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Preface

The first Chapter of this Thesis comprises an introduction to the topic of interact-

ing Fermi gases, and in particular their experimental realisation in ultracold atomic

gases, and also an overview of the theoretical methods relevant for the rest of the

Thesis. The remainder of the Thesis contains original research that has been pub-

lished, or submitted for peer review, elsewhere, as follows:

Chapter 2: T.M. Whitehead and G.J. Conduit, Pseudopotentials for an ultracold

dipolar gas, Physical Review A 93, 022706 (2016).

Chapter 3: T.M. Whitehead, L.M. Schonenberg, N. Kongsuwan, R.J. Needs, and

G.J. Conduit, Pseudopotential for the two-dimensional contact interaction,

Physical Review A 93, 042702 (2016).

Chapter 4: T.M. Whitehead, M.H. Michael, and G.J. Conduit, Jastrow correlation

factor for periodic systems, Physical Review B 94, 035157 (2016).

Chapter 5: T.M. Whitehead and G.J. Conduit, Multiparticle instability in a spin-

imbalanced Fermi gas, Physical Review B 97, 014502 (2018).

Chapter 6: T.M. Whitehead and G.J. Conduit, Multi-particle theory of supercon-

ductivity, in preparation.

This Thesis is the result of my own work and includes nothing which is the out-

come of work done in collaboration except as declared in this Preface and specified

in the text. In Chapter 3 my contribution to the collaborative work was the physical

analysis underlying every Section except Section 3.5, whilst in Chapter 4 my contri-

bution consisted of the full derivation and testing once the underlying idea had been

suggested. In all other Chapters I carried out the full scope of work presented, with
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the guidance of my supervisor. This Thesis is not substantially the same as any

that I have submitted, or is being concurrently submitted for a degree or diploma or

other qualification at the University of Cambridge or any other University or sim-

ilar institution. I further state that no substantial part of this Thesis has already

been submitted, or is being concurrently submitted, for any such degree, diploma or

other qualification at the University of Cambridge or any other University or similar

institution. This Thesis does not exceed 60,000 words.
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Abstract

Interacting Fermi gases are one of the chief paradigms of condensed matter physics.

They have been studied since the beginning of the development of quantum mechan-

ics, but continue to produce surprises today. Recent experimental developments in

the field of ultracold atomic gases, as well as conventional solid state materials, have

produced new and exotic forms of Fermi gases, the theoretical understanding of

which is still in its infancy. This Thesis aims to provide updated tools and addi-

tional insights into some of these systems, through the application of both numerical

and analytical techniques.

The first Part of this Thesis is concerned with the development of improved nu-

merical tools for the study of interacting Fermi gases. These tools take the form

of accurate model potentials for the dipolar and contact interactions, as found in

various ultracold atomic gas experiments, and a new form of Jastrow correlation

factor that interpolates between the radial symmetry of the inter-electron Coulomb

potential at short inter-particle distances, and the symmetry of the numerical sim-

ulation cell at large separation. These methods are designed primarily for use in

quantum Monte Carlo numerical calculations, and provide high accuracy along with

considerable acceleration of simulations.

The second Part shifts focus to an analytical analysis of spin-imbalanced Fermi

gases with an attractive contact interaction. The spin-imbalanced Fermi gas is

shown to be unstable to the formation of multi-particle instabilities, generalisations

of a Cooper pair containing more than two fermions, and then a theory of super-

conductivity is built from these instabilities. This multi-particle superconductivity

is shown to be energetically favourable over conventional superconducting phases

in spin-imbalanced Fermi gases, and its unusual experimental consequences are dis-

cussed.
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Chapter 1

Introduction

1.1 Condensed matter physics

Condensed matter physics is the study of the universe in microcosm. Through the

scrutiny of materials and model systems, both experimentally and theoretically, we

gain insights that extend far beyond the laboratory walls.

These investigations teach us about our world, in the most direct (simulations

of materials at the centre of the earth [1]) or the most circuitous (study of lattice

spin models to describe material phase transitions [2]) ways. They can teach us

about the physical laws underpinning our world, from the macroscopic principles of

thermodynamics to the counterintuitive results of quantum mechanics.

Condensed matter physics also provides the foundations for much of material

science. Almost the entirety of our modern information age is built upon an un-

derstanding of, and control over, the physical properties of silicon, which have been

achieved through decades of research. Solar cell and battery technology continue to

develop thanks to the efforts of armies of researchers, in academia and industry.

But most of all, condensed matter physics is a playground of ideas, a setting for

the exploration and advancement of theories and concepts. Many, perhaps, will form

but the lowest rungs on a ladder of progress in their field, destined to be forgotten

once their limited contribution has been absorbed into the mainstream. Others,

though, shine brightly from a distance of half a century or more, ideas that continue

to inspire and suggest new avenues of investigation, and will continue to do so for

decades to come, motivating future generations of physicists.

1



2 Introduction

The particular ideas outlined in this Thesis build upon a wide variety of previous

work in condensed matter physics, experimental and theoretical. This background

is briefly discussed in the remainder of this Chapter, covering both the physical

and experimental systems that inspired the research in this Thesis, and also the

theoretical techniques, analytical and numerical, used to carry it out.

1.2 Interacting Fermi gases

The unifying setting of all the systems examined in this Thesis is a Fermi gas at zero

temperature, an idealised expanse populated only by spin-1/2 fermions. The distin-

guishing feature of the systems explored here is the interaction between particles,

for interactions create elaborate and exotic phases where otherwise there would be

only a featureless degenerate gas. The overarching theme throughout this Thesis

is that interactions in Fermi gases drive new physics, which may be analysed and

understood through the careful application of theory.

The two Parts of this Thesis have different but complementary aims with regard

to this study of the interacting Fermi gas. In Part I, the aim is to take an existing

set of numerical methods for studying Fermi gases, and use knowledge about such

systems to improve the simulations. In Part II, on the other hand, the aim is to

develop an analytical method to study a new type of superconducting phase identi-

fied in a well-known type of Fermi gas (a spin-imbalanced Fermi gas). Both Parts

are unified in their aims of progressing scientific knowledge about interacting Fermi

gases, developing tools and techniques that others can (and have) carry forwards to

investigate new systems and carry out new analyses, with a concluding Chapter at

the end that ties the themes together.

The subject matter of this Thesis is exclusively theoretical in nature, but the

Fermi gases it examines may, of course, be realised experimentally. The remainder

of this Section discusses how interacting Fermi gases may be realised, examining

the realisations applicable to each Chapter in turn. Section 1.3 then reviews the

simplifications and approximations needed to model these Fermi gases theoretically,

split into two broad themes corresponding to the Parts of this Thesis.
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1.2.1 Part I

The interacting Fermi gases explored in Chapters 2 and 3 are not systems that would

exist naturally, without the help of experimentalists. They are two-dimensional

systems, where almost all naturally-occurring Fermi gases are three-dimensional,

and include dipolar and contact interactions respectively, which are rare in nature.

However, this does not mean that these systems are pure inventions of a theorist’s

mind.

Fermi gases like those examined in Chapters 2 and 3 do exist, and do satisfy

practical needs. By constructing simplified and pure fermionic systems, experimen-

talists are able to reduce the influence of effects they are not interested in, and focus

on the important properties they are concerned with, whether properties of particles

themselves or the phases they form under the action of inter-particle and external

potentials.

In Chapter 2, the abstracted Fermi gas considered is a two-dimensional system,

with fermions interacting via a dipolar potential. This is a model of real experimental

setups, where the fermionic particles are either atoms with large magnetic dipole

moments [3–5] or molecules with large electric dipole moments [6–12]. These atoms,

cooled down to quantum degeneracy, are held in a ‘pancake’ trap, which mimics

a two-dimensional geometry [13]. More details on how these atoms and molecules

are cooled, trapped, and manipulated are given in Section 1.2.3 below, but here the

focus is on the rationale behind the creation of such systems.

These atomic and molecular systems are perfect examples of the use of con-

densed matter physics to study the universe in microcosm. The high degree of

control these systems allow experimentalists makes them an ideal testbed for ideas

in quantum information processing, with the end-goal of creating a workable quan-

tum computer [14–16]. The strong repulsive dipolar interaction in two dimensions

can also allow fine control over chemical reactions between the constituent parti-

cles [17], giving more insight into the underlying chemical and physical processes.

More conceptually, the ultracold atomic and molecular systems may be used as

quantum simulators [18], tools to model the novel phases and dynamics found in

other quantum systems.

The Fermi gas examined in Chapter 3 is similar to that in Chapter 2, the only

difference being the interaction between the fermions: a contact interaction instead
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of a dipolar interaction. The contact interaction is, in some sense, the ‘natural’ inter-

action to consider for ultracold atomic gas systems: the fundamental method used

to tune interactions between neutral atoms is known as the Feshbach resonance [19]

(described in Section 1.2.3), which has many of the properties of a contact interac-

tion, and is typically modelled as such [20–28].

The similarity between the physical, experimental systems examined in Chap-

ters 2 and 3 means that they have many of the same uses. It also means that

many of the theoretical tools used to model them are transferable. The focus of

Chapters 2 and 3 is on accelerating those theoretical tools, which are described

in Section 1.3.1. One of the chief constraints on modelling the interacting Fermi

gases numerically is the behaviour of the inter-particle potential: both the dipolar

and contact interactions diverge at particle coalescence, causing sampling problems.

Chapters 2 and 3 therefore focus on remedying this problem, by noting that all

the macroscopic physics of the systems depends on the scattering properties of the

inter-particle potentials, and so the divergent physical potentials may be replaced

by more numerically tractable ‘pseudopotentials’, providing the pseudopotential ex-

hibits accurate enough scattering properties. Pseudopotentials are developed in

Chapters 2 and 3 for the dipolar and contact interactions respectively.

Unlike the systems examined in Chapters 2 and 3, which are constructed by

experimentalists to answer particular questions, the interacting Fermi gases (namely

electron gases) that are relevant for Chapter 4 exist naturally, and take the form

of common metals. Many properties of metals are easy to measure, which allows

accurate comparisons between experiment and theory, and therefore necessitates

very precise theoretical methods. An issue with many of the numerical methods

commonly used to study strongly correlated electron gases and metals is that the

correlations between electrons that are captured by the method are constrained

by artificial symmetries imposed during the simulations. To make infinite Fermi

gases amenable to numerical simulation they are usually split into finite simulation

cells, which are tessellated, with periodic boundary conditions, to fill all of space.

However, these simulation cells bring with them symmetries in the choice of cell used.

The typical correlation functions used in simulations either encode this simulation

cell symmetry, or the radial symmetry of the Coulomb interaction between electrons,

but not both. This leads to inefficiencies in the construction of correlation functions,

which is addressed in Chapter 4 through the creation of a correlation function that
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interpolates between the simulation cell symmetry and the radial symmetry of the

Coulomb interaction as a function of distance from an electron. One particular

numerical method that benefits from the developments in Chapter 4 is described in

Section 1.3.1 below.

1.2.2 Part II

The experimental realisation of the systems examined in Part II of this Thesis span

both the ultracold atomic gas experiments relevant to Chapters 2 and 3, and the

electronic systems relevant to Chapter 4. Part II is concerned with the ground state

of a particular type of interacting Fermi gas, one with a spin-imbalance. Spin-1/2

fermions have two natural states, colloquially called spin-up (↑) and spin-down (↓).
In almost all natural materials in the absence of a magnetic field, the spin-up and

spin-down species are present in equal numbers, but this balance may be broken,

either by the application of a magnetic field to electrons, or through a more exotic

mechanism like spin-orbit coupling [29, 30]. Ultracold atomic gas systems may also

be used as quantum simulators to mimic this behaviour by using two different species

with different pseudospins, with different numbers of fermions of the different species

included in the experiment.

Chapter 5 is concerned with a few-particle limit of this spin-imbalanced Fermi

gas, identifying an instability against the formation of multi-particle correlated

states. The interaction between fermions that drives this instability is a contact

interaction, similar to that discussed above, and in ultracold atomic gases could be

realised in exactly the same way. In electron-based systems, the contact interac-

tion is a useful approximation, as the real physical interactions between electrons

(repulsive Coulomb interaction and attractive phonon-mediated interaction) are too

complex to capture in a theory of the kind developed in this Thesis.

Chapter 6 extends the instability theory of Chapter 5 to a full many-body theory

of superconductivity in spin-imbalanced Fermi gases, comparing the novel state

formed from multi-particle instabilities favourably with the conventional theory of

superconductivity in these systems. Background to the framework used to construct

this theory of superconductivity is given below in Section 1.3.2.

As ultracold atomic gases may be used as quantum simulators for all the sys-

tems discussed in this Thesis, and, in the case of Chapters 2 and 3, are the main
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experimental motivation, the following Subsection comprises a short introduction to

the cooling, trapping, and manipulation of ultracold atoms.

1.2.3 Ultracold atomic gases

A defining feature of fermionic ultracold atomic gases is that their constituent par-

ticles are at such low temperatures that the effects of quantum degeneracy cannot

be ignored. Cooling to this temperature is typically achieved by a combination of

laser cooling, where a slightly red-detuned laser beam excites a moving atom, which

then loses slightly more energy when it relaxes again [31], and evaporative cooling,

where elastic collisions of particles rethermalise the gas after selective removal of

the most energetic particles [32] (typically involving another ‘sympathetic’ atomic

species or spin species, to circumvent the problem of identical fermions having no

s-wave scattering cross-section [33]).

Once the fermions are cooled to quantum degeneracy, they need to be held in

space in order to carry out experiments. In the experiments relevant for this Thesis,

this is typically achieved by the use of an optical trap. Optical trapping involves the

use of the dipole force that atoms experience in off-resonant light [34], attracting the

atoms to the nodes (antinodes) of blue- (red-)detuned laser light. A spatially-varying

laser-intensity field therefore creates a trapping potential.

Once trapped, experiments can then probe the properties of the quantum degen-

erate gas: the density profile can be found by a real-space imaging of the trap; the

momentum distribution determined by a time-of-flight measurement [35]; and exci-

tations and impurities identified by radio frequency spectroscopy [36], for example.

To observe the physics of interest in a trapped ultracold atomic gas, a method

of accurately controlling inter-particle interactions is required. The chief tool used

is the Feshbach resonance [19], which is very briefly discussed here.

Feshbach resonance

A Feshbach resonance is a particular resonant interaction between two particles

in an ultracold atomic gas. A Feshbach resonance couples the open, scattering

channel of two particles with a closed channel containing a bound state [19]. This

is illustrated in Fig. 1.1, where one ultracold particle (with approximately zero

energy) approaches another from large separation. If the closed channel of the two
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Figure 1.1: Simplified model of
a Feshbach resonance coupling an
open, scattering channel (blue) with
a closed channel (red). The closed
channel contains a bound state with
energy Eb. Resonant coupling oc-
curs when Eb is tuned near to 0.

particles has a different magnetic moment to the open channel, the energies of the

two channels may be moved relative to each other by the application of an external

magnetic field. In particular, the bound state energy Eb of the closed channel may

be tuned close to 0, which even for weak inter-channel coupling can lead to a strong

resonance. This leads to very fine control over inter-particle interactions, with the

scattering properties of two particles depending strongly on the applied magnetic

field.

1.3 Theoretical tools

Although the interacting Fermi gases examined in this Thesis may be constructed

and studied experimentally, the approach taken here is purely theoretical. Both

analytical and numerical methods are employed to gain insight into the systems of

interest, and to identify and develop improvements to the methods themselves. This

Section discusses two of the main techniques used in this Thesis: in Section 1.3.1, the

numerical technique of quantum Monte Carlo calculation that forms the backdrop

of Part I, and in Section 1.3.2 the analytical theory of superconductivity that is

extended in Chapter 6.

1.3.1 Quantum Monte Carlo

The interacting Fermi gases at zero temperature in this Thesis are, by their very

nature, strongly-correlated quantum systems. The strong correlations mean that

perturbative analyses are doomed to be insufficient, and so when exact solutions are
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intractable (as is the case in Part I) numerical approaches are required. However, the

probabilistic nature of quantum mechanics means that the number of possible states

a computer needs to consider (the size of the Hilbert space) grows exponentially

with the system size [18], ruling out direct methods like exact diagonalisation of the

system Hamiltonian in all except the simplest cases.

A common method used to bypass this problem of exponentially large configu-

ration spaces is to turn to probabilistic methods in the numerical approach itself. A

leading example of this school of thought is the class of methods known as quantum

Monte Carlo [37], which are variational methods for evaluating quantum mechanical

expectation values in a way that scales only polynomially with the system size. The

particular quantum Monte Carlo techniques used in this Thesis are the variational

Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods.

Variational Monte Carlo is a conceptually simple method: the energy of a Hamil-

tonian Ĥ with a trial wavefunction ΨT(R), a function of the vector R of particle

coordinates, can be expressed as

EV =

∫
Ψ†T(R)ĤΨT(R)dR∫
|ΨT(R)|2 dR

, (1.1)

which is an upper bound on the ground state energy E0 < EV of Ĥ, with equality

only when ΨT(R) is the ground eigenstate of Ĥ. Minimising the energy EV with

respect to the trial wavefunction ΨT(R) therefore provides an accurate approxima-

tion to the ground state energy, if the trial wavefunction ΨT(R) can be varied to

approximate the ground state wavefunction.

However, Eq. (1.1) is a challenging integral to evaluate, being very high-

dimensional in many-particle systems. The most efficient way to evaluate such an

integral is by using a Monte Carlo method to randomly sample configuration space

and find an approximation to the true integral value. Using M random samples leads

to an uncertainty in the estimate which scales as 1/
√
M , independently of the size

of the configuration space [37]. It is convenient to express Eq. (1.1) as a weighted

average over all configuration space of the local energy EL(R) = Ψ−1
T (R)ĤΨT(R),

EV =

∫
|ΨT(R)|2 Ψ−1

T (R)ĤΨT(R)dR∫
|ΨT(R)|2 dR

=

∫
|ΨT(R)|2EL(R)dR∫
|ΨT(R)|2 dR

.
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The last expression in this equation can be sampled efficiently using the Metropolis

algorithm [38] and the variational energy then estimated using these M configura-

tions Ri as

EV ≈
1

M

M∑

i=1

EL(Ri).

The proximity of the estimated energy EV to the ground state energy E0 depends

on the choice ΨT(R). A good choice will closely approximate the real ground state

wavefunction: if ΨT(R) were to be the exact ground state wavefunction then EL(R)

would be a constant E0 and every sample the Metropolis algorithm made would

give this same energy, resulting in zero uncertainty in the estimate. However, a

poor choice will lead to the Metropolis algorithm sampling unimportant areas of

configuration space, predicting erroneously large kinetic energies, or otherwise over-

estimating the ground state energy. Furthermore, an inaccurate trial wavefunction

will give different local energies at different points of configuration space, and hence

a significant uncertainty in the estimated energy.

In order to obtain accurate VMC results, the trial wavefunction ΨT(R) is usu-

ally taken to depend on several variational parameters αi. The trial wavefunction

typically takes the form [39]

ΨT(R) = eJ(R,α1,α2,...)D(R),

where D(R) is a Slater determinant of single-particle orbitals, capturing fermionic

antisymmetry, and the Jastrow correlation factor eJ(R,α1,α2,...) encodes inter-particle

correlation. As long as J(R,α1,α2, . . .) is a symmetric function of the particle posi-

tions, the Jastrow factor does not modify the fermionic antisymmetry of the Slater

determinant. The wavefunction ΨT(R), and hence the local energy, is optimised by

minimising either the energy EV or a related function with respect to the αi. This

then gives an approximation for both the wavefunction and the ground state energy.

The accuracy of the VMC estimate for the ground state energy is limited by the

accuracy of the VMC trial wavefunction. Chapter 4 discusses a method for creating

flexible and accurate Jastrow factors to ameliorate this problem, and in addition

simplify the optimisation of the energy EV.

The accuracy constraints of VMC are mostly averted by another quantum Monte
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Carlo method, diffusion Monte Carlo (DMC). Instead of direct estimates of the

energy expectation value using a trial wavefunction, DMC maps the Schrödinger

equation onto a diffusion equation for so-called ‘walkers’, each of which is associ-

ated with a particular configuration of particles. The positions of these walkers in

configuration space evolve following the diffusion equation, whose Green’s function

may, for small steps in imaginary time, be factorised into diffusion and branching

parts [40].

The diffusion part simply encodes the random walk carried out by walkers under

the free, non-interacting diffusion equation. The branching part, on the other hand,

weights configuration space according to the potentials acting on the particles: in

regions of low potential, an initial walker may be duplicated, giving more weight to

the areas of configuration space of low potential, whilst in regions of high potential

walkers may die out. This procedure will, after many timesteps, distribute the walk-

ers according to the potential landscape they live in. The energy of the Hamiltonian

may then be evaluated at each of the points in configuration space that the walkers

represent, providing an estimate of the ground state energy.

This procedure is formally equivalent to using the full interacting Green’s func-

tion to project out the ground state component of a starting estimate trial wavefunc-

tion. This trial wavefunction is typically chosen to be the optimised VMC wave-

function, and provided this wavefunction has some overlap with the true ground

state wavefunction, DMC will in principle recover the exact ground state energy. In

practice, fermion statistics complicate the DMC algorithm, as a multi-fermion wave-

function necessarily includes regions where the wavefunction changes sign. Although

it is possible to assign signs to the DMC walkers, the signal-to-noise ratio decays

exponentially [37], a consequence of the ubiquitous fermion sign problem. An inex-

act, but frequently used and in practice accurate, solution is the fixed-node DMC

algorithm, where the nodes of the trial wavefunction are kept constant throughout

the random walk through configuration space, with walkers prohibited from crossing

the nodes. The fixed-node approximation means that DMC systematically overesti-

mates the ground state energy, and this will typically be the largest source of error

in DMC simulations, including those with pseudopotentials.

As well as setting the nodes of the wavefunction obtained from DMC, the trial

wavefunction is also used as a guiding wavefunction in more efficient implementations

of the DMC algorithm [41], and so contributes to the overall accuracy and efficiency
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of the DMC calculation. It is therefore important to have access to accurate and

efficient VMC wavefunctions. This is directly addressed in Chapter 4, where a new

form for the trial wavefunction is proposed, but is also an extra benefit of the pseu-

dopotential formalism developed in Chapters 2 and 3. Smooth and non-divergent

inter-particle potentials allow the variational freedom of the VMC wavefunction to

be focussed on correlation effects, rather than having to concentrate on capturing

the correct divergent form for the wavefunction at particle coalescence.

1.3.2 BCS theory

Chapter 6 of this Thesis focusses on extending the canonical theory of superconduc-

tivity in spin-balanced Fermi gases to the spin-imbalanced case. This chief theory

of superconductivity bears the name of its creators, Bardeen, Cooper, and Schri-

effer (BCS) [42, 43], and since its inception has explained myriad features of the

phenomenon of superconductivity. Part II of this Thesis extends BCS theory by

generalising the instability underlying its superconducting behaviour. This Section

serves as an introduction to Chapter 6 in particular, by introducing the analyt-

ical formalism of BCS theory. This is not the methodology used in the original

exposition of BCS theory, but rather a form of quantum field theory that allows

the identification of physically important properties of the superconducting state,

without complication by extraneous details.

The fundamental object in this quantum field theory is the quantum partition

function, a mathematical expression that encodes details about the system of in-

terest by summing over all possible configurations of fermion fields, weighted by a

measure of their ‘likelihood’ of occurring. The sum is represented by a ‘path integral’∫
Dψ over fields ψ, and the weighting is by exp(−S[ψ]), where S[ψ] is the action,

as familiar from classical statistical mechanics. Here, and throughout this Thesis,

natural units are employed, where h̄ = 1. Bringing these components together, the

quantum partition function for a fermion field with two degrees of freedom ψ and ψ̄,

comparable roughly to the annihilation and creation operators of second-quantised

quantum mechanics, is given by Z =
∫
D(ψ, ψ̄) exp(−S[ψ, ψ̄]).
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The particular action relevant for BCS theory takes the simple form

S[ψ, ψ̄] =
∑

k,σ

ψ̄k,σ(−iω + ξk,σ)ψk,σ − g
∑

k,k′,q

ψ̄k,↑ψ̄q−k,↓ψk′,↓ψq−k′,↑, (1.2)

where the first term is a kinetic part, with dispersion ξk,σ depending on both the

spatial part of the fermion momentum k and spin species σ ∈ {↑, ↓}, and the second

term is the interaction term between fermions, with a contact interaction (as also

used in Chapters 3 and 5) of attractive strength g > 0. The Matsubara frequencies

ω = k0, the temporal part of the momenta k in a Euclidean spacetime, encode the

temperature of the system. The momenta q allow interactions between fermions

with momenta that are not opposites: this is relevant in spin-imbalanced systems,

as considered in Chapter 6, but neglected in BCS theory, as discussed here, and so

subsequently q shall be set to zero.

The action in Eq. (1.2) is difficult to handle, because it is quartic in the fields

ψ and ψ̄: actions quadratic in the fields allow their quantum partition functions

to be evaluated exactly, through Gaussian integration, but quartic actions are not

generally amenable to exact solutions. A method to circumvent this problem is

the Hubbard-Stratonovich transformation [44, 45], an exact remapping using the

quantum field theory version of the simple integral

ex
2

=
1√
π

∫ ∞

∞
dy e−2xy−y2

,

which gives the quantum partition function, involving a new complex (bosonic) field

∆ that will go on to have a fundamental interpretation as the energy gap of the

system, as Z =
∫
D(ψ, ψ̄)D(∆, ∆∗) exp(−S[ψ, ψ̄, ∆, ∆∗]), where

S[ψ, ψ̄, ∆, ∆∗] =
∑

ω,k,σ

ψ̄k,σ(−iω + ξk,σ)ψk,σ−
∑

ω,k

(
∆ψ̄k,↑ψ̄−k,↓ + ∆∗ψ−k,↓ψk,↑

)

+
∑

ω

|∆|2
g

,

and the momenta k are now taken to just include the spatial degrees of freedom,

with the temporal component extracted in the form of ω. This action may be written
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using a matrix formalism in terms of G−1
k,↑ = −iω + ξk,↑ and G−1

−k,↓ = −iω − ξ−k,↓ as

S[ψ, ψ̄, ∆, ∆∗] =
∑

ω,k

(
ψ̄k,↑

ψ−k,↓

)T(
G−1
k,↑ −∆

−∆∗ G−1
−k,↓

)(
ψk,↑

ψ̄−k,↓

)
+
∑

ω

|∆|2
g

,

which makes the quadratic form in fermion fields of the transformed action explicit.

The 2 × 2 nature of the matrix in this expression, coupling one down-spin fermion

with one up-spin fermion, indicates that the structure underlying BCS superconduc-

tivity is the pairing of fermions. These pairs are known as Cooper pairs, fermions

that are coupled to each other and no other fermions, with the pairs then correlating

to form a superconductor. The chief result of Chapter 6 is that Cooper pairs may

be generalised to include fermions which couple with more than one other fermion.

Although the transformations thus far were exact, further progress requires ap-

proximation. One typical approximation is the saddle-point approximation, where

the path integral over the values of the field ∆ is replaced by just the extremal value

of ∆ in the action, with this value to be determined self-consistently later. The

Gaussian integral over the ψ fields may then be carried out analytically, giving the

quantum partition function as

Z = exp

[
−
∑

ω,k

ln det

(
G−1
k,↑ −∆

−∆∗ G−1
−k,↓

)
−
∑

ω

|∆|2
g

]
,

and so, for a zero-frequency field ∆, the thermodynamic potential Ω = −T lnZ at

temperature T takes the form

Ω = T
∑

ω,k

ln det

(
G−1
k,↑ −∆

−∆∗ G−1
−k,↓

)
+
|∆|2
g

. (1.3)

It is easy to then carry out the sum over the Matsubara frequencies, and the ther-
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modynamic potential, including regularisation, takes the form

Ω =
∑

k


|ξk,+ + ξk,−| −

√
ξ2
k,+ + |∆|2 −

∑

ς∈{+,−}
T ln

[
1 + e−

1
T (
√
ξ2
k,++|∆|2+ςξk,−)

]



+
|∆|2
g

,

where ξk,± = 1
2
(ξk,↑ ± ξ−k,↓). For a system of fermions of unit mass with a free

dispersion, ξk,σ = 1
2
|k|2 − µσ, where µσ is the chemical potential for species σ,

ξk,+ = 1
2
|k|2− µ̄, where µ̄ = 1

2
(µ↑+ µ↓), and ξk,− = −δµ, where δµ = 1

2
(µ↑− µ↓). In

this expression, the functional form Ek =
√
ξ2
k,+ + |∆|2 of the modified dispersion

lends meaning to the parameter |∆|, as the gap in the dispersion: Ek does not go

smoothly to zero, but takes a minimum value of |∆|.

It is easiest to evaluate the sums over momentum k by going to the infinite

system size limit, where the sums become integrals, and then changing variables

from |k| to ξk,+. At zero temperature the thermodynamic potential evaluates to

Ω/N =ωD

(
ωD −

√
ω2

D + |∆|2
)
− |∆|2arcsinh

ωD

|∆|

+ δµ
(
δµ−

√
δµ2 − |∆|2

)
+ |∆|2arccosh

δµ

|∆| +
|∆|2
gN , (1.4)

where ωD is the Debye frequency, an ultraviolet cut-off on the energy range of the

interaction between fermions, N is the density of states in energy, and the expression

is valid in the weak-coupling and weak spin-imbalance limit where ωD > δµ > |∆| >
0.

Although a closed, analytical form for the thermodynamic potential is obtain-

able in BCS theory, this is not possible for the spin-imbalanced superconductivity

examined in Chapter 6. Instead, the evaluation of the thermodynamic potential it-

self must also be approximate, typically by expanding the thermodynamic potential

in powers of |∆|2. This procedure is also possible for BCS theory itself: the defining

expression for the thermodynamic potential Eq. (1.3) may be written as

Ω = α|∆|2 +
1

2
β|∆|4 + . . . ,



Theoretical tools 15

Figure 1.2: The BCS thermo-
dynamic potential Ω evaluated
both exactly (blue curve), using
Eq. (1.4), and following the expan-
sion method of Eq. (1.5) (red curve),
indicating the accuracy of the ex-
pansion method at small |∆|2.

where

α =
1

g
+ T

∑

ω,k

Gk,↑G−k,↓,

β = T
∑

ω,k

G2
k,↑G2

−k,↓,

etc. At zero temperature the expansion coefficients α and β may be evaluated

similarly to the full expression for the thermodynamic potential above, giving

Ω/N =

(
1

gN − ln
ωD

δµ

)
|∆|2 − |∆|

4

8δµ2
+ . . . , (1.5)

the simplicity of whose terms may be contrasted with the equivalent terms in Chap-

ter 6. Eq. (1.5) can also be obtained as a Taylor series of Eq. (1.4) around |∆|2 = 0,

confirming the self-consistency of this approximate method for evaluating the ther-

modynamic potential. The thermodynamic potentials from Eqs. (1.4) and (1.5) are

compared in Fig. 1.2, again indicating that the expansion method provides an accu-

rate approximation to the full thermodynamic potential at small |∆| for BCS theory,

which helps justify its use in the investigation of spin-imbalanced superconductiv-

ity in Chapter 6. In both curves the chemical potential difference δµ = ωD/4, the

interaction strength g = ωD, and the density of states in energy is taken as unity.

This Section has provided a summary of BCS theory, and an examination of the

accuracy of the expansion method of evaluating the thermodynamic potential. In

Chapter 6 the expansion method is used to investigate superconductivity in spin-
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imbalanced systems, identifying unusual behaviour of the underlying Cooper pairs

and commenting on its significance for experimental realisations of spin-imbalanced

superconductivity.



Part I

Accelerating numerical simulations

17





Chapter 2

Pseudopotentials for an ultracold

dipolar gas

A gas of ultracold molecules interacting via the long-range dipolar potential of-

fers a highly controlled environment in which to study strongly correlated phases.

However, at particle coalescence the divergent 1/r3 dipolar potential and associated

pathological wavefunction hinder computational analysis. For a dipolar gas con-

strained to two dimensions we overcome these numerical difficulties by proposing a

pseudopotential that is explicitly smooth at particle coalescence, resulting in a 2000-

times speedup in diffusion Monte Carlo calculations. The pseudopotential delivers

the scattering phase shifts of the dipolar interaction with an accuracy of 10−5 and

predicts the energy of a dipolar gas to an accuracy of 10−4EF in a diffusion Monte

Carlo calculation.

19
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2.1 Introduction

Ultracold atomic gases are an ideal testing ground for many-body quantum physics.

Experiments now allow the condensation of particles that carry either an electric

or magnetic dipole moment, and so interact through the long-ranged dipolar inter-

action in a highly controlled environment [3–12]. These systems present an ideal

opportunity to study emergent strongly correlated phenomena driven by long-range

interactions [46–56]. However, numerical studies of the dipolar interaction are com-

plicated by the pathological behaviour of the wavefunction at particle coalescence.

We propose a pseudopotential for the dipolar interaction that delivers almost identi-

cal scattering properties to the original dipolar interaction, but has a smooth profile

that accelerates diffusion Monte Carlo calculations by a factor of ∼ 2000.

In recent years there have been rapid developments in forming, trapping, and

cooling ultracold atoms and molecules with dipole moments, as discussed in Chap-

ter 1. For the sake of concreteness we consider a gas of fermionic dipolar par-

ticles [8, 9, 12]. A particularly appealing geometry is a single component gas of

fermions trapped in two dimensions [7]. This configuration can suppress the chemi-

cal reaction rate of the molecules, thereby giving sufficient time to relax and study

strongly correlated phases [13], and a strong external field can align the dipoles at

an angle θ to the normal to the plane, which allows fine control over the interac-

tions between the particles. The dipolar interaction between the particles is then

V (r,φ) = d2[1 − 3
2

sin2 θ(1 + cos 2φ)]/r3 where φ is the polar angle in the plane,

measured from the projection of the electric field onto the plane, r is the inter-

particle distance, and d is the dipole moment. This interaction is shwon graphically

in Section 2.6 below. We focus on the fully repulsive regime of the potential, with

θ ≤ θc = arcsin(1/
√

3), where there are no bound states. In the special case θ = 0

the potential V (r,φ) reduces to the isotropic form V (r) = d2/r3.

Theoretical studies of the dipolar gas have provided a rich variety of surprises and

insights. Remarkably, even at mean-field level the non-tilted (θ = 0) system with

an isotropic potential is predicted to display an inhomogeneous stripe phase [58,59]

that is robust to the inclusion of perturbative quantum fluctuations [48]. To extend

beyond the perturbative regime theorists have turned to diffusion Monte Carlo [60]:

however, the divergent dipolar potential and associated pathological wavefunction

make these simulations difficult to carry out, and they have not uncovered evidence
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of the exotic inhomogeneous stripe phase.

The disagreement between analytical and numerical studies motivates us to focus

our efforts on improving the modelling of the troublesome dipolar potential. Similar

difficulties with divergent potentials arise in the study of the contact and Coulomb

interactions, where it has been shown that pseudopotentials can accurately mimic

the real interaction [61, 62]. We follow the same prescription to now construct a

pseudopotential that delivers the same scattering physics as the dipolar interaction,

but which is smooth at particle coalescence and so avoids the numerical difficulties

arising from pathological behaviour near particle coalescence.

This smoothness will provide benefits in a variety of numerical techniques, includ-

ing configuration interaction methods [63], coupled cluster theory [64], and diffusion

Monte Carlo (DMC) [37]. Here we analyse the performance of the pseudopotential

by carrying out DMC calculations on the dipolar gas to find the ground state energy

of the system. We find that the proposed pseudopotential delivers ground state en-

ergies with an accuracy of order 10−4EF, whilst also offering a speedup by a factor

of ∼ 2000 relative to using the dipolar potential.

We start by studying the two-body scattering problem. In Section 2.2 we an-

alytically solve the wavefunction of the non-tilted θ = 0 system near to particle

coalescence, which offers insights into the numerical difficulties. Building on the

analytical solution, in Section 2.3 we numerically solve the two-body problem of

scattering from the dipolar potential out to larger radii. This provides the scat-

tering phase shift that we use to calibrate the scattering from the pseudopotential.

Having proposed the pseudopotential, in Section 2.4 we test it on a second two-

body system: two particles in a parabolic trap. In Section 2.5 we then demonstrate

the use of the pseudopotential to study the ground state energy of the many-body

fermionic gas, confirming both the accuracy of the pseudopotential and the compu-

tational speedup. In Section 2.6 we repeat the procedure with tilted dipoles, and in

Section 2.7 discuss future applications of the pseudopotential.

2.2 Kato-like cusp conditions

To develop a pseudopotential for the dipolar interaction we need to properly un-

derstand scattering from the original dipole. Working with non-tilted dipoles, we

focus on the small radius limit where we can solve for the wavefunction analytically.
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This will allow us to demonstrate the pathological behaviour of the wavefunction

and resultant numerical difficulties, and provide boundary conditions for the full nu-

merical solution of the scattering properties. Moreover we will calculate a Kato-like

cusp condition, a scheme to partially alleviate these numerical difficulties for the

true dipolar potential.

To study the small radius behaviour we focus on the two-body problem: two

identical same-spin fermions of mass m in their centre-of-mass frame with energy

E ≥ 0. The Hamiltonian in atomic units (h̄ = m = 1) is

Ĥψ(r,φ) = −∇2ψ(r,φ) + V (r̂)ψ(r,φ) = Eψ(r,φ), (2.1)

where V (r) = d2/r3 is the isotropic dipolar interaction for particle separation r and

dipole strength d, with characteristic length scale r0 = d2.

A key quantity for Monte Carlo methods is the local energy, EL = ψ−1Ĥψ

[65]. For an eigenstate the local energy is constant, and equal to the eigenenergy,

whilst for other wavefunctions the local energy varies in space. The foundation

of the many-body trial wavefunction in our Monte Carlo calculations is a non-

interacting wavefunction given by a Slater determinant of plane wave states. As two

particles approach coalescence their contribution to the wavefunction in each angular

momentum channel ` is ψnon−int,`(r,φ) = r` cos(`φ), which is an eigenstate of the

two-body non-interacting system. The Slater determinant gives such a contribution

in every odd angular momentum channel. In Fig. 2.1 we demonstrate that when

this wavefunction is used with the dipolar potential the local energy diverges as r−3

in every angular momentum channel. This divergence is unwelcome as it will make

the local energy difficult to sample in Monte Carlo calculations, and the variance of

the samples will give rise to a large statistical uncertainty in the calculated energy.

To try to remedy this divergence in the local energy we examine the exact eigen-

states of the two-body Hamiltonian given by Eq. (2.1), and then apply our findings

to the many-body system. In the small separation limit where the potential V (r)

diverges the eigenstates of the Hamiltonian are

ψ`(r,φ) = K2`(2
√
r0/r) cos(`φ),

where Kn(x) is a modified Bessel function of the second kind and the quantum



Kato-like cusp conditions 23

Figure 2.1: (a) The local energy

EL = ψ−1Ĥψ as a function of ra-
dius in the ` = 1 angular mo-
mentum channel, showing in or-
ange the divergence as r−3 when
the dipolar potential is used with
the non-interacting wavefunction
ψnon−int,`=1. Also shown in magenta
is the local energy divergence as
r−5/2 when the dipolar potential is
used with a wavefunction with an
exponential cusp correction ψexp,`=1,
and in blue the exact solution in
this channel, given by a Bessel func-
tion cusp correction ψK2,`=1. In
red and green are the local energies
of Troullier–Martins and ultratrans-
ferable (UTP) pseudopotentials, re-
spectively, with the non-interacting
wavefunction, which outside of the
radius rc shown by a dashed grey
line join smoothly onto the real
dipolar potential. The inset shows
the same curves on a logarithmic
scale. (b) The local energy in the
` = 3 channel, demonstrating that
the Bessel function cusp correction
ψK2,`=3 is not accurate in other
channels.
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number ` denotes angular momentum in the 2D plane. In order to turn the leading-

order ` = 1 part of the non-interacting wavefunction given by the Slater determinant

into an eigenstate of the Hamiltonian with the dipolar interaction we may multiply

the Slater determinant by a factor K2(2
√
r0/r)/r, which we refer to as a Bessel

function cusp correction. This gives a wavefunction that is a zero-energy eigenstate

of the Hamiltonian in the ` = 1 channel, as shown in Fig. 2.1(a). Similar Bessel

function cusp corrections have been used previously to study both fermionic and

bosonic systems [49,54,60].

In Monte Carlo calculations we have to pre-multiply the entire Slater determi-

nant, and so all angular momentum channels present in it, by a single cusp correction

term, and it is not practical to adapt the cusp correction on the fly to the relative

angular momentum of interacting particles. However, the Bessel function cusp cor-

rection applied to the two-body wavefunction,

ψK2,`(r,φ) = r` cos(`φ)K2(2
√
r0/r)/r,

is not an eigenstate in any angular momentum channel except ` = 1. In other

channels it gives a local energy that diverges as r−5/2 in the r → 0 limit, as shown

in Fig. 2.1(b) for the ` = 3 channel.

The improvement of the divergence in the local energy from r−3 to r−5/2 is,

in fact, due to the leading-order behaviour of the Bessel function cusp correction,

which goes as exp(−2
√
r0/r), independent of angular momentum. Accepting that

we will always be left with an r−5/2 divergence of the local energy in many-body

calculations, we may then just take this leading order term to give an exponential

cusp correction, leading to a wavefunction

ψexp,`(r,φ) = r` cos(`φ) exp(−2
√
r0/r).

The r−5/2 divergence of the local energy with this wavefunction is shown in Fig. 2.1

for angular momentum channels ` = 1 and ` = 3.

The approach of inserting a small radius analytical solution into the many-

body trial wavefunction is well established in electronic-structure calculations where

the small radius behaviour of the wavefunction around the 1/r divergence in the

Coulomb potential is fixed with the Kato cusp conditions [66, 67]. Following this
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prescription we can premultiply a many-body non-interacting trial wavefunction by

the exponential cusp correction
∏

i>j exp(−2
√
r0/rij) or Bessel function cusp cor-

rection
∏

i>jK2`(2
√
r0/rij)/r

`
ij, where the product is over all dipoles labelled by i, j

and rij is the dipole-dipole separation. Similarly to the two-body case both cor-

rections leave an r−5/2 divergence in the local energy, which will manifest itself as

a major contribution to the uncertainty in the final prediction of the energy. We

will revisit the question of cusp corrections in a many-body system in Fig. 2.5(b),

where we show that the simple exponential cusp correction gives similar values for

the variance in the local energy to a full Bessel function cusp correction.

In order to study the interacting-dipole system further we turn to the construc-

tion of pseudopotentials [61,68] that capture the physics of the system whilst deliv-

ering the smooth and non-divergent local energy values shown in Fig. 2.1.

2.3 Derivation of the pseudopotentials

To construct a pseudopotential for the dipolar interaction we continue with the

two-body scattering problem of two indistinguishable fermions in their centre-of-

mass frame, studying the Schrödinger Eq. (2.1). We seek a pseudopotential that is

smooth and non-divergent to accelerate numerical calculations. We also require it

to reproduce the correct two-body scattering physics over the range of scattering

energies present in a Fermi gas with Fermi energy EF, which guarantees that the

pseudopotential will properly capture two-body effects in the system. As we will be

considering two-body processes we again work in the centre-of-mass frame, with the

Hamiltonian given by Eq. (2.1).

We first turn to the Troullier–Martins [68] formalism that has been widely used

and rigorously tested in the literature to construct attractive electron-ion pseudopo-

tentials [69–74], but which may be adapted [61] to the current problem of two identi-

cal fermions as detailed in Appendix A. This method creates a pseudopotential with

the exact dipolar potential outside of a cutoff radius rc and a polynomial potential

within it, constructed to be smooth up to second derivative at rc. The Troullier–

Martins method guarantees that the scattering properties of the pseudopotential will

be exact at one particular calibration energy Ec. We choose the calibration energy

to be the average scattering energy of two fermions in a non-interacting Fermi gas.

In Appendix B we show that this calibration energy is Ec = EF/4.



26 Pseudopotentials for an ultracold dipolar gas

For the scattering of two indistinguishable fermions the Pauli principle guar-

antees that there will be no s-wave contribution to the scattering. We therefore

construct the Troullier–Martins pseudopotential by focusing on a scattering wave-

function in the leading-order p-wave, ` = 1, channel. The functional form of the

pseudo-wavefunction in this channel is

ψ`=1(r,φ) =





exp[p(r)] r cos(φ) , r < rc ,

ψdipole,`=1(r,φ) , r ≥ rc ,
(2.2)

where the polynomial p(r) =
∑6

i=0 cir
2i, and the wavefunction ψdipole,`=1(r,φ) is

calculated by numerically solving Eq. (2.1) using the exact dipolar potential at the

calibration energy Ec. As explained in Appendix A the coefficients ci are calculated

by requiring continuity of the pseudo-wavefunction and its first four derivatives at

rc, as well as matching the net density inside rc, and requiring the pseudopotential

to have zero gradient and curvature at the origin.

The choice of rc is motivated by the physics we wish to study: a longer cutoff

radius allows a smoother potential that gives efficient numerics, but being less similar

to the real potential has less accurate phase shift errors. In many-body systems

the longer cutoff radius will also increase the probability of having three or more

particles within the cutoff radius, which the pseudopotential is not designed to be

able to accurately model. For our two-body scattering system we take kFrc = 2,

which ensures that, on average, only one other particle is within rc of each scattering

particle, and so avoids three-body interactions within the cutoff radius.

The exponentiated polynomial form of the pseudo-wavefunction in Eq. (2.2)

means that the Schrödinger Eq. (2.1) may be analytically inverted to give the pseu-

dopotential as

VT–M(r) =




Ec + 3

r
p′ + p′2 + p′′ , r < rc ,

d2/r3 , r ≥ rc,
(2.3)

where the primes denote differentiation with respect to r. This pseudopotential is

shown in red in Fig. 2.2 for interaction strength kFr0 = 1/2. It is non-divergent

at particle coalescence and smooth where it joins onto the real dipolar potential at

r = rc. This pseudopotential gives rise to the local energy EL shown in Fig. 2.1.
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Figure 2.2: The dipolar potential,
and Troullier–Martins and UTP
pseudopotentials. The grey vertical
line indicates rc, the pseudopoten-
tial cutoff radius.
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The smooth and finite local energy at r < rc is a dramatic improvement over the

divergent local energy from our trial wavefunction with the dipolar potential, and

this non-divergence should lead to improved statistics and efficiency in many-body

simulations.

To measure the accuracy of our pseudopotentials we calculate the phase shift in

the wavefunction

δψ,`(E) =
1

2π
arccot

[
1√
E

(
ψ′`(rc,φ)

ψ`(rc,φ)
+

2`+ 1

2rc

)]
(2.4)

imparted by a two-body scattering process, where δψ,` is evaluated at the cutoff

radius rc because any difference in phase shift must be accumulated in the region

r < rc where the potentials differ. The difference between the scattering phase shift

for the Troullier–Martins pseudopotential and the exact phase shift from the dipolar

interaction is shown in red in Fig. 2.3(a) as a function of scattering energy, evaluated

at kFr0 = 1/2. The scattering phase shift of the Troullier–Martins pseudopotential

is exact at the calibration energy, and accurate to order 10−5 over the range of

scattering energies in a Fermi sea.

Although the Troullier–Martins pseudopotential captures the exact scattering

properties at the calibration energy, it deviates at all other energies, with the lead-

ing order deviation around the calibration energy going as (E−Ec)
2 [61]. A natural

extension to the Troullier–Martins formalism is to find a pseudopotential that min-

imises this deviation in the phase shift over all the possible relative energies of pairs

of particles in a Fermi gas. We derive such a pseudopotential here, referring to it as

an “ultratransferable pseudopotential” (UTP).

The UTP [61] is identical to the dipolar potential outside a cutoff radius rc, but
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Figure 2.3: (a) The error in the
scattering phase shift |δpseudo,1(E)−
δdipole,1(E)|. The filled grey curve
is the density of scattering states
g(E) in the two-body Fermi sea
on a linear scale. (b) The root-
mean-squared error in the scatter-
ing phase shift as a function of in-
teraction strength.

has a polynomial form inside the cutoff,

VUTP(r) =
d2

r3
c





1 + 3
(

1− r
rc

)(
r
rc

)2

+
(

1− r
rc

)2
[
v1

(
1
2

+ r
rc

)
+

Nv∑

i=2

vi

(
r

rc

)i]
, r < rc ,

r3
c/r

3 , r ≥ rc ,

with Nv = 3. The term 1 + 3(1− r/rc)(r/rc)
2 guarantees that the potential and its

first derivative are continuous at r = rc. In the next term, the expression (1−r/rc)
2

also ensures continuity of the potential at the cutoff radius, and v1(1/2 + r/rc)

constrains the potential to have zero derivative at the origin. This ensures that the

pseudo-wavefunction is smooth, easing the application of numerical methods.

To determine the coefficients {vi} we minimise the total squared error in the
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phase shift over all the possible pairs of interacting particles in a Fermi gas

〈
|δUTP,` (E)− δdipole,` (E)|2

〉

=

∫
|δUTP,` (E)− δdipole,` (E)|2 g(E/EF) dE/EF , (2.5)

where

g(x) = 4− 8

π

(√
x(1− x) + arcsin

√
x
)

is the density of scattering states in energy (see Appendix B and Reference [75]),

shown in Fig. 2.3(a). The density of scattering states decreases as a function of

energy due to the finite size of the Fermi sea of scattering particles limiting the

available range of scattering energies. Modifyications to this density of scattering

states, perhaps to weight scattering states near the Fermi surfaces more heavily,

are expected to only weakly change the derived UTP. We primarily work in the

leading-order ` = 1 angular momentum channel. The UTP formalism is capable of

creating pseudopotentials that are accurate in several angular momentum channels

by summing over them in Equation (2.5) whilst accounting for the occupation of

the channels that goes as 1/
√

(2`+ 1)!! [62], which strongly suppresses the effect

of all the channels above ` = 1. The total squared phase shift error Eq. (2.5) is

numerically minimised with respect to the vi to create our UTP.

The scattering phase shift behaviour of the UTP is shown in Fig. 2.3(a).

Although it is less accurate than the Troullier–Martins pseudopotential at the

Troullier–Martins calibration energy, the UTP is more accurate at higher incident

energies. At zero scattering energy both pseudopotentials are exact, as the scatter-

ing particles never penetrate the region r < rc where the pseudopotentials deviate

from the real dipolar interaction.

In Fig. 2.3(b) we show the average phase shift error in the pseudopotentials as a

function of interaction strength. At its worst the Troullier–Martins pseudopotential

has an average accuracy of 2×10−6, whilst the average UTP accuracy is always better

than 1×10−6. Over a broad range of interaction strengths the UTP is more accurate

than the Troullier–Martins pseudopotential, but both are exact at kFr0 = 0 where

the particles do not interact. At high interaction strengths the pseudopotentials

become highly accurate, as the increasing interaction strength effectively rescales
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Figure 2.4: The deviation of the
energy of two particles in an har-
monic trap as calculated using both
Troullier–Martins and UTP pseu-
dopotentials from that calculated
using the exact dipolar potential, as
a function of interaction strength.

the potential size, and so for a given range of scattering energies the particles will be

kept further apart and so less strongly probe the region r < rc where the potentials

differ. We also note that a further advantage of the UTP is that at high interaction

strengths, kFr0 > 4 with kFrc = 2, it is not possible to solve the system of equations

defining the Troullier–Martins pseudopotential, whilst it is still possible to derive a

UTP.

Having constructed two different pseudopotentials and demonstrated their accu-

racy in a homogeneous two-body setting, we now test their flexibility by solving an

inhomogeneous two-body system.

2.4 Two fermions in an harmonic trap

We have developed pseudopotentials that exhibit the correct scattering properties for

an isolated two-body system. To test them we turn to the experimentally realisable

[76, 77] configuration of two fermionic dipolar particles aligned by an external field

and held in a circularly symmetric two-dimensional harmonic well with trapping

frequency ω. Given that the identical fermions must be in different single-particle

states of the harmonic trap the non-interacting energy of the reduced system is

2ω. This system is a good place to test our pseudopotentials as it has a non-trivial

background potential, but at the same time is still simple enough to solve accurately

with the real dipolar potential.

We calculate the energy of two particles held in such a trap by solving the
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Schrödinger equation for the relative motion in the system,

−∇2ψ +
1

4
ω2r2ψ + V (r)ψ = Eψ , (2.6)

with V (r) set as either the exact dipolar potential or a pseudopotential. We solve the

system in the lowest-energy ` = 1 angular momentum channel available to identical

fermions, calibrating the Troullier–Martins pseudopotential at Ec = (2ω)/4 = ω/2

by analogy to the homogeneous system. For the cutoff radius rc we choose the

characteristic width of the trap, 1/
√
ω.

The energy differences between the pseudopotential and exact dipolar solutions

to Equation (2.6) are shown in Fig. 2.4 as a function of interaction strength. Ap-

proaching zero interaction strength the form of the interaction potential has di-

minishing impact, and so the difference in energies goes to zero; and in the high-

interaction strength limit the particles are kept further apart by the strong poten-

tial, so less strongly probe r < rc where the potentials differ and again the error in

the ground state energy becomes negligible. At intermediate interaction strengths

r0

√
ω ≈ 1/4 the pseudopotentials are still accurate to order 10−5ω, which exceeds

the ∼ 10−4ω accuracy attainable in exact diagonalisation of this system [78] and

many-body quantum Monte Carlo calculations [60, 61, 79]. The UTP provides an

improvement in accuracy over the Troullier–Martins pseudopotential at all interac-

tion strengths.

2.5 Fermi gas

Having demonstrated that the Troullier–Martins and UTP pseudopotentials are ac-

curate tools for studying both scattering and inhomogeneous trapped two-body sys-

tems, we are well placed to test the pseudopotentials in a many-body system: a gas

of fermionic dipolar particles. The particles are constrained to lie in two dimensions

with all their dipole moments aligned normal to the plane, which has been suggested

for experimental investigation [7]. We use diffusion Monte Carlo (DMC) calculations

to study the system, using the casino code [65].
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2.5.1 Formalism

Our DMC calculations use 81 particles per simulation cell and a Slater–Jastrow type

wavefunction Ψ = eJD. Here D is a Slater determinant of plane-wave orbitals, with

wavevectors given by the reciprocal lattice vectors of our simulation cell, and the

Jastrow factor eJ describes the interparticle correlations [80], with

J =
∑

i 6=j

(
Nu∑

k=0

ukr
k
ij

(
1− rij

L

)3

Θ (L− rij) +
∑

G

p|G| cos(G · rij)
)

, (2.7)

where the first sum runs over all particles labelled i, j with separation rij, Nu = 7,

and the G vectors are the 36 shortest reciprocal lattice vectors (first 8 sets of equal-

length reciprocal lattice vectors). The cutoff function (1 − rij/L)3 ensures that

the wavefunction’s first two derivatives go smoothly to zero at a radius L, chosen

to be the Wigner-Seitz radius of the simulation cell. Calculations with the exact

dipolar interaction have a cusp correction term in the Jastrow factor, using the

exponential form
∏

i>j exp(−2
√
r0/rij) as discussed in Section 2.2. We also test the

Bessel function cusp correction proposed in Reference [60]. The coefficients {uk}
and {p|G|} are optimised in a variational Monte Carlo calculation, and then this

optimised wavefunction is taken as the trial wavefunction for a DMC calculation to

evaluate the ground state energy.

We use 4000 particle configurations in DMC, and by running tests with 2000,

4000, and 8000 configurations checked that 4000 configurations gives results within

statistical uncertainty of the extrapolated result with an infinite number of configu-

rations. Similarly we checked that our system of 81 particles gave similar results to

systems of 45 and 145 particles, although a full extrapolation of results to the ther-

modynamic limit is not necessary to verify the accuracy of short ranged pseudopo-

tentials, and so not a focus of this work. We did however correct the non-interacting

energy of the system to the result of the infinite system, to reduce finite-size effects

in the calculation [61,81].

To evaluate the dipolar interaction we explicitly sum over pairs of particles within

a distance Rs of each other, and then include the effect of particles further apart by

integrating over them, assuming a uniform particle density. By taking Rs as ∼ 18

simulation cell lattice vectors the error due to the finite value of Rs is smaller than

10−6EF, and therefore negligible compared to our DMC statistical errors [60,82].
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Figure 2.5: (a) The variation of the
energy per particle in the Fermi
gas with pseudopotential cutoff ra-
dius, calculated using DMC. The
red points are for the Troullier–
Martins pseudopotential, the green
a UTP pseudopotential, and the
magenta point is the exact dipo-
lar potential. Stochastic error bars
are of order 10−5EF. The verti-
cal dashed line denotes the recom-
mended cutoff radius. (b) The vari-
ance in the individual local energy
samples (as seen in Fig. 2.1) taken
during a DMC calculation using
the pseudopotentials. Also shown
are results for the dipolar poten-
tial both with and without Kato-
like cusp corrections applied.
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In order to analyse the accuracy of our pseudopotentials in capturing the dipolar

gas, we start by fixing the interaction strength and investigate the dependence of the

accuracy on the cutoff radius rc. Having selected a cutoff radius we then study the

effect of the DMC timestep τ , and finally present results at a variety of interaction

strengths.

In simulations using the pseudopotentials decreasing the cutoff radius makes the

calculation more accurate by increasing the similarity to the real potential and re-

ducing the likelihood of three-body interactions within the cutoff radius. This is

shown in Fig. 2.5(a), calculated at kFr0 = 1/2 with timestep τEF = 0.0092. How-

ever, this increased similarity to the dipolar potential also has the effect of increasing

the variance in the individual local energy samples taken during the simulation, as

shown in Fig. 2.5(b), which the runtime of a DMC calculation is proportional to [37].

When using the pseudopotentials a balance therefore has to be struck between ac-

curacy and speedup: we choose to take the cutoff radius as equal to rs, the density

parameter that corresponds to the average separation of particles. This gives DMC

calculations with an accuracy of order 10−4EF, whilst as shown in Fig. 2.5(a) this
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accuracy quickly drops off for rc > rs.

In Fig. 2.5(b) we compare the variance in the individual local energy samples

from the pseudopotentials to that from the real dipolar potential, using wavefunc-

tions both with and without Kato-like cusp corrections applied. The two forms of

cusp correction, the Bessel function cusp correction proposed for this system in Ref-

erence [60] and our simpler exponential cusp correction, agree to within statistical

uncertainty. As discussed in Section 2.2 this is because both give rise to r−5/2 diver-

gences in the local energy, which are preferable to the higher variance in the local

energy from the bare dipolar potential, which diverges as r−3. The source of this

divergence is, however, more transparent for the exponential cusp correction than

the Bessel function cusp correction, and so we use the exponential form in the rest

of our calculations.

Taking rc = rs for the cutoff radius gives an 18-times reduction in the variance

of the local energy samples of the many-body system using a pseudopotential when

compared to using the real dipolar interaction with a Kato-like exponential cusp

correction. To get the same statistical error in our results we therefore need to take

18 times fewer samples, leading to an 18-times statistical speedup in calculations.

There is however an additional speedup benefit from using the pseudopotential.

The random walk in the DMC calculations is performed at a finite timestep τ [65,

83]. The use of a short-time approximation in the DMC algorithm gives rise to a

linear dependence of the final estimate of the energy on τ [65]. If we were to use

a short timestep to remove this systematic error the DMC walkers would not be

able to move far in configuration space in each step, giving rise to serial correlations

in the calculated values of the energy, and an explicit τ−1/2 dependence of the

statistical standard error in the energy [84]. These two competing effects are shown

in Fig. 2.6(a) and Fig. 2.6(b) respectively for our Fermi gas at kFr0 = 1/2. The

dependence on the energy on τ is both flatter when using the UTP compared to

the dipolar potential, and also retains its linear form out to larger timesteps: this

is advantageous as it allows the use of longer timesteps in DMC, which is more

efficient. Fig. 2.6(b) confirms the τ−1/2 dependence of the standard error in the

energy, and that the smoothness of the UTP delivers a smaller standard error.

We express the linear short-time approximation as giving an offset in the cal-

culated energy of aτ , where a is a fitting parameter, and the serial correlations as

giving a variance in the energy of s2
E = σ2N−1τ−1, with σ being a fitting parameter.
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Figure 2.6: (a) The variation of the
energy per particle in the Fermi
gas with timestep τ . The magenta
points are using the exact dipolar
potential, and the green points us-
ing a UTP pseudopotential. The er-
ror bars show DMC stochastic er-
rors, and are of order 10−5EF. Fit-
ted values of the linear error pa-
rameters a (see main text) are also
given. (b) The standard error sE in
the energy per particle in the Fermi
gas, for both the dipolar potential
and UTP pseudopotential. Values
of the fitting parameters σ for a
1/
√
τ fit are also given for each.
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The statistical error can be reduced by taking more samples N [37]. We can then

express the expected value of the square error in the energy as being distributed to

leading order as a Gaussian [62,85]

〈
∆E2

〉
=

∫
∆E2e−

(∆E−aτ)2

2σ2N−1τ−1 d(∆E)

= a2τ 2 + σ2N−1τ−1. (2.8)

The expected square error in the energy is minimised at the optimal timestep

τoptimum =

(
1

2

σ2

a2

1

N

)1/3

,

and substituting this into Eq. (2.8), the ratio of the number of steps required to give

the same expected square error in the energy when using the dipolar potential and
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Figure 2.7: The equation of state
of the 2D isotropic, homogeneous
dipolar gas. The blue curves show
the first- and second-order per-
turbation theory (E(1) and E(2))
equations of state [75], and our
DMC data are shown in: magenta,
for the dipolar potential; red for
the Troullier–Martins pseudopoten-
tial calibrated at EF/4; and green
for a UTP. The latter three curves
overlie each other to within the
width of the plotted lines. Stochas-
tic error bars are of order 10−5EF.
The black circles show data from
DMC calculations using the dipolar
potential by Matveeva and Giorgini
(MG) in Reference [60].

the UTP is

adipoleσ
2
dipole

aUTPσ2
UTP

. (2.9)

For the values of the fitting parameters a and σ in Fig. 2.6 this gives a ratio of

required number of steps and hence speedup when using the pseudopotential of ∼
2230. This value for the speedup includes the variance difference of 18 that was found

with the recommended value of rc, the remainder coming from the improvement of

the finite timestep behaviour when using the pseudopotential.

Use of a second order propagator in the DMC algorithm might improve the

efficiency of the calculations by allowing the use of a longer timestep than was

possible here [86–88]. In a second order DMC algorithm the square error in the

energy would take the form 〈∆E2〉 = b4τ 4 + σ2N−1τ−1. The parameter b, which

is zero if the exact wavefunction is used in DMC, should grow with the standard

deviation in the local energy. This same effect is seen in Fig. 2.6(a) and in the

results of Reference [62]. We therefore expect bUTP < bdipole, and saw above that

σUTP < σdipole. With this form of the square error in the energy, the speedup when

using the pseudopotential relative to the real dipolar potential would take the form
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Figure 2.8: The deviation of the
equation of state as calculated us-
ing the pseudopotentials from that
calculated using the exact dipo-
lar potential. The dipolar po-
tential is shown in magenta, with
the Troullier–Martins pseudopoten-
tial in red, the UTP in green, and
first- and second-order perturbation
theory (E(1) and E(2)) in blue. The
grey box around the results using
the dipolar potential shows the tar-
get 3× 10−4EF accuracy level.
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2
UTP). We obtain the same statistical speedup as in the linear

case from the factor σ2
dipole/σ

2
UTP, and the ratio bdipole/bUTP should be greater than

1, as was found for the ratio adipole/aUTP in the linear case, to further increase the

speedup.

Recognising that our pseudopotential gives accurate results with around 2000-

times smaller computational outlay than using the real dipolar interaction, we now

investigate the third parameter that could affect the accuracy, interaction strength.

2.5.2 Equation of state

We compare the equations of state of the 2D dipolar Fermi gas as calculated using

the exact dipolar potential and the Troullier–Martins and UTP pseudopotentials in

Fig. 2.7. The pseudopotential cutoff is taken as rc = rs and we extrapolate to zero

timestep following the procedure outlined in Reference [83]. We find the equations

of state to be the same to order 10−4EF. Shown as black circles in Fig. 2.7 is the

equation of state of the system as calculated using DMC by Matveeva and Giorgini

(MG) in Reference [60]. We explicitly repeat the simulation of Reference [60], using

the same system of 81 particles, but our calculated energies using the dipolar po-

tential are of order 10−2EF lower than reported there, and as DMC is a variational

technique this indicates that our trial wavefunction is likely more accurate than was

available to the authors of Reference [60], possibly due to our inclusion of a Jastrow

factor with variational parameters. On the scale of Fig. 2.7 it is not possible to
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Figure 2.9: The dipolar potential
V (r,φ) in magenta, and the UTP
VUTP(r,φ) for the same tilt angle,
in green. The potentials are cut
through for 3π/2 < φ < 2π to
contrast the radial variation of the
dipolar potential along φ = 3π/2
and φ = 2π, and show the smooth
join of the UTP onto the dipolar po-
tential at r = rc.

distinguish our pseudopotential calculations from those using the real dipolar inter-

action, and so in order to properly analyse them we examine the error from the true

dipolar potential in Fig. 2.8.

Following the accuracy used in Reference [60] to draw conclusions about which

phases are energetically favourable in the dipolar gas, we choose a target accuracy

of 3×10−4EF for our pseudopotentials, shown as a grey box in Fig. 2.8. Over a wide

range of interaction strengths our pseudopotentials fall within this accuracy, with

the UTP being slightly more accurate than the Troullier–Martins pseudopotential

at most interaction strengths. We also compare our DMC results to second-order

perturbation theory [75,89]

E(2) =
EF

2

[
1 +

128

45π
kFr0 +

1

4
(kFr0)2 ln(1.43kFr0)

]
,

noting that it differs significantly from the DMC results above interaction strengths

of kFr0 >∼ 0.01. In Fig. 2.7 we also note that above kFr0 >∼ 1 first-order perturbation

theory is more accurate than E(2), indicating that perturbation theory is not an

adequate approximation except at very low interaction strengths kFr0 � 0.01.

We have constructed and tested pseudopotentials using the Troullier–Martins

and UTP methods. In each test, shown in Figures 2.3(b), 2.4, and 2.8, the UTP

method has given more accurate results. We therefore recommend the use of the

UTP method to construct pseudopotentials for the dipolar interaction, and recom-

mend its use over the dipolar potential with a cusp correction due to the 2000-times

speedup in calculations that can be achieved whilst still achieving sufficient accu-
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racy. We now go on to show that the UTP can be generalised to capture the effects

of an anisotropic interaction in a system of tilted dipoles.

2.6 Tilted dipoles

The above analysis has focused on dipoles aligned normal to their 2D plane of

motion by an external electric or magnetic field. However, this same electric

or magnetic field could be used to align the dipoles at an angle θ to the nor-

mal to the plane [7]. The dipolar interaction then takes the anisotropic form

V (r,φ) = d2[1− 3
2

sin2 θ(1 + cos 2φ)]/r3 where φ is the polar angle in the plane, be-

tween the dipole-dipole separation and the projection of the electric field. We focus

on the θ ≤ θc = arcsin(1/
√

3) regime, where the potential is purely repulsive and

there are no bound states. The potential V (r,φ) is shown in magenta in Fig. 2.9

for θ = θc and kFr0 = 1/2. As well as the r−3 divergence, the potential is strongly

anisotropic, separating into two lobes. These properties make it difficult to work

with numerically, and so we again develop a pseudopotential to ease the numerical

simulation of this system.

The Troullier–Martins formalism used in the non-tilted system is not applicable

to the case of θ > 0, and so here we propose the UTP
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VUTP(r,φ) =
d2

r3
c





[
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]
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(

1− r
rc

)(
r
rc

)2 [
1− 3

2
sin2 θ(1 + cos 2φ)

]

+
(
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(
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(
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(
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+
(
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,
r < rc ,

[
1− 3

2
sin2 θ(1 + cos 2φ)

]
r3

c/r
3 , r ≥ rc ,

(2.10)

which is constrained to be smooth to first derivative in both radial and azimuthal

directions at the origin and at rc, where it joins onto the exact dipolar potential.

Nv is again set as 3, and the coefficients {vi} are minimised similarly to the non-

tilted case. At θ = 0 Eq. (2.10) reduces to the non-tilted form. A sample UTP

is shown along with the tilted dipolar potential in Fig. 2.9, demonstrating its non-

divergent properties at particle coalescence and that it smoothly merges into the

dipolar potential at r = rc. Furthermore, the angular variation of the UTP is less

extreme than the real dipolar potential, which should lead to smoother estimates of

the local energy at high tilt angles.

To optimise the pseudopotential we again calibrate in the two-body system.

The cos 2φ term in the potential couples together angular momentum channels of

the wavefunction that differ by two angular momentum quanta, meaning that we

can no longer solve the Schrödinger Equation separately in each angular momentum

channel. Now that weight will be passed between the channels, they need to be

considered explicitly and simultaneously.
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Figure 2.10: The equation of state
of the tilted dipolar gas system as
a function of tilt angle θ. Our
DMC data using the dipolar poten-
tial and UTP overlie one another
to within the width of the plotted
lines, with stochastic error bars of
order 10−5EF. First-order pertur-
bation theory E(1) is shown in blue. 0.55
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We solve the Schrödinger Equation simultaneously in the lowest four occupied

angular momentum channels, ` = {1, 3, 5, 7}, numerically for both the dipolar po-

tential and, separately, using the pseudopotential, in order to find values for the

coefficients {vi}. As part of this process we optimise the weight in each channel.

Unlike in the θ = 0 case it is not possible to find an analytic scattering wavefunction

in the two-body homogeneous system that correctly captures the physics of the sys-

tem in any limit. Instead we optimise the parameters {vi} by matching the energy

of two particles in an harmonic trap, in effect minimising the error that was shown

in Fig. 2.4.

We need to select an optimal trap frequency ω at which to calibrate the pseu-

dopotential. To do this, we re-write the reduced system Hamiltonian for particles

in an harmonic trap as Ĥ = Ĥiso(r̂) + Ĥaniso(r̂, φ̂), with

Ĥiso(r̂) = −∇2 +
1

4
ω2r̂2 +

d̄2

r̂3
,

Ĥaniso(r̂, φ̂) = − d̄
2

r̂3

3
2

sin2 θ

1− 3
2

sin2 θ
cos 2φ̂,

and d̄2 = d2(1 − 3
2

sin2 θ). Ĥiso captures the effect of the harmonic trap and the

isotropic part of the dipolar interaction, whilst Ĥaniso captures the anisotropic part

of the dipolar interaction. We seek a trap frequency ω at which the average kinetic

energy of the harmonic trap system is the same as that of the homogeneous system,

allowing us to select the appropriate Fermi momentum kF to describe the interac-

tion strength kFr0. For the isotropic part of the Hamiltonian we can apply a cusp

correction to the non-interacting harmonic trap wavefunction, in the same spirit as
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Figure 2.11: The deviation of the
equation of state as calculated using
the tilted pseudopotential from that
calculated using the exact dipolar
potential. Results using the dipo-
lar potential are shown in magenta,
with those using UTP pseudopoten-
tial in green. Similarly to Fig. 2.8,
the grey box around the results us-
ing the dipolar potential shows the
targeted 3× 10−4EF accuracy level.

Section 2.2. This gives a trial wavefunction

ψ(r,φ) ∝ ω r e
− 1

4
ωr2−2 d√

r .

We set the average kinetic energy of the isotropic harmonic trap system as equal to

the kinetic energy of the homogeneous system and solve for ω, which for interaction

strength kFr0 = 1/2 is ωiso ≈ 2.2EF.

Having analysed the isotropic part of the Hamiltonian we now turn to the

anisotropic Ĥaniso. As there is no analytical solution to the tilted two-body scat-

tering problem available we instead perform a perturbative analysis in small θ. We

search for the most important contribution that Ĥaniso makes to the system’s energy,

which occurs where |ψ(r,φ)Ĥanisoψ(r,φ)| is maximal. This is at r ≈ r0 and φ = 0,

and using these values in the functional form of Ĥaniso we get a perturbative energy
3
2
r−2

0 sin2 θ
(
1− 9

4
sin4 θ

)
for small θ. Adding this to the isotropic trap frequency we

obtain the harmonic trap frequency ω ≈ 2.2EF + 3
2
r−2

0 sin2 θ
(
1− 9

4
sin4 θ

)
, which we

use to optimise the pseudopotentials. An example UTP is shown in Fig. 2.9, demon-

strating its smooth and non-divergent properties. The form of the pseudopotential

is robust against changes in the trap frequency ω used to construct it. With the

pseudopotential in place we perform DMC calculations to evaluate the ground state

energy of the anisotropic, homogeneous dipolar gas. In Fig. 2.10 we show the equa-

tion of state of the tilted dipole gas at interaction strength kFr0 = 1/2 over a range

of tilt angles 0 ≤ θ ≤ θc away from vertical. We use a similar trial wavefunction to



Tilted dipoles 43

the non-tilted case, with the addition to the Jastrow factor of an anisotropic term

∏

i 6=j
exp

[(
Ns∑

k=0

skr
k
ij cos (2φij)

)(
1− rij

L

)3

Θ(L− rij)
]

,

where the variables have the same meaning as in Eq. (2.7), φij is the polar angle

between the particles labelled i, j, and Ns = 6. This term captures the leading-order

anisotropies in the inter-particle correlations. The addition of higher-order angular

terms did not provide any significant benefit. In calculations using the real tilted

dipolar potential we also modify the cusp condition to the form
∏

i>j exp(−2d̄/
√
rij).

In Fig. 2.10 we compare our DMC estimates of the equation of state to first-order

perturbation theory [48]

E(1)(θ) =
EF

2

[
1 +

128

45π
kFr0

(
1− 3

2
sin2 θ

)]
.

Similarly to the non-tilted case we find that perturbation theory overestimates the

energy, and also that it overestimates the reduction in energy with increasing tilt

angle. Again the results using the exact dipolar interaction and those using our

UTP are so similar they cannot be distinguished on this scale, and so we analyse the

pseudopotential accuracy by examining the energy error from the dipolar potential

in Fig. 2.11. As in the non-tilted system the pseudopotential achieves our target

accuracy of 3×10−4EF across a wide range of parameter space. The pseudopotential

is particularly accurate below θ <∼ θc/4 where there is less coupling between angular

momentum channels, at θ → 0 reproducing the same accuracy that was found in

the non-tilted system.

To determine the full benefit of using the pseudopotential in a tilted system we

examine the behaviour of the calculated energy with DMC timestep in Fig. 2.12,

evaluated at kFr0 = 1/2 and θ = θc/2. Similarly to the non-tilted case, Fig. 2.12(a)

shows that the energy calculated using the pseudopotential has significantly im-

proved behaviour with timestep when compared to the dipolar potential, having

less severe variation of the energy with timestep and also remaining in the linear

regime out to larger τ . There is also a reduction in standard error of ∼ 2.2 times

when using the pseudopotential, as seen in Fig. 2.12(b). Combining the fitting pa-

rameters in Fig. 2.12 in the way set out in Section 2.5.1 shows the pseudopotential
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Figure 2.12: (a) The variation of
the energy per particle in the Fermi
gas of tilted dipoles with timestep
τ , with the values of the linear er-
ror parameters a. (b) The standard
error sE in the energy per particle
in the Fermi gas, again with fitted
1/τ parameters given.

to be ∼ 450 times quicker to use than the real tilted dipolar interaction.

We have constructed pseudopotentials for the dipolar interaction at tilt angles

0 ≤ θ ≤ θc, and shown that they give the ground state energy of the anisotropic,

homogeneous dipolar gas to within 3×10−4EF, and also provide a 450-times speedup

over using the real tilted dipolar interaction. This means that they will be an

accurate and efficacious tool to carry out DMC investigations of the whole 0 ≤ θ ≤ θc

phase diagram.

2.7 Discussion

We have developed accurate pseudopotentials for the dipolar interaction in two

dimensions and tested them against the dipolar interaction by comparing scattering

phase shifts, energies in an harmonic trap, and the ground state of a Fermi gas. The

pseudopotentials deliver ground state energies of the Fermi gas to an accuracy of

3 × 10−4EF, and their smoothness accelerates DMC calculations by a factor of up

to ∼ 2000.
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The pseudopotentials have been constructed to work in situations where the

dipole moments are aligned both normal and at an angle to the two-dimensional

plane of motion of the particles. This could allow the formalism developed here to

be used in an analysis of the full phase diagram of the 2D dipolar gas, including

investigating the high interaction strength regime where the Fermi fluid forms a

Wigner-type crystal [60], possibly after passing through a stripe phase [48], or to

turn to the tilted section of the phase diagram, with the possibility of superfluid

behaviour at high tilt angles [90]. Superfluidity is also expected in a system of

dipoles dressed by an external microwave field [91,92], a system that would also be

amenable to analysis using a pseudopotential. The method used here for construct-

ing pseudopotentials for the tilted system could also be extended to a 3D system of

dipolar particles, or to study a classical analogue of the system.

Data used for this Chapter are available online [93].

We thank Pascal Bugnion, Neil Drummond, Pablo López Ŕıos, and Richard

Needs for useful discussions.





Chapter 3

Pseudopotential for the

two-dimensional contact

interaction

We propose a smooth pseudopotential for the contact interaction acting between

ultracold atoms confined to two dimensions. The pseudopotential reproduces the

scattering properties of the repulsive contact interaction up to 200 times more ac-

curately than a hard disk potential, and in the attractive branch gives a 10-fold

improvement in accuracy over the square well potential. Furthermore, the potential

enables diffusion Monte Carlo simulations of the ultracold gas to be run 15 times

quicker than was previously possible.

47
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3.1 Introduction

Many collective quantum phenomena emerge from reduced dimensionality, including

the quantum Hall effect [94], high-temperature superconductivity [95], quantum

magnetism [96], and topological insulators [97]. Consequently, two-dimensional (2D)

systems have recently attracted a great deal of attention [82, 98–103]. 2D systems

may now be realised, for example, at the interface between two solids [104], or in

an ultracold atomic gas in an anisotropic optical trap, with one dimension tightly

confined relative to the other two [105–107]. This coincidence of novel many-body

phenomena with accurate experimental realisations makes 2D systems attractive for

numerical investigation.

Ultracold atoms provide a clean model Hamiltonian with a tunable interac-

tion strength, and their study has delivered new insights into many-body quan-

tum physics [108–111]. The resonant Feshbach interaction between ultracold atoms

(as discussed in Section 1.2.3) is usually modelled by a contact potential [20–28].

Despite its widespread usage, the contact interaction causes sampling problems in

numerical simulations due to its infinitesimally short range and divergence at co-

alescence. It also harbours a bound state, complicating the use of ground state

methods for examining repulsive scattering between particles. These difficulties are

conventionally circumvented by replacing the contact potential by, for example, a

hard disk potential, which we show leads to inaccurate scattering properties. This

problem has recently been resolved in three dimensions by Bugnion et al. with

the development of a smooth pseudopotential [61] that results in a hundred-fold

increase in the accuracy of the scattering properties. The smoothness of the new

pseudopotential formalism also radically speeds up numerical calculations [62], as

seen in Chapter 2. Here we follow that prescription to develop a pseudopotential

that improves the modelling of 2D quantum gases with a contact interaction.

In Section 3.2 we discuss two particles interacting via the 2D contact poten-

tial. In Section 3.3 we derive the pseudopotential, and in Section 3.4 demonstrate

its accuracy in an inhomogeneous two-body system. In Section 3.5 we examine

the pseudopotential’s advantages over other methods in a homogeneous many-body

system, before discussing potential future applications of the pseudopotential in

Section 3.6.
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3.2 Analytical results

In order to develop a pseudopotential for use in many-body simulations, it is essential

to first understand the behaviour of the two-particle system. Here we analyse an

isolated two-body system of distinguishable fermions, starting with non-interacting

particles and then adding a short-ranged interaction potential, which not only allows

us to find solutions for the contact interaction, but also serves as a platform from

which to propose a pseudopotential. Atomic units (h̄ = m = 1) are used throughout,

and anticipating that we will study many-body systems, we measure energies in units

of the Fermi energy EF and lengths in units of the Fermi length k−1
F .

3.2.1 Short-ranged two-particle interactions

We consider two equal-mass, distinguishable fermions in a vacuum. In their centre-

of-mass frame, the Schrödinger Equation for particles interacting via a potential

V (r) is given by

−∇2ψ(r, θ) + V (r)ψ(r, θ) = Eψ(r, θ), (3.1)

where E is the energy in the centre-of-mass frame.

The analytic solution to Eq. (3.1) for non-interacting particles (V (r) = 0) in a

vacuum takes the form

ψ`(r, θ) = R`(r)Θ`(θ)

with

Θ`(θ) =
1√
2π

ei`θ,

R`(r) = A(k)J`(kr) + B(k)Y`(kr),

where k =
√
E is the wavevector in the centre-of-mass frame, ` is angular momentum

projected onto the normal to the 2D plane, and A(k) and B(k) are constants set

by the boundary conditions. J`(kr) and Y`(kr) are Bessel functions of the first and

second kinds, respectively.

If we take the potential V (r) to be short ranged and cylindrically symmetric, for
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distinguishable fermions the only effect of the potential is in the ` = 0 channel. The

wavefunction beyond the interaction range, where V (r) = 0, then takes the same

form as in the non-interacting case,

ψ0(r) ∝ A(k)J0(kr) + B(k)Y0(kr). (3.2)

There are two branches of solutions, scattering states for E > 0 and bound states

for E < 0.

Scattering states (E > 0)

For two-particle scattering with positive E, the non-interacting wavefunction given

by Eq. (3.2) with k =
√
E can be written at large separations in the oscillatory form

ψs(r) ∝
sin
(
kr + π

4
+ δ(k)

)
√
kr

, (3.3)

where the scattering phase shift δ(k), given by

cot δ = −A(k)/B(k), (3.4)

describes the large radius behaviour of the wavefunction and captures the full impact

of the scattering interaction.

Bound states (E < 0)

Two particles with E < 0 are in a bound state in which they remain in close

proximity if no external force is applied. The bound state wavefunction has the

form

ψb(r) ∝ A(κ)J0(iκr) + B(κ)Y0(iκr),

where κ =
√
−E. For the wavefunction to be normalisable A and B must satisfy

B(κ)/A(κ) = i, and therefore the wavefunction

ψb(r) ∝ J0(iκr) + iY0(iκr)

∝ H
(1)
0 (iκr), (3.5)
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where H
(1)
0 (x) = J0(x) + iY0(x) is the Hankel function of the first kind. Note that

H
(1)
0 (iκr)→ e−κr/

√
κr as κr →∞, with the expected exponential decay of a bound

state.

3.2.2 2D contact interaction

We now apply these results for short-ranged 2D interactions to the 2D contact

interaction V cont(r). In a fermionic system this zero-ranged interaction acts only

between distinguishable particles, with the interaction strength described by a scat-

tering length a. We can capture the full effect of the interaction by imposing the

boundary condition [113,114]

(
r

d

dr
− 1

ln(r/a)

)
ψ(r) = 0 (3.6)

at r = 0 and then at r > 0 use the non-interacting solution Eq. (3.2), which gives

ψcont
0 (r) ∝ J0(kr)− π

2[γ + ln(ka/2)]
Y0(kr), (3.7)

where γ ≈ 0.577 is Euler’s constant.

For E > 0 the scattering phase shift is evaluated using Eq. (3.4) as

cot δcont(k) =
2

π
[γ + ln(ka/2)] . (3.8)

The pseudopotential must be able to reproduce this phase shift as a function of

scattering wavevector.

For E < 0 the bound state wavefunction is given by Eq. (3.5). The corresponding

bound state energy can be found from the condition B/A = i and Eq. (3.7) as

Eb = − 4

a2
e−2γ.

Examples of a scattering and bound state wavefunction are shown in Fig. 3.1. At

large radii the scattering state wavefunction takes the form of a wave, with the

first node occurring at r = a in the k → 0 limit, whilst the bound state wave-

function decays exponentially. Both wavefunctions diverge at particle coalescence,

which makes them difficult to sample in numerical methods. This motivates us to
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Figure 3.1: The bound (blue) and
scattering (red) state wavefunctions
of the contact interaction with
kFa = 1/2. The wavefunctions are
offset by their energies, Es = EF

for the scattering state and Eb =
− 4
a2 exp(−2γ) for the bound state.

The radius rc gives the position of
the first antinode in the scattering
state, which is used as the cutoff ra-
dius for the pseudopotentials.

develop a smooth pseudopotential for the contact interaction, which will give rise to

a wavefunction that is easier to sample numerically.

3.3 Derivation of the pseudopotentials

To develop smooth pseudopotentials for the contact interaction we continue to inves-

tigate the two-particle system in a vacuum, where the particles are distinguishable

fermions and an analytical solution exists. We first focus on scattering states where,

after reviewing the hard and soft disk potentials that are commonly used in ultracold

atomic gas calculations, we construct a pseudopotential using the method proposed

by Troullier and Martins (TM) [115]. This method was originally developed for

making pseudopotentials for electron-ion interactions, but has been successfully ap-

plied to other systems of interacting particles [61, 112]. Next we construct another,

“ultratransferable”, pseudopotential (UTP) following the method in Ref. [61], as

also used in Chapter 2. We then compare the accuracy of the TM and UTP pseu-

dopotentials with that of the hard and soft disk potentials. Finally, we develop

pseudopotentials for bound states. We have made the software used to generate all

the pseudopotentials in this work available online [116].
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3.3.1 Pseudopotentials for scattering states

Hard disk potential

Here we briefly review the hard disk potential that is currently used in many nu-

merical studies of the contact interaction [20, 27, 82]. The interaction potential has

the form

V HD(r) =




∞, r ≤ R,

0, r > R,

where R is the radius of the potential. Solving the Schrödinger Eq. (3.1) with a

boundary condition ψHD
0 (R) = 0, the wavefunction is given by

ψHD
0 (r) ∝





0, r ≤ R,

−Y0(kR)J0(kr) + J0(kR)Y0(kr), r > R,

and the scattering phase shift defined by Eq. (3.4) is

cot δHD(k) =
Y0(kR)

J0(kR)

=
2

π
[γ + ln(kR/2)]+

(kR)2

2π
+O

(
(kR)4

)
. (3.9)

By setting the hard disk radius R equal to the scattering length a, the low energy

scattering phase shift from the hard disk has the same form as the phase shift from

the contact potential in Eq. (3.8). A hard disk potential with R = a then gives the

phase shift for the contact interaction with an error of order O((ka)2), delivering

the correct scattering properties only in the k → 0 limit. An example of a hard disk

potential is shown in Fig. 3.2.
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Soft disk potential

To reduce the error in the scattering phase shift at finite k from that found with the

hard disk, we may instead use a soft disk potential [117]

V SD(r) =




U , r ≤ R,

0, r > R,

where U is the height of the soft disk potential. The extra degree of freedom in this

potential relative to the hard disk allows it to remove the error in the scattering phase

shift in Eq. (3.9) of (kR)2/2π, and so describe the scattering correct to O((ka)4).

We solve the Schrödinger Equation using this potential separately in the regions

r < R and r > R, enforcing continuity of the wavefunction and its derivative at

r = R, and expanding the scattering phase shift Eq. (3.4) to second order around

k = 0. Setting the first term equal to the contact potential scattering phase shift of

Eq. (3.8) relates R and the scattering length a via

R = aSD = a exp

(
I0 (χ)

χI1 (χ)

)
,

where I`(χ) is the modified Bessel function of the first kind, and the factor χ2 =

UR2 ≈ 3.57 is obtained by setting the second order term in the phase shift expansion

to zero. This uniquely specifies a soft disk potential for a given a, whose scattering

properties are correct up to order O((ka)4). An example of a soft disk potential is

shown in Fig. 3.2. It has a larger radius R than the hard disk potential but a lower

height U , with the width tending to zero and the height to infinity as the scattering

length goes to zero.

Troullier–Martins pseudopotential

The previous subsections showed that the hard and soft disk potentials give accurate

scattering properties only in the limit of k → 0. However a Fermi gas contains all

the scattering wavevectors in the range 0 < k ≤ kF, and so the hard and soft disk

potentials will give rise to inaccurate results. To demonstrate how the accuracy

may be improved at finite k, we develop pseudopotentials using the TM formalism

[61,115]. This formalism produces scattering state pseudopotentials that
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Figure 3.2: Scattering state pseu-
dopotentials V (r) for the contact
potential with kFa = 1/2. The
pseudopotential for the hard disc
with radius a is shown in cyan, the
soft disk with radius aSD in blue,
the TM pseudopotentials in red and
green, and the UTP in magenta.
The pseudopotential cutoff radius rc

is the same as in Fig. 3.1.

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3

Troullier–Martins (1)

Troullier–Martins (2)

Hard
Disk

Soft
Disk

UTP

kFrc

V
/E

F

kFr

1. should reproduce the phase shift of the contact potential accurately for all

scattering wavevectors in the Fermi sea;

2. are smooth everywhere, which accelerates numerical calculations; and

3. for repulsive interactions do not support a bound state.

This formalism requires two prescribed parameters, namely the calibration

wavevector kc at which the resulting pseudo-wavefunction has identical scattering

properties to the contact potential, and a cutoff radius rc at which the pseudopo-

tential smoothly becomes zero.

The calibration wavevector must be chosen for each system. For example, in a

superfluid we might choose kc = kF, as that is where the most important physics

of Cooper pair formation occurs. For a fermionic gas we choose kc = kF/2, which

minimises the average phase shift error (see also Chapter 2.

By choosing the cutoff radius to be larger than the radius of the first node

in the analytic wavefunction, which is at r ≈ a in Fig. 3.1, we ensure that the

pseudo-wavefunction does not contain the innermost node that corresponds to the

bound state of the contact interaction [61]. In order to avoid unnecessarily removing

scattering states from the potential the cutoff radius must also be smaller than the

radius of the second node, and so we choose the cutoff radius to be at the first

antinode of the wavefunction with k = kc, shown in Fig. 3.1.

The TM pseudopotential takes the form

V TM(r) =




k2

c + p′′ + p′2 + p′

r
, r ≤ rc,

0, r > rc,
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Figure 3.3: The error in the scatter-
ing phase shift |δpseudo(k)− δcont(k)|
as a function of scattering wavevec-
tor for the different pseudopoten-
tials at kFa = 1/2. The error from
the hard disk is shown in cyan, the
error from the soft disk in blue, the
errors from the two TM pseudopo-
tentials in red and green, and the
error from the UTP in magenta.

where the polynomial p(r) =
∑6

i=0 cir
2i, and primes indicate derivatives with respect

to r. The coefficients {ci} are determined by a set of constraints on the pseudopo-

tential and pseudo-wavefunction, whose form is ψ(r) = exp[p(r)] : that the pseudo-

wavefunction is smooth up to the fourth derivative at rc; that the pseudopotential

has zero curvature at the origin; and that the norm of the pseudo-wavefunction

within rc equals that of the wavefunction from the real contact potential [61, 115],

as in Chapter 2. This gives rise to a set of coupled equations for the {ci} of which

one is quadratic and the others linear: there are therefore two separate branches of

solutions, which give rise to two separate TM pseudopotentials.

In Fig. 3.2 we compare all of the discussed pseudopotentials for the contact

interaction, with kFa = 1/2. The TM pseudopotentials, being everywhere smooth

and finite, are easier to work with numerically than the hard and soft disks, and

they do not introduce discontinuities in the first derivative of the wavefunction. The

potential labelled Troullier–Martins (1) in Fig. 3.2 is smaller than Troullier–Martins

(2) at particle coalescence, but larger at further separations to give similar average

scattering.

Errors in scattering phase shift

The quality of a pseudopotential for scattering states may be determined by how

accurately it reproduces the phase shift of the contact potential. All information on

the difference between the pseudopotential and contact potential can be obtained

from the wavefunction just beyond the edge of the pseudopotential. We match

the analytical pseudo-wavefunction that solves Eq. (3.1), ψ, and its first derivative

to the non-interacting solution Eq. (3.2) at a radius Re beyond the radius of the
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pseudopotential. This leads to an expression for the scattering phase shift

cot δ(k) =

ψ′(Re)
ψ(Re)

Y0(kRe) + kY1(kRe)

ψ′(Re)
ψ(Re)

J0(kRe) + kJ1(kRe)
.

We calculate the difference in the phase shift between the contact interaction

and pseudopotentials, showing the error in the calculated phase shifts from using

the pseudopotentials |δpseudo(k)− δcont(k)| in Fig. 3.3, with Re = rc. The hard and

soft disk potentials are exact in the limit of k → 0, but deviate away from that

point, with the soft disk performing better than the hard disk. The TM (1) pseu-

dopotential is on average around twice as accurate as the hard disk potential, with

the TM (2) pseudopotential being around twice as accurate again, and the soft

disk being another 1.3 times more accurate. Both TM pseudopotentials capture

the scattering behaviour perfectly at kc = kF/2 but deviate at all other scatter-

ing wavevectors, which is a consequence of the norm-conserving condition on the

pseudo-wavefunctions. To further improve the accuracy of the pseudopotentials,

a natural extension to the formalism is to construct a pseudopotential that min-

imises this deviation in the phase shift over all wavevectors k ≤ kF. We propose

such a pseudopotential here, referring to it as an “ultratransferable pseudopotential”

(UTP) [61].

Ultratransferable pseudopotential

Similarly to the TM pseudopotential, the UTP takes a polynomial form within a

cutoff radius rc,

V UTP(r)=





(
1− r

rc

)2
[
u1

(
1 + 2r

rc

)
+

Nu∑

i=2

ui

(
r

rc

)i]
, r ≤ rc,

0, r > rc,

with Nu = 3. The term (1− r/rc)
2 ensures that the pseudopotential goes smoothly

to zero at r = rc, and the component u1(1 + 2r/rc) constrains the pseudopotential

to have zero derivative at the origin. This ensures that the pseudo-wavefunction is

smooth, easing the application of numerical methods.

To determine the coefficients {ui} we numerically solve the scattering problem,
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extract the scattering phase shift δUTP(k), and then minimise the total squared error

in the phase shift over all scattering wavevectors k,

〈
∣∣δUTP(k)− δcont(k)

∣∣2〉 =

∫ kF

0

∣∣δUTP(k)− δcont(k)
∣∣2 g(k/kF)dk,

where the weighting is given by the density of states in the centre of mass frame

g(k) = k(4− 8
π
[k
√

1− k2 + arcsin(k)]), as in Chapter 2. An example UTP is shown

in Fig. 3.2, confirming that this construction gives smooth potentials. The scattering

phase shift error from the UTP is shown in Fig. 3.3, demonstrating that the UTP

construction creates pseudopotentials that are significantly more accurate than the

Troullier–Martins pseudopotentials and soft disk potential, and some 200 times more

accurate than the hard disk. This is achieved by the phase shift error from the UTP

being optimised to be zero at three different wavevectors, as opposed to the single

wavevector for the TM pseudopotentials.

3.3.2 Pseudopotentials for bound states

Pseudopotentials may also be constructed for particles in a bound state, with E <

0. In order to accurately imitate the contact potential, the pseudopotentials must

reproduce the bound state energy of the contact potential Eb = −(4/a2) exp(−2γ),

and also must accommodate only one bound state. We first discuss the square well

pseudopotential, which has been used in previous ultracold atomic gas calculations,

and then again develop smooth pseudopotentials using the TM formalism. For

bound states there is no quantity like the scattering phase shift that can be used to

directly determine the quality of the pseudopotentials. We therefore demonstrate

their accuracy in a two-body inhomogeneous system in Section 3.4.

Square well potential

The square well potential has the form

V SW(r) =




−U , r ≤ R,

0, r > R.
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This potential may be made arbitrarily close to the bound state contact interaction

by taking the well radius R → 0 and depth U → ∞. Decreasing R, however,

reduces the sampling efficiency and thereby increases the computational cost. We

require R to be less than the average interparticle separation ∼ 1/kF, in order to

avoid the unphysical situation of three or more particles interacting simultaneously.

In Section 3.4 we investigate the R dependence of the accuracy of the square well

pseudopotential.

Because there is no analogue of the scattering phase shift for the bound system

it is not possible to uniquely define a U and R for a given a, as we did for the

soft disk potential in which U and R were related by the second order term in the

expansion. However one parameter may be determined by ensuring that the bound

state energy of the potential is Eb, and for a given R the value of U this sets can be

found as a solution to

−J0(k1R)

k1J1(k1R)
=

J0(ik2R)− iY0(−ik2R)

k2 (−iJ1(ik2R) + Y1(−ik2R))
,

where k1 =
√
U − |Eb| and k2 =

√
|Eb|. An example of a square well potential

is shown in Fig. 3.4. Except in the limit of being infinitely deep and narrow, the

square well potential does not give rise to the same wavefunction as the true contact

interaction, but within the potential the wavefunction and therefore probability

density is too small. This means that in the presence of an external potential (for

example an harmonic trap, as in Section 3.4) there is too much weight at large

particle separations, giving rise to inaccurate values of the system’s energy. As

R→ 0 the wavefunction approaches the exact form given by Eq. (3.5).

Troullier–Martins pseudopotential

The Troullier–Martins pseudopotential resolves the problem of having too much

weight at large particle separations by being a norm-conserving pseudopotential,

and so has the correct amount of weight within and outside of its cutoff radius. The

construction of the TM pseudopotential for the bound state is identical to that of

the scattering state, except that the calibration energy is now given by the bound

state energy Ec = Eb. The cutoff radius rc should be kept smaller than the average

interparticle separation ∼ 1/kF to reduce the probability of three or more particles
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Figure 3.4: Bound state pseudopo-
tentials for the contact potential
with kFa = 1/2. A square well with
kFR = 1/4 is shown in blue, and
the TM (1) pseudopotentials with
kFrc = 1 is shown in red. Inset: the
TM (2) pseudopotential, shown in
green and with kFrc = 1, behaves
qualitatively differently near parti-
cle coalescence.

interacting at once, but there is no lower bound on rc: similarly to the case of the

square well, reducing rc increases the accuracy but also the computational cost of

simulations. The square well and TM pseudopotentials are shown in Fig. 3.4.

One of the TM pseudopotentials, labelled (1) in Fig. 3.4, behaves as would be

expected qualitatively for a short-ranged potential giving rise to a bound state: it has

a large negative region near particle coalescence. The other TM solution, labelled

(2) and shown in the inset to Fig. 3.4, does not show this behaviour, instead having

an attractive region at finite particle separation. This will give rise to a non-zero

expected separation between bound particles, which is physically discordant with

the contact interaction. We therefore reject the TM (2) pseudopotential because of

its unphysical behaviour and select the TM (1) pseudopotential instead, referring

to it henceforth simply as the TM pseudopotential.

Since all particles in bound states have approximately the same energy, the UTP

formalism does not offer any advantage in this system. We now move on to testing

the pseudopotentials in an inhomogeneous two-body system.

3.4 Two fermions in an harmonic trap

We have constructed pseudopotentials that describe the scattering behaviour of

two isolated fermions. To test the pseudopotentials we turn to the experimentally

realisable [76, 118] system of two distinguishable fermions in a circular harmonic

trapping potential 1
4
ω2r2 of frequency ω. This system also has the advantage of

being analytically soluble, which provides a stringent test for the pseudopotentials

that we will use in many-body simulations.
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Figure 3.5: Analytic energy lev-
els for two particles in an har-
monic trap as a function of the
dimensionless interaction strength
g = −1/ ln (a/d). The excited
states (solid lines) correspond to
the scattering states of the con-
tact potential and the ground state
(dashed line) corresponds to the
bound state. The non-interacting
energies are shown by circles along
the line g = 0.
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3.4.1 Analytic energy levels

In the centre-of-mass frame the Schrödinger Equation for two distinguishable

fermions in an harmonic trap is given by

−∇2ψ(r) +
1

4
ω2r2ψ(r) + V cont(r)ψ(r) = Eψ(r)

where the interparticle interaction term V cont(r)ψ can be replaced by a boundary

condition given by Eq. (3.6). For the contact interaction the energy levels in the

centre-of-mass frame are solutions to the nonlinear equation [113,119]

Ψ

(
− E

2ω
+

1

2

)
= ln

(
d2

a2
e−2γ

)
, (3.10)

where d =
√

2/ω is the characteristic length scale of the trap and Ψ is the digamma

function. These solutions are shown in Fig. 3.5 as a function of the dimensionless

interaction strength g = −1/ ln(a/d). In the non-interacting case g = a = 0 the

energies have the expected values E = ω(2n+1) for non-interacting particles. As the

repulsive interaction strength g > 0 in Fig. 3.5 increases, the energy increases and at

g →∞ joins onto the energy of the attractive branch at g → −∞, in an analogue of

unitarity in the BEC-BCS crossover [120]. The bound state of the contact potential

survives in this inhomogeneous system as the deep bound state at g > 0.
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Figure 3.6: Error in the centre-
of-mass energy of two fermions in
an harmonic trap calculated using
pseudopotentials from the analytic
value of the energy from Eq. (3.10).
(a) Error in the centre-of-mass en-
ergy of particles with a repulsive
interaction as a function of inter-
action strength for the hard disk
in cyan, the soft disk in blue, the
TM pseudopotential in red, and the
UTP in magenta. (b) Error in the
centre-of-mass energy of particles
with a weakly attractive interaction
as a function of interaction strength.
The square well pseudopotentials
have radii given by nR2 = 10−4 and
nR2 = 10−2, and the TM pseudopo-
tential has a cutoff radius given by
nr2

c = 10−2, with the different cutoff
radii denoted by different types of
line dashing. (c) Error in the bound
state energy as a function of inter-
action strength.

3.4.2 Accuracy of the pseudopotentials

We compare the estimates of the centre-of-mass energies of two particles in an har-

monic trap to the analytic result in: Fig. 3.6(a), for repulsive interactions; Fig. 3.6(b)

for attractive interactions; and Fig. 3.6(c) for bound particles.

In the repulsive case, we find that the hard and soft disk potentials and TM

pseudopotential are accurate at small interaction strengths, but at large interac-

tion strengths the error in the calculated energies is greater than 10%. The UTP

pseudopotential is around 10 times more accurate at high interaction strengths, and

becomes exact in the non-interacting limit.

To choose the radii of the potentials for the attractive and bound branches we
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follow the approach used in Ref. [61] and use a TM pseudopotential with a cutoff

radius of nr2
c = 10−2, where n = ω/2π is the peak density of two non-interacting

particles in the trap. We compare this to square wells with radii given by the

same nR2 = 10−2 and the smaller nR2 = 10−4 [21, 61]. We note that in both the

attractive and bound branches, reducing the well radius increases the accuracy of

the square well potential, but that the TM pseudopotential gives up to 10 times

higher accuracy than a square well with a radius 1/10 the size. The ability to use

a larger cutoff radius with the TM pseudopotential brings significant benefits in

numerical sampling of the potential, with the sampling efficiency expected to scale

as ∼ r2
c . The increased accuracy can be related to the fact that the square well gives

rise to wavefunctions with too much weight at large particle separations, raising

the energy in the external trap, whilst the TM pseudopotential is norm-conserving,

having the correct weight in the wavefunction outside rc. The norm-conservation

condition ensures that the TM pseudopotential gives a bound state wavefunction

that is robust against changes in the local environment, and hence performs well in

the spatially varying harmonic trap. As opposed to the single calibration energy of

the TM pseudopotential, in constructing the UTP we would average over a range

of energies. This would offer no advantage in the attractive and bound branches,

where there is a definite binding energy for the pair of particles, and so we do not

examine the UTP in these branches.

We have shown that for particles in an harmonic trap with attractive interactions,

the TM pseudopotential gives an increase in both accuracy and sampling efficiency

relative to the square well potential. For two particles with repulsive interactions,

the use of a UTP can offer a 10-fold increase in accuracy relative to using the TM

pseudopotential or hard or soft disk potentials. We now go on to demonstrate the

scaling benefits of the UTP in a many-body simulation.

3.5 Fermi gas

Having demonstrated the effectiveness of the UTP for studying the two body scatter-

ing problem and two distinguishable fermions in an harmonic trap, we now demon-

strate the advantages of the UTP in a prototypical setting: a two-dimensional ho-

mogeneous Fermi gas. Such a system serves as a benchmark for cold atom experi-

ments [121,122] and also as a model for electrons in conductors.
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We focus on the repulsive branch of the contact interaction. Here the hard and

soft disk potentials are uniquely defined for a given interaction strength, and may not

be improved to attain arbitrarily high accuracy, as is possible in the attractive and

bound branches by reducing the well radius to zero. This allows us to demonstrate

the intrinsic benefits of the UTP formalism over the hard and soft disk potentials.

The smoothness of the UTP relative to the hard and soft disk potentials will

be reflected in the many-body wavefunction, which will make it easy to work with

numerically. Having shown in Section 3.4 that the UTP is more accurate than the

competing hard and soft disk potentials and Troullier–Martins pseudopotential, we

proceed here to verify the accuracy of the UTP by comparing the energy of a Fermi

gas with first- and second-order perturbation theory calculations [123–125].

3.5.1 Formalism

To calculate the ground state energies we use the diffusion Monte Carlo (DMC) tech-

nique. DMC is a highly-accurate Green’s function projector method for determining

ground state energies and expectation values [37, 126, 127], and it is well-suited to

investigating homogeneous gaseous phases. We use the casino implementation [65]

of the DMC method with a Slater–Jastrow trial wavefunction Ψ = eJD↑D↓, where

D↑ (D↓) is a Slater determinant of plane-wave states for the spin up (down) channel.

The Jastrow factor eJ describes correlations between particles, with

J =
∑

j 6=i
α,β∈{↑,↓}

(
1− rij

Lc

)3

uαβ (rij) Θ (Lc − rij) , (3.11)

where rij = |ri − rj| is the distance between two particles with labels i and j, and

uαβ are eighth-order polynomials, whose parameters are optimised using variational

Monte Carlo subject to the symmetry requirements u↑↑ = u↓↓ and u↑↓ = u↓↑. Lc

is a cutoff length that we set equal to the radius of a circle inscribed within the

simulation cell, and Θ is the Heaviside step function.

We calculate the ground state energy expectation value for 49 spin-up and 49

spin-down particles in a homogeneous two-dimensional system for increasing inter-

action strengths −1/ ln(kFa) up to a maximum value of 1.8 before the system would

phase separate into a fully polarised state. To accurately capture the hard disk
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Figure 3.7: (a) Differences in ground state energy from the result obtained with the
UTP as a function of interaction strength, normalised by the energy of the non-
interacting system. The green lines denoted E(1) and E(2) are predictions from first-
and second-order perturbation theory [123–125] and EGF is the result of a Galitskii-
Feynman partial resummation of Feynman diagrams reported in Ref. [125], shown
in orange. GB is the Monte Carlo result from Ref. [27], calculated using a hard disk
potential and shown in grey, and our results using the hard disk are shown in cyan,
the soft disk in blue, the TM pseudopotential in red, and the UTP in magenta. (b)
The same results on a logarithmic scale.

wavefunction at small inter-particle distances in our DMC simulations we add an

additional term to the Jastrow factor in Eq. (3.11),

uH(r) =





−∞, r ≤ R,

ln[tanh( r/R−1
1−r/Lc

)], R < r < Lc,

0, r ≥ Lc,

(3.12)

as in Ref. [82], where R is the hard disk radius. In the present study the additional

term applies to opposite spins only.

We extrapolate to zero DMC timestep to obtain accurate ground state energies.

For each data point we run three simulations with timesteps 0.25dt, 0.5dt, dt, [83]

with dt the maximum timestep in the linear regime, and extrapolate to zero timestep

by minimising the weighted least squares fit. All error bars represent the DMC

stochastic error combined with the concomitant uncertainty in the timestep extrap-

olation. We expect that the use of a quadratic DMC algorithm would give similar

results [86, 87].
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3.5.2 Results

In Fig. 3.7 we compare ground state energies of the Fermi gas obtained using the

different potentials. It is clear that for −1/ ln(kFa) > 0.7 both the hard and soft

disk potentials, as well as the Troullier–Martins pseudopotential, are insufficient to

obtain the desired 10−4EF accuracy that has been obtained in other DMC studies

of homogeneous systems [61,62,79,112].

To verify the DMC results we compare our estimates for the ground state en-

ergy with perturbation theory [123–125]. As can be seen in Fig. 3.7(b), first order

perturbation theory E(1) = EF

2
(1 + [−1/ ln(kFa)]) deviates quadratically in the in-

teraction strength −1/ ln(kFa) from the UTP result as expected, and second order

perturbation theory

E(2) =
EF

2

[
1 +

( −1

ln(kFa)

)
+
(3

4
− ln(4e−γ)

)( −1

ln(kFa)

)2
]

deviates cubically in −1/ ln(kFa) and outperforms first order perturbation theory. In

Fig. 3.7 we also show the result obtained in Ref. [125] using a partial resummation

of Feynman diagrams in the Galitskii-Feynman (GF) scheme which is correct to

order O ([−1/ ln(kFa)]3), and note that this indeed deviates cubically in interaction

strength from the UTP result. The agreement of the scaling behaviour of the energy

calculated using the UTP with interaction strength when compared to these analytic

results confirms the accuracy of the UTP.

In addition to the analytic approximations, we compare our DMC results with an

independent study using the hard disk potential and the same number of particles

in Ref. [27], labelled GB. We note that their predicted energies are higher than

those from our DMC calculations using the hard disk potential, and as DMC is a

variational method this indicates that our trial wavefunction is likely more accurate

than was available to the author of Ref. [27], possibly due to our inclusion of a

Jastrow factor with variational parameters.

Having confirmed the accuracy of the UTP we now examine its performance

benefits. The local energy, EL = Ψ−1ĤΨ, is a crucial quantity in DMC calculations

[65]. The stochastic error in a DMC calculation is proportional to the standard

deviation σL in the local energy distribution, and therefore a smoother local energy

will give rise to more accurate results for the same computation time. Fig. 3.8 shows
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Figure 3.8: Standard deviation of
the local energy distribution of the
trial wavefunction. The hard and
soft disk pseudopotentials exhibit a
larger standard deviation, due to
the sudden changes in energy when
two particles approach one another.
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the standard deviation of the local energy distribution of the trial wave function

when using all of our pseudopotentials. Both the UTP and TM pseudopotentials

benefit from their smoothness in obtaining a lower local energy standard deviation

compared to the hard and soft disk potentials. For weak interactions the hard disk

potential benefits from an additional Jastrow factor term, Eq. (3.12), relative to

the soft disk potential, whose height U also diverges as a → 0. However for larger

interactions the soft disk potential results in a smoother wavefunction than the hard

disk potential and therefore has lower local energy variance. The variance in the

local energies diverges for the hard and soft disk potentials for weak interactions,

whereas it decays for the UTP and TM pseudopotentials. The standard deviation for

the TM pseudopotential is slightly lower than the UTP at all interaction strengths,

which is understood from the larger size of the potential for the UTP in Fig. 3.2

compared to the TM pseudopotential. This behaviour is similar to the 3D case

reported in Ref. [61].

The reduced variance in the local energy lowers the computational effort T

required for a DMC calculation, which scales as T ∝ σ2
L/dt [62, 128], as seen

in Chapter 2. From Fig. 3.8 we see that at intermediate interaction strength

−1/ ln(kFa) = 0.8 the variance of the local energy for the UTP is 2.7 and 3.0

times lower than for the soft and hard disk potentials respectively, corresponding to

a speedup of 7.5 and 9.1.

In addition to the lower local energy variance, our pseudopotentials offer an

additional speedup. The DMC estimate of the energy must be extrapolated to zero

timestep, and the larger the region of linear dependence of energy on timestep, the

larger timestep can be used. This reduces computational effort even further, as T ∝
1/dt. In Fig. 3.9 we observe that the extent of the linear regime of the error in ground
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Figure 3.9: Error in the estimated
ground state energy as a function
of DMC timestep. The results us-
ing the hard disk are shown in cyan,
the soft disk in blue, the TM poten-
tial in red and the UTP in magenta,
with solid lines indicating the values
calculated using DMC and dotted
lines a linear extrapolation. This
enables the identification of when
the error leaves the linear regime.

state energy with timestep differs between the pseudopotentials: it extends up to

dtHD = 1.25× 10−3/EF for the hard disk, up to dtSD = 2.5× 10−3/EF for the soft

disk, up to dtUTP = 5.0× 10−3/EF for the UTP, and up to dtTM = 1.0× 10−2/EF for

the TM pseudopotential. This means that the maximum timestep for a calculation

with the UTP is two and four times larger than for the soft and hard disk potentials

respectively. Combining this with the reduced variance we therefore accomplish a

total speedup of at least 15 times by using the UTP instead of the hard and soft

disks.

To summarise, we have demonstrated the importance of using a pseudopotential

with scattering properties that accurately describe the contact interaction. For weak

interactions we observe that a divergence in the variance in the local energy severely

constrains the accuracy of DMC simulations with soft or hard disk potentials. At

strong interactions these inaccurate potentials introduce a significant bias into the

results, such that we were unable to attain the 10−4EF target accuracy in the ground

state energy. However the UTP delivers highly accurate results over the full range

of interaction strengths and additionally offers 15 times better computational per-

formance. We therefore recommend the UTP as an accurate and efficacious tool for

studying the contact interaction in 2D.

3.6 Discussion

We have developed a high-accuracy pseudopotential for the contact interaction in

2D, building on the work of Ref. [61]. We have demonstrated that our ultratrans-
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ferable pseudopotential provides accurate scattering phase shifts, accurate energies

for two harmonically confined particles, and we have demonstrated its advantages

in many-body simulations. The energies obtained with our UTP are over 10 times

more accurate in the repulsive branch of the interaction than is afforded by the hard

and soft disk potentials used in recent studies. Moreover, we have demonstrated

that for many-body systems our pseudopotential delivers a speedup of at least 15

times in diffusion Monte Carlo computations, on top of the more accurate result.

The performance and ease of construction of the pseudopotential suggests that

it could be widely applicable across first-principles methods beyond quantum Monte

Carlo. The pseudopotential formalism has already been used to study the Coulomb

[62] and dipolar [112] interactions. Although in this work we have focused on using

the pseudopotential to accurately capture the scattering properties of the contact

interaction, our formalism allows the further improvement of modelling of quantum

gases by calibrating the pseudopotentials to more accurately describe the scattering

properties of the underlying Feshbach resonance interaction. To next lowest order in

scattering wavevector, this corresponds to including the effective range term essen-

tial for describing narrow Feshbach resonances, which may exhibit exotic breached

superfluidity [129, 130], or other interactions with non-zero effective ranges, which

are applicable in the study of nucleon reactions [131]. Rather than a description

in terms of the scattering phase shift, the pseudopotentials could instead be cali-

brated to other scattering properties. For example, they could be calibrated to the

cross-section for elastic scattering measured experimentally via the thermalisation

rate, or the inelastic loss coefficient, to capture the full physical interaction between

particles [19].

Data used for this Chapter are available online [132].

We thank Pablo López Ŕıos and Pascal Bugnion for useful discussions. Compu-

tational facilities were provided by the University of Cambridge High Performance

Computing Service.





Chapter 4

Jastrow correlation factor for

periodic systems

We propose a Jastrow factor for electron-electron correlations that interpolates be-

tween the radial symmetry of the Coulomb interaction at short inter-particle dis-

tance and the space-group symmetry of the simulation cell at large separation. The

proposed Jastrow factor captures comparable levels of the correlation energy to cur-

rent formalisms, is 40% quicker to evaluate, and offers benefits in ease of use, as we

demonstrate in quantum Monte Carlo simulations.

71
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4.1 Introduction

Quantum Monte Carlo (QMC) is a prominent family of techniques for studying

strong correlations in quantum many-body systems [37]. In particular, the varia-

tional and diffusion Monte Carlo methods (VMC and DMC) are accurate tools for

studying ground-state energies and expectation values. Both methods are predicated

on the use of a trial wavefunction, whose similarity to the true ground state deter-

mines the accuracy and efficiency of the calculations [40], as discussed in Chapter 1.

It is therefore important to have access to a high fidelity trial wavefunction.

A common foundation for constructing a fermionic trial wavefunction is to be-

gin with the Hartree–Fock wavefunction ΨHF = D↑D↓, where D↑ (D↓) is a Slater

determinant of single-electron states for the up (down) spin species. The Slater de-

terminants encode the fermionic antisymmetry of the trial wavefunction, ensuring

Pauli exchange is satisfied, but do not include any effects of electron correlation.

To describe such correlations, we modify the trial wavefunction to be of the Slater–

Jastrow [39] form Ψ = eJ(R)D↑D↓, where eJ(R) is a Jastrow factor that is a function

of all the electron positions, R. For real J(R) the Jastrow factor is positive definite,

and hence does not modify the nodal structure of the Hartree–Fock wavefunction.

In order to allow the Jastrow factor to accurately describe the correlations in a

particular system of interest, J(R) depends on a number of variational parameters

[80, 133–139]. These parameters can be optimised using the relatively inexpensive

VMC method, and then the optimal trial wavefunction used as the starting point

for a more accurate but more expensive DMC calculation. In principle the DMC

estimate of the energy depends only on the nodal surface of the trial wavefunction

[140], but in practice a more accurate trial wavefunction with an optimised Jastrow

factor allows the method to proceed more efficiently.

In this Chapter we consider Jastrow factors for infinite, periodic systems. These

systems are amenable to numerical simulation through the use of finite simulation

cells which are tessellated, with periodic boundary conditions, to fill all of space.

Jastrow factors in the literature tend to either respect the short range radial symme-

try of the Coulomb interaction, or abide by the symmetry of the simulation cells, but

not both [80,133–135]. Here we propose a Jastrow factor that interpolates between

these symmetries; is easier to use than current Jastrow factors by virtue of hav-

ing a single parameter that tunes its accuracy, as opposed to two such parameters
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for other Jastrow factors of similar accuracy; requires fewer variational parameters

to reach comparable accuracy; and is 40% quicker to evaluate than these current

Jastrow factors.

All of our QMC simulations were performed using the casino package [65], and

we use Hartree atomic units throughout this Chapter. In Section 4.2 we review

common Jastrow factors from the literature, and then show how our proposed Jas-

trow factor fits into this hierarchy. In Section 4.3 and Section 4.4 we examine the

accuracy and efficiency of the Jastrow factors in the homogeneous electron gas and

crystalline beryllium, respectively, before drawing our conclusions in Section 4.5.

4.2 Jastrow factor

We are concerned with Jastrow factors that capture correlation between electrons,

and hence include functions of electron-electron separation,

J(R) =
∑

j>i
σ,τ∈{↑,↓}

Jστ (rij),

where rij = ri − rj, the sum runs over all electrons labelled i, j, and we refer to

Jστ (rij) as a Jastrow function. The Jastrow function contains variational parameters

that we optimise within a VMC calculation to minimise the variance in the local

energy [141].

There are some fundamental constraints on the form of the Jastrow function.

Firstly, in order to retain the spin expectation value of the Hartree–Fock wave-

function Jστ (rij) must be even under exchange of particles. Secondly, in order to

avoid non-physical divergences in the local energy, Jστ (rij) must be at least twice-

differentiable everywhere except at particle coalescence (rij = 0).

However, at particle coalescence the Coulombic potential energy of two electrons

diverges. In order to retain a non-divergent local energy the kinetic energy therefore

has to diverge in the opposite direction at particle coalescence. This may be achieved

by imposing the Kato cusp conditions [66] on the wavefunction, which may be
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expressed as

∂Jστ
∂rij

∣∣∣∣
rij=0

= Γστ ,

giving spherically-symmetric behaviour at short radius Jστ (rij) = Γστrij+. . ., where,

for 3D systems, Γ↑↑ = Γ↓↓ = 1
4

and Γ↑↓ = Γ↓↑ = 1
2
. The final constraint on the

Jastrow factor is that, in periodic systems like those we consider here, Jστ (rij) must

satisfy periodic boundary conditions at the edge of the simulation cell in order to

tessellate space.

Before presenting and testing our proposal for a Jastrow factor, we first review

other Jastrow factors that are commonly used in the literature. We organise the

Jastrow factors by their symmetry, starting with a spherically symmetric function

and then examining a Jastrow factor with the symmetry of the simulation cell before

proposing our Jastrow factor that interpolates between these symmetries.

4.2.1 Term with spherical symmetry

The interaction between two isolated electrons is isotropic, and so it is reasonable

to take the Jastrow factor as being spherically symmetric and purely a function

of particle separation where two-body effects dominate, and especially at inter-

particle separations shorter than the average nearest-neighbour separation in many-

body systems. However, the simulation cells used in numerical calculations are not

spherically symmetric as they have to tessellate to fill 3D space. Because of this

requirement, and in order to limit the effect of otherwise infinite-ranged terms to

within the simulation cell, radial terms in the Jastrow factor are cut off at a finite

radius that is less than or equal to the Wigner–Seitz radius corresponding to the

simulation cell. This is implemented by including a term (1− rij/Lστ )CΘ(Lστ − rij)
in the Jastrow function, which goes to zero at a radius Lστ , with C − 1 continuous

derivatives. We take C = 3 in order to keep the local energy continuous at the

cutoff radius [134]. Θ(Lστ − rij) is a Heaviside step function, which forces the

Jastrow function to be zero everywhere beyond the radius Lστ .

It has been found in the literature [80, 134, 142–144] that a Taylor expansion

in electron-electron separation captures the most important short-ranged isotropic

inter-particle correlations, and so here we review that expansion. Writing the Jas-
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trow correlation function as a Taylor series around particle coalescence results in an

expression

uστ (rij) =

(
Lστ
3

[α1,στ − Γστ ] +
Nu∑

m=1

αm,στr
m
ij

)
(1− rij/Lστ )3 Θ (Lστ − rij) , (4.1)

which is referred to as a u term [80, 134]. Here the Nu coefficients αm,στ are pa-

rameters that are optimised using VMC, and the cutoff length Lστ is also optimised

variationally. The term Lστ [α1,στ−Γστ ]/3 ensures that the Kato cusp conditions are

satisfied. Using a pseudopotential for the electron-electron interaction [62] would

set Γστ = 0.

The u term Jastrow function with parameters optimised for an homogeneous

electron gas with rs = 4 is shown in Fig. 4.1a. The short-range behaviour of the

u term is linear to satisfy the Kato cusp condition, and then at large separation

the cutoff function limits the range of the u term to within the Wigner-Seitz radius

of the simulation cell, shown as a grey arc in Fig. 4.1a. This not only limits the

maximum range of the correlations that can be captured by the u term, but also

prevents it from capturing correlations in the corners of the simulation cell.

4.2.2 Term with simulation cell symmetry

One method to extend the ability of the Jastrow factor to capture correlations

over the whole simulation cell is to use a form of Jastrow factor that innately has

the space-group symmetry of the simulation cell. A simple but effective example

of a Jastrow function that has such symmetry is a plane-wave basis, which also

explicitly ensures periodicity of the Jastrow function. The so-called p term takes

the form [80,134]

pστ (rij) =

Np∑

`=1

a`,στ
∑

G+
`

cos(G` · rij). (4.2)

Here the {G`} are the reciprocal lattice vectors of the simulation cell that belong to

the `th star of vectors equivalent under the full symmetry group of the simulation

cell, sorted by increasing size of |G`| (and in periodic systems not including the

trivial vector 0); “+” means that if G` is included in the sum, −G` is excluded; and
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(a) u term (b) p term

(c) u and u & p terms (d) u and ν terms

Figure 4.1: The Jastrow functions discussed in the main text, showing the (a) u,
(b) p, (c) u (grey) and u & p (blue), and (d) u (grey) and ν (red) functions. The u,
u & p, and ν terms each have a total of five variational parameters, optimised using
VMC in the homogeneous electron gas system. The data are taken for an opposite-
spin electron pair in the z = 0 plane, with one particle at the origin, showing one
quadrant of the simulation cell. A grey arc indicates the u term’s cutoff radius,
which is comparable to the Wigner–Seitz radius LWS of the simulation cell. We
have subtracted a physically-irrelevant constant from the ν Jastrow function for
clarity.
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the a`,στ are variational parameters, of which there are Np.

A p term with Np = 1 for the homogeneous electron gas is shown in Fig. 4.1b.

The p term exists over the whole simulation cell, including where the u term is cut off

to zero. This means the p term can capture correlations in the cell corners that the

u term misses. However, the p term does not tend to a radial form at short radius

and so cannot satisfy the Kato cusp conditions at particle coalescence, meaning that

on its own it does not make for an effective Jastrow factor. A common approach in

the literature [79,145–150], and also used in Chapter 2, is to combine both u and p

terms to give a composite Jastrow function

Jστ (rij) = uστ (rij) + pστ (rij), (4.3)

which uses the u term to capture short-range correlations and the Kato cusp con-

ditions, and the p term to capture long-range correlations in the corners of the

simulation cell. We refer to such a combination as a u & p term.

An example of this composite Jastrow function, with Nu = 3 and Np = 1 and

parameters optimised in an homogeneous electron gas, is shown in Fig. 4.1c. As

expected, the behaviour at short range is dominated by the u term. Yet at large

radius this Jastrow function has structure due to the p term, including in the corner

of the simulation cell outside the cutoff radius of the u term, shown by the grey arc,

which allows the composite u & p term to capture longer-range correlations.

However, this construction has several undesirable features that limit its effec-

tiveness at capturing inter-particle correlations. For a given amount of computing

time to be spent optimising the parameters in the Jastrow factor, a choice needs

to be made of the relative number of u and p terms to be used. We do not know

a priori the optimal ratio of Nu to Np, and so must explore a two-dimensional pa-

rameter space to determine it. A large proportion of the VMC calculation time is

spent evaluating the Jastrow factor, and so it is important that the Jastrow factor

is as simple as possible. But there is not equality of expense between the u and

p terms, as sinusoidal p terms are more expensive to calculate than polynomial u

terms, and the expense of a p term also increases with the number of elements of

the reciprocal lattice vector stars used to evaluate it. Higher-order stars generally

contain more elements than lower-order ones, meaning high-order p terms are even

more expensive to calculate. To further complicate the optimisation of the u & p
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term, although the p term was intended to capture longer-range correlations, it does

also exist at short radius; this means it interferes with the effect of higher-order

contributions from the u term.

One further problem with the form of Jastrow function given by Eq. (4.3) is

that the cutoff length Lστ enters the expression non-linearly. To optimise the cutoff

length and other parameters we need to solve a multi-dimensional non-linear set

of equations, which is a significantly more difficult problem than solving a multi-

dimensional linear set of equations, where the full force of linear algebra may be

applied to increase the efficiency of the process [151].

We are interested in finding a form for the Jastrow factor that avoids these prob-

lems with the current method, by being a term with a single tuning parameter that

determines the accuracy of the Jastrow factor, and which is also cheap to evaluate

with linear coefficients. At the same time the proposed term should reproduce the

advantageous properties of the u term, accurately capturing short-range correla-

tions, and also the p term, exhibiting the symmetry of the simulation cell at large

inter-particle separation.

4.2.3 ν term

We propose a Jastrow factor that combines the properties and symmetries of the

u term at small radius with the properties and symmetries of the p term at large

separation. The Jastrow function, referred to here as the ν term, is

νστ (rij) =
Nν∑

n=1

cn,στ

∣∣f 2
x (xij) + f 2

y (yij) + f 2
z (zij)

∣∣n/2 ,

fx(x) = |x|
(

1− |x/Lx|3
4

)
, (4.4)

where the Nν parameters cn,στ are optimised using VMC, and the length Lx is the

width of the simulation cell in the Cartesian x-direction. In Section 4.4.1 below we

generalise the ν term to non-cuboidal geometries.

At small radius, the function fx(x) = |x| + O (|x|4), and so |f 2
x (x) + f 2

y (y) +

f 2
z (z)|1/2 = r + O (r4). This has the correct spherical symmetry to describe

short-range electron-electron correlations, so at short radius the Jastrow function

νστ (rij) =
∑Nν

n=1 cn,στr
n
ij + . . . consists of an expansion in electron-electron separa-
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tion, similarly to the u term. This means the ν term will reproduce the ability of

the u term to capture short-ranged correlations and it is easy to satisfy the Kato

cusp conditions by setting c1,στ = Γστ .

The function f(x) is symmetric under x → −x, and automatically satisfies pe-

riodic boundary conditions at the edge of the simulation cell, with f(Lxx̂) 6= 0,

f ′(Lxx̂) = 0, and f ′′(Lxx̂) 6= 0: this is achieved through the use of the cubic power

in the definition of f , chosen by analogy to the cutoff function in the u term to dis-

tinguish long- and short-ranged components of the Jastrow function. Importantly,

the f functions satisfying periodic boundary conditions means any function con-

structed from them, such as the ν term, will also correctly satisfy periodic boundary

conditions. The scaling of the f functions in the different Cartesian directions lends

the ν term the symmetry of the simulation cell at large inter-particle separation,

and allows the ν term to capture long-range correlations, similarly to the p term.

Not requiring a cut-off function also means all the variational parameters enter the

expression for νστ (rij) linearly, and so are easier to optimise than the equivalent

number of variational parameters in the u term [151].

The ν Jastrow function optimised for a homogeneous electron gas is shown in

Fig. 4.1d, demonstrating that it has the same small-radius behaviour as the u term.

We can also see that the ν term still has structure in the corner of the simulation

cell, similarly to the u & p term, which allows it to capture long-range inter-particle

correlations. We will examine this similarity in more detail in a case study of the

homogeneous electron gas in Section 4.3.

Freedom to optimise the behaviour of the Jastrow factor in the corners of the

simulation cell also provides the freedom to change the kinetic energy of the wave-

function in the corners of the simulation cell, as f ′′x (Lxx̂) 6= 0. This allows the ν

Jastrow factor to more accurately respond to a finite and/or varying potential en-

ergy in the corners of the simulation cell. From a Thomas–Fermi perspective this

provides the ν term with the freedom to counteract changes in the potential energy

from interactions with kinetic energy in order to keep the total energy constant.

The ν term may also be adapted to systems other than the 3D ones considered

here. For 2D systems the fz function may simply be omitted; or for slab geome-

tries, with two directions periodic and one non-periodic, fz should be replaced by a

function that reduces to |z| at short radius, for example |z|e−(|z|/Lz)2
.

In order to demonstrate the advantages of the ν Jastrow factor, in the next two



80 Jastrow correlation factor for periodic systems

Sections we carry out simulations of the homogeneous electron gas and a crystalline

solid. We examine the accuracy, efficiency, and ease of use of the ν Jastrow factor,

and compare it with other forms of Jastrow factor used in the literature.

4.3 Homogeneous electron gas

For the first test of our Jastrow factor we examine the homogeneous electron gas

(HEG). This system has been widely studied using QMC [126, 147, 152, 153] and

serves as an analogue for electrons in a conductor. As it does not contain any

atoms it allows us to focus on the electron-electron Jastrow factor. For simplicity

we assume that the intra-species correlations for the up- and down-spin electrons

are identical, and so fix J↑↑ = J↓↓ and J↑↓ = J↓↑.

We examine a HEG with density parameter rs = 4 in a cubic simulation cell

subject to periodic boundary conditions, and use Slater determinants of plane wave

orbitals. We use a system of 57 up- and 57 down-spin electrons, and confirmed that

the main results of this section were reproduced in systems of 33 and 81 electrons

per spin species and so are independent of system size. We optimise all the Jastrow

factors by minimising the variance in the local energy [151, 154], and confirmed

that minimising the energy directly [155] gave similar results. All VMC simulations

are run for 1 × 106 steps. We then carry out DMC simulations to obtain a more

accurate estimate for the energy within the fixed node approximation, EDMC, which

corresponds to the use of a perfect Jastrow factor. DMC simulations starting with

different trial wavefunctions agree to within 5× 10−6a.u. To measure the accuracy

of the Jastrow factors, we evaluate the percentage of the DMC correlation energy

missing from the VMC simulation,

η =
EVMC − EDMC

EHF − EDMC

× 100%

where the Hartree–Fock energy EHF is that obtained by using just the Slater deter-

minant part of the wavefunction.

In Fig. 4.2a we compare the percentages of the correlation energy missing when

the various Jastrow factors under scrutiny are used. The horizontal axis is labelled

by the number of optimisable parameters per spin channel, N , for each Jastrow

function: so, for example, a u term with a given number N of optimisable parameters
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per spin channel has Nu = N−1 optimisable parameters of terms in the inter-particle

separation expansion, αm,στ , as the cutoff length Lστ is also optimised. A u & p term

withNp optimisable parameters a`,στ in the p part leavesNu = N−1−Np optimisable

parameters for the u term coefficients αm,στ . For the ν term Nν = N + 1, as the

first coefficient c1,στ is set by the Kato cusp conditions. The number of optimisable

parameters N required to reach a converged accuracy is an important measure of

the practicality of the Jastrow factors, as N governs the complexity of the variance

minimisation procedure.

We observe that a u term alone can capture over 96% of the correlation energy

missing from the Hartree–Fock (N = 0) result, converging when Nu ≥ 3 (N ≥ 4).

The addition of p terms improves this to only 2% of the correlation energy missing,

as inter-particle correlations in the corners of the simulation cell are now captured.

The number of p terms used (if greater than zero) makes a negligible difference to the

percentage of the correlation energy captured, as long as there are also sufficiently

many u terms present (Nu ≥ 3, for a total of N ≥ 5). The smallest number of

variational parameters required to achieve convergence is N = 5. It is important

to capture all the short-ranged correlations at the centre of the cell, and it is also

important to capture the leading long-range correlations that reflect the symmetry

of the simulation cell. This motivates the construction of the ν term as being based

around a short-ranged expansion in inter-particle separation that interpolates to the

lowest-order symmetries of the simulation cell at long range.

The ν Jastrow factor reproduces the best u & p accuracy of η = 2% for N ≥ 4.

The need for only N = 4 optimisable parameters as opposed to the N ≥ 5 required

for the u & p terms means the ν term is easier to optimise. Furthermore, the ν term

has a single parameter Nν that can be increased to improve accuracy, as opposed to

having to choose both Nu and Np for the u & p term, which reduces the size of the

parameter space that needs to be explored.

The ν term has captured all of the correlation energy available to the u & p terms

in this system, but another important quantity in QMC methods is the variance

in the estimate of the energy. The variance of the local energy determines the

efficiency of DMC simulations [37, 83] and also acts as a proxy for the quality of

trial wavefunctions, as the variance in the local energy of the exact ground state is

zero. In Fig. 4.2b we examine the variances in the local energy using the different

Jastrow factors relative to the variance using the Hartree–Fock wavefunction. Again
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Figure 4.2: (a) The percentage of the DMC correlation energy missing from VMC
simulations of the homogeneous electron gas, with N optimisable parameters in
the Jastrow factor. Grey, blue, and red lines correspond to the u, u & p, and ν
term respectively. (b) The variance in the local energy when using different Jastrow
factors, as a percentage of the variance in the local energy using the Hartree–Fock
wavefunction. Error bars, where not visible, are smaller than the size of the points.

the u term converges for N ≥ 4, and the addition of p terms reduces the variance by

another 33% if a good choice of Nu and Np is made with N ≥ 5. The ν term achieves

the same reduction in the variance in the local energy as these more complicated

terms but with fewer optimisable parameters, N ≥ 4.

The similar levels of the correlation energy captured by the ν and u & p terms

may be understood in terms of the correlations described by these Jastrow factors.

In Fig. 4.3 we show the ν and Np = 1 u & p Jastrow functions with the u Jas-

trow function subtracted, to allow us to focus on the long-range correlations. Both

Jastrow functions capture non-trivial correlations in the corner of the simulation

cell, outside the radius where the u term is cut off to zero (shown by a grey arc),

explaining their improved performance over the u term. Furthermore, the corre-

lations captured by the ν and u & p terms are very similar, confirming that both

are able to be optimised to capture all of the available correlation energy. The

similarity of the ν and u & p terms also ensures that the zero-wavevector limits of

their Fourier transforms are likewise similar, and hence that the finite-size errors

from the Jastrow factors are comparable and can be dealt with following the same

prescription [146,156].

There is one further advantage to using the ν term in this system, rather than a
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Figure 4.3: The N = 5 Jas-
trow functions with the u Jastrow
function subtracted, to show how
the Jastrow functions vary at large
inter-particle separation.

u & p term. The ν term is a polynomial expansion, like the u term, and this makes

it quicker to evaluate than the p term with its sinusoids from each element of the

stars of reciprocal lattice vectors. For N = 5, where both Jastrow factors have fully

converged, the Np = 1 u & p term in the Jastrow factor is 61% slower to evaluate

than the ν term, and the Np = 2 term takes over twice as long to evaluate as the ν

term. This means that simulations with the ν term can be run significantly quicker

than those with the u & p term, to obtain similar accuracy.

We have shown that the ν Jastrow factor captures the ground state energy of the

HEG as well as a combination of the u and p terms, achieving the same accuracy

and reduction in variance in the local energy. In addition to this, the ν term is

easier to transfer between systems, as there is only one choice of parameter to make

as opposed to two for the u & p term; the ν term requires N = 4 linear optimisable

parameters to converge, rather than N = 5 non-linear parameters for the u & p

term, making it cheaper to optimise; and the ν term is also quicker to evaluate. We

now go on to test the ν Jastrow factor in an inhomogeneous periodic system, for

which we take the example of crystalline beryllium.

4.4 Beryllium

To demonstrate that the advantages of the ν term are not restricted to simple homo-

geneous systems with cubic simulation cells, here we test it in a crystalline solid. As

discussed in Section 4.2.3, the ν term is constructed to interpolate between the sym-

metry of the interaction potential (purely radial) at short radius and the simulation

cell symmetry at large separation. In order to demonstrate the generality of this

construction, we will focus on an analysis of a crystal with relatively low symmetry,
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in the P63/mmc (hexagonal) space group, where it is non-trivial to construct the

long-range form of the ν term. The simplest example of a stable crystal with this

space group at zero temperature, where QMC is applicable, is crystalline beryllium,

and so we use that as our example system. At the end of this Section we will also

discuss results in higher-symmetry face-centred cubic (FCC) and body-centred cubic

(BCC) crystals.

We model crystalline beryllium using an hexagonal simulation cell containing

32 atoms. The Be2+ ions are represented by pseudopotentials [65, 71, 134, 157],

and the orbitals in the Slater determinants were obtained from a density functional

theory [158,159] (DFT) calculation using the castep code with a plane-wave basis

set [160,161], converted to B-spline functions [162,163].

The u and p terms are the same in this simulation cell as in the previous cubic

case, with the G` vectors for the p term being the reciprocal lattice vectors of the

simulation cell, organised into stars of equal-length vectors. In order to use the ν

term we generalise its functional form to allow for the use of non-cuboidal simulation

cells.

4.4.1 Generalised form of ν term

To begin the generalisation of the ν term we construct a set of vectors {B}, formed

of the primitive reciprocal lattice vectors of the simulation cell and all symmetry-

equivalent vectors. These vectors are exactly those normal to the faces of the conven-

tional unit cell, and so encode the symmetry of the simulation cell, and have length

such that |Bi · rface| = π, for any vector rface lying in the corresponding conventional

cell faces.

Constructing a matrix of the reciprocal lattice vectors {B} and then (left-

)inverting and transposing it leads to a set of real-space vectors {A}. By measur-

ing the projection of the electron-electron separation vector r onto these real-space

vectors we can express the electron-electron separation as r =
∑

ζ Aζ(Bζ · r). The
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inter-particle distance r can then be expressed as

r =

√√√√
(∑

ζ

Aζ [Bζ · r]

)
·
(∑

ξ

Aξ[Bξ · r]

)

=

√∑

i

Ai ·Aiw2
i + 2

∑

j>k

Aj ·Akwjwk,

where wi = Bi · r expresses the projection of r onto Ai as a phase between −π
and π as r runs between parallel faces of the convex conventional cell. In a directly

analogous way to the previous, cuboidal form we then define the Jastrow function

as

νστ (r) =
Nν∑

n=1

cn,στ

∣∣∣
∑

i

Ai ·Aif
2(wi) + 2

∑

j>k

Aj ·Akg(wj)g(wk)
∣∣∣
n/2

, (4.5)

where in order to reduce to a radial expression at short radius we require that

f(wi) → |wi| and g(wi) → wi as r → 0. In order to retain the symmetry of the

simulation cell at large radii we demand f(wi) be symmetric under wi → −wi, whilst

g(wi) is required to be antisymmetric, and both functions should satisfy periodic

boundary conditions at |wi| = π. To satisfy these requirements we take f and g to

have the simple forms

f(wi) = |wi|
(

1− |wi/π|
3

4

)

g(wi) = wi

(
1− 3

2
|wi/π|+

1

2
|wi/π|2

)
. (4.6)

f(wi) is very similar to the cuboidal form given in Eq. (4.4), and if we use a cuboidal

simulation cell with orthogonal lattice vectors, where {A} = {a1/2π, a2/2π, a3/2π}
and {B} = {b1, b2, b3}, the general form of the Jastrow function Eq. (4.5) reduces

to the cuboidal form Eq. (4.4). g(wi) is the lowest-order polynomial-like expansion

that is antisymmetric under wi → −wi. The sets of vectors {A} and {B} that we

use for the hexagonal simulation cell, as well as for other common simulation cell

geometries, are given in Appendix C.
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4.4.2 Electron-ion correlations

In crystalline systems there are correlations between the ions and electrons, as well

as those between electrons. The DFT orbitals in the Slater determinants describe

most of the electron-ion correlations, but these are modified by the introduction of

electron-electron correlations in the Jastrow factor: in our simulations we add opti-

misable electron-ion correlations to the electron-electron Jastrow factor to counter

this,

J(R) =
∑

j>i
σ,τ∈{↑,↓}

Jστ (rij) +
∑

i,I
σ∈{↑,↓}

χσ(riI),

where riI = ri − rI , for ion positions rI , i running over all electrons, and I running

over all ions. It has been shown [80, 134] that a short-ranged u-like expansion in

electron-ion separation,

χσ(riI) =

(
Lχσ
3
β1,σ +

Nχ∑

m=1

βm,σr
m
iI

)
(1− riI/Lχσ)3 Θ(Lχσ − riI),

captures the most important electron-ion correlations in the electron-ion term, with-

out the need for a longer-ranged p-like term. The cutoff length Lχσ is generally com-

parable to the inter-ionic distance, and we use Nχ = 4 in our simulations. As we use

pseudopotentials for the ions there is no gradient discontinuity in the wavefunction

at electron-ion coincidence. We also tested a cuspless form of the ν Jastrow function

to capture the electron-ion correlations, which agreed with the energies obtained us-

ing χσ(riI) to within 10−5 a.u. with the same number of variational parameters.

This confirms that it is the short-range electron-ion correlations that are the most

important to capture, and so we shall use the well-established χσ(riI) term in the

following investigations.

In all-electron QMC simulations, particularly of molecules, the addition of three-

body electron-electron-ion correlations to the Jastrow factor lowers the calculated

energy [37, 80, 164], as these terms allow a more detailed description of tightly-

bound electrons. However, electron-electron-ion correlations are less important in

simulations using pseudopotentials, and including them here changes the correlation

energy by less than 0.9%. Similarly to the electron-ion term the dominant effect of
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Figure 4.4: (a) The percentage of the DMC correlation energy missing from VMC
simulations of crystalline beryllium, with N optimisable parameters in the Jastrow
factor. Grey, blue, and red lines correspond to the u, u & p, and ν term respectively.
(b) The variance in the local energy when using different Jastrow factors, as a
percentage of the variance in the local energy using the Hartree–Fock wavefunction.
Error bars, where not visible, are smaller than the size of the points.

electron-electron-ion terms is at short radius, and so the ν Jastrow factor formalism

is expected to offer limited improvements relative to an isotropic u-like term in

constructing such terms. As electron-electron-ion terms make a small difference to

the energy and will not help us to discriminate between the u, u & p, and ν terms

we neglect them here, although they should of course be included in simulations

targeting high accuracy.

The full Jastrow function is then obtained by combining the electron-ion term

χσ(riI) with the electron-electron Jastrow functions under examination, the u,

u & p, and generalised ν terms. We now examine the accuracy and efficiency of

these Jastrow functions for simulating crystalline beryllium.

4.4.3 Results

In Fig. 4.4a we compare the percentages of the DMC correlation energy missing,

η, when the various Jastrow factors are used with N variational parameters in the

electron-electron Jastrow factor. We observe that a u term alone is always missing

nearly 20% of the correlation energy, and moreover that the addition of a single p

term does not significantly improve the result. This is in contrast to the case of

the HEG, where the addition of a single p term was the most important step in
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Crystal type (example system) ν u & p: Np = 2
Hexagonal (Be) 8.6(1)% 9.3(1)%

BCC (Li) 4.7(1)% 5.0(1)%
FCC (Si) 10.1(2)% 9.6(2)%

Table 4.1: The percentage of the DMC correlation energy missing within VMC, η,
for the ν and u & p terms with N = 5 in example systems: crystalline beryllium
in a hexagonal simulation cell; crystalline lithium in a body-centred cubic (BCC)
simulation cell; and crystalline silicon in a face-centred cubic (FCC) simulation cell.
Bracketed numbers indicate the standard error in the values for η.

achieving a high-accuracy u & p term. This is due to the fact that, in the beryllium

simulation cell, the b3 lattice vector orthogonal to the hexagonal planes is shorter

than those in the b1, b2 plane, and so the first p term only acts along the c axis, not

providing flexibility to capture correlations in the hexagonal planes. However, the

addition of just one more p term reduces the correlation energy missing to around

9%, and the addition of more p terms to this does not significantly alter the result.

This means that to achieve convergence we again require N = 5 when using the u

& p term.

As in the HEG, the ν term achieves comparable accuracy to the most accurate

u & p terms, reaching convergence by N = 2. This, combined with the necessity of

otherwise using N ≥ 5 for the u and p term, of which Np = 2 are expensive p terms,

means that the ν term is significantly cheaper to optimise and use than alternative

Jastrow factors.

In Fig. 4.4b we examine the variance in the local energy using different Jastrow

factors. There is significantly less difference here between the Jastrow factors than

in the proportion of the correlation energy they capture, but the ν term again

performs as well as the most detailed other Jastrow factors, meaning that the trial

wavefunctions have similar efficiency in DMC.

As well as hexagonal crystalline beryllium, we have also tested the electron-

electron ν term in other crystals with different symmetry. The missing correlation

energy when using the ν term and the Np = 2 u & p term is shown in Table 4.1. The

u & p term is not significantly improved by increasing Np in any of these crystals,

and we use N = 5 as this is where the u & p term approaches its converged accuracy;

in each case the ν term is already converged.

The two Jastrow factors capture similar levels of the correlation energy in each
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system, indicating that the ν term is a good general choice of Jastrow factor for

use in crystalline systems, with the slight differences between the ν and u & p

terms in different systems being due to the exact details of the symmetry of the

simulation cell in each case, some of which are better captured by the ν term than

others. However, overall the differences between Jastrow factors are smaller than

the differences between systems, and the ν Jastrow factor achieves high accuracy

whilst having fewer (and only linear) parameters to optimise and being cheaper to

evaluate, due to being polynomial as opposed to sinusoidal.

4.5 Discussion

We have proposed and tested a form of electron-electron Jastrow factor that inter-

polates between the radial symmetry of the Coulomb potential at short range and

the space-group symmetry of the simulation cell at large separation. The ν Jastrow

factor captures comparable levels of the correlation energy to the most detailed u

& p terms used in the literature, and converges with fewer variational parameters.

There is also only one choice of input to the ν term, the expansion order Nν , which

reduces the parameter space to be explored compared to the two variables, Nu and

Np, required for the u & p term. Finally, the polynomial ν term is quicker to evaluate

than the plane-wave p term.

It would be possible to apply the ideas behind the ν term to higher angular-

momentum terms in a Jastrow factor: for instance, carrying out the transformation

x/r → g(x)/
√
f 2(x) + f 2(y) + f 2(z) would allow the Y11 spherical harmonic to be

expressed in a way that satisfies the symmetry of a cuboidal simulation cell. The

ν term could also be used in systems with interactions other than the Coulomb

potential; for instance, QMC may also be used to study the dipolar [112] and con-

tact [165] interactions in cold atomic gases, and also more exotic interactions such

as those found in 2D semiconductors [166]. The interpolation between symmetries

of the ν term could also be applicable more widely than just in Jastrow factors. Any

expansion in or use of inter-particle separation in a numerical investigation could be

written instead in terms of the f and g functions of the ν term, and so would im-

mediately satisfy periodic boundary conditions in the simulation cell. Systems that

might be well-suited to this approach could include two-particle pairing orbitals in

Slater determinants [167], large-amplitude phonons simulated within density func-
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tional theory [168], or the construction of force fields that natively reflect bond

angles for molecular dynamics simulations [169].

The ν Jastrow factor is implemented in the casino QMC package [65,170]. Data

used for this Chapter are available online [171].

We thank Pablo López Ŕıos and Neil Drummond for useful discussions.
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Multi-particle superconductivity
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Chapter 5

Multi-particle instability in a

spin-imbalanced Fermi gas

Weak attractive interactions in a spin-imbalanced Fermi gas induce a multi-particle

instability, binding multiple fermions together. The maximum binding energy per

particle is achieved when the ratio of the number of up- and down-spin particles in

the instability is equal to the ratio of the up- and down-spin densities of states in

momentum at the Fermi surfaces, to utilise the variational freedom of all available

momentum states. We derive this result using an analytical approach, and verify

it using exact diagonalisation. The multi-particle instability extends the Cooper

pairing instability of balanced Fermi gases to the imbalanced case, and in Chapter 6

will be shown to form the basis of a many-body state, analogously to the construction

of the Bardeen–Cooper–Schrieffer theory of superconductivity out of Cooper pairs.
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5.1 Introduction

Attractive interactions have a long and noteworthy history as the progenitors of

strongly correlated states. One of the earliest yet most profound insights was that

attractive interactions between up- and down-spin electrons may induce a pairing

instability, resulting in the formation of Cooper pairs [172]. These Cooper pairs

then form the basis of the many-body Bardeen–Cooper–Schrieffer (BCS) theory

of superconductivity [42, 43]. Furthermore, even when there are unequal numbers

of up- and down-spin particles in a system, Fulde and Ferrell [173] and, separately,

Larkin and Ovchinnikov [174] (FFLO) showed that it is still energetically favourable

for up- and down-spin particles from their respective Fermi surfaces to form Cooper

pairs, leading to a strongly correlated superconducting phase in spin-imbalanced

Fermi gases [175, 176]. However, the density of states in momentum at the Fermi

surface of the majority-spin particles is greater than that of the minority-spin species,

so the number of bound pairs that can exist is limited by the number of minority-spin

particles, leaving many of the majority-spin particles at their Fermi surface unpaired

and so uncorrelated. We propose a multi-particle instability that involves multiple

majority-spin particles for each minority-spin particle, allowing us to utilise all of the

potential of the majority-spin particles for contributing correlation energy. We find

that the number of particles involved in the instability per species is proportional

to the density of states in momentum at their respective Fermi surfaces. The multi-

particle instability has more binding energy per particle than a Cooper pair, so

could replace the Cooper pair as the building block of a superconducting state in

spin-imbalanced Fermi gases.

The prototypical experimental realisation of an imbalanced Fermi gas is electrons

in an external magnetic field. Most superconductors are destroyed by an external

magnetic field, reverting to the normal phase. However some materials, including

CeCoIn5 [177] and κ-(BEDT-TTF)2Cu(NCS)2 [178], which are superconducting at

zero magnetic field, with increasing field undergo a phase transition into an exotic

second superconducting state, before a further transition into the normal phase.

Other materials, including ErRh4B4 [179] and ErNi2B2C [180], display overlap of

ferromagnetism and superconductivity at zero applied field, and it has recently

been suggested that Bi2Sr2CaCu2O8+x exhibits some characteristics of an FFLO-

like phase in the pseudogap regime [181]. Further possible realisations of FFLO
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superconductivity in spin-imbalanced Fermi gases include an ultracold atomic gas

of fermions trapped in one dimension that displays a transition between supercon-

ducting phases [182], or a spin-orbit coupled superconductor with imbalanced Fermi

surfaces [29,30]. However, the exotic superconducting state has not been fully char-

acterised in any of these systems, leaving the true nature of the ground state an

open question.

We follow the prescription of Cooper [172] to study a multi-particle instability

on top of the Fermi surfaces. Working in second quantisation notation, we construct

a trial wavefunction for a multi-particle instability of several majority-spin particles

binding to a (potentially smaller) number of minority-spin particles to make the

binding energy per particle larger than for a Cooper pair. The optimal ratio for

the number of majority- to minority-spin particles is found to be the ratio of the

densities of states in momentum at their respective Fermi surfaces.

To verify our multi-particle instability we analyse the system with exact diago-

nalisation. We confirm that our second quantised wave function captures the crucial

correlations of the exact solution, expose additional insights into the structure of

the wavefunction, and verify our conclusion that the optimal number of particles in

the instability is set by the ratio of the densities of states in momentum.

5.2 Theory

To explore the possibility of the multi-particle instability we study a two-spin

fermionic system with an attractive contact interaction at zero temperature. The

BCS Hamiltonian takes the form

Ĥ =
∑

σ,k

ξσkc
†
σkcσk − g

∑

k,k′,q

c†↑(q−k)c
†
↓kc↓k′c↑(q−k′), (5.1)

where σ ∈ {↑, ↓} is the spin index, ξσk is the single-particle dispersion for spin

species σ and momentum k, c†σk (cσk) is a creation (annihilation) operator for a

fermionic particle, and g > 0 is the strength of the attractive contact interaction.

In the absence of interactions the ground state of the Hamiltonian in Eq. (5.1) is a
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(a) (N↑,N↓) = (1, 1) Cooper pair insta-
bility

(b) (N↑,N↓) = (2, 1) multi-particle insta-
bility

Figure 5.1: Idealised representation of the spin-imbalanced system showing Fermi
surfaces for the down- (light blue circle) and up-spin (light red fragment of circle)
species, with shaded areas denoting the allowed momentum states extending out-
wards by the Debye momentum kD. Also shown are Fermi surface arcs, bounded by
thick blue lines for the down-spin species and thick red lines for the up-spin species,
for (a) the simplest instability of one up-spin and one down-spin particle, and (b) a
proposed multi-particle instability with (N↑,N↓) = (2, 1), indicating the bounds on
the momentum states kσi used in the trial wavefunctions.

filled Fermi sea,

|FS〉 =
∏

ξ↑k↑<E↑F

c†↑k↑

∏

ξ↓k↓<E↓F

c†↓k↓ |0〉,

with species-dependent Fermi energies EσF (corresponding to Fermi momenta kσF)

and |0〉 being the vacuum state. Without loss of generality we fix the number of

particles in the Fermi sea of the up-spin species to be greater than or equal to that

of the down-spin species. We follow the prescription of Cooper [172] and assume

that the non-interacting ground state remains undisturbed for ξσk < EσF, and focus

only on a few-particle instability at ξσk >∼ EσF. We work in a general number D ≥ 2

of dimensions.
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5.2.1 Fermi surface arcs

The idealised conceptual situation where we expect a multi-particle instability to be

present consists of two Fermi surfaces for the different species that are different sizes,

but otherwise geometrically similar. In Fig. 5.1 we show example Fermi surfaces for

the up- and down-spin particles in D = 2 dimensions. Above the Fermi surfaces

are the unoccupied momentum states that can host the multi-particle instability,

which for typical phonon-mediated interactions extend over a species-independent

Debye momentum kD. We assume that kD/kσF � 1, as for many conventional

superconductors [183–185].

To construct the trial wavefunction for the multi-particle instability, we start

by developing multi-particle basis states. To capture all possible correlations in

the system, we require that the interaction term in the Hamiltonian can couple the

different basis states. As the interaction term conserves momentum, all basis states

must have the same total momentum. To construct these basis states, first consider

the Cooper pair situation with only one up-spin and one down-spin particle in the

instability. We start with a basis state that has both particles on their respective

Fermi surfaces on opposite sides of the Fermi seas (at the momenta labelled q↑1

and −q↓1 in Fig. 5.1a). In systems with anisotropic Fermi surfaces, like many of

the candidate systems for FFLO [186–188], the Cooper pair (and, later, the multi-

particle instability) will be dominated by the lowest-curvature parts of the Fermi

surface, and so in a general dispersion we place the initial basis state at the points

on the Fermi surfaces with the lowest curvature.

If we move away from these starting momenta, tangentially to the Fermi surfaces

by equal and opposite momenta for the different species to conserve momentum, we

eventually reach the Debye momentum kD above the Fermi surfaces where there are

no more momentum states accessible via the interaction term (reach the outer edge

of the shaded regions in Fig. 5.1a). The tighter curvature of the down-spin species

means we will first run out of allowed momentum states for the down-spin species

(at the point −q↓1 − k↓1 in Fig. 5.1a). The angular width of the allowed down-spin

momentum states thus sets the angular width of the up-spin momentum states for

Cooper pairs.

We refer to the allowed momentum states for the particles as forming ‘arcs’ on

the Fermi surfaces. An idealised version of the available momentum states for the
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down-spin species is indicated in Fig. 5.1a by the arc above the down-spin Fermi

surface bounded by blue lines, with angular width θ. The corresponding up-spin

species arc is shown bounded by red lines.

Because it was the down-spin species that exhausted its available momentum

states first in the Cooper pair situation in Fig. 5.1a, we wasted the opportunity for

some up-spin species momentum states to become involved in the instability and

so lower the energy of the system. We can make use of twice as many up-spin

momentum states by duplicating the arc of up-spin momentum states that were

available in the Cooper pair situation, offsetting the arcs so they do not intersect

as required by Pauli exclusion, and placing a particle in each arc. If we allow

either up-spin particle to interact with the down-spin particle, we have increased

the variational freedom in the system and would generically expect the binding

energy to become larger. Two such Fermi surface arcs for the up-spin species are

shown in Fig. 5.1b, bounded by red lines.

We can generalise the above argument to include more than two up-spin and more

than one down-spin particles: in general we may have N↑ up-spin arcs and particles,

and N↓ down-spin arcs and particles. However, if we include too many particles,

the gradients of the Fermi surfaces of the different species will differ radically at

the extremal Fermi surface arcs, and it will not be possible to move around one

species’ arc without immediately pushing the other species out of their allowed

momentum states. We bound the maximum extent of the Fermi surface arcs by

noting that when the tangents to the species’ Fermi surfaces are parallel it is possible

to move particles of both species simultaneously without either being forced from

their allowed momentum states. For dispersions with inversion symmetry this is

achieved when the total angular widths of the two species’ arcs are equal, shown in

Fig. 5.1b with the total width of the arcs of both species taking the value θ.

The densities of states in momentum of the occupied arcs, νσ, describe the

availability of momentum states throughout all arcs for each species, in our two-

dimensional example being proportional to θ. The density of states in momentum

per particle is then νσ/Nσ. The species with the smaller value of this ratio limits

the angular size available for each particle to move in, and we refer to this as the

‘critical’ species, with Nc particles and density of states in momentum νc.

To show that an instability with multiple particles in separate Fermi surface arcs

is the energetically favourable solution for a broad class of spin-imbalanced systems,



Theory 99

we follow the approach of Cooper [172] to construct a variational wavefunction for

the multi-particle instability. We demonstrate that in spin-imbalanced systems the

multi-particle instability gives an improved binding energy over traditional Cooper

pairs.

5.2.2 Basis states

To formalise the above description of the Fermi surface arcs, we label the angular

centre of each arc, on the Fermi surface, by a q-vector qσi. These q-vectors therefore

satisfy |qσi| = kσF for a free dispersion and ξσqσi = EσF. For kD � kσF and so

small θ the qσi for both species can be taken to be parallel, |qσi − qσj| � |qσi|.
All the momenta within a particular arc are described by qσi + kσi, where the

vectors kσi indicate the positions of the particles within the Fermi surface arcs, and

for small kD � kσF we have |kσi| � |qσi|. This guarantees ξ↑(q↑i+k↑i)
>∼ E↑F and

ξ↓(−q↓j−k↓j) >∼ E↓F so that the particle momenta lie near their corresponding Fermi

surfaces. Examples of this labelling procedure are shown in Fig. 5.1.

The proposed multi-particle instability is an excitation of (N↑,N↓) correlated

particles on top of the undisturbed Fermi seas, with each particle existing in a

unique arc. This can be constructed out of basis states

|K↑;K↓〉 =

N↑∏

i

c†↑(k↑i+q↑i)

N↓∏

j

c†↓(−k↓j−q↓j)|FS〉,

where Kσ = (kσ1, kσ2, . . . , kσNσ) is an Nσ × D matrix of particle momenta in D

spatial dimensions.

5.2.3 Trial wavefunction

The trial wavefunction for a system with a given set of qσi vectors is a sum over

basis states with optimisable coefficients α(K↑,K↓),

|ψ〉 =
∑′

K↑,K↓

α(K↑,K↓)|K↑;K↓〉, (5.2)

where the sum is over all Nσ momentum components kσi of each matrix Kσ, with the

prime on the sum indicating that we only sum over kσi such that
∑N↑

i k↑i =
∑N↓

j k↓j,
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ensuring momentum conservation. We take the α(K↑,K↓) coefficients to be non-zero

only if all of the momenta kσi lie within their respective arcs of the Fermi surfaces.

With N↑ = N↓ = 1 Eq. (5.2) collapses to the trial wavefunction for a Cooper pair.

5.2.4 Kinetic energy

To find an analytic expression for the energy expectation value E, we first focus

on the kinetic energy term and linearise the dispersions near the Fermi surfaces,

ξσp ≈ (|p| − kσF)ξ′σkσF
. Here kσF is the momentum corresponding to the Fermi

energy, which for small enough kD � kσF can be considered constant over the

Fermi surface arcs, and ξ′σkσF
is the derivative of the single-particle energy at the

Fermi surface. For the dispersions involved, ξ↑(k↑i+q↑i) and ξ↓(−k↓i−q↓i), recall that

|qσi| = kσF and |kσi| � |qσi|, and so ξ↑(k↑i+q↑i) ≈ k↑iξ′↑k↑F and ξ↓(−k↓i−q↓i) ≈ k↓iξ′↓k↓F
where kσi is the projection of kσi along qσi (or equivalently, the radial component

of kσi).

This linearity simplifies the full expression for the kinetic energy of our trial

wavefunction. With kinetic energy operator T̂ =
∑

σ,k ξσkc
†
σ,kcσ,k, we find

〈K↑;K↓|T̂ |ψ〉

= α(K↑,K↓)

(
N↑∑

i

ξ↑(k↑i+q↑i) +

N↓∑

j

ξ↓(−k↓j−q↓j)

)

≈ α(K↑,K↓)

(
N↑∑

i

k↑iξ
′
↑k↑F +

N↓∑

j

k↓jξ
′
↓k↓F

)
,

which may be simplified further by using the conservation of total momentum to

define
∑N↑

i k↑i =
∑N↓

j k↓j = K, giving

〈K↑;K↓|T̂ |ψ〉 ≈ 2α(K↑,K↓)Kξ
′,

with ξ′ = 1
2
(ξ′↑k↑F + ξ′↓k↓F).
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5.2.5 Potential energy

To evaluate the total energy of the wavefunction |ψ〉 we also need to evaluate the

effect of the potential energy operator V̂ = g
∑

k,k′,q c
†
↑(q−k)c

†
↓kc↓k′c↑(q−k′). The in-

teraction operator removes two particles, one of each spin species, from a basis state

and then replaces them, having transferred momentum m = k′ − k between them.

For a general basis state |K↑;K↓〉 there are N↑N↓ ways of choosing the pairs of

particles that are involved. We can formalise this procedure by defining

V̂ |K↑;K↓〉 = g
∑

~P↑,~P↓,m

∣∣∣K↑ − ~P↑ ⊗m;K↓ − ~P↓ ⊗m
〉

, (5.3)

and hence

〈K↑;K↓|V̂ |ψ〉 = g
∑

~P↑,~P↓,m

α
(
K↑ − ~P↑ ⊗m,K↓ − ~P↓ ⊗m

)
,

where the vectors ~Pσ form a set of standard basis vectors in particle-number space:

each has one element that takes the value 1, with the remaining (Nσ − 1) elements

having value 0. These label the particles in the different arcs in Fig. 5.1b. The

effect of an outer product of a ~Pσ vector with a scattering vector m is to construct

the matrix (0, . . . , m, . . . , 0), where the column containing m is determined by the

particular ~Pσ vector. We sum over all possible pairs of up- and down-spin particles.

5.2.6 Multi-particle instability

We are now ready to combine the effect of the kinetic and potential energies by

projecting the full Schrödinger equation Ĥ|ψ〉 = E|ψ〉 onto the state 〈K↑;K↓| to

calculate the energy expectation value E. We find that

(2Kξ′ − E)α(K↑,K↓)

= g
∑

~P↑,~P↓,m

α
(
K↑ − ~P↑ ⊗m,K↓ − ~P↓ ⊗m

)
,
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which, following the approach of Cooper [172], we divide by (2Kξ′ − E) and sum

over all Kσ to obtain

∑′

K↑,K↓

α(K↑,K↓)

= g
∑′

K↑,K↓

∑

~P↑,~P↓,m

α
(
K↑ − ~P↑ ⊗m,K↓ − ~P↓ ⊗m

)

2Kξ′ − E .

Shifting the dummy momentum variables Kσ on the right hand side by ~Pσ ⊗m

to remove the ~Pσ and m from the arguments of α(K↑,K↓), we bring the implicit

expression for the energy to the form

∑′

K↑,K↓

α(K↑,K↓)

= g
∑

~P↑,~P↓

∑′

K↑,K↓

α(K↑,K↓)
∑

m

1

2(K +m)ξ′ − E , (5.4)

where m is the radial projection of m. We can now separate the angular and

radial parts of the sum over m, and carry out the angular summation. The angular

summation is limited by the critical species, giving a contribution of the density of

available states νc/Nc, meaning that the whole sum over m should be considered as

over the critical species.

We can also make the substitution m′ = K+m, which has the effect of restraining

the Kσ dependence of the right hand side of Eq. (5.4) entirely to the parameters

α(K↑,K↓) and the limits of the sums over m′. However, the momentum m′ accounts

only for single momentum-transfer events, which following the prescription of Cooper

theory have a maximum radial width in momentum of the Debye momentum kD.

The maximum kinetic energy 2m′ξ′ of a basis state is obtained when each par-

ticle is at the upper end of its Fermi surface arc, giving a total kinetic energy

2m′ξ′ = (N↑ +N↓)kDξ
′, and the minimum kinetic energy is obtained when each

particle is at the bottom of its arc, for 2m′ξ′ = 0. The summation over m′ may be
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extended to cover this range, giving an implicit expression for the energy of

∑′

K↑,K↓

α(K↑,K↓)

=
2gνc

(N↑ +N↓)Nc

∑

~P↑,~P↓

∑′

K↑,K↓

α(K↑,K↓)

(N↑+N↓)kD
2∑

m′=0

1

2m′ξ′ − E . (5.5)

The only dependence on the Kσ in the implicit expression for the energy is in the

coefficients α(K↑,K↓), so we can factorise out
∑′

K↑,K↓
α(K↑,K↓) from both sides of

Eq. (5.5). We have also removed all dependence on ~Pσ from the expression, and so

can explicitly carry out those summations to give a factor of N↑N↓. This leaves us

with

1 = g
2N↑N↓

(N↑ +N↓)

νc

Nc

(N↑+N↓)kD
2∑

m′=0

1

2m′ξ′ − E , (5.6)

analogous to Eq. (4) of Cooper’s original paper [172].

We have reduced the complexity of the multi-particle instability to a single sum-

mation with a multiplicative constant. In the same manner as Cooper’s original

analysis we may now convert this summation to an integral and solve, finding the

binding energy

Eb =
(N↑ +N↓)kDξ

′

exp
(

(N↑+N↓)ξ′

gN↑N↓
Nc

νc

)
− 1

. (5.7)

In the weakly interacting limit this binding energy simplifies to

Eb = (N↑ +N↓)kDξ
′ exp

(
−(N↑ +N↓)ξ′

gN↑N↓

Nc

νc

)
, (5.8)

similar to the familiar form of the binding energy of a Cooper pair.

We wish to identify the number of particles (N↑,N↓) in the energetically opti-

mal multi-particle instability. The strongest dependence of the binding energy in

Eq. (5.8) on N↑ and N↓ is in the exponential, with the binding energy being max-

imised when the argument of the exponential function is least negative. The values
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of Nσ which achieve this, and are therefore the optimal solutions for the system, can

be deduced by symmetry to satisfy the relation

N↑
N↓

=
ν↑
ν↓

, (5.9)

i.e. the number of particles involved in the wavefunction per spin species is propor-

tional to the density of states in momentum. This means that all of the available

momentum states are involved in the instability, and so contributing the maximum

possible binding energy. Eq. (5.9) suggests that in D ≥ 2 dimensions a multi-

particle instability is energetically favourable over conventional pair instabilities in

a spin-imbalanced system.

In the next subsection we shall analyse our expression for the binding energy in

the light of Eq. (5.9), which gives a definite prediction for the energetically optimal

instability in different systems. We shall then return to the trial wavefunction given

by Eq. (5.2), and look further at its properties and limits.

5.2.7 Binding energy analysis

To build our intuition for the expression for the binding energy of the multi-particle

instability found in Eq. (5.7), we now examine the binding energy as a function of the

ratio of the number of particles N↑/N↓. We render the binding energy dimensionless

by normalising by g, the interaction strength; kD, the maximum interaction momen-

tum; ν↑ν↓, in order to account for different system sizes; and Nc/νc, the number of

critical species particles per density of states in momentum. Normalising by this

final ratio looks forward to the eventual creation of a many-body strongly-correlated

state from multi-particle instabilities, with the number of instabilities merged being

limited by the availability of critical species particles. We note, however, that at

low interaction strengths the dominant term in the binding energy in Eq. (5.8) is

the exponential, so the normalisation could be chosen to be by the total number

of particles without affecting the results below. This results in a measure of the

binding energy per critical species particle of

Xb =
1

gkDν↑ν↓

Eb

Nc/νc

. (5.10)
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To further justify this measure of the binding energy per critical species particle,

we first examine the strongly interacting limit of Eq. (5.7). Here, in terms of the

normalised ratio of number of particles per species,

x =
N↑
N↓

ν↓
ν↑

,

the binding energy per critical species particle takes the simple form

Xb =

{
x, x < 1,

1/x, x > 1.
(5.11)

This expression is maximised at x = 1, that is when N↑/N↓ = ν↑/ν↓, in agreement

with the expression in Eq. (5.9) for the weakly-interacting limit.

Away from the strongly- and weakly-interacting limits the optimal binding en-

ergy remains at N↑/N↓ = ν↑/ν↓. In Fig. 5.2 we show the binding energy per critical

species particle Xb from Eq. (5.7) as a function of imbalance x for ratios of densities

of states in momentum ν↑/ν↓ ∈ {1, 2, 3, 4} at an intermediate interaction strength

g = E↑F. We take as an example system a free dispersion with ξ′σkσF
= kσF in D = 2

dimensions, so that νσ ∝ kσF, although similar results hold in other systems. The

balanced system ν↑ = ν↓ is shown by the grey line, with the conventional Cooper

state, having N↑ = N↓, being the energetically optimal instability. This line is

symmetric about N↑/N↓ = ν↑/ν↓ on the log-log scale, which reflects the symmetry

between spin species when ν↑ = ν↓. For the spin-imbalanced systems where ν↑ > ν↓,

the energetically optimal instability is still found at N↑/N↓ = ν↑/ν↓, as predicted by

Eq. (5.9). To the right of this there are too many up-spin particles in the instability,

and to the left there are too many down-spin particles in the instability; this leads to

the ν↑ > ν↓ lines not being symmetric about their maxima, as in imbalanced systems

including the wrong number of up-spin particles is not equivalent to including the

wrong number of down-spin particles.

Having examined the result of Eq. (5.9) that the optimum ratio of number of

particles is given by the ratio of densities of states in momentum, we now discuss

the difference between instabilities with different numbers of particles, but the same

ratio N↑/N↓.
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Figure 5.2: The binding energy per
critical species particle as a func-
tion of the normalised ratio of num-
ber of particles per species at in-
termediate interaction strength g =
E↑F. Results are shown for a
free dispersion in D = 2 dimen-
sions and for different imbalance ra-
tios, with the infinite-interaction-
strength limit indicated by a dashed
line.

5.2.8 Instabilities with same ratio N↑/N↓

The prediction given in Eq. (5.9) that the energetically optimal numbers of particles

involved in the instability are related by N↑/N↓ = ν↑/ν↓ only sets the ratio between

N↑ and N↓, but does not predict the absolute numbers of particles. To probe the

effect of changing the absolute numbers of particles, we need to examine in more

detail the effect of Pauli blocking.

The effect of Pauli blocking has been carefully analysed [189–191] for the prod-

uct of two (N↑,N↓) = (1, 1) instabilities, and found to give only a small correction

to the binding energy of two separate pairs (the correction going as the inverse of

the number of available momentum states). This agreement with our result for a

(N↑,N↓) = (2, 2) instability, up to small Pauli blocking corrections that vanish in

the thermodynamic limit, supports our finding that the binding energy per critical

species particle is independent of the total number of particles involved in the insta-

bility. We shall present further numerical evidence that captures the Pauli blocking

corrections in Subsection 5.3.4.

However, the effect of Pauli blocking will become more acute in a many-body

state constructed from multi-particle instabilities. This suggests that in the limit

of a large number of multi-particle instabilities in a system, instabilities with fewer

total particles will be energetically favourable over instabilities with more particles

but the same value of N↑/N↓ in a given system.

Having investigated the structure and binding energy of the proposed multi-

particle instability, we now turn to some of its limits. We examine the conventional

Cooper system, with balanced Fermi seas, and identify the predictions made for one-
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dimensional systems, recovering in both cases agreement with well-known results

from the literature. We also briefly examine the strongly-interacting limit of the

proposed multi-particle instability.

5.2.9 Cooper limit

The system studied originally by Cooper [172] is a balanced Fermi gas, and so has

k↑F = k↓F = kF, ν↑ = ν↓ = ν, which we predict should have the optimal ratio

N↑/N↓ = 1 in agreement with Cooper’s findings. Moreover, with N↑ = N↓ = 1

our trial wavefunction Eq. (5.2) reproduces the conventional Cooper trial wavefunc-

tion [172]. Therefore, with a free dispersion ξσk = k2/2−k2
F/2 the weakly-interacting

binding energy given by Eq. (5.8) reduces to the familiar Cooper expression [172]

Eb = 2kDξ
′ exp

(
−2kF

g

1

ν

)
= 2ωD exp

(
− 2

gΩ

)
,

where the Debye energy ωD = kDξ
′ and the density of states in energy Ω = ν/kF.

5.2.10 One-dimensional limit

Although the discussion in previous subsections has focused on D ≥ 2 dimensions,

our main prediction of N↑/N↓ = ν↑/ν↓ also holds in D = 1 dimension. Here the

density of states in momentum is independent of the Fermi momentum, and so

ν↑/ν↓ = 1 for both balanced and imbalanced systems. This suggests that a Cooper

pair instability with N↑ = N↓ = 1 should be energetically optimal for both balanced

and imbalanced systems in D = 1 dimension. This is in agreement with both

analytical predictions [192–194] and numerically exact calculations [195, 196] that

show an FFLO phase constructed from Cooper pairs is the ground state throughout

a large part of the phase diagram of one-dimensional Fermi gases.

5.2.11 Strongly-interacting limit

In the limit of strong attractive interactions g � EσF we expect the system to

promote particles to the energy of the up-spin Fermi surface to reconstruct full

rotational symmetry, similar to a breached superconductor [130,197,198]. This turns

the system effectively into one with balanced reconstructed Fermi surfaces, and so
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Figure 5.3: Example discretised
momentum states (grey points) for
use in exact diagonalisation calcu-
lations, showing up- and down-spin
Fermi surfaces (red and blue curves)
with a ratio of ν↑/ν↓ = 2. The origin
is marked by the large black point.
The subsets of momentum states
used in calculations are coloured
and circled, in this case showing a
(L↑,L↓) = (16, 8) system. These
states are shown larger, for clarity,
on the right-hand side, with sample
particle occupations.

supporting conventional Cooper pair instabilities. In the strongly-interacting limit

of a many-body theory built from Cooper pairs, the pair coherence length becomes

small on the scale of the separation between pairs, and so the pairs can be considered

tightly-bound dimers [199,200].

We have shown that the proposed multi-particle instability reduces to the well-

studied Cooper problem in the balanced limit, and collapses to a pair instability

in one dimension, which both link with previous results, and also reproduces a

known result in the strongly-interacting limit. This gives us confidence that the

multi-particle construction is also valid away from these limits. Having shown the

strength of the formalism in reproducing these known limits, we now provide nu-

merical evidence for the multi-particle instability being energetically optimal in a

range of spin-imbalanced systems.

5.3 Exact diagonalisation

5.3.1 Method

In order to provide further insights into our conclusion that the optimal ratio of

number of particles in an instability is given by N↑/N↓ = ν↑/ν↓ we turn to a numeri-

cal evaluation of the wavefunction |ψ〉 and energy expectation value 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉.
To gain computational traction, we examine a reduced Hilbert space, taking only
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finitely many momentum states from the Fermi surfaces. We indicate this reduc-

tion in Hilbert space size in Fig. 5.3, where instead of considering all momentum

states (grey points) or even all momentum states on the up- and down-spin Fermi

surfaces (red and blue curves), we use just linear subsets from opposite sides of the

Fermi surfaces. This allows us to focus on the angular extent of the Fermi arcs,

the driving force behind the emergence of the multi-particle instability. We work in

the strongly interacting limit, to minimise the effect of neglecting the radial com-

ponent of the sum over momentum. We use systems with L↑ momentum states for

up-spin particles, and L↓ momentum states for down-spin particles: the ratio L↑/L↓

then mimics the ratio of densities of states in momentum ν↑/ν↓. Fig. 5.3 shows an

example system with (L↑,L↓) = (16, 8).

To numerically identify the ground state of the (N↑,N↓) system of particles in a

system with (L↑,L↓) momentum states, we explicitly construct the
(
Lσ
Nσ

)
combina-

tions of particle momenta for each species, for a total of
(
L↑
N↑

)
×
(
L↓
N↓

)
basis states.

Note that we do not explicitly include the additional constraint of the separation

into Fermi surface arcs used in the wavefunction Eq. (5.2). We then directly evaluate

and diagonalise the matrix of interactions between these states, with the optimal

instability being that with the most negative eigenvalue.

5.3.2 Binding energy

We investigate the dependence of the optimal binding energy on the ratio of num-

ber of particles N↑/N↓ in the instability in Fig. 5.4, where we plot the normalised

binding energy per critical species particle against the ratio of number of particles

per species, normalised by the inverse ratio of number of momentum states. This

rescaling of N↑/N↓ ensures that our predicted optimal binding energies are located

at N↑L↓/N↓L↑ = 1, as in Fig. 5.2. We examine systems with different ratios of

numbers of momentum states L↑/L↓ ∈ {1, 2, 3, 4}, with the lines in Fig. 5.4 coming

from systems containing (L↑,L↓) = (16, 16), (L↑,L↓) = (16, 8), (L↑,L↓) = (18, 6),

and (L↑,L↓) = (16, 4) momentum states respectively.

We observe that, as predicted by Eq. (5.9), the optimal binding energy per

critical species particle for each ratio of number of momentum states is obtained

with a ratio of number of particles of N↑/N↓ = L↑/L↓. This is the principal result of

our exact diagonalisation investigation: our numerical study reproduces the result
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Figure 5.4: The normalised bind-
ing energy per critical species par-
ticle obtained using exact diagonal-
isation (lines), including the Cooper
pair values (orange points).

of our approximate analytical method.

To highlight that Cooper pairs are suboptimal in spin-imbalanced systems, we

indicate the Cooper pair instability for each system in Fig. 5.4 with orange circles,

from left to right for the L↑/L↓ = 4, L↑/L↓ = 3, L↑/L↓ = 2, and L↑/L↓ = 1 systems.

We note that for L↑/L↓ > 1 these Cooper pair states have lower binding energy

per critical species particle than the proposed multi-particle instability, whilst for

L↑ = L↓ the optimal multi-particle instability is simply a Cooper pair, as predicted

by Cooper [172].

In Fig. 5.5 we confirm the convergence of our exact diagonalisation results with

respect to system size for an example ratio L↑/L↓ = 2. The different blue lines in

Fig. 5.5 correspond to exact diagonalisation calculations of the binding energy using

different numbers of up-spin particles, N↑ ∈ {1, 2, 3, 4, 5}, and fixed N↓ = 1. We

observe a rapid convergence to the infinite size limit, with the (L↑,L↓) = (16, 8)

system shown in Fig. 5.3 giving results within 0.4% of the infinite size limit for the

N↑/N↓ ∈ {1, 2, 3} ratios of numbers of particles. A slice through Fig. 5.5 at L↓ = 8

gives the line for L↑/L↓ = 2 in Fig. 5.4.

5.3.3 Fermi surface arcs

It is also illuminating to examine the wavefunctions of the energetically optimal in-

stabilities. In Fig. 5.6 we show the basis states involved in the energetically optimal

(N↑,N↓) = (2, 1) instability of the (L↑,L↓) = (14, 7) system. Each down-spin mo-

mentum state is part of a basis state with the two up-spin momentum states joined

to it by lines of the same thickness and colour. Thicker lines indicate higher weight-

ing (larger α(K↑,K↓)) of the basis states, and colours represent the separation in
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Figure 5.5: System size dependence
of the binding energy per critical
species particle, for ratio of num-
ber of momentum states L↑/L↓ =
2. The different lines correspond to
different ratios of numbers of parti-
cles in the instabilities.
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momentum between the up-spin species particles in the instability. The wavefunc-

tion comprises basis states that have spontaneously organised arcs of the up-spin

Fermi surface: each plotted basis state has one up-spin particle in the left-hand half

of the up-spin Fermi surface, and one particle in the right-hand half. This is in

agreement with the use of arcs in the analytical wavefunction given by Eq. (5.2).

In addition, the highest-weighted basis states are those at the angular centre of the

arcs, which are the momenta labelled qσi in Section 5.2.

The separation of the wavefunction into Fermi surface arcs is also indicated

by the integrated weights of the basis states at each momentum state, which are

shown by the small points above the up-spin momentum states and below the down-

spin momentum states in Fig. 5.6. The integrated weights for the up-spin particles

show a bimodal distribution, indicating a separation into arcs. The black lines are

symmetric fits to the data points, showing the arcs to contain identical distributions

of integrated weights. As expected for an N↓ = 1 system, the down-spin particle

inhabits a single Fermi surface arc.

5.3.4 Instabilities with same ratio N↑/N↓

Exact diagonalisation may also be used to confirm the conclusion of Subsection 5.2.8

that instabilities with fewer total particles are marginally energetically favourable

over instabilities with the same ratio N↑/N↓, but more particles. By examining the

binding energy per particle of the simple (N↑,N↓) = (1, 1) and (N↑,N↓) = (2, 2)

instabilities in balanced systems with L↑ = L↓ = L, we observe that the (N↑,N↓) =

(1, 1) instability does indeed have higher binding energy per particle at all finite

interaction strengths. As predicted analytically [189], the difference scales as L−1 in
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Figure 5.6: The weighting of basis
states for the (N↑,N↓) = (2, 1) in-
stability of the (L↑,L↓) = (14, 7)
system. Coloured lines between
the momentum states (represented
by large red (up-spin) and blue
(down-spin) points) indicate the ba-
sis states: each down-spin mo-
mentum state is part of a basis
state with the two up-spin momen-
tum states joined to it by lines
of the same colour and thickness.
Thicker lines indicate higher weight-
ing (larger α(K↑,K↓)) of the ba-
sis states; thinner lines indicate
lower weighting. Color indicates
the separation of the up-spin mo-
mentum states in each basis state,
with yellow indicating small sepa-
ration and purple large separation,
with the colour key indicating the
separation in number of momen-
tum states. Only the 35 highest
weighted basis states are shown for
clarity. Above the up-spin momen-
tum states and below the down-
spin momentum states are the in-
tegrated weights of the basis states
at each momentum state, indicat-
ing the separation of the momentum
states into Fermi surface arcs.
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the weakly-interacting limit, confirming the conclusion that instabilities with fewer

total particles are energetically favourable in finite systems.

Our exact diagonalisation results on this simplified system have supported the

main claims and conclusions of the analytical arguments in Section 5.2. The en-

ergetically optimal instability in a range of different spin-imbalanced systems has

been shown to satisfy the relationship N↑/N↓ = L↑/L↓ predicted in Eq. (5.9). The

separation of the Fermi surface into arcs in the analytical wavefunction has also

been justified by the emergence of such arcs in the numerical calculations, and we

have provided evidence for which instabilities with the same ratio N↑/N↓ are most

energetically favourable.

5.4 Discussion

We have shown that spin-imbalanced Fermi gases with attractive interactions sup-

port a multi-particle instability. The most energetically favourable instability con-

tains up- and down-spin particles in the ratio N↑/N↓ = ν↑/ν↓, set by the ratio of the

densities of states in momentum at the Fermi surfaces.

The proposed trial wavefunction for the multi-particle instability interpolates

between the well-known Cooper wavefunction [172] in the limit of balanced Fermi

surfaces and theoretical predictions [192–194] of the FFLO phase in one dimension.

This lends support to the contention that our trial wavefunction is also valid away

from these limits.

We note that the physics presented here can be explored in few-body systems,

as even single-digit numbers of particles can exhibit collective phenomena such as

the Fermi surfaces examined in this Chapter [201]. Cold atoms in an harmonic

trap [118, 202] are an ideal system to explore few-particle physics, as the exact

energy and expectation values such as the wavefunction symmetry may be directly

measured [78, 201]. Cold atom experiments may therefore be able to observe the

scaling of the binding energy and spatial structure of the trial wavefunction proposed

here, of which hints may previously have been seen numerically [201].

In real experiments the interaction between fermions will never be exactly the

contact interaction from Eq. (5.1). In cold atom systems the interaction may be

expanded as g(1 + 8aReffk
2
F), where a < 0 is the scattering length and Reff is the

effective range [148]. Positive Reff reduces the effective interaction strength, making
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the multi-particle instability less energetically favourable, whilst negative Reff makes

it more energetically favourable; however, |Reff | is typically small on the scale of

1/kF, and so the effect of the finite range interaction is also small. The screened

Coulomb interaction, g/(1 + 2b2k2
F) where b > 0 is the Thomas-Fermi screening

length, relevant for example to electron-hole systems [203,204], has a similar effect,

with the screening length taking on the same role as the effective range for cold-atom

interactions, and so weakening the multi-particle instability relative to the purely-

contact case. This weakening is also found in standard Cooper pairs, however, and

so is unlikely to qualitatively change the conclusions of this Chapter. The next order

term in the effective range expansion would go as ReffkD: this term will discriminate

between multi-particle instabilities and Cooper pairs, being a function of how many

fermions near the Fermi surfaces are involved in the instability, but is not expected

to have a large effect, as in our formalism both kD and Reff are small.

In the same way that Cooper pairs form the conceptual basis of the Bardeen–

Cooper–Schrieffer theory of superconductivity, it is expected that a many-body state

may be constructed using the multi-particle instabilities presented here with even

values of N↑ + N↓. By analogy to the relationship between the traditional Cooper

result and the BCS order parameter, we expect that the order parameter of the

future many-body superconducting theory should have a form that is reminiscent

of Eq. (5.8). The many-body theory should not be limited to including a single

type of multi-particle instability, and similarly to predictions made for the FFLO

phase [176] may be constructed from multiple superposed multi-particle instabilities,

forming a crystalline structure.

A natural tool to use to search for this exotic superconducting state is a spin-

imbalanced ultracold fermionic gas [205, 206]. This system allows fine control over

the populations and interactions of the fermions, allowing experiments to focus on

the potential of new physics. Previous spin-imbalanced ultracold fermionic gas ex-

periments have used inhomogeneous optical trapping potentials, in which the region

of space where multi-particle instability-based superconductivity is likely to be ob-

servable is very small. However, recent experimental developments have allowed the

creation of homogeneous ultracold fermionic gases [207], where the delicate novel

superconducting state is likely to exist over larger regions of space, and so be easier

to observe and characterise.

Such a strongly correlated state would present novel superconducting proper-



Discussion 115

ties, including unusual Andreev reflection [208], Josephson tunnelling [209], and

SQUID [210] or other superconducting loop [211] properties, due to the underly-

ing multi-particle structure. With the underlying instabilities involving N↑ + N↓

fermions, magnetic flux is likely to be quantised in units of h/(N↑ + N↓)e, rather

than h/2e for BCS superconductivity based on Cooper pairs. The superconducting

order parameter would also exhibit unusual behaviour, being necessarily complex

due to the presence of non-antipodal q-vectors, and oscillating with wavevectors

q↑i + q↓j, with interference due to similar q-vectors giving rise to beats in the order

parameter amplitude. The existence of a superconducting state constructed from

multi-particle instabilities may also explain the lack of definitive observations of the

conjectured FFLO state.

Data used for this Chapter are available online [212].

We thank Adam Nahum, Johannes Hofmann, Johannes Knolle, Jens Paaske,

Robin Reuvers, and Darryl Foo for useful discussions, and acknowledge the financial

support of the EPSRC and the Royal Society.





Chapter 6

Multi-particle theory of

superconductivity

A spin-imbalanced Fermi gas with an attractive contact interaction forms a super-

conducting state whose underlying components are multi-particle instabilities, each

involving more than two fermions. As this multi-particle superconducting state

includes correlations between all available fermions it is energetically favourable

to Fulde–Ferrell–Larkin–Ovchinnikov superconductivity, as we demonstrate using a

Ginzburg–Landau method. The ratio of the number of up- and down-spin fermions

in the instability is a function of the ratio of the up- and down-spin densities of

states in momentum at the Fermi surfaces, to fully utilise the accessible fermions.

117
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6.1 Introduction

For over a century, the phenomenon of superconductivity has captured the atten-

tion of theorists, who have provided fundamental revelations about its underlying

principles. Bardeen, Cooper, and Schrieffer (BCS) [42,43] gave seminal insights into

the mechanism of superconductivity in systems with spin-balanced Fermi surfaces,

showing that superconductivity may be understood as the collective behaviour of co-

herent Cooper pairs of fermions, as discussed in Section 1.3.2. Fulde, Ferrell, Larkin,

and Ovchinnikov (FFLO) [173,174] extended this result, demonstrating that even in

systems with spin-imbalanced Fermi surfaces Cooper pairs may still form the basis

of a superconducting state. However, in spin-imbalanced systems, the density of

states in momentum at the Fermi surface of the majority-spin fermions is greater

than that of the minority-spin fermions, so the number of Cooper pairs that can ex-

ist is limited by the number of minority-spin fermions at their Fermi surface. This

leaves many of the majority-spin fermions unpaired and so uncorrelated, wasting

their potential for contributing correlation energy to the system.

In a few-particle context, the multi-particle instabilities discussed in Chapter 5

and Ref. [213], generalisations of a Cooper pair containing more than two fermions,

have been shown to maximise the correlation energy captured in spin-imbalanced

systems by taking advantage of the correlations between all available momentum

states. Such a multi-particle instability is shown in Fig. 6.1, showing three majority-

(up-)spin fermions involved in an instability with one minority- (down-)spin fermion.

The favourable binding energy of the multi-particle instability makes it the ideal

building block for constructing a superconducting state. In this Chapter we show

that this superconducting state is energetically favourable over Cooper pair-based

FFLO superconductivity in spin-imbalanced systems.

Current experimental developments enable the study of exotic phases of mat-

ter with unprecedented levels of accuracy. Spin-imbalanced Fermi gases can be

realised in solid-state materials [177–181], and spin-orbit coupling may also give rise

to inhomogeneous superconductivity [29,30], but no single experiment has provided

unambiguous evidence for the existence of FFLO superconductivity, leaving the true

nature of the ground state an open question. The recent development of uniform

trapping potentials for ultracold atomic gases [207] presents an ideal opportunity to

revisit the structure of the superconducting ground state of spin-imbalanced Fermi
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Figure 6.1: (Color online) Ide-
alised representation of the spin-
imbalanced system showing Fermi
surfaces for the down- (light blue
circle) and up-spin (fragment of
light red circle) species, with oc-
cupiable momentum states extend-
ing over a momentum scale set
by the Debye frequency, forming
annuli. Areas with more intense
colour in the annuli indicate the
approximate occupation of momen-
tum states. Also shown are the
momenta of (N↑,N↓) = (3, 1) up-
and down-spin fermions with corre-
sponding q-vectors qσi.
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gases.

In this Chapter we examine the ratio of number of majority- to minority-spin

fermions in the instability underlying the superconducting state in a spin-imbalanced

Fermi gas, and compare the energetics of multi-particle superconductivity favourably

to those of FFLO superconductivity. We also discuss the unique experimental con-

sequences of the proposed multi-particle superconductor.

6.2 Theory

To explore the possibility of multi-particle superconductivity we examine a two-spin

fermionic system with an attractive contact interaction. The quantum partition

function, Z =
∫
D(ψ, ψ̄)e−S[ψ,ψ̄], depends upon the BCS action

S[ψ, ψ̄] =
∑

ω,k,σ

ψ̄k,σ(−iω + ξk,σ)ψk,σ − g
∑

ω,k,k′,q

ψ̄k,↑ψ̄q−k,↓ψq−k′,↓ψk′,↑,

where ψk,σ and ψ̄k,σ are a fermion field and its Grassmann conjugate, for momentum

k and spin species σ ∈ {↑, ↓}, ξk,σ is the species-dependent dispersion, g > 0 is

the strength of the attractive contact interaction, and ω is a fermionic Matsubara

frequency. In this expression the momenta q, referred to henceforth as q-vectors,

give the net momentum of coupled fermions. We perform a Hubbard-Stratonovich

decoupling in the Cooper channel, using a concise matrix formalism to express the

action as

S[ψ,ψ̄,∆,∆∗] =
∑

ω,k

(
ψ̄↑
ψ↓

)T(
G−1
↑ −∆

−∆† G−1
↓

)(
ψ↑
ψ̄↓

)
+
∑

ω

Tr
(
∆†∆

)

g
, (6.1)

where the vectors ψσ = (ψ(qσ1+ςσk),σ,ψ(qσ2+ςσk),σ, . . .)T, with ς↑ = +1 and

ς↓ = −1, the Grassmann conjugates ψ̄σ are similar, the matrices G−1
σ =

diag(G−1
(qσ1+ςσk),σ,G−1

(qσ2+ςσk),σ, . . .), for G−1
p,σ = −iω + ςσξp,σ, and

∆ =




∆q↑1+q↓1 ∆q↑1+q↓2 · · ·
∆q↑2+q↓1 ∆q↑2+q↓2 · · ·

...
...

. . .


 ,
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where the qσi run over all the q-vectors of species σ. We label the number of fermions,

and hence the number of q-vectors, per species by Nσ: therefore the G−1
σ are Nσ×Nσ

matrices and ∆ is an N↓×N↑ matrix. We shall find that in spin-imbalanced systems

N↑ 6= N↓, indicating that ∆ is rectangular rather than square, so that different

numbers of fermions from each species are involved in the underlying instability.

However, in common with the few-particle analysis in Chapter 5, the quadratic

form of Eq. (6.1) in fermion fields ensures that fermions only couple pairwise. In the

system represented by Fig. 6.1, where there are three up-spin and one down-spin

fermions involved in the underlying instability, ∆ would be a 1× 3 matrix.

The elements of the ∆ matrix gap the dispersion. For single-plane-wave FFLO

superconductivity [173] ∆ has only a single entry, and for crystalline FFLO su-

perconductivity [175, 176] it is diagonal. The non-diagonal form here allows multi-

particle superconductivity, as the fermion pairing is not exclusive, with the under-

lying instability consisting of N↑N↓ pairs that share fermions. We focus on su-

perconductivity built from a single multi-particle instability, where ∆ is not block-

diagonalisable, and which is comparable to single-plane-wave FFLO superconductiv-

ity. For simplicity of analysis we assume that none of the q↑i+q↓j pairs of q-vectors

in ∆ are degenerate. Following Chapter 5 the qσi vectors are taken to be sufficiently

different from each other that each ψp,σ appears at most once in Eq. (6.1).

With this expression for the action, working in the mean-field approximation

we can carry out a Ginzburg-Landau expansion of the regularised thermodynamic

potential Ω = −T lnZ, where T is the temperature, to obtain

Ω = T
∑

ω,k

∞∑

n=1

1

n
Tr
(
G↑∆G↓∆†

)n
+

Tr
(
∆†∆

)

g
.

To make progress with this expression, we symmetrise the coupling amplitudes,

∆q = ∆. Near to the second-order transition to the normal state we may neglect

the effect of high-order terms in ∆, allowing us to truncate the expression for the

thermodynamic potential to

Ω = α∆2 +
1

2
β∆4 + . . . , (6.2)
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where

α =
∑

q↑,q↓

(
1

g
+ T

∑

ω,k

Gq↑+k,↑Gq↓−k,↓

)
,

β = T
∑

q↑1,q↓1,
q↑2 q↓2

∑

ω,k

Gq↑1+k,↑Gq↓1−k,↓Gq↑2+k,↑Gq↓2−k,↓.

To evaluate these expressions, we focus on a two-dimensional system where we ex-

pect multi-particle superconductivity to be most energetically favourable over FFLO

superconductivity. We also specialise to the case of small Debye frequency, found

for many conventional superconductors [183–185], where the vectors qσi are all ex-

pected to be approximately parallel. This enables us to factorise out combinatorial

factors, giving

α = N↑N↓

(
1

g
+ T

∑

ω,k

Gq+k,↑Gq−k,↓

)
,

β = N↑N↓
[
J0 + (N↑ − 1)J↑ + (N↓ − 1)J↓ + (N↑ − 1)(N↓ − 1)J↑↓

]
, (6.3)

where J0 = J(q, q, q, q), J↑ = J(q + δq↑, q, q− δq↑, q),

J↓ = J(q, q + δq↓, q, q− δq↓), and J↑↓ = J(q + δq↑, q + δq↓, q− δq↑, q− δq↓),
with

J(q1, q2, q3, q4) = T
∑

ω,k

Gq1+k,↑Gq2−k,↓Gq3+k,↑Gq4−k,↓. (6.4)

In the expressions Jx, q is taken to represent the average q-vector for the fermions,

symmetrised between species, and δqσ is half the average separation between q-

vectors for species σ, which in the small Debye frequency limit is orthogonal to

the vector q. Following the method of Ref. [176], for a free dispersion the function

J(q1, q2, q3, q4) may be evaluated at zero temperature as detailed in Appendix D,

to give

J(q1, q2, q3, q4) =
N

4δµ2
Re

∫ 1

0

dxdy
[
1−

(
|q1(x−1)+q2(y−x)−q3y|kF

δµ

)2
]3/2

, (6.5)
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where N is the density of states in energy, δµ = (k2
↑F − k2

↓F)/4 is the chemical

potential difference between the species, kF = (k↑F + k↓F)/2 is the average Fermi

momentum, and kσF is the Fermi momentum of species σ. Eq. (6.5) confirms that

for a single instability β ≥ 0, justifying the truncation in Eq. (6.2).

We wish to identify the optimal ratio of number of fermions involved in the

multi-particle superconductor, which for FFLO superconductivity would be unity.

To demonstrate that the optimal ratio of number of fermions involved in the multi-

particle superconductor differs from unity, we express Eq. (6.2) as a function of

N↑/N↓ and N↑N↓, and then optimise Ω with respect to N↑/N↓, N↑N↓, and ∆ si-

multaneously. This gives the expected ratio of number of fermions involved in the

underlying instability as

N↑
N↓

=
J↑↓ − J↓
J↑↓ − J↑

=

( |δq↑|
|δq↓|

)2

, (6.6)

where the last equality was obtained from Eq. (6.5) through substitution of the

evaluated forms of the Jx expressions.

To put this expression in terms of physical parameters, we follow the prescrip-

tion of Chapter 5 that the angular widths of the regions of Fermi surface involved

in the multi-particle superconducting state are the same between species, and so

|δq↑|/k↑F = |δq↓|/k↓F. Therefore |δq↑|/|δq↓| = k↑F/k↓F = ν↑/ν↓, where νσ = 2πkσF

is the density of states in momentum at the Fermi surface of species σ in two di-

mensions, and so

N↑
N↓

=

(
ν↑
ν↓

)2

. (6.7)

This result confirms that the superconducting state is indeed formed from a multi-

particle instability to take advantage of all available correlations in spin-imbalanced

systems, as ν↑/ν↓ 6= 1 in a spin-imbalanced Fermi gas. Eq. (6.7) also aligns with our

heuristic expectation that the instability involves more fermions of the species with

the larger density of states in momentum at its Fermi surface, as was also found in

the few-particle case in Chapter 5. The particular value of 2 in the exponent comes

from the dispersion used in this analysis, and other values for the exponent (always

greater than 1) are obtained with different dispersions. For spin-balanced systems,
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ν↑ = ν↓ and so N↑/N↓ = 1, recovering the BCS theory result, whilst in the polaron

limit of a single minority-spin impurity in a full Fermi sea of majority-spin fermions,

the single minority-spin fermion couples with all the majority-spin fermions at their

Fermi surface, in agreement with results from the literature [214,215].

The same optimisation procedure that gave Eq. (6.6) for the ratio N↑/N↓ also

provides an expression for the product N↑N↓, as

N↑N↓ =
(J0 − J↑ − J↓ + J↑↓)

2

(J↑↓ − J↑) (J↑↓ − J↓)
. (6.8)

For reasonable values of the |δqσ| and |q| in spin-imbalanced systems this expres-

sion gives values of N↑N↓ > 1, confirming that the multi-particle superconductor is

indeed made up of multiple fermions of at least one spin species. Excessively high

N↑N↓ is energetically penalised by the highest term in the expansion of the ther-

modynamic potential, which goes as (N↑N↓∆2)n, and so we expect multi-particle

superconductivity to have both Nσ being reasonably small integers. In the spin-

balanced limit Eq. (6.8) collapses to the BCS result N↑N↓ = 1.

Now that we have shown that the multi-particle superconductor is energetically

favourable over single-plane-wave FFLO superconductivity in a spin-imbalanced

Fermi gas, we need to confirm that we have not compromised the stability of the

superconducting state. We validate this by examining the phase boundaries between

the multi-particle superconductor and three competitor phases.

With increasing spin-imbalance, BCS superconductivity becomes unstable

against FFLO superconductivity at the Chandrasekhar-Clogston limit [216, 217].

Although multi-particle superconductivity is energetically favourable over FFLO

superconductivity, BCS superconductivity still has a large density-of-states advan-

tage over multi-particle superconductivity, and to a first approximation the phase

boundary between BCS superconductivity and multi-particle superconductivity will

remain at the same Chandrasekhar-Clogston value.

The phase boundary between multi-particle superconductivity and the normal

state will also remain the same as between single-plane-wave FFLO superconduc-

tivity and the normal state. In both cases the second-order phase transition occurs

when α = 0, and this condition is identical between FFLO and multi-particle su-

perconductivity, up to the irrelevant multiplicative factor of N↑N↓ in Eq. (6.3), and

so the phase boundary is also identical.
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Stability against phase separation can be expressed as the positive-definiteness

of the total particle number susceptibility matrix [218,219]. This condition includes

the possibility of separation into two superconducting phases, with ratios of number

of fermions differing from that predicted in Eq. (6.6), and may be expanded following

Eq. (6.2), to leading order in ∆ giving

α
∂2α

∂q2
> 2

(
∂α

∂q

)2

.

This is the same as the equivalent expression for FFLO superconductivity, up to

a factor of (N↑N↓)2 that cancels between the two sides of the inequality. This

indicates that the line of stability against phase separation is the same for multi-

particle superconductivity as for FFLO superconductivity to leading order.

6.3 Discussion

Having seen that multi-particle superconductivity is energetically favourable over

FFLO superconductivity, and fills the same region of the phase diagram of imbal-

anced Fermi gases, we now consider its possible experimental consequences. We

focus on two effects where the multi-particle nature of the underlying instability

should be directly observable.

Multiple phase transitions: With increasing spin-imbalance, Eq. (6.7) predicts

that the ratio N↑/N↓ should increase. Starting from the BCS state with N↑/N↓ = 1

the system should progress through multi-particle superconductors with increasing

values of N↑/N↓, where both Nσ are reasonably small integers, giving a series of

different superconducting states. Each transition is expected to be second order,

and so the multi-particle superconducting phase would be characterised by a series

of divergences in the heat capacity. This effect could be measured by changing

the population imbalance between different realisations of an ultracold atomic gas

experiment.

Superconducting order parameter: In real space the order parameter, the

phase-weighted sum of the ∆q, will exhibit a beat pattern due to the interference
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between similar q-vectors, which could allow the identification of the particular q-

vectors in the underlying multi-particle instability. The order parameter could be

determined in an ultracold atomic gas experiment through density-density correla-

tions measured from time-of-flight experiments [220].

Beyond these experimental signatures, multi-particle superconductivity also in-

troduces the notion that the number of fermions in the building block of a super-

conductor is not fixed at two. In particular, there can be fluctuations in the number

of fermions in the underlying instability, which could lead to the renormalisation of

the properties of a spin-balanced superconductor. Although the discussion above

focusses on single multi-particle instabilities as the basis of multi-particle supercon-

ductivity, comparable to single-plane-wave FFLO superconductivity, the analysis is

generalisable to systems more akin to crystalline FFLO superconductivity [176]. We

take crystalline FFLO superconductivity as a guide for the likely modifications when

multi-particle superconductivity is built from several instabilities.

In this Chapter we have introduced the idea of a multi-particle superconductor,

whose underlying instability is composed of more than two fermions to facilitate the

use of all available inter-particle correlations. We have shown that multi-particle

superconductivity is energetically favourable over FFLO superconductivity in spin-

imbalanced Fermi gases, exists throughout a similar portion of the phase diagram,

and that the multi-particle instability underlying this novel form of superconductiv-

ity should give clear experimental signatures.

We thank Adam Nahum, Johannes Hofmann, Johannes Knolle, Jens Paaske,

Robin Reuvers, Darryl Foo, and Victor Jouffrey for useful discussions.



Chapter 7

Conclusion

This Thesis has developed multiple facets of the field of interacting Fermi gases. In

Part I, the focus was on developing new approaches to computational methods for

studying interacting Fermi gases using quantum Monte Carlo methods. The devel-

opment in Chapter 2 of a pseudopotential for the two-dimensional dipolar interaction

has opened up the possibility of examining the phase diagram of the homogeneous

dipolar gas in more detail than was previously attainable, potentially gaining more

insight into the speculative stripe phase [48] that has been predicted analytically but

never observed numerically or experimentally. The pseudopotential formalism itself

is also open to more development; this Thesis has furthered the development of ultra-

transferable pseudopotentials, which in Chapter 3 were shown to be much more ac-

curate in capturing the pathological two-dimensional contact interaction than more

well-established alternatives. Further develoments of the pseudopotential formalism

are certainly possible, however: the true, physical, interaction between particles in

an ultracold atomic gas is not the contact interaction, but the more complex Fesh-

bach resonance interaction. It will be possible to construct pseudopotentials for the

Feshbach resonance, including the effects of high-order scattering properties, and

indeed the first steps have already been taken in this direction [221,222].

Chapter 4 continued the theme of accelerating numerical simulations by propos-

ing a new form of Jastrow correlation factor, which interpolates between the physical

symmetry of a Coulomb interparticle interaction and the imposed symmetry of the

simulation cell. Beyond being more conceptually elegant than existing alternatives,

not having a need for hard cutoffs to account for finite simulation cell sizes, the pro-
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posed Jastrow factor reduces the parameter space to be explored when optimising

simulations and is quicker to evaluate than other similar expressions. These prop-

erties make it attractive for taking forwards into a whole range of quantum Monte

Carlo simulations, where is will simplify the life of the simulation-runner, and it

also lays the groundwork for a new way of thinking about parameters in simula-

tion cells: all physical coordinates can be re-expressed in terms of variables that

hold the symmetry of the simulation cell, to bind the simulation to its cell more

tightly. This could be of particular use in modelling periodic effects with large am-

plitudes compared to the simulation cell size, as found for example in the modelling

of large-amplitude phonons in density functional theory.

The focus in the second Part of this Thesis was slightly different, identifying a

possible new phase of superconducting matter in a particular type of interacting

Fermi gas, a spin-imbalanced gas with attractive contact interactions. In Chapter 5

an instability was identified in this system towards the formation of multi-particle

instabilities, generalisations of the famous Cooper pair. Chapter 5 used both ana-

lytic and numerical methods to determine that these multi-particle instabilities are

the energetically favourable instability in spin-imbalanced Fermi gases, opening up

a new paradigm of superconductivity formed from multiple interacting fermions.

The first development of this theory was expounded in Chapter 6, where an analysis

of the energy of the superconducting state confirmed the suspicion that involving

more degrees of freedom in the underlying instability should improve the energy

of the macroscopic state. This Chapter also suggested some experimental signa-

tures of the multi-particle superconducting phase, in particular those that should

be easily observable in current-generation ultracold atomic gas experiments. Nev-

ertheless, Chapter 6 was only the first stage of development of this theory, and

future refinements are sure to come. As of the time of writing, numerical simula-

tions are being carried out (using pseudopotentials akin to those from Chapter 3

and the ν Jastrow factor from Chapter 4) to try to distinguish the multi-particle

superconducting phase, with first results that appear promising. Beyond the par-

ticular superconducting theory developed in Chapter 6, the underlying concept of

phases built from multiple particles rather than the pairs that couple directly in the

Hamiltonian should be widely applicable to other areas of physics, with analogous

derivations.

These are the results of this Thesis; developments in the theoretical analysis
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of interacting Fermi gases, some incremental and others hopefully more substan-

tial, which are already forming the basis of new and exciting discoveries, with fu-

ture opportunities abound. From avoiding numerical pathologies to suggesting new

paradigms of superconductivity, this Thesis will hopefully provide some inspiration

or support to the next generation of physicists, making up but one step on the

ever-growing ladder of understanding that supports them.
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Appendix A

Construction of the

Troullier–Martins

pseudopotentials

The Troullier–Martins formalism is a method for developing pseudopotentials that

were originally designed for use in electron-ion calculations [68]. Here, following

Reference [61] we adapt it to the case of a 2D dipolar potential. The scattering

Schrödinger Equation (2.1) may be written in 2D circular coordinates (r,φ) as

−
(

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂φ2

)
ψ(r,φ) + V (r)ψ(r,φ) = Eψ(r,φ) ,

where we wish to replace the dipolar potential V (r) = d2/r3 with a pseudopoten-

tial inside a cutoff radius rc. Expanding the wavefunction in angular momentum

channels as

ψ(r,φ) =
∞∑

`=0

r`ψ`(r) cos(`φ)

we obtain a radial equation for the wavefunction ψ` in each channel

−
(

2`+ 1

r
ψ′` + ψ′′`

)
+ V (r)ψ` = Eψ` , (A.1)
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where the primes indicate differentiation with respect to r. We choose a calibration

energy Ec at which the pseudopotential will exactly replicate the dipolar potential’s

scattering characteristics, whose optimal choice is found in Appendix B to be EF/4.

We then construct the pseudopotential by working from a pseudo-wavefunction that

within a radius rc takes the form

ψpseudo,`(r) = ep(r) ,

where p(r) =
∑6

i=0 cir
2i. The form ep(r) is positive definite, which ensures that no

spurious nodes are introduced into the wavefunction. Inserting the wavefunction

into Eq. (A.1) we find that the pseudopotential in each angular momentum channel

` should take the form

VT–M(r) =

{
Ec + 2`+1

r
p′ + p′2 + p′′, r < rc,

d2/r3, r ≥ rc .
(A.2)

In order to calculate p(r) explicitly we impose a series of constraints on it: firstly,

that the pseudo-wavefunction’s value and first four derivatives match those of the

exact wavefunction at rc, in order that the first two derivatives of the pseudopotential

are continuous,

p(rc) = ln

(
R`(rc)

r`+1
c

)
,

p′(rc) =
R′`(rc)

R`(rc)
− `+ 1

rc

,

p′′(rc) = V (rc)− Ec − (p′(rc))
2 − 2`+ 1

rc

p′(rc),

p′′′(rc) = V ′(rc)− 2p′(rc)p
′′(rc)−

2`+ 1

rc

p′′(rc) +
2`+ 1

r2
c

p′(rc),

p′′′′(rc) = V ′′(rc)− 2(p′′(rc))
2 − 2p′(rc)p

′′′(rc)

− 2`+ 1

rc

p′′′(rc) + 2
2`+ 1

r2
c

p′′(rc)− 2
2`+ 1

r3
c

p′(rc),

where R`(r) = rψdipole,`(r). The polynomial form of p(r) ensures that this is a set

of linear equations in the coefficients ci, and so has a straightforward solution. We
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also require that the pseudo-wavefunction has zero curvature at the origin,

c2
2 = −c4(2`+ 4),

and that the norm of the pseudo-wavefunction within the cutoff radius is the same

as that from the exact potential, to conserve the physical particle weight

2c0 + ln

(∫ rc

0

r2`+1 exp (2p(r)− 2c0) dr

)
= ln

(∫ rc

0

|ψdipole,`(r,φ)|2rdr
)

.

This fully specifies p(r) and hence, via Equation (A.2), VT–M. We solve these equa-

tions simultaneously for the ci, always taking the branch of the quadratic equation

that gives the smaller value for c0, which in turn gives a larger reduction in variance

for simulations using the pseudopotential.





Appendix B

Choosing a calibration energy

The Troullier–Martins formalism for deriving pseudopotentials is designed to give

exact scattering properties at the calibration energy. The norm-conservation condi-

tion may also be considered as requiring that the derivative of the phase shift with

respect to energy evaluated at the calibration energy ∂∆δ/∂E|Ec = 0 [61]. This

means that to leading order the error in the scattering phase shift when using a

Troullier–Martins pseudopotential ∆δ ∝ (E −Ec)
2. Expressing this in terms of the

relative momentum k1 − k2 of the two scattering particles with momenta k1, k2,

the scattering phase shift error ∆δ(|(k1 − k2)/2|2) ∝ (|(k1 − k2)/2|2 − k2
c )2 where

kc =
√
Ec is the calibration wave vector. To find the optimum calibration wave vec-

tor we average this error over the Fermi sea for particles 1 and 2 and then minimise

with respect to kc. The average

〈∆δ〉 =

∫
∆δ

(∣∣∣∣
k1 − k2

2

∣∣∣∣
2
)
n(k1)n(k2) dk1 dk2

∫
n(k1)n(k2) dk1 dk2

, (B.1)

where n(k) is the Fermi-Dirac distribution, can be re-written in terms of centre-of-

momentum and relative coordinates x = (k1 − k2)/2kF, y = (k1 + k2)/2kF, which

transforms Equation (B.1) into [75]

〈∆δ〉 ∝
∫ 2π

0

∫ 1

0

∫ y0(x,φ)

0

∆δ(k2
Fx

2)x y dy dx dφ ,
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where φ is the angle between x and y and the function y0(x,φ) = −x| cosφ| +√
1− x2 sin2 φ. This then simplifies to

〈∆δ〉 ∝
∫ 1

0

x∆δ(k2
Fx

2)
(
π − 2

(
x
√

1− x2 + arcsinx
))

dx ,

and substituting the form of ∆δ ∝ (k2
Fx

2 − k2
c )2 from above the optimum value of

kc is found to be kF/2, and hence the optimum calibration energy Ec = EF/4.



Appendix C

Symmetry-related vectors for the

ν term

Here we enumerate the {A} and {B} vectors for use in the ν term for some common

simulation-cell geometries.

C.1 Cubic cell

For a cubic cell with lattice vectors a1 = a[100], a2 = a[010], a3 = a[001], the

symmetry-related vectors take the form

{A} =
1

2π
{a1, a2, a3}

{B} = {b1, b2, b3}.

C.2 FCC cell

For a face-centred cubic cell with lattice vectors a1 = a
2
[011], a2 = a

2
[101], a3 =

a
2
[110], the symmetry-related vectors take the form

{A} =
1

8π
{3a1 − a2 − a3, 3a2 − a3 − a1, 3a3 − a1 − a2, a1 + a2 + a3}

{B} = {b1, b2, b3, b1 + b2 + b3}.
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C.3 BCC cell

For a body-centred cubic cell with lattice vectors a1 = a
2
[1̄11], a2 = a

2
[11̄1], a3 =

a
2
[111̄], the symmetry-related vectors take the form

{A} =
1

8π
{2a1 + a2 + a3, 2a2 + a3 + a1, 2a3 + a1 + a2, a1 − a2, a1 − a3, a2 − a3}

{B} = {b1, b2, b3, b1 − b2, b1 − b3, b2 − b3}.

C.4 Hexagonal cell

For a hexagonal cell with lattice vectors a1 = a[100], a2 = a[1
2

√
3

2
0], a3 = c[001], the

symmetry-related vectors take the form

{A} =
1

6π
{2a1 − a2, 2a2 − a1, 3a3, a1 + a2}

{B} = {b1, b2, b3, b1 + b2}.



Appendix D

Calculation of the J integrals

The derivation of the value of N↑/N↓ depends on the form of the Jx expressions, in

particular J↑, J↓, and J↑↓. These are special cases of the general integral

J(q1, q2, q3, q4) = T
∑

ω,k

Gq1+k,↑Gq2−k,↓Gq3+k,↑Gq4−k,↓,

which we shall calculate here. This integral has been previously calculated in three

dimensions, for example in Ref. [176]. We start from Eq. (A5) in Ref. [176], which

holds for general dimensionality, and which in our notation reads

J =N
∫ 1

0

dx1dx2dy1dy2δ(x1 + x2 − 1)δ(y1 + y2 − 1)

×
∫

dω

2π

dk̂

2π
dξ(ξ − δµ+ iω + 2l · k̂)−2

× (ξ + δµ− iω + 2p · k̂)−2, (D.1)

where N is the density of states, l = x2(q1 − q2), p = y1q1 + y2(q1 − q2 + q3), the

xi and yi are Feynman parameters, ω is the Matsubara frequency, k̂ is the angular

component of momentum, ξ a measure of the kinetic energy, and δµ is the chemical

potential imbalance.

We first carry out the ξ integral. As Eq. (D.1) is convergent we extend the limits
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on the integral to ±∞, and use the method of residues to obtain

J =N
∫ 1

0

dx1dx2dy1dy2δ(x1 + x2 − 1)δ(y1 + y2 − 1)

×
∫

dω

2π

dk̂

2π
sgn(ω)

2πi

4
(

(p− l) · k̂ + δµ− iω
)3 . (D.2)

We then use the method of residues again to carry out the k̂ integral, using (p−l)·k̂ =

|p− l|kF cos θ. This leaves us with

J =N
∫ 1

0

dx1dx2dy1dy2δ(x1 + x2 − 1)δ(y1 + y2 − 1)

×
∫

dω

2π
sgn(ω)

π

4

|p− l|2k2
F + 2(δµ− iω)2

(|p− l|2k2
F − (δµ− iω)2)

5/2
. (D.3)

As the integrand in Eq. (D.3) depends only on iω, we use

∫ ∞

−∞
dωsgn(ω)

(
· · ·
)

= 2Re

∫ ∞

0

dω
(
· · ·
)

to rewrite Eq. (D.3) as

J =
N
4

∫ 1

0

dx1dx2dy1dy2δ(x1 + x2 − 1)δ(y1 + y2 − 1)

× Re

∫ ∞

0

dω
|p− l|2k2

F + 2(δµ− iω)2

(|p− l|2k2
F − (δµ− iω)2)

5/2
. (D.4)

The remaining integral may be carried out using conventional methods to obtain

J =
N

4δµ2
Re

∫ 1

0

dx1dx2dy1dy2
δ(x1 + x2 − 1)δ(y1 + y2 − 1)

(
1−

(
|p−l|kF

δµ

)2
)3/2

.

To recover the result in the main text we then substitute in l and p, and carry out
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the x1 and y1 integrals. This leaves us with

J =
N

4δµ2
Re

∫ 1

0

dxdy
(

1−
[
|q1(x−1)+q2(y−x)−q3y|kF

δµ

]2
)3/2

.
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