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Abstract

The approximation properties of the finite element method can often be substantially improved by choosing smooth
high-order basis functions. It is extremely difficult to devise such basis functions for partitions consisting of arbitrarily
shaped polytopes. We propose the mollified basis functions of arbitrary order and smoothness for partitions consisting
of convex polytopes. On each polytope an independent local polynomial approximant of arbitrary order is assumed.
The basis functions are defined as the convolutions of the local approximants with a mollifier. The mollifier is chosen
to be smooth, to have a compact support and a unit volume. The approximation properties of the obtained basis
functions are governed by the local polynomial approximation order and mollifier smoothness. The convolution
integrals are evaluated numerically first by computing the boolean intersection between the mollifier and the polytope
and then applying the divergence theorem to reduce the dimension of the integrals. The support of a basis function is
given as the Minkowski sum of the respective polytope and the mollifier. The breakpoints of the basis functions, i.e.
locations with non-infinite smoothness, are not necessarily aligned with polytope boundaries. Furthermore, the basis
functions are not boundary interpolating so that we apply boundary conditions with the non-symmetric Nitsche method
as in immersed/embedded finite elements. The presented numerical examples confirm the optimal convergence of the
proposed approximation scheme for Poisson and elasticity problems.
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1. Introduction

Smooth high-order finite element approximants are often more efficient and, in general, integrate better with preva-
lent computer-aided geometric design (CAGD) descriptions [1–3]. The construction of mesh-based smooth high-order
approximants is currently an active area of research as partly motivated by recent academic and industrial interest
in isogeometric analysis. In most mesh-based approaches such approximants are defined as the tensor-products of
univariate approximants. Such constructions do not generalise to unstructured meshes and auxiliary techniques are
needed in the vicinity of the so-called extraordinary vertices where the tensor-product structure breaks. In CAGD
a range of ingenious constructions has been conceived to generate smooth high-order approximants around the ex-
traordinary vertices, see the monographs [4, 5] for an overview. Unfortunately, most of these constructions, includ-
ing [6–13], target bivariate manifolds and do not generalise to the arbitrary variate case. Indeed, there are currently no
sufficiently flexible and intuitive non-tensor-product arbitrary-variate constructions that can yield smooth polynomial
high-order basis functions. By contrast, the proposed mollified approximation scheme over polytopic partitions is
easy to construct, is polynomial and can have arbitrary order and smoothness.

Convolutional techniques are widely used in the analysis and numerics of partial differential equations. The
convolution of a function with a mollifier, i.e. a kernel with a unit volume, yields a function that is smoother than the
mollifier and the original function. This smoothing property is, for instance, used to recursively define uniform B-
splines [14], to analyse non-smooth functions and partial differential equations [15–17], to postprocess finite element
solutions [18–20] or to regularise optimisation problems [21–23]. Indeed, some of the classical meshless methods,
like the smoothed particle hydrodynamics (SPH) [24, 25] and the reproducing kernel particle method (RPKM) [26],
are defined via convolutions, see also the reviews [27–30]. In SPH and RPKM mollifiers are usually referred to
as window, weight or influence functions. Different from our mollified approximation scheme, SPH is intrinsically
restricted to low order approximants and the RPKM yields high-order and arbitrarily smooth approximants which are
rational. The kernels derived in RPKM depend on the local node distribution and are determined so that they can
exactly reproduce a polynomial of a given order. Although RPKM was conceived as a meshless method, it is possible
to define its mesh-based cousins [31] and to blend it consistently with mesh-based B-spline basis functions [32, 33].

In the proposed mollified approximation scheme each non-overlapping polytopic cell has an independent local
polynomial approximant of prescribed degree qp. The local approximants are discontinuous across cell boundaries.
The convolution of a local approximant with a Ck mollifier yields a smoother Ck+1 approximant. The chosen mollifiers
are compactly supported symmetric polynomials and have a unit volume. It is clear that the convolution of a global
polynomial f (x) of degree qp with the chosen mollifiers gives a polynomial f̂ (x) , f (x). However, it is straight-
forward to find a polynomial g(x) of degree qp such that ĝ(x) ≡ f (x). This implies that the mollified approximants
can exactly reproduce any global function f (x) of degree qp. Mollified basis functions for finite element analysis are
defined by convolving the local approximant of each cell individually. At a given evaluation point the basis functions

(a) Surface mesh (b) Clipped Voronoi diagram (c) Computed finite element potential

Figure 1: Illustrative three-dimensional finite element computation using mollified basis functions. The domain boundary is described with the
triangular mesh in (a) and the domain is partitioned with the Voronoi tessellation in (b). The solution of a Poisson problem is shown in (c). Note
that in (b) and (c) the cells intersected by the domain boundary have been clipped and others omitted for visualisation purposes.
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are evaluated first by computing the intersection between the support of the mollifier and the cell. Subsequently, the
convolution integral over the resulting intersection polytope is evaluated numerically, but exactly (up to round-off

error). We apply the divergence theorem to reduce the dimension of the integrals, but other methods of integrating
polynomials over polytopes can be used, see e.g. [34, 35]. The obtained basis functions consist of several Ck+1 contin-
uously joined polynomial pieces. It is worth emphasising that we use, in contrast to RPKM, a fixed kernel which does
not depend on the local node distribution and its convolution with a polynomial f (x) of degree qp > 0 is not required
to yield the same polynomial, i.e. f̂ (x) , f (x). Irrespectively, polynomials f (x) of degree qp are included in the space
spanned by the mollified approximants and can be exactly reproduced.

The derived mollified basis functions can be used as usual in the finite element discretisation of partial differ-
ential equations. For ease and efficiency of implementation we assume that each of the polytopic cells representing
a finite element is convex. The required geometric operations, like the intersection computations, are significantly
simplified by the convexity assumption. We partition the problem domain into a set of convex polytopic cells using
a Voronoi diagram, see Figure 1. The evaluation of the finite element integrals requires some care because the Ck+1

continuous breakpoints of the basis functions are not aligned with cell boundaries. We use to this end the variation-
ally consistent integration approach proposed in [29], which significantly reduces the number of required integration
points. The required support of the mollified basis functions is the Minkowski sum of the mollifier support with the
respective cell [36]. Furthermore, the present version of the mollified basis functions are non-boundary-interpolating
so that the Dirichlet boundary conditions are applied weakly with the non-symmetric Nitsche method [37–40] as in
immersed/embedded finite element methods, see e.g. [41].

The outline of this paper is as follows. In Section 2 we briefly review the convolution of univariate polynomi-
als with a mollifier and characterise the properties of the resulting mollified polynomials. Subsequently we derive
in Sections 3.1 and 3.2 first the univariate and then the multivariate mollified basis functions. The key difference
between the two cases lies in the evaluation of the convolution integrals. In the univariate case the integrals are
evaluated analytically and in the multivariate case numerically. The use of the derived mollified basis functions in
finite element analysis, especially the integration and treatment of boundary conditions, is discussed in Section 4.
Finally, in Section 5 we introduce several Poisson and elasticity examples to confirm the optimal convergence of the
developed approach. The paper is supplemented by four appendices which provide convergence estimates and discuss
implementation details.

2. Preliminaries

We consider the one-dimensional domain Ω ∈ R1 partitioned into a set of nc non-overlapping segments {Ωi},
referred to as cells, such that

Ω =

nc⋃
i=1

Ωi . (1)

On each cell Ωi a compactly supported local polynomial is defined,

fi(x) =

pi(x) · αi if x ∈ Ωi

0 if x < Ωi
, (2)

where the vector pi(x) represents a polynomial basis of degree qp and αi are its polynomial coefficients. See Figure 2
for an illustrative example. We choose in each cell the same polynomial basis pi(x), although it is possible to change
the type of basis and its polynomial degree. The sum of the local polynomials defined over the entire domain Ω is
given by

f (x) =
∑

i

pi(x) · αi . (3)

Evidently, across the cell boundaries this function can be discontinuous, i.e. f (x) ∈ C−1.
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(a) Constant f (x) with qp = 0 (b) Linear f (x) with qp = 1

Figure 2: Mollification of piecewise discontinuous functions f (x) (black, dashed) with a linear mollifier m(x) (red, solid). The resulting mollified
functions f̂ (x) (blue, solid) are C1 continuous.

The smoothness of f (x) is increased by convolving it with a mollifier m(x). The mollifier is chosen such that it
has the following properties

m(x) ≥ 0 ∀x ∈ Ω (4a)
supp m(x) = (−hm/2, hm/2) (4b)∫
Ω

m(x) dx = 1 . (4c)

That is, the mollifier is positive, has a unit volume and a finite support of size hm. In addition we require that the
mollifier is symmetric, i.e. m(x) = m(−x), and that it has certain smoothness properties, as yet to be specified. The
mollification of f (x) is defined with the convolution

f̂ (x) = m(x) ∗ f (x) =

∫
Ω

m(x − y) f (y) dy =

∫
Ω

m(y) f (x − y) dy . (5)

The equality of both integrals can be shown by a simple substitution. We usually use the first integral expression in the
following. Furthermore, we choose polynomial mollifiers m(x) of degree qm and f (x) is, as stated above, of degree qp.
The mollified function f̂ (x) has monomials up to degree qm + qp + 1.

If the derivative of the mollifier m(x) exist, the derivative of the mollified function f̂ (x) is given by

d
dx

f̂ (x) =

∫
Ω

dm(x − y)
dx

f (y) dy . (6)

The higher order derivatives are computed similarly. Considering that f (x) ∈ C−1 is discontinuous and the mollifier
is m(x) ∈ Ck we can deduce for the mollified smooth function f̂ (x) ∈ Ck+1 .

Finally, the cell-wise definition of f (x) introduced in (5) and (6) yields

f̂ (x) =
∑

i

αi ·

∫
Ωi

m(x − y)pi(y) dy (7)

and

d
dx

f̂ (x) =
∑

i

αi ·

∫
Ωi

dm(x − y)
dx

pi(y) dy . (8)

The function f̂ (x) is composed of infinitely smooth polynomial pieces that are smoothly connected, i.e. Ck+1,
across a finite number of breakpoints. In general the location of the breakpoints does not coincide with the cell
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boundaries. However, as is known from B-splines, on uniformly partitioned domains, it is possible to choose the
support size of the mollifier such that the breakpoints fall on the cell boundaries [14, 42]. In the illustrative example
in Figure 2 the influence of the choice of the local polynomial f (x) on the mollified function f̂ (x) is demonstrated. In
this example the convolution integral (7) has been evaluated analytically.

A final remark concerns the reproduction of polynomials with mollified functions. It can be shown that it is
possible to find for a given polynomial f (x) of degree qp a polynomial g(x) of the same degree which yields after
mollification ĝ(x) = m(x) ∗ g(x) ≡ f (x). Specifically, the mollification of a polynomial

g(x) = α0 + α1x + α2x2 + α3x3 + . . . (9)

is given by

ĝ(x) = α0 + α1x + α2(x2 + m2) + α3(x3 + 3xm2) + . . . , (10)

where ms are the moments of the mollifier defined as

ms =

∫
Ω

m(x)xs dx . (11)

After rearranging the terms in (10) according to the powers of x it is easy to see how to choose a function g(x) which
is after mollification equal to the given function f (x). This implies that the polynomials of degree qp are included in
the space spanned after mollification.

3. Smooth piecewise basis functions

We now use the mollification approach to derive basis functions on one- and multi-dimensional domains. Again
the domain Ω ∈ Rd is assumed to be partitioned into a set of non-overlapping convex polytopes {Ωi}, which are in the
present paper obtained from a Voronoi diagram. In the following we refer to the polytopes as cells. The mollification
approach yields a set of basis functions for each cell. The convolution integrals for obtaining the basis functions
are evaluated analytically in the one-dimensional, i.e. univariate, case with d = 1 and numerically in the multi-
dimensional, i.e. multivariate, case with d ≥ 2. Convergence estimates for the obtained mollified basis are provided
in Appendix A.

3.1. Univariate basis functions

To set the stage for multivariate basis functions, we first consider the derivation of univariate basis functions. The
mollified basis functions belonging to a cell Ωi are defined according to the mollification (7) by

f m(x) =
∑

i

αi · Ni(x) , (12)

where the vector of mollified basis functions Ni(x) are defined with

Ni(x) =

∫
Ωi

m(x − y)pi(y) dy . (13)

Note that the local polynomial basis is outside the cell Ωi zero and the integration domain is restricted to Ωi. As a
local polynomial basis pi(y) different basis choices are possible, such as the monomial, Lagrange or Bernstein. While
this choice has no influence on the approximation quality of the resulting mollified basis, it affects the interpretability
of the coefficients αi and the conditioning of the resulting finite element system matrices. In our examples we use in
each cell Ωi the scaled and shifted monomial basis

pi(x) =
(
1 x x2 . . . xqp)

with x =
2(x − ci)

h
, (14)
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(a) Mollifier (narrow) and local monomial basis (b) Basis functions obtained with the mollifier in (a)

(c) Mollifier (wide) and local monomial basis (d) Basis functions obtained with the mollifier in (b)

Figure 3: Univariate mollified basis functions with a bilinear mollifier (qm = 1) and a cubic scaled and shifted monomial basis (qp = 3) on a
cell Ωi = (xi+1, xi). The mollified basis functions in (b) are obtained with the narrow mollifier in (a) and the ones in (d) with the wide mollifier
in (c). The dashed lines in (b) and (d) indicate the C1 continuous breakpoints of the obtained basis functions.

where qp is its degree, ci is the centre of the cell and h is the average length of all the cells {Ωi} in the domain. The
scaling by 2/h ensures that the obtained mollified basis functions have a similar maximum value. It is possible to
apply a different scaling factor and to choose the scaling in each cell differently.

For any given point x ∈ Ω in the domain the mollified basis functions Ni(x) are evaluated by computing the
convolution integral (13). Evidently, when the chosen local polynomial basis pi(x) is a monomial basis the mollified
basis functions are simply the moments of the mollifier. The derivatives of the mollified basis functions are computed
according to (6). In Figure 3 the mollified basis functions for a cubic monomial basis with qp = 3 and a piecewise
linear mollifier qm = 1 with two different support sizes hm are shown. In each case the support size of the mollified
basis functions is hm + hc,i, with the mollifier size hm and the cell size hc,i = xi+1 − xi. The basis functions consist
of several polynomial pieces that are C1 continuously connected at the breakpoints. The number of breakpoints in
each cell depends on the number and arrangement of the breakpoints in the mollifier. Note, although not shown in the
figure, the basis functions of the neighbouring cells are non-zero in the considered cell as well. The breakpoints of
those neighbouring basis functions may not coincide with the breakpoints of the shown basis functions.

3.2. Multivariate basis functions

Without loss of generality we focus in the following on trivariate basis functions. As in the univariate case the
basis functions for a cell Ωi are given by

Ni(x) =

∫
Ωi

m(x − y)pi(y) dy . (15)
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Figure 4: C1-continuous quartic spline mollifier with the support size hm = 2.

The vector pi(x) contains the scaled and shifted multivariate monomial basis of degree qp. In this paper, the mollifier

m(x) = m(x(1)) · m(x(2)) · m(x(3)) (16)

is composed of C1-continuous quartic splines

m(x) =

 15
8hm

(1 − 8
(

x
hm

)2
+ 16

(
x

hm

)4
) if |x| < hm/2

0 if |x| ≥ −hm/2
; (17)

see Figure 4. It is easy to verify that m(−hm/2) = m(hm/2) = 0 and dm(−hm/2)/ dx = dm(hm/2)/ dx = 0. Hence,
the mollifier is C1 continuous. The continuity of the mollifier can be increased by forcing more derivatives to be
zero at x = −hm/2 and x = hm/2, which can be achieved either by choosing a higher order polynomial, using a
non-polynomial function or introducing more breakpoints. Obviously all approaches increase the cost of evaluating
the convolution integrals.

The availability of efficient evaluation techniques for the multi-dimensional convolution integral (15) are vital to
the proposed approach. We note that the integrand is a polynomial and that it is only non-zero on the intersection, i.e.
boolean intersection, of the support of the mollifier and the considered cell, i.e.,

ωi B �x ∩Ωi , (18)

where �x = supp m(x − y) denotes the support of the mollifier centred at the evaluation point x, see Figure 5. The
intersection domain ωi is convex because both �x and Ωi are convex. Computing the intersection of polytopes and
the integration of polynomials over polytopes are recurring tasks in computer graphics and many robust and efficient
algorithms and implementations are available. In Appendix C we introduce one such algorithm for determining the
intersection between a cell and a mollifier. One possible approach to evaluate the integrals on ωi is first to tesselate
it and then to integrate over the obtained simplices using Gaussian quadrature. Considering that the integrands are
polynomials and the tessellation consists of affinely mapped simplices, the integration can be performed exactly (up
to round-off error) using a sufficient number of quadrature points. A more elegant approach is to reduce the domain
integrals to line integrals by repeated application of the divergence theorem, see e.g. [43]. We briefly sketch the conver-
sion of volume integrals to surface integrals for completeness. The polytope ωi consists of a set of uniquely orientated
faces {γi, j}, i.e. all the respective normals ni, j point outside the domain. To integrate an arbitrary polynomial f (x) it is
first integrated, e.g. in the x(1) direction,

f̃ (x) =

∫
f (x) dx(1) . (19)

The divergence theorem applied to this new function yields

f (x) =

∫
ωi

∇ ·

 f̃ (x)
0
0

 dωi =
∑

j

n(1)
i, j

∫
γi, j

f̃ (x) dγi, j , (20)
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(a) Cell Ωi and mollifier �x (b) Triangulated ωi

Figure 5: Evaluation of mollified basis functions Ni(x) by numerically computing the convolution integral (15) at a point x ∈ Ω. (a) The support
of the mollifier �x centred at x (in red) and the cell (in blue). (b) The integration domain for the convolution integral is the boolean difference
ωi = �x ∩Ωi.

Figure 6: A cutout from a Voronoi tesselation and the support of the mollifier. The mollified basis functions Ni(x) of the highlighted cell Ωi are
supported on the larger polygonal domain Ω̂i = supp Ni(x). The polygonal domain is the Minkowski sum, i.e. Ω̂i = Ωi ⊕ �0, of the cell with the
mollifier support �0.

where the surface normal ni, j of the face γi, j is constant. It is possible to stop at this point and to numerically evaluate
the surface integrals after triangulating the faces γi, j. The number of quadrature points on each face is chosen to
integrate exactly polynomials of degree qm + qp. However, it is also possible to reapply the divergence theorem to
reduce the surface integrals to line integrals, which can then be analytically evaluated. In our implementation we
evaluate (20) numerically by triangulating the faces γi, j, as indicated in Figure 5b. Note that the change from volume
to surface integrals already yields a significant reduction in the number of integration points.

As in the univariate case, the support of a mollified basis function Ni(x) is larger than its respective cell. In finite
element computations also the support of a basis function is required, which is given by the Minkowski addition

Ω̂i = Ωi ⊕�0 = {y + z| y ∈ �0, z ∈ Ωi} . (21)

In Appendix D we introduce the algorithm used for computing the Minkowski sum of two convex polyhedra.
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4. Finite element discretisation with mollified basis functions

The smoothness and approximation properties of the mollified basis functions make them ideal for finite element
analysis. In the following, we briefly outline the discretisation of a Poisson equation using the mollified basis func-
tions. As in the previous sections we assume that a partitioning of the domain consisting of convex polytopes is given.
We generate such a partitioning using a Voronoi diagram from a given implicit, i.e. level set, or parametric, i.e. surface
mesh, description of the domain boundary. A set of points is placed within and outside the domain to generate the
Voronoi diagram. The points outside the domain ensure that the mollifier’s support is fully covered by local polyno-
mials when the mollifier is placed on the domain boundary. The Voronoi diagram and the respective mollified basis
functions do not conform to the domain boundaries. Therefore, the boundary conditions are applied weakly on cells
cut by the boundary, as in immersed or embedded finite elements.

Notwithstanding this, it appears to be possible to continuously shrink the mollifier support when approaching the
boundaries from the inside. In the limit on the boundary the mollifier becomes a Dirac delta and the interpolation
within the domain becomes independent of the outside of the domain. This idea has, however, not been further
pursued in this paper in order to focus on other aspects of the method.

The Poisson equation on a domain Ω is given by

−∇ · ∇u = s in Ω

u = u on ΓD

n · ∇u = t on ΓN

(22)

where u is the prescribed solution field on the Dirichlet boundary ΓD and t is the prescribed flux on the Neumann
boundary ΓN with the outward normal n. The weak formulation of the Poisson equation can be stated according to
Nitsche [37] as: Find u ∈ H1(Ω) such that∫

Ω

∇u · ∇v dΩ︸            ︷︷            ︸
a(u, v)

=

∫
Ω

s v dΩ +

∫
ΓN

t v dΓ︸                      ︷︷                      ︸
b(v)

− γ

∫
ΓD

(u − u) v dΓ︸               ︷︷               ︸
γp(u, v)

+

∫
ΓD

(
(u − u) n · ∇v + (n · ∇u) v

)
dΓ︸                                       ︷︷                                       ︸

l(u, v)

. (23)

The stabilisation parameter can be set to γ = 0 when the sign of the last term (n · ∇u)v is reversed, as proposed in
a number of papers [38–40]. In our computations we use this so-called non-symmetric Nitsche method which has a
non-symmetrical system matrix. The trial and test functions are discretised with the mollified basis functions

uh(x) =

nc∑
i=1

Ni(x) · αi and vh(x) =

nc∑
j=1

N j(x) · β j , (24)

where nc is the number of the polytopic cells in the mesh.
Introducing the interpolation equations (24) into the weak form (23) yields a linear system of equations with

the unknowns αi, which are the coefficients of the local monomial bases in the cells. For instance, the bilinear
form a(uh, vh) becomes after discretisation

a(uh, vh) =

nc∑
i=1

nc∑
j=1

αT
i

∫
Ω

∇NT
i · ∇NT

j dΩ β j . (25)

As usual, the domain integral is evaluated numerically after splitting it into cell contributions

a(uh, vh) =

nc∑
k=1

 nc∑
i=1

nc∑
j=1

αT
i

∫
Ωk

∇NT
i · ∇NT

j dΩk β j

 . (26)

We evaluate the integral over a cell Ωk by first decomposing it into tetrahedra and then applying standard Gauss
integration. A cell is tetrahedralised by introducing additional nodes at its centre and face centres. At each integration
point the mollified basis functions are evaluated as described in Section 3. Although the sketched integration of the
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weak form (26) is straightforward, Gauss integration unfortunately requires too many quadrature points because of
the breakpoints of the basis functions within the cells. Using too few quadrature points usually leads to suboptimal
convergence rates.

The principal difficulties encountered in efficient and accurate integration of the weak form (26) are very similar
to those encountered in meshless methods. In the variationally consistent integration techniques for meshless methods
the test functions are modified to satisfy a consistency condition when integrated numerically, see e.g. [44, 45]. If the
basis functions can reproduce a solution u(x) of polynomial degree qp, the finite element scheme must be able exactly
to solve such a problem even when the integrals are evaluated numerically. Assuming a problem with the solution of
polynomial degree qp and inserting it into the discretised weak form yields for each cell a consistency condition for
integration. To satisfy this consistency condition in a cell j the gradient of the test functions is modified as

∇ÑT
j (x) = ∇NT

j (x) + Λ jψ j(x) ⊗ 1 , (27)

where 1 is a vector of all ones and the vector ψ j(x) contains a monomial basis of degree qp − 1 with the yet to be
determined matrix of coefficients Λ j. The support of the basis functions ψ j(x) is chosen to be same as of the basis
functions N j(x). The matrix of coefficients Λ j is determined by solving per basis function one small linear equation
system so that variational consistency condition is satisfied. This equation system contains the integrals of the basis
functions over their supports, which is given by the Minkowski sum of the mollifier support and the cell. See [44] for
further details.

In the cells cut by the domain boundary the element integrals are evaluated only over parts of the cell which
lie inside the domain. The respective integration domains are obtained by clipping the cells, see Appendix B. The
resulting polyhedron is tetrahedralised with the same approach used for a non-clipped cell. As in immersed, or
embedded domain, methods the faces of the tetrahedra can be projected to the curved domain boundaries if higher-
order boundary approximation is needed, see e.g. [46–48].

5. Examples

We introduce in this section several examples of increasing complexity to experimentally verify the convergence
of the proposed mollified finite element approach. In the one-dimensional problems both the convolution and finite
element integrals are evaluated analytically, whereas in multi-dimensional problems both integrals are evaluated nu-
merically. In multi-dimensional problems only the quartic spline mollifier (17) consisting of a single polynomial with
no internal breakpoints is used. The mollified basis functions contain monomials of up to degree qp + qm + 1, although
they are only complete up to degree qp, and are non-zero over several cells. Therefore, it is not obvious how many
quadrature points to choose in each of the integration triangles used for evaluating the finite element integrals. In our
present computations we determine a stable number of quadrature points by successively increasing the number of
quadrature points until we have a stable solution. In two dimensional problems we choose for linear basis functions
(qp = 1) three integration points for domain integrals and five for boundary integrals, and for quadratic (qp = 2) we
choose four and five integration points respectively. In all problems the Dirichlet boundary conditions are enforced
with the parameter-free non-symmetric Nitsche method.

5.1. One-dimensional Poisson problem

As a first example we consider the solution of the one-dimensional Poisson-Dirichlet problem − d2u/ dx2 = s on
the domain Ω = (0, 1). The source term s(x) is chosen such that the solution is equal to

u(x) = sin(3πx). (28)

The initial coarse mesh consisting of nc = 6 cells is chosen to be non-uniform. The cell sizes, starting from the left,
are hc,1 = 0.15, hc,2 = 0.2, hc,3 = 0.15, hc,4 = 0.15, hc,5 = 0.2 and hc,6 = 0.15. In addition to these cells, each
domain boundary is padded with an extra ghost cell to ensure that the obtained mollified basis functions have the
same approximation properties over the entire domain. We obtain finer meshes by repeated bisectioning of all cells.
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Figure 7: One-dimensional Poisson problem. Convergence with normalised linear B-spline mollifier and local polynomial basis of degrees
qp ∈ {0, 1, 2, 3}.

In the following set of experiments we study the influence of the choice of the local polynomial basis pi(x) and the
mollifier m(x) on the convergence of the finite element solution. Firstly, we take in turn different local polynomials of
degrees qp ∈ {0, 1, 2, 3} and a normalised linear B-spline, i.e. hat function, mollifier with a support width of

hm = 2
(
max

j
hc, j

)
. (29)

Note that the normalisation of the mollifier is essential to ensuring that it integrates as required to one. Figure 7 shows
the optimal convergence of the mollified finite element approach in the L2 norm and H1 seminorm with qp + 1 and qp

respectively. These convergence rates are in agreement with the analytic estimates provided in Appendix A.
Next, we investigate the influence of the mollifier support width on the convergence order while keeping the

normalised linear B-spline mollifier. The mollifier width is chosen according to

hm = 2χ
(
max

j
hc, j

)
with χ ∈ {1, 1.25, 1.5} . (30)

The increase in mollifier size leads to an increase in the support size of the mollified basis functions, which results in
an increase of the number of non-zero basis functions in a cell. The obtained optimal convergence rates for qp = 2
are shown in Figure 8. The increase in mollifier width leads to a somewhat decrease in the convergence constants,
but the optimal support size appears to depend on the specific problem considered. The results for higher order local
polynomials are similar and have been not included here.

Finally, we study the effect of the mollifier smoothness on finite element convergence. The normalised B-spline
mollifiers are of degree qm ∈ {1, 2, 3} and the local polynomial is of degree qp = 2. The mollifier width factor is
chosen as χ = 1. Note that the B-spline mollifiers are Cqm−1 continuous so that the obtained mollified basis functions
are Cqm

continuous. Figure 9 shows that an increase of the kernel degree and smoothness does not have an effect on
the optimal convergence rate, but leads to a significant decrease in convergence constants.

5.2. Two-dimensional examples

5.2.1. Poisson problem on a square domain
We consider next the Poisson-Dirichlet problem −∇·∇u = s on a square domain Ω = (0, 1)×(0, 1). The domain Ω

is partitioned into nc cells using the Voronoi diagram of nc non-uniformly distributed points, see Figure 10. Starting
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Figure 8: One-dimensional Poisson problem. Convergence with local polynomial basis of degree qp = 2 and normalised linear B-spline mollifier
with different support sizes of χ ∈ {1, 1.25, 1.5}.
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Figure 9: One-dimensional Poisson problem. Convergence with local polynomial basis of degree qp = 2 and normalised B-spline mollifiers of
degrees qm ∈ {1, 2, 3}.
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(a) nc = 16 (b) nc = 64 (c) nc = 256

Figure 10: Poisson problem on a square domain. Three different partitionings of the domain using the Voronoi diagram of nc non-uniformly
distributed points.

from a set of uniformly distributed points we introduce non-uniformity by randomly perturbing their coordinates by
κ
√

1/nc with κ ∼ U(−0.15hm/2,+0.15hm/2). Only the coordinates of points farther than a certain distance from the
boundaries are perturbed.

As in the one-dimensional case the domain is padded with an extra layer of ghost cells (not shown in Figure 10) to
ensure that the mollified basis functions are complete close to the boundaries. Depending on the number of Voronoi
cells nc the width of the C1 continuous quartic spline mollifier is chosen with

hm = 2
( 1
nc

) 1
2

. (31)

We firstly perform a patch test to verify that the mollified finite element method in combination with variationally
consistent integration can exactly solve problems with polynomial degree qp. To this end, we consider on the mesh
shown in Figure 10b two problems with the exact solutions u(x) = x + 2y and u(x) = x + 2y + x2 + 2xy + y2. Solving
the linear problem using the linear mollified basis functions with qp = 1 leads to an L2 norm error of 8.635 × 10−14 and
an H1 seminorm error of 2.902 × 10−12. The corresponding errors for the quadratic problem using quadratic mollified
basis functions with qp = 2 are 7.060 × 10−12 and 3.198 × 10−10. This clearly confirms that the mollified finite element
method satisfies the patch test.

With the consistency of the method confirmed, we proceed to establish its convergence under mesh refinement.
The source term s(x) is now chosen such that the solution is equal to

u(x) = sin
(
πx(1)

)
sin

(
πx(2)

)
. (32)

The used mollified basis functions are the C2 continuous linear and quadratic basis functions with qp = 1 and qp = 2,
respectively. Figure 11 shows the convergence of the errors in L2 norm and H1 seminorm as the mesh is refined.
Note that the refined meshes are not nested so that some small kinks in the convergence curves may be expected. The
average convergence rates are, however, close to optimal, as indicated by the dashed triangles in Figure 11.

5.2.2. Elastic plate with a hole
As a two-dimensional problem with a non-trivial geometry we compute the infinite elastic plate with a hole

subjected to uniaxial tension. The radius of the hole is R = 0.25 and the applied uniaxial traction in the vertical
direction is σ∞ = 106. The Young’s modulus of the material is E = 70 · 106 and its Poisson’s ratio is ν = 0.3. This
problem has a known closed-form analytic solution [49]. Therefore, we discretise only the plate of size L = 1 shown
in Figure 12 and apply Dirichlet boundary conditions over its entire boundary.

The initial mesh consists of a Voronoi diagram of 36 non-uniformly distributed points, see Figure 13. The refined
meshes are obtained by subdividing the cells by introducing new vertices on the cell and edge centres. This refinement
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Figure 11: Poisson problem on a square domain. Convergence with quartic spline mollifier and local polynomial basis of degree qp = 1 and
qp = 2.

Figure 12: Geometry and boundary conditions of the elastic plate with a hole.
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Figure 13: Elastic plate with a hole. Three different partitionings of the plate with a hole (highlighted in blue). The elements outside the domain
are the ghost cells. The coarse mesh in (a) is a Voronoi diagram which is refined to obtain (b) and (c) by introducing new vertices on the cell and
edge centres.
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Figure 14: Elastic plate with a hole. Convergence of the relative energy norm error with quartic spline mollifier and local polynomial basis of
degree qp = 1 and qp = 2.

ensures that the meshes are nested. As can be inferred from Figure 13 along the circular boundary the mesh edges are
not aligned with the boundary. In the respective cells cut by the boundary the finite element integrals are evaluated only
over the cell areas inside the domain. The cut-cells for integration are obtained with the clipping process introduced
in Appendix B. To achieve a higher order approximation the edges of the triangles used for integration are curved by
introducing additional nodes on the faces. As in standard finite elements, to achieve an optimally convergent method
the boundary geometry has to be approximated with the same polynomial order as the used mollified basis functions.

To analyse this problem we again use C2 continuous linear and quadratic basis functions with qp = 1 and qp = 2,
respectively. Figure 14 shows the convergence of the errors in the energy norm. It is apparent that optimal convergence
rates are achieved. A final comment concerns the possibly very small contributions of basis functions cut by the
boundary to the system matrix. To this end, several approaches have been developed in immersed/embedded finite
elements [41, 50, 51]. A particularly simple approach is simply to scale the relevant basis functions according to their
support size within the domain, i.e.

| supp(Ni) ∩Ω
)
|

| supp(Ni)|
. (33)
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5.3. Three-dimensional example
As an illustrative three-dimensional example with a complex boundary we consider the solution of a Poisson-

Dirichlet problem on the domain contained within the Stanford bunny, see Figure 15. The geometry of the bunny
is given as a triangle mesh with 66272 facets. The volume mesh shown in Figure 15c is created in several steps.
Firstly we introduce within the bounding box of the bunny a set of uniformly distributed 20 × 20 × 20 points with
each 0.08 apart. The head is then refined by introducing additional 6 × 7 × 9 points with each 0.05 apart. Finally,
one of the ears is refined by adding 6 × 7 × 8 points with each 0.04 apart. We then generate the Voronoi diagram of
all the points and iteratively relax it to achieve a more even distribution of cell sizes. During the iterative relaxation
the new position of each point is recomputed by convolving nodal coordinates with a box function. This relaxation
is equivalent to standard Laplace smoothing of meshes. After the relaxation the Voronoi diagram is clipped with the
technique described in Appendix B. The final mesh consists of 897 cells.

We solve on the generated polytopic mesh a Poisson-Dirichlet problem with a source term s(x) such that the
solution is equal to

u = cos
(
πx(1)

)
sin

(
πx(2)

)
cos

(
πx(3)

)
. (34)

The isocontours of the computed solution are shown in Figure 15d. For the employed mollified basis functions we use
a local polynomial basis with qp = 1 and a quartic spline mollifier with a support size of hm = 0.16, which is twice the
coarse cell size. The discretisation has in total 9032 basis functions. The cut-cells are stabilised as described earlier
by scaling the basis functions according to (33).

6. Conclusions

We introduced the mollified basis functions of arbitrary order and smoothness and verified their excellent finite
element approximation properties with a selected set of examples. In the two- and three-dimensional examples we
chose the Voronoi diagram of a given set of points as the partitioning of the domain. The mollified basis functions are
obtained by convolving cell-wise defined local polynomial approximants with a compactly supported smooth mollifier
with a unit volume. We integrate the convolution integrals exactly (up to round-off errors) by first determining the
geometry of the polytopic integration domain and then reducing the dimension of the integrals using the divergence
theorem. In determining the polytopic integration domain we consider the intersection of a single cell with the molli-
fier and make use of polytope clipping and convex-hull computation algorithms. Efficient and robust implementations
of both algorithms are available in most development platforms, including Matlab, Mathematica and Python, and in
high-performance geometry libraries [52]. Because the mollified basis functions are not boundary conforming, we
enforce boundary conditions with standard immersed/embedded finite element techniques. The obtained polynomial
basis functions may have breakpoints, i.e. points or lines of reduced continuity, within the cells. Therefore, we eval-
uate the finite element integrals with a variationally consistent approach originally developed for meshless methods.
As shown numerically and analytically the mollified basis functions in combination with the proposed finite element
implementation can pass the patch test and achieve optimal rates of convergence. Finally, while all the operations
in evaluating the mollified basis functions are of geometric nature, in meshless methods, like RPKM, a dense local
matrix must be inverted. Evidently, this matrix can become very large especially in 3D when high-order polynomials
are used. The algorithmic complexity of the geometric operations is at most log-linear and the complexity of the
matrix inversion is cubic. Therefore, we conjecture that the mollified finite element approximants are more efficient
for high-order polynomials and higher dimensions.

There are several promising applications and extensions of the proposed mollified approximation scheme worth
mentioning. Clearly, it is straightforward to apply h-, p- and hp-refinement. A given Voronoi diagram can be h-refined
by incrementally adding new points and updating the Voronoi diagram. For p-refinement it is sufficient to choose
in each cell the order of the polynomial approximant differently. A-priori and a-posteriori estimators are crucial
to making efficient use of h-, p- and hp-refinement in applications. Furthermore, in our present implementation the
mollifier support size is uniform throughout the domain. As our preliminary experiments indicate, it is possible to vary
the mollifier support within a domain. This can be, for instance, used in creating boundary interpolating approximants
by continuously shrinking the mollifier support size to zero while approaching the boundary. An alternative approach
to easing the enforcement of boundary conditions is to blend mollified basis functions with finite elements similar
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(a) Fine surface mesh (b) Surface of the clipped Voronoi diagram

(c) Voronoi diagram (d) Finite element solution

Figure 15: Poisson-Dirichlet problem on the domain contained within the Stanford bunny. The two boxes in (a) indicate the locations where
additional nodes are introduced to refine the mesh. The mesh in (c), with some of the cells omitted, shows the unstructured Voronoi diagram used
in the mollified finite element computation (d).
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to blending techniques developed for meshless methods [53, 54]. Lastly, returning to our original motivation in
developing smooth basis functions for isogeometric analysis, it is appealing to develop mollified blending techniques
for B-spline patches meeting at an extraordinary vertex. The convolutional definition of the B-splines can be used to
derive mollified approximants which reduce to B-splines away from the mesh boundaries.

Appendix A. Convergence estimates

We make use of convolution and polynomial approximation estimates to derive convergence estimates for the
proposed mollified finite element approximation scheme [17, 55]. In doing so, we adopt a multiindex notation and
denote derivatives with D j = ∂/∂x j. If the multiindex α = (α1, . . . , αd) is an d-tuple of nonnegative integers α j, then
Dα = Dα1

1 · · ·D
αd
n is a differential operator of order |α| = α1 + · · · + αd, with the convention that D(0,...,0)u = u. We

denote the norms of the Lebesgue and Sobolev spaces Lp(Ω) and W p,k(Ω) with

‖ f ‖Lp B

(∫
Ω

| f (x)|p dx
)1/p

‖ f ‖W p,k B

∑
|α|≤k

‖Dα f ‖pLp

1/p

| f |W p,k B

∑
|α|=k

‖Dα f ‖pLp

1/p

.

(A.1)

In this Appendix we assume that the mollifier is C∞ continuous. For instance, we may take

ρ(x) =

{
exp[−1/(1 − |x|2)]/In, if |x| < 1
0, otherwise , (A.2)

where the scalar In > 0 is chosen so that ρ(x) has unit volume. The scaled mollifier with the support size |�0| = hm is
given by

m(x) = ρ(2x/hm) (A.3)

so that

‖Dαm‖L1 ≤
C

h|α|m

(A.4)

for any multiindex α.
As shown, e.g. in [17], the derivatives of the convolution satisfy for any pair of multiindices α and β the relation

Dα+β(m ∗ u) = Dαm ∗ Dβu (A.5)

and the Young’s inequality for convolutions reads

‖ f ∗ u‖Lp ≤ ‖ f ‖L1‖u‖Lp (A.6)

yielding the estimate

‖m ∗ u‖Lp ≤ ‖u‖Lp . (A.7)

Moreover, according to the Bramble-Hilbert lemma, for a u ∈ W p,k+1(Ω), k ≥ 1, 1 ≤ p ≤ ∞, there is a vh ∈ Pk

(polynomials of degree less than or equal to k in one variable) such that

‖vh − u‖Lp(Ω) ≤ Chk+1|u|W p,k+1(Ω) . (A.8)

Let us now extend u and vh by zero outside the domain Ω and denote their mollifications with

v̂h = m ∗ vh and û = m ∗ u . (A.9)
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Then, for l < k, from (A.5), (A.7), (A.4) and (A.8) we have

‖̂vh − û‖W p,l(Ω) ≤
C
hl

m
‖vh − u‖Lp(Ω) ≤

Ahk+1

hl
m
|u|W p,k+1(Ω), (A.10)

where A > 0 is a constant. The difference between a function and its mollification can be bounded with a standard
approximation theorem for convolutions ([17], Theorem 5.33) which reads

‖̂u − u‖W p,l(Ω) ≤ Bhk+1−l
m |u|W p,k+1(Ω), (A.11)

where B > 0 is a constant. Combining the preceding two estimates we obtain

‖̂vh − u‖W p,l(Ω) ≤ ‖̂vh − û‖W p,l(Ω) + ‖̂u − u‖W p,l(Ω)

≤

(
A

hk+1

hl
m

+ Bhk+1−l
m

)
|u|W p,k+1(Ω).

(A.12)

This bound is minimised by taking

hm =

(
lA

(k + 1 − l)B

)1/(k+1)

h ≡ h∗m, (A.13)

which defines the optimal mollifier support size h∗m in dependence of the mesh size h. Inserting the optimal h∗m into
the estimate (A.12) gives

‖̂vh
∗ − u‖W p,l(Ω) ≤ Chk+1−l|u|W p,k+1(Ω), (A.14)

where v̂h
∗ denotes the mollification of the polynomial vh ∈ Pk with a mollifier with support sizel h∗m. We note that the

estimate (A.14) provides control over l-th order derivatives, whereas the initial estimate (A.8) does not.
As in standard finite element approximation theory, see e.g. [55], applying estimate (A.14) cell-wise and con-

sidering their sum yields global convergence estimates. Subsequently, it is straightforward to confirm the optimal
convergence of the proposed mollified finite elements as already suggested by our numerical experiments.

Appendix B. Clipped Voronoi diagrams

We briefly review the properties of Voronoi diagrams and sketch the generation of clipped Voronoi diagrams that
approximately fill a given domain Ω. For a more detailed discussion see, e.g., [36, 56, 57]. For a set of points {ci}

nc
i=1

in Rd the Voronoi diagram is defined by a set of cells {Ωi}
nc
i=1 such that

Ωi =
{
x ∈ Rd | |x − ci| ≤ |x − c j| ∀i , j

}
. (B.1)

As indicated in Figure B.16, the cells are convex, are either bounded or unbounded and have planar faces. There are
a number of efficient software libraries available for generating Voronoi diagrams, such as the Voro++ [58] library
(for 3D) or Mathematica (for 2D) used in this work. To obtain a Voronoi diagram that approximately fills a given
domain Ω the cells intersected by the boundary are clipped. To implement the clipping process we assume that the
domain Ω is described implicitly with a signed distance function

φ(x) =


miny∈Γ |x − y| if x ∈ Ω

0 if x ∈ Γ

−miny∈Γ |x − y| otherwise ,
(B.2)

where Γ is the boundary of the domain Ω. Domains that are described with a parametric polygon mesh can first be
converted to an implicit signed distance function representation using standard algorithms, see e.g. [41].
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(a) Polygon mesh (b) Signed distance function

(c) Voronoi diagram (d) Clipped Voronoi diagram

Figure B.16: Clipped Voronoi diagram of a domain described by a polygonal mesh.

The minimal data structure for representing a Voronoi cell Ωi consists of its vertices {ηi, j} and orientated faces
{γi, j}, with all the face normals ni, j pointing, e.g., outside the cell. The cells cut by the boundary are determined by
evaluating the level set function at the vertices and checking whether

min
j
φ(ηi, j) ·max

j
φ(ηi, j) < 0 (B.3)

is satisfied. Each of the cut cells is clipped by performing the following steps:

1. Deduce the set of cell edges from {ηi, j} and {γi, j}.
2. Determine the intersection points between edges and the boundary φ(x) = 0 with a bisectioning algorithm.
3. Introduce new vertices at the points determined in step 2.
4. Generate a new clipped cell by determining the convex hull of vertices inside the domain and the vertices on

the domain boundary.

In finite element computations the clipped cells represent the integration domain for element integrals for the
cells touching the domain boundary. The clipping process introduced yields only convex clipped cells with planar
boundaries. For domains with curved boundaries this limits the overall accuracy of finite element method to first
order even when higher order mollified basis functions are used. In this setting, a standard approach to achieving
higher order accuracy in immersed finite elements is to curve the planar faces by introducing additional vertices on
the faces, which is clearly also applicable to mollified finite elements.
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Appendix C. Intersection of a convex cell with a box

The intersection between a convex cell and a box is required to evaluate the mollified basis functions. The box
represents the support of the mollifier and is centred at the given evaluation point. The intersection of two convex
solids is frequently required in computer graphics and a range of efficient and robust algorithms is available. Our
specific approach is motivated by the more general algorithm presented in [59]. The key idea is that the intersection of
a cell and a box can be determined by clipping the cell in turn by the six half-spaces defining the box. Each half-space
is defined by a plane, or its respective normal, and has an inside and outside. Furthermore, recall that the intersection
of two convex solids is always convex.

As mentioned in Appendix B, in our implementation, a cell Ωi is represented by its vertices {ηi, j} and orientated
faces {γi, j}. With this in mind, the sequence of steps in computing the convex polytope representing the intersection
domain is as follows:

1. Deduce the set of cell edges from {ηi, j} and {γi, j}.
2. Determine the intersection points between the edges and the six half planes in turn while keeping track of the

vertices inside the half-spaces.
3. Generate a new polyhedron by determining the convex hull of vertices inside the domain and the intersection

points on the edges.

In meshes with a large number of cells it is usually more efficient first to identify the small set of cells which
are possibly intersected by a given box. Subsequent intersection computations have to be applied only to the few
identified cells. The relevant cells can be efficiently identified with a standard hierarchical bounding volume tree, see
e.g. [60].

Appendix D. Minkowski sum of two polytopes

The support of the mollified basis functions Ni corresponding to the cell Ωi is obtained as the Minkowski sum
of the cell with the support of the mollifier. For an in-depth introduction to Minkowski sums see, e.g., [36]. The
Minkowski sum of two sets Ωi, �0 ∈ R2 is defined by

Ω̂i = Ωi ⊕�0 = {x + y| x ∈ Ωi, y ∈ �0} . (D.1)

The domain Ω̂i resulting from the Minkowski sum may be visualised as that obtained by sliding the centre of �0 along
the boundaries of Ωi, see Figure D.17. Recall here that the domain �0 is centred at the origin of the coordinate axis
as implied by the subscript 0. It is easy to show that Ω̂i is convex because both Ωi and �0 are convex. We use this to
devise a simple algorithm for computing the Minkowski sum. That is, we first generate a set of points by sliding the
domain �0 along the boundaries of Ωi, which we subsequently combine with a convex hull algorithm to obtain Ω̂i. In
generating the set of points it is sufficient to place �ηi, j at the vertices ηi, j of the domain Ωi and to take successively
the union of the vertices of �ηi, j , see Figure D.17 .
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