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Abstract.3

We describe a quantitative magnetic unmixing method based on princi-4

pal component analysis (PCA) of first-order reversal curve (FORC) diagrams.5

For PCA we resample FORC distributions on grids that capture diagnos-6

tic signatures of single-domain (SD), pseudo-single-domain (PSD), and multi-7

domain (MD) magnetite, as well as of minerals such as hematite. Individ-8

ual FORC diagrams are recast as linear combinations of end-member (EM)9

FORC diagrams, located at user-defined positions in PCA space. The EM10

selection is guided by constraints derived from physical modeling and im-11

posed by data scatter. We investigate temporal variations of two EMs in bulk12

North Atlantic sediment cores collected from the Rockall Trough and the Iberian13

Continental Margin. Sediments from each site contain a mixture of magne-14

tosomes and granulometrically distinct detrital magnetite. We also quantify15

the spatial variation of three EM components (a coarse silt-sized MD com-16

ponent, a fine silt-sized PSD component, and a mixed clay-sized component17

containing both SD magnetite and hematite) in surficial sediments along the18

flow path of the North Atlantic Deep Water (NADW). These samples were19

separated into granulometric fractions, which helped constrain EM defini-20

tion. PCA-based unmixing reveals systematic variations in EM relative abun-21

dance as a function of distance along NADW flow. Finally, we apply PCA22

to the combined dataset of Rockall Trough and NADW sediments, which can23

be recast as a four-EM mixture, providing enhanced discrimination between24

components. Our method forms the foundation of a general solution to the25
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problem of unmixing multi-component magnetic mixtures, a fundamental26

task of rock magnetic studies.27
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1. Introduction

Quantifying magnetic particle ensembles in rocks and sediments is a fundamental task28

in virtually all paleomagnetic and environmental magnetic studies. The magnetic state29

of a particle is highly sensitive to its size and shape, changing from superparamagnetic30

(SP) to stable single-domain (SD) to pseudo-single-domain (PSD) and finally to multi-31

domain (MD) as the particle size increases from a few tens of nanometers to several tens of32

micrometers. Rock and mineral magnetists have devised an extensive “toolbox” of mag-33

netic methods designed to reveal the presence of different magnetic states within a sample34

[Robertson and France, 1994; Kruiver et al., 2001; Heslop et al., 2002; Egli , 2004; Dunlop35

and Carter-Stiglitz , 2006; Heslop and Dillon, 2007; Lascu et al., 2010; Heslop and Roberts ,36

2012a, b; Heslop, 2015]. The problem is that most natural samples contain a complex,37

multi-component mixture of different magnetic phases with a wide range of particle sizes38

derived from a variety of possible sources. The convolution of magnetic signals from these39

different mineral populations results in complex bulk magnetic signatures, which reflect40

the totality of factors that have influenced the history of the magnetic ensemble, e.g.,41

crystallization or depositional conditions, weathering and alteration, provenance, trans-42

port processes, climatic and environmental variability, etc. While current techniques are43

successful at revealing qualitative trends in behaviour, they do not lend themselves read-44

ily to obtaining an unambiguous quantitative unmixing of the SP, SD, PSD, and MD45

fractions present.46

First-order reversal curve (FORC) diagrams provide a potential solution to this prob-47

lem. FORCs are an advanced method of characterizing the magnetic properties of a48
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sample, and are highly sensitive to variations in grain size. This sensitivity derives from49

the strong variation in magnetic domain state with increasing grain size, which manifests50

itself in FORC diagrams as a gradual change from horizontal to vertical spreading of the51

FORC distribution. FORCs allow researchers to fingerprint domain states, extract coer-52

civity distributions for these domain states, and detect geometry-specific magnetostatic53

interaction fields rather unambiguously [Pike et al., 1999; Roberts et al., 2000, 2014]. They54

can be simulated using well-established physical models of magnetic behavior [Harrison55

and Lascu, 2014]. In addition, recent developments allow the quantification of diagnos-56

tic FORC signatures, such as those of non-interacting SD particles and magnetosome57

(magnetite crystal produced by magnetotactic bacteria) chains, in particular the so-called58

“central ridge”, a narrow positive feature along the horizontal axis of a FORC diagram59

[Egli et al., 2010; Egli , 2013; Ludwig et al., 2013; Heslop et al., 2014].60

A further development towards quantification of FORC diagram signatures has been61

proposed by Heslop et al. [2014], who employed principal component analysis (PCA)62

on extracted central ridge coercivity distributions to highlight inter- and intra-sequence63

variability in magnetosome-rich ocean sediment sequences. However, focusing solely on64

central ridges means ignoring other SD signatures, as well as non-SD contributions to65

the FORC diagram, which are often the most abundant components in geological sam-66

ples. In this study we perform PCA on a subset of the FORC space that encompasses all67

significant magnetic signatures, and use the PCA space as the canvas for developing a su-68

pervised unmixing model [Heslop, 2015]. PCA provides an objective and robust statistical69

framework for unmixing, because it represents data variability as a linear combination of70

n significant principal components (PCs) that are derived purely on the basis of natural71
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variations contained within the dataset, unbiased by user input [Abdi and Williams , 2010;72

Wold et al., 1987]. With appropriate data normalization, the n-dimensional PCA space73

can then be used to define a mixing region for a system with n+1 end members (EMs),74

represented here by known domain state FORC signatures, which are assumed to be ef-75

fectively unchanging throughout the sample set. By using PCA we allow for the freedom76

to constrain the EMs to adhere to a set of well defined criteria that include the require-77

ment that model EMs correspond to physically realistic domain state FORC signatures.78

To impose constraints on the EMs we use samples characterized by a limited number79

of domain state signatures. To ensure this, the samples have been either selected from80

sedimentary environments with a limited number of magnetic components, or have been81

physically separated in the laboratory to produce narrow grain size fractions. We test82

binary, ternary and quaternary mixtures, and demonstrate how the method provides the83

foundation of a general solution to the problem of unmixing multi-component magnetic84

ensembles.85

2. Methods

2.1. Samples and FORC Acquisition

The samples used in this study are from North Atlantic sediment cores (Table 1). The86

first batch of samples is from giant piston core MD04-2822, recovered by the RV Marion87

Dufresne from the distal margin of the Barra Fan in the Rockall Trough, NW of the British88

Isles [Hibbert et al., 2010]. A 1.5 m core section spanning the Late Pleistocene−Holocene89

transition was sampled contiguously at 2 cm intervals and the bulk sediment was used for90

FORC acquisition. A second batch of samples comes from two surface cores (SHAK-06-91

5M-C and SHAK-10-9M-F) collected from the Iberian Continental Margin using a Bowers92
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and Connelly multiple corer during expedition 89 of the RSS James Cook. The cores (∼3093

cm long) were sampled contiguously at 1 cm intervals, and selected samples (every cm in94

the upper 10 cm, and every 2 or 3 cm in the lower 20 cm) were used for FORC acquisition.95

A third batch of samples, used for the analysis of granulometric fractions, is from piston96

cores collected during Cruise 159 of the RSS Charles Darwin along the western margin of97

the Atlantic. The cores are located along the Deep Western Boundary Current (DWBC), a98

geostrophic current which carries Denmark Straights OverflowWater and Iceland-Scotland99

Overflow Water (precursors of North Atlantic Deep Water) from their formation sites in100

the North Sea southwards past Iceland, along the southern Greenland margin and into the101

Labrador Sea and North American margin. We focused on Late Holocene sediments from102

the tops of the three cores, RAPiD 10-6B (R10), RAPiD 29-18B (R29), and RAPiD 41-103

30B (R41). The silt and clay fractions were separated from the sand fraction by washing104

through a 63 µm sieve with deionized water. The <63 µm fraction was treated successively105

with acetic acid to dissolve carbonates, hydroxylamine hydrochloride to leach amorphous106

Fe-Mn oxides, and sodium carbonate to remove silica. The remaining siliciclastic sediment107

was gravity settled in sedimentation cylinders, and six size fractions were separated using108

Stokes’ Law: a clay-sized fraction (<4 µm) , and five silt-sized fractions (4-10 µm, 10-20109

µm, 20-30 µm, 30-40 µm, 40-63 µm). The grain-size distribution of each size fraction110

was measured using a Coulter Counter Multisizer 3 particle-size analyzer, confirming that111

the settling produced the grain size expected (with some overlap between neighbouring112

fractions). All sediment samples were dried and packed in gel caps. FORCs were acquired113

at field increments of 1-2 mT using Princeton Measurements Corporation vibrating sample114

magnetometers at the University of Cambridge and University of Florida.115
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2.2. Principal Component Analysis and Unmixing Model

Raw FORC data were imported in FORCinel [Harrison and Feinberg , 2008] and pro-116

cessed using the VARIFORC variable smoothing algorithm [Egli , 2013]. For each sample,117

we extracted a rectangular region of FORC space, capturing the horizontal and vertical118

range of signals associated with the domain states present in the FORC diagram. The119

selected region was down-sampled to a regular grid of points with a typical resolution of120

2-5 mT (Fig. 1). Down-sampling performs two important functions: it reduces the total121

number of data points D needed to define each FORC diagram, hence minimizing the122

processing and memory requirements of the PCA, and it allows FORCs acquired using123

different measurement parameters to be combined in a single analysis. Identical measure-124

ment and smoothing parameters used in data acquisition and processing are not critical,125

and may not even be justified in the case of very different samples (e.g., SD-dominated vs.126

MD-dominated). What is important is that the combination of measurement resolution127

and smoothing factor (SF) employed be consistent among samples used in the analysis.128

Grid resolutions of 2-5 mT are sufficient for routine high-resolution protocols (i.e., 0.5-1.5129

mT field increments, SF<4). However, we have noticed a significant drop off in quality130

for lower grid resolutions (>5 mT), with computing time improving only marginally. On131

the other hand, down-sampling resolutions <2 mT are computationally expensive, but are132

only necessary for special cases where ultra high-resolution measurement protocols (<0.5133

mT field increments) are justified.134

Each down-sampled FORC grid was rearranged as a one-dimensional vector (Fi) of size135

D, organized as a succession of vertical profiles (Fig. 1c, e). Fi is normalized to the sum136

D R A F T July 17, 2015, 10:38am D R A F T



LASCU ET AL.: FORC UNMIXING USING PCA X - 9

of its values, which results in the FORC datasets summing to unity:137

D∑
j=1

Fi(j) = 1 (1)138

The summation to a constant is essential to the model, as it provides the basis for em-139

ploying n+1 EMs in the unmixing, which can be represented in the n-dimensional PC140

space.141

PCA is a multivariate statistical analysis method applicable to datasets comprising ob-142

servations described by several inter-correlated variables, with the result of maximizing143

the variables’ covariance through solving an eigenvalue problem [Woocay and Walton,144

2008]. Hence, data from all samples were combined in a master matrix, with each row145

containing the data for one sample, i (i.e., the observations), and each column containing146

all the data for one pair of (Bc, Bi) FORC coordinates, j (i.e., the inter-correlated vari-147

ables). The vector containing the mean values of each column, A, was subtracted from all148

Fi vectors to center the data. PCA was performed via singular value decomposition on149

the covariance matrix of the centered data, using the built-in function in Igor Pro 6.36,150

which follows the operations and procedures described by Malinowski [1991].151

PCA represents a transformation of the original correlated variables to new orthogonal152

(uncorrelated) variables (i.e., the PCs), which are parallel to the eigenvectors of the co-153

variance matrix, and are constructed from linear combinations of the original variables.154

Each PC explains, in a successively decreasing residual manner, data variability not ac-155

counted for by the previous PC, i.e., the greatest mode of data variability is projected156

onto the first PC, the second greatest mode of variability is projected onto the the sec-157

ond PC, etc. The number n of PCs considered should be the minimum necessary for158

most of the data variability to be explained, while offering a meaningful framework for159
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interpreting the data in a geological context [Heslop and Roberts , 2012a]. In the datasets160

analyzed here n ≤ 3, with the first PC explaining ∼70% of the variability in the case of161

binary mixtures, and all considered PCs explaining >90% of the variability in the case162

of mixtures of more than two EMs. PC scores for each sample, Sk
i , were calculated as163

dot products of the resulting loading vectors, Lk, and the centered data for each sample164

(the superscript k denotes the specific PC being considered). A low-rank approximation165

to the FORC diagram of any given sample, F′
i, can be constructed from the scores of the166

selected subset of PCs and their corresponding loading vectors:167

F′
i = A+

n∑
k=1

Sk
i L

k (2)168

This approximation is a relatively noise-free version of the original FORC diagram, with169

most of the noise being contained in the higher rank PCs, which are not statistically170

significant. Thus, subtracting F′
i from Fi allows for the computation of the FORC resid-171

uals. The root mean square (RMS) of the residuals can be employed to detect outlier172

samples in PCA space, which may be detrimental to the the estimation of the unmixing173

model [Heslop, 2015]. The unmixing is performed within the n-dimensional PC score174

space. Eqn. 2 allows synthetic FORC diagrams to be constructed at any point in the175

score space. We identify n+1 EMs that a) define a subregion of the PC space enclosing176

all sample scores (except for outliers detected by residual analysis), and b) correspond to177

physically plausible FORC diagrams, that comprise, where possible, the signature of only178

one domain state. By “physically plausible” we mean that the constructed FORC diagram179

for each EM should correspond to an achievable FORC geometry based on knowledge of180

the magnetic mineralogy and the principles of physical modeling [Harrison and Lascu,181

2014]. To perform the unmixing the FORC diagram of each sample is recast as a linear182
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combination of the EMs:183

F′
i =

n+1∑
l=1

f l
iF

l (3)184

185

n+1∑
l=1

f l
i = 1 (4)186

where Fl is the FORC diagram of the lth EM being considered and f l
i is the proportion187

of that EM contributing to the sample (f l
i ∈ [0,1]). Substituting Eqn. 4 into Eqn. 3 and188

equating with Eqn. 2 leads to a set of n simultaneous equations that can be solved to189

obtain f l
i :190

Sk
i =

n+1∑
l=1

f l
iS

k
l (5)191

where k = 1 to n.192

3. Results

3.1. FORC Diagrams

The FORC diagrams of samples from core MD04-2822 in the Rockall Trough show a193

mix of fine and coarse grain signatures (Fig. 2a-b). The overall coarsest samples are Late194

Glacial and are a mix of coarse PSD and fine MD (lower peak coercivity, spreading of195

contours about the horizontal axis, a positive lobe in lower half of the diagram) magnetite196

(Fig. 2a), while the finest-grained samples are from the Early Holocene and comprise SD197

(higher peak coercivity, central ridge along horizontal axis, area of negative values next198

to the vertical axis) and PSD magnetite (Fig. 2b). The FORC diagrams of the Iberian199

Margin samples are a mix of SD and fine PSD grains (see typical sample in Fig. 2c).200

The FORC diagrams of the RAPiD samples are shown in Figs. 3, 4, and 5. The201

granulometric fractions are shown in order of grain size, from finest to coarsest (panels202

a-f), with the treated unseparated <63 µm fraction in panel g. For core R10 the bulk203
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untreated sample is shown for comparison (Fig. 3h). Qualitatively, there is very little204

difference between the bulk sediment and the treated 0-63 µm fraction, implying that the205

chemical treatments, especially leaching to remove Fe-Mn oxides, have not resulted in the206

dissolution of magnetic grains, and that the sand fraction (>63 µm), which is composed207

predominantly of calcite foraminifera, contributes very little to the sediment magnetism.208

Quantitatively, the two FORC diagrams have very similar PC scores (Fig. 9), which209

means that the 0-63 µm fraction is representative of the magnetic properties of the bulk210

sediment.211

Core R10, which is located just south of Iceland, has the finest-grained signature of the212

three cores, exhibiting a combination of SD and PSD (vertical spreading of contours, a213

positive lobe in lower half of the diagram at coercivities <100 mT, paired with an area214

of negative values to the right of the lobe) features, with an added contribution from215

hematite (Fig. 3h). The hematite signature can be seen as the statistically significant216

lobe below the horizontal axis at coercivities >100 mT (Fig. 3h, i). In the individual217

size fractions the hematite is well represented in the clay and fine silts (Fig. 3a-c), has218

a decreased contribution in the medium silt fractions (Fig. 3d, e), and, interestingly,219

increases in the coarsest silt fraction (Fig. 3f).220

Core R29, located just south of Greenland, has a coarser bulk signature than R10221

and smaller hematite contribution (Fig. 4g). The clay fraction is characterized by a222

combination of SD and PSD features. Lower peak coercivity, increased vertical spreading,223

development of a lobe in the lower half of the diagram at coercivities <100 mT, together224

with the disappearance of the negative region left of the lobe, and the development of a225

negative region right of the lobe all indicate a coarsening of the PSD grains in the fine226
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silt fractions (Fig. 4b, c). The coarsening trend continues in the medium and coarse227

silt fractions, which are dominated by MD grains (characterized by lower coercivities and228

pronounced vertical spread). The hematite contribution decreases gradually from the clay229

fraction, which has the highest concentration, to the fine and medium silt fractions, to230

being virtually absent in the coarsest silt fraction (Fig. 4a-f).231

Core R41, located east of Newfoundland, has the coarsest bulk signature and does232

not contain any hematite (Fig. 5g). The 0-4 µm and 4-10 µm fractions are dominated233

by PSD grains (Fig. 5a, b), while the other fractions (Fig. 5c-f) are notably MD-like234

(very low peak coercivity, wide v-shaped contours, well expressed negative region right235

of lobe). The clay fraction exhibits a central ridge and negative region along the vertical236

axis indicating the presence of SD particles (Fig. 5a). The central ridge is also expressed237

in the unseparated sediment (Fig. 5g).238

3.2. PCA and Unmixing

3.2.1. Binary Mixtures239

Both Rockall Trough and Iberian Margin datasets can be described as mixtures of two240

EMs. We use the Rockall Trough series to demonstrate the choice of EMs for a binary241

mixing model, as well as to compare the result of the PCA-based unmixing to quantitative242

unmixing using the central-ridge extraction method [Egli et al., 2010]. For the Iberian243

Margin series we analyze the data using two different sampling resolutions for the PCA244

grids to show that the PCA unmixing method yields similar quantitative results.245

3.2.1.1. Rockall Trough246

The variability in the Rockall Trough dataset is mainly accounted for by PC 1 (Fig. 6),247

which explains 70% of the data variability. PC 2, which explains 4% of the variability,248
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and PC 3, which explains 3% of the variability, are dominated by measurement noise.249

The series can be modeled as a binary mixture, with one EM being a non-interacting uni-250

axial SD component (EM1, Fig. 6a, b), and the other a coarse PSD/fine MD component251

(EM2, Fig. 6a, b). The EMs were chosen by moving along PC 1 outward from the limits252

of the dataset to the points where the model FORC diagrams of the EMs appeared to253

be composed mostly of a single component, and beyond which they became unrealistic254

physically (Fig. 6b). Unphysical FORCs are recognized by the appearance of negative255

signals in regions of the FORC space not predicted by physical modeling [Harrison and256

Lascu, 2014]. In this case PC 1 scores of -0.048 and 0.0135 provide EMs that satisfy these257

criteria. The PSD EM represents the detrital background sedimentation in the Rockall258

Trough, which appears to be decreasing in abundance upward across the Late Glacial.259

The SD EM displays all the diagnostic FORC signatures of non-interacting uniaxial SD260

grains, including a well-defined central ridge and anti-symmetric background signals about261

the −45° remanence diagonal [Newell , 2005; Egli et al., 2010; Ludwig et al., 2013]. These262

features are consistent with the presence of intact chains of bacterial magnetosomes [Egli263

et al., 2010; Li et al., 2012; Harrison and Lascu, 2014]). The presence of individual mag-264

netosomes and partial chains was confirmed by transmission electron microscopy (TEM)265

of magnetic extracts. The PSD EM fraction is plotted in Fig. 6c, along with an analogous266

curve obtained by computing the fraction of the background signal in the FORC diagrams,267

after extracting the central ridge using FORCinel [Harrison and Feinberg , 2008]. The two268

curves are very similar with respect to the direction of variability, but there are slight269

differences in their relative amplitudes. These discrepancies should be expected because270

of the different unmixing methodologies, which employ differing EMs (i.e., in the ridge ex-271
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traction method one EM is the extracted central ridge, while the other is the background272

signal, which incorporates both SD and PSD signatures).273

3.2.1.2. Iberian Margin274

In the Iberian Margin dataset, PC 1 explains 72% of the variability if the data is275

resampled at 5 mT resolution (Fig. 7a), and 68% of the variability if the data is resampled276

at 2 mT resolution (Fig. 7b). Higher rank PCs describe only a few percent of the277

variability and account mainly for measurement noise. Thus, this series can also be278

modeled as a binary mixture. The model EMs are a fine PSD component (Fig. 7a,279

b, insets on left), which reflects distal sedimentation of fine detrital magnetite from the280

Iberian Peninsula, and a weakly interacting SD component (Fig. 7a, b, insets on right),281

representing magnetosomes [Channell et al., 2013]. Even though qualitatively the FORC282

diagrams from the Iberian Margin cores show only subtle variations between samples,283

PCA is adept in discriminating between the EMs, albeit not as clear-cut as in the Rockall284

Trough case. For example, the PSD EM retains a small central ridge signal, while the285

SD EM contains a vestigial PSD signature above the horizontal axis (insets in Fig. 7a,286

b). The results generated via the 5 mT and 2 mT-resolution models are quantitatively287

comparable: Fig. 7c shows there is a 1:1 relationship between the proportions of the PSD288

EMs obtained from the two models, confirming that sampling resolution is not a crucial289

factor in quantifying the EM contributions.290

3.2.2. Ternary Mixtures291

3.2.2.1. Combined Rockall Trough and Iberian Margin Datasets292

The Rockall Trough and Iberian Margin datasets both contain an EM that is represen-293

tative for magnetosomes. The only constraint imposed in choosing the PC 1 score for this294
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EM was that the FORC diagram be physically realistic, and, where possible, comprise the295

signature of only one domain state. A further constraint can be imposed by combining the296

two datasets in the same PCA. The resulting score plot shows that two PCs explain most297

of the variability in the dataset (Fig. 8a). The bulk of the data variability is explained298

by PC 1 (87%), while PC 2 explains 9% of the variability. The two series appear as dis-299

tinct linear trends that converge to the same point (EM3 in Fig. 8a) on the fine-grained300

end of the datasets. At the coarse-grained ends of the trends, we found two EMs using301

the same criteria employed for the binary mixtures: a coarse PSD/fine MD EM and a302

fine PSD EM (EM1 and EM2 respectively in Fig. 8a), which resemble closely, but are303

not identical to the coarse-grained EMs calculated in the previous models (Figs. 6 and304

7). This is explained by different sedimentation regimes in the two depositional environ-305

ments: the Rockall Trough core is proximal to a glaciogenic submarine fan that received306

coarser-grained sediment in a shallower setting at the Pleistocene/Holocene transition,307

while the Iberian Margin samples are located on the distal continental shelf and subject308

to presently accumulating fine pelagic sediment. The three EMs constitute the vertices of309

a simplex that encompasses all the data points [Heslop and Roberts , 2012a], which we use310

as mixing space for a ternary unmixing model. The proportions of the EMs calculated311

via this model are shown in Fig. 8b. The ternary diagram shows that EM3 contributes312

between 10 and 30% of the FORC signal, values similar to those resulting from the bi-313

nary unmixing models. The fact that the SD EM is common to both datasets constitutes314

further evidence for the ubiquitous nature of magnetosomes in marine sediments [Roberts315

et al., 2012].316

3.2.2.2. RAPiD Cores317
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PCA of the RAPiD core samples yields two PCs that together describe 91% of the318

variability in the dataset (PC 1 accounts for 64% of the variability). The data can be de-319

scribed in terms of three EMs, which were chosen according to the criteria outlined above.320

To aid in the EM selection, we have included FORC diagrams for two synthetic magnetite321

samples, a PSD specimen (Wright Co. 3006, 1.0± 0.7 µm), and an MD specimen (Wright322

Co. 41183, 20± 12 µm). The EMs define a mixing space (Fig. 9a) that encompasses323

all the data points but one (R10 40-63 µm), which was treated as an outlier due to the324

large RMS of its residual FORC diagram. EM1 is MD, EM2 is PSD, and EM3 comprises325

both SD magnetite and hematite signatures (Fig. 9c). Including the outlier in the mixing326

space would have resulted in EM3 having unphysical features. EM1 is very similar to327

the coarsest size fraction of core R41, and not far off from the synthetic MD magnetite328

in the PC score plot, while EM2 is akin to to the synthetic PSD magnetite. EM3 has329

mixed characteristics because it is controlled by the FORC signatures of the clay-sized330

fractions, which include both SD and fine PSD magnetite grains, as well as hematite.331

The proportion of each EM in the RAPiD samples can be seen in Fig. 9b. The ternary332

diagram shows the samples from each core lying on distinct trends. The bulk samples333

have similar proportions to the 10-20 µm silts in the case of R10 and R41 and to the334

30-40 µm silts in the case of R29. The Iceland-proximal samples (core R10) are mainly335

mixtures of fine-grained magnetite and hematite (∼40-60% EM3). As grain size increases336

the proportion of EM2 decreases, with both EM1 and EM3 proportions increasing. The337

large amount of EM3 in the coarser silts can be explained by the presence of fine-grained338

magnetite inclusions in silicate grains and/or hematite coatings of large silt particles [Hat-339

field et al., 2013]. These fine grains are not physically separable from the coarser detrital340
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grains [Hatfield , 2014]. The samples from the cores proximal to Greenland (R29) and341

Newfoundland (R41) lie on approximately parallel trends, and exhibit increasing EM1342

proportions with increasing grain size. R29 contains a more important EM3 contribution343

than R41, suggesting that EM3 fraction represented by inclusions or coatings is being344

advected with fine and medium silts along the DWBC from areas proximal to Iceland,345

and progressively removed from the current by sedimentation with increasing distance346

from its source.347

3.2.3. Quaternary Mixture348

Finally, we demonstrate the power of PCA-based unmixing of FORC diagrams by show-349

casing the example of a higher-order mixture. PCA performed on the RAPiD dataset350

could not readily discriminate between SD magnetite and hematite. Applying PCA to351

the combined RAPiD and Rockall Trough datasets produces three PCs, which collectively352

explain 91% of the variability in the dataset (PC 1 accounts for 68%, PC 2 for 18% and353

PC 3 for 5%). The three-dimensional score space (Fig. 10a, Movie S1) illustrates how354

the Rockall Trough dataset does not lie in the same plane as the RAPiD dataset, but355

is oriented almost normal to this plane, with the SD-rich Holocene samples at the distal356

end of the series. The collective data can be described in terms of four EMs (Fig. 10b),357

with three of them similar to the ones described in the previous section (Fig. 9) and358

one markedly SD in nature. EM1 is MD, EM4 is PSD, EM3 is a mix of hematite and359

fine PSD magnetite (note the absence of definitive SD features compared to EM3 of the360

RAPiD ternary model), and EM2 is SD, but less clearcut non-interacting than in the361

binary mixture case (Fig. 6). In general, the EMs are less constrained than in the binary362

and ternary cases due to the scarcity of data points, which span only a limited region of363
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the three-dimensional simplex defining the mixing space. The quaternary diagram (Fig.364

10b, Movie S2) excludes one outlier, R10 40-63 µm, the same data point as in the previ-365

ous model, which has a large residual RMS error. The quaternary mixing model suggests366

that hematite is preponderant in EM3 of the RAPiD ternary mixing model, to the detri-367

ment of SD magnetite, and/or that the SD component of the RAPiD dataset comprises368

a combination of biogenic and lithogenic particles.369

4. Discussion

4.1. Choice of End Members

A key feature of PCA is that the PC scores and loading vectors are derived purely370

on the basis of the natural variations contained within the dataset, without the need371

for subjective user input. This is a powerful advantage over other FORC quantification372

approaches (e.g., central ridge extraction), which require case-specific curve fitting of ana-373

lytical expressions for each EM. The interpretation of the resulting PC space is, however,374

subjective within a given geological context, and the selection process of the EMs is con-375

ducted in supervised fashion. In principle, any combination of n+1 EMs that fully enclose376

the sample scores can be used as the basis for unmixing. Our aim is to choose EMs that377

reflect the true physical components of the system. FORC diagrams of natural samples378

have been studied extensively over the past 15 years, and a comprehensive knowledge of379

the range of FORC signatures associated with physically plausible EMs has been accu-380

mulated [Pike et al., 1999; Roberts et al., 2000; Carvallo et al., 2003; Muxworthy et al.,381

2005; Muxworthy and Williams , 2005; Newell , 2005; Egli , 2006; Chen et al., 2007; Egli382

et al., 2010; Church et al., 2011; Roberts et al., 2014]. Combined with strict constraints383

on the geometry of FORC diagrams provided by physical modeling [Harrison and Lascu,384
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2014], it is possible to reduce the subjectivity of EM choice. The choice of EMs becomes385

even less subjective when there is sufficient variation within the dataset to fully define386

the bounds of the mixing space. The granulometric separation approach adopted here is387

particularly useful in this context, as it dramatically expands the sampling of the mixing388

space when the number of bulk samples in the suite is small. Combining datasets and389

including standard FORC diagrams from well-characterized samples also helps in defining390

and/or confirming the choice of EMs. The more samples of a given class (e.g., marine391

sediments in this case) that can be combined in a global analysis, the more accurate and392

detailed the unmixing will become. This points to a potentially generalized approach to393

magnetic unmixing, whereby individual samples are projected onto a framework of loading394

vectors derived from suites of optimized reference FORC diagrams.395

The approach adopted here is akin to another multivariate statistical technique, fac-396

tor analysis (FA), but with the ability to impose constraints on the EMs [Valder et al.,397

2012], which is critical in the case of FORC diagrams. Like PCA, FA allows a reduc-398

tion in the number of variables that describe the system, and the identification of new399

variables (factors) that contain the underlying common structure of the original variables400

[Mellinger , 1987; Grande et al., 1996; Woocay and Walton, 2008]. However, in FA the401

common structure in the dataset is hypothesized [Temple, 1978], and unlike PCA, the402

method directly provides the set of EMs of the system (i.e., the factors). The major403

caveat of FA is that the resulting EMs do not necessarily represent physically plausible404

FORC signatures. Post-FA factor optimization methods do not guarantee realistic FORC405

geometries for the EMs either. Although outside the scope of this initial proof-of-concept406

study, the use of methods such as Independent Component Analysis (ICA, Hyvärinen407
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[1999]) may provide a more objective solution to defining the EMs of the system. Com-408

bined with image pre-processing, ICA is now routinely used in electron microscopy to409

perform blind source separation for spectral images [De la Peña et al., 2011]. Along with410

the envisaged development of libraries containing suites of reference FORCs, ICA presents411

particular promise in the quest to automatically identify realistic EMs (or at minimum412

provide initial estimates) for FORC unmixing.413

4.2. Physical Meaning of the Mixing Proportions

The FORC diagrams input into the PCA, as well as the ones calculated from Eqn. 2,414

are normalized to the sum of their values (Eqn. 1), which is approximately equivalent to415

normalizing with respect to the double integral of the FORC diagram. In an ideal case (i.e.,416

where only irreversible process contribute to the magnetization), the integral of a FORC417

diagram is equal to the saturation magnetization, Ms, enabling f l
i to be simply related to418

the mass or volume fractions of the corresponding EMs. In the general case, however, the419

integral of a FORC diagram is equal only to the irreversible component of magnetization,420

Mirs, where 0 < Mirs ≤ Ms. This is because purely reversible contributions to the421

magnetization disappear when calculating the mixed double derivative of M [Pike, 2003].422

Converting f l
i into mass or volume fractions then requires some knowledge of the relative423

contributions of reversible and irreversible magnetization to the total magnetization of424

each EM. If the EMs are physically accessible, then Mirs/Ms can be calculated directly425

from the experimental FORC diagram. For EMs derived purely from the PCA procedure,426

however, this quantity is not accessible directly and would have to be estimated from427

simulations or measurements of analogue systems. Differences between the unmixing428

proportions derived from PCA and those based on mass or volume fractions are anticipated429

D R A F T July 17, 2015, 10:38am D R A F T



X - 22 LASCU ET AL.: FORC UNMIXING USING PCA

to be greatest when EMs have very different values of Mirs/Ms (e.g. SP vs. SD, or SD430

vs. MD). To circumvent this issue, one can perform the PCA-based analysis directly on431

the measured magnetization curves, or include the reversible ridge [Pike, 2003] in the432

analysis. This approach would present the advantage of accounting for both irreversible433

and reversible contributions to the magnetization. However, its major disadvantage would434

be the inability to interactively explore the PC space for the purpose of visualizing and435

selecting EMs. In the included software (see Supplemental Online Materials) the user436

is able to move a cursor to any point in the score plot and the corresponding FORC437

diagram is calculated instantly. This would not be possible if the raw magnetization were438

used to construct the score plot. The approach we opted for here (i.e., using the mixed439

second derivative of the magnetization) makes it possible to bring into sharp contrast440

the characteristic features of different domain states, which is the principal reason FORC441

diagrams are utilized.442

5. Conclusions

The ability to break down the magnetic mineralogy of a natural sample into its con-443

stituent components is a common task in rock magnetism, as evidenced by the ubiquity444

of the “Day plot” in the rock magnetism literature. FORC diagrams are sensitive to min-445

eralogy, anisotropy, coercivity, domain state, interactions and ensemble geometry, and446

are capable, therefore, of providing good discrimination between different physical com-447

ponents of the system. We have demonstrated that using entire FORC diagrams as the448

basis for magnetic unmixing has the potential to provide a general route to quantifying449

multi-component mixtures. PCA exploits the natural variability contained within the450

sample suite, and allows the analysis to proceed without user input or bias in the initial451
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step. The physical constraints imposed on the EMs preclude the need to perform case-452

specific least-squares fitting to optimize individual EMs. For this reason the method lends453

itself readily to automation, and can be easily incorporated into existing FORC processing454

packages (see Supplemental Online Materials). Interpretation of the resulting PC scores is455

subjective within geological context, and EM selection is supervised, but this subjectivity456

can be minimized by including constraints from granulometric filtering, physical model-457

ing, additional datasets or standard reference FORCs. In its current form, unmixing is458

performed using sum-normalized FORCs that are sensitive to the irreversible component459

of magnetization only. Alternative procedures will be explored as the method is developed460

further. Case studies representing binary, ternary and quaternary mixtures demonstrate461

that spatial and temporal variations in magnetic mineralogy can be quantified through462

both intra- and inter-core comparisons. The method works best when the sample suite463

covers a large region of mixing space. However, even when the variability is limited, PCA464

still does a reasonable job of revealing the nature of the EMs. Although initially designed465

with sediments in mind, the method presented here can equally be applied to suites of466

igneous, metamorphic, or meteoritic rocks, as well as to synthetic materials.467
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Lascu, I., S. K. Banerjee, and T. S. Berquó (2010), Quantifying the concentration of552

ferrimagnetic particles in sediments using rock magnetic methods, Geochemistry, Geo-553

physics, Geosystems, 11 (8), Q08Z19, doi:10.1029/2010GC003182.554

Li, J., W. Wu, Q. Liu, and Y. Pan (2012), Magnetic anisotropy, magnetostatic interactions555

and identification of magnetofossils, Geochemistry, Geophysics, Geosystems, 13 (12),556

Q10Z51, doi:10.1029/2012GC004384.557

Ludwig, P., R. Egli, S. Bishop, V. Chernenko, T. Frederichs, G. Rugel, S. Merchel, and558

M. Orgeira (2013), Characterization of primary and secondary magnetite in marine sed-559

iment by combining chemical and magnetic unmixing techniques, Global and Planetary560

Change, 110, 321–339, doi:10.1016/j.gloplacha.2013.08.018.561

Malinowski, E. R. (1991), Factor Analysis in Chemistry, John Wiley and Sons.562

D R A F T July 17, 2015, 10:38am D R A F T



X - 28 LASCU ET AL.: FORC UNMIXING USING PCA

Mellinger, M. (1987), Multivariate data analysis: Its methods, Chemometrics and Intelli-563

gent Laboratory Systems, 2, 29–36, doi:10.1016/0169-7439(87)80083-7.564

Muxworthy, A., and W. Williams (2005), Magnetostatic interaction fields in first-565

order-reversal-curve diagrams, Journal of Applied Physics, 97 (6), 063905, doi:566

http://dx.doi.org/10.1063/1.1861518.567

Muxworthy, A. R., J. King, and D. Heslop (2005), Assessing the ability of first-order rever-568

sal curve (FORC) diagrams to unravel complex magnetic signals, Journal of Geophysical569

Research, 110 (B1), B01,105, doi:10.1029/2004JB003195.570

Newell, A. J. (2005), A high-precision model of first-order reversal curve (FORC) functions571

for single-domain ferromagnets with uniaxial anisotropy, Geochemistry, Geophysics,572

Geosystems, 6 (5), Q05,010, doi:10.1029/2004GC000877.573

Pike, C. R. (2003), First-order reversal-curve diagrams and reversible magnetization, Phys.574

Rev. B, 68, 104,424, doi:10.1103/PhysRevB.68.104424.575

Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine576

magnetic particle systems using first order reversal curves, Journal of Applied Physics,577

85 (9), 6660–6667.578

Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First-order reversal curve diagrams:579

A new tool for characterizing the magnetic properties of natural samples, Journal of580

Geophysical Research, 105 (B12), 28,461, doi:10.1029/2000JB900326.581

Roberts, A. P., L. Chang, D. Heslop, F. Florindo, and J. C. Larrasoaña (2012), Search-582

ing for single domain magnetite in the ”pseudo-single-domain” sedimentary haystack:583

Implications of biogenic magnetite preservation for sediment magnetism and relative584

paleointensity determinations, Journal of Geophysical Research, 117 (B8), B08,104, doi:585

D R A F T July 17, 2015, 10:38am D R A F T



LASCU ET AL.: FORC UNMIXING USING PCA X - 29

10.1029/2012JB009412.586

Roberts, A. P., D. Heslop, X. Zhao, and C. R. Pike (2014), Understanding fine mag-587

netic particle systems through use of first-order reversal curve diagrams, Reviews of588

Geophysics, 52 (4), 557–602, doi:10.1002/2014RG000462.589

Robertson, D., and D. France (1994), Discrimination of remanence-carrying minerals in590

mixtures, using isothermal remanent magnetisation acquisition curves, Physics of the591

Earth and Planetary Interiors, 82 (3-4), 223–234, doi:10.1016/0031-9201(94)90074-4.592

Temple, J. T. (1978), The use of factor analysis in geology, Journal of the International593

Association for Mathematical Geology, 10 (4), 379–387, doi:10.1007/BF01031743.594

Valder, J. F., A. J. Long, A. D. Davis, and S. J. Kenner (2012), Multivariate statis-595

tical approach to estimate mixing proportions for unknown end members, Journal of596

Hydrology, 460–461, 65–76, doi:10.1016/j.jhydrol.2012.06.037.597

Wold, S., K. Esbensen, and P. Geladi (1987), Principal component analysis, Chemometrics598

and Intelligent Laboratory Systems, 2, 37–52, doi:10.1016/0169-7439(87)80084-9.599

Woocay, A., and J. Walton (2008), Multivariate analyses of water chemistry: Surface600

and ground water interactions, Ground Water, 46 (3), 437–449, doi:10.1111/j.1745-601

6584.2007.00404.x.602

D R A F T July 17, 2015, 10:38am D R A F T



X - 30 LASCU ET AL.: FORC UNMIXING USING PCA

Table 1. Name, location, and water depth at retrieval site for the studied cores

Core name Latitude (N) Longitude (W) Water depth (m)
RAPiD 10-6B (R10) 62°58.39′ 17°35.75′ 1249
RAPiD 29-18B (R29) 58°48.01′ 44°51.82′ 2145
RAPiD 41-30B (R41) 50°42.65′ 49°42.82′ 1271

MD04-2822 56°50.54′ 11°22.96′ 2344
SHAK-06-5M-C 37°33.68′ 10°08.53′ 2645
SHAK-10-9M-F 37°50.50′ 09°30.65′ 1127
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Figure 1. Data selection for principal component analysis (PCA). a) Processed FORC diagram.

Dashed line (here and in subsequent FORC diagrams) indicates regions of the FORC distribution

significant at the 0.05 level [Heslop and Roberts , 2012c]. Color scale units for all data FORCs are

Am2/T 2; b) Resampled FORC data on a 5 mT-resolution rectangular grid; c) Array containing

the data from grid (b) as a succession of 51 vertical profiles (taken every 5 mT from 0 to 250

mT); d) Resampled FORC data on a 2 mT-resolution rectangular grid; e) Array containing the

data from grid (d) as a succession of 126 vertical profiles (taken every 2 mT from 0 to 250 mT).

Data in panels (b) through (e) were normalized to sum to unity.

Figure 2. Typical FORC diagrams of Late Glacial (a) and Early Holocene (b) sediments from

Rockall Trough, and of recent sediments from the Iberian Margin shelf (c).

Figure 3. FORC diagrams of individual particle size fractions (a-f) and unseparated treated

sediment (g) from Iceland-proximal core R10. Untreated bulk sample (h) is shown for comparison.

Hematite signature is detailed in (i) using modified color scale.

Figure 4. FORC diagrams of individual particle size fractions (a-f) and unseparated treated

sediment (g) from Greenland-proximal core R29.

Figure 5. FORC diagrams of individual particle size fractions (a-f) and unseparated treated

sediment (g) from Newfoundland-proximal core R41.
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Figure 6. a) PCA score plot of Rockall Trough samples (red squares) with FORC diagrams

resampled on 2 mT-resolution grids. The larger circles represent the end members (EMs) used in

the binary mixing model, while the smaller circles are compositions that failed the EM selection

criteria. b) Model FORC diagrams of EM1, EM2, and of three failed EM candidates. FORC

diagrams of EM candidates with scores lying outside the interval defined by EM1 and EM2

contain physically unrealistic features (outer panels), while those of potential EMs with scores

within the interval are not single component samples (middle panel). c) Plots of PSD fractional

contribution obtained from both PCA (dots) and central ridge extraction (diamonds) methods.

Figure 7. PCA score plots of Iberian Margin samples (blue diamonds) with FORC diagrams

resampled on 5 mT-resolution grids (a) and 2 mT-resolution grids (b). The circles represent

the EMs used in the binary mixing model used for quantifying the data. Insets depict model

PSD (left) and SD (right) EM FORC diagrams. c) Biplot showing 1:1 relationship between PSD

fractions obtained from the unmixing models in (a) and (b).

Figure 8. a) PCA score plot of the combined Rockall Trough (red squares) and Iberian Margin

(blue diamonds) datasets resampled on 5 mT-resolution grids. The three-EM (circles) mixing

model shows that both datasets converge to a common EM. Insets depict model EM FORC

diagrams for the coarse PSD, fine PSD, and SD EMs (EM1, EM2, and EM3, respectively). b)

Ternary diagram showing relative abundances of the three EMs in each sample.
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Figure 9. a) PCA score plot of particle size fractions from RAPiD cores R10 (blue

squares, Iceland-proximal), R29 (green triangles, Greenland-proximal), and R41 (purple dia-

monds, Newfoundland-proximal), and of Wright Co. synthetic magnetites resampled on 5 mT-

resolution grids. Full symbols are the individual particle size fractions, with darker colours

representing coarser fractions. Open symbols signify the unseparated treated sediment, while

the crossed square is the bulk untreated core top sample from R10. Larger open circles represent

the EMs of the ternary mixing model employed for quantifying the data. b) Ternary diagram

showing relative abundances of the three EMs in each sample. Note that outlier in (a) is not

included in the unmixing analysis. Arrows indicate mixture trends in each core top with increas-

ing granulometric fraction. c) Computed FORC diagrams of EM1 (MD magnetite), EM2 (PSD

magnetite), and EM3 (mixture of SD magnetite and hematite).

Figure 10. a) PCA score plots of samples from RAPiD cores R10 samples (blue circles),

R29 (green circles), and R41 (purple circles), Rockall Trough core MD04-2822 (red squares), and

Wright Co. magnetites (brown circles) resampled on 5 mT-resolution grids. The combination of

pairs of PCs in the three biplots illustrate the full spatial relations between the analyzed data

points. The open circles represent the EMs of the quaternary mixing model used for quantifying

the data. One outlier (same sample as in fig. 9) can be seen in the PC 3 vs. PC 2 score plot

(with highest PC 3 score). b) Quaternary diagram showing the proportions of the four EMs

in each sample, and computed FORC diagrams of EM1 (MD magnetite), EM2 (SD magnetite),

EM3 (mixture of hematite and fine PSD magnetite), and EM4 (PSD magnetite).
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