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Summary paragraph  102 

Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide1,2. Although 103 

58 genomic regions have been associated with CAD to date3-9, most of the heritability is unexplained9, 104 

indicating additional susceptibility loci await identification. An efficient discovery strategy may be 105 

larger-scale evaluation of promising associations suggested by genome-wide association studies 106 

(GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier 107 

GWAS results and meta-analysed results with 194,427 participants previously genotyped to give a 108 

total of 88,192 CAD cases and 162,544 controls.  We identified 25 new SNP-CAD-associations (P < 109 

5x10-8, in fixed effects meta-analysis) from 15 genomic regions, including SNPs in or near genes 110 

involved in cellular adhesion, leucocyte migration and atherosclerosis (PECAM1, rs1867624), 111 

coagulation and inflammation (PROCR, rs867186 [p.Ser219Gly]) and vascular smooth muscle cell 112 

differentiation (LMOD1, rs2820315). Correlation of these regions with cell type-specific gene 113 

expression and plasma protein levels shed light on potential novel disease mechanisms. 114 

 115 

 116 

 117 

  118 
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MAIN TEXT 119 

The CardioMetabochip is a genotyping array that contains 196,725 variants of confirmed or suspected 120 

relevance to cardiometabolic traits derived from earlier GWAS.10 A previous meta-analysis by the 121 

CARDIoGRAMplusC4D consortium of 79,138 SNPs common to the CardioMetabochip and GWAS 122 

arrays, identified 15 new loci associated with CAD3. Using the CardioMetabochip, we genotyped 123 

56,309 additional samples of European (EUR; ~52%), South Asian (SAS; ~23%), East Asian (EAS; 124 

~17%) and African American (AA; ~8%) ancestries (Supplementary Information; Supplementary 125 

Tables 1, 2, 3; Supplementary Fig. 1). The results from our association analyses of these additional 126 

samples were meta-analysed with those reported by CARDIoGRAMplusC4D at 79,070 SNPs in two 127 

fixed effects meta-analyses, one in EUR participants and a second across all four ancestries (Figure 1 128 

and 2). (Over-lapping samples were removed prior to meta-analysis [Methods]). A genome-wide 129 

significance threshold (P≤5x10-8 in the fixed effects meta-analysis) was adopted to minimise false 130 

positive findings. However, even at this strict P-value threshold, there is still a small chance of a 131 

false-positive result. The EUR fixed effects meta-analysis identified 15 SNPs associated with CAD at 132 

genome-wide significance (P<5x10-8) from nine distinct genomic regions that are not established 133 

CAD-associated loci (Table 1; Supplementary Table 4; Supplementary Fig. 2). An additional six 134 

distinct novel CAD-associated regions were identified in the all ancestries fixed effects meta-analysis 135 

(Table 1; Figure 2; Supplementary Table 4). In total, 15 novel CAD-associated genomic regions (25 136 

SNPs) were identified (Supplementary Fig. 3 and 4). The lead SNPs had at least nominal evidence of 137 

association (P<0.05) in either a fixed effects meta-analysis of the EUR studies with de novo 138 

genotyping, or in a fixed effects meta-analysis of all the studies with de novo genotyping 139 

(Supplementary Table 5, Supplementary Fig. 5). Within the CARDIoGRAMplusC4D results for these 140 

SNPs, there was no evidence of heterogeneity of effects (P≥0.10) and allele frequencies were 141 

consistent with our EUR studies (Supplementary Table 5). Tests for enrichment of CAD-associations 142 

within sets of genes11 and Ingenuity Pathway Analysis confirmed known CAD pathways 143 

(Supplementary Information; Supplementary Tables 6, 7, 8). 144 

 145 
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To prioritize candidate causal genes at the new loci, we defined regions encompassing the novel 146 

CAD-associated SNPs based on recombination rates (Supplementary Table 9) and cross referenced 147 

them with expression quantitative trait loci (eQTL) databases including GTEx12,  MuTHER13 and 148 

STARNET14 (Methods). Twelve of the 15 novel CAD-associated SNPs were identified as potential 149 

eQTLs in at least one tissue (P<5x10-8; Table 2, Supplementary Table 10). Haploreg analysis15 150 

(Methods) showed CAD-associated SNPs were enriched for H3K27ac enhancer marks (P < 5.1x10-4) 151 

in multiple heart related tissues (left ventricle, right atrium, aorta) in the EUR results and in one heart 152 

related tissue (right atrium) and liver in the all ancestry analyses (Supplementary Table 11). We next 153 

tested for protein quantitative trait loci (pQTL) in plasma on the aptamer-based Somalogic platform 154 

(Methods). Twenty-four proteins from the newly identified CAD regions were assayed and passed 155 

QC. Of our 15 novel CAD-associated SNPs, two associated with plasma protein abundance in trans: 156 

rs867186 (NP_006395.2:p.Ser219Gly), a missense variant in PROCR was a trans-pQTL for protein C 157 

(P=10-10, discussed below) and rs1050362 (NP_054722.2:p.Arg140=) a synonymous variant in 158 

DHX38 was a trans-pQTL for the apolipoprotein L1 (P=5.37x10-29; Methods) which is suggested to 159 

interact with HPR in the DHX38 region (string database).  160 

  161 

To further help prioritize candidate genes, we also queried the mouse genome informatics database to 162 

discover phenotypes resulting from mutations in the orthologous genes for all genes in our 15 CAD-163 

associated regions (Table 2). To understand the pathways by which our novel loci might be related to 164 

CAD risk, we examined the associations of the 15 novel CAD regions with a wide range of risk 165 

factors, molecular traits, and clinical disorders, using PhenoScanner16 (which encompasses the 166 

NHGRI-EBI GWAS catalogue and other genotype-phenotype databases).   167 

 168 

Six of our loci have previously been associated with known CAD risk factors, such as major lipids 169 

(PCNX3,17 C12orf43/HNF1A, SCARB1, DHX38)18 and blood pressure (GOSR2,19 PROCR20). The 170 

sentinel variants for the CAD and risk factor associations at PCNX3, GOSR2 and PROCR were the 171 
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same, implicating them in known biological pathways. Two correlated SNPs (r2=0.93, D’=1.0 in 1000 172 

genomes) rs11057830 and rs11057841 tag the CAD-association in the SCARB1 region (Table 1; 173 

Supplementary Table 4), a region reported previously to be associated with HDL (rs838876, β=-174 

0.049, P=7.33x10-33)18. A rare nonsynonymous variant rs74830677 (NP_005496.4:p.Pro376Leu) in 175 

SCARB1 also associated with high levels of high-density lipoprotein cholesterol (HDL-C)21. 176 

Conditional analyses showed that the CAD-association was independent of the common variant HDL 177 

association (Supplementary Information, Supplementary Fig. 6). We found the CAD SNPs and the 178 

common HDL-C SNP, rs838880 overlap enhancers active in primary liver tissue (Supplementary Fig. 179 

7). SCARB1 is highly expressed in liver and adrenal gland tissues (GTEx; Supplementary Fig. 7)12. 180 

These findings suggest that the discovered genetic variants most likely play a role in regulation of 181 

liver-restricted expression of SCARB1.  182 

The DHX38 region has previously been associated with increased total and LDL cholesterol18. Both 183 

CAD-associated SNPs in DHX38, rs1050362 (NP_054722.2:p.Arg140=) and rs2072142 (synonymous 184 

and intronic respectively; Table 1, Supplementary Table 4) are in LD but not strongly correlated with 185 

the previously reported cholesterol increasing SNP, intronic in HPR, rs2000999, (r2=0.41, D’=1 in 186 

1000 Genomes EUR). Deletions in the HP gene have recently been shown to drive the reported 187 

cholesterol association in this region22. The CAD SNPs are in strong LD with SNPs that increase 188 

haptoglobin levels23 (rs6499560, P=2.92x10-13, r2=0.97), and haptoglobin has been reported to be 189 

associated with increased CAD risk24. HP encodes an alpha-2-glycoprotein which is synthesised in the 190 

liver. It binds free haemoglobin and protects tissues from oxidative damage. Mouse models indicate 191 

the role of Hp with development of atherosclerosis25, where the underlying mechanism is disruption 192 

of the protective nature of the Hp protein against hemoglobin-induced injury of atherosclerotic 193 

plaque. While the CAD-associated SNPs are eQTLs (or in LD with eQTLs) for multiple genes in the 194 

region e.g. DHODH in aorta artery12 (rs1050362 A allele, β=0.41, P=1.4x10-9),  DHX38 in peripheral 195 

blood26, atherosclerotic aortic root14 (P<8x10-26; Table 2, Supplementary Table 10), the A allele at 196 

rs1050362 is also associated with increased expression of HP in left ventricle heart (β=0.535, 197 

P=8.71x10-10)12 and decreased expression of HP in whole blood (β=-0.27, P=1.22x10-10)12. While 198 
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there could be multiple causal genes in the region, together these findings suggest HP is a promising 199 

candidate gene.  200 

 201 

PROCR encodes the endothelial protein C receptor (EPCR). We found the G allele at rs867186 202 

(which codes for the glycine residue at p.Ser219Gly) in PROCR confers protection from CAD 203 

(OR[95%CI]=0.93[0.91-0.96]; Table 1, Supplementary Fig. 8). The same variant is also associated 204 

with increased circulating levels of soluble EPCR (which does not enhance protein C activation)27, 205 

increased levels of protein C28, increased factor VII levels29, and increased risk of venous 206 

thrombosis27. Consistent with these associations, the variant has also been demonstrated to render the 207 

EPCR more susceptible to proteolytic cleavage, resulting in increased shedding of membrane-bound 208 

EPCR from the endothelial surface30 causing elevated protein C levels in the circulation31. We found 209 

evidence of a second, independent CAD-association at rs6088590 (r2=0, D’=0.01 with rs867186 in 210 

1000G EUR samples; Supplementary Fig. 8), an intronic SNP in NCOA6 with the T allele conferring 211 

increased risk of CAD (conditional on rs867186, conditional P=1.14x10-5, OR[95% CI]=0.97[0.95-212 

0.98]). No additional SNPs were associated with CAD after conditioning on rs867186 and rs6088590 213 

(P>0.01).  214 

 215 

Five of the novel CAD regions identified in the current analysis include genes that encode proteins 216 

expressed in smooth muscle cells (LMOD1, SERPINH1, DDX59/CAMSAP2, TNS1, PECAM1)32,33. 217 

The CAD risk allele (T) of rs2820315, which is intronic in LMOD1, is associated with increased 218 

expression of LMOD1 in omental and subcutaneous adipose tissues13,34 (MuTHER, β=0.11, 219 

P=1.43x10-11). The protein is found in smooth muscle cells (SMC)32,33. In vitro and transgenic mouse 220 

studies demonstrate an essential requirement for CArG elements in the expression of LMOD1 through 221 

both serum response factor (SRF) and myocardin (MYOCD)35. Myocardin has emerged as an 222 

important molecular switch for the programs of SMC and cardiac myocyte differentiation36,37. The 223 
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CAD-associated SNP (or tag) is an eQTL for IPO9 in peripheral blood mononuclear cells38, however, 224 

given the prior biological evidence LMOD1 would make the most plausible candidate gene.  225 

 226 

rs1867624 is upstream of PECAM1, which encodes platelet/endothelial cell adhesion molecule 1, a 227 

protein found on platelet, monocyte and neutrophil surfaces. The C-allele is associated with reduced 228 

CAD risk (Table 1), increased expression of PECAM1 in peripheral blood mononuclear cells38 229 

(β=0.1199, P=1.38x10-107) and is in LD with rs2070784 and rs6504218 (D’=1.0, r2>0.8 in 1000G 230 

EUR samples), which are eQTL for PECAM1 in aortic endothelial cells (P=4.35x10-13) and stimulated 231 

CD14+ monocytes39 respectively (P<1.7x10-24; Supplementary Table 10)39. PECAM-1 has been 232 

implicated in the maintenance of vascular barrier integrity, breach of which is a sign of inflammatory 233 

response. Failure to restore barrier function contributes to the development of chronic inflammatory 234 

diseases such as atherosclerosis. PECAM-1 expressing endothelial cell monolayers have been shown 235 

to exhibit increased steady-state barrier function, as well as more rapid restoration of barrier integrity 236 

following thrombin-induced perturbation compared to PECAM-1 deficient cells40. Expression of 237 

PECAM-1 has been shown to be correlated with increased plaque burden in athero-susceptible 238 

regions of the aorta in mice41 and also with decreased atherosclerotic area in the aorta overall42. 239 

Together, these findings prioritise PECAM1 as a candidate causal gene for this CAD-associated 240 

region in humans.  241 

 242 

Of the 58 previously established CAD loci3-9, 47 were included on the CardioMetabochip. Forty-five 243 

regions were directionally concordant with the previous reports (two were neutral) and thirty-four of 244 

these 45 (42 SNPs) had at least nominal evidence of association in a fixed effects meta-analysis 245 

(P<0.05) in either our EUR or all ancestry studies with de novo genotyping (Supplementary Table 246 

12). Twenty-three of these formally replicated at a Bonferroni significance level P=0.05/47=0.001). 247 

PHACTR1, CXCL12 and COL4A1-COL4A2 had more statistical support of association (smaller P-248 

values despite fewer samples) in SAS compared with the other ancestries. The PHACTR1 SNP, 249 
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rs9349379, is ancestrally informative, as the A allele frequency ranges between 0.29 in the Taiwanese 250 

and 0.91 in African Americans (Supplementary Table 12). In contrast, the COL4A1-COL4A2 SNP, 251 

rs4773144, had similar allele frequencies across ancestries (EAF=0.56-0.62). The stronger effect size 252 

in SAS (OR[95%CI]=0.91[0.86-0.95] versus 0.98[0.95-1.02] in EUR, heterogeneity P=0.0042) could 253 

suggest gene-environment or gene-gene interactions at this locus. 254 

 255 

We have reported 15 novel CAD-associations, which, together with previous efforts, brings the total 256 

number of CAD-associated regions to 73. In addition to implicating atherosclerosis and traditional 257 

risk factors as mechanisms in the pathobiology of CAD, our discoveries highlight the potential 258 

importance of biological processes active in the arterial wall involving endothelial, smooth muscle 259 

and white blood cells and promote coronary atherogenesis.  260 

 261 

URLs 262 

Data on coronary artery disease / myocardial infarction have been contributed by 263 

CARDIoGRAMplusC4D investigators and have been downloaded from 264 

www.cardiogramplusc4d.org; String database: http://string-db.org; GTEx expression data were 265 

obtained from: www.gtexportal.org; the mouse genome informatics database: 266 

http://www.informatics.jax.org; protein atlas: http://www.proteinatlas.org/; phenoscanner: 267 

www.phenoscanner.medschl.cam.ac.uk; R: www.R-project.org; linkage disequilibrium information: 268 

www.1000genomes.org, http://snipa.helmholtz-muenchen.de/; Gene information: 269 

http://www.ncbi.nlm.nih.gov/gene/5175 270 

  271 
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Figure Legends  420 

Figure 1 Schematic of the study design. The sample-size information is provided as number of 421 

cases/number of controls. Note, samples with de novo genotyping that were also in the 422 

CARDIoGRAMplusC4D study were removed prior to meta-analysis.∗ 1,826 CAD cases and 449 423 

controls from EPIC-CVD with de novo genotyping were also included in CARDIoGRAMplusC4D 424 

and were therefore excluded from the larger meta-analysis. The actual number of EUR individuals 425 

contributed to the meta-analysis of our studies with de novo genotyping and CARDIoGRAMplusC4D 426 

was 14,267 CAD cases and 16,167 controls.†3,704 CAD cases and 3,433 controls from PROMIS 427 

with de novo genotyping were also included in CARDIoGRAMplusC4D and were therefore excluded 428 

from the larger meta-analysis. The actual number of SAS samples contributed to the meta-analysis of 429 

our studies with de novo genotyping and CARDIoGRAMplusC4D was 3,950 CAD cases and 3,581 430 

controls. 431 

 432 

Figure 2 Plot showing the association of ~79,000 variants with CAD (-log10P-value) in up to 88,192 433 

cases and 162,544 controls from the all ancestry fixed effects meta-analysis. SNPs are ordered in 434 

physical position. No adjustments to P-values to account for multiple testing have been made. The 435 

outer track represents the chromosomal number. Blue dots represent known loci and red dots are the 436 

new loci identified in the current study. Each association peak is labeled with the name of the closest 437 

gene(s) to the sentinel SNP. GWAS significance (-log10(P) ~ 7.3). 438 

 439 

  440 
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Table 1 Newly identified CAD-associated genomic regions CAD-association results for the lead SNPs from the European and the all ancestry meta-analyses are reported. 441 
Note, SNP allele frequencies for each ancestry are provided in, Supplementary Table 5 and in Supplementary Fig. 3 for each of the studies with de novo genotyping. 442 

Closest gene(s) Variant/alleles Chr:Position (EA AF) European All Ancestries 

  OR [95% CI] P N OR [95%CI] P log10BF N 

ATP1B1 rs1892094C>T 1:169094459 (T 0.50) 0.96 [0.94-0.97] 3.99x10-8 217,782 0.96 [0.94-0.97] 2.25x10-8 6.33 243,623 

DDX59/CAMSAP2 rs6700559C>T 1:200646073 (T 0.47) 0.96 [0.94-0.97] 2.50x10-8 221,073 0.96 [0.95-0.97] 1.13x10-8 6.68 246,913 

LMOD1 rs2820315C>T 1:201872264 (T 0.30) 1.05 [1.03-1.07] 4.14x10-9 214,844 1.05 [1.03-1.07] 7.70x10-10 7.72 240,685 

TNS1a rs2571445G>A 2:218683154 (A 0.39) 1.04 [1.02-1.06] 3.58x10-6 194,254 1.05 [1.03-1.06] 4.55x10-10 8.41 220,047 

ARHGAP26 rs246600C>T 5:142516897 (T 0.48) 1.05 [1.03-1.06] 1.29x10-8 210,380 1.04 [1.03-1.06] 1.51x10-8 6.39 236,223 

PARP12 rs10237377G>T 7:139757136 (T 0.35) 0.95 [0.93-0.97] 1.70x10-7 181,559 0.95 [0.93-0.97] 1.75x10-8 6.32 207,399 

PCNX3 rs12801636G>A 11:65391317 (A 0.23) 0.95 [0.93-0.97] 1.00x10-7 211,152 0.95 [0.94-0.97] 9.71x10-9 6.64 236,985 

SERPINH1 rs590121G>T 11:75274150 (T 0.30) 1.05 [1.03-1.07] 1.54x10-8 207,426 1.04 [1.03-1.06] 9.32x10-8 5.80 233,249 

C12orf43/HNF1A rs2258287C>A  12:121454313 (A 0.34) 1.05 [1.03-1.06] 6.00x10-9 221,068 1.04 [1.03-1.06] 2.18x10-8 6.40 246,901 

SCARB1 rs11057830G>A 12:125307053 (A 0.16) 1.07 [1.05-1.10] 5.65x10-9 177,550 1.06 [1.04-1.09] 1.34x10-8 6.49 203,394 

OAZ2, RBPMS2 rs6494488A>G 15:65024204 (G 0.18) 0.95 [0.93-0.97] 1.43x10-6 205,410 0.95 [0.93-0.97] 2.09x10-8 6.41 228,578 

DHX38 rs1050362C>A 16:72130815 (A 0.38) 1.04 [1.03-1.06] 2.32x10-7 216,025 1.04 [1.03-1.06] 3.52x10-8 6.16 241,858 

GOSR2 rs17608766T>C 17:45013271 (C 0.14) 1.07 [1.04-1.09] 4.14x10-8 215,857 1.06 [1.04-1.09] 2.10x10-7 5.30 231,213 

PECAM1 rs1867624T>C 17:62387091 (C 0.39) 0.96 [0.94-0.97] 1.14x10-7 220,831 0.96 [0.95-0.97] 3.98x10-8 6.03 246,674 

PROCRa rs867186A>G 20:33764554 (G 0.11) 0.93 [0.91-0.96] 1.26x10-8 213,505 0.93 [0.91-0.96] 2.70x10-9 7.11 239,340 

aThese are nonsynonymous SNPs. 443 
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EA, Effect allele. AF, Effect allele frequency in Europeans. N, Number of individuals in the analysis. Log10BF, log base 10 of the Bayes factor obtained from the MANTRA 444 
analyses (log10BF>6 is considered significant). There was no convincing evidence of heterogeneity at the new CAD-associated SNPs, Phet ≥ 0.01. P-value for heterogeneity 445 
across meta-analysed datasets are provided in Supplementary Table 4 and I2 statistics in Supplementary Fig. 3. 446 

 447 

  448 
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Table 2 Summary of functional data implicating candidate causal genes in newly identified CAD regions. Genes in region, provides genes in the LD block containing 449 

the CAD-associated SNP.  Phenotype in murine model, lists the phenotype as provided in the mouse genome informatics database, genes are listed if the phenotype affects 450 

the cardiovascular system, inflammation   or liver function. eQTLs are listed  where the SNP or a proxy with r2> 0.9 are an eQTL for the listed gene in one of the following refs: 451 

12, 13, 26, 43, 44, 45, 46,38,47,48,14,49 (refer to Supplementary Table 10 for an extended listing where r2>0.8 between the CAD-associated SNP and the lead eQTL). Candidate genes are 452 

based on the most likely given the information ascertained on murine phenotype, eQTL, protein expression and any literature information described in the main text. Loci are 453 

further discussed in the Supplementary Information. 454 

SNP Genes in region Phenotype in murine model Cis-eQTLs with 

SNP (or proxy 

r2>0.9) 

Proteins expressed 

in SMC, heart, liver, 

blood+ 

Candidate 

causal 

gene(s) 

rs1892094C>T ATP1B1, BLZF1, CCDC181, F5, NME7, 

SELP, SLC19A2 

ATP1B1 (cardiovascular, homeostasis, mortality/aging, 

muscle) F5 (blood coagulation) SELP (cardiovascular, 

coagulation, inflammatory response) 

NME7*, ATP1B1* 

 

ATP1B1, NME7, SELP ATP1B1, NME7 

rs6700559C>T CAMSAP2, DDX59, KIF14  CAMSAP2*, DDX59* CAMSAP2, DDX59, KIF14 CAMSAP2, 

DDX59 

rs2820315C>T IPO9, LMOD1, NAV1, SHISA4, TIMM17A  LMOD1, IPO9* LMOD1 LMOD1 

rs2571445G>A CXCR2, RUFY4, TNS1 CXCR2 (increased IL6, abnormal interleukin level) TNS1* TNS1, RUFY4 TNS1 



21 
 

rs246600C>T ARHGAP26, FGF1 None

rs10237377G>T PARP12, TBXAS1 TBXAS1 (increased bleeding, decreased platelet 

aggregation) 

TBXAS1*  TBXAS1 

rs12801636G>A PCNX3, POLA2, RELA, RNASEH2C, 

SAC3D1, SCYL1, SIPA1, SLC22A20, 

SLC25A45, SNX15, SNX32, SPDYC, 

SSSCA1, SYVN1, TIGD3, TM7SF2, 

TMEM262, VPS51, ZFPL1, ZNHIT2 

CAPN1 (cardiovascular system), CDCA5 (decreased mean 

corpuscular volume),  CFL1 (cardiovascular system), 

EFEMP2 (cardiovascular), MUS81 (cardiovascular 

system), RELA (CVD  others), SCYL1 (small myocardial 

fiber),  

SIPA1* SIPA1  

rs590121G>T GDPD5, KLHL35, SERPINH1 SERPINH1 (hemorrhage) SERPINH1* SERPINH1 SERPINH1

rs2258287C>A SPPL3, HNF1A-AS1, HNF1A, C12orf43, 

OASL, P2RX7, P2RX4 

HNF1A (increased cholesterol, decreased liver function) 

P2RX4 (abnormal vascular endothelial cell physiology, 

abnormal vasodilation, abnormal common carotid artery 

morphology) 

 C12orf43, SPPL3, P2RX7, 

P2RX4 

 

rs11057830G>A SCARB1, UBC SCARB1 (increased susceptibility to atherosclerosis, 

reduced heart rate, abnormal lipoprotein metabolism 

abnormal vascular wound healing) 

None UBC SCARB1 

rs6494488A>G ANKDD1A, CSNK1G1, DAPK2, FAM96A, 

KIAA0101, OAZ2, PIF1, PLEKHO2, PPIB, 

PIF1 (abnormal telomere length) ANKDD1A*, 

RBPMS2*, TRIP4* 

TRIP4 TRIP4
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RBPMS2, SNX1, SNX22, TRIP4, ZNF609

rs1050362C>A AP1G1, ATXN1L, CALB2, CHST4, DHODH, 

DHX38, HP, HPR 

 HP (renal, development of atherosclerosis25) DHODH*, HP*, 

DHX38* 

HP, DHX38, DHODH HP 

rs17608766T>C ARL17A, CDC27, GOSR2, MYL4, WNT9B, 

WNT3 

 GOSR2* GOSR2   

rs1867624T>C DDX5, MILR1, PECAM1, POLG2, TEX2 DDX5 (abnormal vascular development), PECAM1 

(cardiovascular system, liver inflammation) 

PECAM1* PECAM1, TEX2 PECAM1

rs867186A>G RALY, EIF2S2, ASIP, AHCY, ITCH, 

DYNLRB1, MAP1LC3A,PIGU, HMGB3P1, 

GGT7, ACSS2, NCOA6,  GSS, MYH7B, 

TRPC4AP, EDEM2, PROCR, MMP24, EIF6 

ASIP (cardiovascular system), NCOA6 (cardiovascular 

system), PROCR (abnormal circulatiung C-reactive protein 

and fibrinogen levels; thrombosis/blood coagulation), 

PROCR*, EIF6*, 

ITGB4BP* 

EIF6, ITGB4BP PROCR

rs6088590 C>T PROCR*, GGT7*, 

MAP1LC3A*, 

ACSS2*, TRPC4AP* 

GGT7  

 455 

* indicates that the eQTL is identified in one of blood (including peripheral blood mononuclear cells) heart, aorta/coronary artery or live. Note the PCNX3 region also 456 

encompasses AP5B1, ARL2, CAPN1, CDC42EP2, CDCA5, CFL1, CTSW, DPF2, EFEMP2, EHBP1L1, FAM89B, FAU, FRMD8, KAT5, KCNK7, LTBP3, MAP3K11, MRPL49, 457 

MUS81, NAALADL1, OVOL1. The DHX38 region also encompasses, IST1, MARVELD3, PHLPP2, PKD1L3, PMFBP1, TAT, TXNL4B, ZFHX3, ZNF19, ZNF23, ZNF821. The 458 
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PROCR region also includes: FAM83C, UQCC1, GDF5, SPAG4, CEP250, C20orf173, ERGIC3, FER1L4, CPNE1, RBM12, NFS1, ROMO1, RBM39, SCAND1, CNBD2, 459 

EPB41L1, LINC00657, AAR2, DLGAP4460 
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Online Methods 461 

Study participants 462 

A full description of the component studies with de novo genotyping is given in the Supplementary 463 

Information and Supplementary Table 1. In brief, the European (EUR) studies comprised 16,093 464 

CAD cases and 16,616 controls from EPIC-CVD (a case-cohort study embedded in the pan-European 465 

EPIC prospective study), the Copenhagen City Heart Study (CCHS), the Copenhagen Ischemic Heart 466 

Disease Study (CIHDS) and the Copenhagen General Population Study (CGPS) all recruited within 467 

Copenhagen, Denmark. The South Asian (SAS) studies comprised up to 7,654 CAD cases and 7,014 468 

controls from the Pakistan Risk of Myocardial Infarction Study (PROMIS) a case-control study that 469 

recruited samples from 9 sites in Pakistan, and the Bangladesh Risk of Acute Vascular Events 470 

(BRAVE) study based in Dhaka, Bangladesh. The East Asian (EA) studies comprised 4,129 CAD 471 

cases and 6,369 controls recruited from 7 studies across Taiwan that collectively comprise the 472 

TAIwan metaboCHIp (TAICHI) Consortium. The African American (AA) studies comprised 2,100 473 

CAD cases and 5,746 controls from the Atherosclerosis Risk in Communities Study (ARIC), 474 

Women’s Health Initiative (WHI) and six studies from the Myocardial Infarction Genetics 475 

Consortium (MIGen).  476 

Ethical approval was obtained from the appropriate ethics committees and informed consent was 477 

obtained from all participants. 478 

 479 

Genotyping and quality control in studies with de novo genotyping  480 

Samples from EPIC-CVD, CCHS, CIHDS, CGPS, BRAVE and PROMIS were genotyped on a 481 

customised version of the Illumina CardioMetabochip (referred to as the “Metabochip+”, Illumina, 482 

San Diego, USA), in two Illumina-certified laboratories located in Cambridge, UK, and Copenhagen, 483 

Denmark, by technicians masked to the phenotypic status of samples. The remaining studies were 484 

genotyped using the standard CardioMetabochip10 in Hudson-Alpha and Cedars Sinai (TAICHI50, 485 

WHI, ARIC51) and the Broad Institute (MIGen). 486 
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Each collection was genotyped and underwent QC separately (Supplementary Tables 1 and 2). In 487 

brief, studies genotyped on the Metabochip+ had genotypes assigned using the Illumina GenCall 488 

software in Genome Studio. Samples were removed if they had a call rate < 0.97, average 489 

heterozygosity >±3 standard deviations away from the overall mean heterozygosity or their genotypic 490 

sex did not match their reported sex. One of each pair of duplicate samples and first degree relatives 491 

(assessed with a kinship co-efficient > 0.2) were removed.  492 

Across all studies, SNP exclusions were based on minor allele frequency (MAF) < 0.01, P < 1x10-6 493 

for Hardy Weinberg Equilibrium or call rate (CR) less than 0.97 (full details are given in 494 

Supplementary Table 2). These exclusions were also applied centrally to studies genotyped on the 495 

CardioMetabochip, namely the ARIC, WHI, MIGen and TAICHI studies. Principal component 496 

analysis (PCA) was applied to identify and remove ancestral outliers. More stringent thresholds were 497 

adopted for SNPs used in the PCA for TAICHI and those studies genotyped on the Metabochip+, 498 

namely, CR < 0.99, PHWE < 1x10-4 and MAF < 0.05. In addition, one of each pair of SNPs in LD (r2> 499 

0.2) was removed, as were variants in regions known to be associated with CAD.  500 

 501 

SNP association analyses and meta-analyses 502 

Statistical analyses were performed in R or PLINK 52 unless otherwise stated.  503 

We collected sufficient samples, to ensure the study was well powered to detect effect sizes in the 504 

range of OR=1.05-1.10 which have typically been reported for CAD. With 88,000 cases the study 505 

would have 88% power to detect an OR=1.05 for a SNP with MAF=0.2 at α=5x10-8, assuming a 506 

multiplicative model on the OR scale. For a lower MAF of 0.1 the study would have 0.93 power to 507 

detect OR=1.07 at α=5x10-8, assuming a multiplicative model. Power calculations were performed 508 

using Quanto. 509 

Association with CAD was assessed in studies with de novo genotyping from EUR, SAS, and EA, 510 

using the Genome-wide Efficient mixed model analysis (GEMMA) approach53. This model includes 511 
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both fixed effects and random effects of genetic inheritance. CAD (coded 0/1) was the outcome 512 

variable, up to five principal components and the test SNP, coded additively, were included as fixed 513 

effects. P-values from the score test are reported. The AA studies were analysed using a logistic 514 

model in PLINK, with CAD as the outcome variable and SNP coded additively as predictor. The 515 

covariates used by each study, including the number of principal components are reported in the 516 

Supplementary Information. Genomic inflation was at most 5% for any given study (Supplementary 517 

Table 3, Supplementary Fig. 1). A subset of the PROMIS study and EPIC-CVD consortium were 518 

contributed to the CARDIoGRAMplusC4D 2013 report. To avoid any overlap of individuals in our 519 

studies with those in CARDioGRAMplusC4D, two analyses of these two studies were performed. 520 

One analysis included all the samples. A second analysis of the PROMIS and EPIC-CVD studies was 521 

performed after excluding all samples that had been contributed to the CARDIoGRAMplusC4D study 522 

and before meta-analyzing our results with the results from CARDIoGRAMplusC4D consortium. The 523 

CARDIoGRAMplusC4D SNP association results were converted onto the plus strand of GRh37, 524 

checked for heterogeneity and checked to ensure allele frequencies were consistent with EUR 525 

populations. 526 

 527 

Fixed effects inverse variance weighted meta-analysis was used to combine results across studies in 528 

METAL54. Heterogeneity P-values and I2 values were calculated and any SNP with P < 0.0001 for 529 

heterogeneity was removed. We performed two meta-analyses, the first involved just the European 530 

studies with de novo genotyping and the CARDIoGRAMplusC4D results to minimize ancestral 531 

diversity. The second involved all studies with de novo genotyping and the CARDIoGRAMplusC4D 532 

results to maximize sample size and statistical power. Given the ancestral diversity of the component 533 

studies with de novo genotyping, we also implemented meta-analyses with MANTRA55, a meta-534 

analysis approach designed to handle trans-ethnic study designs. However, for our studies the data 535 

were broadly consistent with the results from METAL (Table 1, Supplementary Table 4) and we 536 

therefore primarily report the fixed effect meta-analysis.  537 
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Conditional association analyses 538 

Analyses to test for secondary association signals across seven regions with potential for independent 539 

signals were performed using GCTA56. GCTA implements a method for conducting conditional 540 

analyses using summary-level statistics (effect size, standard error, P-value, effective sample size) and 541 

LD information (r2) between SNPs estimated from a reference panel56. Conditional analyses were 542 

performed in CARDIoGRAMplusC4D, EUR, SAS, and EAS respectively and the results were 543 

combined using an inverse-variance-weighted fixed effects meta-analysis approach. The conditional 544 

analyses were not performed in AA, because the SNP-level case-control counts were not made 545 

available for ARIC, MIGen, and WHI. 1000Genome Phase3 v5 ethnic-specific reference panel was 546 

used to provide LD information (r2) for the conditioned SNPs and other SNPs in the test regions for 547 

each of the 3 ancestries considered in the analyses. As approximately 9% of CARDIoGRAMplusC4D 548 

samples were SAS and the remainder EUR, in order to calculate LD for this dataset, we sampled with 549 

replacement the genotypes of 50 individuals from the 1000Genome SAS reference panel and 550 

combined them with the genotypes of the 503 EUR individuals available in 1000 Genomes.  To 551 

identify SNPs that are associated with CAD independently of the lead SNP in the test region, the 552 

association of each SNP in the region was tested conditioning on the most significant SNP in the 553 

overall meta-analysis of EUR, SAS, EAS and CARIoGRAMplusC4D. The SNPs were identified as 554 

independent signals for a specific region, if the conditional P≤1x10-4. In each region, we performed 555 

several rounds of conditional analyses until the conditional P-values >1x10-4 for all SNPs in the 556 

region. 557 

eQTL and epigenetic analyses 558 

The MuTHER dataset contains gene expression data from 850 UK twins for 23,596 probes and 559 

2,029,988 (HapMap 2 imputed) SNPs. All cis–associated SNPs with FDR<1%, within each of the 14 560 

newly identified CAD regions (IMPUTE info score >0.8) were extracted from the MuTHER project 561 

dataset for each of the tissues, LCL (n=777), adipose (n=776) and skin (n=667).  562 
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The GTEx Project provides expression data from up to 449 individuals for 52,576 genes annotated in 563 

Gencode v12 (including pseudo genes) and 6,820,472 genotyped SNPs (using the Human Omni5-564 

Quad array).  565 

From each resource, we report eQTL signals, which reach the resource-specific thresholds for 566 

significance described above, for SNPs that are in LD (r2>0.8) with our sentinel SNP. 567 

In addition to the publicly available MuTHER and GTeX databases imputed to HapMap and 568 

1000Genomes, respectively, we used a curated database of over 100 distinct eQTL datasets to 569 

determine whether our lead CAD-associated SNPs or SNPs in high LD with them (r2 > 0.8 in 570 

Europeans from HapMap or 1000G) were associated with the expression of one or more nearby genes 571 

in cis57.  Our collated eQTL datasets meet criteria for statistical thresholds for SNP-gene transcript 572 

associations as described in the original studies. 57 In total, more than 30 different cells/tissues were 573 

queried including, circulating white blood cells of various types, liver, adipose, skin, brain, breast, 574 

heart and lung tissues.   Complete details of the datasets and tissues queried in the current work can be 575 

found in the Supplement Information and Supplementary Table 10, and a general overview of a subset 576 

of over 50 eQTL studies has been published57.  We first identified all sets of eQTLs in perfect LD (r2 577 

=1 among Europeans in HapMap or 1000G) with each other for each unique combination of study, 578 

tissue, and transcript. We then determined whether any of these sets of eQTL were either in perfect (r2 579 

= 1) or high LD (1>r2> 0.8) with our lead CAD SNP (Supplementary Table 10). 580 

We required that any eQTL had P<5x10-8 for association with expression levels to be included in the 581 

eQTL tables. 582 

 583 

We examined chromatin state maps of 23 relevant primary cell types and tissues. Chromatin states are 584 

defined as spatially coherent and biologically meaningful combinations of specific chromatin marks. 585 

These are computed by exploiting the correlation of such marks, including DNA methylation, 586 

chromatin accessibility, and several histone modifications58,59. 587 
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 588 

pQTL analyses 589 

We conducted plasma protein assays in 3,301 healthy blood donors from the INTERVAL study60 who 590 

had all been genotyped on the Affymetrix Axiom UK Biobank genotyping array and imputed to a 591 

combined 1000Genomes + UK10K haplotype reference panel61. Proteins were assayed using the 592 

SomaLogic SomaScan platform, which uses high-specificity aptamer-binding to provide relative 593 

protein abundances. Proteins passing stringent QC (e.g. coefficient of variation<20%) were log 594 

transformed and age, sex, duration between venepuncture and sample processing and the first 3 595 

principal components of genetic ancestry were regressed out. Residuals were then rank-inverse 596 

normalized before genomewide association testing using an additive model accounting for imputation 597 

uncertainty.  598 

 599 

Enrichment analyses 600 

Ingenuity pathway analyses 601 

We used the Core Analysis' function in the Ingenuity Pathway Analysis (IPA) software (Ingenuity 602 

Systems, Redwood City) to identify canonical pathways enriched with one or more SNPs with a low 603 

P-value in the all ancestry meta-analysis.   604 

Modified MAGENTA 605 

Given the Metabochip comprises a select set of SNPs and lacks complete genomic coverage10, 606 

MAGENTA, which assumes random sampling of variants from across the genome, could not be 607 

directly implemented. Therefore a modified version of MAGENTA involving a hypergeometric test to 608 

account for the chip design was used to test for pathways that were enriched with CAD-associated 609 

variants11. This approach requires defining two sets of variants; a null set of variants that are not 610 

associated with CAD and a set that are associated with CAD, referred to as the “associated set”. 611 

Multiple variants can map to the same gene and still be included in the test. SNPs in LD were pruned 612 
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out of the association results such that r2 < 0.2 for all pairs of SNPs (based on 1,000 Genomes Project 613 

data62; Supplementary Table 6) prior to implementation of the modified MAGENTA. The null set was 614 

defined as the 1,000 remaining QT interval SNPs with the largest P-values (least evidence) for 615 

association with CAD. The associated set was defined as variants (after LD pruning) that showed 616 

evidence of association P < 1x10-6. This approach was adopted to select the null and associated sets so 617 

as to limit the number of variants included in the hypergeometric cumulative mass function, as a large 618 

number of variants results in an intractable calculation for the binomial coefficients. The observed P-619 

value from the hypergeometric test is compared to the P-values obtained from 10,000 random sets to 620 

compute an empirical enrichment P-value. 621 

Haploreg: H3K27ac-based tissue enrichment analysis 622 

The associated set as defined for MAGENTA was used for Haploreg analyses and compared to a 623 

background set of 12,000 SNPs previously associated with any trait at P<1x10-5 (taken from sources 624 

such as NHGRI-EBI GWAS catalogue). Using data from HaploReg15 we counted the number of SNPs 625 

with an H3K27ac annotation, or in high LD (r2 > 0.8 from the SNiPA63 EUR 1000 Genomes maps) 626 

with a SNP with an H3K27ac annotation. The significance of the enrichment in H3K27ac marks from 627 

a particular tissue was determined by comparing the fraction of associated SNPs with that mark, to the 628 

fraction of background SNPs with that same mark. A hypergeometric test was used to assign a P-629 

value to the enrichment. 630 

 631 

Data availability 632 

The full set of results data from the trans-ancestry meta-analysis and the EUR meta-analysis from this 633 

report is available through www.phenoscanner.medschl.cam.ac.uk upon publication. 634 

  635 
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