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Abstract

We consider Kerr spacetimes with parameters a and M such that
la] < M, Kerr-Newman spacetimes with parameters |Q| < M, |a| < M,
and more generally, stationary axisymmetric black hole exterior space-
times (M, g) which are sufficiently close to a Schwarzschild metric with
parameter M > 0, with appropriate geometric assumptions on the plane
spanned by the Killing fields. We show uniform boundedness on the ex-
terior for sufficiently regular solutions to the wave equation Oy = 0,
i.e. we show that solutions 1 arising from smooth initial data (\,{") pre-
scribed on an arbitrary Cauchy surface ¥ satisfy [¢| < CQ,(p,}’) in
the domain of outer communications. In particular, the bound holds up
to and including the event horizon. Here, Q1 (,1{’) is a norm on initial
data and C' depends only on the parameters of the nearby Schwarzschild
metric. No unphysical restrictions are imposed on the behaviour of ¥
near the bifurcation surface of the event horizon. The norm Q; is finite
if O € H2 (), ' € HL.(X) and { is well-behaved at spatial infinity, in
particular, it is sufficient to assume V1) is supported away from spatial
infinity. The pointwise estimate derives in fact from the uniform bound-
edness of a positive definite energy flux. Note that in view of the very
general assumptions, the separability properties of the wave equation on
the Kerr background are not used.

Contents
1 Introduction E
1.1 Statement of the theorem for Kerr and Kerr-Newman . . . . . . BI
1.2 Statement for general stationary axisymmetric perturbations of
Schwarzschild . . . . . . . ..

*University of Cambridge, Department of Pure Mathematics and Mathematical Statistics,
Wilberforce Road, Cambridge CB3 OWB United Kingdom

TPrinceton University, Department of Mathematics, Fine Hall, Washington Road, Prince-
ton, NJ 08544 United States


http://arxiv.org/abs/0805.4309v1

1.3 Dispersion and the redshift vs. superradiance . . . . . ... ...
1.4 Previousresults . . . . . . .. ... ...
1.4.1 Schwarzschild . . . . . . ... ... ... ... ... ...,
1.4.2 Kerr . . . . . . . .
1.4.3 Klein-Gordon . . . . . . . ... ...
144 DiraconKerr. . . . . . . ... ... ... ...
1.5 Heuristic work . . . . . . ... ...
1.6 Acknowledgements . . . . ... .. ... oL

2 Constants and parameters

3 The class of spacetimes
3.1 Schwarzschild . . . . . . ... ... ...
3.2 Thegeneralclass . . . . . .. ... ... .
3.3 The Kerr and Kerr-Newman metrics . . . . .. .. . .. .. ...

4 The class of solutions v

5 The main theorem

6 The auxiliary positive definite quantities q. and q*
7 The basic identity for currents

8 The vector fields and their currents
8.1 The vector field T . . . . . . . .. .. ... ...
8.2 The vector fields Y and No =T +¢eY . . ... ... ... ....
8.3 The vector fields X® and X® . . . .. ... ..

9 The high-low frequency decomposition
9.1 1 cut off: the definitionof pZ. . . . . . . . .. .. ... ... ..
9.2 Definition of W, and Wy . . . . ...
9.3 Comparing 0p=W and 0¥ . . . . . .. ..o
9.3.1 Comparisons for ¥, . . .. .. .. ... ...
9.3.2 Application to ey . . ...
9.3.3 Comparisons for Uy . . .. ...
9.3.4 Application to¢f . . ... oo
9.4 Comparing qc(v]), qe(i/)g) and qe(¥) ...
9.5 Estimatesfor & . . . . . . ...
9.6 Revisiting the relation between qc(¥7 ), qe(1]) and qe(¥) . . . .

10 The main estimates
10.1 Estimates forapy . . . .. .. ... oo
10.2 Estimates for 7 . . ... ..o

EEl B EEEEEm=m

EIE]

EER] Bl Bl El E]

EEEEEREEERREE] E

BRI



11 The bootstrap 56

11.1 Evolution for time Tgtep - - - . . o o o . oo 54
11.2 Estimate for the local horizon flux of Jévﬁ () oo 54
11.3 Bounds for @] .« . oo 4
114 Bounds for ] . .. ... ... 64
11.5 Bounds for v . . . . . . . . ... [d

12 Estimate for the total horizon and null-infinity flux of J! (¢) led

13 Higher order energies and pointwise bounds

13.1 Higher order energies . . . . . . . . .. .. ... ... ... 61
13.2 Elliptic estimates . . . . . . o oo v l6d
13.3 Pointwise bounds . . . . . .. ... ... L.

14 Further notes @
14.1 The Schwarzschild case. . . . . . . . . .. . .. ... ... .... @
14.2 Kerr-de Sitter . . . . . . . . . . ... l6d
14.3 Non-quantitative decay . . . . . . . . . . .. ... ... .. led

1 Introduction

The Kerr family, discovered in 1963 [23], comprises perhaps the most important
family of exact solutions to the Einstein vacuum equations

R, =0, (1)

the governing equations of general relativity. For parameter values 0 < |a| < M
(here M denotes the mass and a angular momentum per unit mass), the Kerr
solutions represent black hole spacetimes: i.e. asymptotically flat spacetimes
which possess a region which cannot communicate with future null infinity. The
celebrated Schwarzschild family sits as the one-parameter subfamily of Kerr
corresponding to a = 0. Much of current theoretical astrophysics is based on
the hypothesis that isolated systems described by Kerr metrics are ubiquitous
in the observable universe.

Despite the centrality of the Kerr family to the general relativistic world
picture, the most basic questions about the behaviour of linear waves on Kerr
backgrounds have remained to this day unanswered. This behaviour is in turn
intimately connected to the stability properties of the Kerr metrics themselves
as solutions of (), and thus, with the very physical tenability of the notion
of black hole. In particular, even the question of the uniform boundedness
(pointwise, or in energy) of solutions 1 to the linear wave equation

Oyt =0 (2)

in the domain of outer communications has not been previously resolved, except
for the Schwarzschild subfamily.



The main theorems of this paper give the resolution of the boundedness
problem for (2), for the case |a| < M. Solutions to (@) arising from regular
initial data remain uniformly bounded in the domain of outer communications.
The bound is quantitative, i.e. it is computable in terms of the initial supremum
and initial energy-type quantities on initial data.

In fact, the results of this paper apply to a much more general setting than
the specific Kerr metric: Boundedness is proven for solutions of (@) on the
exterior region of any stationary axisymmetric spacetime sufficiently close to
a Schwarzschild spacetime with mass M > 0. Thus, the methods may be of
relevance in the ultimate goal of this analysis: understanding the dynamics of
the Einstein equations () in a neighborhood of a Kerr metric.

We first give a statement of the main results for the special case of Kerr and
the related Kerr-Newman family (this is a family of solutions to the coupled
Einstein-Maxwell system).

1.1 Statement of the theorem for Kerr and Kerr-Newman

We refer the reader to [7, 21]. Let (M, g) denote the Kerr solution with param-
eters
0<lal <M

or more generally the Kerr-Newman solution with parameters (a, @, M), with

0<Va?+Q*< M,

and let D denote the closure of a domain of outer communications. (The pa-
rameter @) is known as the charge.) Let X be a Cauchy hypersurfacd] in (M, g)
crossing the event horizon to the future of the sphere of bifurcation, and such
that X N D coincides with a constant-t hypersurface, for large r, where ¢ and
r denote here the standard Boyer-Lindquist coordinates on int(D). Recall that
in such coordinates, the stationary Killing field T is given by T = %. The
Kerr-Newman solutions are moreover axisymmetric. The Penrose diagram, say

along the axis of symmetry (where the axisymmetric Killing field vanishes), is

1For definiteness, our “Kerr solution” or “Kerr-Newman” solution is the Cauchy develop-
ment of a complete asymptotically flat spacelike hypersurface with two asymptotically flat
ends. This is a globally hyperbolic subdomain of the maximal analytic Kerr-Newman de-
scribed in [27].



depicted below:

Note that ¥ N D is a past Cauchy hypersurface for J(3) N DB We have that
JT(X) N D is foliated by X, for 7 > 0, where X, is the future translation of
3> N D by the flow generated by the stationary Killing field T = % for time
7. Let ny denote the unit future normal of ¥,. Let nyg denote a translation
invariant null generator for H*, and give X+ N D the induced volume from g
and ny. Let T, (1) denote the standard energy momentum tensor associated
to a solution 1 of the wave equation (2))

1
T;uz = u¢6V¢ - iguuvawvawa

define J};* (1)) by
JiP () = T ()
and J (¢) by
T () = T (V)T
Note that the former current is positive definite when contracted with a future-

timelike vector field, but is not conserved, whereas the latter current is con-
served, but not positive definite when so contracted.

Theorem 1.1. Let (M, g), D, X; be as above. There exists a universal positive

constant € > 0, and a constant C' depending on M and the choice of ¥o such
that if
0<a<eM, 0<Q<eM, (3)

then the following statement holds. Let 1 be a solution of (@) on (M,g) such
that on Jj= (P)nfy < oo. Then

/E g <c / T ()nds, (4)

o

2Here, J* denotes causal future, not to be confused with currents J, 1w to be defined later.



/ JLWmly | < C | = (y)nk, (5)
HENT*(Z0)

[ rwmt<c [ grwnt. ()

Yo

Here the integrals are with respect to the induced volume forms. The integral on
the left hand side of (@) can be defined via a limiting procedure.

Theorem 1.2. Under the assumptions of the previous theorem, the following
holds. Let v be a solution of the wave equation [@) on (M, g) such that

A \/S“P |92 + /Z (T (W) + Jii* (nst)) ni < oc.

b

Then
Y| < CQ
in DN J (o).

The hypothesis of Theorem [[LT] can be re-expressed as the statement that
local energy as measured by a local observer be finite, i.e. that V=045, , ns|s,
be in L}, together with the global assumption that

/ Jg(w)n% < 0.
o

The latter in turn is certainly satisfied if V¢ vanishes in a neighborhood of 4.
Similarly, the hypothesis of Theorem is satisfied for V09, nxi)|s, in
H ., if Vi) vanishes in a neighborhood of i.
Finally, note that given an arbitrary Cauchy surface ¥ for Kerr, sufficiently
well behaved at i, it follows that the right hand side of (@) is bounded by

C (S0, %) Ji® ()n,

/im(J(EO)uJ+(EO))

thus the above regularity assumptions could be imposed on an arbitrary Cauchy
surface. There are no unphysical restrictions on the support of the solution in
a neighborhood of HT NH ™.

1.2 Statement for general stationary axisymmetric per-
turbations of Schwarzschild

The results of Theorems[[LTland [[2remain true when the Kerr or Kerr-Newman
metric is replaced by an arbitrary stationary axisymmetric black hole exterior
metric suitably close to Schwarzschild, and with suitable assumptions on the
geometry of the Killing fields. In particular, in addition to smallness, it is
required that—as in the Kerr solution—the null generator of the horizon is in the
span of the Killing fields. The precise assumptions are outlined in Section



1.3 Dispersion and the redshift vs. superradiance

The elusiveness of the results of Theorems[I.Iland[[.2stems from the well-known
phenomenon of superradiance. This is related to the fact that the Killing field
T (with respect to which the Kerr solution is stationary) is not everywhere-
timelike in the domain of outer communications. In particular, there is a region
of spacetime where T is spacelike, the so-called ergoregion. The boundary of
this region is called the ergosphere.

The presence of the ergoregion means that the energy current J7 is not
positive definite when integrated over spacelike hypersurfaces. Thus, the con-
servation of J7 does not imply @ priori bounds on an L2-based quantity. In
particular, the local energy of the solution can be greater than the initial total
energy, even if the energy is initially supported where J7 is positive definite. A
test-particle version of this fact, where a particle coming in from infinity splits
into one of negative energy entering the black hole and one of greater positive
energy returning to infinity, is known as the Penrose process. The pioneering
study by Christodoulou [§] of the “black hole transformations” obtainable via
a Penrose process led to a subject known as “black hole thermodynamics”.

In the physics literature, where discussion of these issues is inextricably
linked to the separability of [2]) and decomposition of 1) into modes, the problem
of the ergoregion appears as a formidable and perhaps intractable obstacle. It
turns out, however, that there are other physical mechanisms at play which
have an important role but are not necessarily well reflected from the point of
view of separability. In particular, the tendency of waves to eventually disperse
(true in any asymptotically flat spacetime) coupled with the powerful red-shift
effect at the horizon. Indeed, these properties, which depend only loosely on
the stationarity, tend to make solutions not only stay bounded but decay to a
constant in time, even if the local energy increases for a short time.

Unfortunately, the dispersive properties of waves on black hole backgrounds
are severely complicated by the presence of trapped null geodesics. (The pres-
ence of these can easily be inferred by a continuity argument in view of the
fact that there exist both null geodesics crossing the horizon and going to null
infinity.) It is only very recently that the role of trapping has been sufficiently
well understood in the special case of the Schwarzschild family to allow for the
first proofs of decay for general solutions of ([2]) on such backgrounds. See the
results described in Section [[L4.11

In the case of Kerr, the techniques introduced for controlling trapping on
Schwarzschild cannot be readily perturbed. This has to do with the fact that
these techniques seem to exploit the special property that the trapping concen-
trates asymptotically on a set of codimension 1 in physical space, the so-called
photon sphere. In contrast, in Kerr the codimensionality of the space of trapped
geodesics can only be properly understood in phase space. This indicates that
controlling trapping requires a far more delicate analysis.

It would appear from the above that the problem of superradiance could in
principle be overcome, but at the expense of a very delicate analysis of trap-
ping. A closer look, however, reveals that the situtation is considerably more



favourable. At a heuristic level, the reason for this is the following remark: If
one could separate out the “superradiant” part of the solution from the “non-
superradiant” part, then one only has to exploit dispersion for the superradiant
part. This latter problem turns out to be much easier than understanding dis-
persion for the whole solution.

To decompose the solution, we must first cut off the solution ¢ in the “time”-
interval of interest to obtain 1= and then decompose into two pieces

e = 1Py, + 1Py

where 1, is to be supported in frequency space (real frequencies w and integer &
here defined with respect to coordinates ¢ and ¢) only in the range w? < w? k2,
whereas vy is to be supported in frequency space only in the range w? = wg k2.
For spacetimes sufficiently close to Schwarzschild, for a suitable choice of the
parameter wp, one can view 1y as essentially non-superradiant, and 1), as the
superradiant part. If one can show boundedness for ¢4 and dispersion for 1,
then one will have proven the uniform boundedness of the sum 1. For spacetimes
sufficiently close to Schwarzschild, one can choose wy sufficiently small so that
trapping essentially does not occur for ,, and the dispersive mechanism of
Schwarzschild is stable. This relies on the stability of the red-shift effect for
considerations close to the horizon. In complete contrast to the standard picture,
it is the superradiant part of the solution which would be the better behaved
one.

In practice, the analysis is of course not as simple as what has been portrayed
above, and here again, the stabilising effect of the red-shift acting near the
horizon plays an important role. In view of the cutoffs in time, the equations
satisfied by 1, and 4 are coupled. Moreover, the statement that 1) is non-
superradiant while 1), is dispersive must also be understood modulo error terms.
It turns out that to control these error terms, one of necessity must have at their
disposal an energy quantity which does not degenerate on the horizon, that is to
say, the L?-based quantity for which one shows uniform boundedness must be
the one of Theorem [[LT], and not a quantity analogous to J7 in Schwarzschild.
In particular, one must understand the red-shift mechanism even for the “non-
superradiant” part 14, for which one does not understand dispersion. Such
stable estimates at the horizon (corresponding to the energy measured by local
observers) exploiting the red-shift effect were first attained for Schwarzschild in
our previous [12]. It is interesting to note, however, that in [I2], understanding
of the red-shift mechanism was always coupled with understanding dispersion,
i.e. controlling the trapping phenomenon. In particular, one had to appeal
to an understanding of dispersion even to obtain the result of Theorems [I.]
for Schwarzschild. In this paper, we show how understanding the red-shift
can be decoupled from understanding dispersion in the non-superradiant case.
In addition, we show that the red-shift effect allows us to commute the wave
equation with a vector field transverse to the horizon, yielding a new route to
higher order estimates and pointwise estimates. An extra side-benefit of our
results is thus a new, simpler and more robust proof of Theorems [[.T] and
even for the case of Schwarzschild. See Section [[4.1]



1.4 Previous results

We review in detail previous work on this and related problems. Results of
the type of Theorems [[.1] and for static perturbations of Minkowski space
pose little difficulty. (Indeed, the analogue of Theorem [[1] is immediate, and
Theorem[T.2lcan be proven with the help of Sobolev inequalities after commuting
the equation with the static Killing field.) Thus, we shall pass directly to the
black hole case.

1.4.1 Schwarzschild

The analogue of Theorem for Schwarzschild is a celebrated result of Kay
and Wald [22], building on previous work of Wald [27] where the theorem had
been proven for the restricted class of data whose support was assumed not to
contain the bifurcation sphere H™ N H~. In view of the positive definiteness
of JT in the domain of outer communications, the only essential difficulty is
obtaining bounds for ¢ up to the horizon (where T' becomes null), as bounds
away from the horizon can be obtained essentially as described immediately
above for static perturbations of Minkowski space.

The arguments of Kay and Wald to prove the analogue of Theorem [[2]relied
on the staticity to realize a solution 1 as 8”/3 where 1/3 is again a solution of (2])
constructed by inverting an elliptic operator acting on initial data. In addition,
a pretty geometric construction exploiting the discrete symmetries of maximal
Schwarzschild was used to remove the unphysical restriction on the support near
HTNH ™ necessary for constructing ¢ in the original [27]. Unfortunately, neither
of these methods is particularly robust to perturbation. The reason the authors
had to resort to such techniques was that Theorem was proven without
proving the analogue of Theorem [} rather, using only the conserved flux J7
whose control degenerates as H* is approached. Theorem [Tl for Schwarzschild
was only proven as part of the decay results of [12] to be discussed below.

Turning now to the issue of decay, the first non-quantitative decay result
for @) on Schwarzschild is contained in the thesis of Twainy [26]. The first
quantitative decay results for solutions of (2 on Schwarzschild (and more gen-
erally, Reissner-Nordstrom) were proven in [I], but were restricted to spheri-
cally symmetric solutions, or alternatively, the 0’th spherical harmonic ¥y of a
general solution ¢. (In fact, this was a byproduct of the main result of [I1],
which concerns decay rates for spherically symmetric solutions to the coupled
Einstein-(Maxwell)-scalar field system.)

Quantitative decay results for the whole solution v, both pointwise and in
energy, were proven in [I2], in particular, the uniform decay result

1] < C Quyt (7)

in the domain of outer communications. Here v is an Eddington-Finkelstein
advanced time coordinate and Q is an appropriate quantity computable on
initial data, and v; denotes say max{v, 1}. Inequality () is sharp as a uniform
decay rate in v. The results of [12] exploit both the red-shift effect near the



horizon and the dispersive properties. The estimates are derived using a variety
of vector field multipliers, in particular, a vector field multiplier Y such that the
flux of T+ Y gives the local energy at the horizon. The energy identity of YV
quantifies the red-shift effect.

Weaker decay results were proven independently by Blue and Sterbenz [0]
for initial data vanishing on H™ N H ™, but with control which degenerates on
the horizon. In particular, the estimates of [G] are unstable to perturbation near
the horizon. The stability of the estimates of [I2] near the horizon will be of
critical importance here.

Both [12] and [6] control trapping effects with the help of vector field mul-
tipliers which must be carefully chosen for each spherical harmonic separately.
These were inspired by a series of papers by Soffer and collaborators, for in-
stance [4]; see, however [5]. The first proof of decay for ¢ not relying on spheri-
cal harmonic decomposition for the construction of these multipliers is provided
by our more recent [13].

1.4.2 Kerr

Since uniform boundedness is the most basic question which can be asked about
@) on Kerr, previous results in this setting are of necessity of a partial nature.
In particular, essentially all previous work on (2]) is restricted to the projection
of 1 to a single azimuthal frequency, or equivalently, to the case where the data
are of the form

b =p(r,0)e™ ™, P =Pi(r,0)e . (8)

Solutions arising from (&) are then of the form 1, (r, 0, t)e~**¢. Let us call such
solutions azimuthal modes. In principle, one could attempt to deduce proper-
ties of general ¢ by summing relations deduced for each individual azimuthal
mode. As we shall see, however, due to the non-quantitative nature of the re-
sults described below, in of themselves they unfortunately yield no information
about general ¥. Nonetheless, even the study of such 1 without regard to uni-
form control in k£ turns out to be a non-trivial problem. Indeed, even for such
individual azimuthal modes, the most basic questions had not been previously
answered, in particular, the analogue of Theorems [[.T] or

This being said, there are interesting partial results concerning (&) that had
been previously obtained. In particular, most recently Finster et al. [I6] had
been able to show for smooth 1, that for fixed r > M + v/ M?2 — a? and 6,

tllzgo 1/}16 (ta T, 9) - 05 (9)
under the assumption that the support of 15, does not contain HT NH ™. See

however [I7]. In particular, one can deduce

sup 1/}k(ta r, 9) < 00, (10)

—oo<t<oo

for each fixed r > M + vVM? —a? and 6, without however a bound on the
sup. The results rest on an explicit integral representation of the solution which

10



is derived using the remarkable (but all too fragile) separability properties of
the Kerr metric. The arguments contain many pretty applications of contour
integral methods of classical complex analysis. Since these techniques are essen-
tially algebraic, no restriction on the size of |a| need be made provided |a| < M.
In [18], under the same assumption on the initial support, the authors deduce
that for each § > 0,

sup I (Pee” ")k < oo (11)

>0 /ZTF]{TZM—i-\/ M?2—a?+46}

Thus, the energy of each mode in the region r > M ++/M? — a2+ remains finite
but again, no quantitative bound in terms of data can be produced. Moreover,
from the results of [I6] [I8], one cannot deduce that the sup of (I0) and (I
commute with taking lim,_, ,, s7=—zz or lims_o, i.e. (@) is a priori compatible
with v, blowing up along the horizon:

sup [¢g| = oo
H
and (I is compatible with infinite energy concentration near the horizon:

sup JL (e )nk = oo,

>0 /ETQ{M+\/M2a2<r<M+\/M2a2+5}

As explained before, no statement could be inferred for the general solution
1 from the above statements on individual azimuthal modes, not even a weak
statement like () or (). This is because the lim and sup of (@), (IQ) and
() do not a priori commute with summation over k1 Of course, in view of
Theorems [T and [[2], one can now infer from (@) Corollary [[Z4.1] of Section T4.3]

The somewhat unsatisfying nature of the above previous results deduced
with the help of separability are indicative of how difficult it is to obtain quan-
titative statements about solutions of the wave equation (2 even in the al-
gebraically special case where one has explicit representations of the solution.
Perhaps this is for the best, however. Remarkable though they are, the sepa-
rability properties of the Kerr metric are unstable to perturbation. Just as in
the case of stability of Minkowski space [10], understanding the stability prop-
erties of the Einstein equations near the Kerr solution will undoubtedly require
robust methods. We hope that the techniques employed here will have further
applications in this direction.

1.4.3 Klein-Gordon

A related problem to the wave equation is that of the Klein-Gordon equation

Ogy =m*y (12)

3Note that in the abstract of [I6], 1) must be understood as the projection vy, to agree
with what is proven in the body of the paper.

11



with m > 0. There is a well-developed scattering theory on Schwarzschild for
the class of solutions of ([I2)) with finite energy associated to the Killing 7. In
particular, an asymptotic completeness statement has been proven in [2]. This
analysis in of itself, however, when specialised to H} solutions in the geometric
sense, only gives very weak information about the solution. In particular, it does
not give L? control of ¢ or its angular derivatives on H™.

In the case of Kerr, there are again certain partial results for (I2)) in the
direction of scattering for a “non-superradiant” subspace of initial data [19].
These interesting results do not, however, address the characteristic difficulties
of superradiance. See also [3].

1.4.4 Dirac on Kerr

Finally, we mention that there has been a series of interesting papers concern-
ing the Dirac equation on Kerr and Kerr-Newman. See [20] [I5]. For Dirac,
considerations turn out to be much easier as this equation does not exhibit the
phenomenon of superradiance. We shall not comment more about this here but
refer the reader to the nice article [20].

1.5 Heuristic work

We cannot do justice here to the vast work on this subject in the physics liter-
ature. See [24] for a nice survey.
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2 Constants and parameters

Constants will play an important role in this paper and it is imperative to set
the conventions early. In the next section we shall fix a Schwarzschild metric
with parameter M.

We shall use the notation B and b for general positive constants which only
depend on the choice of M. An inequality true with a constant B will be true
if B is replaced by a larger constant, and similary, for b if b is replaced by a
smaller positive constant[ We shall use the notation f; ~ f5 to denote

bfi < fa < Bfi.

4In the case of chains of inequalities, e.g. fi < Bfs < Bfs this convention is obviously
violated and has to be reinterpreted appropriately.

12



Since B and b denote general constants, we shall apply without comment the
obvious algebraic rules B> = B, B~! = b, b®> = b, etc.

We will also require various particular parameters which can be chosen de-
pending only on M:

+
Ty, Ty 67 6)77 q, )‘7 wo, &, ROu R17 R7 €, Tstep; €Eclose-

The above parameters are not explicitly computed but are determined implicitly
by various constraints. Before choosing a parameter, say «, we shall use notation
like B(«), b(c) to denote constants depending only on M and the as of yet
unchosen «a. It is to be understood that again here, the notation B indicates
that the constant can always be replaced by a bigger one, and b by a smaller
one. We shall also use the notation R;(«a) to indicate that the parameter Ry
depends on the still unchosen a. Once « is determined, we may replace the
expressions B(a), R(«) ete., with B, R, etc.

3 The class of spacetimes

In this section we shall describe the general class of metrics for which our results
will apply. To set the stage, we must first fix some structures associated to a
Schwarzschild metric.

3.1 Schwarzschild

We refer the reader to our previous [12] for a review of the geometry of Schwarz-
schild. We must first fix a certain subregion of Schwarzschild with parameter
M > 0, relevant coordinates, and a choice of axisymmetric Killing field. This
will provide the underlying manifold with stratified boundaryﬁ for the class
of metrics to be considered later. Let us use the notation gps to denote the
Schwarzschild metric.

Refer to the diagram below:

We will denote by D the closure of a domain of outer communications in maximal
Schwarzschild. We have D \ int(D) = HT UH~ where HT denotes the future

5The boundary will be the union of two manifolds with boundary intersecting along their
common boundary.

13



event horizon and H~ the past event horizon. The intersection H+t N H™ is
known as the bifurcation sphere.

Recall the static Killing field T, timelike on int(D) and null on H* U H ™.
Flow by integral curves of T' defines a one-parameter family of diffeomorphisms
ps: D —=D.

Recall now the area-radius function 7. On the horizons H™ U H~ we have
r = 2M. We will use the notation u for the function defined by u = 2M/r.

Associated to Schwarzschild will be the constants 20 < ry, < r}t determined
in Section 82l We may assume say that

IM

Let x be a cutoff function such that x =1 for r < 2M + (ry, —2M)/2 and

x = 0 for r > ry,. Define the hypersurface 3(0) by

t=—x(r)2M log(r — 2M). (14)

This can be extended beyond H*-not by the expression ([I4]), however—to a
spacelike hypersurface in maximal Schwarzschild. Let us actually define %(0)
to include its limit points on the horizon H*. Note of course that in view of
the support of x, it follows that in the region » > ry,, £(0) coincides with the
constant ¢ = 0 hypersurface.

We may define a new coordinate

t* =t + x(r)2M log(r — 2M)
This coordinate is regular on H* \ H#~. We have that
2(0) = {t* =0}.

Let us define
X(r)={t" =7}

Clearly X(7) = p-(2(0)).
We have that
B> —gu(Vt',Vt') >b>0 (15)

for some constants B, b. Recall here the conventions of Section 2}

For technical reasons, we shall require two auxilliary sets of spacelike hy-
persurfaces. Let x(z) be a cutoff function such that x(xz) = 1 for z < 0 and
x(x) =0 for z > 1. Let us define

tt =t —x(—r+R)(1+r - R)'/?

and
t—=t"+x(—r+R)(1+r— R)/?

for an R to be determined later with R > 7y 4+ 1. Let us define

SHr) = {tt =71}, ST () ={t =7}

14



Independently of the choice of R, we have that % are spacelike, in fact
B> —gu(VtT,VtT) > b >0, B> —gu(Vt=,Vt™)>b>0. (16)
In what follows we shall restrict to

R=DNJ (37(0)).

gm

The set R is again a manifold with stratified boundary (as was D), where the
boundary is given by ¥~ (0) U (H* N J (£7(0))).

Choosing a coordinate atlas consisting of two charts (€4,¢P), (§~A,§~B) on
S?, then setting x4 = r~1¢4, 34 = =14, it follows that

(T’ t*7xA’IB)7 (T7t*7jA7jB) (17)

form a coordinate atlas for R. We can ensure moreover that the regions of the
sphere covered by the charts are restricted so that the metric functions satisfy

(gm)ij < B,  ¢7 <B (18)

in these coordinates. Note that with respect to both these charts, the vector
8%* is the stationary Killing field 7.

We will use the above coordinate atlas (7)) in formulating our closeness
assumptions. A third set of coordinates will be useful for us, namely the co-
ordinates arising from a choice of standard spherical coordinatedd (0, ¢) on S%.

With respect to
(r,t",0,9) (19)
0

coordinates, it follows that 7 is a Killing field. Let us denote the smooth
extension to D of this Killing field as ®. Note that ® vanishes precisely at two
points on each sphere of symmetry. This corresponds to the locus of points where
the (@) coordinates break down. Because (I8 is not satisfied with respect
to these coordinates, they will not be as useful in formulating the closeness
assumptions.

We will say that Schwarzschild is axisymmetric and ® is a choice of axisym-
metric Killing field.

Finally, we shall also at times refer to so-called Regge-Wheeler coordinates

(r*,t,z?, xP).

3

Here ¢ is the standard Schwarzschild time and the coordinate r* is defined by
r* =r+2Mlog(r —2M) — 3M — 2M log M.

Note that this coordinate is regular in int(R), but sends the boundary to r* =
—o00. With respect to these coordinates, we note that Jd,- extends to a smooth
vector field on all of R (i.e. to the event horizon), and in fact, in the limit
O =T on HT NR.

SHere, ¢ denotes an azimuthal coordinate.
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This last coordinate system is not useful for formulating closeness assump-
tions in view of the fact that it breaks down on the horizon. We shall only use
Regge-Wheeler coordinates for making calculations with respect to the Schwarz-
schild metric.

Finally, a word of caution. Since we have several coordinate systems which
will be considered, coordinate vectors like 0y« will always be referred to in con-
junction with a specific coordinate system.

3.2 The general class

We now describe the class of metrics to be allowed.
We consider the manifold with stratified boundary R defined above. We
consider the class of all smooth Lorentzian metrics g such that:

1. For €gose > 0 sufficiently small,
|gij - (gM)ij| < eclosc7r2a |gij - (9M>ij| < "icloscT*2 (20)

|8mgu - 8m(gM)1g| S eclosc"ﬂ_2 (21)
with respect to the atlas () []

2. The vector fields T' = Oy and ® = 0y with respect to (r,t*,6, ¢) coordi-
nates are again Killing with respect to g.

3. There is a function « defined on H™ such that T + v® is null on the
horizon, and

|FY| < €close- (22)

In particular, Assumption Bl above implies that H* is null with respect to g
and its null generator lies in the span of 7" and ®. We may define the ergoregion
to be the region where T itself is not timelike.

For sufficiently small €cjose, assumptions ([20) and (&) imply that 3(0) is
spacelike with respect to g, in fact, with our conventions on constants,

B > —g(Vt*,Vt*) > b. (23)

Similarly, we have from () that for €cjose sufficiently small, X (7) and X~ (7)
are spacelike, in fact
B > —g(Vt*, V%) > b, (24)

independently of the choice of R.
Note that X(7) is again isometric to ¥(0) with respect to g, and similarly
»F(7) is isometric to X*(0). We will denote by nyx; the future normal of ¥(7):

nk = (—g(Vt*, Vt*))~1/2vrer,

"When specialized to the case of Kerr-Newman, this clearly will not be the Boyer-Lindquist
r referred to previously. For the relation to Kerr-Newman, see Section
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This defines a translation invariant smooth timelike unit vector field on R.
Similarly, we define

nky = (—g(ViE, vit))~2vrE,

We will use the notations

H(T, 7"y =HTNR(E, ).

All integrals without an explicit measure of integration are to be taken with
respect to the volume form in the case of a region of spacetime or a spacelike
hypersurface, and an induced volume form connected to the choice of a p;-
invariant tangential vector field n¥,, in the case of H(7',7").

Note the following property of the volume integral with respect to the (al-
most) global (¢,r,¢,0) coordinate system: There exist smooth v(6,r) > 0,
7(0) > 0 such that for all continuous f:

/R(T/,Tn)f - /2;: /0” v(0,r) </TT (/OQﬁquﬁ) dt*) do dr,

"

Jro? = Lo ([ ([ rm)ar) o

Also let us note that

/RWT") = /TT </z<r> (~g(ve, Vi)~ f) "

By 23], it follows that if f; ~ fo in the sense 0 < bf; < fo < Bfy, it follows
that

/73(7'.,7“) fi~ /T/T (/2(7) f2> d7.

A similar relation holds with R* and XF.
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3.3 The Kerr and Kerr-Newman metrics

Proposition 3.1. Let Q < M, a < M. Then the Kerr-Newman metric with
parameters Q, a satisfies the assumptions of Section [3.2.

Let us sketch how one can implicitly define a Kerr-Newman metric on R in
our (r,t*,0,¢) coordinate system.

For convenience, let us do this by defining a new set of coordinates on int(R)
which are to represent Boyer-Lindquist coordinates (7, t, é, QAS) For this define 7
by

r? —2Mr =% — 2M7 + Q% + a?

t by R
i =t —n(r)
where h is defined by 2 = ——2MI=Q . and ¢ by
=9 P(7)
where 98 = b and 0 by
0=0.

Now consider the metric on int(R) defined in these new coordinates by

- @\ g s 0?0
|1 - | P e i (1 | af?
= [T TRy 2 7

2 oM 2 24in2 0 o
+i 1+‘f—2+<f—?—2> | sin?0dd?
T T 72 ) p2 (1+a cos 9)

2 20 o
) (2M _ Q—) — T didd.
r 72(1_’_11(;025 9)

Writing the metric in (7, t*, 6, ¢) coordinates, and then relating this form in turn
to the coordinates of (7)) one sees immediately that

r2(gi; — (gm)ij) = 0, (g7 — %) =0
uniformly as a — 0, and
% (Okgis — Ok(gnr)ij) = 0

uniformly as a — 0, where i,j, k denote coordinates of (). It follows that
given €cjose, the assumptions ([20) and (ZI) hold. The remaining assumptions
are well-known properties of Kerr which are manifest from the Boyer-Lindquist
form.
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4 The class of solutions

Let (R, g), X(7) be as in Section B2} and let \ be an H. . function on 3(0),
and let )’ be an LZ _ function on ¥(0). Here the L? norm is defined naturally
with respect to the induced Riemannian metric on X(0). By standard theory,
there exists a unique solution v of the initial value problem

Oy =0, Y|z = b, nslse) =V, (25)
with the property that
¥ € CH(Ho(2(r)),  nsyp € CO(Lic(2(7)).
We will in fact require that
V¥ € L2(2(0)), W' € L*(3(0)). (26)

By density arguments, the main results of this paper would follow if they were
proven under the additional restriction that 1, 1’ are in fact smooth, and
thus, that 1 is smooth. Moreover, we can safely assume that V> and \’ are
supported away from infinity. Let us assume this in what follows so as not
to have to comment on regularity issues or the a priori finiteness of certain
quantities. It follows in particular from this assumption that

Vi € L*(%(1)), Vi € LA(2%(1)), (27)

moreover, that Vi is supported away from spatial infinity.

5 The main theorem
For a sufficiently regular function W, let us define
1
T (V) = 0,00,V — nggaﬁaa\yaﬁw (28)

and for V* a vector field,

In addition, let us define the quantity
q(¥) = J;*(¥)nk.

Note that this is non-negative. Moreover, in the coordinate charts of the atlas

(@), we have
a(¥) ~ Y (9,0)%. (30)

K2

By (6] and (1), we have that,

/ a(®) < B (J0'[22 + V50 ]2.)
£(0)
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and for all 7 > 0,

/ () < oo, / a() < oc.
() SE(7)

Key to our results will be the uniform boundedness of this quantity.

Theorem 5.1. There exist positive constants €close, C depending only on M > 0
such that the following holds. Let g, X(7) be as in Section[Z2 and let b, V', ¢
be as in Section[f] where ¢ satisfies (). Then, for 7 >0,

/ awy <c [ aw) (31)
() %(0)

Inequality @) of Theorem [Tl follows from Theorem [l (The universality
of the constant € in the statement of that theorem follows a posterior: from a
simple scaling argument.)

6 The auxiliary positive definite quantities q.
and q*

We note that given e > 0, for small enough €05 < €, the vector field T+ eny,
is timelike. For sufficiently regular ¥, let us define

qe(V) = J; T (U)nkl.

Note that
ebq(¥) < qc(¥) < Bq(V¥).

Thus, to prove Theorem [, it is sufficient to prove [Il) with q. replacing q.
The significance of the parameter e will become clear in the context of the proof.

We shall need also a weaker positive definite quantity defined as follows.
Let x denote a cutoff function such that x =1 for » > r,, and x = 0 for say
r <ry — (ry —2M)/2. For a sufficiently regular function ¥, define

QX (¥) = r 2= ()nd.
Note that we have
ebr2q(¥) < X (V) < Br2q(V).
Note also that for » > ry,, we have

qe(¥) ~ q(¥).

and
QX (V) ~r 2 q(¥) ~ 72 qe (V). (32)
For all » > 2M, we have
q.(V) < Be 'r?qX (), (33)
q(¥) < Be 'r?qX (V). (34)
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7 The basic identity for currents

For an arbitrary suitably regular function ¥ such that VW is supported away
from spatial infinity, recall from (28) and (29) the definitions of T}, and J,.
Define also

KY(0) = T,,(9) V-V,

‘We have
VHI(0) = KV (V) + FVY,
where
F=0,0.
Thus, setting
EV(¥)=—-FV'T,, (35)

we have the identity

/ J;’(\I/)n*,;+/ JX(W)n§+/ KY(¥)
H(r!, 7" (7)) R(r".T"")

= / JY (W)nk, + / EV (D). (36)
(1) R(r",7'")
We will also consider currents modified as follows. Given a function w, define
JVw by
m

1 1
() = T () + qui, (V) = £ (Dw) ¥, (37)
KYV%(0) = KV(¥) — %Dgw(\y?) + iwva\waxy,

£V0(y) = £V ()~ JuIF. (38)

Identity (B6) also holds for JV** as long as appropriate assumptions are made in
a neighborhood of spatial infinity. We will always apply J""* to ¥ with ¥y = 0,
and thus, by our assumptions on VW, such ¥ will in fact be supported away
from spatial infinity.

It will be useful to have a separate notation for currents as defined with
respect to the Schwarzschild metric. For these we use the notation (J;/M)H,
KY ., (Jy) s ete. ‘

Suppose that V' is a vector field such that its components V* are bounded
in the atlas ([I7). It follows from (20) that

(T (@) = 0 (W)n#| < Becioser™? max | Vi Y (9;9)% (39)
The above applies in particular if w = 0, i.e. for the case Jg‘fw. (In fact, the
w term disappears from the difference above.) Note that if the components of
n, — N, are less than Begloser 2 we have by the triangle inequality

| (g ) (@) = T (@)¥ | < Becioser™*(|w] + max(|V;] + [9;w])

Y (2:0)2 (40)
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Note also that if V7, 9;V7, w, d;w and 9;0;w are bounded with respect to
(@), where then from (20), (1)), we obtain

ij  pr=>0,1
DY (2i0)° (41)
If F above vanishes, then Jl‘f W are examples of compatible currents in the

sense of [9]. This is a unifying principle for understanding the structure behind
much of the analysis for Lagrangian equations like (2I).

‘K;/A’Jw(\ll) - KV’“’(\I/)’ < Becosel 2 <max max |8§jVi| + |8fiafjw|)

8 The vector fields and their currents

8.1 The vector field T

Since T is Killing we have
KT(¥) =o.

In r > ry, T is timelike and moreover we have

T (L) ~ Ji (W)nk,
in that region. In all regions we have

[T (W)nks| < BJJ=(0)nk, |0 (U)nky| < BJ)S (W)nk,.

For €05 < € we have

|J1 (U)nk| < Bae(V). (42)
8.2 The vector fields Y and N, =T + ¢eY

Let (u,v) denote Eddington-Finkelstein null coordinated] on int(D) and let r*
denote the Regge-Wheeler coordinate. In the paragraph that follows, coordinate

derivatives are with respect to say (u,v,z?,2?) coordinates, whereas v}, v
denote Z:{i, etc.
Recall from [12] that for a vector field Y of the form:
1 0
Y — *N_ 7 * _
nir )1 — 1 Ou Fulr )Bv’
we have
0uY)? 2 Y
K, (¥ :7(——) 8,022
QM( ) 2(1_/14)2 r Y1 +( ) 2(1_M)
1 / 1-— !
+ _|W\IJ|§NI ( Y1 _ (y2( /J’)) )
2 1—u 1—u
1
1 < v y2> 0,00, V.
r\1—pu

8See [T3] T4]. Our use of this terminology is somewhat non-standard. Here v = (¢ +7*)/2,
u=(t—r*)/2.
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Let us define y; = £(r*)(1 4+ (1 — p)), y2 = £(r*)d~1(1 — p) where & is a cutoff
function such that { =1 for » <7y, and £ = 0 for r > r;ﬁ, for two parameters
2M <1y < r;ﬁ, and a small constant §. One sees easily that there exist such
parameters such that for r <7y,

M_/)>b y7/2>b
(r hj=" 20 —p) = 7

vio e-m)

1—pn 1—u -
1/ 1 (0uY)? 2 Y
5 (2 ) oawo] <5 (50 (3 ) omrgtg).

Let us return now to the coordinate charts of our (7). We see from the
above that the vector field Y has the property that in r < ry/,

BY (2:9)* > K} (¥) >b> (0:;0)? (43)

where ¢, j refer to the coordinate charts of (I7]) whereas we easily see also that
inry <r< r;ﬁ
K),|<BY (0:9)°. (44)
i

Finally, for r > r;ﬁ, Y =0.

Moreover, we note that Y is a regular vector field, in particular, when
expressed with respect to the coordinates of ([T, we have max|Y?| < B,
max |9;Y7| < B.

Because all derivatives appear on the right hand sides of (43)) and ([44), these
inequalities are stable, i.e. it follows from (I that for ecjose sufficiently small,

KY (W) ~ 3200)° ~ T (0 (45)
in7 <ry,and
|KY‘ <B Z(&\IJ? <BJ;*” (U)nk (46)
in ry; <r <ry, while certainly KY =0 for r > r{.
Define
Ne =T+ €Y.
Note that

KNe = KT e KY =eKY.
In the region ry < r < r{:, we have by (E6)

|KNe (W) < Be J)*(W)nk, < eBqX ().
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Note the factor of e. In the region r < ry/, we certainly have by (X))
KN (W) > bgX(P). (47)
For r > r;i, we have of course
KNe=eKY =0
In particular, the bound
— KN(0) < eBgX(¥) (48)

holds in all regions.
With the help of [@H) and (@F]), we obtain easily that

Qe(¥) < B (KN (¥) + J; (¥)nk) (49)

holds everywhere, if e is sufficiently small.

By similar considerations to the above, we see that given e, by requiring
€close < e sufficiently small, we have that N, is timelike everwhere up to the
boundary, and in fact

TN (W)nls ~ qe (). (50)

On the other hand, since by Assumption B] H* is null, J, Ne (@ )n4, controls all
tangential derivatives. More precisely, we have

(00))? < (B + Beéciosee )N (W)nk, < B JN<(W)nl,, (51)

(0510)* < Be "IN (U)nh,, (52)

on HT. For the above we have used the full content of Assumption 3 as well as
the translation invariance of ny, ns, 0y, ¢ and N,, which allows us to choose
uniform constants B.

8.3 The vector fields X* and X°

In this section we shall often use Regge-Wheeler coordinates as many of the
computations refer to the Schwarzschild metric gps.

In particular, we will consider vector fields of the form V = f(r*)9,«. In
what follows f’ will denote df*.

In (t,r*, x4, 25) coordmatesﬁ we have

_ 2—3pu
KL = feewee gy, (251

(2 palzH f) 919,00, (53)
T

1
4

9Careful, t not the t* of our chart! Of course, t* coincides with t for r > Ty

24



where [YW¥|2 ~ denotes the induced metric from gas on the spheres. We may
rewrite the above as

_ f/ / 1% 1,
& = (spl-L) @ewe i, (£ 5r)

Let a, R1(a) > M be parameters to be chosen in what follows. Let R(a) =
exp(4)R;(«). Given these, we define a function f, such that

fo = —1740ry)Y for r <ry

fo = -1, for ry; <r < Ri(a),
i d~

fo = —1+/ —7: for Ri(a) < r < R(a),
Ri(a) 47

fa = 0forr> R(a).

(One can smooth this function, although this is irrelevant.) We call the resulting
vector field X,,.
We obtain that in Ry (a) > 7 > ry

I _ _
KX (0) = V2, (£5) + 17000 = 0. (55)
Since t = t* for r > ry,, we can rewrite this as

KX (0) = VU2, (55) + 77 (0= w20, = 7o, (56)

gm

where the coordinate derivatives in the last line can now be understood with
respect to the atlas (I7). For €cose sufficiently small we obtain from (@Il)

KX 2 (9O (5) +r7' 0wl vf
— T71|8t* \IJ|2 — €close B q: (\Ij) (57)

in this region, where we have used ([B2)).
By (49), it follows that in ry, < r < Ry(«).

KX kN 0) > WP (50) + 0 (- w0 ef
— r71|8t*\11|2 —eB q:(\lf) (58)

for small enough €cjose <K €.
Consider now the region 2M < r <ry,. We have

fr=a"0y)"(1 - p),

and thus



We have thus

in this region.
Thus, by {I), (B0) and B4) we have
K () > —€ciosee "B (V)
in this region. It follows now from (@) that
K (0) 4+ KN () > b () (59)

in this region, for small enough €jp50 < e.

In view of (BH), KX« will “havdt] a sign” when applied to ] (see Sec-
tion [[OT)) except for very large values of 7, namely r > Rj(a). To control the
behaviour there we will need an additional current. First, let us notice that for
the X, we have selected, the coefficient of (9, ¥)? is always nonnegative. Finally
we notice that for r > R;(«), the coefficient of |Y¥|? satisfies

W 1

1 !
_ — I >
2rf“ 2f“ = & (60)

To choose an additional vector field, let us define
a1 " ade
e

where x is a smooth cutoff with y =0 for »* <0 and x =1 for * > 1, and let
X} be the vector
Xp = fo0p=.

Finally, define the function

1 2M (1 — ) fo

2

By, —

T T

wy = f 42

and consider the modified current J fb’wb defined by ([B1), as well as the associ-
ated KXv:wo and £Xvwe,
Note that for general f, we can rewrite

Kl = (15) oewre g (222 ne,

1—p r
M(1— ,
_(T”)fg%auq;ayq;

10 After integration over appropriate domains and modulo error terms
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from which we see

b,Wh _ f/ Mf Mf
Kb (W) = (ﬁ— T2b>(ar*\11)2+ TQb(at\If)Q

1 1—n AM(1 — p)
— gPam (Qfé+4 o ——5— v,
Note also the modified error term
1 1-— 4M(1 —
SXWb(\If)zsxb(\If)—Z(2fg+4 By - ( 5 “)f”) UF.
r r

Finally, let us define the currents
X _ 71X, Xy,
Jo=dJpe+ e,
KX _ KXa +KXb’wb,
EX = g¥a g gXon,

By our previous remarks, (B8] holds for JX. Also, in view of the definition of
w, identities [B9), Q) and (@) hold for J*, K*.
Let us expand

KX, = Hi(0,+9)* + Ha(0,¥)? + H3|VP |2, + H,¥*

where , , o
R N U A 113
20—p) 7 1—p r?
.fclz fa be
Hy=-—2>2 42242
2 2(1 — p) + r r2’
1 L, (2-3p M(1-—p)
Hy=—Ltp, — - _ ,
3 27°f 2fa+< 2r r2 Jo
1 1-— 4M(1 —
H4:_§D9M (2fl;+4 ’I”be_ (TQ M)fb>'

Note that for r* > 1, we have

«

1
/__7
o= 7 (r*)2 + a2’

In particular, for » > Ry («) for sufficiently large Ry () we have that

fa _Ja fo _Mfy  _«

H =
! 20—p) r 1—p r2 T 2mr?
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while in ry; <7 < Ry(a), we have

1 1 M 1
Lo o Mh, L
r 1l—p r 2r

Hy =
For Ho, let us simply remark that for r > R(«), we have

fo —2
H, = . > b(a)r—=.

For Hjs, we note first that we have the following asymptotic formula

<2—3H_M(1—H))fbwl
T',

2r r2

i.e. for r > Ry () for sufficiently big R;(«), we have

(2—3u - M(iz—u))sz 7

2r

and thus by (G0)

1 2—-3 M(1— 3
Hy=—2fo— i+ b M1-p)
2r 2 r

> .
r2 foz 4r
To consider the behaviour for r < Rj(«a), let us first note that there exists an
Ry depending only on M—i.e. independent of « if we require « to be sufficiently
large—such that for » > Ry we have

(252 - M0 oz

and thus, in Ry < r < Ri(«) we have

m- g (22 MO0 g 2

2r 2r r2 72
For ryy <r < Ry we have

2-3u  M(1-p)
2r 72

)z

and thus, say

for a sufficiently large.
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Turning to H,4, we note first

1 4M(1 — /1') fb) _ 11 "no_ % + M_I /

1—p
_glng (2fl§+4 r fb_

r2

for large r, i.e. we have

1 1-— 4M(1 — Ta
H4:—§D9M (2fé+4 T'ufb— ( M)fb) >

r2 ~ 4mrd

for r > Ry(«) for Ry(«) suitably chosen. On the other hand, one sees easily
that Ry before could have been chosen such that for all o we have

1 AM(1 — p)

—Ep - 5 fb>20
T r

1
H, = _§DQM <2fg +4
for r > Ry. For ry <7 < Ry, we have

A R e )

< Ba™ L.
r

We may thus choose « large enough so that in this region

M 1
|Hy| <

Let o be now chosen. It follows that Ry = R;(a) and R = R(«) can be
chosen. These choices thus can be made to depend only on M.
Let us assume in what follows in this section that ¥y = 0. We thus have

27 27
/ \I/2d¢§/ (06 W)%dg. (62)
0 0

It follows that
27 27 27
| wass [ @uras<e [y, do
0 0 0

Thus, in the region ry, < r < R, we have

27 27
1
/ (Ha|V[5,, + HiW?*)d > 5 | Hs|VO[3,, do.
0 0
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Note that, in the support of f;, we have
*3)2 2 2 2
(O70)" ~ (0p1)7, VU7 ~ [V,

We have then by the above bounds and (1), (30) and @2)) that for » > R,
2 2
| ax k@ = [ K 4 KN do
0 0

2
- / Eclose B q:(\ll) d¢
0

27
/ (Hy (0, 0)% + Ha(0,9) + H| V0|2,
0

+H,U?) do
2
- / Eclose B q:(‘l’) d¢
0
27
> / (b q:(\ll) — €close B q:(\ll)) d¢
0
27
> [ varwyds (63)
0
for €close suitably small, whereas for ry, <r < R we may write
27 2
|k msmas = o [ aXwas
0 0
2
+ [ eIvee - Bow? ds
0
27
- beclosc/ q:(\l/)
0
27
> b / qX(¥)do
0

27
+ / BIYUP - BOW)?)do  (64)
0

where for the second inequality we require that €cjose be sufficiently small. From
(E9) and the fact that f, vanishes identically in r < ry,, we have

2m 27
[ e mvywyae = [ 4 kNw)as
0 0

Y

27 "
b /O o* () do, (65)

in the region r < ry..
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4
To give bounds for the boundary terms, note first that X, = — (;—A‘;[) T on

HT. It follows that on the horizon, we have

_ 4
X, _ r T
JXonth, = (ﬁ) Tt

One sees easily that for H or X(7) where n* = n,

or n* = n&, we have
|JXen#| < B|JEn#| + Becosee ™" J)en* < B JNent
for €close sufficiently small. In view of the fact that we also have
|J5n“| < Jgn“ + Béelosee " Jlivﬁn“ < BJP]LVCn“,
it follows that

|JXen#| < B|JEn*| + Beclosee ™ J)en* < B JNen#

on HT or ¥(7). On the other hand, in view of the the assumption ¥g = 0, we
have similarly

27
X
/O JXonh d¢’

IN

2m 27
B / J{nﬂd¢>‘ + Beclosee / JNent dg
0 0

IN

27
Ne
B/O TNent do.

It follows from the above inequalities that

27 27
X Ne
‘/O JXnk d¢’ < B/O JNentdg (66)

on both X(7) and H*.

9 The high-low frequency decomposition

As explained in the introduction, the arguments of this paper hinge on separat-
ing the “superradiant” part of the solution from the non-“superradiant” part,
and then exploiting dispersion for the former and positive definiteness for the
JT flux through the event horizon for the latter. These two parts will be char-
acterized by their support in frequency space. As we certainly do not know,
however, a priori that 1 is in L2(t*), we will first need to cut off ¢ in ¢*. This
construction, together with propositions which control the errors that arise, are
given in this section.
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9.1 ¢ cut off: the definition of 7.

Let x(z) be a cutoff function such that y(z) = 1 for x < 0 and x(z) = 0 for
x > 1. Given 7 > 2, define

v = x(tT+1-7)x(~t" + 1y
We may express this as
P = x&¥ = (Txie + “x&)Y,
where *xI. and ~xI. are smooth functions on R with
supp("xi) C R (1 — 1,7),

supp(~x<) C R™(0,1),
0< xL<1, 0<Txk<1

and
0y x| < By, 10 x| < By,

with respect to the charts of (I7), for any multi-index (¢) of order ¢. Moreover,
DTxc=0, 9 xk=0. (67)

The reader may wonder why the cutoff region is related to %, indeed, why
¥+ have been introduced in the first place. Essentially, this is necessary to
achieve the propositions of Section We would like to express all errors
in terms of the positive definite quantity q.(v). This quantity does not contain
1) itself but only derivatives. Of course, in view of the fact that, as we shall
see, the spherical average 1y does not give rise to errors, this does not generate
problems for the region r < R for (¢ — 1/p)? can be controlled by q.() via
a Poincaré inequality. As r — 00, one needs extra negative powers of r. Our
cutoff region diverges from R (0, 7) as r — oo and this allows us to “gain” powers
of r necessary to control 0’th order terms via a Poincaré inequality in R(0, 7).
One can then retrieve estimates all the way to the boundary of the cutoff region
using the positive definiteness of J7 for large 7.

9.2 Definition of ¥, and ¥;

Let ¢ be a smooth cutoff supported in [—2,2] with the property that { = 1 in
[—1,1], and let wy > 0 be a parameter to be determined later.

For a smooth function ¥(t*,-) of compact support in t*, let ¥y, denote its
k’th azimuthal mode. Let U denote the Fourier transform of ¥ in ¢*. Note that
Ty = ..

Define

Uy (t7,) = e /jo C((wok) " w) U (w, -) € dw,

k0
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Uyt ) = W+ Y e / (1= k) ) () e

k0

Note of course

U, + Uy = . (68)
Note in addition that
(W,)o =0 (69)
whereas
(g)o = Yo. (70)

In the application to U = L, we shall write simply ¢ and ] . Note finally,

that in view of ([G), (vx) = (V).
Note that for k # 0,
(U, (t*) = / C((wok) ™ w) Up(w) e dw = / PS(t" — s*)Up(s*) ds™,

— 00

where

Ps(tY) = wok/ ((w)e @@kt gy,

The kernel P;~(t*) is a rescaled copy of a Schwarz function of t*. As a conse-
quence, for any m,q > 0,

O PE(E)] < Bung (ol k)™ (1+ wokt*[) . (71)
On the other hand, let Cbea smooth cut-off function supported in (—3,3) such
that ¢ =1 on [—2,2]. Then, since ( { = ¢, we have the reproducing formula

(W) (t") = / " E(wok) ) (B, () € o = / BE (=) (W) (s7) ds”.

— 00

where the kernel P~ also satisfies (7T
Finally, let £(w) be a function smooth away from w = 0 and with the property
that (w) = w™! for |w| < 1/2 and £(w) = 1 for |w| > 1. In particular, the

function &(w) = wé(w) is smooth and &(w) = 1 for |w| < 1/2 and £(w) = w for
|w| > 1. Since £(1 —¢) =1 — ¢, we can write for k # 0,

(e = [ Tz — )W (s) ds”

where -
Q7 (#) = wok / §(w) €M) dyy.

Furthermore,

0 (W(t) =k [ QF° =) (u(s7) s
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where -
Q) =k [ &) e do

and
(Belt) = ob) ™ [ R =)0 (B)u(s) s

where
o0

RZ () = wok / () o) a,

— 00

The function a(w) = (£(w))~" is equal to one on (—1/2,1/2) and w™! for |w| > 1.
The kernel Ry (t*) satisfies

|RE ()] < Bq(wolk[)'—7(t")
for any ¢ > 0. In addition, we have a uniform bound (coming from 1/w decay)
|Ri; ()] < Buwolk| |log(wolk[t™)].
Combining we obtain

| R ()] < Bywolk| [log(wolk[t™)] (1 + |wokt™|) ™.

9.3 Comparing 0;-¥ and 0,V

The decomposition of ¥ into ¥, and Wy is motivated by the desire to compare
various L2-type norms of the 9, and 9y derivatives. Since this is required at a
localised level, however, error terms arise. The precise relations one can make
are recorded in this section. The estimates of this section employ standard tech-
niques of elementary Fourier analysis. We must be careful, however, to express
all “error terms” in a form which can be related to our bootstrap assumptions
which will be introduced later on.

9.3.1 Comparisons for ¥,

First a lemma.

Lemma 9.1. Let 7 > 7/ and let U be smooth and of compact support in t*.
Then

(8,5* \I/b)z S Bw02 / (8¢\I/b)2
R(r', 7" )N{ry <r<R}

T+1
+ Bwo sup / / (8¢\I/b)2 dr.
—o0o<7<o00 JF S(7)N{ry <r<R}

L(T’,T”)ﬂ{ry <r<R}
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Proof. Recall ([69). Note first that by the relations of Section[0.2] it follows that
for any ¢ > 0, we have

100 (T)i (17, )] < By(woh)? / (1+ Jwoh(t* — 5")) 7 (@ )] (%, )™
‘We have thus
0 (U, )| < Bylwoh)? (141077 | ()i (57, )ds™
£=—o00 tif"'ﬁ
[e%) * %
- Y * *
< Byl Yo 1) [T el (57, )ds
f=—o0 U SoTRT
%) t*-‘r% 1/2
- «o * *
< By(wolk)2 S (1)) / (W2 (%, )ds" ) .
p— oo
It follows that, for ¢ > 1,
/ (Op (W )i)* (t*, ) dt*
o oo s 1/2\ 2
— wQ *
< By(wolk])? / S () (/ m)%(s*,-)ds*) dt
d {=—00 t*+ﬁ
TN 00 B 0o B t*+w£0+\llc\
< Bl [ {3 avi ) S oasin [T @k dsar
™ \t=—oo t=—oco o TwT
oo x4 Ll
3 i —q wolkl * * *
< Blwlk)® [ 30 i [ s dst
! l=—00 th"%\k\
0
0o — t*J’»ﬁ
= Bywolb)® 3 (1t (0,)2(5%, ) ds* di*
l=—o00 ! t*+%\k\
0
00 % 7
— Bylwolk)®* S @y [ / (0,)3(s" + £, ) dt* ds*
f=—c0 okl 7T
0o T//-‘r e+“1c‘
— wo
= Bylwok)?® S (1+10)7 / (W2t ) dr
= '+ oo
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Thus,

%) 7" £+1
_ wolk] « «
< By(wok) Z (L+1ep , X 70 )(\I/b)%(s ;1) ds
f=—00 7'+ S TE
00 " %
FBy(wok)® D0 ()T [T (= x5 (@), ) ds”
l=—00 Tl+w0\k\

= Tip+To

where x, -~ (s*) =1 if s* € [7/,7"] and 0 otherwise.

(72)

To prove the lemma, in view of the comments in Section on the volume

form and Plancherel, it would suffice to show that

2T
// (M/ Ty . dé d6 dr

|k|>1

2w
<Bw0/ // O,7) [ (050,)2 dodf dr dt*,
0

27
// (M/ Ty dépd6 dr

k|>1

T7+1 27
< Bwgy sup / / / 0,r) (04,)% dep dO drd7.
0

—00<7<00

The first term on the right hand side of (72) is bounded by

o] "

Tk

A
oS!
€
o
z
_
+
=
!
_Q
H
=
=
CD*

< By(woh)? / ()2 (5", ) ds”.

Thus, it follows that

Z /2WT1 kd

|k|>1 |k|>1

IN A
S S
2 2
& &
o (=) N)
S— i
y \
\ ¥
\
&
5 5
trn
= =
t'J-)(- C’J%
N N
< <

We have established (73]).
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The second term on the right hand side of (2] is bounded by

Tow < Byfwkf 3 Q1) [ ()
f=—o0 't ST
o) T//-‘r Eﬁi‘
0
+ By(wok)® ) (1 + ¢~ (Wp)i(s", ) ds”
ZZO T//
= Tork + To2k (75)

‘We have

R T 27
Z/ / 1/(9,7")/ Ty dop d6 dr
5 Jry Jo 0

-1 R ym 27 T’
< Bywi Z Z (1—|—|€|)_q/ / 1/(9,7")/ / k*(W,)3(s*, ) ds* do df dr
\k\>1e:oo ry /0 0 '+
R ™ 2w T’
< BRY Y iy [ [ven [ ] s i doasar
\k\>1é——oo ry /0 o Jr+gs
™ 2 T’
< By} Z (146~ Z/ / 1/(9,7")/ / E2(W,)2(s*,-) ds* dp df dr
=0 [k[>1 o Jr+g
- I 2m T’
< Bywi Z (1—|—|€|)_q/ / V(@,r)/ / (0sW,)2 (5%, ) ds* do df dr
oo ry J0 0 Tur%
—1 R T 27 74+1
< Bywi Z (T+ )" [ljwy ™t sup / / V(@,r)/ / (0502 (s*, ) ds* dg df dr
e — oo —00<7<00 ry J0 0 7
™ 2m T+
< sup / / 1/(9,7‘)/ / (06W,)3(s*,-) ds* dg df dr, (76)
—oo<7'<oo 0 T

for g chosen sufficiently large.
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As for Thy 1, we have

Z/R/w v(0.r) /0277 T de dO dr

2m "4
< qWOZZHf // 97‘/ / WM U,)3(s*, ) ds* d db dr
|k|>1 €=0
27 ‘r—i—e+1
< qwozz (146" / / 97«/ / )2(s*,-) ds* dp df dr
|k|>1 €=0
R T 27 T+e+1
< (1+€)_q/ / v(6,r) / / V2 (s*,-) ds* do db dr
(=0 ry /0 k| >1
o0 27 T +l+1
= Bl (1+0)” // 9r/ / )2 (s*,-) ds* do de dr
£=0

(o]

< By (14071

2w
sup / / @9,r / / (0,)%(s*,-) ds* de df dr
Y, —00<T<0

27
< Bywo sup / / 0,r / / (060,)%(s*,-) ds* de¢ db dr.
—00<7<0 ry

The above and (@) give ([Z4). O

(=)

Lemma 9.2. Under the assumptions of the previous lemma, if wo < 1, then

R 7 27 T
/ / V(H,r)/ / (04 0,)%dt* dop
ry J0 0o Jr-1
R ,m 2w T
< Bwy'  sup / / V(@,r)/ / (0 W)2dt* dop.
—o00<7<00 ry J0 0 T—1

Proof. For any q > 0, we have

()t )] < By(wolk]) / (1 + ok (t* — 5%)])~9| Wk (57, -) ds*
= t oo
< By(wolk) 3 (1+]e)0 / Wi (s", ) ds®
fd .
L& 2k 2
< By(wolkD 3 (1+]e)0 / W, (", ) ds*
ad R
It follows, with the help of Cauchy-Schwarz, that for ¢ > 1,
) i oo
()t )2 < By(wolk) S (14 1)1 / WP (s*, ) ds”,
f=—oc0 oo
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and thus,

/f J; ven /:1 [CORGDIRT
: BQ(%'kD e / / 0.7 / /t o |Wi|?(s*,-) ds™ dt*

l=—o00
wmk\ 8" = oAl
< By(wolk) 3 (1416 / / 9r/ / W 2(57, ) dt* ds*
l=—00 ity o\k\ S*_‘f(:r\k\
= T T Lom
<, S vt [ oo [T e s
l=—00 Ty J0 ?71+w0£\k\

We then obtain

/TR/WV(Q,T)/%/7-71(3¢\I/b)2dt*d¢
k>1/ /7T v(0,r) /027T /:_1 K2 (0, )i (17, )2t

< B, Z (1+14)~ Z/ / 97‘/%/ wofit 2|0 [2(s*, ) ds*

l=—00 |k|>1 wo\k\

o 2
Z 1+40)~ / / 0,r) / / & k2|\11k|2(s*,-)ds*
=0 [k|>1 =25
o 2m
:BqZ(l—i—Z)_q/ / ,r / / )2 ds*
=0 Ty 1—*

00 2 T
< By Y (1+0)7920+2)we™"  sup / / v(0, r)/ / (050)* ds*
—co<7<o0 Jry JO 0 Ji-1

£=0

R ,m 2m T
< Bywg* SE.P< /7 /0 V(H,r)/o / 1(8¢,\I’)2 dt*,
—00o<7<o0 Jry s

where we have assumed ¢ sufficiently large, and have used wo ™! > 1. The lemma
follows after fixing q. O

9.3.2 Application to v

From the above lemmas, we easily obtain the following statement, which is the
form we shall use later in this paper:
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Proposition 9.1. Let 7" > 7/ and wg < 1. Then

Oeu? < Bt [ @)

y<r<R}

~/73(T’77”)0{TySTSR}
B sup/ ().
S(r

0<7<7 7)
Proof. In view of ([6), it follows that
(Os9)® = (x)*(969)* < B ae(®)

in the region ryy < r < R. In view also of the support of 1, we may thus
bound the right hand side of the statement of Lemma [2] applied to ¥Z. by

Bwy' sup / (/ qe(z/J)> dr.
1<r<r Jro1 \Usep)

The proposition now follows from Lemmas and O

9.3.3 Comparisons for ¥
First a lemma:

Lemma 9.3. Let 7/ < 7" let ¥ be smooth and of compact support in t*. Then
/ (0 Wy)? > Bw02/ (0,V4)?~Bwy™t  sup / (0 03)?,
H(r!, 7" H(r!, 7" —oo<7<oo JH(F,7+1)

Proof. Note first that the lemma holds trivially for (¥)o. We may thus assume
that (¥4)o = 0. For |k| > 1, we note first that from Section [0.2] we obtain

. -1 [ log |wok(t* — s* . .
(06007 < B I [ b F = 0, () (s, )| s

—o0 (1 + Jwok(t — 5%)])7
Thus,

1"

.
2
Bgwy /
7_/
"

’ 2
[ T log [wok(t* — s%)||
Bywy? k' e (T * N ds* | de*
) </m“’°' Tt ot s O (Pen )l

IN IN
=
=}

&

<

(V]
i\,
e R

L 0 log |wok(t* — s*)
Byw:? k |
#Bq? [ </ R ok —57)

= Tk +Top + T3
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We obtain immediately that for sufficiently large ¢, since

"

T 1 k(t* — g*
[ ool =l e < g,
v (1 + |w0k(t* — 5*)|)q

then

4 " ,
T Loz leok(t = s )
‘/T/ </' ol (1 + |wok(t* — s%)[)? |0+ (Wy)k(s™, )| ds dt

<, [ @wie.)ar

and thus

1"
T

znsm%ﬁ‘@meﬁwﬂ

T/

On the other hand,

> /OW 7(6) /O% Ty 1, dep df

[k|>1
= qugQZ/ 7(0)
k|>170
2 pr!’ ! |1 | k(t* *)H 2
og |wWo — S N . .
wok 05 (Uy)(s*, )| ds* | dt* dodo
/0 - </_oo R A okt — a7 [0 (Wak(s™)] ) ¢
= qugQZ/ 7(0)
|k|>1 70

27 ! o] P A 2
o TR [log |wok(t* — s*)||
K s (Uy)i(s™, )| ds™ | dt* dopdo
/ - <Z/7— 041 wo (14 |wok(t* — 5%)|) |05+ (Wg)(s™, )| ds @
wo

" [ 1/2
RS TomE o |log? lwok(t —s)|| /
> wik s

v O T Tk (e = s

IN
=
=}
&
<
o
o\:‘
AN
=
h
¥
3
\‘\

[k|>1 =0 wo k]
o 1/2\ 2
wolk] N 9 . .
< oy |0 (Wy)(s™, )" ds ) dt* de df
’ 1
/= ST
< Bp? Y / 5(6)
k|>170
e = Jlog lwok(t” =)+ )] (775 2\ ?
0g |Wo - T wo 9
¥ O (Uy)i(s™, )| ds™ dt* d¢ do
/0 /r’ WO| | ¢=0 (1 + |W0k(f* —TI) +é|)q </r, H\i\ | ( ti)k(S )| § ) (b
— -
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< qw02 Z/
|k|>1
27 St 1/2 2
SRR iy L *
s+ (W T d dt* de do
/ / ACREE )Tl |05+ (g (s, )| ds "
w0
27
= Nlog [t + O)|
g o] [ e
k|>1 = (14 [t 4 £])9
log t*—l—f wo\k\ . i .
<Z |1+||t*+£||| (Tp)i(s™, )" ds )dt d¢ do
> log [t* + £)|]
< B 2/ |7
= qWo 0 (g (1+|t* +£|)q
/4
log [t* + £)]| / / /*W ,
o+ (W *7. ds* dodo* | d
Z(1+|t*+€| Z e |05+ (¥4)x (s, )" ds™ do
k=1 DoTk]
_ log [t*]|
< Bw 2/ Noglt]|
oSy Wl
* 2
Z Jer > / / / Dur (Wy)i(s7, ) ds* dpdo™ | dt”
< (L4 [t + ) =
_ log |t*||
< B,w 2/ |7
O o (U4 [er])e
[log [t* + || / /27r/ ,
Ds= (Wy) ds* d¢ do* | dt*
<Z(1+|t*+z| 8)(s7, )" ds” d¢
- log |t*]| |10g|t*+£|| €+1
< B 2/ |
< qWo 0 (1+|t*|)q;(1+|t* +€|)q wo
™ 27 T
—o00<7<00 JO 0 F4+1
<

T 21 T
Bywy® Sup_ /17(9)/ / s+ (U4) (5%, ) ds* dop db*.
—00ST<00JO 0 T+1

A similar bound holds for 73 ;. We obtain the lemma after appropriate fixing
of q. O

Lemma 9.4. Under the assumptions of the previous lemma, if wy < 1,

sup / (0;+Wy)? < Bwy'  sup / (0 0)?
—oo<7T<o0 JH(T,7+1) —0o<7<o00 JH(T,7+1)

Proof. Since
Op Wy = 0+ W — 0y W,
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and wo ™! > 1, it suffices in fact to prove

sup / (0;+0,)? < Bwy'  sup / (Op- )2,
—00<T<00 JH(T,7+1) —oo<7<o0 JH(7,7+1)

Recall from Section we have

(0 W5 )| < Bq/ wolk[(1 + wolkl[s™ — *[)~[(0- W) ds™.

— 00

‘We obtain

741
/~ (D Ty )i (¢, -)dt*

= b /%+1 /m = (O )5 ) ds™) de
= q - e (1+w0|k||s*—t*|)‘1 t* ¥ (S, S
s ek :
< nf L. : (O W)™, ) ds* | dr°
" <_Zoo it (U alkl]s* — 0P
P41 [ oo . 2
< Bq(wok)Q/ 3 (1+|e|)*q/ (00 (5™, ) ds™ | dt”
RV e
7+1 0 0 *+%
< Byleok? [ [ X @i ) i ek [ @ wets
T l=—o0 {=—c0 tjﬁ_kﬁ
AT 0‘ * 2 * *
< wO|k|/ S i [ 0wt P
{=—0c0 *+ Z\k\
741 t+f0+‘,i‘
< Byelih 30 a0y [ / W) (s", P ds* e
l=—00 tr \k\
> T+1+wo\k\ 5" = Za T e N2 e 1
< Bylwlk) 3 iy [ / T @0l )P di ds
{=—00 T+W S*_‘*’O‘k‘
+1+ﬁ
< B Y (4l [ (O W)a(s™, ) ds”
{=—0c0 T+w0£\k\
14
< qu+|e| T e s
wo
for ¢ > 1.
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Integrating and summing over k, we obtain

[ / /~m<8t*%>2<t*, Ydt* d db

o0 27 T+H1+—=
<BgY (1+0)” / / / (01 W) (5%, -)? ds*
=0

27 T+1
< By 'Y (1407920 +2)  sup /5(9)/0/ (0= T) (s

—0 —ooL<T<00 J(O

where we have used in the last line that wy < 1. The lemma follows after fixing
q>2. O
9.3.4 Application to ¢y

We may now easily prove

Proposition 9.2. Let 0 < 7/ < 7" < 7 and let ¢ be as in Theorem [01. We
have

/ (0 07)? > Buwo? / (Og0])>— B %! sup / TV ()t
H(r! ") H(7,7+1)

H(r!,7!") 0<7<r—-1

Proof. To prove the proposition from the above lemmas, we first remark that it
suffices to prove the inequality under the assumption

2m

W= | vido=0,

for the inequality is trivially true for (%T)O- By (), this is equivalent to

assuming
27

Yicdg =0,

0

/02W¢d¢=o

in the support of ¥=<. Of course, under this assumption it follows that this holds
in all of R. Thus we may assume

and by (G1)

27 2
0 dg < / (02 do (77)
0

0
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in the relevant region. From the above lemma, we just notice that on H (0, 7)

27 2T
/ (Ol dd < / (O XY + XD d
0 0

IN

2m
/0 (BY? + B(9i)?) d¢

IN

/0 " (B(@)? + B@w))ds

27
-1 Ne 122
< /0 Be J# Ny,

where we have used (7)), (&) and (B2)). The proposition follows. O

9.4 Comparing q.(¢]), q.(¢]) and q.(¢)
In view of (G8]), we clearly have the pointwise relation
Ae(¥) < 2 (ae(¥]) + ae(¥7)) (78)

in R(1,7 — 1). It will be necessary, however, to compare also in the opposite
direction. We have

Proposition 9.3. Let wy <1 < Typep < 77 < T — Typep- Lhen

/ dt” / qc(¥]) < Buwy! sup qe(¢)
T'—1 3S(t*)

T/ —Tstep STST +Tstep o 5(7)

+Bw0_7e_lTS;C2p sup / q.(v),
o<r<r Jx(r)

/

/ dar* / @@W]) < Buy'  swp / a.(®)
/=1 S(t*) T/ —Tstep ST ST/ +Tstep J 5(7F)

+Bw0_76_17—s;c2p sup /( )qe(dJ).
(7

0<7<T

A

Proof. Since ¢ = ¢Z —¢] and qe(¥]) < 2(qe(¢7) +qe (1)) it will be sufficient
to prove the first statement of the proposition. We begin with the following

Lemma 9.5. Let ¥ be smooth of compact support in t* and wg < 1. Then

T/
/ dt*/ \I/f < Bwo_l sup / &
/-1 (L) T/ —Tstep ST ST +Tstep J 2(F)

+ B sup w0_7|? — Tstep|_6/ w2,
=(7)

_OOS%ST/_TstepUT/JFTstep <7<o0
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Proof. For any ¢ > 0, we have

()] < Bylenltl) [ (14 lank(e” = 57)) P s
0o *+%
wo
< Bu(wlt) > (+1e) [ T4)(s*, ) ds”
< Byl 3 ey ([T s
¢=—c0 ot oTaT

Therefore,

! 00 ! t*+%
[ Jwute ot < By 35 iy [ de [T b as
A

T/ —1 = — o0 T/ —1

o0 T, t* 41
wq k]
< By(wolk) 3 <1+|e|>*q/ dt*/ w257, ) ds”
I=—00 T = t*+w0£\k\
> ook
wQ
<B, S (14 / W4 2(s", ) ds”
{=—0c0 T,_1+woe\k\

As a consequence,

/T/T,1/2:; /7T v(r.9) /2” |(Wy) (¢, ) |>d¢ db dr dt*
/T—1 /2M/ (r. /% ()5 (t*, )P dt*

|k|>1
T[;r“lc‘ oo pm 27 S*_Tol\k\
<B, ¥ Z (1+ ) / / / V(r,@)/ / 10257,
[k|>1=—cc =1t oy /2M 0 sl
27 ‘r-i—e+1
<B Y (1+1))” / / re/ / |x11| * ) ds*
£>0 2M
<Buwy! sup / 2
T/ —Tstep ST ST +Tstep J B(7F)
-7 = —6 2
+B sup Wy (Tstep + |T — Tstepl) / U
_OOS%ST/_TstepUT/JFTstepS%SOO E(i’)
for ¢ chosen sufficiently large. O

Note that

2 2 2 ((9“\1/)2 ~
((&,\I/) + (0,0) + |V +e7(1_u)2) qe (D),
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and as a consequence,

9,0 \?
(00 0); + (8u0)} + (0.40); + (0.8 V); + e <1 u) ~ qe(P),
- b

where z# denote alternative coordinates z# or #4 of our atlas (IT). Thus, we
obtain from the above lemma applied to ¥ = 0,9, ¥ = 0, ¥, ¥ = 9,401

611/ .
U =./c 11%;, the statement

/ at* / a.(47) < Buwyp! sup / Q. (L) (79)
/-1 E(t*) T/_Tstep S%ST/JFTSCep E(f)
+ B

sup WO_7 (Tstep + |7i - Tst6p|)76/ qe(z/’:;)
2(7)

_OOS%ST/_TstepUT,JFTstepS%SOO

Note that it is sufficient to prove the inequality under the assumption ¥y = 0,
and thus we may assume (7). Note the inequality

qe(w;)(tvrv ) < Qe(w)(tvrv ) + BX(t+ +1- T)X(—t_)¢2- (80)

Now, B can be chosen such that in the support of the first term on the right
hand side of ([Z9) either r» < B or ¢ = . In view of (0), it follows thus that
we may there replace q. (L) with q.(v).

Turning to the second supremum term of ({9) and applying

|t* - Tstep|_4(+X;< +_ X?—X) S BT_27

the statement of the proposition follows immediately in view of the restriction
on Tygep and (T1). O

9.5 Estimates for £

In view of the cutoffs, ] and ¢§ no longer satisfy @.
Define

ng-< = "/J DgXTX + gﬂyau(x;)auw' (81)
Note that FZ is supported in R (7 — 1,7) UR™(0, 1).
We may write
Ogthy = Fy, (82)
Ogvf = Fy, (83)

where F[7 and Fy are defined from FZ as in Section
The right hand sides of ([82) and (83]) generate error terms in applying (36)
with our various currents. We have the following

1LOf course, one needs to multiply this by a cutoff on the sphere to make it a well defined
smooth function.
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Proposition 9.4. Let wyg < 1 < 7Tyep < 7 < 77 < 7 — Typep and consider
V =X, N, or T. Then the following holds

/ EV(]) < Buwy Taepe ! sup / Qe (1), (84)
R(T",7"") 0<7<7 J%(7)
/ V(W) < Bug Tame ' sup / Qe (1) (85)
R(7!,7'") 0<7<7 J(7)

Proof. Decompose
FL="FL+°FL
where
1F;<:7X§><F;<a 2F;<:+X;<F§:-<7
and consider 7 F7, 7FY, defined in Section 0.2} for j = 1,2.

Recall the definitions @E), B8) of £ and £V**. Since (F])o = 0 and
(F)o = [ Fdp = 0in R(r',7"), it follows that £ ((¥])o) = €Y (%] )0) = 0
in R(7/,7") and thus equations (84]) and (8H) are trivially satisfied. By subtrac-
tion, we may thus assume in what follows that

2T

Yo = Y do =0,

0

and thus

2m

27 27
v 2 [ p2dg <o / (9p0)? dp < Be™ / TNk, do (86)
0 0

0
o . . n
and similarly with ny,_.

Lemma 9.6. For any ¢ >0, 1o <7 — 1, there exists a By such that

|CE k|t = 70,7) < Bywo'~(7 — To)qulf"/ |CFL)w(t™, )] dt,

T—1

(CEDRI(t" = 70,7) < Bowo'~*(r - To)_qkl_q/ |CEL)w(t", )l dt™.

T—1

Proof. This is standard. O

It follows from the above lemma applied to ¢ = 6, the restriction on 7/, 7",
and the relation between t* and ¢ that

1"

/ 1+ (r=t))?CF)Hidtr < Brsgfpwofs/ r2(PFL)Z dtt
T 7—1

’

IN

Bryowo™® / P2 4 e TN (Y )nis ) dE T
7—1
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We remark that the powers of Tbtep and 7~! can be chosen arbitrarily above,
at the expense of the constant B and powers of wy !, but this would give no
advantage in what follows. Thus,

/ (1+ (7 — 1) CE)?
R(r’",7")
<ZBsmp / (r 2y +r2e TN (Yi)nlsy )
Rt(r—1,7)

< BTstcp 2 sup /+( )T_2(3¢1/J)2 +r 27t Jivg (V)nky
YX+(7

T—1<7<7

<BTStcp Ywo™®  sup / JN (yp)nk, sy,
=H(7)

T—-1<7<1

where we have used (86]). On the other hand, by conservation of energy we have
that

sup / TNk, <2 sup / TN (),
EH(7) 3(7)

T—-1<7<71 T—-1<7<1
and thus,
/ (1+(T—f*))3(2F;—)2df* < BTbtep Ly 8 sup / Jge(g/})n%
R(r!, 7" T—1<7<7 J3(F)
< Brghe twe™®  sup / qe(v)
T—1<7<7 J5(7)
< BTSmp “Lwe™8 sup /( )qe(w). (87)
S(7

Clearly, an identical bound holds for

/ (1+t*)3('F7)? at*
R(T/ﬂ'//)
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Let us consider first the cases where V £ X. For V =T, N, we have
/ V() = / LETVE W)y + PET VY (4],
R(T/ T//) 7— 7—//)
/ (14 1) (E) + / (1 + )3 (V2 (@)
R(r!,7'") R(r!, 7"

/ (1+ (7 —t")°CF)?
R(T! T”)

_ -3 V(T 2
[ ) )

IN

IN

BTbtep “Lwe™® sup /Z() qe(w)—i-B/ ) (1+t*)73 qe(1y)

0<F<T

+B 1+ (r =) qe(yy)
R(T/,T”)

Brsmp Ywo™® sup / q.(v)
%(7)

0<7<T

+ BT atep sup / (/ qe(wg)> dt
Tstep ST <T—Tstep J 7—1 =(7)

S (BTbtep 1 + TstepB( + w0_76717’s;e2p)) sup /E() Qe (1/))

IN

0<7<T

where for the last inequality we have used Proposition 0.3l We argue similarly
for £ V(@/Jg).

For the case of €Y where V = X, we have an additional error term

1 AM(1 - u)fb)
r2

1 _
X = (28 + 4L - wr.

Recall that |fy| < By, and |fi| < Br=2x, where x is a cutoff function such that
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x =0 in 7* < 0. Arguing as in the previous bound we obtain

/ EX(y) < / (+t)° ("R + B/ (L) 722 (y)?
R(r!,7") R(r!,7") R(r!,7'")
s [ At -epeRy
R(r!,7")

+ B / (L (7 — )2 (42
R(r",7'")

< Bride 'wo™® sup / qc(v) + / (1+t") " qe(¥])
o<r<r Jx(7) R(r,7")
+/ (L+ (T =) qe(vy)
R(r!, 7"
<

BTstpe_IWO_S sup / Qe (dj)
=(7)

0<7<r

f
+ B2, sw / ( / qe(wD) a7
Tstep ST ST —Tstep J T—1 3(7)

< (BTagpe 'wo® + maayBlwg 4wy Te T 5 2,)) sup / qe (V).
0<7<7 J5(7)

In the above, we have used again Proposition [0.3] as well as the inequality

21 21
2 /0 (W0)de < 12 /0 (D7 )2dd < qu(w])

in the support of . The other terms of £¥ can be handled as in the argument
for £, ENe. Again, the argument for ¥y is identical. O

9.6 Revisiting the relation between q.(¢7]), q.(¢]) and q.(¢)

With the Proposition of the previous section, we may now refine Proposition [0.3]
to a pointwise-in-time bound:

Proposition 9.5. Let wy <1 < Typep < 7/ < T — Typep. Lhen

[ awn <5 swo [ 4w
=(r7) T/ —Tstep STET +Tstep J 2(7)

+ By e 7l sup Qe (),
0<F<r Ju(7)

/ @@ < B suw / a. ()
=(r7) T/ —Tstep STET +Tstep J 2(7)
+ Buwy e 752, sup qe ().

0<7<r J(7)
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Proof. Once again it is sufficient to establish this for 1.
We write the energy identity ([B6]) for the vector field N, to obtain

[ aewom [ pwomes [ kM)
H(10,7") (7))

R(10,7")

= [ e [ e

Z(T())

By @8), (B0), and the nonnegativity of the first term on the left hand side
above, we obtain

/ . (4]) < eB / / q.(47)dt"+ B / N (47
(1) T0 S(t*) R(10,7")

We integrate the above inequality with respect to 79 between 7 — 1 and 7/ and
use Propositions [0.3] to obtain the desired estimate. O

+B Qe (5 )-
(70)

10 The main estimates

10.1 Estimates for ]

Let us assume always
7—step S T/ S T/I S T — 7—step' (88)

Proposition 10.1. For 1, we have

/ (/ q!‘(%)) a7 < B/ (K% +EN) (7))
! 3(7) R(r!.T'")
+B ().
sup /E(T)Q( )

0<7<r

Proof. Recall that [" ¢7d¢ = 0.
In the region r < ry, we have immediately from (G3) that

21 21
/ a*(¢])dé < B / (KX + KNe) (47 ) do.
0 0

Similarly, in the region > R, we have from (G3]) that

27 2T
/ oa* (4])dé < B / (KX + KN (07 ) do.
0 0

For ry, <r < R, we have from (&) that
27 27
[ arende < B[ a4 kY ds
0 0

- / " (VI — B@w])?) do
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Note also that ) )
| iwespao = [ o de
0 0

for constant (r,6,t) curves in the region ry, <r < R. We have thus
2 2
[ arwnie < B[4 kY ds
0 0

2
- [ wlow? - Blows ) a0

The Proposition follows now from Proposition for wg chosen appropriately,
in view also of our remarks on the measure of integration. O

In what follows we shall consider wy to have been chosen and ab-
sorb such factors into the constants B.

Proposition 10.2. For 4], we have

"

T * ()T dr B JNe T\, M JNe N
/T’ </E<r> b (%)) T </z<rf> g (wb)n2+/z<rn> w05

+ / I (b )n%)
H(T/7T//)

+B suwp /Z() Q).

0<7<r

Proof. To prove Proposition [[0.2 from Proposition [[0] note that from (B3]
applied to the current J* + JV¢ we have

[ ek <
R(TI7T,,)

L G g

+

L, G

O RS kD
H(T/,T//)

/ XN (y7)
R(T/7T//)

< o[ o [ o

()

+ / TN (4T
H(T/)T//)

+BTs¥c2pe_1 sup / QB(d))-
5(7)

0<7<T

+
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Above we have used (66]) and Proposition [@4l Tt will be important for later
that eB < 1. The Proposition now follows immediately. O

Proposition 10.3.

[ AR AT

(")

<B / qe(y) + BraZe! sup / . (¥).
(1) (1)

0<7<7

Proof. This follows from the divergence identity (BG) for the current J7(¢7)
and the fact that K7 = 0 and the inequality

/ ET(Y]) < Brggpe™! sup / Qe (1))
R(r/,7'") 3(7)

0<7<r
of Proposition O

Proposition 10.4.

[ e [ ot < [ et
H(T!, ") (7)) (")

e ( / . q:w;)) d

+Bry2e ! sup / 4. ().
%(7)

0<7<T

Proof. This follows just from the divergence identity (B8] for JVe together with
the bounds ({8) and (&4). O

Proposition 10.5.

1"

[, e+ ( L q:w;)) ir

B LT+ B ().
< /E(T/)Q(wb)'i‘ sup /E(T)qW)

0<7F<r

Proof. This follows immediately from Propositions[I0.2l and [0 4 in view of (&0
and the fact that for e small we have Be < 1. O

Proposition 10.6.
JRATSE
()

SB/ Qe (¥]) + (Braape " + Beéclosee ™) sup / qe(9).
S(r) £(7)

0<7<r
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Proof. This follows from Propositions [0.3] [0.4] and together with the
one-sided bound

_/ JE(’@[J;—)n% < Beclosee_l/ Jive ('@[J;—)n%
H(r!,7"") H(r!, 7"

10.2 Estimates for ¢;
We assume always (88]).

Proposition 10.7. For ¢/,

1 T T T
s [ Vol [ gtwoee < [ e
H(r!, 7" () (1)

+BTs;c2p€_l sup / ge (1/1) + Beclosce_l sup / Ji\]e (1/))71%
(1) H(F,7+1)

0<7<r

Proof. From (B) applied to ¢y with V' =T we have
JRACE
()
S IR ACACCE AT
(1) H(r!, 7"

+ / ET(W]).
R(T/,T”)

On the other hand, by ([22]), we have the one-sided bound
- / Ty (Wnk < Beclose / O] Op]
’H(T’,T”) ’}.[(7-/17.//)
_b / (@)
H(T,7T,,)
Beclose/ (&z;’@/ig—)z
H(T/1T//)

b / (O] )
H(T/7T//)

IN

and thus by Proposition [0.2 we have

_/ Jg(wg—)n% < Beclosee_l sup / JF]LVG (’lﬁ)n%
H(7!, ") H(7,7+1)

0<7<T

The desired result now follows from Proposition 0.4] O
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Proposition 10.8.
/ st(wg>n§+/ KN (4])
(7)) R(r!,7")

< / TN (4 )t + BryZe ! sup / 0. (¥).
=(r) (1)

0<7<T

Proof. This is the energy identity ([B@) for N, in view of the nonnegativity of
the flux on the horizon and the estimate (83]). O

Proposition 10.9.

2

b/E(T”)qe(W)ﬂLb/; </E(T) qe(d;g)) dr

By / JT W)ty + B / a.(47)
3 (Tstep) (1)

+ (" =7 +1) <BT;3pel sup / Qe (V) + Beclosee ™" sup / Jé\fc (w)n%> )
3(F) H(T,7+1)

0<7<7 0<7<7

Proof. The proof follows from Propositions [[0.7 (applied with 7/ = 7gp and
7" = 7), Proposition [[0.8 applied to the given 7/ and 7"/, @9) and (0. O

11 The bootstrap

Let C be given, and consider the set T C [0, 00) of all 7 such that for 0 < 7 < 7,
we have

[ aws=c| aw (89)
=(7) 2(0)
Theorem [5.J] would follow from

Proposition 11.1. For suitable choice of C, then T = [0,00), i.e. (89) holds
for all T > 0.

For this it suffices to show that 7 is non-empty, open and closed. The non-
emptyness is clear for sufficiently large C. It thus suffices to show that C' can
be chosen such that for all 7 € T, then

C
L a5 [ aw (50)

for 0

IA
Rl
IN
\]
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11.1 Evolution for time 7y,

We will need the following proposition

Proposition 11.2. Let Tscp be given. For small enough e depending on Tsiep,
€close K €, 1t follows that for all 7o and T € [To,To + Tstep) s

/ () < 2 / e (). (91)
3(7) ¥ (70)

Proof. We write the energy identity (B0l for the vector field N, to obtain
[ mewmtr [ aemes [ kM)
H(10,7) (7 R(10,7)

™)
- / Jive(w)ng.
Z(T())

By @8), (E0), and the nonnegativity of the first term on the left hand side
above, we obtain

/ JRCETE / / a0 [ aw

[ aw) <o) [ aw)
=(7)

(7o)

and thus

The result follows thus if e is chosen so that

exp(eBTgep) < 2.

11.2 Estimate for the local horizon flux of J)(¢)

A corollary of the proof of the previous Proposition is the following

Proposition 11.3.

/ I () < B / ().
H(T,7+1) 3(7)

Of course, if we choose e to be sufficiently small as in the previous Proposi-
tion, we may replace B with 2.
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11.3 Bounds for v

From Proposition[I0.5 applied for 7/ = ntytep, 77 = (n+1)Tstep, n = 1,2,...,0¢
where ny is the largest integer such that (n;+1)7step < T—Tstep, Proposition[0.5]
and the bootstrap assumption (89), it follows that in each interval [n7ytep, (1 +
1)7step), We can find a 7, such that

/ W) < 2 swp / @.(4) + 2 4. (4]
E(Tn) T

Tstep 0<7<T Tstep 3 (NTstep)

stcpC / qe

for appropriate choice of Tgcp. On the other hand, by Proposition [[0.6] applied
with 7/ = Tep, 7/ = T, Proposition 0.5 ([@I]) applied to 79 = 0 and again to
Tp = Tstep, and the bootstrap assumption (89), we have

/ JTWInl < B / @ (47)
E(Tn) E(TS‘SCP)

+ (Brgoye” ' + Beclosee ) sup /( )qe(1/))
(7

0<7<T

IN

< B sup / qe(v)
0<7<2Tstep J B(T)
(BTstcp 1‘i‘Beclosee_l) SUP/ qe ()
o<r<r Jx(r)
< (B+ B132 stop® e 'C + Becosee 1 0)
o auw), (92)
2(0)
It follows that
(by) < B * () + I (@] )nk:
Qe Yy = Qe (P p \Wh )Ty
E(Tn) Z(Tn) E(Tn)
< (B+ Becosee 'C + Bryl,e 'C + Bry),C)

- / e (). (93)
£(0)

11.4 Bounds for ¢y

Since
/ JT (W) < B / @ (0]),
3(7) 5(7)

it follows from Proposition [[0.9] applied to 7" = nTgep, ™" = (N + 1)Tsgep,
n = 1,2,...,ny, Proposition [T.3] and (@I applied (twice) with 7o = 0 and
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To = Tstep, and Proposition[0.5] that in each interval [n7gep, (74 1)Tstep), We can
find an 7,, such that

b / @) < / JT WD)l + 734 B / . (47)
E(Tn) Z(TSCBP)

3(NTstep)

+ BTszgpe_lc/ Qe(w
2(0)

+ Beéclose sup / J;iVC (1/})77’}’;[
0<7<T—1JH(F,74+1)

B / Qe (V]) + Toep B / qe(¥f)
%(Teten) (nTevep)

+ (BT:;zpeilc + Bedosec) / qe ('@lj)
3(0)

IN

IN

B sup /z() qe (V)

0<7<27step

+ (Ts;clpBC + Ts?fpe_lBO + BECIOSCc) / qe (1/))
5(0)

(B =+ BT,_l C+ BT‘_2 6710 + Becloscc)

step step

- / e (). (04)
£(0)

11.5 Bounds for v

Choosing C sufficiently large, 7step sufficiently large, e sufficiently small so that
Proposition [[T.2] holds, and ecose < e sufficiently small, from (78], ([@3]), and

@4) it follows that
c
[ aws5[ aw.
3(7n) 3(0)

From Proposition [T2it follows that for 7 € [, Tp41]

/E L) < 2 /Z e

)

C
< = ().
< 4/2(0)01(1/1)

For 7 € [0, 1] we apply twice Proposition [T.2

/E L) < 2 /E e

4 e
< /mq ()

C
S 5 qe(w)v
3(0)

IN
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as long as we assume C' > 8. Similarly, for 7 € [r,,,, 7], we apply PropositionTT.2
twice to obtain

(Y) < 2 (Y
/E L) / e
< 4 (Y
/sz)q (¥)
C
5 Z(O)Qe(¢)-

We have shown (@0]).

12 Estimate for the total horizon and null-infinity
flux of .J (¢)

For the rest of this paper, all small quantities can be considered fixed. We
will use in the following C' as a general constant depending on the constant of
Proposition [Tl

Proposition 12.1. For all 7 > 0 we have

/ EAGLAENE / qe () (95)
H(0,7) 3(0)
Proof. For (@), in view of the relations
T () < B (|1 ()| + [ 75 (7))
valid in R(1,7 — 1), and
|0 (W)nky| < CJYe(W)nd, (96)

on H T, it follows from Proposition [[1.3] and Proposition [[T.1] that it suffices to
show

/ T (]| < C / (%), (97)
H(Tstep T —Tstep) (0)

/ el [ aw) (98)
H(Tstep 7T_Tstep) E(O)

Inequality (@7) follows immediately from (@) applied to 1, and Proposi-
tions [[0.4] 0.5 and [T.11
For ([@8), in view of the bound

/ Tl < C / a.(47)
5(r7) 5(r7)

we need only apply Propositions [@.5 0.7 MT.3] and IT.11 O
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Proposition 12.2.

| e e[ aw. (99)

2(0)

Proof. This follows now by the previous and the statement K7 = 0. We omit
the details concerning the definition of the left hand side of the inequality. O

The propositions of this section prove in particular (&) and (@). The complete
statement of Theorem [[.T]is thus proven.

13 Higher order energies and pointwise bounds

A deficiency of previous understanding of boundedness, even in the Schwarz-
schild case, is that it relied on commuting the equation with a full basis of
angular momentum operators €;, © = 1...3. In view of the loss of symmetry
when passing from Schwarzschild to Kerr, this approach is no longer tenable.
A much more robust approach to boundedness is via commutation with ny, or
equivalently, the vector field Y to be discussed below. It turns out that the
dangerous extra terms arising have a good sign. This can be viewed of as yet
another manifestation of the redshift effect.

In Section I3l below, we will first derive L? estimates for higher order
energies. These will rely on certain elliptic estimates derived in Section
Pointwise estimates will then follow in Section 3.3l from standard Sobolev in-
equalities.

13.1 Higher order energies

Let us consider now the quantity

where n/ ¥ denotes n(n(n...1)) where j n’s appear. Under our smoothness
assumptions, coupled with our assumptions about the support, we have that

/ o’ (1) < o0.
(r)

We have the following

Theorem 13.1. For all j > 0, there exist constants C; depending only on j
and M such that under the assumptions of Theorem [5 1], then for all T > 0,

/ RICEe / !
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Proof. We shall give the proof only for the case j = 1, as this will be sufficient
for deriving pointwise bounds for .
Commute ([2)) with 7. One obtains from 3II) that for 7 > 0

[ awwyzc | awv) (100)
=(7) £(0)
Note that from BIl) we have for 7/ > 7/ > 0,
[ awzow - [ aw, (101)
R(r!,7"") 3(0)
and from (I00),
[ awezow - [ are). (102)
R(r",7"") 3(0)
Now commute (2] with the vector field
- 1
Yy =—-9,
L—p

where 9, refers to the coordinate system described in Section We obtain

Lemma 13.1. Let ¢ satisfy [&). Then we may write

2~

0, (V) = 2V (7 () -

(V(T9)) + Putp — 2Py + ¥, Pyly

where Py is the first order operator P, = T%(Tz/J — }A/w), and Ps is the second
order operator Po = Oy, — O,.

Now apply the basic identity (B8] to Y with Y. We have that for r < Ty
KY(Y4) > ba(Yy)

while for r > ry,
KY(Vy) < Ba(Yy).

On the other hand,

o) = - (20w - 20 @) + P - 2r + R ) YT
- (R0 -1 20 @) + Ao - 2P+ 7 P ) YT )

The following lemmas are immediate:
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Lemma 13.2.

') T
»

[ wpss[ aw
R(r!,7") R(r!,7")

/ 8 vy < B / a(T),
R(7! R(r",7")

Lemma 13.3.

Py))? .
[ B i < pdn [ @)
R(r!,7") R(r",7"")

r2

Lemma 13.4. Given ry > 2M, we may choose a dy (with §y — 0 as ry —
2M ) such that

4 N N
[ Swrnyer<ss | a'W)+5 | a' ()
R, 7)) T R, 7" )N {r<ry } R, 7" )N {r>ry }

For convenience, let us require in what follows that dy < 45, .
It follows from (B, the above lemmas and Cauchy-Schwarz (applied with a
small parameter ) that

aVy) < B / a(Vy)

/R(‘r/,‘r”)ﬁ{r<ry} R, 7)) {r>ry }

e[ e e

+ B/\ileglose / ql W)
R(T/7T//)

+ BA'5; q'(¥)

R(7", ") {r<ry }

+Bx! / q'(¢)
R, 7" )N {r>ry }

+ BA Y (Y))?
JCCE

+B / a(Y).
=(r)
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Since (Y (Y4))? < Bq(Y), it follows that A can be chosen so that
/ atv) < B[ a(Ve)
R, 7")N{r<ry } R, 7N {r>ry }

+B/ a(T¥) + q()
R(r!, 7"

+ Beilosc / ql (1/))
R(T/)TN)

+ Bdy a'(¥)
R, 7)) N{r<ry }

+B/ ')
R/, 7" )N {r>ry }

B 14
+ /E(T/)q( ¥)

B/ a(Yy)
R, 7" )N {r>ry }

+B/ a(Ty) + q()
R(r!, 7"

IN

+ Bé?

close

/ a' ()
R(r,m")N{r<ry }

+ By a'(¥)
R, 7" )N {r<ry }

+ Bé?

close

/ a' ()
R(T’,T”)O{TZT;,}

vy a'(¥)
R(r' )N {r>ry}
+B / a(Ye).
(7))
From the Propositions of Section below, we obtain

aVy) < z;/ a(Tv) + a(¥)

/R(T/,T”)ﬂ{rgry} R(r!, 7"

+B¢am+vyy/  q(V%) +a(Te) + a(v)
R, 7N {r<ry }

FBOS) [ ame)+aw)
R(TI7T,,)
+B [ a(Yy),

(1)

and thus, for small enough ecjose, and choosing ry close enough to 2M (and
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thus small enough dy), we obtain

/ aVe) < B[ are)+aw)
R/ 7)) N{r<ry } R(r!,7")

+B /E(T,)q(Yw).

(The choice of 7y having been made, we have written above B(ry.) as B following
our convention.) From (I0I)) and ([I02), it now follows that

a¥¥) < B -+ / a(Ty) + q(4)

/R(T’,T”)ﬁ{r<ry} 3(0)

+B /E(T,) q(Yv).

It follows immediately that there exists a sequence 0 = 79 < 7; < 7;4+1 such that
|Ti—Tj|§B, T; —» OO (103)

with

/ aPe) < B[ aTv)+aw)
S(ri)n{rry } 3(0)

+B a(Y).
£(0)

From (I00), we have on the other hand

/ a(Ty) < B / a(TY) + a(w),
5(i)

(0)

and from (31

/E IR /E A

From Proposition [[3.] it follows that

/ @@ =B [ afe)+ae)+aw).
B(ri){r<ry }

%(0)

while from Proposition [[3.2] it follows that

/ @) <B [ are)+aw)
Z(n)ﬁ{rZrY}

2(0)

Thus in fact,

/ a'() < B / aVy) + a(TY) + ).
5(i) 3(0)
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In view of (I03]), we obtain now easily

/ d() < B / a(Vy) + a(T) + a(®)
() %(0)

B L.
< /E(O)q ()

13.2 Elliptic estimates

We have the following elliptic estimate on spheres:

Proposition 13.1. Let S, denote a set of constant r in a t*, v, z?, B coor-

dinate system. For 1 a solution of Oy =0, we have

/ a'(v) < B / a(T¥) + a(V) + a(y).
Sr

Sr

Proof. Note first that
a'w) = B(IVUP+ VTP + VI + [Ty
HYVOP + TV + a())
< B(IVPuP +a(Ty) +a(Vy) +a()) (104)

Let Ag2 denote the standard Laplacian on the unit sphere. In the coordinates
of the first paragraph of Section B.2] we may write

B = 0u(V) — 2T~ V) — Py,

Integrating over S, endowed with metric of the standard unit sphere, we obtain
the elliptic estimate

1 .
5 [ IVB0R dds < B [ a(Te)+a(Ve)+ a(v) + (P dds
i.e., in view of the assumptions (20) on the metric,
[ PR <8 [ amu)+ae)caw)+ (PR (105)

On the other hand, from 20), 2I)) we have

(P21/))2 S Beclosoq1 (1/})

The above, (I05) and ([I04) yield the proposition, for €qose sufficiently small. O
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In addition, we have the following elliptic estimates away from the event
horizon.

Proposition 13.2. For v a solution of Ogp = 0, and r9 a parameter with
ro > 2M, then, for €cose Sufficiently small, we have

/ a'(¥) < B(r) / a(T) + a(),
S(r)n{r>ro}

(1)

a'(¥) < B(ro) / a(TY) + a().

~/R(T’,T”)ﬁ{r2ro} R(r!, 7"

Proof. The proof of this straightforward elliptic estimate is left to the reader. [

13.3 Pointwise bounds
We have the following Sobolev-type estimate on Schwarzschild

Proposition 13.3. Let ¥ be a smooth function on ¥ of compact support. Then
sup U2 < B/E Ve, ¥ s, TV W), -

This in turn follows from the following Euclidean space estimate:

Proposition 13.4. There exists a constant K such that the following holds.
Let U be a smooth function on R® N {r > 1} of compact support. Then

sup ¥? < K/ (V20| + | VT |?) dat da?da®.

r>1 {r=1}

Proof. Omitted. O
We obtain

Theorem 13.2. Let n > 0. There exists a positive constant €close, depending
only on M, and a positive constant Cy,, depending on M and n, such that
the following holds.Let g, ¥.(1) be as in Section [Z2 and let \p, V', ¢ be as in
Section [f] where ¢ satisfies (3). Then, for T >0,

VO, < lm 9?4 C, [ g
r—00 £(0)

where V™1 denotes the n’th order spacetime covariant derivative tensor and
| - |gs, denotes the induced Riemannian norm.

Theorem in particular follows from the above.
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14 Further notes

14.1 The Schwarzschild case

In the Schwarzschild case, we may apply the estimates proven here for 1 in
Sections[I0.2and [T 4 directly to the whole 1. Since no frequency decomposition
need be made, no associated error terms arise and the whole argument can be
reduced to a few pages. The resulting energy estimate, coupled with the higher
order and pointwise estimates of Section 3] yield a new proof for uniform
boundedness of solutions to the wave equation on Schwarzschild which is in
some sense the simplest one yet—using neither the discrete isometry exploited
by Kay-Wald [22], nor the vector field X of our [12] or [I3], nor commuting with
angular momentum operators. Moreover, one shows the uniform boundedness
of all derivatives on the event horizon up to all order, whereas previous results
could control only tangential derivatives.

In fact, one can obtain a much more general statement applying to all static
spherically symmetric non-extremal black holes. We have

Theorem 14.1. Let (D,g) be a static spherically symmetric asymptotically
flat exterior black hole spacetime bounded by a non-extremal event horizon H™.
Then the estimates of Theorems[L1] and [L.F hold.

14.2 Kerr-de Sitter

Our argument is easily adapted to spacetimes which are small perturbations
of non-extremal Schwarzschild-de Sitter, in particular to slowly rotating non-
extremal Kerr-de Sitter, or Kerr-Newman-de Sitter. See [14] for the setting.
One fixes the manifold structure on a subregion DNJ " (3g) where D is here the
region between a set of black/white hole and cosmological horizons and ¥ is a
Cauchy surface crossing both horizons to the future of the bifurcate spheres.

One continues as in the Schwarzschild case. The argument is in fact easier
at several points. Because r is bounded in D, the zero-order terms pose no
difficulty. In particular, one need not introduce the ¥ and ¥~ surfaces, nor
must one modify JX¢ by the addition of JX»*». We leave the details for a
subsequent paper.
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14.3 Non-quantitative decay

As a final application, we note that uniform boundedness is sufficient to translate
non-quantitative results for fixed angular frequency into non-quantitative results
for v itself. For instance

Corollary 14.1. Suppose for each k we have ¥y (-,t) — 0 where vy, denotes the
projection to the k’th azimuthal mode. Then ¥(-,t) — 0.

The assumption of the above corollary is obtained in [16] away from the

event horizon for Kerr solutions for the very special case where the initial data
is supported away from the horizon.
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