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ABSTRACT  

IFIT proteins are highly expressed as part of the cell-intrinsic immune response following 

viral infection. In humans, IFIT1 inhibits translation at the initiation stage by binding 

directly to the 5' terminus of foreign RNA, precluding the recruitment of the cap-binding 

translation initiation factor complex, eIF4F. IFIT1 is highly specific for ‘non-self’ RNA, 

which lacks methylation on the first and second cap-proximal nucleotides (cap0), but at 

high concentrations may also restrict ‘self’ cap1 translation. Knock-out mouse models have 

been extensively used to study IFIT antiviral activity and, more recently, vaccines based 

on the antiviral activity of IFIT1 have been trialled for efficacy in mice. However, it is 

becoming clear that there are differences in murine and human IFIT function and 

regulation, which impacts the interpretation of these models. Mice lack a true orthologue 

of IFIT1 and instead the closely-related Ifit1b has been duplicated twice, yielding three 

paralogues: Ifit1, Ifit1b and Ifit1c. Murine Ifit1, like human IFIT1, can bind to cap0 RNA and 

inhibit its translation, but lacks cap1 binding activity. Ifit1b and Ifit1c are closely related to 

Ifit1 and share many of the residues critical for RNA-binding, but their precise functions 

are unknown.  

 

In this thesis, the expression of the entire murine Ifit family was examined in different 

mouse cell lines, validating expression of Ifit1b and Ifit1c following interferon stimulation. 

The murine Ifit family was then recombinantly expressed and purified, allowing 

biochemical characterisation. It was discovered that Ifit1b, a previously uncharacterised 

protein, preferentially inhibited the translation of cap1 mRNA, while cap0 and cap2 

mRNAs were inhibited to a much lesser extent. Specific cap1 binding allows Ifit1b to inhibit 

a proportion of cellular translation and block translation of murine hepatitis virus, a cap1 

coronavirus. However, both Ifit1 and Ifit1b were incapable of inhibiting translation from a 

more structured Zika virus reporter mRNA. The same reporter was effectively inhibited by 

human IFIT1, highlighting a key difference between the activities of human and murine 

IFIT proteins.  

 

IFIT proteins are known to form both homo- and hetero-oligomers, but the functional 

significance of these interactions is unclear. Here, interaction between human IFIT1 and 

IFIT3 was shown to increase the stability of both proteins and stimulate translation 

inhibition by IFIT1. IFIT1 and IFIT3 interacted via a C-terminal YxxxL motif, and disruption 

of this motif in either protein abolished the cofactor activity of IFIT3, both in vitro and in 



 

cells. In mice, Ifit3 is truncated and lacks the YxxxL motif, thus precluding interaction with 

murine Ifit1. However, this motif is maintained in Ifit1, Ifit1b and Ifit1c, which were found 

to interact with one-another in vitro. Interaction between murine Ifit proteins increased 

their stability and Ifit1c enhanced translation inhibition by Ifit1 and Ifit1b in vitro, thereby 

acting analogously to human IFIT3.  

 

Together this work provides a better understanding of the function and regulation of 

murine Ifit proteins, to aid interpretation and improvement of mouse models in studying 

the role of IFIT proteins in the antiviral response. 
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1 INTRODUCTION 

An effective immune response to pathogens relies on rapid and accurate discrimination of 

self and non-self. Before an antigen-specific response is raised, the innate immune system 

must control infection by recognising molecular signatures which are unique to 

pathogens.  

 

Viruses are obligate intracellular pathogens, which rely on the host translation machinery 

for their protein synthesis. Viral genomes are diverse in their length and composition, and 

can be broadly categorised by their nucleic acid (RNA or DNA) and strandedness (double- 

or single-stranded, positive or negative sense) (Baltimore, 1971). These genomes, or 

derivatives thereof generated during replication, often include distinctive molecular 

signatures which can be recognised and targeted by the cell. Their detection leads to the 

induction of both cell-intrinsic factors to restrict infection and chemical messengers to 

recruit the immune system and clear infection. As such, viruses must hide their genomes 

from the cellular sensing machinery, or else find ways of convincingly mimicking cellular 

nucleic acids to escape recognition.  

 

Among the highest expressed proteins during the innate immune response are the 

interferon-induced protein with tetratricopeptide repeats (IFIT). These are a conserved 

protein family with orthologues found in all major vertebrate clades (Liu et al., 2013). IFIT 

proteins have numerous described antiviral activities, including binding to non-self RNA 

in the cytoplasm of infected cells, to prevent the translation and replication of invading 

viruses. IFITs have also been described to regulate innate and inflammatory immune 
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responses, to control cell proliferation and to regulate cell death (reviewed in Fensterl and 

Sen, 2011, 2015; Diamond and Farzan, 2013; Zhou et al., 2013).  

 

1.1 Eukaryotic RNA  

In eukaryotic cells there are three major RNA species: ribosomal RNA (rRNA), transfer 

RNA (tRNA) and messenger RNA (mRNA), whose major function is to facilitate protein 

synthesis, with the former two serving to catalyse the translation of the latter. 

Transcription of these RNAs is performed by cellular DNA-dependent RNA polymerases: 

polI, polII and polIII. PolI is responsible for synthesis of the large pre-rRNA transcript. 

PolII transcribes mRNA, small nuclear RNA and micro RNA. PolIII transcribes short RNAs, 

including tRNA and the small 5S rRNA. These polymerases are recruited to genetic 

promoters through the concerted actions of various transcription factors, regulated by 

DNA and chromatin modifications, which govern cell-specific gene programmes (Roeder, 

1991).  

 

Transcribed RNA undergoes considerable processing both co- and post-transcriptionally, 

including splicing, chemical modification and nucleotidylation. Transcripts are typically 

synthesised with a triphosphate moiety at the 5' end (5'ppp), which is rapidly processed. 

Pre-tRNAs are trimmed by RNase P, which removes the 5' leader oligonucleotide leaving 

a 5'-monophosphate (Phizicky and Hopper, 2015), while the 13.7 kb pre-rRNA primary 

transcript is endonucleolytically cleaved into 28S, 18S and 5.8S rRNAs (Henras et al., 2015). 

tRNAs are additionally processed at the 3' end, then extended with a uniform 3' CCA end 

necessary for aminoacylation. These RNAs also can undergo extensive nucleotide 

modification as they mature, including methylation, isoprentenylation and 

pseudouridylation (Phizicky and Hopper, 2015).  

 

1.1.1 mRNA capping 

Messenger RNAs are uniquely processed by co-transcriptional capping with an inverted 

guanosine residue, via a 5'-5' triphosphate bridge (Perry et al., 1975; Wei et al., 1975). The 

capping enzyme complex associated with RNA polII consists of a 5' phosphatase, guanylyl 

transferase and 7-methyltransferase (McCracken et al., 1997; Cowling, 2010). The RNA 5'-

triphosphate moiety is trimmed to diphosphate then ligated to GMP (capG, GpppNN), 
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which is subsequently methylated at the 7 position on the guanylate ring (cap0, 

m7GpppNN) (Figure 1-1).  

  

The 5' cap promotes 5' intron splicing (Konarska et al., 1984) and nuclear export of mature 

mRNA (Lewis and Izaurralde, 1997), via the action of the nuclear cap-binding complex 

(CBC). The CBC is a heterodimer of cap-binding protein (CBP) 20 and CBP80, which binds 

to the 5' cap of immature pre-mRNA (Mazza et al., 2001) and recruits the nuclear RNA 

processing machinery (Izaurralde et al., 1994). Mature, CBC-bound mRNAs are exported 

to the cytoplasm where they undergo a pioneer round of translation, facilitated by 

interactions between the CBC and the translation initiation machinery (Maquat et al., 

 

Figure 1-1 Capping of eukaryotic mRNA. 

Clockwise; in the nucleus, nascent triphosphate polII transcripts are trimmed by RNA 5' 

triphosphatase (RTPase). GTP is cleaved to GMP, then ligated to the diphosphate RNA by guanylyl 

transferase (GTase), yielding capG RNA. The cap is methylated on the 7 position by N-7 

methyltransferase (N7MTase), yielding cap0 RNA. S-adenosyl methionine (SAM) acts as the 

methyl donor, producing S-adenosyl homocysteine (SAH) as a by-product. The 2'-hydroxyl on the 

first ribonucleotide is methylated by 2'-O-methyltransferase (2'OMTase), yielding cap1 RNA. 

Finally, once in the cytoplasm, a proportion of transcripts are further modified to cap2 by the 

action of a cytoplasmic 2'OMTase.  
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2010). This round of translation serves as a quality control gateway for cellular mRNAs: 

CBC binds to nonsense-mediated mRNA decay factors and senses ribosomes terminating 

on internal stop codons, indicative of incorrect splicing (Hwang et al., 2010). The defective 

message is degraded and the translation machinery is recycled, to maintain the integrity 

of the cellular proteome.   

 

Following pioneer translation, the CBC is displaced by the eukaryotic translation initiation 

factor (eIF) 4F. eIF4F comprises eIF4A, a DEAD-box RNA helicase; eIF4G, a large scaffold 

protein related to Cbp80 (Marintchev and Wagner, 2005); and eIF4E, a small cap-binding 

protein. eIF4E specifically recognises capped mRNA by stacking the methylguanosine 

residue between two conserved tryptophans on its concave surface, mediated by an 

extensive water-bridge network (Brown et al., 2009; Lama et al., 2017). The affinity of this 

interaction is enhanced by eIF4G, which wraps around the N-terminus of eIF4E (Gross et 

al., 2003; Brown et al., 2009; Grüner et al., 2016).  

 

Recognition of capped mRNA by eIF4F allows recruitment of the rest of the translation 

initiation machinery (Jackson et al., 2010). The 40S small ribosomal subunit is associated 

with eIF3, a large multisubunit scaffolding complex which regulates the association of 

other initiation factors. eIF1 and eIF1A are associated with the 40S mRNA decoding centre, 

and stimulate the recruitment of the eIF2-GTP-Met-tRNAMet
i ternary complex, forming 

the 43S preinitiation complex. The 43S complex is loaded onto capped mRNA via 

interactions between eIF3 and eIF4G, where it scans the mRNA 5' untranslated region 

(UTR) (Korneeva et al., 2000; Hinnebusch, 2017). Scanning is facilitated by RNA helicases, 

principally eIF4A, which unwind RNA secondary structure. eIF1 and eIF1A control the 

fidelity of scanning by modulating the conformation of the mRNA binding channel, 

allowing stable codon-anticodon base-pairing only on AUG start codons in good 

nucleotide context. Hydrolysis of GTP then stabilises the 48S preinitiation complex on the 

AUG start codon, allowing eIF5B-mediated 60S subunit recruitment, ready for 

polypeptide elongation (Jackson et al., 2010).  

 

In higher eukaryotes, including insects and vertebrates, mRNA is further modified by 2'-

O-methylation on the first and second cap-proximal nucleotides (cap1, m7GpppNmN and 

cap2, m7GpppNmNm) (Liu and Jia, 2014). In vivo labelling experiments demonstrated that 

cap1 modification occurs first on nuclear mRNAs, while cap2 modification is found only 
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on cytoplasmic transcripts (Perry and Kelley, 1976). Two human 2'-O-methyltransferases 

were later isolated from HeLa lysates (Langberg and Moss, 1981). The cap1 

methyltransferase was shown to be exclusively nuclear, while the cap2 methyltransferase 

is present in both the nucleus and the cytoplasm (Werner et al., 2011).  

 

Cap-proximal 2'-O-methylation has been linked to translational efficiency in kinetoplastid 

parasites (Zamudio et al., 2009), but its significance in multicellular eukaryotes remains 

unclear. In polysome profiling experiments from mouse cells, cap2 mRNAs were more 

abundant in the actively-translated polyribosome fraction and were suggested to be more 

stable (Perry and Kelley, 1976). Cap2-modified messages were found to be a non-random 

subset of the transcriptome: cap2 modification preferentially occurred on pyrimidine 

nucleotides, in particular cytidine (Perry and Kelley, 1976). Several transcripts have been 

identified which typically possess cap2 termini, including the globin mRNA (Perry and 

Scherrer, 1975; Heckle et al., 1977; Cho et al., 1978) and the Bombyx mori silk fibroin mRNA 

(Yang et al., 1976), both of which are highly translated, stable messages.  

 

Early experiments examining cap modification in mammalian cells relied on radioactive 

labelling of modified RNA followed by shearing and separation of oligonucleotides by 

chromatography. However, these methods do not lend themselves to high throughput 

analysis of cap modifications in infected cells and, since the mRNA is hydrolysed, do not 

allow identification of particular transcripts from an mRNA pool. Similarly, sequencing-

based approaches which have been used to determine the role of RNA base methylation 

in the body of the RNA or 2'-O-methylation in the 3'UTRs of certain messages are not able 

to identify modifications so close to the 5'-terminus (Dai et al., 2017). As such, the identity 

of transcripts which are preferentially cap2 modified, and thus the functional significance 

of this modification, is still unknown. 

 

1.1.2 Viral RNA  

While some viruses bypass the need for mRNA capping by employing non-canonical 

mechanisms of translation initiation, the majority of viruses produce capped mRNA. These 

therefore must convincingly mimic the host cell cap to avoid detection.  
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Those which replicate in the nucleus can co-opt the host capping machinery. mRNAs from 

retroviruses, whose genomes are integrated into the host cell chromosomes, are 

transcribed, spliced and capped by the host, resulting in authentic-looking messages. 

Similarly some DNA viruses, including herpes-, papilloma- and polyomaviruses, recruit 

cellular RNA polII to direct their transcription (Harwig et al., 2017). To the same end, 

influenza virus cleaves the mature 5' end of nascent host transcripts and uses those 

fragments to prime viral transcription, thereby producing mRNAs with a properly-

modified host cap (Plotch et al., 1979; Walker and Fodor, 2019).  

 

Cytoplasm-resident viruses must supply their own capping machinery. Capping and 2'-O-

methyltransferase enzymes have evolved in diverse viral lineages, such as the dsDNA 

poxviruses (Wei and Moss, 1974; Kyrieleis et al., 2014), as well as negative sense RNA 

rhabdoviruses (Ogino and Green, 2019), large positive sense RNA coronaviruses 

(Menachery et al., 2017) and many of the small positive sense RNA viruses. These enzymes 

share little sequence or structural homology, and often utilise unique biochemical 

pathways to achieve the same goal (Koonin and Moss, 2010).  

 

Within the genus Flavivirus, the viral RNA-dependent RNA polymerase has an N-terminal 

2'-O-methyltransferase domain which, in concert with the viral helicase/RNA 

triphosphatase protein, is responsible for capping and methylation of the viral genomic 

RNA (Egloff et al., 2007). Both Dengue virus and West Nile virus (WNV) have been shown 

to possess exclusively cap1 genomic RNA (Cleaves and Dubin, 1979; Ray et al., 2006). By 

contrast, a small fraction of messages produced by adenovirus and the rhabdovirus 

vesicular stomatitis virus (VSV) are modified to cap2 (Rose, 1975; Hashimoto and Green, 

1976). This may be by low efficiency cap2 activity of the viral methyltransferase or through 

the action of host cap2 methyltransferases. Conversely, the 5' end of sindbis virus genomic 

(Hefti et al., 1975) and subgenomic (Dubin and Stollar, 1975) RNA is not 2'-O-methylated 

at all. Indeed, while alphaviruses, like sindbis, encode a unique m7G-guanylyltransferase 

to cap their RNAs, they do not possess a 2'-O-methyltransferase and are thus exclusively 

cap0 (Pietilä et al., 2017). These viruses instead have highly structured 5'UTRs, which 

shields them from innate immune defences; this will be discussed in detail below. 
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1.2 Sensing non-self RNA 

Host cells have evolved several families of invariant receptors to recognise pathogen-

associated molecular patterns (PAMPs) to sense viral infection. These pattern recognition 

receptors (PRRs) include, but are not limited to, the cytoplasmic RIG-like-receptors 

(RLRs) and the membrane-bound Toll-like receptors (TLRs). Many of these specialise in 

discriminating non-self RNA molecules (Kondili et al., 2016).  

 

TLRs are a family of 11 transmembrane proteins in humans, whose large leucine-rich repeat 

domains are responsible for ligand binding in the extracellular space and in endocytosed 

vesicles (Kawasaki and Kawai, 2014). TLRs are largely expressed by myeloid-lineage cells 

of the innate immune system, including macrophages and dendritic cells, which patrol the 

skin and mucosa. TLR3, TLR7, TLR8 and TLR9 have been well characterised to recognise 

non-self nucleic acids in the endosomal compartment. TLR3, for example, is a key receptor 

involved in the sensing of rotavirus, a gastrointestinal pathogen with a double-stranded 

RNA (dsRNA) genome which enters the cell via endosomes (Uchiyama et al., 2015).  

 

Upon PAMP recognition, TLR3 homodimerises and recruits the TIR domain-containing 

adaptor protein, TRIF (Ullah et al., 2013; Kawasaki and Kawai, 2014). TRIF can signal via 

the TNF-associated factor (TRAF) 3 to promote the activation of TANK-binding kinase 1 

(TBK1) by stimulating autophosphorylation (Ma et al., 2012). Phospho-TBK1 is then 

capable of recruiting and phosphorylating interferon regulatory factor (IRF) 3 and IRF7, 

which can homo- or hetero-dimerise, prompting their translocation to the nucleus. IRF3/7 

stimulate expression of different subsets of type I interferon (IFN). IRF3 homodimers 

primarily stimulate expression of IFN, as well as a subset of antiviral effector proteins 

(Grandvaux et al., 2002). Alternatively, TRIF may signal via the Rip1-TRAF6 complex, 

which ultimately results in derepression of the nuclear factor kappa B (NF-B) 

transcription factor complex, allowing it to translocate to the nucleus (Figure 1-2). NF-B 

drives the expression of proinflammatory cytokines and pro-survival signals, which 

promote immune cell recruitment and proliferation.  

 

RLRs are a small family of cytoplasmic RNA helicase-like proteins which are expressed in 

a large number of cell types, and comprise only three prototype members: retinoic acid-

inducible gene I (RIG-I), melanoma differentiation-associated protein 5 (MDA5) and LGP2 
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(also known as DHX58). These receptors bind to dsRNA with differing specificity and 

affinity (Loo and Gale, 2011). RIG-I preferentially binds short dsRNA substrates with non-

self 5' ends, particularly uncapped 5'ppp RNA (Pichlmair et al., 2006; Kowalinski et al., 

2011). As a result, RIG-I is the principle receptor responsible for sensing defective RNA 

genomes generated as a result of polymerase slippage during influenza A virus infection, 

which have a 5'ppp dsRNA panhandle structure (te Velthuis et al., 2018). More recently, 

 

Figure 1-2 Innate immune signalling. 

Left; pathogen-associated molecular patterns, such as double-stranded RNA (dsRNA), are sensed 

by cytoplasmic and endosomal receptors during viral infection. Signalling pathways activate 

cytoplasm-resident transcription factor complexes, which translocate into the nucleus and 

promote the expression of proinflammatory cytokines including type I interferons (IFN). Right; 

secreted IFN signals back to the infected cell and to neighbouring cells by engaging the type I IFN 

receptor (IFNAR), which signals via the JAK-STAT pathway to activate the interferon stimulated 

growth factor 3 (ISGF3) transcription factor complex. ISGF3 translocates to the nucleus where it 

promotes the expression of hundreds of interferon stimulated genes (ISG), such as the interferon-

induced proteins with tetratricopeptide repeats (IFIT). These ISGs inhibit viral replication by 

targeting various stages of the viral lifecycle and recruiting the cellular immune system to clear 

infection. 
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RIG-I was shown to bind cap0 RNA with comparable affinity to 5'ppp RNA (Devarkar et 

al., 2016) and mediated sensing of a mutant of yellow fever virus with a defective 2'-O-

methyltransferase (Schuberth-Wagner et al., 2015). 

 

MDA5 binds to dsRNAs over 2 kb in length and is primarily responsible for sensing dsRNA 

intermediates made during RNA virus replication. Consistently, MDA5 has been identified 

as the principal receptor responsible for sensing infection with small positive sense RNA 

viruses like picornaviruses (Feng et al., 2012) and caliciviruses (McCartney et al., 2008). 

MDA5 has also been implicated in sensing cap0 RNA in the context of coronavirus 

infection (Züst et al., 2011), suggesting it may also play a role in scrutinising RNA 5' ends.  

 

Upon PAMP recognition, RIG-I or MDA5 bind to the membrane-associated mitochondrial 

activator of viral signalling (MAVS) complex, causing it to polymerise. Oligomeric MAVS 

can then recruit TBK1, via the actions of TANK and TRAF3, promoting IRF3 activation and 

IFN expression as described above (Figure 1-2). MAVS, acting as a large molecular scaffold, 

may also bind to other signalling components such as TRAF6 to activate NF-B signalling 

(Scott, 2010).  

 

1.2.1 Interferon 

Interferons (IFN) are a conserved family of around 20 cytokines found in almost all 

vertebrates, which were first identified for their ability to ‘interfere’ with viral infection 

(Isaacs and Lindenmann, 1957). There are three classes of IFN: type I, type II and type III. 

Type I IFN is expressed by almost all cells in response to viral infection, and is comprised 

of two major subtypes, alpha and beta, and a number of minor subtypes (McNab et al., 

2015). IFNβ in particular is produced in large quantities upon infection of fibroblast 

tissues. Type II IFN is expressed by immune cells and promotes a pro-inflammatory 

environment for the activation and proliferation of immune cells during infection. Finally, 

type III IFN is predominantly expressed by epithelial cells and has been associated with 

control of viral infection in alveolar, hepatic and gastrointestinal tissues (Kotenko et al., 

2003; Douam et al., 2017). 
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Type I IFN signals through the IFN-alpha receptor (IFNAR), a heterodimer comprised of 

IFNAR1 and IFNAR2, which are associated with kinases TYK2 and JAK1 respectively 

(Platanias, 2005). Upon binding to type I IFN, IFNAR subunits dimerise, activating their 

receptor-associated kinases, leading to recruitment and tyrosine-phosphorylation of 

signal transducer and activator of transcription (STAT) proteins. Phosphorylated STAT 

proteins dimerise and translocate into the nucleus. STAT1 or STAT3 homodimers bind to 

GAS promoter elements, resulting in activation of an inflammatory response. By contrast, 

heterodimers of STAT1 and STAT2 associate with IRF9 to form the IFN-stimulated growth 

factor 3 (ISGF3), a transcription factor complex which recognises IFN-stimulated response 

elements (ISRE) in target promoters (Figure 1-2), directing the transcription of hundreds 

of IFN-stimulated genes (ISGs) (Samarajiwa et al., 2009) .  

 

Many ISGs have well characterised antiviral function and can inhibit virtually any step of 

the viral lifecycle. Protein kinase R (PKR), for example, phosphorylates the alpha subunit 

of eIF2 (Williams, 1999). Phosphorylated eIF2 cannot be recharged by the guanine 

exchange factor eIF2B, and as such remains in its inactive GDP-bound form. However, 

phospho-eIF2 has higher affinity for eIF2B, thereby acting as a competitive inhibitor to 

prevent recycling of further ternary complex (Bogorad et al., 2017; Kashiwagi et al., 2017). 

This effectively shuts down cellular translation. Viruses, in response, have evolved 

mechanisms to avoid or counteract these restriction factors. Alphaviruses, for instance, 

initiate translation of their subgenomic mRNA in a manner independent of eIF2 and are 

thus impervious to the action of PKR (Ventoso et al., 2006; Skabkin et al., 2010; Sanz et al., 

2017).  

 

Alongside antiviral genes, inflammatory cytokines and chemokines are expressed to alert 

the immune system to the infection (Zlotnik and Yoshie, 2000). Myeloid lineage cells, 

including macrophages and neutrophils, are recruited early in the response and have 

numerous antiviral tools at their disposal, including lysis and phagocytosis of virus-

infected cells (Stegelmeier et al., 2019). Following presentation of viral antigens to T and B 

cells, pathogen-specific responses are mounted to initiate clearance of infected cells and 

the establishment of long-term pathogen-specific immunity (Dörner and Radbruch, 2007; 

Pennock et al., 2013; Kumar et al., 2018). 
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1.3 Interferon-induced proteins with tetratricopeptide repeats 

Among the highest expressed of the interferon-stimulated genes are the IFN-induced 

proteins with tetratricopeptide repeats (IFIT) family. IFIT-like genes are found in all 

vertebrate lineages (see Figure 1-6). They are thought to have co-evolved with the 

interferon system (Liu et al., 2013), implying an absolute requirement for IFIT-like genes 

in the innate immune response.  

 

Mammals have a conserved complement of IFIT proteins (IFIT1, IFIT1B, IFIT2, IFIT3 and 

IFIT5). These have undergone duplication, deletion and recombination events in a 

number of phyla, presumably in response to evolutionary pressure from lineage-specific 

pathogens (Fensterl and Sen, 2011; Liu et al., 2013; Daugherty et al., 2016). IFIT-like genes 

have also been identified in non-mammalian vertebrates, including reptiles, amphibians 

and fish. Zebrafish, for example, have been shown to express at least seven IFITs (Liu et 

al., 2013; Varela et al., 2014). By contrast in birds almost all IFIT genes have been lost except 

for IFIT5, which appears to maintain the antiviral functions of its human counterpart 

(Magor et al., 2013; Li et al., 2017; Santhakumar et al., 2018).  

 

IFIT proteins were first observed nearly 40 years ago. Translation of mRNA extracted from 

IFN-stimulated human fibroblasts produced distinct protein products between 50-60 

kDa, when translated in a cell-free system (Colonno and Pang, 1982). A particularly 

prominent band was observed at ~56 kDa, the molecular weight of IFIT1 (also named 

ISG56). IFIT1 was partially (Chebath et al., 1983), then fully (Wathelet et al., 1986), cloned 

and sequenced, allowing analysis of its induction kinetics. IFIT1 mRNA was shown to be 

strongly and rapidly induced by type I IFN in various primary and immortalised human 

cell lines (Kusari and Sen, 1986; Wathelet et al., 1986; Bandyopadhyay et al., 1990; Der et 

al., 1998). A similar sequence was then identified for a 54 kDa protein, IFIT2, with type I 

IFN-dependent induction kinetics and ISRE sequences in its promoter region (Levy et al., 

1986; Bluyssen et al., 1994b). Homologues of IFIT1 and IFIT2 were later identified in mice 

(Bluyssen et al., 1994a), followed by identification of two further human IFIT family 

members, IFIT3 (also named IFIT4) (Smith and Herschman, 1996; Yu et al., 1997; de Veer 

et al., 1998) and IFIT5 (Niikura et al., 1997). Since the nomenclature of IFIT proteins has 

changed multiple times since their discovery, a summary of IFIT aliases is provided in 

Table 1-1. 
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1.3.1 IFIT induction 

IFIT genes typically have one to two ISREs in their promoter regions. The human IFIT1 

promoter was first shown to respond strongly and rapidly to IFN (Kusari and Sen, 1986) 

and was bound by ISGF3 in gel shift assays (Bandyopadhyay et al., 1990). The ISRE I 

element in the IFIT1 promoter was later shown to be bound directly by IRF3 (Grandvaux 

et al., 2002), and forms the basis of the ISG56.1 reporter plasmid frequently used in IRF3 

activation assays (Wathelet et al., 1986; Ferguson et al., 2013; White et al., 2016). These 

elements are conserved within the other human IFIT promoters, save IFIT1B (Levy et al., 

1986; Xiao et al., 2006), and the murine Ifit promoters (Bluyssen et al., 1994a). Given their 

co-evolution with type I IFNs, it is likely that IFIT genes in all vertebrate species have 

similar IFN-responsive expression patterns, underpinning their vital role in the innate 

immune response. 

 

Table 1-1 IFIT aliases. 

A summary of known aliases for human (uppercase) and murine (lowercase) IFIT genes and 

proteins. GARG, glucocorticoid-attenuated response gene; IFI, interferon-induced; ISG, 

interferon-stimulated gene; RIG, retinoic acid inducible gene. 

 

IFIT Accession number Alternative names 

IFIT1 NP_001539.3 C56, G10P1, IFI-56, IFI-56K, IFI56, IFIT-1, IFNAI1, ISG56, P56 

IFIT1B NP_001010987.1 IFIT1L 

IFIT2 NP_001538.4 G10P2, GARG-39, IFI-54, IFI-54K, IFI54, IFIT-2, ISG-54 K, ISG-

54K, ISG54, P54 

IFIT3 NP_001540.2 GARG-49, IFI60, IFIT4, ISG60, P60, RIG-G 

IFIT5 NP_036552.1 ISG58, P58 

   

Ifit1 NP_032357.2 Garg16, Isg56, Ifi56, Ifit1b1, p56 

Ifit1b NP_444447.1 Ifit1b2, Ifit1bl2 

Ifit1c NP_001103987.1 Ifit1b3, Ifit1bl1 

Ifit2 NP_032358.1 Garg-39, Ifi54, p54 

Ifit3 NP_034631.1 Garg-49, Ifi49, p49 

Ifit3b NP_001005858.2 Ifit3-like 
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1.3.1.1 Human IFIT expression 

In human cell lines, IFIT1 (Kusari and Sen, 1986; Guo et al., 2000a; Terenzi et al., 2006), 

IFIT2 (Levy et al., 1986; Terenzi et al., 2006), IFIT3 (Yu et al., 1997; de Veer et al., 1998; Xiao 

et al., 2006) and IFIT5 (Niikura et al., 1997) are induced by type I IFN treatment, in a 

manner dependent on STAT1. By contrast, IFIT expression is induced to a much lesser 

extent (Yu et al., 1997; Guo et al., 2000a) or not at all (Kusari and Sen, 1986; de Veer et al., 

1998; Der et al., 1998) by type II IFN. IFITs are also induced directly downstream of dsRNA 

sensing, in a manner dependent on IRF3 (Guo et al., 2000a; Grandvaux et al., 2002; 

Imaizumi et al., 2014, 2016). As such, IFIT expression is detectable within a few hours after 

viral infection (Guo et al., 2000a). Other PAMPs, including bacterial lipopolysaccharide 

(LPS) (Imaizumi et al., 2013; John et al., 2018) and all-trans retinoic acid (Yu et al., 1997; 

Xiao et al., 2006), are known to induce IFIT expression, typically dependent on the 

expression of type I IFN.  

 

Expression of IFIT1 (Buggele and Horvath, 2013), IFIT2 (Feng et al., 2014; Wang et al., 2016) 

and IFIT3 (Hou et al., 2016) is post-transcriptionally regulated by different IFN-inducible 

micro RNAs, which attenuate IFIT mRNA expression late in infection. As such, IFITs are 

only expressed for the duration of the innate immune response and are quickly degraded 

once the host cell is no longer receiving stimulus (Kusari and Sen, 1986; Guo et al., 2000a). 

The kinetics and magnitude of this expression also varies according to cell type (Terenzi 

et al., 2006), likely reflecting differences in innate immune pathways in different cell types. 

In human cell lines, IFIT1 was detectable at the protein level as early as 2-6 hours post 

stimulation and expression was maintained 24 to 48 hours after IFN-treatment (Guo et al., 

2000a; Terenzi et al., 2006). 

 

IFIT expression is targeted by different viruses. Vaccinia virus was found to induce 

proteasome-dependent degradation of IFIT1, IFIT2 and IFIT5 (Soday et al., 2019). 

Similarly, in herpes simplex virus infection, IFIT3 is targeted for proteasomal degradation 

by the viral protein UL41 (Jiang et al., 2016). During infection with UL41 deletion viruses, 

IFIT3 is highly expressed and is strongly antiviral. Human foreskin fibroblasts infected 

with Zika virus (ZIKV) expressed high levels of IFIT1 and IFIT3 but IFIT2 was undetectable; 

infection of the same cell line with Chikungunya virus induced IFIT2 expression, 

indicating that ZIKV may selectively downregulate IFIT2 (Wichit et al., 2019).  
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IFIT expression is also known to be dysregulated in other diseases. IFIT3, for example, is 

highly expressed in peripheral blood mononuclear cells from patients with the 

autoimmune disorder systemic lupus erythematosus (Huang et al., 2008; Wang et al., 

2018). IFIT3 overexpression drove monocyte differentiation in vitro toward the dendritic 

cell lineage, and enhanced dendritic cell activity. Elevated IFIT3 expression was detected 

in the spleen, as well myeloid-lineage immune cells, such as monocytes (Huang et al., 

2008) and M1-polarised macrophages (Huang et al., 2018), supporting a role in myeloid 

cell regulation.  

 

There is some evidence of differential IFIT expression provided by the human protein 

atlas, a database which maps RNA and protein expression of human genes in different 

tissues and cell lines (Uhlén et al., 2015). Of interest, histological sections from this 

consortium have suggested IFIT1B is expressed in haematopoietic progenitor cells, 

including myeloid cell precursors, as well as mature splenic lymphocytes and 

macrophages, suggesting it may play a similar role to IFIT3 in regulating immune cell 

differentiation. If IFIT1B does indeed have a restricted expression profile in stem-like cells, 

this may account for its poor detection in standard cell lines.  

 

1.3.1.2 Murine Ifit expression 

Murine Ifit1, Ifit2 and Ifit3 follow similar expression patterns to their human counterparts. 

mRNA is detectable as little as 1-2 hours following type I IFN treatment and 2 hours after 

type II IFN treatment (Bluyssen et al., 1994a; Smith and Herschman, 1996; Terenzi et al., 

2005). Expression following type I IFN is considerably stronger, and is dependent on the 

activation of STAT1 and STAT2 (Bluyssen et al., 1994a; Terenzi et al., 2005; Wacher et al., 

2007). Ifit expression is similarly stimulated by dsRNA and viral infection (Terenzi et al., 

2005; Wacher et al., 2007), downstream of IRF3 (Guinn et al., 2017), as well as LPS 

treatment and bacterial infection (Smith and Herschman, 1996; John et al., 2018). 

 

Ifit1 and Ifit2 expression was strongly stimulated in mice injected with IFN or synthetic 

dsRNA in a number of murine tissues (Terenzi et al., 2007). Treatment with IFN resulted 

in tissue-dependent variation in Ifit expression: Ifit1 was moderately expressed in all 

tissues except kidney and heart, while Ifit2 was only expressed in lung, spleen and, to a 

lesser extent, liver. In mice infected with VSV, Ifit1 expression was detectable in most 
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tissues, while Ifit2 expression was only detectable in lung, spleen and intestinal tissues. Ifit 

expression was dependent on STAT1, but was independent of TLR3 and PKR (Terenzi et 

al., 2007).  

 

Ifit expression has also been examined in the central nervous system during viral infection. 

Ifit1, Ifit3 and, to a lesser extent, Ifit2 mRNAs were strongly upregulated 2-6 days post 

infection in the brains of mice infected with lymphocytic choriomeningitis virus (LCMV) 

or WNV (Wacher et al., 2007). LCMV and WNV are pathogenic neurotropic viruses of the 

families Arenaviridae and Flaviviridae, respectively. In LCMV infection, both Ifit1 and Ifit3 

mRNA were diffusely expressed throughout the brain and meninges, while Ifit2 was 

expressed more strongly in the regions of the brain immediately surrounding the sites of 

infection. Following infection with WNV, Ifit1, Ifit2 and Ifit3 were detectable throughout 

the entire brain, particularly in the cerebellum. Cell type-specific differences were 

observed in the expression of Ifit mRNA in infected brains, though the reason for and 

functional significance of this is unclear. For example, in neurones Ifit expression was 

completely dependent on STAT1, while in non-neuronal tissue STAT1 knockout only 

partially decreased Ifit expression (Wacher et al., 2007). 

 

Ifit expression has also been examined in different immune cell subsets. At least 50% of 

bone marrow-derived cells from mice injected with dsRNA, IFN or infected with VSV 

expressed Ifit1 and Ifit2, while up to 90% of T cells and natural killer cells from the spleens 

of those mice expressed Ifit2 (Terenzi et al., 2007). Similarly, Ifit2 expression was strongly 

upregulated in murine macrophages following WNV infection (Daffis et al., 2007). Some 

Ifit2 expression was also detectable in unstimulated macrophages (Daffis et al., 2007). This 

expression was dependent on IRF3, suggesting some basal level of activation in cultured 

myeloid cells. By contrast, Ifit1 was only detected in 50% of T cells, and less than 10% of 

natural killer cells (Terenzi et al., 2007). Ifit1 expression is specifically downregulated in B 

cells (White et al., 2016). B cells express high levels of IRF8, a repressive transcription 

factor which was shown to bind the Ifit1 promoter. Ectopic expression of IRF8 in murine 

fibroblasts strongly inhibited IFN-stimulated Ifit1 expression, while Ifit2 and Ifit3 

expression were partially inhibited (White et al., 2016).  

 

While it is clear that murine Ifit1, Ifit2 and Ifit3 expression is dependent on type I IFN and 

dsRNA sensing in a number of cell lines, a comprehensive analysis of the entire murine Ifit 
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family has not been carried out. In particular, the expression of Ifit1b, Ifit1c and Ifit3b has 

not been formally demonstrated and their induction patterns have not been characterised. 

 

1.3.2 eIF3 binding 

IFIT1 was first described to inhibit translation by binding to the translation initiation 

factor eIF3, which is essential for the majority of cap-dependent and cap-independent 

translation. In mammals, eIF3 consists of 13 subunits (eIF3a-m) and binds across the 

solvent-exposed surface of the 40S subunit. eIF3 mediates assembly of multiple initiation 

factors on the 40S subunit, to coordinate translation initiation (Cate, 2017; Hinnebusch, 

2017). In particular, eIF3 binds to the middle domain of eIF4G, the large protein scaffold 

component of eIF4F, via the eIF3c, –d and –e subunits (LeFebvre et al., 2006; Villa et al., 

2013; Kumar et al., 2016). This interaction mediates recruitment of the ribosome of the 5' 

end of mRNAs, to initiate translation. eIF3 is also an RNA binding protein in its own right, 

and can interact directly with cellular and viral RNAs to promote non-canonical 

translation initiation (Sun et al., 2013; Meyer et al., 2015; Lee et al., 2016), and may be 

involved in coordinating or stabilising mRNA exiting the 40S subunit during scanning 

(Jackson et al., 2010; Valášek et al., 2017).  

 

Human IFIT1  was found to interact with a C-terminal fragment of the eIF3e subunit 

(originally named Int6/p48) in a yeast two-hybrid screen (Guo and Sen, 2000; Guo et al., 

2000b). When overexpressed in human cells, IFIT1 could relocalise eIF3e from the nucleus 

to the cytoplasm and was shown to co-immunoprecipitate eIF3e, suggesting a direct 

interaction. A small proportion of IFIT1 also co-migrated with eIF3 when analysed by gel 

filtration. This interaction was mapped to the C-terminal domain of IFIT1, since C-

terminal truncation prevented co-migration during gel filtration. 

 

IFIT1 was shown to inhibit the translation of uncapped (Hui et al., 2003) and cap0 (Guo et 

al., 2000b) model RNAs in vitro, while truncated IFIT1 did not affect translation. However, 

IFIT1 did not disrupt interaction between eIF3 and eIF4F (Hui et al., 2003), neither did it 

affect association of eIF3 and the 40S subunit (Hui et al., 2003; Kumar et al., 2014). The 

N-terminal two-thirds of eIF3e are necessary for eIF4G binding (LeFebvre et al., 2006), but 

IFIT1 binds the C-terminal half of eIF3e (Guo and Sen, 2000), which may explain why IFIT1 

does not interfere with eIF4F binding+. Instead, IFIT1 was proposed to inhibit eIF3-
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mediated enhancement of ternary complex formation (Hui et al., 2003). eIF3 binding to 

the ternary complex is suggested to stabilise the complex (Valášek et al., 2002), thereby 

encouraging more complex to form by shifting the equilibrium of the reaction to the 

product side. Translation was partially restored on addition of exogenous eIF2, to 

counteract the proposed decrease in ternary complex concentration mediated by the 

IFIT1-eIF3 interaction. However, translation driven by the encephalomyocarditis virus 

(EMCV) internal ribosome entry site (IRES) was unaffected by IFIT1 addition (Hui et al., 

2003), despite reliance on both eIF3 and ternary complex (Pestova et al., 1996). 

 

This mechanism of translation inhibition was suggested to account for the restriction of 

hepatitis C virus (HCV) replication in human hepatocytes upon overexpression of IFIT1 

(Raychoudhuri et al., 2011). The HCV IRES is directly engaged by eIF3 (Kieft et al., 2001; 

Sun et al., 2013) and is modulated by eIF2 for effective translation initiation (Jaafar et al., 

2016). Overexpression of IFIT1 inhibited HCV IRES-dependent translation in human 

hepatocellular carcinoma cells (Ishida et al., 2019). However, in this study, cap-dependent 

and EMCV IRES-dependent translation was also inhibited to a similar extent; translation 

inhibition was also observed for overexpressed IFIT2, IFIT3 and IFIT5. Therefore the 

observed translation inhibition may be a side-effect of cytotoxic protein overexpression, 

rather than a specific effect of IFIT1. In these cells overexpressed IFIT1, which typically has 

diffuse cytoplasmic expression (Guo et al., 2000a), was found to co-localise in cytoplasmic 

puncta with endogenous eIF3 and eIF2 (Ishida et al., 2019), reminiscent of stress granules. 

Therefore, overexpression of IFIT1 may induce cellular stress. In cell-free extracts, 

translation driven by the HCV IRES was not inhibited by up to 5 M IFIT1 (Abbas et al., 

2017a, 2017b). The exact role of IFIT1 in regulating HCV IRES-driven translation still 

requires clarification. 

 

Murine Ifit1, like human IFIT1, was shown to inhibit the translation of uncapped model 

RNAs in vitro (Hui et al., 2005). Ifit1 weakly associated with eIF3 in gel filtration 

experiments and co-precipitated with the eIF3c subunit when both were overexpressed in 

human cells. Unlike human IFIT1, murine Ifit1 did not have a large effect on eIF3-mediated 

stabilisation of the ternary complex, nor on the recruitment of the ternary complex to the 

40S ribosome. Instead, Ifit1 appeared to prevent eIF4F interaction with the 43S complex, 

precluding formation of preinitiation complexes (Hui et al., 2005). Along with eIF3e and 

eIF3d, eIF3c contributes to stable association of eIF3 with eIF4G (Villa et al., 2013). Murine 
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Ifit2 and Ifit3 were also shown to co-precipitate with eIF3c, but not with eIF3e (Terenzi et 

al., 2005; Fensterl et al., 2008). Ifit2 inhibited the translation of uncapped model mRNAs 

in vitro, but to a much lesser degree than human IFIT1 or murine Ifit1, while murine Ifit3 

had no effect on translation (Fensterl et al., 2008).  

 

A number of studies have failed to recapitulate these results. Peptides corresponding to 

eIF3 did not co-precipitate with human IFIT1 (Pichlmair et al., 2011; Habjan et al., 2013) or 

murine Ifit1 (Habjan et al., 2013) in independent mass-spectrometry pull-down 

experiments. Human IFIT2 did not co-precipitate with eIF3c when both were 

overexpressed in HEK293T cells and did not inhibit translation of uncapped RNAs in vitro 

(Yang et al., 2012). Endogenous Murine Ifit1, Ifit2 and Ifit3 also did not precipitate eIF3c 

from primary murine cells (Siegfried et al., 2013). Additionally, human IFIT1 was shown to 

associate with 40S ribosomal subunits independently of eIF3, and the presence of eIF3 did 

not enhance recruitment (Kumar et al., 2014). Furthermore, in sucrose density gradient 

centrifugation experiments, addition of IFIT1 was not inhibitory to 43S complex formation 

(Kumar et al., 2014). Together, this indicates that IFIT proteins may interact weakly or 

non-specifically with eIF3.  

 

1.3.3 RNA binding 

It was later discovered that IFIT proteins could inhibit translation by binding to RNA 

directly. Pichlmair et al. (2011) first described RNA binding activity for human IFIT protein 

after precipitating IFN-treated HEK293 cell lysates on PPP-RNA-coupled beads, to 

simulate viral RNA. Binding to single-stranded 5'-triphosphate RNA was then confirmed 

for IFIT1 and IFIT5, using a number of different techniques (Pichlmair et al., 2011; Abbas et 

al., 2013). Interaction with 5'ppp-RNA was similarly shown for murine Ifit1, which shares 

70% amino acid similarity with human IFIT1. 

 

A putative RNA binding surface was identified, lined with positively-charged residues 

which could interact with the negatively-charged phosphate backbone of RNA. Indeed 

mutation of this surface, particularly towards the N-terminus of the protein, disrupted the 

ability of IFIT1 and IFIT5 to bind 5'-ppp RNA (Pichlmair et al., 2011; Abbas et al., 2013). 

Many of these residues are conserved among IFIT family members, indicating that RNA 

binding may be a common function of IFIT family members. 
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Recombinant IFIT1 was shown to inhibit translation of uncapped RNA at micromolar 

concentrations, both in rabbit reticulocyte lysate (RRL) and wheat germ extract, but 

translation inhibition was relieved by mutating RNA binding residues (Pichlmair et al., 

2011). This indicates that RNA binding specifically mediates translation inhibition by IFIT1. 

The authors additionally argued that the evolutionary distance between human and 

wheat, and thus the divergence between their translation initiation factors, implies eIF3 

binding is unlikely to be the major mechanism by which IFIT1 inhibited translation 

(Pichlmair et al., 2011).  

 

1.3.3.1 IFIT5 RNA binding 

The crystal structure of IFIT5 was later solved by three independent groups, in both 

unbound (apo) (Abbas et al., 2013; Feng et al., 2013; Katibah et al., 2013) and RNA-bound  

(holo) states (Abbas et al., 2013) (Figure 1-3). This has revealed a great deal of insight into 

the mechanism of IFIT-RNA binding. IFIT5 is made up of sequential tetratricopeptide 

repeats (TPRs), which are a helix-turn-helix structural motif. TPR-containing proteins are 

typically open superhelical structures, caused by sequential stacking of the helix-turn-

helix TPR motifs (Das et al., 1998; D’Andrea and Regan, 2003). In IFIT5, the N-terminal 

domain is closed off by non-TPR -helices and loops, which disrupt the expected 

superhelical topology. The C-terminal domain is joined by a flexible linker, or pivot, 

domain comprised of two longer -helices (Figure 1-3A-B). A positively charged channel, 

approximately 15 Å wide, is formed in the groove between the N- and C-terminal domains 

(Figure 1-3C).  

 

Positively charged residues within the RNA binding channel interact with single-stranded 

5'ppp-RNA, by coordinating the negatively-charged phosphate backbone and 5'-

triphosphate moiety (Appendix A). A metallic ion, likely Mg2+, is involved in coordinating 

the  and  phosphates. IFIT5 was shown to bind 5'ppp-ssRNA with nanomolar affinity 

(Abbas et al., 2013; Kumar et al., 2014). Binding was not observed for dsRNA and ssRNA 

with a stable hairpin at the 5' end (Abbas et al., 2013), or capped RNA (Abbas et al., 2013; 

Habjan et al., 2013; Kumar et al., 2014). Primer extension inhibition assays revealed that 

IFIT5 binding results in a truncated cDNA product approximately 6-7 nt shorter than the 

full length cDNA (Kumar et al., 2014). This corresponds to the depth of the IFIT5 RNA 

binding pocket, thus directly visualising binding to the 5' end of the RNA. The 

triphosphate binding cavity is closed at the 5' end,  
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Figure 1-3 IFIT5 RNA binding. 

A. Domain diagram of human IFIT5. B. Cartoon representation of IFIT5 in complex with PPP-

oligo(A) (PDB: 4HOT), coloured by subdomain (SD). C. Surface Cutaway of IFIT5 coloured by 

electrostatic potential from negative (-10 kTe-1; red) to positive (+10 kTe-1; blue), via hydrophobic 

(white), generated with the Adaptive Poisson-Boltzmann Solver (APBS) plugin for Pymol, using 

PDB2PQR (Dolinsky et al., 2004). Cross-section is indicated by solid black shading and RNA is 

shown as yellow sticks. Features of the RNA are annotated: PPP, 5' triphosphate moiety; N1/N2, first 

two nucleotides; N3/N4, third and fourth nucleotides. Residues which close the RNA binding 

channel, occluding cap binding, are indicated with an asterisk. 
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making it unlikely that IFIT5 could accommodate capped RNA transcripts in this 

conformation (Appendix A).  

 

However, one report has shown IFIT5 binding to capped RNA in gel shift assays, with 

comparable affinity to 5'ppp-RNA binding (Katibah et al., 2014). Residues in the N-

terminus and RNA binding channel were identified which specifically decreased cap0 

binding, while maintaining 5'ppp binding, which are located at the neck of the 

triphosphate binding channel (Q41 and K150, see Appendix A). Given that the top of the 

IFIT5 RNA binding channel is closed by a number of flexible loops, including some of these 

putative cap0 binding residues, remodelling of the N-terminal domain may allow 

accommodation of cap0 RNA (Katibah et al., 2014). Overexpression of IFIT5 in human 

cells was shown to inhibit the replication of a mutant of WNV which lacks 2'-O-

methyltransferase activity (NS5 E218A), by about 50%, but could not inhibit wildtype virus 

(Daffis et al., 2010). This may support the supposition that IFIT5 can bind to cap0 RNA 

but not to cap1 RNA.  

 

A point mutation (E33A) was also identified which could confer cap1 binding to IFIT5 

(Katibah et al., 2014). However, given the physical distance between this residue and the 

first RNA nucleotide in the IFIT5 structure, the mechanism of this is unclear. It is possible 

that this mutation causes an N-terminal structural rearrangement which alters the local 

geometry of the RNA binding channel, allowing cap1 substrates to be accommodated. How 

IFIT5 can accommodate capped RNA, and the consequence of this in infection, remains 

to be clarified. 

 

A flexible loop from TPR4 allows van der Waals interactions with both pyrimidine and 

purine bases at the N1 position, indicating that IFIT5 has the capacity to accommodate 

RNA in a sequence non-specific manner (Abbas et al., 2017a). Indeed, IFIT5 was co-

crystallised with ssRNA oligonucleotides of adenosine, uridine and cysteine, which 

adopted similar conformations within the RNA binding channel (Appendix A), indicating 

that IFIT5 can bind those substrates equally (Abbas et al., 2013). However, while IFIT5 

bound well to poly-A and poly-U ssRNA, it was unable to bind poly-C RNA in gel shift 

assays (Feng et al., 2013), indicating that IFIT5 may have a nucleotide preference under 

certain conditions. There is also evidence that IFIT5 is capable of binding AT-rich dsDNA 



On the expression, function and regulation of the murine Ifit family of antiviral RNA-binding proteins. 

22  Harriet V Mears – September 2019 

with comparable affinity to its ssRNA binding (Feng et al., 2013), though this finding has 

not been elaborated upon. 

 

Comparison of apo and holo structures reveals that IFIT5 undergoes a conformational 

change upon RNA binding (Appendix A). The C-terminal domain rotates anticlockwise 

about the pivot domain, towards the RNA binding channel, creating a more closed 

structure. Small angle X-ray scattering analysis revealed that IFIT5 adopts a more compact 

structure in solution when bound to RNA (Abbas et al., 2013). Therefore, unliganded IFIT5 

exists in an open conformation, presumably to facilitate RNA entry into the narrow RNA-

binding channel, which then closes upon binding.  

 

Despite clear evidence for non-self RNA binding by IFIT5, the role of human IFIT5 in 

controlling infection has not been well studied. Overexpression of IFIT5 was shown to 

restrict the replication of VSV, which may be due to binding the 5'ppp genome and 

inhibiting its replication (Abbas et al., 2013). There also is increasing evidence that IFIT5 

in bird species can inhibit influenza A virus infection (Li et al., 2017; Santhakumar et al., 

2018), presumably by inhibition of viral RNA synthesis. However, more work is needed to 

determine the exact role of IFIT5 in human infection.  

 

1.3.3.2 IFIT1 RNA binding 

IFIT1 was originally shown to bind 5'ppp RNA with sub-micromolar affinity (Pichlmair et 

al., 2011). IFIT1 is 55% identical to IFIT5 and shares many of the key RNA binding residues 

identified in IFIT5 (Abbas et al., 2013; Kumar et al., 2014). IFIT1 was capable of precipitating 

viral RNA from cells infected with VSV or influenza A virus, both of which possess 

triphosphate (-)ssRNA genomes. Consistently, knockdown of IFIT1 resulted in higher VSV 

infectious titres in a number of human cell lines (Guo and Sen, 2000; Pichlmair et al., 2011; 

Daugherty et al., 2016; Johnson et al., 2018) in a manner dependent on its RNA binding 

capacity (Pichlmair et al., 2011). Similarly, Ifit1 knockout mice showed higher mortality in 

vivo and embryonic fibroblasts, derived from those mice, supported higher VSV 

replication (Pichlmair et al., 2011).  

 

Binding to 5'ppp RNA genomes may allow IFIT1 to inhibit viral RNA polymerase 

recruitment, this preventing replication. Indeed, in a cell-based assay, IFIT1 was shown to 
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partially inhibit influenza A virus polymerase activity (Abbas et al., 2013). However, in this 

system, initial RNA synthesis is driven from a plasmid DNA template driven by a cellular 

polymerase, presenting a limitation: the RNA 5' end may not immediately be bound and 

protected by viral polymerase complexes, as would occur in infection, leaving a window of 

time for IFIT1 to bind. In infected cells, neither human IFIT1 nor murine Ifit1 were able to 

restrict influenza A virus replication (Pinto et al., 2015). IFIT1 was also incapable of 

restricting the replication of a number of cytoplasmic (-)ssRNA viruses, including Ebola 

virus and Rift valley fever virus (Abbas et al., 2013; Pinto et al., 2015). Furthermore, more 

recent studies have failed to recapitulate the antiviral effect of IFIT1 on VSV replication (Li 

et al., 2009; Fensterl et al., 2012; Daugherty et al., 2016), indicating that IFIT1 may not 

efficiently target 5'ppp RNA genomes.  

 

More recent estimates of IFIT1 affinity for 5'ppp-RNA are much lower, in the micromolar 

range (Johnson et al., 2018). Instead, IFIT1 was found to have considerably higher affinity 

for cap0 RNA, which was low nanomolar in several different assay systems (Habjan et al., 

2013; Kumar et al., 2014; Johnson et al., 2018). Both human IFIT1 and murine Ifit1 

precipitated on capG and cap0 beads (Habjan et al., 2013) and murine Ifit1 could bind to 

cap0 RNA in mobility shift and pulldown assays (Kimura et al., 2013). It was then shown 

that IFIT1 could form a toeprint on cap0 RNA, but not uncapped or cap1 RNA, in primer 

extension inhibition assays (Kumar et al., 2014). Similar affinities were independently 

determined by gel shift assay (Abbas et al., 2013; Kumar et al., 2014). IFIT1 was shown to 

directly compete with eIF4E for binding to cap0 RNA (Habjan et al., 2013; Kumar et al., 

2014), inhibited 48S complex formation on bound transcripts (Kumar et al., 2014), and 

inhibited cap0-mRNA translation in vitro (Abbas et al., 2013). By contrast, IFIT5 could only 

inhibit the translation of cap0 transcripts at micromolar concentrations, indicating 

weaker or non-specific binding (Abbas et al., 2013).  

 

The crystal structure of IFIT1 revealed that IFIT1 possesses a similar positively charged 

RNA binding tunnel to that of IFIT5 (Abbas et al., 2013) (Figure 1-4A-C). The RNA 

backbone largely adopts the same conformation as IFIT5-bound RNA, with only slight 

changes in the orientation of the bases themselves. The 5'ppp moiety in IFIT1 is held in an 

extended conformation, which directs the methylguanosine residue into the cap-binding 

pocket, described below, compared to the bent conformation coordinated by IFIT5 

(Appendix A).  
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Hydrogen-deuterium exchange assays revealed that longer RNA oligonucleotides make 

additional contacts with the IFIT1 C-terminal domain, which is also lined with positively-

charged residues (Johnson et al., 2018). Mutation of residues within the C-terminal domain 

partially decreases cap0 binding and translation inhibition by IFIT1 (Kumar et al., 2014), 

suggesting that this domain contributes to stable RNA binding. It was this C-terminal 

domain which was originally thought to mediate eIF3 interaction. Deletion of this domain 

prevented translation inhibition by IFIT1 (Guo et al., 2000b). Together, it seems likely that 

IFIT1 RNA binding relies on an intact C-terminal domain, which clamps onto bound RNA 

in the same manner as IFIT5, and this binding is primarily responsible for translation 

[[inhibition. It is also possible that RNA bound by IFIT1 could non-specifically mediate 

interactions with other RNA-binding proteins, including eIF3. 

 

Within the N-terminus, IFIT1 has a hydrophobic pocket which extends from the end of 

the 5'ppp-binding channel and accommodates the 5' cap (Figure 1-4C). IFIT1 has a unique 

mode of cap coordination, in which the 7-methylguanosine is stacked by a tryptophan 

residue on one surface, and is coordinated by aliphatic residues on the other (Appendix 

A). In IFIT1, the cap can be accommodated in both syn- and anti-conformations (Abbas et 

al., 2017a), and is independent of 7-methylation or even cap nucleotide identity (Kumar et 

al., 2014; Abbas et al., 2017a). This contrasts with canonical cap-binding proteins, such as 

eIF4E, which typically sandwich the 7mG residue between two aromatic side chains in the 

anti-conformation, dependent on specific interactions with the 7-methyl group (Brown et 

al., 2009).  

 

2'-O-methylation of the first or second RNA nucleotide greatly reduces IFIT1-RNA 

binding, while methylation of both inhibits binding completely (Abbas et al., 2017a). In 

filter binding assays, IFIT1 bound cap1 RNA with submicromolar affinity (Johnson et al., 

2018), and IFIT1 could inhibit translation of cap1 transcripts at micromolar concentrations 

(Abbas et al., 2013). However, cap2 transcripts were resistant to translation inhibition, 

even at micromolar concentrations of IFIT1 (Abbas et al., 2017a). In this way, IFIT1 

distinguishes non-self RNA from self.  
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Figure 1-4 IFIT1 RNA binding. 

A. Domain diagram of human IFIT1. B. Cartoon representation of IFIT1 in complex with cap0-

oligo(A) (PDB: 5UDI), coloured by subdomain (SD). C. Surface cutaway of IFIT1 coloured by 

electrostatic potential from negative (-10 kTe-1; red) to positive (+10 kTe-1; blue), via hydrophobic 

(white), generated in APBS using PDB2PQR (Dolinsky et al., 2004). Cross-section is indicated by 

solid black shading and RNA is shown as yellow sticks. Features of the RNA are annotated: m7G, 

7-methylguanosine cap; PPP, 5' triphosphate moiety; N1/N2, first two nucleotides; N3/N4, third 

and fourth nucleotides.  
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Alphaviruses do not encode a 2'-O-methyltransferase and as such have cap0 genomic and 

subgenomic mRNA (Dubin and Stollar, 1975; Hefti et al., 1975), which should be susceptible 

to IFIT1 restriction. However, there is a stable stem loop at the very 5' end of the alphavirus 

genome, which inhibits binding by both human IFIT1 and mouse Ifit1 (Hyde et al., 2014; 

Reynaud et al., 2015), since it cannot be accommodated in the IFIT ssRNA binding pocket. 

Inhibition by IFIT1 varies by alphavirus species, according to the stability of the RNA 

structure in the 5'UTR (Reynaud et al., 2015). Tissue culture-adapted strains, which are 

typically grown in IFN-deficient cells, contain mutations which destabilise this stem, since 

less structured 5'UTRs favour RNA replication (Hyde et al., 2014; Reynaud et al., 2015). 

Therefore mechanisms to avoid recognition by IFIT1 are maintained even at a fitness cost 

to the virus.  

 

In coronaviruses and flaviviruses, mutation of the virally-encoded 2'-O-methyltransferase 

has been shown to increase sensitivity to IFIT1. Knockdown of human IFIT1 recovered 

replication of 2'-O-methyltransferase-deficient human coronavirus (HuCoV) in HeLa 

cells, while murine Ifit1-/- macrophages supported higher mutant mouse hepatitis virus 

(MHV) replication, when pre-treated with IFN (Habjan et al., 2013). Pulse labelling 

experiments demonstrated that viral translation was specifically targeted in 2'-O-

methyltransferase mutants (Habjan et al., 2013). Inhibition of these viruses is also 

influenced by 5' RNA structure, since human IFIT1 inhibited translation of cap0 MHV 

reporter mRNAs better than HuCoV (Abbas et al., 2017a). MHV possesses a weaker stem-

loop (G = -7.8 kCal/mol) with 5 unpaired nucleotides at the 5' end, while HuCoV has a 

more stable stem (G = -12.1 kCal/mol) with 4 unpaired nucleotides, thereby having a 

reduced platform for IFIT1 binding.  

 

In murine cells and in vivo, a 2'-O-methyltransferase mutant of WNV was attenuated and 

highly susceptible to type I IFN (Daffis et al., 2010). Murine macrophages lacking Ifit1 

rescued replication of 2'-O-methyltransferase mutant of WNV, while knockout of Ifit2 

could not (Daffis et al., 2010; Szretter et al., 2012). In vivo, 2'-O-methyltransferase-deficient 

WNV was attenuated in both Ifit1-dependent and –independent manners, subject to 

differences in cell-type and route of infection (Szretter et al., 2012).  

 

Mouse models have also shown Ifit1-dependent restriction of mutant Japanese 

encephalitis virus (Kimura et al., 2013; Li et al., 2013) and dengue virus (Züst et al., 2013), 
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both mosquito-borne flaviviruses. Consistently, severe acute respiratory syndrome virus 

(SARS) (Menachery et al., 2014) and Middle East respiratory syndrome virus (MERS) 

(Menachery et al., 2017), both pathogenic coronaviruses, were attenuated in an Ifit1-

dependent manner when the viral 2'-O-methyltransferase was mutated. In one of these 

studies, this phenotype was also observed in macaques, and provided full protection 

against homologous challenge after 64 days. Mutation of the viral 2'-O-methyltransferase 

therefore provides a framework for the development of new live attenuated vaccine strains 

for high-risk emerging pathogens.  

 

While alpha-, flavi- and coronaviruses typically require mutation for IFIT susceptibility, 

human IFIT1 was found to restrict replication of wildtype parainfluenza virus 5 (PIV5). 

PIV5 is a segmented negative-sense ssRNA virus from the family Paramyxoviridae, which 

transcribes, caps and methylates its messages in the cytoplasm. Overexpression of IFIT1 in 

human cells prevented PIV5 protein expression, and knockdown of IFIT1 rescued IFN-

dependent viral restriction (Andrejeva et al., 2013). Interestingly, when total RNA from 

PIV5-infected cells was translated in vitro, IFIT1 selectively inhibited translation of some 

mRNA segments, particularly the matrix (M) protein (Young et al., 2016), a viral particle 

budding factor. Knockdown of IFIT1 also disrupted the formation of viral cytoplasmic 

bodies (Andrejeva et al., 2013), which may be linked to the establishment of viral 

persistence in infected cells (Carlos et al., 2009). This indicates that PIV5 may direct IFIT1 

restriction, to promote the establishment of persistent infection.  

 

It was later shown that other members of the genus Rubulavirus, including PIV2 and 

mumps virus, were similarly sensitive to IFIT1 restriction while non-rubulavirus 

paramyxoviruses, such as canine distemper virus and PIV3, were resistant (Young et al., 

2016). Rubulaviruses have polymorphisms in their 2'-O-methyltransferases which may 

alter their methylation efficiency, leading to a pool of viral mRNAs with unmethylated 

caps which are sensitive to IFIT1. Indeed, methylation of mumps virus mRNA extracted 

from infected cells partially rescued translation in the presence of IFIT1, indicating that 

the viral transcripts are not efficiently methylated (Young et al., 2016). In an independent 

study, it was shown that PIV3 could be restricted by overexpression of IFIT1, indicating 

that IFIT1 may have wider antiviral activity against members of the paramyxoviridae. 
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1.3.3.3 IFIT2 RNA binding 

IFIT2 is homodimeric in solution and interacts via a domain swap in the N-terminus, in 

which one and a half TPR motifs are exchanged between each monomer (Yang et al., 2012) 

(Figure 1-5A-B). The C-terminal domain is lined with positively charged residues on the 

inner face, resulting in a wide RNA binding surface formed between both monomeric units 

of the homodimer (Figure 1-5C). As such IFIT2 binds to RNA in a manner distinct from 

IFIT1 or IFIT5. 

 

In gel shift assays, IFIT2 bound strongly to short dsRNA templates comprising repetitive 

AU sequences, but not GC sequences. IFIT2 also did not bind to corresponding poly(AT) 

dsDNA or annealed oligo(A)-oligo(U) dsRNA (Yang et al., 2012). Binding was shown to be 

independent of the triphosphate moiety at the 5' end, indicating that IFIT2 binding is 

internal to the RNA. Consistently, IFIT2 did not produce a 5' toeprint on ssRNA with 

different 5' ends (Kumar et al., 2014) and could not inhibit the translation of uncapped 

reporter mRNA in vitro (Yang et al., 2012). IFIT2 was shown to reduce infection by 

Newcastle disease virus, a zoonotic paramyxovirus, in a manner dependent on RNA 

binding. The exact mechanism of restriction was not determined.  

 

This preference for AU-rich RNA sequences raises the possibility that IFIT2 may play a 

role in regulating mRNA with AU-rich elements (AREs) in their 3'UTRs. Indeed, IFIT2 was 

shown to bind a defined ARE, which comprises an AUUUA tandem repeat, in a gel shift 

assay (Yang et al., 2012). AREs act as degradation signals for labile mRNAs, since they 

promote rapid deadenylation, as well as directing degradation-independent translation 

inhibition, through the action of different ARE-binding proteins (Shaw and Kamen, 1986; 

Xu et al., 1997; Barreau et al., 2005). They are found in genes which require short, regulated 

bursts of expression, such as cytokines TNF and IL-6. Murine Ifit2 has been described to 

both positively (Siegfried et al., 2013) and negatively (Berchtold et al., 2008) regulate TNF 

and IL-6 expression. The message encoding the pro-apoptotic protein Bcl-2 also contains 

AREs in its 3'UTR. Human IFIT2 has been reported to simulate apoptosis in a Bcl-2 

dependent manner (Stawowczyk et al., 2011; Chen et al., 2017). It is therefore possible that 
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IFIT2 may stabilise Bcl2 mRNA or affect its translation to promote apoptosis induction. 

While stabilisation of mRNA by IFIT2 binding is an intriguing possibility, this has not yet 

been formally demonstrated.  

 

1.3.3.4 tRNA binding 

tRNA is highly structured, consisting of three stem loops and a 5'-3' panhandle, forming a 

characteristic L-shaped tertiary fold (Brown et al., 1985). Despite the lack of 5' ssRNA, 

human IFIT1, rabbit IFIT1 and rabbit IFIT1B were shown to bind to tRNAi
Met in gel shift 

assays. High concentrations of tRNA could even inhibit IFIT1 binding to cap0 RNA, 

indicating competitive binding. Binding was relatively specific for tRNAi
Met, since tRNAHis, 

tRNALeu and tRNALys were much less effective at outcompeting cap0 RNA binding (Kumar 

et al., 2014). IFIT5 was also shown to bind to tRNAi
Met by gel shift analysis, to a greater 

 

Figure 1-5 IFIT2 RNA binding. 

A. Domain diagram of human IFIT2. B. Cartoon representation of IFIT2 (PDB: 4G1T), coloured 

by subdomain (SD). C. Surface cutaway of IFIT2, coloured by electrostatic potential from negative 

(-10 kTe-1; red) to positive (+10 kTe-1; blue), via hydrophobic (white), generated in APBS using 

PDB2PQR (Dolinsky et al., 2004). Cross-section is indicated by solid black shading. 
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extent than IFIT1 (Katibah et al., 2013; Kumar et al., 2014), while neither human IFIT2 nor 

murine Ifit2 could bind (Katibah et al., 2013). 

 

From human cell lysates, IFIT5 selectively precipitated a distinct pool of tRNA-sized RNA 

species, including tRNAi
Met (Katibah et al., 2013). Deep sequencing analysis showed that 

IFIT5 preferentially binds aberrant tRNAs, especially those with poorly trimmed 5' leader 

sequences, suggesting that IFIT5 may play a role in tRNA quality control and surveillance 

(Katibah et al., 2014). IFIT5-RNA precipitates included a number of incorrectly-sized 

tRNAi
Met species, consistent with tRNA base modification and 3' poly-U tailing (Katibah et 

al., 2014). Polyuridylation is an RNA degradation signal (Norbury, 2010), indicating that 

IFIT5 may promote turnover of aberrant tRNA in the cytoplasm. However, bound tRNAs 

were spliced, since intron sequences were not detected in the RNAseq analysis, indicating 

that IFIT5 binds poorly trimmed tRNAs that have been exported from the nucleus, rather 

than binding nuclear pre-tRNAs. 

 

Mutation of 5'ppp binding residues in the N-terminus of IFIT5 shifted the RNA binding 

preference to mature tRNA species (Katibah et al., 2014). As such, IFIT5 probably engages 

mature tRNA with a different binding surface to ssRNA binding. A large positively charged 

patch on the C-terminus of IFIT1 and IFIT5, which occludes the entrance to the ssRNA 

binding channel, has been suggested to mediate this interaction with mature tRNA 

(Katibah et al., 2014; Kumar et al., 2014). For IFIT5 this interaction was mapped to the last 

two C-terminal TPRs (Katibah et al., 2013).  

 

1.4 Mouse models 

The first murine Ifit family members were described shortly after the discovery of human 

IFIT1 (Bluyssen et al., 1994a). The mouse Ifit family has six annotated members: Ifit1, Ifit1b, 

Ifit1c, Ifit2, Ifit3 and Ifit3b which are clustered on chromosome 19C1 (Fensterl and Sen, 

2011). Of these, Ifit1, Ifit2 and Ifit3 have been well-studied, owing to their sequence 

similarity with human IFIT1, IFIT2 and IFIT3. On this basis, these genes have been 

considered to be homologous, and murine Ifit1 in particular has been used extensively as 

a model for human IFIT1 function. The contribution of Ifit1b, Ifit1c and Ifit3b to the murine 

antiviral programme is as yet unknown. 
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Many studies have focussed on murine Ifit1 to examine its effect on human diseases (Daffis 

et al., 2010; Szretter et al., 2012; Kimura et al., 2013; Li et al., 2013; Hyde et al., 2014; Hu et 

al., 2016). A number of other studies have concurrently examined both human IFIT1 and 

murine Ifit1. While many reported similar phenotypes in both species (Züst et al., 2013; 

Menachery et al., 2014, 2017; Pinto et al., 2015; Reynaud et al., 2015; White et al., 2016), 

others have noticed differences in the activity of human IFIT1 and murine Ifit1 (Habjan et 

al., 2013; Daugherty et al., 2016). Murine Ifit2 has also been used as an in vitro model for 

infectious disease (Fensterl et al., 2012; Cho et al., 2013; Siegfried et al., 2013; Jia et al., 2017; 

Stawowczyk et al., 2018), despite little biochemical data supporting shared functions of the 

two proteins. As discussed above, the use of 2'-O-methyltransferase mutant viruses is a 

promising tool for rational attenuation, in an effort to produce new vaccine strains. 

Therefore, a complete understanding of the antiviral mechanism of the murine Ifit family 

is necessary to properly interpret the results from mouse models before trials in humans 

are pursued. 

 

1.4.1 Differences between human and murine IFIT families 

Mice, along with other small rodents including other murids, cricetids (hamsters, voles 

etc) and squirrels, have lost the gene for IFIT5 (Liu et al., 2013). Recent phylogenetic has 

revealed that human IFIT1 and murine Ifit1 may not be orthologous, as previously thought 

(Daugherty et al., 2016). The IFIT1 gene was duplicated approximately 100 million years 

ago, before the radiation of the placental mammals, generating two paralogous genes: 

IFIT1 and IFIT1B (Liu et al., 2013; Daugherty et al., 2016). Owing to the high similarity of 

the two genes, considerable recombination has occurred between IFIT1 and IFIT1B, 

particularly in the 5' two-thirds of the gene, resulting in homogenised 5' sequences and 

divergent 3' sequences (Daugherty et al., 2016). When only the divergent 3' end of the gene 

was analysed, this revealed that genes annotated as ‘Ifit1’ or ‘Ifit1-like’ in mice and other 

rodents actually cluster with Ifit1b genes from other species (Figure 1-6). As such these 

‘Ifit1’ genes are descended from the ancestral IFIT1B, and IFIT1 has been lost entirely. 

Subsequently, in mice Ifit1b has undergone duplication to yield three paralogous: Ifit1, 

Ifit1b and Ifit1c (also known as Ifit1b1, Ifit1b2 and Ifit1b3 to reflect their evolutionary 

origins).  
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Human IFIT1 and murine Ifit1 have slightly different biochemical activities. Growth of 

yeast, which does not have 2'-O-methylated mRNA, was completely inhibited by ectopic 

expression of murine Ifit1, consistent with cap0-RNA binding (Daugherty et al., 2016). 

Inhibition was completely relieved on expression of human cap1 methyltransferase. While 

human IFIT1 also potently inhibited yeast growth, consistent with its characterised cap0 

binding function (Habjan et al., 2013; Kumar et al., 2014; Abbas et al., 2017a), growth could 

not be rescued upon overexpression cap1 methyltransferase, indicating that human IFIT1 

can also inhibit the translation of cap1 transcripts (Daugherty et al., 2016). This is 

 

Figure 1-6 The IFIT family. 

A maximum-likelihood tree was constructed using PhyML, based on 74 IFIT protein sequences 

from different mammals (Hs, human; Pt, chimpanzee; Cs, African green monkey; Mm, mouse; Rn, 

rat; Oc, rabbit; Pv, flying fox; Fc, cat; Clf, dog;  Ss, pig; Bt, cow; Ec, horse; Oa, platypus) and 

representative bird (Gg, chicken; Tg, zebra finch) and fish (Dr, zebrafish) species. Alignments were 

made in MUSCLE using A. whole protein sequences, or B. C-terminal sequences excluding amino 

acids 1-280 (subdomains I and II), to properly distinguish IFIT clusters. Bootstrap supports are 

shown for major branches. Scale bars represent amino acid substitutions per position.  
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consistent with in vitro data showing that, at high concentrations, IFIT1 is capable of 

inhibiting cap1 but not cap2 translation (Abbas et al., 2017a).  

 

There is some confusion in the literature over which viruses can be restricted by human 

IFIT1 or murine Ifit1 (see Table 1-2). Daugherty et al. (2016) found that overexpression of 

human IFIT1 could inhibit the replication of wild-type VSV, which encodes its own 2'-O-

methyltransferase, but murine Ifit1 could not. Consistently, murine Ifit1 was previously 

shown to have little effect on VSV during sublethal infection in mice (Fensterl et al., 2012). 

However when infected at a high multiplicity, Ifit1 knockout mice were more susceptible 

to lethal infection, indicating that murine Ifit1 may also control wildtype VSV (Pichlmair 

et al., 2011). Other studies have also shown little effect of human IFIT1 alone during VSV 

infection (Guo et al., 2000b; Li et al., 2009; Johnson et al., 2018), further complicating 

interpretation of these results.  

 

Similarly, there is confusion over the role of IFIT1 in vaccinia virus infection. In one study, 

murine Ifit1 was capable of inhibiting the replication of a vaccinia virus strain with mutant 

2'-O-methyltransferase, when overexpressed in human cells (Daugherty et al., 2016). 

However a previous study showed that overexpression of Ifit1 had no effect on vaccinia 

replication in and ex vivo (Daffis et al., 2010; Szretter et al., 2012). Unexpectedly, 

overexpressed human IFIT1 was found not to inhibit 2'-O-methyltransferase-deficient 

vaccinia virus but could inhibit replication of the wildtype cap1 virus (Daugherty et al., 

2016), contrary to the described biochemical activity of IFIT1 (Kumar et al., 2014; Abbas et 

al., 2017a). 

 

There is a lack of data concerning the function of other murine Ifit family members. While 

human IFIT2 was shown to bind AU-rich dsRNA in a 5'-independent manner (Yang et al., 

2012) and there is some evidence that murine Ifit2 may also regulate mRNAs with AREs 

in their 3’UTRs (Berchtold et al., 2008; Siegfried et al., 2013). One study observed that 

overexpression of murine Ifit2 could restrict wildtype and 2'-O-methyltransferase 

deficient strains of vaccinia virus, WNV, and MHV (Daffis et al., 2010). Cap0 mutant 

viruses appeared more susceptible to restriction, suggesting a role in cap0 binding. 

However, knockout of Ifit2 had no effect on wildtype or mutant WNV replication, 

indicating that overexpressed Ifit2 may simply be cytotoxic (Daffis et al., 2010). Another 

study found that murine Ifit2 could protect against WNV infection by promoting type I 
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IFN signalling, rather than by RNA binding (Perwitasari et al., 2011), a role that has not 

been ascribed to human IFIT2.  

 

Finally, murine Ifit3 is shorter than its human homologue, having undergone a 3' deletion 

during rodent evolution, and therefore lacks a significant portion of the C-terminal 

subdomain. This deletion is found in all rodent clades in which IFIT1 and IFIT5 have been 

lost, however the consequence of this deletion, and the role of Ifit3 in mice generally, is 

unknown. Mice also encode a second Ifit3 paralogue, Ifit3b, which differs from Ifit3 by just 

five amino acids. Why mice need two almost identical copies of Ifit3, when most other 

species, including closely related rats, only have one, is also unclear.  

 

1.5 Aims and Scope of the Thesis 

IFIT proteins are inextricably linked with innate immunity and play extensive and diverse 

roles not only in antiviral defence, but also in inflammation, cancer and autoimmunity 

(reviewed in Mears and Sweeney, 2018). Studying their function in vivo is invaluable to 

properly understand their role in modulating such complex diseases. Given the 

widespread use of animal models, in particular mice, in biomedical research, it is 

important to understand how their innate immune systems differ to that of humans in 

order to properly evaluate the usefulness of data generated by animal studies. However, it 

is clear that the human and murine IFIT families, while superficially similar, differ in key 

aspects both in terms of their function and their regulation.  

 

This thesis aims to examine the function and regulation of the murine Ifit family. This will 

involve characterising the expression patterns of the entire murine Ifit family, as well as 

assaying their biochemical activity in vitro, to determine the role of uncharacterised Ifit 

protein in modulating translation. To examine how IFIT function is regulated, the ability 

of IFIT proteins to interact with each other, and the functions of IFIT complexes, will be 

assessed in both human and mouse. Together, this will allow evaluation of the murine 

model in studying IFIT biology during viral infection and disease, and provide an 

understanding of how this model can be interpreted or improved. This study also hopes 

to reveal novel aspects of IFIT biology, which may contribute to the understanding of both 

innate immunity and translation regulation. 
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Table 1-2 Antiviral activity of IFIT proteins in human and mouse. 

A summary of studies investigating the effect of IFIT proteins during viral infection. Human IFITs 

are given in upper case, while murine Ifits are in lower case. CDV, canine distemper virus; CHIKV, 

chikungunya virus; DENV, dengue virus; EBOV, Ebola virus; EMCV, encephalomyocarditis virus; 

HCMV, human cytomegalovirus; HCoV, human coronavirus; HCV, hepatitis C virus; HEV, hepatitis 

E virus; HPV, human papilloma virus; HSV, herpes simplex virus; IAV, influenza A virus; JEV, 

Japanese encephalitis virus; LACV, La Crosse encephalitis virus; MERS, Middle East respiratory 

syndrome; MHV, murine hepatitis virus; MNV, murine norovirus; MuV, mumps virus; NDV, 

Newcastle disease virus; OROV, Oropouche virus; PIV, parainfluenza virus; SARS, severe acute 

respiratory syndrome; SeV, Sendai virus; SINV, Sindbis virus; VACV, vaccinia virus; VEEV, 

Venezuelan equine encephalitis virus; VSV, vesicular stomatitis virus; WNV, West Nile virus; ZIKV, 

Zika virus. Adapted from Mears and Sweeney (2018). 

 

 

Virus IFIT Species Effect 

Caliciviridae    

MNV Ifit1 Mouse Antiviral – Ifit1 knockout increased viral titres (Mears et al., 2019) 

Coronaviridae    

MERS, SARS, 

HCoV 

IFIT1, 

IFIT2 

Human Antiviral – IFIT1 decreased viral replication and titre by inhibiting translation 

(Habjan et al., 2013; Menachery et al., 2014; Abbas et al., 2017a). IFIT2 

significantly decreased viral titres (Menachery et al., 2014). These effects were 

moderate for WT viruses but severe for cap0 mutant viruses. 

MERS, SARS, MHV Ifit1, Ifit2 Mouse Antiviral – Ifit1 and Ifit2 inhibited replication of cap0 mutant virus (Daffis et al., 

2010; Züst et al., 2011; Habjan et al., 2013). Virus is attenuated in vivo 

(Menachery et al., 2014, 2017). 

Filoviridae    

EBOV Ifit1 Mouse No effect on viral replication in vitro (Pinto et al., 2015). 

Flaviviridae    

HCV IFIT1 Human Antiviral – IFIT1 impaired viral replication by inhibiting translation (Raychoudhuri 

et al., 2011; Ishida et al., 2019). 

WNV, ZIKV, DENV IFIT1, 

IFIT3 

Human Antiviral – IFIT1 reduced translation of cap0 mutant virus, but not WT (Daffis et 

al., 2010; Pinto et al., 2015), and was enhanced by coexpression with IFIT3 

(Johnson et al., 2018). IFIT3 restricted WT DENV replication (Hsu et al., 2013). 

IFIT1 and IFIT3 restricted WT ZIKV infection (Wichit et al., 2019). 

WNV, JEV, DENV Ifit1, Ifit2 Mouse Antiviral – Ifit1 inhibits translation and replication of cap0 mutant virus (Daffis et 

al., 2010; Szretter et al., 2012; Kimura et al., 2013), resulting in attenuation in 

vivo (Li et al., 2013; Züst et al., 2013). Ifit2 decreased WNV replication in vitro 

(Daffis et al., 2010) and neuropathology in vivo (Cho et al., 2013). 

Herpesviridae    

HCMV IFIT1 Human Antiviral – decreased viral titre (Zhang et al., 2017a). 

HSV-1 IFIT3 Human Antiviral – viral UL41 protein downregulates IFIT3. IFIT3 impaired replication of 

UL41 virus (Jiang et al., 2016). 
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Orthomyxoviridae    

IAV IFIT1, 

Ifit1 

Human, 

Mouse 

No effect – IFIT1 decreased polymerase activity in vitro (Pichlmair et al., 2011) 

but had no effect on viral titres (Pinto et al., 2015). Viral replication and pathology 

was unaffected in vivo (Pinto et al., 2015). 

Papillomaviridae    

HPV IFIT1 Human Antiviral – IFIT1 bound the viral helicase E1 and impaired DNA replication 

(Terenzi and Saikia, 2008; Saikia et al., 2010). 

Paramyxoviridae    

MuV, PIV2, PIV5 IFIT1 Human Antiviral – IFIT1 inhibited translation and replication of WT Rubulaviruses (Young 

et al., 2016).  

CDV, SeV, PIV3 IFIT1, 

IFIT3 

Human No effect on translation or replication of non-Rubulavirus family members 

(Young et al., 2016). IFIT3 had no effect on SeV replication (Jiang et al., 2016).  

PIV3 IFIT1 Human Antiviral – IFIT1 and IFIT3 inhibited viral protein expression and infectivity 

(Rabbani et al., 2016). 

NDV IFIT2, 

IFIT3, 

IFIT5 

Human Antiviral – IFIT2 (Yang et al., 2012), IFIT3 (Liu et al., 2011; Zhang et al., 2013) and 

IFIT5 (Zhang et al., 2013) inhibited viral replication. 

Peribunyaviridae    

LACV, OROV Ifit1 Mouse No effect on viral replication in vitro and in vivo (Pinto et al., 2015). 

Picornaviridae    

EMCV IFIT1, 

Ifit1, Ifit2 

Human, 

Mouse 

No effect on viral translation (Hui et al., 2003) or replication in vitro and in vivo 

(Guo et al., 2000a; Daffis et al., 2010; Pichlmair et al., 2011; Fensterl et al., 2012). 

EMCV IFIT3 Human Antiviral – slightly decreased viral titres (Schmeisser et al., 2010). 

HEV IFIT1 Human Antiviral – slightly decreased viral replicon replication (Pingale et al., 2019). 

Poxviridae    

VACV IFIT1, 

Ifit1 

Human, 

Mouse 

No effect on viral translation or replication in vitro and in vivo (Daffis et al., 2010; 

Daugherty et al., 2016). 

VACV Ifit1, Ifit2 Mouse Antiviral – Ifit1 and Ifit2 restricted replication of cap0 mutant virus (Daffis et al., 

2010; Daugherty et al., 2016) 

Rhabdoviridae    

VSV IFIT1, 

IFIT2, 

IFIT3, 

IFIT5 

Human Antiviral – decreased viral replication (Guo et al., 2000a; Pichlmair et al., 2011; 

Feng et al., 2013; Daugherty et al., 2016). IFIT1 restriction was enhanced by 

coexpression with IFIT3 (Johnson et al., 2018). 

VSV Ifit1, Ifit2 Mouse Antiviral – decreased viral titres in vitro and reduced disease pathology in vivo 

during fatal infection (Pichlmair et al., 2011). Ifit2 protected mice from viral 

neuroinvasion and disease pathology (Fensterl et al., 2012). 

VSV Ifit1 Mouse No effect on viral replication in vitro (Daugherty et al., 2016) and no effect on 

pathology or replication during sublethal infection in vivo (Fensterl et al., 2012). 

VSV IFIT1, 

IFIT2 

Human Proviral – slight increase in viral titres (Li et al., 2009). 

 

 

 

 

Togaviridae    

CHIKV IFIT1, 

IFIT2, 

IFIT3 

Human Antiviral – IFIT1, IFIT2 and IFIT3 decreased viral replication and virion production 

(Wichit et al., 2019). 



Chapter 1: Introduction 

Harriet V Mears – September 2019   37 

VEEV IFIT1 Human Antiviral – TC83 strain was susceptible to translation inhibition by IFIT1 (Reynaud 

et al., 2015). Effect was enhanced by coexpression with IFIT3 (Johnson et al., 

2018). 

VEEV, CHIKV, SINV Ifit1 Mouse Antiviral – inhibited translation and replication of viruses with unstable 5'UTR 

RNA structure (Hyde et al., 2014; Reynaud et al., 2015). 

VEEV Ifit2 Mouse No effect on viral replication (Reynaud et al., 2015). 
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2 MATERIALS AND METHODS 

2.1 Plasmids 

Plasmids used in this study, including restriction sites used for cloning and any tags or 

other features, are listed in Table 2-1. Accession numbers for insert sequences are listed in 

Table 2-2. 

 

2.2 Cell lines 

Human embryonic kidney (HEK293T), murine macrophage-like (RAW264.7) and murine 

embryonic fibroblast (MEF) cell lines were maintained in Dulbecco’s modified Eagle’s 

medium (DMEM) with 4.5 mg/mL glucose supplemented with 10% foetal calf serum, 2 

mM L-glutamine, 100 SI units/mL penicillin and 100 g/mL streptomycin. Murine 17C1 

cells, which are derived from spontaneously transformed BALB/c 3T3 fibroblasts (Sturman 

and Takemoto, 1972), were maintained in DMEM with 1 mg/mL glucose. For stable isotope 

labelling of amino acids in cell culture (SILAC), HEK293T cells were cultured in Arg/Lys-

free DMEM, supplemented with light (R0K0), medium (R6K4) or heavy (R10K8) amino 

acids, as described (Emmott and Goodfellow, 2014).  

 

2.2.1 Transfection of mammalian cells 

Plasmids (Table 2-1) were transfected into HEK293T cells using lipofectamine 2000 

(Invitrogen), at 70-90% confluency in antibiotic-free DMEM. Typically, 2 g plasmid DNA 

was transfected per well in a 6 well plate, using 2:1 lipofectamine reagent volume to 
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plasmid mass. For RAW264.7 cells and 17C1 cells, to improve efficiency, transfection was 

performed in a low volume of Opti-MEM, using lipofectamine 2000 (Invitrogen) at a ratio 

of 1:1. Media was changed after 3 hours to reduce cytotoxicity.  

 

2.2.1.1 SILAC immunoprecipitation 

1x107 SILAC-labelled HEK293T cells were transfected with 10 g pCDNA3.1-IFIT plasmid 

DNA using Lipofectamine 2000 (ThermoFisher). After 24 hours, media was replaced to 

contain 1000 U/mL human interferon -2a for a further 16 hours (Roferon-A, Roche). Cells 

were harvested in lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 % Triton-

X100) containing 1:200 Protease Inhibitor Cocktail Set III (Merck) and 1:200 Benzonase 

nuclease (Sigma-Aldrich). Lysates were normalised to 3 mg/mL of protein before 

incubation with anti-FLAG-M2 affinity gel (Sigma-Aldrich) at 4 ˚C overnight. Beads were 

washed 3 times in T-ris-buffered saline, then resuspended in 2x SDS-sample buffer and 

boiled for 5 minutes to elute bound proteins. Samples were combined, then submitted to 

the Proteomics Facility of the University of Bristol for liquid chromatography tandem mass 

spectrometry analysis (LC-MS/MS). Data analysis was performed by Dr Edward Emmott, 

as described (Emmott and Goodfellow, 2014; Fleith and Mears et al., 2018).  

 

2.2.1.2 RNA transfection 

For human IFIT translation inhibition assays, 1x106 HEK293T cells were transfected with 

FLAG-tagged IFIT1 and IFIT3 expression plasmids as indicated (Table 2-1), in triplicate. 

After 24 hours, cells were trypsinised and 1.5x105 cells per well were plated into a 48 well 

plate, in duplicate. After 4 hours, cells were washed into Opti-MEM (Thermofisher) and 

transfected with 100 fmol each cap0-ZIKV-Fluc and cap1-ZIKV-Nluc RNA using 

Lipofectamine 2000, or left untreated (mock), for 6 hours before harvesting in passive 

lysis buffer (Promega). Fluc signal was detected using firefly luciferase reagent and Nluc 

signal was detected using the Nano-Glo luciferase assay system (Promega) with a Glomax 

luminometer (Promega). Luciferase values are expressed as a ratio of Fluc (cap0) divided 

by Nluc (cap1), normalised to the empty vector control. 

 

2.2.1.3 Puromycin labelling 

For puromycylation assays, 17C1 cells were transfected with 2 g per well pCDNA3.1-FLAG-

Ifit1, -Ifit1b or Ifit1c, or empty pCDNA3.1, using lipofectamine 2000. After 16 hours, nascent 
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proteins were labelled using puromycin at 5 g/ml for 4 hours. Cells were harvested by 

washing in phosphate-buffered saline (PBS) and lysis in passive lysis buffer. Puromycin 

signal was detected by immunoblotting, as described below, and was quantified using 

ImageJ, normalised to total protein signal and/or tubulin. 

 

2.2.1.4 Recombinant interferon production 

To generate recombinant murine IFN, HEK293T cells were transfected with 10 g 

pCDNA3.1-mIFNb using lipofectamine 2000. Supernatant was harvested after 24 hours, 

aliquoted, and stored at -70 ˚C. 

 

2.2.1.5 Ifit promoter assays 

For promoter assays, RAW264.7 cells and 17C1 cells were transfected at 70% confluency 

with 800 ng pGL3-Ifit promoter plasmid and 200 ng pRLTK Rluc expression plasmid in 

24 well plates (Table 2-1). After 6 hours, cells were stimulated with 1:100 recombinant IFN 

in fresh media. Cells were harvested after 24 hours by washing in PBS and lysis in passive 

lysis buffer (Promega). Promoter activity was measured using the Dual-Glo luciferase assay 

system (Promega) with a Glomax luminometer (Promega). Fluc signal was normalised to 

Rluc signal and fold changes were calculated between IFN-treated and mock-treated wells. 

 

2.2.1.6 Ifit co-expression 

For Ifit co-expression studies, 17C1 cells were seeded onto glass coverslips to 50% 

confluency before transfection with 2 g per well with pCDNA-eGFP-Ifit coexpression 

plasmids (Table 2-1). After 24 hours, coverslips were fixed and stained for 

immunofluorescence microscopy, as described below, and surrounding cells from the 

same well were harvested for immunoblotting in passive lysis buffer. 

 

2.2.2 Ifit induction assays 

To examine Ifit expression in murine cell lines, MEFs and RAW264.7 cells were stimulated 

with 1:100 recombinant IFN or transfected with 1 g/mL polyI:C, using lipofectamine 

2000 (Invitrogen). Cells were washed twice in PBS and harvested in passive lysis buffer 

(Promega), at the indicated time points, for qPCR or immunoblot analysis, described 
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below. 17C1 cells were stimulated with increasing concentrations of recombinant IFN and 

harvested after 24 hours for immunoblot analysis. 

 

2.2.3 Virus infections 

Recombinant mouse hepatitis virus strain A59 (MHV-A59) was a gift from Dr Nerea 

Irigoyen, derived from a full-length cDNA clone, as described (Coley et al., 2005; Irigoyen 

et al., 2016). Cells were transfected as described in section 2.2.2.4. After 16 hours, cells 

were infected at a multiplicity of infection (MOI) of 3 PFU/cell in low glucose DMEM 

containing 50 g/mL DEAE-dextran and 0.2% bovine serum albumin (BSA). After 45 

minutes at 37 ˚C, inoculum was removed and replaced with media. After the indicated 

times (Table 2-5) supernatants were harvested by freezing, cells on coverslips were 

processed for immunofluorescence microscopy and remaining cells in the well were 

washed twice in PBS and harvested in passive lysis buffer (Promega) for immunoblot 

analysis, as described below. 

 

2.2.3.1 Plaque assay 

MHV titres were determined by plaque assay. 17C1 cells were seeded to 80-90% confluency 

before infection with ten-fold serial dilutions of supernatants from MHV infection 

experiments. Virus adsorption was carried out in 200 L per well of a 12-well plate, in low 

glucose DMEM containing 50 g/mL DEAE-dextran and 0.2% BSA, for 45 minutes at 37 

˚C with occasional agitation. Inoculum was then replaced with low glucose DMEM mixed 

2:1 with 3 % agarose (1 % agarose final), and left to set. After 16 hours, cells were fixed in 

formal saline for 2 hours, then agar plugs were removed and cells were stained with 0.1 % 

toluidine blue for 1 hour. Stained cells were rinsed in water before drying, imaging and 

counting. 

 

2.3 qPCR primer design and validation 

qPCR primers were designed to detect Ifit1b, Ifit1c, Ifit2, Ifit3 and Ifit3b, within the coding 

sequence of the second exon (Table 2-3). Regions of high nucleotide diversity were chosen 

to maximise specificity. Primers for Ifit1 have been described (Tamassia et al., 2008) 

targeting sequences within the 5'UTR. GAPDH was used to normalise against and Viperin 

was included as a positive control for IFN induction.  
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End-point PCR was performed using Taq polymerase (Invitrogen) on 10 ng pTriEx1.1-Ifit 

template plasmid to verify primer specificity. pTriEx1.1-Ifit plasmids were then linearised 

with XhoI and gel extracted for use in a DNA standard curve. Serial dilutions were made 

from 100 ng (1.5 x 1010 copies) to 10 ag (1.5 copies) of DNA per well and qPCR was 

performed as described below. Linear regression was performed on CT values plotted 

against log10-transformed DNA mass, to ensure PCR efficiency was within acceptable 

parameters (90-110%). Finally, qPCR was performed on cDNA from RAW264.7 cells 

treated with 1:100 IFN for 8 hours, as described below. qPCR products were purified by 

gel extraction, then sent for Sanger sequencing, using the qPCR primers as sequencing 

primers, to verify target specificity. 

 

2.3.1 RT-qPCR 

RNA was extracted from cell lysates in passive lysis buffer, using 2.5 volumes TRI reagent 

(Sigma) with 0.75 volumes chloroform, according to the manufacturer’s protocol. Care 

was taken to not disturb the interface when taking the aqueous layer, to avoid genomic 

DNA contamination. Where RNA was extracted from low cell numbers, 10 g GlycoBlue 

and 10 g heterogeneous yeast tRNA (Ambion) was included to aid precipitation. RNA was 

resuspended in 40 L MQW.  

 

5 L total RNA was annealed to 500 pmol random hexamers by heating to 75 ˚C for 5 

minutes before snap-cooling on ice. cDNA was generated using 100 U M-MLV reverse 

transcriptase (Promega) with 1 mM dNTPs in 25 L reactions. Reverse transcriptions were 

incubated at 37 ˚C for 60 minutes before heat inactivation at 95 ˚C for 5 minutes, then 

diluted 1:4 in water. qPCR was performed on 5 L cDNA mixed with 100 nM forward and 

reverse primers, using the qPCR core kit for SYBR green I with low ROX passive reference 

(Eurogentec), with the manufacturer’s recommended parameters: 95 ˚C for 15 seconds 

then 60 ̊ C for 1 minute, for 50 cycles. Data were normalised against GAPDH and expressed 

as fold change over mock (2-ddCq).  
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2.4 SDS-PAGE and immunoblotting 

Proteins were separated by electrophoresis in 10 %, 12.5 % or 15 % SDS-polyacrylamide 

gels. Electrophoresis was typically carried out at 180 V for 55 minutes in 0.5x Gringo buffer 

(12.5 mM Tris, 115 mM glycine, 0.05% w/v SDS, pH 8.3). Where similarly-sized proteins 

were difficult to resolve (Figure 6-3E and Figure 6-4C-D), proteins were separated on 

precast 4-12 % NuPAGE Bis-Tris gels (Invitrogen) in MES buffer, at 180V for 110 minutes 

at 4 ˚C. Gels were stained using coomassie brilliant blue R, destained in 25% ethanol and 

imaged using a LiCor Odyssey imaging system.  

 

To normalise cell lysates for immunoblotting, protein concentration was determined by 

BCA assay (Pierce) against a BSA standard curve. Typically 5-15 g total cellular protein 

was loaded per well. Separated proteins were transferred to 0.45 m nitrocellulose 

membrane (GVS Filter Technology) using a Trans-Blot SD semi-dry electrophoretic cell 

(BioRad). Where applicable, to visualise total protein, membranes were stained using 

REVERT (Li-Cor), according to the manufacturer’s protocol, imaged on an Odyssey CLx 

Imaging System (Li-Cor), then destained using the REVERT destain solution (Li-Cor). 

Membranes were blocked using 5 % milk in PBS with 0.1 % tween-20 (PBST) for 1 hour at 

room temperature, then rinsed in PBST, before incubation with antibodies as described in 

Table 2-5. Primary antibodies were typically incubated in 5 % BSA PBST at 4 ˚C overnight 

while secondary antibodies were incubated in PBST at room temperature for one hour. 

Membranes were washed three times with PBST after each antibody, then rinsed in PBS 

and distilled water before imaging on an Odyssey CLx Imaging System. The HRP-

conjugated anti-FLAG was visualised by chemiluminescence using 2 mL Westar Sun 

reagent (Cyanagen) per membrane, with Super RX-N film (Fujifilm). 

 

2.5 Immunofluorescence microscopy 

Cells were seeded onto glass coverslips for a final confluency of 50-80 % at the end of the 

experiment, and transfected or infected, as described above. Cells were fixed in 3 % 

paraformaldehyde in PBS for 15 minutes, then permeabilised in 0.1 % triton X-100 in PBS, 

with 50 mM NH4Cl to quench aldehydes, for a further 15 minutes. Cells were blocked in 

PBS with 0.2 % fish gelatin, 0.02% NaN3 and 0.01% triton X-100 (PGAT) for 10 minutes 

or overnight at 4 ̊ C. Cells were stained with antibodies according to Table 2-5, and washed 

3 times in PGAT after each antibody. Finally, coverslips were washed in PBS, then water, 
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before mounting onto slides using ProLong Gold Antifade Reagent with 4′,6-diamidino-2-

phenylindole (DAPI) (Invitrogen). Slides were visualised using either a 10x objective or 

60x oil immersion objective of an Olympus IX81 wide field microscope, using the Image-

Pro Plus software.  

 

2.6 RNA preparation 

Plasmids were linearised as indicated in Table 2-1. RNA was transcribed from 0.5 – 2 g 

linearised template using 50 ng/L recombinant T7 RNA polymerase in transcription 

buffer (40 mM HEPES pH 7.5, 32 mM MgOAc, 40 mM DTT, 2 mM spermidine, 7.5 mM 

ATP, 7.5 mM CTP, 7.5 mM GTP, 7.5 mM UTP, and 0.2 U/L RNaseOUT (Invitrogen)). 

Reactions were incubated for up to 18 hours at 37 ˚C, before treatment with 0.1 U/L 

DNaseI (Roche) in the presence of 1x DNaseI buffer (or 1 mM CaCl2). RNA was extracted 

using 1 volume phenol:chloroform:isoamylalcohol (25:24:1) pH 4.5 and precipitated in 2 

volumes 100 % ethanol with 0.1 volumes 3 M NaOAc pH 4.8. Precipitated RNA was washed 

once with 70 % ethanol before resuspension in MQW. Residual nucleotides were removed 

using Illustra MicroSpin G-50 columns (GE Healthcare). 

 

2.6.1 Transcription of RNA oligonucleotides 

Short RNA transcripts were transcribed from negative strand DNA oligonucleotide 

templates, containing a 3' negative strand T7 promoter sequence (Table 2-4). These 

templates were annealed to DNA a oligonucleotide bearing the positive strand T7 

promoter sequence by heating together at 75 ˚C for 5 minutes before snap-cooling on ice. 

RNA was transcribed from 5-10 M annealed DNA oligos, in modified transcription buffer 

(500 ng/L T7 polymerase, 40 mM HEPES pH 7.5, 13.4 mM MgOAc, 40 mM DTT, 2 mM 

spermidine, 0.6 mM ATP, 4 mM CTP, 6 mM GTP, 0.6 mM UTP, and 0.1 U/L RNaseOUT 

(Invitrogen)). Reaction volumes were typically 1-5 mL. Transcription reactions were 

incubated at 37 ˚C for at least 6 hours before treatment with DNaseI, acidic phenol 

extraction and ethanol precipitation, as described above. RNA was washed in 95% ethanol 

before resuspension in MQW. To remove residual nucleotides, RNA was purified by FPLC 

on a HiLoad Superdex 75 pg 16/600 column (GE healthcare) in MQW at 4 ˚C, at a flow 

rate of 1 mL/min. Peak fractions were concentrated by ethanol precipitation as described 

above. 
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2.6.2 RNA capping 

To produce cap0 and cap1 RNA, 40-60 g RNA was capped using the ScripCap m7G 

capping system and 2'-O-methyltransferase system (CellScript). Cap2 RNA was generated 

from cap1 templates using 200 ng/L recombinant cap2 methyltransferase in cap2 buffer 

(50 mM Tris pH 7.5, 5 mM DTT, 2 mM S-adenosyl methionine, 0.1 U/L RNaseOUT), 

incubated at 20 ˚C for 4 hours before acidic phenol extraction and ethanol precipitation, 

as described above. Residual nucleotides and SAM were removed using Illustra MicroSpin 

G-50 columns (GE Healthcare). For oligonucleotide RNA, up to 150 g (~ 200 M) was 

capped in modified capping reactions, containing 1 mM (cap0 reactions) or 2 mM (cap1 

reactions) S-adenosyl methionine (NEB). Residual nucleotides were removed by FPLC, as 

previously. 

 

2.6.3 Denaturing PAGE 

Short RNAs were denatured by boiling in 50% formamide loading buffer and separated in 

15 % acrylamide 7 M urea gels at 300 V for 35 minutes. Longer RNAs were separated in 6 

% acrylamide 7 M urea gels at 300 V for 45 minutes. Gels were stained in 1x TBE containing 

2 g/mL ethidium bromide for 10 minutes, then washed twice in water before imaging 

using a G:BOX transilluminator under 302 nm ultraviolet light (Syngene). 

 

2.7 Recombinant protein preparation 

Recombinant proteins were expressed in Rosetta2 (DE3) pLysS Escherichia coli cells 

(Novagen). Cells were grown to OD600 of between 0.4-1 in 2x TY medium containing 0.8x 

antibiotics (28 g/mL chloramphenicol and 40 g/mL ampicillin or 20 g/mL kanamycin, 

as appropriate) at 37 ˚C. Protein expression was induced using 1 mM isopropyl b-D-1-

thiogalactopyranoside (IPTG) and incubated at 22 ̊ C for 16-24 hours. Cells were harvested 

by centrifugation at 5000 x g for 20 minutes and cell pellets were stored at -80 ˚C prior 

to purification. 
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2.7.1 Recombinant protein extraction 

Thawed cell pellets were resuspended in Buffer H (400 mM KCl, 40 mM Tris pH 7.5, 5 % 

glycerol, 0.1 mM EDTA, 2 mM DTT) supplemented with 1 mg/mL lysozyme (from hen’s 

egg, Invitrogen) and 0.5 mM phenylmethylsulphonyl fluoride (PMSF), on ice. Cell 

suspensions were lysed by sonication on ice, using 20 second pulses at 8-10 microns, 

typically 3 times. Lysates were clarified by centrifugation at 40,000 x g for 20 minutes at 

4 ˚C. All subsequent purification steps were carried out on ice in the cold room (4-6 ˚C). 

 

2.7.2 Affinity chromatography 

Histidine-tagged proteins were isolated using Ni-NTA agarose resin (Qiagen) or PureCube 

100 Ni-NTA agarose (Cube Biotech), which had a higher flowrate but equivalent purity to 

Qiagen resin. Clarified lysates were typically supplemented with 5-10 mM imidazole to 

reduce nonspecific binding. Lysates were passed over equilibrated Ni-NTA resin and 

washed with Buffer H + 5-20 mM imidazole before elution in Buffer H + 150 mM 

imidazole. Proteins were typically dialysed overnight into Buffer I (200 mM KCl, 40 mM 

Tris pH 7.5, 5 % glycerol, 1 mM DTT).  

 

2.7.3 Fast protein liquid chromatography 

Fast protein liquid chromatography (FPLC) was performed on an ÄKTA pure protein 

purification system (GE Life Sciences) at 4 ˚C. Anion exchange chromatography was 

carried out on a MonoQ 10/100 GL column (GE Healthcare) in Buffer Q (20 mM Tris pH 

7.5, 5 % glycerol, 1 mM DTT, 100-500 mM KCl) at a flow rate of 0.5 mL/min. Cation 

exchange chromatography was carried out on a MonoS 10/100 GL column (GE Healthcare) 

in Buffer S (20 mM HEPES pH 7.5, 5 % glycerol, 1 mM DTT, 100-500 mM KCl). Size 

exclusion chromatography was carried out on a HiLoad Superdex 200 pg 16/600 column 

in Buffer I, at a flow rate of 1 mL/min. 

 

2.7.4 Protein concentration 

Proteins were concentrated using 10 or 30 kDa molecular weight cut-off Amicon Ultra 

centrifugal filter units (Merck), pre-equilibrated for at least 10 minutes in buffer I, at 4 ˚C. 
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For use in biochemical assays, proteins were concentrated to 1-10 mg/mL and stored at -

70 ˚C without flash-freezing.  

 

2.8 In vitro assays 

2.8.1 In vitro translation 

In vitro translation assays were carried out using the Flexi RRL system (Promega). For 

translation inhibition assays, IFIT proteins were serially diluted BSA buffer in a volume of 

2.5 L (20 mM Tris pH 7.5, 150 mM KCl, 5 % glycerol, 1 mM DTT, 0.5 mg/mL BSA, 10 

U/L RNaseOUT). IFITs were left for up to 5 minutes at room temperature to ensure 

RNase inhibition. 125 ng Fluc reporter RNA bearing different 5' and 3'UTRs (15-20 nM 

final) was added to diluted IFITs and incubated at 37 ˚C for 15 minutes for RNA binding. 

Due to lower thermal stability, mouse Ifits were incubated at 30 ˚C to maintain activity. 

Rabbit reticulocyte lysate (RRL) was then added to a final reaction volume of 12.5 L, in a 

final reaction mixture of 60% v/v RRL, 100 mM KCl, 0.5 mM MgOAc, 2 mM DTT, 10 M 

amino acid mixture minus cysteine, 10 M amino acid mixture minus leucine, 1 U/L 

RNaseOUT, 0-1280 nM IFIT, 15-20 nM RNA, and 100 ng/L BSA. For murine Ifit 

complexes, 500 nM MBP-Ifit1cCTD or the equivalent volume of Buffer I was included in the 

RRL master mix. Reactions were incubated at 30 ˚C for 90 minutes, then stopped by 

addition of 50 L passive lysis buffer (Promega) on ice. Stopped translation reactions were 

diluted 1:10 and an equal volume of firefly luciferase assay reagent was added, to a final 

volume of 50 L. Luminescence was measured by GloMax for 10 seconds per well. Data 

were normalised to the no IFIT control for each experiment. 

 

2.8.2 Co-precipitation 

For co-precipitation experiments, 2.5 M MBP-tagged bait protein was incubated with 2.5 

M prey protein at 30 ˚C for 1 hour, in buffer P (20 mM Tris pH 7.5, 200 mM KCl, 5 % 

glycerol, 0.1 % NP-40, 1 mM EDTA, 5 mM DTT) in a final volume of 40 L. Proteins were 

spun down to remove any precipitate, then applied to equilibrated amylose magnetic 

beads (NEB) for 30 minutes, in a final volume of 200 L. Beads were washed 3 times for 

one minute in buffer P, then eluted by incubation for 20 minutes with 100 mM maltose in 

buffer P. For competition assays, beads were washed once in buffer P, followed by 3 washes 
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with increasing concentrations of competitor protein (0.5, 1 and 2 M), for 10 minutes 

each. Beads were washed once in buffer P before elution. 10 L samples were taken at each 

stage for SDS-PAGE analysis.  

 

2.8.3 SEC-MALS 

Ifit1b (0.5 or 2 mg/mL in a 150 L loop) was applied to a Superdex 200 Increase 10/300 

GL column at room temperature, at a flow rate of 0.4 mL/min. Multi-angle light scattering 

(MALS) analysis was performed by inline measurement of static light scattering (DAWN 

8+, Wyatt Technology), differential refractive index (Optilan T-rEX, Wyatt Technology) 

and 280 nm absorbance (Aligent 1260 UV, Aligent Technologies). Molecular mass was 

calculated using the AS-TRA6 software package (Wyatt Technology). Access to SEC-MALS 

apparatus was kindly provided by Dr Janet Deane. 

 

2.8.4 Differential scanning fluorimetry 

For testing the stability of IFIT proteins and complexes, in an optical 96-well reaction plate 

(Applied Biosystems), 2.5 g protein was mixed with 1:500 Protein Thermal Shift dye (Life 

Technologies) in 20 mM HEPES pH 7.5, 150 mM KCl, 2.5 mM MgOAc, 5% glycerol and 1 

mM DTT, in a final volume of 20 L. To assay RNA binding, dilution series of 25 nt model 

RNAs (see section 2.6.1) were mixed with 2 M protein and 1:500 Protein Thermal Shift 

dye in 20 mM HEPES pH 7.5, 150 mM KCl, 5% glycerol, 1 mM DTT and 20 ng/L yeast 

tRNA (Ambion). Emission was measured at 623 nm in a ViiA7 Real-Time PCR system 

(Applied Biosystems), ramping from 25 to 95 ˚C stepwise at a rate of 1 ˚C per 20S.  

 

2.8.5 Primer extension inhibition 

For IFIT binding experiments, RNA was incubated with indicated concentrations of IFIT 

in 20 L reactions containing 20 mM Tris pH 7.5, 100 mM KCl, 2.5 mM MgCl2, 1 mM ATP, 

0.2 mM GTP, 1 mM DTT, 0.25 mM spermidine, 0.1 U/L RNaseOUT and 0.5 mg/mL BSA. 

Reactions were incubated at 37 ˚C for 10 minutes before addition of 2.5 U AMV reverse 

transcriptase (Promega), 4 mM MgCl2, 0.5 mM dNTPs and labelled primer (see below). 

Reverse transcription reactions were incubated at 37 ˚C for 30 minutes, then stopped with 

100 mM EDTA and 10% SDS. cDNA products were extracted with UltraPure 
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phenol:chloroform:isoamylalcohol (25:24:1) pH 8 (ThermoFisher) and ethanol 

precipitated. Pellets were resuspended in 91 % formamide loading dye for PAGE. 

 

For radiolabelled toeprints, 1 g DNA primer was end-labelled with 32P--ATP (Perkin-

Elmer) using T4 polynucleotide kinase (NEB). Reactions were incubated at 37 ˚C for 15 

minutes and heat inactivated at 75 ˚C for 5 minutes. 50 ng 32P-labelled primer was used in 

each reverse transcription reaction. cDNA products were separated by 6% denaturing 

PAGE for up to 2 hours. Dried gels were imaged by autoradiography using an FLA7000 

Typhoon Scanner (GE).  

 

For fluorescent toeprints, Cy5-labelled primers were synthesised (Sigma). Prior to IFIT 

complex assembly, 25 ng primer was annealed to RNA by heating to 75 ˚C for 5 minutes 

before snap cooling on ice. Reverse transcriptions were incubated at 37 ˚C for 2 hours 

before extraction and purification of cDNA. cDNA products were separated by 6 % 

denaturing PAGE for 30-60 minutes, then imaged directly on a FLA7000 Typhoon 

scanner (GE). 

 

2.8.5.1 2'-O-Me assay 

A modified primer extension inhibition assay was used to detect 2'-O-methylation of 

mRNA. 50 ng Cy5-labelled primer was annealed to 40 nM RNA by heating to 75 ˚C for 5 

minutes and snap-cooling on ice. Reverse transcription was carried out using 5 U AMV 

reverse transcriptase (Promega) in 20 mM Tris pH 7.5, 100 mM KCl, 0.5 mM dNTPs with 

0-4 mM MgOAc. cDNA products were separated and imaged as described above. 

 

2.9 In silico analysis 

2.9.1 Graphs and statistics 

Graphs were generated in GraphPad Prism 7 (Version 7.03) or Microsoft Excel (Micrsosoft 

Office 2013, Version 15.0.5119.1000). For pairwise comparisons of data means, data were 

analysed by two-tailed Student’s t-test, assuming unequal variance, as indicated in the 

figure legends. Nonlinear regression was carried out using GraphPad Prism. For 

interpolation of melting temperatures, data were analysed using the Bolzmann equation 
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(y = LL +(UL –LL)/(1 + exp(Tm – x)/1)) where LL and UL are the minimum and maximum 

fluorescence intensities, respectively, and melting temperature (Tm) was interpolated 

from the 50% intersect of the curve. For translation inhibition assays, 50% inhibitory 

concentrations (IC50) were derived by fitting to [Inhibitor] versus normalised response 

curve (Y = 100)/(1 + (XHillSlope)/(IC50HillSlope)) using the least squares method in 

GraphPad Prism. Confidence intervals were calculated using the likelihood ratio 

asymmetric method and a replicates test was performed to test for lack of it. Curves were 

compared by extra sum of squares F-test. 

 

2.9.2 Phylogenetic analysis 

Mammalian IFIT mRNA sequences were assembled by Daughtery et al. (2016) (Table 2-6). 

Protein sequences were aligned using MUSCLE (Edgar, 2004) and maximum likelihood 

trees were built and visualised in Seaview (Gouy et al., 2010) using PhyML (Guindon et al., 

2010), with 100 bootstrap replicates for statistical support.  

 

2.9.3 Structural modelling 

Protein structures were visualised using the PyMOL Molecular Graphics System (Version 

1.5.0.5, Schrödinger, LLC, www.pymol.org). Surface electrostatic potentials were 

calculated using Adaptive Poisson-Boltzmann Solver (APBS) with maps generated using 

PDB2PQR (Dolinsky et al., 2004). Homology models were generated using SWISS-

MODEL (Waterhouse et al., 2018), based on known IFIT structures as indicated in the 

relevant figure legends. RNA secondary structural models and free energy calculations 

were generated with Mfold (Zuker, 2003). 
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Table 2-2 Sequence accession numbers. 

Nucleotide accession numbers for insert sequences cloned into plasmids in Table 2-1. 

 

Sequence Accession number 

IFIT1 BC007091.1 

IFIT2 NM_001547.4 

IFIT3 NM_001549.5 

Ifit1 NM_008331.3 

Ifit1b NM_053217.2 

Ifit1c NM_001101605.1 

Ifit2 NM_008332.3 

Ifit3 NM_010501.2 

Ifit3b NM_001005858.3 

-globin NM_000518.4 

MHV AY700211.1 

ZIKV NC_035889.1 

 

 

Table 2-3 qPCR primers. 

Target Forward primer Reverse primer 

Ifit1 CCAAGTGTTCCAATGCTCCT GGATGGAATTGCCTGCTAGA 

Ifit1b AACCCTGAGTACAACGCTGG CGAGAGCTTCCTCCACACAA 

Ifit1c CAATGCTGGCTATGCAGTCG AGACATAGGGCTGCGAGGAT 

Ifit2 CTTGACTGTGAGGAGGGGTG TAGTTCGCAATGGCCCATCC 

Ifit3 AGACAGGGTGTGCAACCAGG CGACGAATTTCTGATTGATC 

Ifit3b AGACAGGGTGTGCAACCAGC CGGCGAATTTCTGCTTGATC 

Viperin GGTTCAAGGACTATGGGGAGTATTTGGAC GAAATCTTTCTGCTTCCCTCAGGGCATC 

GAPDH CATGGCCTTCCGTGGTTCCTA GCGGCACGTCAGATCCA 

 

 

Table 2-4 RNA oligonucleotide sequences. 

Oligonucleotide DNA sequence RNA sequence  

T7_promoter TAATACGACTCACTATA 
 

 

globin25 CACAGTTGTGTCAGAAGCAAATGTCTATAGTGAGTCGTATTA GACATTTGCTTCTGACACAACTGTG  
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Table 2-6 Accession numbers for IFIT phylogenetic trees. 
 

Species IFIT Accession number  Species IFIT Accession number 

Bos taurus Bt_IFIT1 XP_010818066.1  Cricetulus griseus Cg_Ifit1 XP_003514784.1 

Cow Bt_IFIT2 XP_001787875.2  Chinese hamster Cg_Ifit1l1 XP_003514788.2 

 Bt_IFIT3 NP_001068882.1   Cg_Ifit1l2 XP_007634083.2 

 Bt_IFIT5 NP_001069166.1   Cg_Ifit2 XP_007644639.1 

Canis lupus familiaris Clf_IFIT1 XP_848364.1   Cg_Ifit3 XP_007644640.1 

Dog Clf_IFIT1B XP_848342.2  Chinchilla lanigera Cl_Ifit1 XP_005385907.1 

 Clf_IFIT2 XP_005618815.1  Chinchilla Cl_Ifit1b XP_005385910.1  

 Clf_IFIT3 XP_005618816.1   Cl_Ifit2 XP_005385908.1 

 Clf_IFIT5 XP_005637570.1   Cl_Ifit3 XP_005385909.1 

Chlorocebus sabaeus Cs_IFIT1 XP_007961691.1   Cl_Ifit5 XP_005386144.1 

African green monkey Cs_IFIT1B XP_007961693.1  Cavia porcellus Cp_Ifit1b XP_003473903.1 

 Cs_IFIT2 XP_007961687.1   Guinea pig Cp_Ifit3 XP_003473600.1 

 Cs_IFIT3 XP_007961688.1   Cp_Ifit5 XP_003473601.2 

 Cs_IFIT5 XP_007961694.1  Heterocephalus glaber Hg_Ifit1 XP_004884690.1 

Danio rerio Dr_IFIT5A AID69083.1  Naked mole rat Hg_Ifit1b XP_004838536.1 

Zebrafish Dr_IFIT12A AID69084.1   Hg_Ifit1c XP_004884677.1 

 Dr_IFIT12B AID69087.1   Hg_Ifit2 XP_004884688.1 

 Dr_IFIT12C AID69086.1   Hg_Ifit3 XP_004838534.1 

 Dr_IFIT12D AID69085.1   Hg_Ifit5 XP_004884679.1 

 Dr_IFIT12E AID69084.1  Ictidomys tridecemlineatus It_Ifit1 XP_005333827.1 

 Dr_IFIT13A NP_001032654.1  Thirteen-lined ground squirrel It_Ifit1bl1 XP_005333804.1  

 Dr_IFIT17A AID69090.1   It_Ifit1bl2 XP_005333828.1 

 Dr_IFIT17B AID69091.1   It_Ifit1bl3 XP_005333829.1 

 Dr_IFIT17C AID69092.1   It_Ifit2b XP_005333806.1  

Equus caballus Ec_IFIT1 XP_005602428.2    It_Ifit3 XP_005333805.1 

Horse Ec_IFIT1B XP_005613850.1   It_Ifit5 XP_005333803.1  

 Ec_IFIT2 AEH58159.1  Mus musculus Mm_Ifit1 NP_032357.2 

 Ec_IFIT3 XP_001501453.3  Mouse Mm_Ifit1b NP_444447.1  

 Ec_IFIT5 XP_005602426.2   Mm_Ifit1c NP_001095075.1 

 Ec_IFIT5B XP_001491865.1   Mm_Ifit2 NP_032358.1  

Felis catus Fc_IFIT1 XP_003993924.2   Mm_Ifit3 NP_034631.1  

Cat Fc_IFIT1B XP_006937789.2   Mm_Ifit3b NP_001005858.2 

 Fc_IFIT2 XP_006937780.2  Microtus ochrogaster Mo_Ifit1bl1 XP_005352221.1 

 Fc_IFIT3 XP_011285498.1  Prairie vole Mo_Ifit1bl2 XP_005352222.1 

 Fc_IFIT5 XP_011285500.1   Mo_Ifit1bl3 XP_005352304.1 

Gallus gallus / Chicken Gg_IFIT5 NP_001307351.1   Mo_Ifit1bl4 XP_005352305.1 

Homo sapiens Hs_IFIT1 AAH07091.1   Mo_Ifit2 XP_005372590.1  

Human Hs_IFIT1B AAI37369.1   Mo_Ifit2b XP_005352306.1 

 Hs_IFIT2 NP_001538.4    Mo_Ifit3 XP_005352220.1 

 Hs_IFIT3 NP_001276688.1  Rattus norvegicus Rn_Ifit1 XP_001079971.2 

 Hs_IFIT5 AAH25786.1  Norway rat Rn_Ifit1l1 NP_064481.1 

Ornithorhynchus anatinus Oa_IFIT5 XP_007664436.1   Rn_Ifit2 NP_001019924.1 

Platypus Oa_IFIT5L1 XP_001506422.3   Rn_Ifit3 NP_001007695.1  

 Oa_IFIT5L2 XP_007669809.1     
Oryctolagus cuniculus Oc_IFIT1 XP_008268395.1     
Rabbit Oc_IFIT1B XP_008268389.1     

 Oc_IFIT2 XP_002718418.1     

 Oc_IFIT3 XP_008268388.1     

 Oc_IFIT5 XP_008268391.1     
Pan troglodytes Pt_IFIT1 NP_001192276.1     
Chimpanzee Pt_IFIT1B XP_009457196.1     

 Pt_IFIT2 XP_507902.2   

 

 

 Pt_IFIT3 NP_001182075.1     

 Pt_IFIT5 XP_003312804.1     
Pteropus vampyrus Pv_IFIT1 XP_011359939.1     
Flying fox Pv_IFIT2 XP_011359906.1      

 Pv_IFIT3 XP_011359904.2      

 Pv_IFIT5 XP_011359901.1      
Sus scrofa Ss_IFIT1 AET34760.1     
Pig Ss_IFIT2 XP_001928706.2     

 Ss_IFIT3 NP_001191324.1     

 Ss_IFIT5 AFN43002.1     
Taeniopygia guttata Tg_IFIT1 XP_004175020.1     
Zebra finch Tg_IFIT5 XP_002188588.2     

Protein accession numbers for IFIT sequences 

used to make phylogenetic trees, based on 

nucleotide sequences from Daugherty et al. 

(2016). Both species and common names are 

given. Left panel shows mammal sequences used 

for Figure 1-6. Right panel shows rodent sequences 

used for Figure 1-6 (mouse and rat) and Figure 5-1. 
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3 THE HUMAN IFIT COMPLEX 

3.1 Background 

3.1.1 IFIT protein oligomerisation 

Tetratricopeptide repeats (TPRs) are a loosely-conserved 34 amino acid helix-turn-helix 

motif (Figure 3-1A). They were first identified as important for mediating interactions 

between cell cycle proteins in yeast (Sikorski et al., 1990). The TPR -helical bundles form 

grooves which can accommodate -helices from protein binding partners (Das et al., 1998; 

D’Andrea and Regan, 2003). Since IFIT proteins are almost entirely comprised of tandem 

TPRs (Smith and Herschman, 1996), they therefore have the potential to form multiprotein 

complexes. 

 

Many IFIT proteins exist as homodimers or higher order oligomers in solution. IFIT2 forms 

a domain-swapped homodimer by exchange of one and a half TPRs in the N-terminus 

(Yang et al., 2012) (Figure 3-1C). The N-terminal domain of IFIT3 shares 66% amino acid 

identity with IFIT2 (amino acids 1-180), indicating that IFIT3 could also form domain 

swapped homodimers (Figure 3-1D). Native gel electrophoresis has shown that IFIT1 and 

IFIT3 can homooligomerise (Kumar et al., 2014), while X-ray crystallography has 

demonstrated that IFIT1 forms homodimers via interactions between C-terminal TPRs, in 

a concentration-dependent manner (Abbas et al., 2017b) (Figure 3-1E). The residues 

involved in IFIT1 dimerisation are conserved in IFIT1, IFIT1B and IFIT3, indicating that 

they could also mediate heterodimerisation (Figure 3-1B).  

 

In co-immunoprecipitation experiments, Stawowczyk et al (2011) showed that IFIT2 could 

interact with IFIT1 and IFIT3 when overexpressed in HeLa cells. Using glycerol gradient 

sedimentation of HeLa cytoplasmic lysates, it was shown that IFIT1, IFIT2 and IFIT3 co-

migrated at 150-200 kDa, the molecular weight of a trimer or a tetramer. IFIT1 was later 
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shown to interact with IFIT2 or IFIT3 in co-precipitation and gel filtration experiments 

(Pichlmair et al., 2011). By contrast, IFIT5 is monomeric (Abbas et al., 2013; Feng et al., 2013; 

Katibah et al., 2013; Kumar et al., 2014) and does not interact with other IFIT family 

members (Pichlmair et al., 2011) (Figure 3-1F).  

 

 

Figure 3-1 Human IFIT proteins form homooligomers. 
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Murine Ifit proteins cannot form the same complexes as human IFITs. Pulldown 

experiments demonstrated that, while human IFIT1 could co-precipitate with IFIT2 and 

IFIT3 as previously described, murine Ifit1 precipitated neither murine Ifit2 nor Ifit3 

(Habjan et al., 2013). Instead, murine Ifit1 co-precipitated peptides corresponding to Ifit1c, 

an uncharacterised murine Ifit protein. These putative complexes will be the subject of 

chapter 6.  

 

3.1.2 Aims 

Despite considerable evidence for IFIT protein oligomerisation, the functional significance 

of these interactions has remained unclear. The aim of this chapter was to reconstitute 

human IFIT complexes in vitro, in order to determine their assembly pathway and examine 

the influence of IFIT oligomerisation on antiviral function. A better understanding of how 

human IFIT proteins are regulated is necessary to understand the differences between the 

human and murine systems, and how the mouse model can be improved to better mimic 

its human counterpart.  

 

This chapter was undertaken as a collaboration with Dr Renata Fleith, with some 

experiments performed by Dr Trevor Sweeney and Xin Yun Leong (Fleith  and Mears et al., 

2018). Experiments performed by these people will be indicated in the text and their data 

are presented in Appendices A-D. 

Figure 3-1. Human IFIT proteins form homooligomers (cont.).  

A. Consensus sequence of human IFIT protein TPR domains. Sequence alignment was generated 

in MUSCLE and visualised using WebLogo (Crooks et al., 2004). Typical TPR residues are shown 

above. B. Alignment of C-terminal TPRs of human IFIT proteins, showing conserved residues 

involved in IFIT1 homodimerisation in bold. C. Crystal structure of IFIT2 (PDB: 4G1T) and 

schematic cartoon in green. The domain-swapped dimerisation interface is enlarged in the box. D. 

Schematic cartoon and domain diagram of IFIT3 in blue, with the regions conserved between IFIT2 

and IFIT3 shown in dark blue and divergent regions shown in light blue. TPR motifs are annotated 

according to Yang et al. (2012) and the putative domain swap region is labelled “Swap”. E. Crystal 

structure of IFIT1 (PDB: 5W5H) and schematic cartoon in yellow. The dimerisation interface is 

enlarged and key residues labelled. Bound cap0-RNA is shown in red. F. Crystal structure of IFIT5 

(PDB: 4HOT) and schematic cartoon in magenta. The C-terminal domain is enlarged and 

conserved residues are labelled. The final C-terminal helix occludes the dimerisation interface in 

IFIT5. Adapted from Mears & Sweeney (2018). 
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3.2 Results 

3.2.1 SILAC proteomics analysis of IFIT1 and IFIT5 binding partners. 

IFIT1 was shown to interact with IFIT2 and IFIT3 in lysates of IFN-stimulated HEK293 cells 

(Pichlmair et al., 2011). However, a number of other RNA binding proteins were identified 

in that study, raising the concern that these interactions may have been non-specifically 

mediated by nucleic acids. Here, an unbiased quantitative mass-spectrometry approach 

was undertaken in the presence of strong nuclease, to confirm human IFIT proteins could 

interact directly in cells.  

 

HEK293T cells were passaged in differential-isotope labelled media, to facilitate 

quantitative proteomic analysis (Ong et al., 2002). Labelled cells were transfected with a 

plasmid encoding FLAG-tagged IFIT1, FLAG-tagged IFIT5 or an empty vector control. 

After 24 hours, cells were treated with human IFN and incubated for a further 16 hours. 

Cells were lysed in the presence of benzonase nuclease, before precipitation on anti-FLAG 

affinity resin (Figure 3-2A). Precipitates were combined and sent for liquid 

chromatography-tandem mass spectrometry analysis (LC-MS/MS) at the proteomics 

facility at the University of Bristol. Proteomic data analysis was performed by Dr Edward 

Emmott, consistent with methods outlined previously (Emmott and Goodfellow, 2014).  

 

Consistent with a previous report (Rabbani et al., 2016), IFIT1 was very poorly 

overexpressed in human cells compared to IFIT5, and was only clearly visible in 

precipitated samples (Figure 3-2B). However, IFIT1 was still capable of co-precipitating 

endogenous IFIT2 and IFIT3 (Figure 3-2C), while IFIT5 did not precipitate any other IFIT 

family members (Figure 3-2D). IFIT2 and IFIT3 were enriched to a similar extent in the 

IFIT1 pull-downs, supporting a stoichiometric complex (Pichlmair et al., 2011; Stawowczyk 

et al., 2011). Previously, Pichlmair et al (2011) detected peptides corresponding to IFIT1B in 

IFIT1 and IFIT3 precipitates. However, IFIT1B was not detected in either pulldown in this 

experiment. This may be due to differences in how the mass spectrometry was carried out, 

or possibly differences between HEK293 and HEK293T cell lines, the latter of which is 

known to have lost some innate immune components (Burdette et al., 2011). Owing to the 

poor overexpression of IFIT1, reliable determination of other IFIT1 binding partners was 

not possible. 
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Figure 3-2 IFIT1 interacts with IFIT2 and IFIT3 in human cells. 

A. Strategy for stable-isotope labelling of amino acids in cell culture (SILAC) and 

immunoprecipitating IFIT1 and IFIT5 interacting partners from HEK293T cells. Medium and 

heavy labels were swapped in the final experimental replicate to control for any off-target effects 

of the label. B. Input lysates and immunoprecipitates analysed by western blotting against FLAG, 

IFIT3 and GAPDH. Top and second panels are different exposures of the same blot to facilitate 

visualisation of IFIT1. In the bottom panel, the anti-mouse secondary antibody detected IgG from 

the antibody used for immunoprecipitation. C-D. Volcano plots showing SILAC proteomic data 

from C. IFIT1 and D. IFIT5 precipitates, expressed as a log2-fold change over empty vector-

transfected cells (SILAC ratio), plotted against statistical significance, determined by pairwise t-

test from three replicate experiments. IFIT family members are coloured and labelled.  
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3.2.2 In vitro reconstitution of human IFIT complexes. 

IFIT interaction experiments were performed by Dr Renata Fleith. As such data in this 

section will be shown in Appendices A and B, and detailed methods can be found in Fleith 

& Mears et al. (2018). His-tagged human IFIT1, IFIT2 and IFIT3 were recombinantly 

expressed and purified from bacteria. His-tags were cleaved from IFIT2 and IFIT3, but 

retained on IFIT1 for later detection. Proteins were incubated together at the temperatures 

ranging between 4 ˚C to 37 ˚C, then analysed by size exclusion chromatography (SEC) or 

SEC with in-line multi-angle light scattering (SEC-MALS). Consistent with a recent report 

(Abbas et al., 2017b), IFIT1 homodimerised in a concentration-dependent manner. IFIT2 

was homodimeric, as expected (Yang et al., 2012), with some higher order species, while 

IFIT3 was homodimeric with a small monomeric population, consistent with previous 

native gel electrophoresis analysis (Kumar et al., 2014). 

 

IFIT2 was previously shown to interact with IFIT3 in human cells, via TPRs in the N-

terminus of IFIT2 (Stawowczyk et al., 2011), in the region responsible for IFIT2 

homodimerisation (Yang et al., 2012). When incubated together at 4 ˚C, IFIT2 and IFIT3 

did not interact; however, when incubated at 37 ˚C IFIT2 and IFIT3 formed a heterodimer 

(Appendix B). IFIT2:IFIT3 complexes did not dissociate when re-analysed by SEC-MALS, 

indicating that this complex is stable. Given that IFIT2 and IFIT3 are co-expressed during 

the IFN response, at physiological temperatures, IFIT2 and IFIT3 likely exists as a 

heterodimeric complex in the cell. 

 

By contrast, when incubated together at 4 ˚C, IFIT1 and IFIT3 readily interacted to form a 

tetrameric complex, containing equimolar IFIT1 and IFIT3. This indicates a preferential, 

high affinity interaction between these proteins, since no energy input was required to 

observe an interaction. IFIT1 and IFIT2 only interacted weakly when incubated together 

at 4 ˚C. When heated to 37 ˚C multiple heterooligomeric species were detected. 

IFIT1:IFIT2 was primarily tetrameric, but dimeric, trimeric and pentameric species were 

also detectable. Previous truncation analysis showed that IFIT1 could co-precipitate with 

both N- and C-terminal truncations of IFIT2 (Stawowczyk et al., 2011). This indicates that 

the interaction between IFIT1 and IFIT2 may be non-specific or can occur at multiple sites. 
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When IFIT1 was incubated with an equimolar amount of pre-formed IFIT2:IFIT3 

heterodimer at 4 ̊ C, a trimeric complex was formed (Appendix B). Given that IFIT1 readily 

associated with the IFIT2:IFIT3 dimer, without the need for heating, it suggests that IFIT1 

associates via an interaction with IFIT3. When the IFIT2:IFIT3 heterodimer was incubated 

at 30 ˚C with a two-fold molar excess of IFIT1, a tetrameric complex was formed, with two 

copies of IFIT1 per IFIT2:IFIT3 dimer. Like the IFIT1:IFIT2 complex, this IFIT1:IFIT2:IFIT3 

tetramer was unstable, and tended to precipitate upon freeze-thawing.  

 

 

Figure 3-3 Human IFIT complex assembly pathway. 

A. Schematic cartoons showing the IFIT complex assembly pathway, based on gel filtration 

experiments described in section 3.2.2, presented in Appendices A and B. Weak interactions are 

indicated by reversible arrows. B. A heatmap showing the relative affinities of human IFIT proteins 

for each other, with murine Ifit1 as a comparison. 
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A recent report has shown that IFIT1 homodimerises via an interaction between the C-

terminal TPRs of each monomer (Abbas et al., 2017b). This region contains a YExxL motif, 

which is conserved in IFIT1 and IFIT3, but is divergent in IFIT2 (see Figure 3-1B). Murine 

Ifit3 has been reported to not interact with murine Ifit1 (Habjan et al., 2013; Johnson et al., 

2018); in mice Ifit3 has undergone a 3' deletion, which truncates the C-terminus of the 

protein, including the proposed YExxL interaction motif (discussed further in chapter 6). 

Therefore, human IFIT1 might interact with human IFIT3 via the C-terminus of both 

proteins. 

 

To interrogate this putative interaction interface, point mutants were generated of IFIT1 

and IFIT3 (see Appendix C). When Y460 or L464 were mutated in the binding motif of 

IFIT1, homodimerisation was disrupted, consistent with a previous report (Abbas et al., 

2017b). Mutation of the YExxL motif in IFIT3 did not affect IFIT3 homodimerisation. 

Mutating both Y460 and L464 together completely abrogated interaction with IFIT3 and 

the corresponding double mutant of IFIT3 did not interact with IFIT1. As such, the 

conserved YExxL motif is necessary for high affinity interaction between IFIT1 and IFIT3. 

 

The complexes purified in this section by Dr Renata Fleith are summarised in Figure 3-3, 

and were used in subsequent biophysical and biochemical analyses.  

 

3.2.3 Stability of IFIT complexes in vitro. 

To determine the effect of heterocomplexing on human IFIT stability, proteins and 

complexes purified in 3.2.1 were analysed by differential scanning fluorimetry. This 

technique employs a dye which fluoresces in hydrophobic environments when excited at 

623nm, but is quenched under aqueous conditions (Niesen et al., 2007). As proteins are 

unfolded by increasing temperature, the dye can bind to hydrophobic patches within the 

core of the protein, therefore producing a fluorescent signal with a characteristic sigmoid 

melt curve. By interpolating this curve, accurate quantification of protein melting 

temperature is possible. At high temperatures, the unfolded protein begins to aggregate 

causing a drop off in the signal.  
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The same total mass of IFIT proteins or complexes was used in each experiment (Figure 

3-4A). Individual IFIT proteins in solution had melting temperatures at or below 

physiological levels (Figure 3-4, Table 3-1). IFIT3 was particularly unstable, with a melting 

temperature of < 35 ̊ C. Heterodimerisation of IFIT2 and IFIT3 resulted in a stable complex 

with a significantly higher melting temperature than either homodimer in isolation 

(Figure 3-4B). However, the melt curve was biphasic, possibly due to contaminating 

homodimeric IFIT3, making accurate interpolation of melting temperature impossible. 

Together with the knowledge that IFIT2 and IFIT3 need to be heated together to observe 

an interaction, this indicates that partial unfolding of these proteins may be necessary for 

heterodimerisation, supporting an N-terminal domain-swap model. 

 

IFIT3 also enhanced the stability of IFIT1, with the IFIT1:IFIT3 tetramer and 

IFIT1:IFIT2:IFIT3 trimer being the most stable complexes analysed (Figure 3-4C-D). By 

 

Figure 3-4 IFIT complexes are more stable than individual proteins. 

A. SDS-PAGE of IFIT complexes generated in section 3.2.2. B-D. Differential scanning fluorimetry 

of the indicated complexes. Results are representative of four experimental replicates. Melting 

temperatures are given in Table 3-1. 
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contrast, the IFIT1:IFIT2 complex was just as unstable as its constituent proteins (Figure 

3-4D). Melting temperatures of IFIT complexes are shown in Table 3-1. The ready 

association of IFIT1 and IFIT3, along with its enhanced stability when complexed, indicates 

that this interaction is thermodynamically preferable.  

 

3.2.3.1  Stability of IFIT complexes in cells. 

Given that IFIT1 is physically stabilised by complexing with IFIT3, it was hypothesised that 

IFIT3 may also enhance IFIT1 expression and stability in cells. The following IFIT1 

transfection experiments were performed by Xin Yun Leong and are presented in 

Appendix D. FLAG-tagged IFITs were overexpressed in HEK293T cells for 24 hours before 

harvesting for western blot analysis. A plasmid encoding FLAG-IFIT1 was transfected 

alone, or co-transfected with increasing amounts of FLAG-IFIT2 or FLAG-IFIT3 plasmid. 

Overexpression of IFIT3 significantly enhanced IFIT1 expression, while IFIT2 only had a 

marginal effect. IFIT1 expression was not enhanced by IFIT3 when the interaction was 

disrupted by mutation of either protein. This indicates that the physical association of 

IFIT1 and IFIT3 is directly necessary for IFIT1 stabilisation, rather than an indirect effect of 

IFIT3, for example on IFIT1 mRNA expression or stability. Interestingly, expression of the 

IFIT1 Y460E/L464E double mutant was two-fold higher than wild-type IFIT1, indicating 

that IFIT1 monomers may be more stable than IFIT1 homodimers.  

 

Table 3-1 Human IFIT complex melting temperatures. 

Melting temperatures (Tm) were interpolated from data presented in Figure 3-4. Data were 

analysed by non-linear regression using the Boltzmann equation, y = LL (UL – LL)/(1 + exp(Tm 

–x)/a) where LL and UL are lower limit and upper limit respectively. Data represent the mean ± 

standard deviation of four experimental repeats. For IFIT2:IFIT3 where the melt curve was 

biphasic, melting temperature was not calculated.  

 

Protein or complex Tm (°C) 

IFIT1 38.1 ± 0.18 

IFIT2 38.8 ± 0.18 

IFIT3 34.4 ± 0.64 

IFIT1:IFIT2 39.0 ± 0.63 

IFIT1:IFIT3 41.8 ± 0.90 

IFIT1:IFIT2:IFIT3 43.5 ± 0.13 

 



Chapter 3: The human IFIT complex 

Harriet V Mears – September 2019   65 

3.2.4 Translation inhibition by IFIT complexes. 

Having established that IFIT3 is necessary for the stability IFIT1, it was then hypothesised 

that IFIT3 could enhance IFIT1 RNA binding activity. Proteins and complexes purified in 

3.2.2 were analysed in an in vitro translation system to determine the ability of IFIT1 to 

inhibit cap0-mRNA translation, alone and in complex with other IFIT family members. 

Using a cell-free translation system allows direct comparison of controlled quantities of 

protein and mRNA, without confounding factors such as transfection efficiency, 

differences in IFIT expression or interference from other ISGs. Therefore, it offers a clean 

baseline to quantify differences in IFIT1 activity.  

 

The amount of IFIT1 added was normalised by western blotting against the His-tag, within 

the linear range of the anti-His antibody (Figure 3-5). This ensured that the same molarity 

 

Figure 3-5 Normalisation of IFIT1-containing complexes. 

A. Titration of His-tagged human IFIT1 analysed by western blotting against the His tag or 

staining with coomassie. B. Quantification of A. measured in ImageJ. C. Coomassie stained SDS-

PAGE and anti-His western blot of IFIT complexes generated in section 3.2.2. Concentration of 

IFIT1 alone or in complexes was normalised based on measurements made within the linear range 

of the anti-His antibody.  
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of IFIT1 was included in each reaction series. Normalised complexes (Figure 3-5C) were 

titrated in a buffer containing bovine serum albumin, which acts as a crowding agent to 

prevent IFIT proteins sticking to the plastic tubes, allowing accurate serial dilution. IFIT1-

containing complexes were incubated with an in vitro transcribed and capped reporter 

mRNA, comprising a firefly luciferase (Fluc) open reading frame flanked by the relatively 

unstructured 5'UTR and 3'UTR of human -globin (globin-Fluc, Figure 3-6A). Translation 

was quantified by measurement of luminescence from the Fluc reporter and was 

normalised to the ‘no IFIT’ control for each experiment. 50% inhibitory concentration 

(IC50) values were derived from these experiments by non-linear regression using 

GraphPad Prism and are presented in Table 3-2. 

 

IFIT1 inhibited translation of the cap0 globin-Fluc reporter in a concentration-dependent 

manner (Figure 3-6B,D), consistent with a number of previous reports (Habjan et al., 2013; 

 

Figure 3-6 IFIT3 enhances translation inhibition of unstructured cap0 RNA by IFIT1. 

A. Schematic representation of globin-Fluc mRNA. B-E. In vitro translation of (B,D) cap0 or (C,E) 

cap1 Globin-Fluc reporter mRNAs in RRL with increasing concentrations of IFIT1 or IFIT1-

containing complexes, as indicated. In (B) and (D), IFIT1 inhibition of cap1-RNA translation is 

shown as a dashed line, for comparison. Data were normalised to luciferase activity in the absence 

of IFIT protein and shown as the mean ± the standard error of three experiments. IC50 values are 

listed in Table 3-2.  
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Kumar et al., 2014; Abbas et al., 2017a). The IFIT1:IFIT2 complex had the same activity as 

IFIT1 alone, indicating that IFIT2 does not regulate IFIT1 activity (Figure 3-6B). Therefore, 

this complex was not examined further. In contrast, complexing with IFIT3 significantly 

enhanced IFIT1 activity, decreasing the concentration of IFIT1 required to cause 50% 

inhibition of reporter expression by two- to three-fold (Figure 3-6B,D and Table 3-2).  

 

It has been shown that secondary structure at the 5' end of mRNA can impact IFIT1 RNA 

binding (Hyde et al., 2014; Abbas et al., 2017a). Therefore, a second model mRNA was 

examined, comprising the Fluc open reading frame flanked by 5'UTR and 3'UTR sequences 

of Zika virus (ZIKV-Fluc), which is much more structured than -globin (Figure 3-7A). 

Since flaviviruses lacking 2'-O-methylation are inhibited by IFIT1 (Daffis et al., 2010; Pinto 

et al., 2015), the cap0 ZIKV-Fluc mRNA represents a relevant model mRNA which is 

 

Figure 3-7 IFIT3 enhances translation inhibition of structured cap0 RNA by IFIT1. 

A. Schematic representation of ZIKV-Fluc mRNA. B-E. In vitro translation of of (B,D) cap0 or 

(C,E) cap1 ZIKV-Fluc reporter mRNAs in RRL with increasing concentrations of IFIT1 or IFIT1-

containing complexes, as indicated. In (B) and (D), IFIT1 inhibition of cap1-RNA translation is 

shown as a dashed line, for comparison. Data were normalised to luciferase activity in the absence 

of IFIT protein and shown as the mean ± the standard error of three experiments. IC50 values are 

listed in Table 3-2.  
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targeted by IFIT1. Higher concentrations of IFIT1 were necessary to inhibit translation of 

the cap0 ZIKV reporter, likely owing to the structured nature of the ZIKV 5'UTR (Figure 

3-7, Table 3-2). However, IFIT3 still enhanced IFIT1 translation inhibition of this reporter 

by two fold, both in the context of the IFIT1:IFIT3 tetramer and the IFIT1:IFIT2:IFIT3 

trimer (Figure 3-7B,D).  

 

Cap1 versions of the Fluc reporter mRNAs were also examined (Figure 3-6C,E, Figure 

3-7C,E). Consistent with previous observations (Abbas et al., 2017a), IFIT1 could inhibit 

cap1 translation only at concentrations in excess of 1 M. It has been estimated that 2.4 

x106 copies of IFIT1 were expressed in a single IFN-stimulated HeLa cell (Pichlmair et al., 

2011) and the average volume of a HeLa cell is approximately 2.6 x 103 m3 (Zhao et al., 

2008). Therefore the concentration of IFIT1 in a single cell at the peak of IFN stimulation 

is approximately 1.5 M. As such, IFIT1 may be capable of inhibiting cap1 translation 

towards the upper limits of IFIT1 expression during the IFN response. Translation 

inhibition of cap1 mRNA was not affected by complexing with IFIT3 on either reporter 

construct. 

Table 3-2 Translation inhibition and RNA binding by IFIT proteins and complexes. 

50% inhibitory concentrations (IC50) were derived from data presented in Figure 3-6 and Figure 

3-7. Data were fit to [Inhibitor] versus normalised response curve (Y = 100)/(1 + 

(XHillSlope)/(IC50HillSlope)) using the least squares method in GraphPad Prism. Curves were 

compared by extra sum of squares F-test. RNA binding affinities were derived from data 

presented in Appendix E. Curves were fitted using the nonlinear Hill equation, Fraction[bound] = 

[IFIT1]h • Fraction[bound]
max/([IFIT1]h + Kh

1/2,app) from data where [IFIT1] was ≥ 10 • [mRNA]. ND, 

not determined. 

  
In vitro translation in RRL, 
Figure 3-6 and Figure 3-7 

Primer extension inhibition, 
Appendix E 

Complex RNA 
IC50 (nM 
IFIT1) 

p-value 
(complex vs 
IFIT1) 

RNA binding 
(K1/2app, 
nM) Hill number 

IFIT1 cap0-globin-Fluc 71 ± 5.9 - 40 ± 1.2 2.8 ± 0.2 

IFIT1:IFIT2 cap0-globin-Fluc 58 ± 5.3 0.2798 ND ND 

IFIT1:IFIT3 cap0-globin-Fluc 24 ± 1.2 <0.0001 19 ± 0.8 2.5 ± 0.2 

IFIT1:IFIT2:IFIT3 cap0-globin-Fluc 45 ± 2.9 <0.0001 19 ± 0.7 2.0 ± 0.1 

IFIT1 cap0-ZIKV-Fluc 112 ± 7.6 - 69 ± 1.8 3.5 ± 0.3 

IFIT1:IFIT3 cap0-ZIKV-Fluc 54 ± 3.5 <0.0001 29 ± 1.1 4.1 ± 0.6 

IFIT1:IFIT2:IFIT3 cap0-ZIKV-Fluc 46 ± 2.6 <0.0001 58 ± 2.3 3.1 ± 0.3 
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To determine whether the interaction between IFIT1 and IFIT3 is necessary for the 

observed stimulation of IFIT1 activity, mutants of IFIT1 which cannot bind IFIT3 were 

examined (Figure 3-8A). 40 nM wildtype or mutant IFIT1 was incubated with equimolar 

IFIT3 before addition of cap0-Fluc reporter RNA and RRL as before. IFIT1 alone caused 

20% inhibition of translation, which was increased to 40% when IFIT3 was present (Figure 

3-8B). Enhancement was also observed for IFIT1 L464E, a mutant which still binds to IFIT3 

(see Appendix C). However, when Y460 was mutated or a double mutant (YL) was made, 

which partially or completely disrupts interaction with IFIT3, translation inhibition was 

no longer enhanced by addition of IFIT3 (Figure 3-8B). Therefore, IFIT3 can only act as a 

cofactor for IFIT1 when the two proteins interact directly.  

 

3.2.4.1 Translation inhibition by IFIT complexes in human cells. 

For a more physiologically relevant system, the effect of IFIT3 on IFIT1 activity was also 

examined in human cells. HEK293T cells were transfected with IFIT1 alone, or co-

transfected with either wildtype IFIT3 or Y438E/L422E mutant IFIT3, which cannot bind 

to IFIT1. The expression level of overexpressed FLAG-IFIT1 was equivalent to endogenous 

IFIT1 expression after 24 hours treatment with type I IFN (Appendix D), ensuring this 

assay was performed within physiologically relevant parameters. Plasmid concentrations 

 

Figure 3-8 Interaction between IFIT1 and IFIT3 is necessary for cofator activity. 

A. Coomassie and anti-His western blot of wildtype and mutant IFIT1. B. Luciferase activity from 

RRL charged with cap0-Globin-Fluc reporter mRNA with WT or mutant IFIT1 with or without 

IFIT3, as indicated. Data are normalised to the luciferase activity in the absence of IFIT1 and 

shown as the mean ± the standard error of three experiments. Statistical analyses were performed 

by unpaired, two-tailed Student’s t-test. P values are indicated and an asterisk indicates statistical 

significance (p < 0.05). 
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were adjusted to control for the stabilising effect of IFIT3 on IFIT1 expression, and equal 

protein was confirmed by western blotting (Figure 3-9B).  

  

After 24 hours, cells were transfected with in vitro transcribed and capped ZIKV 

minigenomes, comprising Fluc or Nanoluciferase (Nluc) reporter genes flanked by the 

ZIKV 5' and 3'UTRs (Figure 3-9A). Since cap1 ZIKV mRNA is resistant to IFIT1-mediated 

 

Figure 3-9 IFIT3 enhances IFIT1 activity in human cells. 

A. Schematic representations of reporter mRNAs used in cell-based assays. B. Immunoblotting 

against FLAG and GAPDH in HEK293T cells overexpressing FLAG-tagged IFIT1 with WT or 

mutant IFIT3, as indicated. C. Translation of ZIKV reporter mRNAs in HEK293T cells 

overexpressing IFIT1 with WT or mutant IFIT3. Translation was measured by luciferase activity, 

expressed as the ratio of Fluc (cap0) over Nluc (cap1) signal, normalised to the empty vector 

control and shown as the mean ± standard deviation of three biological repeats. Statistical 

analyses were performed by unpaired, two-tailed Student’s t-test. P values are given and an 

asterisk indicates statistical significance (p < 0.05).  

  



Chapter 3: The human IFIT complex 

Harriet V Mears – September 2019   71 

translation inhibition, signal from the cap1-ZIKV-Nluc reporter served as an internal 

control for RNA transfection efficiency, while signal from the cap0-ZIKV-Fluc reporter was 

used as a readout of IFIT1 activity. Translation was quantified by measuring luminescence 

from both reporters and expressed as a ratio of Fluc(cap0)/Nluc(cap1), normalised to the 

empty vector control condition. IFIT1 alone caused a 20% reduction in cap0 translation, 

while co-expression with wildtype IFIT3 enhanced translation inhibition by 2-fold (Figure 

3-9C), consistent with the in vitro translation data. Co-expression with mutant IFIT3 had 

no effect on IFIT1 activity. Therefore in cells, direct interaction with IFIT3 is necessary for 

translation inhibition by IFIT1.  

 

3.2.4.2 RNA binding by IFIT complexes. 

To confirm that IFIT3 can directly enhance IFIT1 RNA binding, a primer extension 

inhibition approach was undertaken to quantify IFIT1 RNA binding affinity. IFIT RNA 

binding assays were performed by Dr Trevor Sweeney and are presented in Appendix E. 

IFIT1 and IFIT1-containing complexes purified in section 3.2.2 were incubated with the 

model RNAs described above, prior to addition of a radiolabelled primer for reverse 

transcription. The resultant cDNA products were separated by denaturing PAGE and 

detected by autoradiography. In the absence of IFIT binding, a full-length cDNA is 

produced; bound IFIT1 arrests reverse transcriptase producing a cDNA product truncated 

by 7 nt (Kumar et al., 2014), corresponding to the depth of the IFIT1 RNA binding pocket 

(Abbas et al., 2017a). Therefore, only specific binding is quantified, which offers an 

advantage over other methods such as electrophoretic mobility shift assays and filter 

binding assays. Additionally, the toeprinting approach is performed under equilibrium 

binding conditions, allowing more accurate determination of binding constants. 

 

As previously reported, IFIT1 bound cap0-globin-Fluc mRNA with high affinity (Kumar et 

al., 2014). Complexing IFIT1 with IFIT3 or IFIT2:IFIT3 enhanced IFIT1 binding by two fold, 

consistent with the in vitro translation data presented above (see Table 3-2). IFIT1 alone 

only reached ~80% binding even at the highest concentrations tested, while IFIT3-

containing complexes could fully saturate binding. This effect was more pronounced on 

the more structured ZIKV-Fluc RNA. IFIT1 bound to cap0 ZIKV-Fluc RNA with lower 

affinity and reached only 60% saturation. Heterocomplexing with IFIT3 again enhanced 

binding by up to two fold and allowed over 90% binding saturation. This indicates that 
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IFIT1 in complex with IFIT3 is more stably bound to the 5' end of cap0 RNA, making it 

more resistant to displacement by reverse transcriptase.  

 

3.3 Conclusions 

In this chapter, the reconstituted human IFIT complex was examined in terms of its 

stability and activity. It has been revealed that IFIT3 interacts with both IFIT1 and IFIT2, 

acting as a central scaffold for a trimeric complex. Interaction enhanced the thermal 

stability of all component proteins, indicating that heterocomplexing is a 

thermodynamically preferable state. IFIT3 was found to be an allosteric activator of IFIT1 

cap0 RNA binding, enhancing translation inhibition activity in vitro and in cells.  

 

Serendipitously, these findings were independently confirmed in another report, where it 

was shown that IFIT3 binds to IFIT1 with nanomolar affinity, and this binding enhances 

IFIT1 binding to cap0 RNA and promotes antiviral activity during infection (Johnson et al., 

2018). In that study, a co-crystal structure of IFIT1 in complex with two-and-a-half C-

terminal TPRs from IFIT3 was solved, which showed a large buried surface at the binding 

interface, much larger than that of the IFIT1 homodimer (Abbas et al., 2017b; Johnson et 

al., 2018). Hydrogen-deuterium exchange assays revealed additional interactions between 

IFIT3 and the C-terminal domain of IFIT1. This large interaction surface is entropically 

favourable, compared to IFIT1 homodimers, due to the liberation of solvent from the 

interaction interface. This is supported by isothermal titration calorimetry experiments in 

the same study, which showed very low nanomolar affinity between the two proteins 

(Johnson et al., 2018). 

 

Here it was shown that IFIT3 enhances the biophysical stability of IFIT1, as well as 

enhancing its expression in human cells when both were transiently overexpressed. Using 

an inducible IFIT3 expression system, Johnson et al (2018) observed that IFIT3 

significantly enhanced IFIT1 expression in a dose-dependent manner, increasing the half-

life of IFIT1. In the absence of IFIT3, IFIT1 had a half-life of less than two hours, while in 

transgenic IFIT3-overexpressing cells, IFIT1 was stabilised to over 24 hours t1/2. Together 

with the differential scanning fluorimetry data presented here, this supports a hypothesis 

whereby the instability of IFIT1 homooligomers promotes their turnover in cells, while the 

intrinsic physical stability of the IFIT1:IFIT3 complex rescues expression. Like IFIT1, 
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homodimeric IFIT2 was found to have a low melting temperature and propensity to 

aggregate. Previously, when overexpressed in human cells, IFIT2 was found shown to form 

pro-apoptotic aggregates which were cleared in a proteasome-dependent manner (Chen 

et al., 2017), Therefore, unstable IFIT proteins may be removed from the cell by a generic 

turnover mechanism. An alternative explanation would be that IFIT1 is specifically 

targeted for degradation, and IFIT3 conceals a motif on IFIT1 to prevent turnover. Work 

is ongoing in our laboratory to differentiate these possibilities. 

 

Finally, IFIT3 was shown to enhance translation inhibition by IFIT1 by promoting binding 

to cap0 RNA, increasing affinity by two to three-fold. Using filter binding assays, Johnson 

et al (2018) reported three-fold higher cap0 binding affinity when IFIT1 was complexed 

with a C-terminal fragment of IFIT3. In these assays, IFIT3 did not enhance IFIT1 binding 

to cap1 RNA, consistent with the in vitro translation data presented here. Interestingly, 

they did observe a dramatic reduction in 5'ppp-RNA binding, indicating that IFIT3 has 

some effect on IFIT1 RNA binding specificity, promoting cap0 recognition over binding to 

uncapped RNA. Overexpression of IFIT3 in cells promoted restriction of flavivirus 

replication, including ZIKV and WNV, in viruses lacking 2'-O-methyltransferase activity, 

supporting the data presented here using cap0 ZIKV model RNAs (Johnson et al., 2018).  

 

While these works have gone some way to understanding how IFIT oligomerisation 

directly affects their activity, there are still many open questions. The mechanism of IFIT3 

cofactor activity remains to be determined. One possibility is that IFIT3 makes additional 

contacts with the bound RNA, thereby stabilising the interaction. IFIT homooligomers 

have previously been shown to interact with RNA downstream of the 5' end, indicating 

that cooperative binding by other units in the complex may contribute to binding avidity 

(Kumar et al., 2014). However, unlike IFIT2, IFIT3 is not predicted to have a large positively 

charged nucleic acid binding groove and is not reported to bind to RNA (Kumar et al., 

2014). Here when IFIT3 was present no additional reverse transcriptase stops were 

observed, indicating that IFIT3 does not make contact with the RNA.  

 

Instead, IFIT3 may promote tighter binding of IFIT1 to cap0 mRNA by limiting IFIT1 

flexibility, decreasing the off-rate of the RNA to maintain binding. IFIT5 was previously 

shown to cycle between ‘open’ and ‘closed’ conformations upon RNA binding, with the C-

terminal domain rotating about the flexible pivot domain to close around the bound RNA 
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strand (Abbas et al., 2013). Hydrogen-deuterium exchange experiments revealed that the 

extended C-terminal domain of IFIT3 makes contact with the pivot domain of IFIT1, not 

just the C-terminal interaction interface (Figure 3-10, dashed line) (Johnson et al., 2018). 

This supports a model by which IFIT3 locks IFIT1 in a closed conformation following RNA 

binding, to increase binding affinity, and merits further investigation. 

 

It is known that IFIT proteins are not equally expressed during infection. Following 

different stimuli, the kinetics and magnitude of IFIT expression varies between different 

family members (Terenzi et al., 2006). Therefore, the composition of the IFIT complex is 

likely to change over the course of infection, which will contribute to the regulation of its 

constituent parts. For example, post-translational modification or degradation of IFIT3 

may allow for rapid changes in the expression levels of the other two IFIT proteins in the 

 

Figure 3-10 The IFIT1:IFIT3 complex. 

Crystal structure of IFIT1, yellow, in complex with the C-terminal domain of IFIT3, blue (PDB: 

6C6K), with a schematic of the trimeric IFIT1:IFIT2:IFIT3 complex. IFIT3 has an extended C-

terminal domain which may make contact with additional regions of the IFIT1 subdomain III, 

indicated by a blue dashed line. The interface between the two molecules is enlarged on the right, 

and key residues are shown as sticks. In the upper panel, the IFIT1:IFIT3 complex is superposed 

with homodimeric IFIT1 (yellow, PDB: 5W5H), illustrating mutually exclusive homo- and hetero-

complexes. In the lower panel, the IFIT1:IFIT3 complex is superposed with monomeric IFIT5 

(magenta, PDB: 4HOT), which does not interact with IFIT1 or IFIT3, owing to an additional C-

terminal -helix which occludes the YxxxL interaction motif.  
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complex. Promoting IFIT3 expression may therefore be important to sustain antiviral 

responses.  

 

IFIT5 is monomeric and as such does not benefit from the stabilising and enhancing effects 

of a cofactor. This is because IFIT5 has an additional C-terminal helix which buries the 

YExxL motif, preventing homo- or hetero-oligomerisation (Figure 3-10). IFIT5 binds 

exclusively to 5'ppp RNA (Pichlmair et al., 2011; Abbas et al., 2013; Feng et al., 2013), which 

is not typically found under normal cellular conditions, rendering IFIT5 a relatively safe 

protein to overexpress. By contrast IFIT1 binds capped mRNA and is capable of binding to 

endogenous cap1 RNA at high concentrations (Abbas et al., 2017a). Therefore, IFIT1 has 

the potential to be highly cytotoxic by shutting off host translation (Guo et al., 2000b). As 

such, regulation of IFIT1 expression and activity by IFIT3 may be necessary to avoid 

excessive cell death during infection. 

 

Finally, human IFIT1B has been suggested to lack RNA binding activity, based on 

overexpression experiments in yeast and mammalian cells (Daugherty et al., 2016). 

However, IFIT1B is notoriously difficult to express recombinantly (Kumar et al., 2014), 

indicating it may be highly unstable in the absence of a binding partner. Previously, 

peptides corresponding to IFIT1B were identified co-precipitating with both IFIT1 and 

IFIT3, consistent with the shared C-terminal YExxL motif in all three proteins (Pichlmair 

et al., 2011). It is possible that co-expression with IFIT3 may stabilise IFIT1B expression, 

allowing the function of IFIT1B to be properly dissected. As discussed in 1.3.1.1, IFIT1B may 

be expressed in immature immune cells and, since IFIT3 is already known to function in 

regulating immune cell differentiation (Huang et al., 2008), it is tempting to speculate a 

role for a complex of IFIT1B and IFIT3 in this process. 

 

For a more detailed discussion of the implications of human IFIT oligomerisation and 

protein-protein interactions, see Mears & Sweeney (2018). 
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4 THE MURINE IFIT FAMILY 

4.1 Background 

4.1.1 Mouse Ifits 

While the murine Ifit1 model has been used extensively to study human disease and viral 

infection, there is little biochemical information specifically on the activity of the murine 

Ifit family. The function of murine Ifit proteins is often inferred from their human 

counterparts. As described in section 1.3.4, given the differences between human and 

murine IFIT protein functions, this assumption is not reliable. 

 

The murine Ifit family lacks a true orthologue of human IFIT1. Instead Ifit1b has been 

duplicated twice, resulting in three paralogous genes, annotated as Ifit1, Ifit1b and Ifit1c. 

Ifit1 has been well studied for its sequence and biochemical similarities with human IFIT1, 

though there are some important functional distinctions. In particular, murine Ifit1 does 

not bind to cap1 RNA while human IFIT1 can, at high concentrations (Daugherty et al., 

2016; Abbas et al., 2017a). The latter two family members, Ifit1b and Ifit1c, have not been 

characterised. There is mass spectrometry evidence supporting the expression of Ifit1c in 

stimulated murine cells (Habjan et al., 2013). However, the expression patterns of Ifit1b 

and Ifit1c remain unknown. Studying these additional murine Ifit family members may 

address open questions in mouse Ifit biology, including: how do rodents compensate for 

the loss of IFIT1, the loss of IFIT5 and the truncation of Ifit3? Do these differences 

significantly impact our ability to interpret data from mouse models when trying to 

understand human disease? 
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4.1.2 Aims 

The aim of this chapter is to examine the expression patterns of the entire murine Ifit 

family, including uncharacterised members whose existence is yet to be proven. Then 

these proteins will be screened for their activity in vitro, to determine their function, 

allowing biochemical characterisation. A detailed understanding of the expression 

patterns and functions of every member of the murine Ifit family is necessary to examine 

and improve the mouse model.  

 

4.2 Results 

4.2.1 Murine Ifit expression 

4.2.1.1 qPCR primers 

To examine murine Ifit mRNA expression, specific qPCR primers were designed for two-

step Sybr green RT-qPCR (Table 2-3). Ifit1 primers have been published previously 

(Tamassia et al., 2008). Ifit1b, Ifit1c, Ifit2, Ifit3 and Ifit3b primers were designed within the 

coding sequence of the second exon, against regions with the highest sequence divergence 

to ensure their specificity. Since the first exon is very short and highly conserved, designing 

primers across the exon-exon boundary was not possible. This was particularly challenging 

for Ifit3 and Ifit3b given the high degree of nucleotide identity between the two sequences. 

Specificity was verified by PCR against plasmids containing the coding sequence for each 

Ifit. Each primer pair showed high specificity for their target sequence (Figure 4-1A).  

 

To determine the linear range and the limit of detection, primers were tested against a 

DNA standard curve. Plasmids containing Ifit coding sequences were linearised by 

restriction with XhoI and purified by gel extraction followed by ethanol precipitation and 

10-fold dilution series were generated from 1 ng (1.5 x 105 plasmid copies) to 10 attograms 

(1.5 plasmid copies). The qPCR signal, determined by decreasing cycle threshold (CT), 

correlated well with plasmid DNA concentration (R2 > 0.95) and signal was detectable 

even at the lowest DNA concentrations tested, indicating a very low limit of detection 

(Figure 4-1B). The slopes of the standard curve were between -3.6 to -3.1, corresponding to 

PCR efficiencies of 90% to 106%, within the acceptable range for standard qPCR primers. 

Together, these validation data indicate that fold-changes in mRNA abundance can be 

accurately calculated using these primers. 
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Having determined specificity and linearity of signal, primer pairs were tested on 

endogenous Ifit mRNA. RAW264.7 murine macrophage-like cells were stimulated with 

IFN or transfected with polyI:C, a synthetic immune-stimulatory dsRNA. Cellular RNA 

 

Figure 4-1 Ifit qPCR primer validation. 

A. Specificity of Ifit qPCR primer pairs, tested against plasmids containing Ifit coding sequences. 

B. Linearity of Ifit amplification, upon 10-fold serial dilutions of linearised plasmids containing Ifit 

coding sequences. Log10-transformed mass of DNA (ng) was plotted against qPCR cycle threshold 

(CT) and fit by linear regression. Equations and R2 values showing linear amplification and 

goodness of fit are given next to the graph legend. C. Melt curves from qPCR amplification of the 

indicated Ifit mRNAs, using either cDNA from unstimulated (grey) or IFN-stimulated RAW264.7 

cells or water (black) as templates. D. Sanger sequencing analysis of RT-qPCR products from 

stimulated RAW264.7 cells. Reference sequences are given above and primer sequences are 

underlined. 
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was harvested after 8 hours. Since the Ifit primers were not designed across an exon-exon 

boundary, RNA was purified twice to minimise genomic DNA carryover. Each Ifit mRNA 

was detectable in both IFN-treated and polyI:C-stimulated cells. The melting temperature 

for specific amplification from cellular cDNA was sufficiently different from non-specific 

signal in the water-only controls (Figure 4-1C). 

 

qPCR products were purified by gel extraction and sent for Sanger sequencing to 

determine product specificity. Only the target mRNA sequences were detected from each 

primer pair (Figure 4-1D). In particular, for Ifit3 and Ifit3b there was only a single 

nucleotide difference between the PCR products from either mRNA. However, there was 

no evidence of cross-contamination between the PCR products at this position. 

 

4.2.1.2 Antibodies 

To confirm Ifit expression at the protein level, it was necessary to identify specific 

antibodies for each family member (see Table 2-5). Given the high degree of amino acid 

identity between Ifit3 and Ifit3b (99%), these proteins are impossible to distinguish by 

western blotting and will be annotated as Ifit3/3b to reflect this. Antibody specificity was 

tested by western blotting against both recombinantly expressed and purified Ifit proteins 

(see Figure 4-7) or FLAG-tagged Ifit proteins overexpressed for 24 hours in HEK293T cells. 

RAW264.7 cells were treated with a high dose of murine IFN for 14 hours before 

harvesting in passive lysis buffer to detect endogenous Ifit expression.  

 

Commercial antibodies were available to detect murine Ifit1, Ifit2 and Ifit3/3b. Anti-Ifit1 

(sc-134949, Santa Cruz) specifically detected murine Ifit1 but no other family members, 

and detected a single band in IFN-treated RAW cells (Figure 4-2A). Anti-human IFIT2 

(12604-1-AP, ProteinTech) was cross-reactive for both Ifit2 and Ifit3/3b to approximately 

the same extent and detected two specific endogenous bands of the correct molecular 

weight (Figure 4-2A). Additionally, a commercial antibody against human IFIT1 was tested 

(PA3-848, Pierce). Surprisingly, while murine Ifit1 was weakly detected by this antibody, 

Ifit1b was detected very strongly (Figure 4-2A). A band of the correct molecular weight 

was detectable in IFN-stimulated cell lysates. However, this may represent strong 

detection of lowly expressed Ifit1b, or weak detection of highly expressed Ifit1.  
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To detect Ifit1b and Ifit1c with higher sensitivity and specificity, custom antibodies were 

raised and purified against specific peptides from each protein. These were tested for their 

specificity and one antibody for each was identified which had little cross-reactivity with 

 

Figure 4-2 Ifit antibody validation. 

A. Western blotting of RAW264.7 cells stimulated with IFN for 14 hours alongside recombinant 

Ifit proteins purified from E. coli or overexpressed in HEK293T cells, probed with antibodies 

against Ifit1 (Santa-cruz, sc-134949); Ifit1b, using a cross-reactive antibody against human IFIT1 

(Pierce, PA3-848); Ifit1b, using a peptide-raised antibody (Eurogentec), indicated by as asterisk; 

and Ifit1c, using a peptide raised antibody (Eurogentec), indicated by an asterisk; Ifit2 and Ifit3, 

using a cross-reactive antibody for human IFIT2 (Proteintech, 12604-1-AP). GAPDH is included 

as a loading control for cell lysates. B. Serial dilution of recombinant Ifit1b protein, to test 

detection limit of Ifit1b antibodies. In the lower panel, bovine serum albumin (BSA), used to ensure 

accurate serial dilution, is faintly visible. C. Immunofluorescence of 17C1 cells, either mock treated, 

transfected with FLAG-Ifit overexpression plasmids or stimulated with IFN for 16 hours. Cells 

were stained with antibodies against FLAG, and Ifit1 (Santa-cruz, sc-134949), Ifit1b (Eurogentec) 

or Ifit1c (Eurogentec). Cell nuclei were stained with DAPI. 
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other Ifit family members (Figure 4-2A). Antibody concentrations (25-50 g/mL) and 

incubation conditions (overnight at 4 ˚C in 5 % BSA PBS-T) were optimised for detection 

of endogenous protein from IFN-treated RAW264.7 cell lysates.  

 

For Ifit1b, the peptide-raised antibody was able to detect as little as 1.6 ng of recombinant 

protein while the cross-reactive commercial antibody had a limit of detection of 12.5 ng 

(Figure 4-2B). Therefore, since the peptide-raised antibody could not detect endogenous 

Ifit1b, it is likely that the commercial antibody may be detecting Ifit1 in stimulated cell 

lysates. This also indicates that Ifit1b is expressed at less than 160 pg per g of total protein 

in the cell lysate. By way of comparison, in IFN-stimulated HeLa cells, human IFIT1 was 

previously detected at over 200 pg/g (Pichlmair et al., 2011).  

 

Ifit antibodies were also tested for their ability to detect overexpressed and endogenous 

proteins by immunofluorescence (Figure 4-2C). Murine 17C1 cells were either transfected 

with a plasmid encoding FLAG-tagged Ifit1, Ifit1b or Ifit1c, or stimulated with IFNb, then 

harvested after 16 hours for immunofluorescence microscopy. Endogenous Ifit1 was weakly 

detected in IFN-stimulated 17C1, though the signal was poor. Ifit1 showed diffuse 

cytoplasmic localisation, typical of IFIT proteins (Yu et al., 1997; Guo et al., 2000a; Huang 

et al., 2008). While overexpressed FLAG-Ifit1b was detectable by the custom Ifit1b 

antibody, neither Ifit1b nor Ifit1c could be detected in IFN-stimulated cells, and the 

background for these antibodies was very high in mock cells, indicating that they are not 

suitable for use in immunofluorescence. 

 

4.2.1.3 Induction of Ifit expression in murine cell lines 

The expression of murine Ifit1, Ifit2 and Ifit3 have been examined individually and together 

in various studies (Bluyssen et al., 1994a; Smith and Herschman, 1996; Terenzi et al., 2005, 

2007; Wacher et al., 2007). However, to date no study has examined the expression of the 

entire murine Ifit family in parallel, using quantitative techniques and including the non-

canonical family members. To address this, the induction kinetics of murine Ifits were 

examined under different conditions. Murine embryonic fibroblasts (MEF) (Figure 4-3) 

and RAW264.7 macrophage-like cells (Figure 4-4) were stimulated with murine IFN or 

transfected with polyI:C. RNA and protein were harvested up to 48 hours post stimulation 

for RT-qPCR and western blot analyses using the primers and antibodies described above. 



On the expression, function and regulation of the murine Ifit family of antiviral RNA-binding proteins. 

82  Harriet V Mears – September 2019 

Ifit mRNA expression was rapidly and strongly induced following stimulation, with peak 

expression 3 to 6 hours post stimulation. Rapid induction following polyI:C is consistent 

with direct transcription by activated IRF3, as previously reported (Grandvaux et al., 2002; 

Terenzi et al., 2005; Daffis et al., 2007). Expression decreased between 9-24 hours. Decline 

was slower in polyI:C-treated cells, compared to IFN-stimulated cells, consistent with 

secondary IFN signalling induced by dsRNA sensing which maintains the response. 

 

Figure 4-3 Ifit mRNA expression in MEF cells. 

A-F. RT-qPCR analysis of RNA extracted from MEF cells stimulated with IFN or transfected with 

polyI:C over 48 hours, detecting A. Ifit1 B. Ifit1b C. Ifit1c D. Ifit2 E. Ifit3 F. Ifit3b. Graphs show the 

mean and the standard error of three biological replicates. 
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Compared to other Ifit family members, Ifit1b was poorly induced at the mRNA level. 

There was no evidence of high basal Ifit1b expression, since CT values in unstimulated cells 

were around 28 cycles, similar to the other Ifits; if compared to the cDNA standard curved 

performed in section4.2.1.1, this corresponds to approximately 150 copies of Ifit1 mRNA. 

This indicates that Ifit1b is poorly expressed at the mRNA level, compared to other Ifit 

genes after IFN stimulation.  

 

Figure 4-4 Ifit mRNA expression in RAW264.7 cells. 

A-F. RT-qPCR analysis of RNA extracted from RAW264.7 cells stimulated with IFN or 

transfected with polyI:C over 48 hours, detecting A. Ifit1 B. Ifit1b C. Ifit1c D. Ifit2 E. Ifit3 F. Ifit3b. 

Graphs show the mean and the standard error of two biological replicates. 
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Ifit mRNA expression was generally lower in MEF cells compared to RAW cells (compare 

Figure 4-3 to Figure 4-4). As such, Ifit proteins were only reliably detected in RAW cell 

lysates (Figure 4-5A). Ifit1, Ifit2 and Ifit3/3b proteins were detectable 6-12 hours following 

stimulation, after the peak of mRNA expression, and remained high up to 48 hours. This 

expression pattern is highly consistent with previous studies (Terenzi et al., 2005, 2007). 

Unfortunately, Ifit1b and Ifit1c were not detectable, presumably because their expression 

was lower than the limit of detection for the antibodies.  

 

Ifit protein expression was also examined in 17C1 cells, a fibroblast cell line derived from 

immortalised Swiss 3T3 cells (Sturman and Takemoto, 1972). These cells do not respond to 

viral infection (Irigoyen et al., 2016), indicating that they may have impaired immune 

signalling pathways. Therefore, to determine whether these cells can respond to type I 

IFN, an IFN titration was performed. Ifit1, Ifit2 and Ifit3/3b expression was detectable 

even when cells were stimulated with low concentrations of IFN, and increased in a dose-

dependent manner (Figure 4-5B). Ifit1c expression was only detectable when cells were 

stimulated with a high concentration of IFN, while Ifit1b could not be detected. 

 

4.2.1.4 Activity of Ifit promoters 

To determine why Ifit1b is apparently so poorly expressed compared to other murine Ifit 

family members, the activity of its promoter was investigated. Ifit1 has two well-defined 

 

Figure 4-5 Ifit protein expression in murine cells. 

A. Immunoblot analysis of RAW264.7 cells stimulated with IFN or transfected with polyI:C over 

48 hours. GAPDH is included as a loading control for each membrane tested. B. Immunoblot 

analysis of 17C1 cells stimulated with increasing doses of IFN for 24 hours. GAPDH is included 

as a loading control for each membrane tested. 
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tandem interferon stimulated response elements (ISRE) within 100 bp of the transcription 

start site (TSS) (Figure 4-6A-B). Similarly, the Ifit1c promoter contains one ISRE, also 

proximal to the TSS, and a second ISRE-like sequence further upstream. For Ifit1b, there 

are two annotated TSSs: one proximal to the coding sequence of Ifit1b (Ifit1b_2) and one 

 

Figure 4-6 Ifit promoter activity. 

A. Schematic of the murine Ifit locus. Exons are shown as boxes with arrows indicating the 

direction of the reading frame. Introns indicated by solid black lines. In Ifit1b, two transcription 

start sites are annotated, the longer of which is represented by a dotted black line and hashed box. 

Black stars represent canonical ISRE sequences, while grey stars represent non-canonical ISRE-

like sequences. B. Promoters for Ifit1, Ifit1b (both downstream, Ifit1b_1, and upstream, Ifit1b_2, 

transcription start sites) and Ifit1c. Numbers indicate the distance from the transcription start 

site. ISRE, interferon-stimulated response element. Nucleotides which are conserved with respect 

to Ifit1 are shown in bold. C. Promoter-driven firefly luciferase (Fluc) activity in 17C1 cells 

stimulated with IFN, normalised to constitutive Renilla luciferase (Rluc) activity. Data represent 

the mean ± the standard error of three biological repeats. The human IFIT1 promoter (ISG56.1) is 

included as a positive control (White et al., 2016). A scrambled (SCR) promoter sequence is 

included as a negative control. 
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several kilobases upstream (Ifit1b_1), overlapping the Ifit1 promoter region (Figure 4-6A). 

Both contain poorly conserved ISRE-like sequences, with the Ifit1b_2 promoter more 

closely resembling the structure of that of Ifit1 (Figure 4-6B).  

 

Constructs were designed to express firefly luciferase (Fluc) under the control of these 

promoters. These comprised 0.8-1 kb of sequence upstream of the transcription start site 

(TSS) for each gene, which were determined from their respective mRNA sequences (Ifit1: 

NM_008331.3, Ifit1b_1: NM_001362130.1, Ifit1b_2: NM_053217.2, Ifit1c: NM_001110517.1). A 

control plasmid was also generated with 1 kb of scrambled DNA sequence upstream of the 

Fluc mRNA (SCR), which should not act as a promoter. Promoter plasmids were co-

transfected into 17C1 cells alongside a constitutive Renilla luciferase (Rluc) plasmid. After 

4 hours, cells were treated with IFN to stimulate promoter activity, then harvested after 

24 hours to determine luciferase expression. Luciferase activity was normalised to the Rluc 

control for each condition. RAW264.7 cells were not used for this assay, since DNA 

transfection itself activated an interferon response. 

 

As expected, luciferase production from the Ifit1 promoter was strongly stimulated by 

treatment with IFNFigure 4-6C. The upstream Ifit1b_1 promoter weakly drove Fluc 

expression but was not IFN responsive, while the downstream Ifit1b_2 promoter was 

slightly stimulated in response to IFN. Similarly, the Ifit1c promoter showed a small 

degree of upregulation when cells were treated with IFN. Therefore the lower expression 

of Ifit1b and Ifit1c at the mRNA level, described above, may be due to weakly IFN-sensitive 

promoter sequences. 

 

4.2.2 Purification of recombinant Ifit proteins 

In order to biochemically characterise the murine Ifit family, each protein was purified 

recombinantly. Murine Ifit proteins were expressed with a C-terminal His8-tag in bacteria 

and purified as described in Materials and Methods. Inclusion of a low concentration of 

imidazole (5 mM) in the binding buffer during Ni-NTA affinity chromatography resulted 

in sufficiently high purity proteins which did not require further purification steps. When 

1 g of protein was analysed by SDS-PAGE, no additional bands were visible, indicative of 

>95% purity (Figure 4-7A).  
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While most Ifit family members expressed and purified well, Ifit1c-His8 was expressed 

poorly and remained in the insoluble fraction following cell lysate clarification, indicating 

protein misfolding or aggregation. Recovery of Ifit1c from the insoluble fraction by 

denaturation and refolding was not successful. Therefore, to boost expression and 

solubility, N-terminal His-GST- and His-MBP-tagged constructs were generated. While 

the GST-tag rescued Ifit1c expression, allowing a small amount of soluble protein to be 

purified, addition of an N-terminal GST-tag affected the expression of other murine Ifit 

proteins. For example, GST-tagged Ifit1 had a tendency to precipitate out of solution and, 

when analysed by gel filtration, produced two peaks, neither of which were the expected 

size of either a monomer or dimer of GST-Ifit1. As GST is a homodimer in solution, it may 

induce aggregation of proteins which are themselves multimeric (Reuten et al., 2016). 

Since IFIT proteins are known to self-associate, as discussed in the previous chapter, the 

addition of the GST-tag could cross-link Ifit oligomers, promoting aggregation and 

precipitation.  

 

Therefore, MBP-tagged constructs were generated allowing successful expression and 

purification of Ifit1c, though the final yield and purity of MBP-Ifit1c was still much lower 

than other MBP-Ifit proteins. For example, 0.5 mg MBP-Ifit1c required preparation from 

16 L of E coli. MBP-Ifit1c was additionally purified by size-exclusion chromatography which 

improved purity, though residual contaminant bands were still present (Figure 4-7). These 

are likely degradation products since they can be detected by both Ifit1c and His 

antibodies.  

 

To improve the expression of Ifit1c, the C-terminal domain was expressed in isolation, 

containing 1 to 3 C-terminal TPRs, with or without terminal linker regions. The shortest 

Ifit1c truncations produced the highest yields, but eluted as multiple peaks when analysed 

by SEC, indicating the protein is flexible or heterogeneously folded. Therefore, while it is 

still very poorly expressed in E. coli, the longest Ifit1c truncation (henceforth referred to as 

Ifit1cCTD) was chosen for further experiments and will be used in chapter 6. MBP-tagged 

Ifit1 and Ifit1b were also generated as controls.  

 

For downstream experiments, proteins were normalised by western blotting against the 

His-tag (Figure 4-7A). Signal was weaker for MBP-tagged proteins, which are 6x-His-

tagged, rather than 8x-His-tagged, which may reduce antibody binding.   
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4.2.3 Translation inhibition by murine Ifit proteins 

To screen for RNA binding specificity, an in vitro translation approach was taken using a 

similar experimental setup as section 3.2.3. Firefly luciferase (Fluc) flanked by the 5' and 

3'UTRs of the human -globin mRNA (globin-Fluc) was transcribed and capped in vitro. 

Cap2 mRNA was generated from cap1 templates using a recombinant cap2 

methyltransferase.  

 

To verify that capped transcripts were properly modified, a variant primer extension 

inhibition assay was used, based on the propensity for reverse transcriptase to terminate 

at methylated nucleotides (Zamudio et al., 2009), dependent on magnesium ion 

concentration. Reverse transcription was carried out using avian myoblastosis virus 

reverse transcriptase in the presence of a range of magnesium concentrations (Figure 

 

Figure 4-7 Purified Ifit proteins and model RNA. 

A. SDS-PAGE (upper panel) and anti-His (lower panel) western blot of recombinant Ifit proteins 

used in this study. B. Schematic representation of globin-Fluc mRNA with a red arrow indicating 

the reverse transcription (RT) primer binding site for primer extension analysis. C. Primer 

extension analysis of capped globin-Fluc mRNAs at different concentrations of MgOAc. At lower 

Mg2+ concentrations, additional stops are visible corresponding to 2'O-methylation of the first 

and second nucleotides, indicated with arrowheads. At high Mg2+ concentrations an additional 

band is seen at the -1 position, consistent with terminal transferase activity of the reverse 

transcriptase. 
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4-7B-C). At high Mg2+ concentrations, full-length signal was present for all mRNAs, as well 

as a proportion of 1 nt longer cDNAs, consistent with low level terminal transferase activity 

of highly processive reverse transcriptase. At lower Mg2+ concentrations, 1 or 2 nt shorter 

cDNA products were present for cap1 and cap2 RNA, respectively. At very low Mg2+ 

concentrations, only the lower band was detectable for methylated RNA, but not for cap0 

RNA. This indicates high cap methylation efficiency, since no residual full-length signal 

was detectable.  

 

A high concentration (0.5 M) of each Ifit protein was incubated with in vitro transcribed 

and capped globin-Fluc mRNA with different methylation states: cap0, cap1 or cap2 

(Figure 4-8A-B). Uncapped RNA was also tested, however, since uncapped RNA translates 

very poorly, the signal from the luciferase reporter was typically 1000-fold lower than 

capped mRNA translation. As some murine Ifit proteins had a tendency to precipitate at 

37 ˚C, Ifit proteins were preincubated with RNA at 30 ˚C. Translation was monitored by 

measuring luminescence from the Fluc reporter, normalised to the no Ifit or MBP only 

controls, depending on the experiment.  

 

Ifit1 strongly inhibited the translation of cap0 RNA (Figure 4-8C), but did not inhibit the 

translation of cap1 or cap2 RNA, consistent with previous reports (Habjan et al., 2013; 

Kimura et al., 2013; Daugherty et al., 2016). Translation from the uncapped reporter was 

not reproducibly inhibited by Ifit1. A previous report showed that Ifit1 was capable of 

partially inhibiting the translation of uncapped mRNA (Pichlmair et al., 2011), but only at 

100-fold higher concentrations than those tested here, far in excess of physiological Ifit 

expression levels. Ifit2, Ifit3 and Ifit3b did not inhibit translation of any of the RNAs tested, 

consistent with their human counterparts (Pichlmair et al., 2011; Yang et al., 2012; Kumar 

et al., 2014). Intriguingly, Ifit1b inhibited the translation of cap1 RNA, but not cap0 or cap2 

(Figure 4-8C). Unlike Ifit1, which completely inhibited cap0 translation, Ifit1b inhibited 

cap1 RNA by 80%. This indicates that Ifit1b either has lower affinity for cap1 RNA than Ifit1 

does for cap0, or it cannot saturate binding under these conditions.   

 

MBP-tagged Ifit1 and Ifit1b behaved similarly to their His-tagged counterparts (Figure 

4-8D). MBP-Ifit1 inhibited cap0 translation and MBP-Ifit1b inhibited cap1 translation, 

though inhibition was not as strong as the His-tagged proteins. Additionally, MBP-tagged 

Ifit proteins appeared to be less specific than the His-tagged versions, since MBP-Ifit1 was 
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found to be slightly inhibitory to cap1 translation. It is possible that the large MBP-tag may 

interfere with conformation or flexibility of N-terminus of the Ifit proteins, thereby 

disrupting RNA binding. 

 

MBP-tagged Ifit1c caused general inhibition of translation of all mRNAs tested (Figure 

4-8D). While this could be due to genuine broad-spectrum RNA binding, it is difficult to 

draw too many conclusions given the poor quality of the recombinant protein. Since the 

protein was of low purity, MBP-Ifit1c was tested for RNase activity, but was found not to 

degrade RNA. Owing to its low stability MBP-Ifit1c may precipitate during the reaction, 

which could cause the RNA to come out of solution preventing its translation. A previous 

 

Figure 4-8 Translation inhibition by murine Ifit proteins 

A. Schematic of the mRNA 5' cap. B. Schematic representation of model globin-Fluc mRNA. C-D. 

In vitro translation of differentially capped globin-Fluc reporter mRNAs by (C) His-tagged or (D) 

MBP-tagged Ifit proteins, normalised to the BSA-only or MBP controls, respectively. Data are 

shown as the mean and the standard error of three experiments. Data were compared to the BSA 

or MBP-only controls by pairwise two-tailed t-tests and p values < 0.1 are shown. 
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report showed that Ifit1c in cell lysates could not precipitate with cap-RNA beads on its 

own, indicating that it may lack intrinsic RNA binding activity (Habjan et al., 2013). 

However, without a way to express Ifit1c recombinantly, this remains uncertain. 

 

4.3 Conclusions 

To date, a comprehensive study of the expression pattern and function of all members of 

the murine Ifit family has not been carried out. In this chapter, Ifit expression was 

examined in different murine cell lines by quantitative PCR and, where possible, western 

blotting. All Ifit family members were found to be upregulated in response to type I IFN 

and dsRNA in both fibroblasts and macrophage cell lines. The rapid and potent induction 

of Ifit expression following stimulation is consistent with previous reports of Ifit1, Ifit2 and 

Ifit3 expression in murine cells (Bluyssen et al., 1994a; Smith and Herschman, 1996; Terenzi 

et al., 2005, 2007).  

 

Historically, Ifit1b and Ifit1c have not been examined in detail. These genes are particularly 

challenging to study, since they share high nucleotide identity with each other (85%), as 

well as sharing significant similarity with Ifit1 (52% and 54%, respectively). As such, these 

genes are difficult to differentiate at both the mRNA and protein level. In methods such 

as RNA sequencing and mass spectrometry, which often discard redundant reads or 

peptides to avoid skew, Ifit1b and Ifit1c may have been overlooked in the past. Here, this 

presented a problem for sensitive immunoblotting, since antibodies which detected Ifit1b 

tended to cross-react with Ifit1c or Ifit1, and vice versa. Ifit1b and Ifit1c could be 

differentiated at the mRNA level, but specific antibodies for Ifit1b and Ifit1c were not 

sufficiently sensitive to reliably pick up endogenous protein.  

 

Ifit1b was found to be poorly upregulated in response to type I IFN. This is at least partly 

due to lower activity from the promoter regions upstream of either of Ifit1b’s transcription 

start sites, which contain poorly conserved ISRE-like elements. Interestingly, the region 

100 nt immediately upstream of the murine Ifit1b transcription start site is very similar to 

the same region upstream of human IFIT1B. Similar cryptic ISRE-like sequences can be 

seen in the human IFIT1B promoter region, indicating that these genes may share 

expression kinetics.  



On the expression, function and regulation of the murine Ifit family of antiviral RNA-binding proteins. 

92  Harriet V Mears – September 2019 

The reason for the poor upregulation of Ifit1b and Ifit1c, relative to the other murine Ifit 

family members, is still unclear. Here, it was revealed that Ifit1b can specifically inhibit the 

translation of cap1 mRNA. As such, Ifit1b has the capacity to inhibit cellular translation, 

making overexpression of Ifit1b potentially toxic. Therefore, the cell may purposely 

downregulate Ifit1b expression, to prevent translation shut off. Unfortunately, the activity 

of Ifit1c could not be determined, owing to difficulty expressing and purifying the protein 

recombinantly.  

 

Previous work showed that, at high concentrations, Ifit2 could inhibit translation from an 

uncapped reporter mRNA in vitro (Hui et al., 2005). However, at the concentrations tested 

here, which more closely reflect physiological expression levels, Ifit2 had no effect on 

translation of an unstructured reporter mRNA, regardless of 5' cap. Similarly, murine Ifit3 

and Ifit3b did not inhibit translation of any of the RNAs tested. The mRNA encoding these 

proteins was strongly upregulated very early following stimulation of IFN or dsRNA, 

indicating that they, like Ifit1, are necessary in the early stages of an antiviral response. 

Therefore, Ifit2, Ifit3 and Ifit3b likely play important roles in different branches of the 

innate immune response, other than translation inhibition. This is discussed in more 

detail in chapter 7. 
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5 THE ACTIVITY OF MURINE 

IFIT1B 

5.1 Background 

5.1.1 IFIT1B-like proteins 

While some rodents maintain IFIT1 and IFIT5, in mice and other small rodents, including 

other model species such as rat and hamster, both of these genes have been lost 

(Daugherty et al., 2016). These species encode at least two copies of Ifit1b, which may 

functionally compensate for the loss of IFIT1 and IFIT5 orthologues (Figure 5-1). IFIT1B is 

conserved in all mammals (see Figure 1-6), but despite this, there is little data on the 

function of IFIT1B-like proteins. 

 

In mice there are three IFIT1B-like genes: Ifit1, Ifit1b and Ifit1c. While Ifit1 is known to bind 

to cap0 RNA and inhibit its translation (Habjan et al., 2013; Kimura et al., 2013; Daugherty 

et al., 2016), a finding which was confirmed in chapter 4, the functions of murine Ifit1b 

and Ifit1c have not been examined. Murine Ifit1b was hypothesised to be non-functional, 

owing to a number of substitutions in the N-terminal domain which could interfere with 

cap binding (Abbas et al., 2017a). In particular, the small hydrophobic residues in the cap-

binding loop of human IFIT1, which coordinate the cap, are substituted for large, charged 

side chains in murine Ifit1b. Additional substitutions are present within the RNA binding 

channel, in particular surrounding the 2'-hydroxyl of the first ribose. Despite this, in 
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chapter 4 it was demonstrated that not only is Ifit1b expressed in murine cells, but it can 

specifically inhibit the translation of cap1 mRNA in vitro.  

 

5.1.2 Aims 

The aim of this chapter is to characterise murine Ifit1b, using different biochemical and 

biophysical approaches. The RNA binding capacity of Ifit1b will be dissected to determine 

how it achieves specific cap1 binding on different RNA substrates. This activity will also be 

examined in cell culture, to determine what impact Ifit1b has on viral and host translation. 

This aims to expand our knowledge of the function of IFIT1B-like proteins in different 

species and give insights into how the rodent lineage has compensated for the loss of IFIT1 

during their evolution.  

 

Figure 5-1 Phylogeny of rodent Ifit proteins 

Maximum-likelihood phylogenetic tree, constructed as in Figure 1-6, using (A) whole protein or 

(B) C-terminal sequence alignments of Ifits from eight different rodent species (Cg, Chinese 

hamster; Cl, chinchilla; Cp, guinea pig; Hg, naked mole rat; It, thirteen-lined ground squirrel; Mm, 

house mouse; Mo, prairie vole; Rn, Norway rat). Bootstrap supports are shown for major branches. 

Scale bars represent amino acid substitutions per position.  
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5.2 Results 

5.2.1 Translation inhibition by Ifit1b 

To examine Ifit1b activity in more detail, three model mRNAs were used comprising an 

Fluc reporter coding sequence flanked by the 5' and 3'UTRs of -globin (globin-Fluc), as a 

representative unstructured cellular mRNA; mouse hepatitis virus (MHV), as a moderately 

unstructured viral mRNA; and ZIKV, as a structured viral mRNA (Figure 5-2B). 

Coronaviruses, including MHV, and flaviviruses, including ZIKV, encode their own 2'-O-

methyltransferase, so the viral mRNA is naturally cap1. These reporter mRNAs therefore 

simulate wildtype viral mRNA.  

 

Serial dilutions of Ifit1b were incubated with Fluc mRNAs bearing differentially methylated 

5' caps, as described in section 4.2.3, and luciferase activity was used to monitor 

translation. Ifit1 was included as a positive control and, as expected, caused a dose-

dependent inhibition of cap0 globin-Fluc mRNA translation (IC50 = 102 nM, Figure 5-2C). 

Ifit1b inhibited cap1 translation at low concentrations, comparable to inhibition of cap0 

RNA by Ifit1 (IC50 = 152 nM, Figure 5-2C). However, even at the highest concentrations 

tested, Ifit1b did not completely saturate inhibition. Ifit1b only weakly inhibited cap0 and 

cap2 translation (IC50 ~ 675 nM and 825 nM, respectively). 

 

MHV-Fluc mRNA was slightly more susceptible to translation inhibition by Ifit proteins, 

with 1.5-fold lower concentrations required to cause a 50% reduction in translation (IC50 

Ifit1-cap0 = 68 nM, Ifit1b-cap1 = 101 nM, Figure 5-2D). Inhibition of the cap0-MHV reporter 

by Ifit1b was similar to the inhibition of the cap0-globin reporter (IC50 ~ 690 nM). 

However, inhibition of cap2-MHV mRNA was greater (IC50 = 238 nM), indicating that the 

mRNA sequence or structure may alter cap-binding specificity, as well as affinity. 

 

By contrast, ZIKV-Fluc mRNA was resistant to both Ifit1 and Ifit1b, even at micromolar 

concentrations (Figure 5-2D). The highest concentrations of Ifit1 or Ifit1b tested caused 

~50% translation inhibition on the cap0-ZIKV or cap1-ZIKV reporters, respectively. In 

chapter 3 it was shown that human IFIT1 could completely inhibit the translation of cap0-

ZIKV mRNA at nanomolar concentrations, and could inhibit cap1 ZIKV translation at 

micromolar concentrations (see Figure 3-7). Therefore, the inability of murine Ifit proteins 
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to inhibit the translation of the same reporter mRNA is quite surprising. This may be due 

to the high degree of secondary RNA structure at the very 5' end of the ZIKV genome. 

However, rodents are not natural hosts of flaviviruses; as such murine Ifit proteins may 

not be under selective pressure to recognise their RNA.  

 

5.2.1.1 Effect of Ifit overexpression on murine hepatitis virus infection. 

Since Ifit1b could inhibit the translation of a model MHV mRNA, it was then tested for its 

ability to inhibit MHV infection in murine cells. 17C1 cells are permissive for MHV 

infection (Sturman and Takemoto, 1972) but do not produce interferon in response to 

infection (Irigoyen et al., 2016). This provides an even baseline for comparing the direct 

effect of overexpressed Ifit proteins on viral infection, since there should not be 

confounding effects from other ISGs. Cells were either treated with IFN or transfected 

with plasmids encoding FLAG-tagged murine Ifit1, Ifit1b and Ifit1c for 16 hours before 

infection with MHV at a multiplicity of infection (MOI) of 3 PFU/cell. Cells on coverslips 

were harvested after 8 hours for immunofluorescence, staining for dsRNA, indicative of 

 

Figure 5-2 Ifit1b inhibits the translation of unstructured cap1 mRNA. 

A. Schematic of the mRNA 5' cap. B. Schematics of the reporter mRNAs used for in vitro 

translation. C-E. In vitro translation of differentially capped C. globin-Fluc, D. MHV-Fluc or E. 

ZIKV-Fluc, in RRL with increasing concentrations of Ifit1b (solid lines) or Ifit1 (dashed lines). Data 

were normalised to luciferase activity in the absence of IFIT protein and shown as the mean ± the 

standard error of at least three experiments. IC50 values are listed in Table 5-1.  
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viral replication complexes (Weber et al., 2006). Surrounding cells from the same well 

were lysed for immunoblotting, to monitor expression of N protein, the viral nucleocapsid 

produced late in infection. 

 

N protein expression was reduced in cells overexpressing Ifit1, Ifit1b or Ifit1c, compared to 

mock transfected cells. Similarly, fewer cells were positive for dsRNA in cells expressing 

Ifit1b or Ifit1c, indicating lower viral replication. While this may indicate that all three Ifit 

proteins are antiviral during MHV infection, transfection efficiency in these cells was quite 

poor and Ifit1c expression was particularly low. Therefore, it is more like that transfection 

of 17C1 cells makes them less susceptible to infection, for example due to cytotoxic effects 

of the transfection reagent. Previous reports overexpressing human IFIT proteins have 

seen similar generic inhibitory effects on infection (Ishida et al., 2019; Wichit et al., 2019), 

indicating that IFIT overexpression may be an inappropriate system to study IFIT-virus 

interactions.  

Table 5-1 Translation inhibition by Ifit1b. 

Concentration of Ifit that reduced translation from the reporter RNA by 50% (IC50) ± standard 

error. Data were fitted to [Inhibitor] versus normalised response curve (Y = 100)/(1 + 

(XHillSlope)/(IC50HillSlope)) using the least squares method in GraphPad Prism. For 

Ifit1 RNA binding, data were fitted using the non-linear Hill equation: Fraction[bound] = 

[Ifit1]h•Fraction[bound]
max/([Ifit1]h + Kh

1/2,app). Data are the mean ± standard deviation of 

at least three experiments.  

  
In vitro translation 
in RRL, Figure 5-2 

Primer extension inhibition, 
Figure 5-5 

Ifit RNA 
IC50 (nM Ifit) in 
RRL) 

RNA binding 
(K1/2app, nM) 

Hill number 

Ifit1b cap0-globin-Fluc 675 ± 129   

Ifit1b cap1-globin-Fluc 152 ± 18.1   

Ifit1b cap2-globin-Fluc 826 ± 183   

Ifit1 cap0-globin-Fluc 102 ± 14.5 79 ± 9.3 1.3 ± 0.1 

Ifit1b cap0-MHV-Fluc 690 ± 233   

Ifit1b cap1-MHV-Fluc 101 ± 17.9   

Ifit1b cap2-MHV-Fluc 238 ± 50.1   

Ifit1 cap0-MHV-Fluc 68 ± 9.5   
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As expected, pre-treating cells with IFN greatly reduced viral replication and protein 

expression compared to untreated cells. Therefore, using this as a baseline, Ifit genes could 

be stably knocked-down to see whether this recovers viral infection. This would provide a 

more relevant assay system, since Ifit proteins would be expressed at endogenous levels, 

while avoiding artefacts introduced by transfection and overexpression. 

 

Figure 5-3 Effect of Ifit proteins on coronavirus infection in murine cells. 

A. Schematic of experimental design. 17C1 cells were transfected with Ifit expression plasmids, 

then infected with MHV strain A59 at an MOI of 3 PFU/cell, and harvested at the indicated times. 

B. Immunoblotting of MHV-infected cell lysates after 8 hours. GAPDH is included as a loading 

control for each membrane. C. Immunofluorescence of MHV-infected cells at 8 hours post 

infection, stained for double-stranded RNA (dsRNA, yellow). Cell nulcei are stained with DAPI 

(blue). Data are representative of two independent experiments. 
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5.2.1.2 Ifit1b regulation of host translation 

Since Ifit1b can inhibit translation of cap1 mRNA, it was hypothesised that Ifit1b would be 

capable of inhibiting host translation. To investigate this, a puromycylation labelling 

approach was taken (Schmidt et al., 2009). Puromycin is an antibiotic which mimics the 

structure of aminoacylated tRNA and is thus incorporated into the nascent polypeptide 

chain during elongation, resulting in premature chain termination. When mammalian 

cells are treated with low concentrations of puromycin, it is stochastically incorporated 

towards the C-terminus of nascent polypeptides. Using antibodies raised against 

puromycin, these labelled proteins can be detected by western blotting and 

immunofluorescence microscopy, thereby allowing visualisation of the nascent proteome 

of the treated cell. 

 

Figure 5-4 Ifit1b inhibits a proportion of cellular translation. 

Immunoblot analysis of 17C1 cells transfected with FLAG-Ifit1, FLAG-Ifit1b or FLAG-Ifit1c for 16 

hours and labelled with puromycin for 4 hours. Quantification of puromycin signal intensity, 

normalised to tubulin and shown as a proportion of the empty vector control, is shown under the 

top panel.  
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Murine 17C1 fibroblast cells were transfected with FLAG-tagged Ifit1, Ifit1b or Ifit1c for 16 

hours, before treatment with 5 g/mL puromycin for a further 4 hours. Cell lysates were 

separated by SDS-PAGE and transferred to nitrocellulose membranes, which were stained 

with REVERT total protein stain to ensure an equal quantity of lysate was loaded in each 

well (Figure 5-4). Membranes were then analysed by immunoblotting, using a monoclonal 

antibody against puromycin, which was generated by Dr Jia Lu. Cells overexpressing Ifit1b 

showed a 30% reduction in puromycin incorporation, compared to the empty vector 

control, indicating that Ifit1b can indeed inhibit a proportion of cellular translation (Figure 

5-4). Cells overexpressing Ifit1 and Ifit1c showed similar levels of incorporation, compared 

to empty vector-transfected cells, indicating little effect on cellular translation. However, 

the expression level of Ifit1c was very poor, consistent with its instability in vitro. Therefore, 

without stabilising Ifit1c expression, it still remains unclear whether Ifit1c impacts global 

translation rate.  

 

5.2.2 Ifit1b RNA binding 

To examine the RNA binding activity of Ifit1b in more detail, a toeprinting approach was 

taken. This assay has previously been used to characterise RNA binding by human and 

rabbit IFITs, including cap1 binding by rabbit IFIT1B (Kumar et al., 2014). First, to establish 

that the assay was functional, increasing concentrations of recombinant Ifit1 were 

incubated with cap0 globin-Fluc mRNA and reverse transcription was carried out using a 

fluorescent Cy5-labelled primer. Ifit1 bound to cap0 RNA in a dose-dependent manner, as 

evident by the increase in toeprint signal, with an affinity of 76 nM (Figure 5-5A-B, Table 

5-1). Ifit1 did not produce a toeprint on cap1 RNA.  

 

Ifit1 has also been reported to bind to uncapped RNA with high affinity (Pichlmair et al., 

2011). Therefore, a toeprint assay was also performed on uncapped globin-Fluc RNA, using 

a radioactive 32P-labelled primer for increased sensitivity. Human IFIT5 was included as a 

positive control, since this was previously shown to bind uncapped RNA in this assay 

system (Kumar et al., 2014). However, Ifit1 only produced a very weak toeprint on 

uncapped RNA (Figure 5-5C), supporting much higher affinity for cap0-RNA compared to 

5'ppp-RNA binding. 
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Finally, recombinant Ifit1 or Ifit1b were incubated with cap0 or cap1 globin-Fluc RNA and 

reverse transcription was carried out, using a 32P-labelled primer. As before, Ifit1 produced 

a toeprint on cap0 but not cap1 RNA. However, unexpectedly, Ifit1b was incapable of 

producing a toeprint on cap1 RNA, even at high concentrations (Figure 5-5D). 

 

5.2.2.1 Differential scanning fluorimetry RNA binding assay 

As an alternative approach, a thermal stability assay was developed to examine Ifit1b-RNA 

binding, adapted from the assay described in 3.2.3. Binding to a substrate can increase the 

thermal stability of proteins, resulting in an increase in a melting temperature which 

correlates with its binding kinetics (Niesen et al., 2007). Human IFIT5 is known to change 

conformation upon RNA binding to a more rigid, closed structure (Abbas et al., 2013), 

indicating that RNA binding alters IFIT flexibility. Therefore, it was reasoned that RNA 

 

Figure 5-5 RNA binding by Ifit1 and Ifit1b. 

A. Primer extension analysis of murine Ifit1 bound to cap0-globin-Fluc RNA. The full length (FL) 

and 7 nt-truncated cDNA products produced by Ifit1 binding are indicated. B. Graph showing the 

fraction of RNA bound at increasing Ifit1 concentrations. Curve is representative of three separate 

experiments. Dissociation constants (K1/2,app) and Hill coefficients (h) are listed in Table 5-1. C. 

Primer extension analysis of murine Ifit1 and human IFIT5 on uncapped globin-Fluc RNA. D. 

Primer extension analysis of murine Ifit1 and Ifit1b on cap0 and cap1-globin-Fluc RNA. 
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binding may alter the kinetics of IFIT unfolding, which could then be quantified by 

measuring differences in melting temperature.  

 

For this assay, an RNA oligonucleotide was used, derived from the first 25 nucleotides of 

the human -globin 5'UTR (globin25), which is predicted to be unstructured (Figure 

5-6A). A short RNA was chosen to minimise any non-specific stabilising effects from the 

body of the RNA interacting with the IFIT protein, independently of the 5' end. This RNA 

was transcribed in vitro, using a modified protocol in which the NTP concentrations were 

optimised to reduce spurious T7 transcription products (Triana-Alonso et al., 1995; Rong 

et al., 1998). This involved a 10-fold reduction in the ATP and UTP in the reaction, with a 

concomitant reduction in Mg2+ ions, and a high concentration of both template DNA and 

T7 RNA polymerase. RNA was purified by S75 size exclusion chromatography to remove 

residual nucleotides and small molecule contaminants, following both transcription and 

capping, resulting in highly pure RNA species (Figure 5-6B, left panel). When resolved by 

high percentage denaturing PAGE, capped transcripts were retarded by one nucleotide, 

which confirmed high capping efficiency (Figure 5-6B, right panel). To improve specificity, 

a low concentration of heterogeneous yeast tRNA was included in the binding reaction as 

a blocking agent.  

 

Increasing concentrations of cap0 RNA resulted in a dose-dependent stabilisation of Ifit1, 

as expected, while cap1 RNA did not stabilise Ifit1, but actually slightly reduced Ifit1 

melting temperature (Figure 5-6C,E). Consistent with the translation inhibition assays, 

Ifit1b was stabilised in a dose-dependent manner by cap1-globin25 RNA, indicative of 

binding (Figure 5-6D,F). Stabilisation by cap0-globin25 RNA was lower, supporting 

specific binding to cap1 RNA over cap0. Although this clearly shows RNA binding and 

specificity, accurate interpolation of binding affinity was not possible from these data.  

 

5.2.2.2 Ifit1b RNA binding specificity determinants  

To investigate the mode of RNA binding by Ifit1b, the thermofluor assay system was used 

to examine the effect of point mutations on cap0 and cap1 RNA binding. Mutants were 

purified and normalised by immunoblotting against the C-terminal His8 tag (Figure 5-7A-

B). A two-fold molar excess of cap0 or cap1 RNA was mixed with wildtype or mutant Ifit1b, 

before analysis.  
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First, the N-terminal domain of Ifit1b was investigated (Figure 5-7A). Mutation of a 

conserved tryptophan residue, W144, which is necessary for cap guanosine coordination 

 

 

Figure 5-6 Thermal stability RNA binding assay. 

A. Secondary structure prediction of the first 25 nt of the -globin 5'UTR (globin25) RNA, 

calculated in Mfold (Zuker, 2003). B. Denaturing PAGE analysis of uncapped, cap0 and cap1 

globin25 RNA. C-F. Differential scanning fluorimetry analysis of Ifit1 or Ifit1b with increasing 

concentrations of cap0 or cap1 globin25 RNA. C-D. Melt curves of (C) Ifit1 and (D) Ifit1b with 

increasing concentrations of cap0 (grey) or cap1 (red) globin25 RNA, respectively. E-F. 

Quantification of (C-D), showing the difference in melting temperature (Tm) from the protein 

without RNA. To determine Tm, data were analysed by non-linear regression using the Boltzmann 

equation, y = LL (UL – LL)/(1 + exp(Tm –x)/a) where LL and UL are lower limit and upper limit 

respectively. 
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by human IFIT1 (Abbas et al., 2017a), reduced stabilisation of Ifit1b by cap1 RNA back to 

background levels (Figure 5-7C). However, mutation of the charged residues in the cap-

binding loop, which were hypothesised to inhibit RNA binding, had little effect on cap1 

RNA binding. Mutation of E50 to alanine or glutamine only slightly reduced cap1 RNA 

binding, while mutation of R54 to alanine or leucine reduced stabilisation by cap1 RNA by 

about half. Mutation of both E50 and R54 to the equivalent residues in Ifit1 (glutamine 

and leucine, respectively) restored cap1 binding back to wildtype levels (Figure 5-7C). 

Previously, in human IFIT1, mutation of these residues to alanine only slightly reduced 

cap0-RNA binding (Abbas et al., 2017a), indicating that they contribute to stable cap 

binding but their exact identity is not critical. Together this indicates that Ifit1b likely 

engages the cap using the conserved tryptophan residue but the other face of the cap-

guanosine residue is coordinated non-specifically, in this case by long, polar side-chains 

in the cap-binding loop.  

 

Next, mutations were made within the RNA binding channel to investigate how Ifit1b 

achieves specific cap1 RNA binding. In the structure of human IFIT1, the residues 

immediately proximate to the ribose 2'-hydroxyl group are Y157 and R187 (Figure 5-7D). 

These side-chains may sterically hinder binding to 2'-O-methylated RNA. In murine Ifit1b 

the tyrosine is conserved at position 162, but the arginine residue is substituted for H192. 

Therefore, H192 was investigated for its contribution to RNA methylation sensing, by 

mutation to alanine, arginine or glutamate. Mutation to alanine reduced stabilisation by 

cap1 RNA by half, while mutation to glutamate had no effect on cap1-RNA binding. 

However, H192E increased stabilisation of Ifit1b by cap0 RNA by two-fold, indicating that 

H192 may indeed play a role in discriminating RNA methylation (Figure 5-7C). Mutation 

of H192 to arginine, mimicking human IFIT1 and murine Ifit1, abrogated RNA binding 

entirely. However, Ifit1b H192R was less stable than wildtype Ifit1b and ran faster on SDS-

PAGE despite have the same mass (Figure 5-7B). This indicates that H192R may disrupt 

the correct folding of Ifit1b, accounting for the loss of RNA binding activity.  

 

None of the mutants tested could reverse the cap binding specificity of Ifit1b, to promote 

cap0 binding over cap1. This indicates that other residues, or indeed the overall geometry 

of the RNA binding channel, are necessary for cap1 discrimination. Larger panels of 

mutants, or ideally structural information, will be necessary to determine exactly how 

Ifit1b can sense cap1 over cap0. 
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5.2.3 Structural modelling of rodent Ifit1b-like proteins 

In the absence of structural data, structural modelling of Ifit1b proteins from different 

rodents can give insights into their potential function and mechanism of action. Models 

were generated for mouse, rat and hamster  (Figure 5-8 and Appendix F), using SWISS-

MODEL (Waterhouse et al., 2018), based on the structure of human IFIT1 (PDB: 5W5H) 

 

Figure 5-7 Mutational analysis of Ifit1b RNA binding. 

A. Cap-binding residues in human IFIT1 (PDB: 5W5H), coloured by subdomain, as in Figure 1-4. 

Key side-chains are shown as sticks and their equivalents in murine Ifit1b are labelled in red. B. 

Coomassie-stained SDS-PAGE (upper panel) and anti-His western blot (lower panel) of wildtype 

(WT) and mutant Ifit1b. C. Thermal shift assay of 2 M WT and mutant Ifit1b with 4 M cap0 or 

cap1 RNA, showing the difference in melting temperature (dTm) between protein only and protein 

with RNA. To determine Tm, data were analysed by non-linear regression using the Boltzmann 

equation, y = LL (UL – LL)/(1 + exp(Tm –x)/a) where LL and UL are lower limit and upper limit 

respectively. Data represent the mean and the standard deviation of three experimental replicates. 

D. Structural model of Ifit1b based on the structure of human IFIT1 (PDB: 5W5H), showing the 

position of residues which impact cap0 binding by Ifit1b (cyan) superimposed with human IFIT1 

(yellow), in relation to the 2’-hydroxyl group (2'OH) on the first ribonucleotide (N1). RNA is shown 

as black sticks.  
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(Abbas et al., 2017b). It is important to note that interpretation of structural models is 

constrained by the structure upon which the model is based. While the overall 

architecture of a model can be examined, molecular details, such as the exact position and 

rotations of side-chains, cannot be inferred.  

 

The positively charged RNA binding channel formed in the groove between the N- and C-

terminal domains, which allows IFIT1 and IFIT5 to bind ssRNA, was maintained in all 

rodent Ifit models. Hamster Ifit1-like2 which has a hydrophobic patch at the mouth of the 

channel that may prevent RNA binding (see Appendix F). Murine Ifit1c has bulky side 

chains in the N-terminal domain, which appear to close off the end of the RNA binding 

channel and may prevent cap binding, similar to human IFIT5 (see Figure 1-3, Figure 5-8). 

Murine Ifit1-like proteins (clade A, Figure 5-8) maintained the cap-binding pocket present 

in human IFIT1, but had a slightly negative charge indicating that they may engage the cap 

in a different way to human IFIT1, consistent with their divergent evolutionary trajectories 

(Daugherty et al., 2016). 

 

Murine Ifit1b maintained a similar overall charge profile to human IFIT1, despite the 

substitutions in the cap-binding pocket and RNA binding channel described above. 

However, Ifit1b was found to have an acidic patch in the C-terminal domain (Figure 5-8). 

The positively-charged C-terminus in human IFIT1 engages the RNA substrate (Abbas et 

al., 2017a; Johnson et al., 2018) and is necessary for optimal RNA binding (Kumar et al., 

2014). Therefore, an acidic C-terminal domain could electrostatically interfere with RNA 

binding, which may explain why Ifit1b struggles to bind structured mRNAs and fails to 

saturate inhibition of translation even on unstructured targets. It may also account for the 

lack of a toeprint when Ifit1b was analysed by primer extension inhibition, since without 

stabilisation by the C-terminal domain, Ifit1b may not bind strongly enough to resist 

displacement by the reverse transcriptase. Mutating this patch to reverse its charge could 

therefore be used to improve Ifit1b RNA binding affinity.  

 

5.3 Conclusions 

In this chapter, the activity of murine Ifit1b was characterised in vitro and in cells. Ifit1b 

was found to have remarkable specificity for cap1-mRNA over cap0 or cap2, and inhibited 

translation of cap1 mRNA at nanomolar concentrations. Previously IFIT proteins have 
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been identified which preferentially bind to uncapped RNA (Abbas et al., 2013; Feng et al., 

2013; Katibah et al., 2013; Kumar et al., 2014) or cap0 RNA (Habjan et al., 2013; Kumar et 

al., 2014; Abbas et al., 2017a). Rabbit IFIT1B has been described to bind both cap0 and cap1 

RNA very strongly, with slightly higher affinity for cap0 (Kumar et al., 2014). Murine Ifit1b 

is the first example of an IFIT protein which binds very poorly to cap0 RNA, but strongly 

to cap1 RNA.  

 

Figure 5-8 Structural modelling of rodent Ifit proteins. 

Structural models of B. murine Ifit1 C. murine Ifit1b and D. murine Ifit1c, based on A. the X-ray 

crystal structure of human IFIT1 (PDB: 5W5H). Models are coloured by surface electrostatic 

potential from negative (-10 kTe-1; red) to positive (+10 kTe-1; blue), via white (hydrophobic), 

generated in APBS using PDB2PQR (Dolinsky et al., 2004). White asterisks indicate where 

residues may occlude the RNA binding channel. Red arrows indicate acidic patches, which could 

interfere with RNA binding.  
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This distinction between cap0 and cap1 RNA is not made by other cap-binding proteins. 

Mammalian eIF4E, for example, binds to cap0 and cap1 mRNAs with comparable affinity 

(Niedzwiecka et al., 2002; Kumar et al., 2014). Interestingly, eIF4E from trypanosomatid 

parasites, which is larger than mammalian eIF4E, does sense 2'-O-methylation on host 

mRNAs. The structure of Trypanosoma cruzi eIF4E5 in complex with cap4 mRNA, a 

methylation status unique to trypanosomes in which the first 4 nucleotides are 2'-O-

methylated, shows specific hydrophobic contacts between the protein and the RNA 

methyl groups, accounting for the increased affinity for cap4 over cap0 RNA (Reolon et al., 

2019). In these parasites, cap4 methylation is linked to high translation efficiency 

(Zamudio et al., 2009), presumably by increasing initiation or recycling rates.  

 

The mechanism of cap1 discrimination by Ifit1b remains uncertain. It is possible that, like 

trypanosome eIF4E, specific contacts are made with the methyl group itself which 

stabilises the Ifit1b-RNA complex, allowing preferential binding to cap1 over cap0. While 

no mutants were identified here which could switch the cap binding specificity of Ifit1b 

from cap1 to cap0, three mutants were identified here which slightly increased cap0 RNA 

binding: H192E, E50A and E50Q/R54L.  

 

Histidine-192 is predicted to be in close proximity to the 2'-O-methyl group on the first 

ribose (Figure 5-7D). In human IFIT1, this residue is an arginine which reaches up to 

coordinate the triphosphate moiety with its positively-charged head group, while sterically 

occluding cap1 binding with the base of the side chain (Figure 5-7A,D). Since R187 is 

critical for triphosphate binding in human IFIT1, mutation of this residue completely 

abrogates cap0-RNA binding (Abbas et al., 2017a). However in Ifit1b, H192 is likely not 

involved in triphosphate binding since it could be mutated to alanine without affecting 

cap1-RNA binding. Mutation to arginine, however, completely disrupts RNA binding, 

probably by interfering with stable folding. Structural modelling of Ifit1b positions charged 

side chains R155 and D188 in close proximity to H192, which may clash with the 

introduction of an arginine residue. Interestingly, R155 was modelled close to the 

triphosphate moiety and may contribute to its coordination in a way analogous to R187 in 

human IFIT1 (Figure 5-7D).  

 

E50 and R54 reside in the cap-binding loop, distal to the first ribonucleotide (Figure 5-7E). 

Therefore, their contribution to cap1 sensing is unclear. Previously, mutation of an N-
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terminal glutamate residue in human IFIT5 was found to alter cap-RNA binding 

specificity, promoting cap1 binding (Katibah et al., 2014). Therefore, it is possible that 

mutation of charged residues in the N-terminal domain may alter the conformation of the 

RNA binding pocket and indirectly affect RNA binding specificity.  

 

The binding affinity of Ifit1 for cap0-RNA was determined by primer extension inhibition, 

and was comparable to the affinity of human IFIT1 for cap0-RNA determined in an 

equivalent assay system (Kumar et al., 2014; Fleith and Mears et al., 2018) (Appendix E, 

Table 3-2). The Hill coefficient for Ifit1 binding to cap0 RNA was 1.4, indicating a slight 

positive cooperativity in binding. Human IFIT1 was previously found to have Hill 

coefficients of 1.6 (Kumar et al., 2014) and 2.8 (Fleith and Mears et al., 2018) on comparable 

substrates, indicating moderate to strong positive binding cooperativity. As such, RNA 

binding by one molecule in the IFIT1 homodimer may promote binding by the second 

molecule.  

 

While the toeprint assay has been valuable in determining binding affinities for different 

IFIT family members, the stringency of the technique has its limitations. For example, 

murine Ifit1, which has high reported affinity for uncapped RNA (Pichlmair et al., 2011), 

produced only a weak toeprint on uncapped globin-Fluc mRNA. Human IFIT5 was capable 

of forming a stronger toeprint but still did not saturate binding, despite very high affinity 

for 5'ppp-RNA (Abbas et al., 2013), consistent with a previous report (Kumar et al., 2014). 

It is possible that IFIT proteins bound to uncapped RNA may be more susceptible to 

displacement by reverse transcriptase, compared to binding capped RNA.  

 

Ifit1b did not form a toeprint on cap1 RNA when assayed by primer extension inhibition. 

Ifit1b had a tendency to precipitate in buffers containing magnesium salts, used in both 

the translation and primer extension assays. The induction of protein aggregation by 

divalent cations, particularly Mg2+, has been documented (Silman et al., 1965; Zhu and 

Damodaran, 1994; Haque and Aryana, 2002). Therefore, under these conditions, Ifit1b may 

be artificially destabilised, preventing accurate determination of RNA binding. To 

circumvent this problem, a thermal stability assay was developed to quantify RNA binding, 

using highly pure RNA oligonucleotides with different 5' caps. In this assay, Ifit1b was 

shown to be stabilised by cap1 RNA in a dose-dependent manner, but was not stabilised 

to the same extent by cap0 RNA, supporting specific cap1 binding.  
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While quantification of binding affinity was not possible using this assay, since it does not 

give information about the proportion of unbound RNA and protein, it allowed direct 

comparison of a panel of Ifit1b mutants in parallel, since it is performed in a 96-well plate 

format. Therefore, provided sufficient substrate can be generated, this assay can be 

adapted for high throughput screening of binding mutants. This has the added benefit of 

simultaneously identifying destabilising mutations, which can be easily identified by 

drastic decreases in melting temperature. 
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6 MURINE IFIT COMPLEXES 

6.1 Background 

6.1.1 Murine Ifit complexes 

In chapter 3, the importance of heterocomplex formation was demonstrated for the 

regulation of human IFIT1. As discussed in chapter 3, in humans IFIT1, IFIT2 and IFIT3 

form a multifunctional heterotrimeric complex, in which IFIT3 is a central scaffold which 

regulates the activity and stability of both IFIT1 and IFIT2 (Stawowczyk et al., 2011; Fleith 

and Mears et al., 2018; Johnson et al., 2018). Since Ifit1, Ifit2 and Ifit3 are conserved in mice, 

an analogous complex was thought to also form in murine cells (Pichlmair et al., 2011). 

 

Mass spectrometry co-precipitation experiments demonstrated that murine Ifit1 does not 

bind to Ifit2 or Ifit3 (Habjan et al., 2013). Rather, Ifit1 precipitated peptides corresponding 

to the uncharacterised protein Ifit1c. Later, in vitro pulldown assays showed that neither 

human IFIT1 nor murine Ifit1 could co-precipitate murine Ifit3 (Johnson et al., 2018). In 

mice and other small rodents, Ifit3 has undergone a 3' deletion, likely resulting from an 

unsuccessful genetic recombination event (Daugherty et al., 2016). Thus, Ifit3 lacks the C-

terminal YExxL motif to allow Ifit1 binding (Figure 6-1). This truncation coincides with the 

loss of IFIT1 and IFIT5 orthologues from these rodents (see Figure 5-1). As such, loss of 

IFIT1 and IFIT5 may be coincident with a restructuring of the IFIT complex.  
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The C-terminal YExxL interaction motif, and many of the surrounding residues, is 

conserved in murine Ifit1, Ifit1b and Ifit1c (Figure 6-1). This suggests that these Ifit proteins 

in mouse should form homodimers, like human IFIT1 (Abbas et al., 2017b), but may also 

be capable of heterodimerisation. Whether Ifit heterocomplexes can form in mice, and 

whether these complexes have any functional significance, has not been examined. 

 

6.1.2 Aims 

The aim of this chapter is to examine murine Ifit-Ifit interactions, to determine which 

complexes can form and what impact heterocomplex formation has on Ifit function. 

Heterocomplexes will be examined biochemically, to determine the impact of protein-

protein interactions on the affinity and specificity of Ifit1 or Ifit1b for different mRNAs. 

Complexes will also be examined in terms of their stability both in vitro and in cells, to 

 

Figure 6-1 Sequence alignment of human IFIT and murine Ifit C-terminal domains. 

A. Sequences aligned in MUSCLE, showing the YExxL interaction motif (red box), which mediates 

interaction between human IFIT1 and IFIT3 (uppercase labels), and its conservation in murine Ifit 

proteins (lowercase labels). B. Structure of human IFIT1 (red) in complex with a C-terminal 

fragment of IFIT3 (IFIT3CTD, grey) (PDB: 6C6K), demonstrating the position of the emboldened 

residues from (A). 
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determine whether one of the murine Ifit proteins can act as a functional analogue of 

human IFIT3 to stabilise the expression of another. Together, this will begin to reveal how 

murine Ifit proteins are regulated, what their role is in infection, and how this differs from, 

or potentially parallels, the human IFIT family.  

 

6.2 Results 

6.2.1 Oligomeric state of murine Ifits in solution. 

Murine Ifit1 and Ifit1b were examined to determine their oligomeric state. When analysed 

by size exclusion chromatography (SEC), Ifit1 and Ifit1b eluted at 12.4-12.8 mL (Figure 

6-2A-B), the expected elution volume for a ~100 kDa, dimeric species, when compared to 

a BSA standard. Dimeric human IFIT1 was previously shown to elute at ~12.5 mL, while 

monomeric mutants eluted at ~14.5 mL, on an equivalent column (Abbas et al., 2017b). A 

mutant of Ifit1b was generated which contained mutations in the C-terminal domain to 

disrupt homodimerisation (M449E/L465E, Ifit1b-ML). Ifit1b-ML eluted at 14.4 mL, the 

expected elution volume of a monomer. This indicates that wildtype Ifit1b, and by 

inference Ifit1, is indeed dimeric in solution (Figure 6-2B).  

 

To confirm this, wildtype Ifit1b was examined by SEC coupled with multi angle light 

scattering (MALS). SEC-MALS determines the molecular weight of protein species as they 

elute off the gel filtration column (Some et al., 2019). The molecular weight of Ifit1b in 

solution was 110 kDa, which corresponds to a dimer (Figure 6-2C-E). This was found at 0.5 

mg/mL and 2 mg/mL, indicating that Ifit1b dimers are quite stable, since they neither 

dissociate at low concentrations nor aggregate at high concentrations. By contrast, human 

IFIT1 was previously shown to homodimerise in a concentration-dependent manner and 

typically started to dissociate at 0.5 mg/mL (Abbas et al., 2017b; Fleith and Mears et al., 

2018). As such, it is likely that Ifit1 and Ifit1b both exist as dimeric species in solution. Ifit1c, 

and its truncations, typically eluted in the void fraction when purified by SEC, indicating 

that Ifit1c forms aggregates, consistent with its poor stability. 

 

6.2.2 Co-precipitation of murine Ifit proteins 

Since murine Ifit1 and Ifit1b eluted at very similar volumes when analysed by SEC, it was 

not possible to differentiate homodimeric and heterodimeric species using this technique. 
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Therefore, to investigate which murine Ifit proteins can interact, an in vitro co-

precipitation assay was used, similar to that employed by Johnson et al (2018) for the 

interrogation of human IFIT interactions. Equimolar MBP-tagged bait and His-tagged prey 

proteins were incubated together at 30˚C for one hour, before precipitation on amylose 

resin. Ifit3 was included as a negative control in each experiment and, consistent with a 

recent report (Johnson et al., 2018), did not co-precipitate with any of the baits tested.  

 

MBP-Ifit1 precipitated both Ifit1 and Ifit1b, while MBP-Ifit1b precipitated both Ifit1b and 

Ifit1 (Figure 6-3A-B). This confirms that, not only can these proteins interact with 

themselves, likely as homodimers, but they can also heterodimerise. MBP alone did not 

 

Figure 6-2 Murine Ifit1 and Ifit1b are homodimeric in solution. 

A. SDS-PAGE of recombinant Ifit1 and Ifit1b. B. Gel filtration analysis of Ifit1 (black), Ifit1b (red) 

and Ifit1b M449E/L465E (Ifit1b-ML, dashed red line), on a Superdex 200 Increase 10/300 column. 

For comparison, the peak maximum for each UV trace was set to 1. C. Recombinant Ifit1b inputs 

for size exclusion chromatography (SEC) with inline multi-angle light scattering (MALS) analysis. 

D-E. SEC-MALS of Ifit1b inject at the indicated concentrations on a Superdex 200 Increase 10/300 

column. Normalized differential refractive index is shown as a black line on the left y-axis. 

Calculated molecular masses (kDa) of eluting species are shown as blue or red lines on the right 

y-axis. 
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pull down any Ifit proteins tested, except for a trace amount of Ifit1 (Figure 6-3A-B). Since 

Ifit1 had a tendency to precipitate during this assay, this likely represents nonspecific 

binding of Ifit1 to the MBP or to the beads themselves. 

 

To test whether Ifit1 or Ifit1b could interact with Ifit1c, full-length MBP-tagged Ifit1c was 

first used as bait. Despite the degradation products present in the recombinant MBP-Ifit1c, 

Ifit1b was clearly visible in the precipitate, indicative of an interaction (Figure 6-3C). 

However, owing to the presence of a contaminant band in Ifit1c at the same molecular 

weight as Ifit1, this interaction was more difficult to confirm. To circumvent this, a 

 

Figure 6-3 Murine Ifit1b-like proteins interact with each other but not with Ifit3. 

A-C, E. Co-precipitation of Ifit1, Ifit1b, Ifit1c (full-length or C-terminal domain, CTD), and Ifit3. 

MBP-tagged bait, or MBP alone, was incubated with prey proteins (lane 1) before binding to 

amylose resin. Unbound proteins were washed away (lanes 2-5) and bound proteins remained on 

the beads (lane 6). Bound proteins were eluted in maltose-containing buffer (lane 7). For clarity, 

in panel (C) bait and prey proteins are also shown separately (lanes A and B). D. Model of Ifit1c 

based on human IFIT1 (PDB: 5W5H) generated in SWISS-MODEL, with the C-terminal domain 

(CTD) in yellow. 
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truncated MBP-tagged Ifit1c construct was generated, containing the three most C-

terminal TPRs (MBP-Ifit1cCTD, amino acids 338-470, Figure 6-3D), which allowed 

purification of clean recombinant Ifit1c for use as bait. Ifit1 and Ifit1b both precipitated 

with MBP-Ifit1cCTD, while Ifit3 did not. Therefore, Ifit1c can specifically form complexes 

with both Ifit1 and Ifit1b via its C-terminal domain (Figure 6-3E).  

 

6.2.2.1 Competitive co-precipitation of Ifit proteins 

Since Ifit1, Ifit1b and Ifit1c can all interact with one-another, presumably via the same 

motif, it is unclear whether one complex will form preferentially over the others. As such, 

the relative affinity of these interactions was investigated by competitive co-precipitation 

experiments. MBP-tagged Ifits were used as bait, and incubated with prey protein at 30 ˚C 

before binding to amylose resin, as previously. Beads were then washed with increasing 

concentrations of a competitor prey protein, with the expectation that higher affinity 

interactions should displace lower affinity ones. This may result in one prey being replaced 

by the other, or both preys washing off as a complex together.  

 

When Ifit1b partially displaced Ifit1 bound to MBP-Ifit1, while Ifit1b was unable to displace 

Ifit1 bound to MBP-Ifit1b (Figure 6-4A). Similarly, Ifit1 could partially displace Ifit1b bound 

to MBP-Ifit1b, while Ifit1 could not displace a complex of MBP-Ifit1 and Ifit1b (Figure 6-4B). 

Together, this indicates that a heterocomplex of Ifit1 and Ifit1b is preferable over a 

homocomplex. Ifit1 bound stably to MBP-Ifit1cCTD and was not displaced by increasing 

concentrations of Ifit1b. However, Ifit1b was partially displaced by Ifit1 when the reciprocal 

experiment was performed (Figure 6-4C). This indicates that the interaction between Ifit1c 

and Ifit1 may be slightly stronger than between Ifit1c and Ifit1b. However, in the previous 

experiments with MBP only, a little Ifit1 co-precipitated non-specifically with the beads, 

possibly due to precipitation of Ifit1 during the assay.   

 

Therefore, to investigate this further, MBP-Ifit1cCTD was incubated together with both Ifit1 

and Ifit1b, at different temperatures. When incubated together on ice MBP-Ifit1cCTD 

coprecipitated both Ifit1 and Ifit1b, to a similar extent (Figure 6-4D). Since this interaction 

occurred even at low temperatures, it indicates that heterocomplexing is preferential and 

high affinity. Slightly more Ifit1 coprecipitated when the proteins were incubated at 30 ˚C, 

which may be indicative of aggregation, rather than true preferential interaction (Figure 
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6-4D). Therefore, these experiments indicate that Ifit1c can interact with both Ifit1 and 

Ifit1b to a similar extent, and these interactions are preferential over homodimerisation.  

 

6.2.3 Stability of Ifit complexes in vitro 

To investigate whether these interactions were functionally significant, the thermal 

stability of the Ifit proteins and complexes was analysed by differential scanning 

fluorimetry. Full length Ifit1c could not be used due to the high degree of contaminants 

present. Therefore, the C-terminal fragment of Ifit1c was analysed. Ifit1cCTD was expressed 

without an MBP tag, since MBP is very stable and would interfere with the melt curve 

 

 

Figure 6-4 Ifit proteins preferentially heterooligomerise. 

A-C. Co-precipitation of Ifit1, Ifit1b and the C-terminal domain of Ifit1c (Ifit1cCTD). MBP-tagged 

bait was incubated with prey protein (lane 1) before binding to amylose resin. Unbound proteins 

were washed away (lane 2) and resin was washed with an increasing concentration of competitor 

prey protein (lanes 3-5). Resin was washed again (lane 6) before elution in maltose-containing 

buffer (lane 7). D. Co-precipitation of Ifit1, Ifit1b and MBP-Ifit1cCTD (lane 1), incubated together at 

4 ˚C (left panel) or at 30 ˚C (right panel) before binding to amylose resin. Unbound proteins were 

washed away (lanes 2-5) and bound proteins remained on the beads (lane 6). Bound proteins were 

eluted in maltose-containing buffer (lane 7). 
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analysis, though the yield and purity of Ifit1cCTD was poorer without the tag (Figure 6-5A). 

Ifit proteins were incubated alone or in combination for 30 minutes on ice, then assayed 

for thermal stability, as previously. 

 

Murine Ifit proteins alone were typically unstable, with melting temperatures at or around 

physiological temperature (Figure 6-5 and Table 6-1). When Ifit1 and Ifit1b were mixed 

together, the melt curve was intermediate between the melting temperatures of the 

constituent proteins, indicating that this interaction does not provide any stability to 

either protein (Figure 6-5B). Ifit1cCTD alone was very unstable and, in most cases, did not 

produce a quantifiable melt curve at all. However, when either Ifit1 or Ifit1b was mixed 

with increasing concentrations of Ifit1cCTD, melting temperature increased by up to 3 ˚C 

(Figure 6-5C-D).  

 

 

Figure 6-5 Heterocomplexing increases Ifit stability in vitro. 

A. SDS-PAGE of Ifit proteins used for thermal stability analysis. B-D. Differential scanning 

fluorimetry of Ifit proteins alone or in combination, as indicated. In (C) and (D), lighter shades of 

red indicate increasing concentrations of Ifit1cCTD. Results are representative of at least two 

experimental replicates. CTD, C-terminal domain. Data are representative of at least two 

experimental repeats. 
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6.2.3.1 Ifit complex expression in cells  

Ifit heterocomplexes were examined in mouse cells, to determine if co-expression of 

different murine Ifit proteins can stabilise their expression, as previously observed for 

human IFIT complexes. Murine 17C1 cells were seeded onto coverslips, then transfected 

with expression plasmids for eGFP, eGFP-Ifit1b or FLAG-Ifit1c, or co-transfected with eGFP 

or eGFP-Ifit1b and FLAG-Ifit1c (Figure 6-6A). After 24 hours, cells on coverslips were 

washed and stained for FLAG, as described in section 2.5, while surrounding cells from the 

same well were harvested for western blotting. Plasmids expressing an eGFP-Ifit1 fusion 

protein were also generated but, surprisingly, did not express in either murine or human 

cells, despite having the same plasmid backbone. The reason for this is unclear.  

 

When eGFP-Ifit1b was expressed alone, it showed diffuse cytoplasmic localisation, typical 

of IFIT proteins (Guo et al., 2000a; Huang et al., 2008). However, when FLAG-Ifit1c was 

expressed alone, it often showed punctate staining throughout the cytoplasm, with few 

cells showing diffuse localisation (Figure 6-6C). When FLAG-Ifit1c was co-transfected with 

eGFP-Ifit1b, both proteins were expressed in the cytoplasm with a similar localisation 

pattern. In some cells, Ifit1c no longer formed puncta, but instead showed a more diffuse 

localisation, similar to eGFP-Ifit1b (Figure 6-6D, see Appendix G). This apparent 

relocalisation did not occur in cells co-transfected with FLAG-Ifit1c and eGFP.  

 

However, co-transfection efficiency was very low, so it was rare to observe cells expressing 

both proteins to a high level. Therefore, co-expression plasmids were generated,  

comprising eGFP-Ifit1b followed by FLAG-tagged Ifit1c in the same open reading frame, 

Table 6-1 Melting temperatures of Ifit proteins and complexes. 

Melting temperatures (Tm) were interpolated from data presented in Figure 6-5. Data were 

analysed by non-linear regression using the Boltzmann equation, y = LL (UL – LL)/(1 + exp(Tm 

–x)/a) where LL and UL are lower limit and upper limit respectively.  

 

Protein or complex Tm (°C) 

Ifit1 41.9 

Ifit1 + Ifit1cCTD 44.4 

Ifit1b 38.3 

Ifit1b + Ifit1cCTD 41.0 

 

 

 



On the expression, function and regulation of the murine Ifit family of antiviral RNA-binding proteins. 

120  Harriet V Mears – September 2019 

separated by the 2A stop-go sequence from thosea asigna virus (Liu et al., 2017) (Figure 

6-6A). This allows stoichiometric co-expression of both proteins, since the stop-go 

sequence prompts the ribosome to skip a peptide bond during elongation (Donnelly et al., 

2001; Atkins et al., 2007). Ifit1c in these constructs was either wildtype, or contained point 

 

Figure 6-6 Ifit1b and Ifit1c co-localise in murine cells. 

A. Schematic of cellular expression constructs for Ifit fusion proteins. B-E. Immunofluorescence 

microscopy of murine 17C1 cells, 24 hours after transfection with (B) control plasmids, (C) eGFP-

Ifit1b or FLAG-Ifit1c expression plasmids, (D) eGFP or GFP-Ifit1b with FLAG-Ifit1c or (E) eGFP-

Ifit1b-FLAG-Ifit1c coexpression plasmids. T2A, thosea asigna virus 2A stop-go sequence. WT, 

wildtype. YL, Y456E/L460E mutant Ifit1c. Asterisks indicate where expression plasmids were 

cotransfected, while daggers show where proteins were co-expressed from a single transfected 

plasmid.   
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mutations in the C-terminal YxxxL motif, which should disrupt interaction with other Ifit 

proteins (YL).  

 

When wildtype FLAG-Ifit1c was co-expressed with eGFP-Ifit1b, both proteins colocalised 

in the cytoplasm and very few cells showed punctate staining for Ifit1c  (Figure 6-6E). Ifit1c 

expression also appeared to be higher, evident from the brighter fluorescence in the red 

channel (see Appendix G). When YxxxL interaction mutant FLAG-Ifit1c was co-expressed 

with eGFP-Ifit1b, cells still expressed both signals in the cytoplasm. However, co-

localisation of the two signals was not as consistent as for wildtype Ifit1c and many cells 

still showed punctate FLAG staining (Figure 6-6D). This supports the observation that 

interaction between Ifit1b and Ifit1c may relocalise Ifit1c from cytoplasmic puncta. Ifit1c 

signal was also generally lower when the YxxxL motif was mutated, indicating that 

expression may be reduced in these cells, compared to wildtype Ifit1c co-expressed with 

Ifit1b.  

 

To test whether co-expression indeed affects steady state Ifit expression, cell lysates from 

the same experiments were examined by immunoblotting. FLAG-Ifit1c alone was poorly 

expressed, indicative of instability at the protein level (Figure 6-7), as was previously 

observed for human IFIT1 (see Figure 3-2). When FLAG-Ifit1c was co-transfected with 

eGFP, both proteins were expressed more poorly than when transfected alone, consistent 

with the poor transfection efficiency observed in microscopy. FLAG-Ifit1c expression was 

slightly higher when co-transfected with eGFP-Ifit1b, relative to co-transfection with 

eGFP.  

 

Ifit1c expression was strongly enhanced when co-expressed with eGFP-Ifit1b from the same 

plasmid (Figure 6-7). Expression of wildtype Ifit1c was 2.5-fold higher upon co-expression 

with Ifit1b. eGFP-Ifit1b expression was not significantly affected by co-expression with 

wildtype Ifit1c. When the YxxxL motif in Ifit1c was mutated, Ifit1c-YL expression was 

similar to Ifit1c expression without Ifit1b (Figure 6-7), indicating that interaction between 

Ifit1b and Ifiit1c is necessary for stabilisation. Expression of eGFP-Ifit1b was slightly 

reduced upon co-expression with Ifit1c-YL, when compared to co-expression with wildtype 

Ifit1c.   
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6.2.4 Translation inhibition by Ifit complexes  

To determine the activity of Ifit1c-containing complexes, the translation inhibition activity 

of purified complexes was analysed in vitro. Increasing concentrations of Ifit1 or Ifit1b were 

incubated with cap0 or cap1 Fluc reporter mRNAs (Figure 6-8), respectively, in a reaction 

containing RRL with or without the addition of 500 nM MBP-Ifit1cCTD. Luciferase signal 

 

Figure 6-7 Ifit1b enhances Ifit1c expression in murine cells. 

A. Schematic of cellular expression constructs for Ifit fusion proteins. B. Western blot analysis of 

murine 17C1 cells transfected with Ifit1b expression plasmids, with or without coexpression of 

Ifit1c, after 24 hours. T2A, thosea asigna virus 2A stop-go sequence. WT, wildtype. YL, 

Y456E/L460E mutant Ifit1c. Asterisks indicate where expression plasmids were cotransfected, 

while daggers show where proteins were co-expressed from a single transfected plasmid. 

Quantification of GFP or FLAG signal is shown under each panel, normalised to GAPDH and 

expressed as fold increase over eGFP-Ifit1b or FLAG-Ifit1c alone. Data represent the mean ± the 

standard error of two biological repeats.  

  



Chapter 6: Murine Ifit complexes 

Harriet V Mears – September 2019   123 

was measured, as previously, and normalised to the buffer only or MBP-Ifit1cCTD only 

condition for each titration series, to eliminate any effect of MBP-Ifit1cCTD alone on 

translation.  

 

Inclusion of Ifit1cCTD in the translation reaction decreased the concentration of Ifit11 

required to cause a 50% decrease in translation (IC50) from cap0 MHV-Fluc reporter 

mRNA by 2-fold (Figure 6-8A and Table 6-2). Similarly, addition of Ifit1cCTD decreased the 

IC50 of Ifit1b on cap1 MHV-Fluc mRNA by 2-fold (Figure 6-8B and Table 6-2). Ifit1cCTD also 

enhanced translation inhibition by Ifit1b at higher concentrations, allowing almost 

complete inhibition of translation. However, when Ifit1cCTD was added to a translation 

reaction with human IFIT1, inhibition of cap0 MHV-Fluc mRNA was similar to human 

IFIT1 alone (Figure 6-8C and Table 6-2). When human IFIT3 was added to the RRL master 

mix, human IFIT1 activity was enhanced, as expected. Together this indicates that Ifit1c 

can specifically act as a cofactor for both Ifit1 and Ifit1b to enhance their translation 

inhibition activity. 

 

Figure 6-8 Ifit1c enhances translation inhibition by Ifit1 and Ifit1b in vitro. 

A. Schematic of the mRNA 5' cap and B. model RNAs used for translation assays. C-E. In vitro 

translation of MHV-Fluc reporter mRNAs in RRL with increasing concentrations of (C) Ifit1, (D) 

Ifit1b or (E) human IFIT1, in the presence or absence of 500 nM Ifit1cCTD. Data were normalised to 

luciferase activity in the absence of IFIT protein and shown as the mean ± the standard error of 

three experiments.  
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The effect of Ifit1c on Ifit1b activity was also investigated in murine cells, by overexpression 

followed by infection with mouse hepatitis virus. However, as discussed in chapter 5, the 

overexpression system is not optimal for studying the influence of Ifit proteins on viral 

infection, since transfection or overexpression appeared to reduce the susceptibility of 

17C1 cells to infection. Previously, Johnson et al. (2018) used an inducible expression 

system to determine the effect of IFIT3 on the ability of IFIT1 to restrict viral infection. A 

similar system could be employed with Ifit1c, since it would allow fine-tuned protein 

overexpression and, as such, allow expression at levels which still permit viral infection. 

This would also circumvent the need for transfection entirely, which is poor in 17C1 cells, 

allowing a more homogeneous population of cells to be studied. Ideally, gene editing could 

be used to introduce mutations into endogenous Ifit genes, to disrupt heterodimerisation. 

While potentially laborious, this would give the clearest indication of the effect of Ifit 

complexes during infection. 

 

6.3 Conclusions 

In this chapter, murine Ifit complexes were examined in terms of their composition and 

activity. Ifit1, Ifit1b and Ifit1c all share a C-terminal YExxL motif and were found to interact 

with one another both in vitro and in cells. In vitro, Ifit1c was shown to enhance stability 

Table 6-2 Translation inhibition by Ifit complexes.  

Concentration of Ifit that reduced translation from the reporter RNA by 50% (IC50) ± standard 

error. Mouse Ifit proteins are shown in lowercase while human IFIT1 is shown in uppercase. To 

calculate the Ifit concentration at which translation was inhibited by 50%, data were fit to 

[Inhibitor] versus normalised response curve (Y = 100)/(1 + (XHillSlope)/(IC50HillSlope)) using 

the least squares method in GraphPad Prism. IC50 values are listed in Table 6-2. 

Ifit RNA IC50 (nM Ifit in RRL) p-value (Ifit only vs Ifit1cCTD) 

Ifit1 cap0-MHV-Fluc 44.36 ± 6.7 - 

Ifit1 + Ifit1cCTD cap0-MHV-Fluc 22.45 ± 2.1 0.0015 

Ifit1b cap1-MHV-Fluc 115.9 ± 21.1 - 

Ifit1b + Ifit1cCTD cap1-MHV-Fluc 56.52 ± 5.7 0.0012 

IFIT1 cap0-MHV-Fluc 49.84 ± 7.3 - 

IFIT1 + Ifit1cCTD cap0-MHV-Fluc 55.02 ± 7.1 0.5044 
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of Ifit1 and Ifit1b, while Ifit1b stimulated Ifit1c expression in murine cells. Ifit1c was also 

found to act as a cofactor for Ifit1 and Ifit1b, promoting translation inhibition in vitro. 

 

As discussed in chapter 3, in humans IFIT3 stabilises IFIT1 and enhances its RNA binding 

activity, possibly by altering the flexibility of IFIT1 via interactions between the long C-

terminal domain of IFIT3 and the pivot domain of IFIT1. In mice, Ifit1c lacks an extended 

C-terminal domain (see Figure 6-1), but nevertheless enhanced stability and translation 

inhibition of both Ifit1 and Ifit1b, acting in an analogous fashion to human IFIT3. Structural 

modelling predicts that Ifit1c has a positively charged C-terminal domain, which is not 

present in human IFIT3 (Figure 6-9). In murine Ifit complexes, this domain in Ifit1c may 

provide an additional RNA binding surface, increasing the avidity of binding by Ifit1 or 

Ifit1b.  

 

In humans, because of the long C-terminal domain in IFIT3, the IFIT1:IFIT3 interaction 

interface has a larger buried surface area than IFIT1 homodimers (Abbas et al., 2017b; 

Johnson et al., 2018). As such, interaction between IFIT1 and IFIT3 is entropically 

favourable compared to IFIT1 homodimerisation, driving the high affinity between the two 

proteins. By contrast, the C-terminal domains of murine Ifit proteins are similar in length 

and are well conserved that the amino acid level (see Figure 6-1). Therefore, it remains to 

be determined why Ifit1, Ifit1b and Ifit1c have a propensity to heterodimerise, rather than 

remain as homodimers. A more complete structural understanding of both the human and 

murine IFIT complexes will be necessary to answer these questions fully. 

 

Recently, mouse Ifit3 was shown to not interact with human IFIT1 (Johnson et al., 2018), 

since it is C-terminally truncated and lacks the YExxL interaction motif, a finding that was 

recapitulated here. That study also found that a chimeric protein in which the C-terminal 

domain of human IFIT3 was added to the end of murine Ifit3 could interact with human 

IFIT1, but could not interact with murine Ifit1 (Johnson et al., 2018). Therefore, while this 

motif appears necessary for interaction between IFIT proteins, it is not sufficient to 

mediate that interaction. Consistently, here it was found that the YExxL motif itself is not 

sufficient for cofactor activity, since the translation inhibition by human IFIT1 was not 

enhanced by Ifit1c in vitro. Therefore, interactions with surrounding residues, or the 3D 

presentation of the motif, may be important for specific IFIT-IFIT interactions within 

species or lineages. Mutants in and around the YExxL motif will be necessary to confirm 
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this motif is important for interaction and evaluate which other residues contribute to 

stabilising murine Ifit heterocomplexes. 

 

Like human IFIT complexes, interaction between murine Ifit proteins was shown to 

increase their thermal stability, suggesting heterocomplexing is a thermodynamically 

preferable state. Ifit1c was the most unstable murine Ifit tested and, as discussed in chapter 

4, the full-length protein was recalcitrant to recombinant expression; even the C-terminal 

 

Figure 6-9 Murine Ifit heterocomplexes. 

A. Summary of murine Ifit heterocomplexes and the effect of heterocomplex formation on Ifit 

stability and activity, with human IFIT complexes for comparison. B-C. Structural models of (B) 

human IFIT3 based on human IFIT2 (PDB: 4G1T) or (C) murine Ifit1c based on human IFIT1 (PDB: 

5W5H), coloured by electrostatic potential from negative (-10 kTe-1; red) to positive (+10 kTe-1; 

blue), via hydrophobic (white), generated in APBS using PDB2PQR (Dolinsky et al., 2004).  
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domain in isolation was challenging to express and purify. This is especially surprising 

given that Ifit1b, with which Ifit1c shares 87% similarity, expresses very well in bacteria 

and can be prepared to very high concentration and purity. Ifit1c expression in murine 

cells was significantly enhanced by co-expression with Ifit1b, only when the C-terminal 

YExxL motif was intact. Instability in the absence of a binding partner may be a mechanism 

to regulate Ifit1c expression at the protein level, in contrast to Ifit1b which is regulated at 

the mRNA level.  

 

Stabilising Ifit1c expression in this way opens up new avenues for interrogating its 

function. Constructs can be generated in which Ifit1b lacks RNA binding activity, allowing 

potential RNA binding by Ifit1c to be investigated. Preliminary trials using bacterial co-

expression vectors has shown that co-expression with either Ifit1 or Ifit1b improves both 

yield and purity of Ifit1c, though it is still prone to degradation. Therefore, co-expression 

in mammalian cells may provide a route for purification of stable recombinant Ifit1c-

containing complexes for examination in vitro. 
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7 SUMMARY 

Interferons developed early in vertebrate evolution to coordinate innate immunity and the 

burgeoning adaptive immune response (Secombes and Zou, 2017). The IFN gene 

programme includes hundreds of antiviral proteins, providing a primary barrier against 

viral infection, during which time an adaptive response can be mounted. Host restriction 

factors exert strong selective pressures on viruses to maintain mechanisms to evade or 

counteract restriction, which can come at the cost of optimal replication.  

 

7.1  RNA binding by human and murine IFIT proteins 

IFIT proteins are a class of ISG which are as ancient as interferon itself (Liu et al., 2013). In 

humans, IFIT1 and IFIT5 are well-characterised RNA binding proteins, which serve as dual 

effector-sensors of non-self RNA in the cytoplasm. Human IFIT1 binds to cap0 RNA with 

high affinity (Kumar et al., 2014; Abbas et al., 2017a) and, in so doing, exerts strong 

selective pressure on viruses which replicate in the cytoplasm to maintain mechanisms to 

evade IFIT1 recognition. Some viruses, including flaviviruses and coronaviruses, achieve 

IFIT1 evasion by encoding a viral 2'-O-methyltransferase to modify their capped RNA to 

cap1 (Daffis et al., 2010; Züst et al., 2011, 2013; Menachery et al., 2014, 2017). However, at 

high concentrations IFIT1 is also capable of inhibiting cap1 RNA translation (Abbas et al., 

2017a) and as such confers some protection against cap1 viruses in the cytoplasm 

(Daugherty et al., 2016; Johnson et al., 2018).  

 

In mice, Ifit1 binds to cap0 RNA with high affinity (Habjan et al., 2013; Kimura et al., 2013), 

but cannot bind to cap1 RNA (Daugherty et al., 2016), findings that were recapitulated in 
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this thesis. Here, Ifit1b was found to bind cap1 RNA with high specificity and inhibit its 

translation at nanomolar concentrations. However, while Ifit1 was highly expressed in 

stimulated mouse cells, Ifit1b was poorly upregulated owing at least in part to weak 

promoter activity. In this way, mouse cells may achieve the same balance between cap0 

and cap1 binding as human cells. In humans a single highly-expressed protein, IFIT1, 

regulates cap0 versus cap1-RNA translation inhibition at the level of binding affinity; in 

mice, cap0 and cap1-RNA binding by Ifit proteins is regulated at the mRNA level, by 

differential induction of Ifit1 and Ifit1b expression, respectively. As such, murine Ifit1 and 

Ifit1b together can inhabit the same functional niche as human IFIT1. 

 

Alphaviruses have a very stable stem loop at the immediate 5' end of the genome and were 

previously shown to be impervious to binding by Ifit1, conferring resistance to type I IFN 

in vivo (Hyde et al., 2014; Reynaud et al., 2015). Destabilising this RNA secondary structure 

confers susceptibility to restriction by Ifit1 (Hyde et al., 2014). Flaviviruses, including Zika 

virus (ZIKV), have a comparable stable stem loop at the very 5' end of their genomes 

(Gebhard et al., 2011). Here, it was found that murine Ifit1 and Ifit1b could not inhibit 

translation from a ZIKV reporter mRNA, even at micromolar concentrations. Human IFIT1 

effectively inhibited translation of the same ZIKV reporter construct at nanomolar 

concentrations. Therefore, this has identified a key difference in the ability of human and 

murine IFIT proteins to bind to structured substrates. Such differences in the ability of 

human IFIT1 and murine Ifits to bind RNA with strong 5' structure may have implications 

for vaccine development.   

 

Despite this, there has been some success with IFIT1-sensitive vaccine strains in murine 

models. 2'-O-methyltransferase mutants of flaviviruses and coronaviruses are highly 

attenuated in vivo and vaccination with these viruses can protect mice from challenge with 

virulent strains (Daffis et al., 2010; Szretter et al., 2012; Li et al., 2013; Züst et al., 2013; 

Menachery et al., 2014, 2017). Protection was shown in a rhesus macaque model of dengue 

virus infection (Züst et al., 2013), indicating that the results in mouse models are indeed 

applicable to primates. Knockout of murine Ifit1 could partially restore virulence in these 

models (Daffis et al., 2010; Szretter et al., 2012; Menachery et al., 2014, 2017), indicating 

that murine Ifit1 can indeed mediate antiviral activity against cap0 virus strains in vivo, 

even those with strong 5’ RNA structure. However, Ifit1 knockout did not restore 

attenuation of cap0 WNV strain in some tissues and in primary cultures derived from 

knockout mice (Szretter et al., 2012). The viral loads in the central nervous system, for 
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example, were unaffected by Ifit1 knockout (Szretter et al., 2012), even though Ifit1 was 

previously found to be expressed throughout the brain following WNV infection (Wacher 

et al., 2007). Differences in the expression or activity of IFIT proteins in different tissues 

between humans and mice may have major implications for the safety and efficacy of a 

cap0 WNV vaccine strain. Reconstituting these mice with a humanised IFIT gene cassette 

would be necessary to determine whether these vaccine strains are genuinely sensitive to 

IFIT1-mediated restriction in the brain.  

 

7.1.1 Modulation of host translation by IFIT proteins 

Human IFIT1 was previously shown to inhibit up to ~40% of cellular translation when 

overexpressed in human cells (Guo et al., 2000b). Treatment of cells with type I IFN 

similarly caused 40% translation inhibition, possibly via the action of IFIT1 (Guo et al., 

2000b). A recent report has using mass spectrometry to quantify the proportion of cellular 

transcripts with different 5' caps has found that the vast majority of caps were 2'-O-

methylated at the first nucleotide, and cap0 structures were not detected, in a number of 

human and mouse cell lines and primary tissues (Wang et al., 2019). Therefore, translation 

inhibition by IFIT proteins is unlikely to be through inhibition of cap0 transcripts, since 

these are not abundant in the cell. Consistently here murine Ifit1, which is specific for cap0 

RNA, did not inhibit cellular translation when overexpressed in mouse cells, while Ifit1b 

inhibited translation by ~30%. Those transcripts which avoid inhibition are likely to be 

either highly structured or cap2 modified, thus escaping Ifit1b binding.  

 

As discussed in chapter 4, the endogenous expression level of Ifit1b is very low, much lower 

than overexpressed protein. Therefore, the transcriptional repression of Ifit1b expression 

may serve to prevent dramatic host translation inhibition following IFN stimulation. 

Whether endogenous Ifit1b plays a role in fine-tuning translation during the innate 

response remains to be determined. In the future, RNA pulldowns, mass spectrometric 

analysis of nascent proteins, or ribosome profiling of Ifit1b-expressing cells, could give 

insights into which mRNAs are bound and inhibited by Ifit1b, to determine the effect of 

Ifit1b on the antiviral gene programme.  
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7.2 IFIT complexes and protein-protein interactions 

While the tetratricopeptide (TPR) repeat motifs in IFIT proteins facilitate binding to RNA, 

TPRs are a canonical protein-protein interaction motif (D’Andrea and Regan, 2003). Here, 

in chapters 3 and 6, human and murine IFIT proteins were found to form defined 

heterocomplexes which regulated their stability and function.  

 

In humans, the regulation of IFIT1 is intrinsically linked to the activity of the IFIT2:IFIT3 

complex, via interactions between IFIT1 and IFIT3. As such, these three proteins are co-

regulated: the expression level of one member of the complex may have profound 

implications for the stability or activity of another complex member. In mice, on the other 

hand, Ifit1/Ifit1b activity is decoupled from the Ifit2:Ifit3 complex and its associated 

functions. These subtle differences in the co-regulation of human IFIT1 and murine 

Ifit1/Ifit1b are unlikely to have drastic implications for determining whether a vaccine 

works or not. However, they may limit the degree of molecular detail that can be extracted 

from a mouse study into host-virus interactions. 

 

IFIT proteins are also known to interact with other cellular proteins, to regulate different 

stages of the antiviral response. IFIT3 has been shown to potentiate signalling downstream 

of nucleic acid sensing and to enhance type I IFN production during viral infection. The 

N-terminal domain of IFIT3 was found to interact with both MAVS and its downstream 

kinase TBK1 (Liu et al., 2011). Binding by IFIT3 enhanced recruitment of TBK1 to MAVS, 

consequently enhancing phosphorylation of IRF3 and transcription of type I IFNs (Liu et 

al., 2011; Hou et al., 2016). IFIT3 was also found to interact with both TBK1 and STING, and 

potentiated DNA sensing in the cytoplasm (Wang et al., 2018). An acidic motif in the N-

terminal domain of IFIT3 was identified, which bound to the positively-charged N-

terminus of TBK1 (Liu et al., 2011). These residues are maintained in murine Ifit3, though 

any role for Ifit3 in innate signalling in mouse cells has not been established. 

 

IFIT3 interacts with IFIT2 via the N-terminal domain of IFIT2 (Stawowczyk et al., 2011) 

which, as discussed in chapter 3, may involve an N-terminal domain swap between IFIT2 

and IFIT3 (Fleith and Mears et al., 2018). The acidic motif responsible for interaction 

between IFIT3 and TBK1 is within this N-terminal domain, close to the putative domain 

swap site. Therefore, the effect of IFIT2:IFIT3 heterodimerisation on IFIT3’s described role 

in innate immune signalling warrants further investigation (see Appendix H).  
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IFIT1 has been found to promote type I IFN expression in response to alphavirus infection, 

thereby limiting virus spread (Reynaud et al., 2015). Similarly, IFIT1 depletion was shown 

to decrease IFN production in human macrophages, in both artificially stimulated and 

infected cells (John et al., 2018). A similar phenotype was observed in murine 

macrophages, indicating that murine Ifit1 may share this function (John et al., 2018). 

Consistently, knockout of murine Ifit1 in a macrophage cell line reduced cytoplasmic 

dsRNA sensing (Appendix J) and promoted replication of murine norovirus (Appendix K), 

indicating that murine Ifit1 may restrict viral infection by synergising type I IFN induction 

(Mears et al., 2019).  

 

However, a previous study found that IFIT1 downregulates production of type I IFN, by 

binding to STING (Li et al., 2009). STING has been shown to synergise the interaction 

between the MAVS complex and the downstream kinase TBK1, potentiating IRF3 

phosphorylation (Zhong et al., 2008). IFIT1 binding occludes the interaction between 

STING and MAVS/TBK1. IFIT1 therefore inhibited STING-mediated enhancement of this 

signalling pathway, inhibiting production of type I IFN in response to infection (Li et al., 

2009). As such, IFIT1 and IFIT3 appear to have diametrically opposing roles in IFN 

induction: IFIT1 breaks the interaction between MAVS and TBK1 while IFIT3 enhances it. 

Therefore, the effect of an IFIT1:IFIT3 heterocomplex on MAVS signalling is still unclear 

(see Appendix H).  

 

In addition to regulating innate immune signalling, IFIT proteins have been implicated in 

modulating apoptosis (summarised in Appendix I). Overexpression of IFIT2 was shown to 

activate apoptosis in a number of human cell lines (Stawowczyk et al., 2011; Chen et al., 

2017) and has been particularly investigated for its ability to induce cancer cell death (Lai 

et al., 2013; Feng et al., 2014; Wang et al., 2016; Jia et al., 2017; Ohsugi et al., 2017; Tang et 

al., 2017; Zhang et al., 2017b). Interestingly, overexpression of IFIT3 was shown to 

ameliorate IFIT2-dependent apoptosis (Stawowczyk et al., 2011), while knockdown of 

IFIT3 potentiated apoptosis induced by dengue virus infection (Hsu et al., 2013). 

Therefore, it is possible that the IFIT2:IFIT3 interaction acts a regulatory complex to 

prevent unfettered cell death during the antiviral response. Since the molecular details of 

IFIT2-dependent apoptosis are unclear, it is difficult to postulate whether this role may be 

conserved in murine Ifit2.  
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Murine Ifit2 has been implicated in regulating the inflammatory response during fungal 

infection in vivo. Ifit2 downregulated production of reactive oxygen species by binding to 

a p67phox, a positive regulator of NADPH oxidase activity (Stawowczyk et al., 2018). Human 

IFIT2 was also shown to interact with p67phox, indicating that this function may be shared 

in both species (Stawowczyk et al., 2018). While these proteins are also localised to the 

outer mitochondrial membrane, a link with apoptosis induction in mice was not 

established.  

 

Murine Ifit2 and Ifit3, whose N-terminal domains are well-conserved, have also been 

shown to interact in primary mouse cells (Siegfried et al., 2013), indicating that they may 

indeed form an equivalent heterocomplex to their human counterparts. Ifit3b differs from 

Ifit3 by only five amino acids; two of these substitutions are situated within the putative 

domain-swap region in the N-terminal domain, indicating that they could have 

implications for heterodimerisation, either between Ifit3 and Ifit3b, or with Ifit2. The 

impact of murine Ifit2/Ifit3/Ifit3b, individually or in complex, on murine innate immune 

signalling requires clarification.  

 

7.3 Concluding remarks 

Overall, this study has provided insights into the expression, function and regulation of 

the murine Ifit family and their role in antiviral defence. Ifit1b was identified as a novel 

cap1-RNA binding protein which may functionally compensate for the loss of IFIT1 in mice 

and other rodents. Ifit1c was found to functionally mimic human IFIT3 by acting as a 

cofactor to stimulate the activity of other Ifit family members. As such, Ifit1, Ifit1b and Ifit1c 

together can be considered as a functional unit which mimics the action of human IFIT1, 

a valuable consideration for the design of future mouse experiments.  
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APPENDIX A: STRUCTURAL DETAILS OF IFIT-RNA INTERACTIONS. 

 

A. Cartoon representation of IFIT5, showing superposed apo (white/grey) and holo (magenta) 

states. Subdomain III (SD III) rotates about the RNA-binding channel upon ligand binding, creating 

a ‘closed’ conformation. B. Cartoon representation of IFIT5 residues interacting with the 5'ppp 

moiety, coloured by subdomain. Key side-chains are shown as sticks. RNA is shown as black sticks 

and hydrogen bonds are shown as dashed lines. C. Surface representation of the IFIT5 triphosphate 

binding channel, superimposed with cap0-oligo(A). Residues which occlude cap binding are shown 

as sticks. D. Superposition of oligo(A), oligo(U) and oligo(C) in complex with IFIT5. A metal ion, 

likely Mg2+, involved in coordinating the  and  phosphates, is shown as a magenta sphere. E-F. 

Cartoon representation of IFIT1 residues interacting with the (E) 5'ppp moiety and (F) m7G cap, 

coloured by subdomain. Key side-chains are shown as sticks. RNA is shown as black sticks and 

hydrogen bonds are shown as dashed lines. G. Overlay of oligo(A) bound by IFIT1 (black) or IFIT5 

(grey). The gamma phosphate is held in a bent conformation by IFIT5 compared to the extended 

conformation in IFIT1.  
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APPENDIX B: SEC AND SEC-MALS ANALYSIS OF HUMAN IFIT 

COMPLEXES. 
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From Fleith and Mears et al. (2018). These experiments were performed by Dr Renata Fleith.  

A-C. SEC-MALS analysis of individual IFIT proteins on a Superdex 200 increase 10/300 column: 

(A) IFIT1 (0.5, 1, 2.8 or 8 mg/ml, arrow indicates earlier elution of peak with increasing amount of 

IFIT1 loaded onto column), (B) IFIT2 (1 mg/ml), (C) IFIT3 (1 mg/ml). D,E,G-J. SEC-MALS analysis 

of assembled IFIT complexes, formed at the indicated temperatures: (D) IFIT1:IFIT3, (E-F) 

IFIT1:IFIT2, (G) IFIT2:IFIT3, (F) peak fractions from G reanalysed by SEC, (I) the IFIT2:IFIT3 

complex shown in G was incubated with equimolar IFIT1, (J) the IFIT2:IFIT3 complex shown in G 

was incubated with a two-fold molar excess of IFIT1. While the most abundant IFIT1:IFIT2 complex 

form is likely tetrameric, the presence of several overlapping peaks precludes reliable determination 

of specific molecular mass and hence oligomeric state. Normalized differential refractive index 

(nRI) is shown as dotted or broken lines on the left y-axis. Calculated molecular masses (kDa) of 

eluting species are shown as solid, red lines on the right y-axis. Gel insets below each trace show 

SDS-PAGE analysis of each run. Protein gel lanes and corresponding peaks are indicated by lower 

case letters. The positions of IFIT1, IFIT2 and IFIT3 on the protein gels are indicated. The calculated 

molecular masses of individual IFITs are: 6xHis-IFIT1- 58.4 kDa, IFIT2- 54.9 kD and IFIT3- 56.2 

kDa.  
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APPENDIX C: MUTATION OF THE YXXXL MOTIF IN HUMAN IFIT1 AND 

IFIT3 DISRUPTS INTERACTION. 

 

From Fleith and Mears et al. (2018). These experiments were performed by Dr Renata Fleith.  

A-D. UV280 absorbance traces of SEC analysis (Superdex S200 Increase 10/300 column) of wild 

type (WT) and mutant IFIT1 alone or incubated with IFIT3. B-D. Gel insets below each trace show 

SDS-PAGE analysis of each run. Protein gel lanes and corresponding peaks are indicated by lower 

case letters. The position of IFIT1 and IFIT3 on the protein gels is indicated. The 

Y460E/L464E+IFIT3 trace in (D) is adjusted by +10 milli absorbance units (mAU) for clarity. The 

elution profile of WT IFIT1+IFIT3 is shown in grey shadow for reference. E. Purified WT IFIT1 and 

IFIT3-Y438E/L442E (IFIT3YL) were preincubated for 1 hour at 4 ̊ C and loaded onto a Superdex200 

10/300 Increase size exclusion column. The elution profile of WT IFIT1+IFIT3 is shown in grey 

shadow for reference. F. Analysis of the peak fractions from E by SDS-PAGE. 
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APPENDIX D: HUMAN IFIT3 PROMOTES IFIT1 STABILITY IN CELLS. 

 

 

From Fleith and Mears et al. (2018). These experiments were performed by Xin Yun Leong.  

A. HEK293T cells were transfected with empty vector (EV) or increasing amounts of FLAG-tagged 

IFIT1 for 24 hrs (Lanes 1-7). Empty vector was added to normalise the amount of DNA transfected. 

HEK293T cells were separately treated with 1000 U/mL human IFN- for 24 or 48 hrs (Lanes 8 and 

9). B,C. HEK293T cells were transfected with the indicated amounts of plasmid encoding FLAG-

tagged versions of IFIT1, IFIT2 and IFIT3, for 24 hours. The blots shown are representative of three 

separate experiments. C. HEK293T cells were transfected with 1.5 g of FLAG-tagged wild type 

(WT) or mutant IFIT1 and 1.5 g of FLAG-tagged IFIT3 or empty vector as indicated, for 24 hours. 

The graph on right shows the quantification of the IFIT1 protein expression relative to GAPDH 

probed as a loading control. Data represent the mean ± the standard deviation of three biological 

repeats.  
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APPENDIX E: HUMAN IFIT3 ENHANCES RNA BINDING BY IFIT1. 

 

 

From Fleith and Mears et al. (2018). These experiments were performed by Dr Trevor Sweeney.  

A. Toeprinting analysis of the interaction of IFIT1 and IFIT1-containing complexes with cap0 RNA. 

The full length and 7 nucleotide (nt) truncated cDNA product produced by IFIT1 binding are 

indicated. Protein complexes and RNAs are the same as those used in Figure 3. B,C. Graphs 

represent fraction of RNA bound by IFIT1 and IFIT1-containing complexes at varying IFIT1 

concentrations, representative of three separate experiments. K1/2,app and Hill coefficients (h) are 

listed in Table 3-2. 
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APPENDIX F: STRUCTURAL MODELS OF RODENT IFIT PROTEINS. 

 

 

Structural models of B. rat and C. hamster Ifit1b-like proteins, based on A. the X-ray crystal 

structure of human IFIT1 (PDB: 5W5H). Models are coloured by surface electrostatic potential from 

negative (-10 kTe-1; red) to positive (+10 kTe-1; blue), via white (hydrophobic), generated in APBS 

using PDB2PQR (Dolinsky et al., 2004). Red and white arrows indicate acidic and hydrophobic 

patches, respectively, which could interfere with RNA binding.  
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APPENDIX G: LOCALISATION OF IFIT COMPLEXES IN MURINE CELLS. 
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A-B. Immunofluorescence microscopy showing three fields of view each from two independent 

experiments (A and B), of murine 17C1 cells transfected with Ifit1b expression plasmids, with or 

without coexpression of Ifit1c, after 24 hours. T2A, thosea asigna virus 2A stop-go sequence. WT, 

wildtype. YL, Y456E/L460E mutant Ifit1c. Asterisks indicate where expression plasmids were 

cotransfected, while daggers show where proteins were co-expressed from a single transfected 

plasmid. Panels used in Figure 6-6 are boxed in red.  
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APPENDIX H: HUMAN IFIT PROTEINS REGULATE INNATE IMMUNE 

SIGNALLING. 

 

 

 

From Mears and Sweeney (2018). 

Schematic showing the pathways that IFIT family members modulate during innate immune 

signalling. The question mark highlights the unknown role of the entire IFIT1:IFIT2:IFIT3 complex 

in this process, compared to individual components. 
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APPENDIX I: HUMAN IFIT2 AND IFIT3 MODULATE APOPTOSIS AND 

CELL PROLIFERATION. 

 

 

From Mears and Sweeney (2018). 

IFIT2 and IFIT3 modulate apoptosis and cell proliferation. Schematic showing the pathways with 

which IFIT2 and IFIT3 interact to modulate apoptosis and cell cycle progression. 1-3  



Chapter 9: Appendices 

Harriet V Mears – September 2019   XIII 

APPENDIX J: MURINE IFIT1 DECREASES MURINE NOROVIRUS 

REPLICATION IN RAW264.7 CELLS. 

 

 

 

From Mears et al. (2019). 

A. Ifit1 knockout RAW264.7 cells were generated by CRISPR-Cas9 gene editing by Dr Edward 

Emmott. Cells were stimulated with IFNβ for 12 hours then analysed by western blotting against 

Ifit1 and Ifit2/Ifit3. GAPDH was included as a loading control for each membrane. B,C. Infection of 

wild-type (WT) and Ifit1 knockout (KO) RAW264.7 cells at (B) high or (C) low multiplicity of 

infection (MOI) with murine norovirus (MNV-1). Viral titres were determined by 50% tissue culture 

infectious dose (TCID50) in BV2 cells and expressed as log10-transformed values. At late time 

points, indicated, severe cytopathic effect (cpe) was visible. Graphs show the mean and the standard 

error of three biological replicates. Titres were compared between WT and KO cells for each time 

point by two-tailed Student’s t-test. Asterisks indicate that a statistically significant difference (p < 

0.05) was observed for both KO cell lines.   
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APPENDIX K: MURINE IFIT1 PROMOTES TYPE I IFN EXPRESSION AFTER 

CYTOPLASMIC RNA SENSING. 

 

 

 

From Mears et al. (2019). 

A–F. Wild-type (WT) and Ifit1 knockout (KO) RAW264.7 cells were stimulated with (A,B) 2 μg 

transfected polyI:C (polyI:Ct), or treated with (C,D) 1 μg/mL polyI:C or (E,F) 10 ng/mL 

lipopolysaccharide (LPS) in the cell culture medium. RNA was extracted and analysed by RT-qPCR 

for IFNβ (A,C,E) and TNFα (B,D,F) mRNA, expressed as fold induction over untreated cells, 

normalised against GAPDH (2-ΔΔCq). Graphs show the mean and the standard error of three 

biological replicates. Fold induction was compared between WT and KO cells for each time point 

by two-tailed Student’s t-test. Asterisks indicate that a statistically significant difference (p < 0.05) 

was observed for both KO cell lines. 


