw ≡ 2ik(∂yzU + ∂zU∂y), (5.5c)

Lwv ≡ 2ik(∂yzU + ∂yU∂z), (5.5d)

Lρ ≡ −ikU + (ReSc)−1∇2, (5.5e)

Lvρ ≡ Ri(cos θ ∂yz − ik sin θ ∂y), (5.5f)

Lwρ ≡ Ri{cos θ (∂zz −∇2)− ik sin θ ∂z}, (5.5g)

Lρw ≡ −∂zR. (5.5h)

Here I is the identity, ∇2 ≡ −k2 + ∂yy + ∂zz and ∇4 ≡ k4 + ∂yyyy + ∂zzzz + 2∂yy∂zz −
2k2(∂yy + ∂zz). The streamwise velocity eigenfunction is then deduced as

û = − i
k

(∂y v̂ + ∂zŵ). (5.6)

The derivation of (5.4)-(5.6) is given in appendix A.
We represent the rigid, impermeable walls of the duct by imposing no-slip boundary

conditions for velocity perturbations: v̂ = ŵ = 0 along y, z = ±1. To impose û = 0 along
y, z = ±1, (5.6) requires that we further impose ∂y v̂ = 0 along y = ±1 and ∂zŵ = 0 along
z = ±1. Physically, no salt diffuses through the walls of the duct, hence the boundary
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conditions for the density perturbation are ∂yρ̂ = 0 along y = ±1 and ∂z ρ̂ = 0 along
z = ±1.

We solve the eigenvalue problem (5.4) numerically, using second-order finite-difference
discretisation with uniform spacing in both y and z. A resolution of 120× 120 proved to
be sufficient for convergence of the results, and required solving a (3× 1182)× (3× 1182)
eigenvalue problem. The results are presented in § 6.1.

5.2. Two-dimensional perturbations, one-dimensional base flow (2P-1B)

To contextualise the results of the formulation introduced above, we will also discuss
the results of the more commonly used 2P-1B analysis. This represents the special case
for which the spanwise velocity perturbation v and all variations in the spanwise direction
y are ignored, so that the full velocity field is

u† ≡

U(z)
0
0

+ ε

u′†(x, z, t)0
w′†(x, z, t)

 , (5.7)

and ρ† ≡ R(z) + ερ′†(x, z, t), p† ≡ P (z) + εp′†(x, z, t), with all perturbations

ψ′†(x, z, t) ≡ ψ̂†(z) exp(ikx+ σt). (5.8)

Note that this 2P-1B form corresponds to the special case β = 0 of the 2.5-1B form
in (2.2). Here and below, the subscript/superscript † distinguishes the variables and
operators of the 2P-1B analysis from those of the 3P-2B analysis.

The governing equations for this problem are obtained from (5.4)-(5.6) by removing v̂
and setting ∂y = 0, i.e.

σ

[
∇2
†
I

] [
ŵ†
ρ̂†

]
=

[
L†w L†wρ
L†ρw L†ρ

] [
ŵ†
ρ̂†

]
, (5.9)

where

L†w ≡ −ikU∇2
† + ik∂zzU +Re−1∇4

†, (5.10a)

L†ρ ≡ −ikU + (ReSc)−1∇2
†, (5.10b)

L†wρ ≡ Ri{cos θ(∂zz −∇2
†)− ik sin θ ∂z}, (5.10c)

L†ρw ≡ −∂zR, (5.10d)

and ∇2
† ≡ −k2 +∂zz, ∇4

† ≡ k4 +∂zzzz−2k2 +∂zz. The streamwise velocity eigenfunction
is simply û† = −(i/k)∂zŵ†. As in § 5.1, we discretise (5.9) in z using second-order finite
differences and the boundary conditions at z = ±1 are no-slip for ŵ†, û†: ŵ† = ∂zŵ† = 0
and no-flux for ρ̂†: ∂z ρ̂† = 0. The results are presented in § 6.2.

5.3. Experimental base flow

In order to obtain linear stability predictions which are most relevant for comparison
with the CHW observed in the experiment, we use averages of the experimental flow. To
obtain a representative, canonical U(y, z) for the 3P-2B analysis, the streamwise velocity
u was first averaged along x and over 50 ATU before the start of the phase averaging
window, i.e. for t ∈ [250, 300], and symmetrised about y = 0: U(y, z) ≡ [〈u〉x,t(y, z) +
〈u〉x,t(−y, z)]/2 (figure 5(a)). The profile used for the 2P-1B analysis is U(z) ≡ U(y =
0, z) (figure 5(b)). Note that since the flow is close to steady, the duration of 50 ATU
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Figure 5. Base flow for stability analysis using experimental flow averaged over t ∈ [250, 300]
before the phase average window. (a) Streamwise velocity U(y, z) for the 3P-2B analysis. (b)
U(z) = U(y = 0, z) for the 2P-1B analysis. Density: 〈ρ〉x,y,t conditioned at the interface,
and R(z) the tanh fit with the mixed layer removed as used for the 3P-2B and 2P-1P
analyses (see text for details).

for the phase averaging window is arbitrary and the results were only weakly sensitive
to this choice.

The measured density field was averaged over the same x and t windows, with an
additional averaging over y ∈ [−1, 1] since only the one-dimensional base density profile
R(z) enters the stability problem. Being distorted by a finite amplitude HW, the interface
does not lie on z = const. Since the linear stability properties of HIs are known to be
sensitive to the thickness of the interface, it is important to ensure that R(z) has a
thickness representative of undistorted local profiles. We achieve this by conditionally
averaging over x and y, i.e. shifting all profiles vertically in order to align them at the
interface before averaging them (shown in dashed green in figure 5(c). Finally, our aim is
to elucidate the origin of CHWs (i.e. to identify and understand the underlying physical
mechanisms leading to their observed behaviour) and not to capture either the initial
transient of the experiment or the nonlinear wisp ejection dynamics, which presumably
produces the slightly mixed region in the region −0.2 . z . 0.1 described in § 4.1. We
therefore eliminate this mixed region by fitting a hyperbolic tangent function (shown
in solid black) to the lower (unmixed) region (z 6 −0.2) of the previously obtained
conditional average. The best-fit base profile we use for the 3P-2B and 2P-1B analyses
is R(z) ≡ − tanh{(z − z0)/δ} with z0 = −0.22 and δ = 0.047.

6. Linear stability: predictions, comparison and discussion

6.1. 3P-2B results

6.1.1. Dispersion relation

The dispersion relation σ(k) where σ ≡ σr + iσi (growth rate σr and phase speed
c ≡ −σi/k) is shown for growing modes σr > 0 only in figure 6 (thick blue curve). We
observe a lower wavenumber band of positive growth rate signalling an unstable mode for
the range of wavenumbers k ∈ [0.8, 2.2], as well as another band with lower growth rate for
k ∈ [2.3, 5.0]. The fastest growing mode (with largest σr) is predicted to occur at k = 1.32
with growth rate σr = 0.0824 and negative phase speed c = −0.213. The other mode of
instability has maximum growth rate of σr = 0.0192 and positive phase speed c = 0.55.
As discussed in § 2, the existence of a faster and a slower growing Holmboe modes with
different phase speed magnitudes, growth rates and wavenumbers is typical of asymmetric
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Figure 6. Dispersion relation: (a) positive growth rate σr and (b) phase speed c. 3P-2B
analysis and 2P-1B analysis. (? and mark the respective theoretically predicted fastest
growing modes.) Experimental range observed and values used for the phase average.

profiles (where the relatively sharp density interface and midpoint of the shear layer are
not coincident). In the following we will focus on the faster growing, leftward propagating
band of instability, which we identify as a confined Holmboe instability (CHI).

The ranges of wavenumbers and phase speeds observed in the experimental CHW
(figure 4(a)-(b)) are shown as grey shading: k ∈ [1.05, 1.80], c ∈ [−0.18, 0.05], and the
phase average values (k = 1.46, c = −0.078) as black dashed lines. The wavenumber
of the fastest growing mode compares well with the experimental values, and with
the phase averaged structure (k = 1.32 vs k = 1.46). The agreement in phase speed
is qualitatively good overall, despite the fastest growing mode travelling significantly
faster (in magnitude) than the representative phase average value (c = −0.213 vs
c = −0.078). There is overlap between the unstable branch and the intersection of the
two perpendicular grey boxes in figure 6(b), i.e. the shortest observed CHWs having
k ∈ [1.5, 1.8] and moving at the highest speeds c ∈ [−0.18,−0.15] are consistent with the
slower-growing modes of the CHI.

A variety of causes can be invoked for the discrepancy in phase speed:

(i) The base velocity (i.e. with ∂xU(y, z) = 0) is only an approximation to the slowly
developing, non-parallel experimental flow, and such streamwise variation naturally
affects the wavelength and speed of HWs.

(ii) The base flow used in the stability calculation is a spatio-temporal average from
the unsteady experimental flow that contains the wave. The most obvious effects of this
wave on the density profile have been partially eliminated in determining R(z), but not
in determining U(y, z). It is not a priori obvious that this intuitive choice of base flow
should correctly predict the linear instability that grows to finite amplitude and hence is
observed in the experimental flow.

(iii) The experimental flow is not the result of an initial value problem. The nonlin-
ear wave state selected by the flow does not have to result from the saturation of a
monochromatic instability (the fastest growing mode), and there is therefore no reason
to think that the nonlinear phase speed should match closely the phase speed of the
fastest growing mode.

To summarise, the analysis of the dispersion relation reveals reasonably good agreement
between the predicted CHI and the observed CHW, despite the challenge of inferring the
nonlinear properties of our flow from a linear analysis. In the next section we focus on
comparing the three-dimensional structure of the fastest growing CHI with the CHW.
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Figure 7. Fastest growing mode of the CHI: isosurface ω∗
y = −2.5 (see (6.1) for definition of

ω∗
y). We show a double wavelength under two different views (a) and (b) for direct comparison

with figures 4(c) and (d), respectively. As in those figures, the z-axis is stretched by a factor of
3 and only z ∈ [−0.5, 0.3] is shown for clearer visualisation.

6.1.2. Eigenfunctions

We turn to the three-dimensional structure of the eigenfunction of the fastest growing
CHI. To provide meaningful comparison with experimental data, the vorticity eigenfunc-
tion is added to the base flow vorticity

ω∗y ≡ ∂zU + α Re{ω̂y(y, z) exp(ikx+ φ)}, (6.1)

where the superscript * denotes this reconstruction and α, φ are constants to be deter-
mined. The phase parameter φ was simply chosen to compare directly with the phase
of figure 4. The scaling parameter α contains the information relative to the finite
amplitude of the wave observed in the experiment. It was determined by imposing the
condition that the volume-averaged root mean square (rms) of the wave perturbation in
the reconstructed vorticity ω∗y − ∂zU is equal to that of the wave perturbation in the
phase average vorticity 〈ωy〉 − ∂zU :〈

(ω∗y − ∂zU)rms
〉
x,y,z

=
α

2

√
〈ω̂2
y〉y,z =

〈
(〈ωy〉 − ∂zU)rms

〉
x,y,z

= 0.31, (6.2)

where rms denotes the operator ψrms(x, y, z) ≡
√

(ψ − 〈ψ〉x,y,z)2. The first equality is a
simple consequence of the definition in (6.1), the second equality is our condition and
the third is the experimentally measured value.

The isosurface ω∗y = −2.5 of the resulting reconstruction for two wavelengths is shown
in figure 7. A direct comparison with the phase average 〈ωy〉 = −2.5 of figures 4(c) and
4(d) reveals excellent agreement between the three-dimensional structure of the CHI and
the CHW. The tilt of the structure with respect to the duct axis is 8◦ (maximum angle
at the inflection point), slightly smaller than the 10◦ obtained from the experimental
phase average. The general geometry, including the detail of the triple connectedness
of the head-to-tail connection, is faithfully reproduced. Supplementary movie 3 offers a
panoramic visualisation of the vorticity isosurface of the CHW and CHI, allowing for
more detailed comparison.

To reveal the structure of the wave further and to allow for more detailed comparison,
we build, by analogy with (6.1), a more complete picture of the wave field by considering
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the following variables associated with the fastest growing mode:

ρ∗ ≡ R(z) + α Re{ρ̂(y, z) exp(ikx+ φ)}, (6.3a)

u∗ ≡ U(y, z) + α Re{û(y, z) exp(ikx+ φ)}, (6.3b)

v∗ ≡ α Re{v̂(y, z) exp(ikx+ φ)}, (6.3c)

w∗ ≡ α Re{ŵ(y, z) exp(ikx+ φ)}, (6.3d)

using the previously determined value of α. We plot these wave variables in planar cuts
in figure 8 (experimentally observed CHW) and figure 9 (theoretically predicted fastest
growing CHI). These figures combine views in the vertical midplane y = 0, horizontal
interfacial planes (z = −0.22 and z = −0.11 for density and velocity, respectively) and
one cross-sectional plane for ωy, ρ, u, v, w for a single wavelength.

There is good agreement between the observed and predicted structure in each of
these variables. Even though only the magnitude of the perturbation vorticity field was
matched with the experimental value, the other variables in figure 9 have amplitudes
very close to those in figure 8 (colour bars have the same limits in both figures and black
contours are the same). The spanwise and vertical velocities v and w are small relative
to the streamwise velocity, with a maximum of about 6% of the maximum of u. The
quantitative and qualitative agreement extends to a number of interesting features as
follows.

(i) The sheared vertical pattern in w, typical of Holmboe modes, is clearly identifiable
in panels m of figures 8 and 9.

(ii) The horizontal chevron pattern identified earlier in the three-dimensional visuali-
sation of the vorticity ωy is again visible in panels b (highlighted by the contours). It is
also found in the streamwise velocity u (panels h), where it contributes the main signal
in this interfacial plane where the mean velocity is zero.

(iii) The relative phase of the density ρ and vorticity ωy reveals that the ‘head’ of the
vorticity structure is shifted slightly left of the top of the upward-pointing density cusp,
while its ‘body’ appears to rest on the sloping interface of the cusp for which ∂xρ < 0
(panels a,b,d,e). This gradient is responsible for the baroclinic production of negative
vorticity (reinforcing the negative mean shear). The density crests and troughs have a
distinct convex structure (their vertical displacement peaks in the middle of the duct
y = 0 and decays near the boundaries y = ±1), making the gradients ∂xρ larger in
the middle of the duct, presumably responsible for confinement of the vorticity and the
nonlinear maintenance of the CHW at finite amplitude.

(iv) The variables clearly have different symmetries about the midplane y = 0, as is
apparent in panels e, h, k, and n. The structure of the CHI correctly predicts that the
density ρ̂, streamwise velocity perturbation û and vertical velocity perturbation ŵ are
even functions about this midplane, while the spanwise velocity perturbation v̂ is an odd
function, implying that the CHI is of varicose rather than sinuous form. It is important
to stress that we did not impose these symmetries; they arose naturally as solutions to
the 3P-2B stability eigenvalue problem. Furthermore, and perhaps unsurprisingly, the
2.5P-1B description of a normal mode travelling at an angle as described in § 2.3.3 is not
appropriate to describe this structure, as the spanwise periodicity of v̂ is clearly different
from the other perturbation quantities û, ŵ and ρ̂. The odd symmetry of v̂ seems to
be inherently related (for reasons which are not yet fully understood) to the spanwise
boundary conditions v̂ = ∂y v̂ = 0 imposed by incompressibility at the duct walls at
y = ±1. Indeed, a very similar eigenstructure was observed when we solved the 3P-2B
problem with these boundary conditions for the spanwise uniform base flow U(z). (For
reasons of brevity we do not discuss this problem further here.)
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Figure 8. Experimental phase average spanwise vorticity 〈ωy〉 (a-c), density 〈ρ〉 (d-f), and
velocity components 〈u〉 (g-i), 〈v〉 (j-l), 〈w〉 (m-o). The panels show the vertical mid-plane y = 0
(left column), horizontal interfacial plane (z = −0.11 for velocity and z = −0.22 for density)
(middle column) and a cross-sectional plane x = 0.72 (right column). The colour bars are the
same for a given variable. Ten black contours equally spaced across the range of the colour
bar are also shown, except for (b) and (h) where the ten contours are across [−4,−1] and
[−0.25, 0.25] respectively, to highlight features of interest. Dashed lines represent the planes in
the other panels.

(v) A consequence of the specific symmetry of the CHW/CHI is the horizontal, in-
plane divergence and convergence of v (panels k and l) around the upward density crest
(panels e and f ). Due to the relatively large stratification (Ri = 1/4), the horizontal
flow around the density crest is energetically preferred to the vertical flow above it. The
convex structure of the density crest allows the flow to move around it horizontally. An
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Figure 9. Fastest growing CHI of the 3P-2B linear stability analysis superimposed on the base
flow (see (6.1), (6.2) and (6.3) for definitions of the variables). All panels plotted as in figure 8
for direct comparison.

important consequence is that it gives rise to relatively large spanwise gradients |∂yv|,
positive in the centre of the duct y ∈ [−0.5, 0.5] and negative near the boundaries |y| ∈
[0.5, 1]. These gradients have a vortex stretching effect on ωy through the term ωy∂yv,
producing negative vorticity in the centre (reinforcing the mean shear), and positive
vorticity near the boundaries (weakening the mean shear). They could play an important
role in explaining the spanwise confinement (largest values of |ωy| in the centre) and
maintenance of the CHW at finite amplitude.
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6.2. 2P-1B results

6.2.1. Dispersion relation

The dispersion relation of the 2P-1B analysis in shown in figure 6 by the green dotted
line. The fastest growing ‘traditional’ two-dimensional HI has a growth rate higher than
its three-dimensional confined counterpart CHI, at σr = 0.173, which is achieved at a
slightly larger wavenumber k = 1.52, well within the experimentally range observed.

This mode is almost stationary, with a phase speed of c = 0.002. This positive value
is slightly surprising, as we are dealing with an originally leftward-propagating Holmboe
mode. Further inspection reveals that this is an effect of the positive tilt angle θ = 5◦ of
the duct. Solving with θ = 0◦ gives σr = 0.215, c = −0.045. We found that a small positive
angle decreases the growth rate and increases the phase speed to positive values. These
effects are not thoroughly understood, but the behaviour of these linear, inherently two-
dimensional modes is not of central interest to our study. In contrast, the wavenumber and
phase speed of the CHI predicted by the inherently three-dimensional 3P-2B analysis are
not sensitive to the angle. For example, setting θ = 0◦ increases the growth rate slightly
to σ = 0.10 > 0.0824 but similar k and c are predicted.

6.2.2. Eigenfunctions

By analogy with the approach followed in § 6.1.2, the one-dimensional vorticity
eigenfunction of the fastest growing mode was added to the one-dimensional base flow
such that

ω∗y† ≡ ∂zU + α† Re{ω̂y†(z) exp(ikx+ φ†)}, (6.4)

where the amplitude α† was determined in the same fashion as for the 3P-2B analysis,
i.e. by matching the rms of the vorticity eigenfunction to the experimental perturbation
in the midplane y = 0:〈

(ω∗y† − ∂zU)rms
〉
x,z

=
〈
(〈ωy〉 − ∂zU)rms(y = 0)

〉
x,z

= 0.58. (6.5)

The other flow variables ρ∗† , u
∗
† , w

∗
† were then obtained using α† similarly to (6.3a), (6.3b),

(6.3d) and are shown with ω∗y† in figure 10.
From figure 10(a), it appears that the ‘head’ of the distinctive vorticity structure

observed in the experimental CHW (figure 8(a)) and predicted by the CHI (figure 9(a))
is lacking. The vertical velocity pattern in figure 10(d) has a similar appearance to figures
8(m) and 9(m) but has a larger amplitude (approximately 60% larger, requiring different
colour bar limits of ±0.1 instead of the previously used ±0.06). The relative magnitude of
the vertical velocity w vs the spanwise vorticity ωy (and hence the streamwise velocity u)
in the 2P-1B analysis is therefore different from the equivalent relative magnitude in the
3P-2B analysis and poorly compares with the experimental observations. Moreover, this
analysis is, by construction, incapable of reproducing the three-dimensional structure of
the CHW discussed in 6.1.2, which we have shown depends on the spanwise coordinate
y and spanwise velocity v.

6.3. Possible relevance to geophysical field observations

The distinctive tilde-shape of the CHW and CHI is reminiscent of the field observations
of Geyer et al. (2010) in the continuously forced stratified shear flow of the Connecticut
River estuary. Through the combined use of acoustic backscattering and high frequency
conductivity sensors around the sharp density interface (pycnocline), they observed a
near-periodic signal of large sheared tilde-shaped regions of high density gradients with
average wavelength around 10 m and height around 1 m (see their figures 2b and 3b,
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Figure 10. Fastest growing mode of the 2P-1B analysis (see text for definition of the variables).
Note the higher colour bar limits of ŵ when comparing with figures 8 and 9. As in those previous
figures, ten equally spaced black contours span the range of the colour bar for each panels.

where the z axis has been stretched by factors of 12 and 6, respectively). Those structures
are oriented in the same direction as our vorticity structures (the mean shear has the
same direction in both our work and their work) and we estimate their maximum angle
at the inflection point around 5 − 6◦, somewhat smaller than that of the CHW (10◦)
and CHI (8◦). They identified these regions as the braids connecting Kelvin-Helmholtz
billows, and argued convincingly, in particular from the conductivity measurements, that
these inclined ‘braids’ were the locations of the most vigorous turbulent motions, and
that the large density gradients resulted from turbulent mixing within the braids, an
inherently high-Re phenomenon which was unlikely to be observed experimentally or
numerically. Mashayek & Peltier (2012a,b) identified secondary instabilities localised in
the braid regions connecting Kelvin-Helmholtz billows as a possible explanation for the
observations of Geyer et al. (2010). Here we have identified a primary instability, the
CHI, whose finite-amplitude manifestation is also consistent with these observations.
Since the background profiles of the estuary flow are not known with sufficient accuracy
to distinguish between flows susceptible to the Holmboe instability or flows susceptible
to the Rayleigh instability, we cannot eliminate either of these explanations at this
stage. However, unlike the simulated secondary braid instabilities of Mashayek & Peltier
(2012a,b), which occur as a transient event in an initial value problem, the observed
CHWs occur in a flow in which the forcing is maintained in time as is the case in the
estuary flow.

Preliminary experimental observations of flows in the stratified inclined duct in the
intermittently turbulent and fully turbulent regimes revealed a variety of smaller-scale,
shorter-lived vorticity structures whose appearance resembles that of the CHW. In
particular, two-dimensional (y = 0) particle image velocimetry measurements at high
temporal resolution in the intermittent regime (θ = 4◦, Re = 940 – not reported here)
strongly suggest that those small-scale structures appear to come from the cascade
break-down of larger-scale structures akin to the CHW through successive stretching
and splitting.

We, therefore, argue that it is at least possible that the angled structures we observed
experimentally (CHW) and predicted theoretically (CHI), through their local coherent
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intensification of spanwise vorticity due to the spanwise confinement, also have the
potential to leave a ‘signature’ at higher Re, even when incoherent, turbulent small
scale motions have been triggered. In particular, in the spirit of the dynamical systems
approach discussed in the introduction, we conjecture that the CHW might be sufficiently
robust, even at substantially higher Re, to constitute an alternative nucleation site for
secondary instabilities and hence turbulent break down, distinct from the strained braid-
like region that occurs between finite amplitude Kelvin-Helmholtz billows proposed by
Corcos & Sherman (1976) and invoked by Geyer et al. (2010).

7. Conclusions

7.1. Summary

We have investigated the structure and origin of a ‘confined Holmboe wave’ (CHW), a
finite-amplitude, nonlinear wave at the sharp density interface of a stratified shear flow.

The stratified inclined duct experiment (figure 1) sets up an exchange flow in an
inclined square duct connecting two reservoirs containing fluids of different densities. The
flow is steadily forced by gravity for hundreds of advective time units, and can maintain
relatively high levels of dissipation, as measured by the buoyancy Reynolds number Reb
(see (2.1)). By setting the duct tilt angle θ and the density difference ∆ρ between the
two reservoirs connected by the duct (and hence the Reynolds number Re, see (3.4)),
different flow states are observed. For 20 . Re sin θ . 50, a coherent wave state features
robust, propagating symmetric or asymmetric Holmboe waves (HWs), confined within
the square cross-section of the duct. In order to characterise the structure of CHWs,
we focused on the simpler case of upward-pointing, asymmetric HWs found in a flow in
which θ = 5◦ and Re = 440.

We employed a novel time-resolved, near-instantaneous measurement technique of the
three-component velocity field (u, v, w) (stereo particle image velocimetry) and density
field ρ (planar laser induced fluorescence) simultaneously over a three-dimensional volume
(see figures 2, 3 and supplementary movies 1, 2). This allowed us to reveal the spatio-
temporal behaviour of this CHW (figures 4(a) and (b)) by quantifying its range of
wavelengths λ ∈ [3.5, 6.0], or wavenumbers k ∈ [1.05, 1.80] (non-dimensionalised by
half the duct height) and phase speeds c ∈ [−0, 18, 0.05] (non-dimensionalised by the
layer peak velocity). We first focused on the three-dimensional structure of its spanwise
vorticity, where the wave field periodically reinforces and weakens the mean shear to
form a pattern of inclined, distorted, prolate spheroids with a wide ‘body’ and a narrower
‘head’ (figure 3). Using phase averaging we extracted a typical, robust representation of
the CHW and characterised its salient features (figures 4(c) and (d)).

To understand the origin (i.e. the underlying physical mechanisms that lead to the
observed behaviour) of this apparently previously unreported structure, we undertook a
linear stability analysis. We studied three-dimensional velocity (u′, v′, w′) and density ρ′

perturbations having two-dimensional, cross-sectional eigenfunctions of y, z and a normal
streamwise mode in x: ψ′ ≡ ψ̂(y, z) exp(ikx+σt). Those perturbations were analysed on
the two-dimensional (y, z, i.e. x and t-averaged) experimental mean flow (figure 5) and
were confined with the appropriate boundary conditions in the square duct. This compu-
tation revealed the existence of a ‘confined Holmboe instability’ (CHI) with wavenumber
band k ∈ [0.8, 2.2], phase speed band c ∈ [−0.35,−0.08] and fastest growing mode
k = 1.32, c = −0.21, consistent with the properties of the CHW (figure 6). By matching
the volume-averaged root-mean-square (rms) of the spanwise vorticity eigenfunction to
the experimentally observed value, we reconstructed the three-dimensional structure of
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the CHI to compare it with the CHW. The side-by-side comparison of the vorticity
isosurfaces (figures 4(c),(d) and 7(a),(b) as well as supplementary movie 3) and slices
of flow variables ωy, ρ, u, v, w (figures 8 and 9) shows excellent agreement between the
finite-amplitude wave and the predicted instability. This view revealed further details
including the spanwise mid-duct localisation, the convexity of the density crests and
troughs, the resulting localisation of the baroclinic production of vorticity, as well as the
divergence/convergence of the flow around density crests, causing vortex stretching. Such
localisation and stretching are inherent to the spanwise confinement and are believed to
play a critical role in the dynamics of the CHI/CHW.

We also compared these results with those of the more commonly used stability
analysis of two-dimensional perturbations (u′, w′, ρ′) with an associated one-dimensional

eigenfunction in z and a streamwise normal mode in x of the form ψ′† ≡ ψ̂†(z) exp(ikx+
σt) on the one-dimensional, mid-duct base flow. Despite the dispersion relation showing
some agreement (figure 6), the two-dimensional predicted structure (figure 10) compares
less favourably with the experimental results and fails, by construction, to capture any
spanwise confinement and behaviour. Crucially, the spanwise velocity perturbation v′ of
the CHI is an odd function of the spanwise y coordinate, possessing a different spanwise
periodicity from the other perturbation variables. This key property cannot be captured
by such purely one-dimensional eigenfunctions, or even by normal modes ‘propagating
at an angle’ to the base flow.

Finally, the coherent structure associated with the CHW bears a passing resemblance
to the distinctive angled structures observed in the Connecticut River Estuary by
Geyer et al. (2010). While perhaps fortuitous, this resemblance, as well as preliminary
experimental results in more turbulent flows not reported here, lead us to conjecture
that the angled coherent structures of the CHW may retain at least a partial signature
in higher-Re flows with lateral confinement and sharp density gradients.

7.2. Future directions

Our results raise a number of questions that may stimulate future research.

(i) How generic is the effect of confinement on shear flow instabilities? This paper
focused on an asymmetric Holmboe wave found in a particular laboratory flow, and four
additional experiments with similar parameters confirmed that the qualitative results
outlined in this paper are robust. Asymmetric HWs might be more generic than sym-
metric HWs due to some inevitable degree of asymmetry present in environmental flows;
however, they introduce another nondimensional parameter (the degree of asymmetry) to
the problem. More work is needed to investigate the effect of confinement in the parameter
space spanned by HWs. Varying the level of confinement by considering rectangular ducts
or other geometries would add further complexity but may be worth pursuing. Moreover,
little work has been done to study the effect of confinement on other instabilities, such
as the so-called Kelvin-Helmholtz instability. As outlined in our review in § 2, laboratory
observations in confined geometries are often compared to stability analyses that ignore
confinement, and numerical simulations usually impose periodic boundary conditions in
the spanwise direction. The results presented here, as well as other preliminary results,
suggest that the properties of three-dimensional confined waves may differ significantly
from those predicted by such analyses.

(ii) How is the amplitude of the CHW determined and sustained in time? The quasi-
steady forcing provided by the stratified inclined duct experiment sustains the observed
CHW at an approximately constant amplitude for hundreds of advective time units.
We determined this amplitude by computing the volume-averaged rms of the phase-
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average vorticity perturbation, and used it to compare with the most unstable linear
eigenfunction. We did not address the value of this amplitude, which is selected through
inherently nonlinear processes. By examining the structure of the CHW, we suggested
possible nonlinear vorticity dynamics mechanisms (which rely on confinement) to sustain
this wave (i.e. baroclinicity and vortex stretching) but their details and quantitative
impact fall outside the scope of this paper. The relatively well-defined parameter range
for which the CHW is observed is also particularly interesting. The wave studied here at
θ = 5◦, Re = 440 would be replaced by intermittent turbulence at slightly higher angles
θ & 6◦ and/or values of Re & 600. This suggests that the amplitude of this wave results
from a fine-tuning of energy input (through θ) and dissipation (through Re), and that
the dissipation that the CHW structure can generate through higher amplitudes is no
longer enough beyond a certain threshold in the θ−Re plane, at which it must bifurcate
to more dissipative, intermittently turbulent, structures (Meyer & Linden 2014; Lefauve
2018).

(iii) Is the coherent structure of the CHW dynamically relevant to more turbulent flows?
Does this structure generically emerge in miniature around the fine scale density gradients
of high-Reynolds number and high-Schmidt number confined flows such as estuarine flows
discussed above? Can the large-scale coherent intensification of vorticity catalyse the
formation of nucleation sites for secondary instabilities and turbulent break down? These
considerations are central to the dynamical systems modelling mentioned in § 1, using a
reduced set of exact coherent states (ECSs), i.e. exact (yet unstable) nonlinear solutions
of the Navier-Stokes equations. Recently, Lucas et al. (2017) successfully converged two
ECSs from direct numerical simulations of body-forced, horizontally-sheared stratified
turbulence in a triply-periodic domain. These ECSs were found to be striking representa-
tions of the mean flow and could account for the organisation of the stratified turbulence
into inclined shear layers. By constructing a bifurcation diagram they demonstrated
that the ECSs originate from a sequence of instabilities, including the stratified linear
instability of the base flow. Our results suggest that the experimental long-lived coherent
structure of the CHW originates from the linear CHI, but it is still unknown whether it
is the signature of a relatively robust ECS that would carry its dynamical significance
into confined stratified turbulent flows at geophysically relevant scales. We believe that
this question warrants further investigation.
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Appendix A. Derivation of the 3P-2B eigenvalue problem

We start by combining the divergence of the linearised momentum equation (5.1b) and
the linearised continuity equation (5.1a) to obtain a diagnostic equation for the pressure
perturbation:

−∇2p′ = 2(∂yU∂xv
′ + ∂zU∂xw

′) +Ri(cos θ ∂zρ
′ − sin θ ∂xρ

′). (A 1)

We proceed to use (A 1) in combination with the Laplacian of the linearised momentum
equation, in order to eliminate p′. This reduces the dimensionality of our system by
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increasing its order. The resulting linear system (A 2) fully describes the time evolution
of the perturbations using prognostic equations (A 2b)-(A 2d) for two velocity variables v′

and w′ and density ρ′. The streamwise velocity perturbation u′ is recovered independently
by continuity (A 2a):

∂xu
′ = −∂yv′ − ∂zw′, (A 2a){

(∂t + U∂x)∇2 + (∂zzU − ∂yyU)∂x + 2∂zU∂xz −Re−1∇4
}
v′

= 2(∂yzU∂x + ∂zU∂xy)w′ (A 2b)

+Ri(cos θ ∂yz − sin θ ∂xy)ρ′,{
(∂t + U∂x)∇2 + (∂yyU − ∂zzU)∂x + 2∂yU∂xy −Re−1∇4

}
w′

= 2(∂yzU∂x + ∂yU∂xz)v
′ (A 2c)

+Ri
{
− cos θ (∂xx + ∂yy)− sin θ ∂xz

}
ρ′,{

∂t + U∂x − (ReSc)−1∇2
}
ρ′ = −∂zRw′. (A 2d)

We now transform the differential operators in x and t using our ansatz (5.3) (∂xn =
(ik)n, ∂t = σ), reducing (A 2b)-(A 2d) to the eigenvalue problem (5.4) and (A 2a) to
(5.6).
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