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ABSTRACT
This study is part of a larger project that showed the potential of our 
mixed reality (MR) system in fostering social initiation behaviors 
in children with Autism Spectrum Condition (ASC). We compared 
it to a typical social intervention strategy based on construction 
tools, where both mediated a face-to-face dyadic play session be-
tween an ASC child and a non-ASC child. In this study, our first 
goal is to show that an MR platform can be utilized to alter the 
nonverbal body behavior between ASC and non-ASC during social 
interaction as much as a traditional therapy setting (LEGO). A sec-
ond goal is to show how these body cues differ between ASC and 
non-ASC children during social initiation in these two platforms. 
We present our first analysis of the body cues generated under two 
conditions in a repeated-measures design. Body cue measurements 
were obtained through skeleton information and characterized in 
the form of spatio-temporal features from both subjects individ-
ually (e.g. distances between joints and velocities of joints), and 
interpersonally (e.g. proximity and visual focus of attention). We 
used machine learning techniques to analyze the visual data of eigh-
teen trials of ASC and non-ASC dyads. Our experiments showed 
that: (i) there were differences between ASC and non-ASC bodily 
expressions, both at individual and interpersonal level, in LEGO 
and in the MR system during social initiation; (ii) the number of fea-
tures indicating differences between ASC and non-ASC in terms of 
nonverbal behavior during initiation were higher in the MR system 
as compared to LEGO; and (iii) computational models evaluated 
with combination of these different features enabled the recognition 
of social initiation type (ASC or non-ASC) from body features in 
LEGO and in MR settings. We did not observe significant differences 
between the evaluated models in terms of performance for LEGO 
and MR environments. This might be interpreted as the MR system 
encouraging similar nonverbal behaviors in children, perhaps more 
similar than the LEGO environment, as the performance scores in 
the MR setting are lower as compared to the LEGO setting. These 
results demonstrate the potential benefits of full body interaction 
and MR settings for children with ASC.
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1 INTRODUCTION
Sharing information, feelings and thoughts in social interaction is 
achieved through initiations and responses between individuals 
and groups [27]. A number of studies have established that high 
functioning children with Autism Spectrum Condition (ASC) are 
able to maintain social interactions when an initiation is directed 
towards them. However, the number of social initiation acts gen-
erated by themselves, originating from their own will, is low [58]. 
Moreover, although recent research has shown that children with 
ASC can identify emotions in body language just as accurately 
as their non-ASC peers [49], the accepted standard of non-verbal 
social behavior can be difficult to understand by children with ASC 
[12, 17].

Existing research in Information and Communication Technolo-
gies (ICT) and autism has emphasized the potential of technology 
as a key element in acquiring social behaviors [9]. Motivation for 
social interaction can be increased by practicing social behaviors in 
a Mixed Reality (MR) Environment which helps children create new 
behavioral patterns. In these MR environments, communication 
is not limited to verbal interaction and can incorporate embod-
ied interaction which goes hand in hand with social perception 
and social understanding. In these environments, the body plays 
the central role including gestures and non-verbal communication 
which are necessary in interpersonal communication. The advan-
tage of full-body, face-to-face interaction for Mixed Reality systems 
over other types of interaction and interfaces [19, 48, 63] (such as 
head-mounted displays), is that they can naturally include corporal, 
proxemic, proprioceptive, and kinesthetic indicators in the expe-
riences of the participants and do it through non-encumbering,



non-invasive, and non-isolating experiences. Our belief is that to
fully benefit from ICT environments, embodiment should be in-
tegrated into the design of these systems. In 2010 di Paolo [18]
supported this potential of Embodied Cognition emphasizing the
importance of embodiment for social understanding and social per-
ception. Even earlier, in 2005, the project MEDIATE applied the
design principles of full-body interaction and allowed the partici-
pating children to use gesture, touch and movement to engage in
the interactive environment [47]. This work was one of the first
studies to explore how placing ASC children in digital settings
could help promote and enhance their performance in both com-
munication and social realms. Full-Body interaction setups might
provide a useful medium for play therapy and intervention, as re-
cent evidence shows that an increase in body activity in multiplayer
settings improves the social dynamics of the gaming experience
[8, 41]. Moreover, large scale full-body interactive environments
make physical exploration and face-to-face interactions possible
between participants [45], where communication and interaction
extend beyond verbal expressions to incorporate physical activity
such as cooperative behaviors, joint attention and proxemics.

Evaluating the efficacy of interventions on social skills for ASC
is a major challenge as it is difficult to tackle the complexity of
naturalistic interpersonal behavior. Manual video coding methods
still remain one of the most common approaches in evaluating
behavior of children with ASC. Microanalytic video coding [29]
has the advantage of applying current knowledge on social behav-
iors of children with ASC. However, since they are undertaken by
human coders, they incorporate a certain degree of subjectivity.
To compensate for this, multiple coders work together to achieve
high inter-rater or inter-coder agreement. This is a time-consuming
and resource intensive process which cannot be scaled to large
amounts of video datasets. Therefore, machine learning techniques
trained on high-quality coding can automate this process to make
the process scalable. Moreover, they can uncover the rules of social
interaction which are still largely unknown [3, 7, 33] and help better
quantify typical and atypical non-verbal behaviors in social inter-
actions. This can provide an objective computational approach that
can tackle the complexity of interpersonal behavior. When it comes
to automatically analyzing nonverbal behaviors in children, face
and body inputs have been extensively studied [5]. For example,
Sanghvi [56] used upper body silhouette features to train a set of
classifiers for engagement prediction in children playing with a ro-
bot. Using a similar approach, researchers have been able to predict
engagement based on the children’s facial cues [2] and body move-
ments [13]. Esteban [22] used gaze direction, facial expressions
and body posture to classify stereotypical behaviors and “social”
engagement of children with ASC. Rudovic et al. achieved person-
alized emotional perception and engagement using contextual and
personal information of children with ASC during robot-assisted
therapy [51]. The focus of these studies was on child-robot in-
teraction using children’s behavioral cues [43]. In the context of
interaction between individuals, Piana [50] presented an emotion
recognition system that used full-body movement features to help
children with ASC. Specifically, they explored a collection of body
features that can be extracted from video sequences to recognize
emotions automatically. Their framework monitors ASC children

while they interact with others or play a serious game and evalu-
ates their ability to express and understand emotions. However, the
dataset used to test the feature extraction algorithms was based on
non-ASC individuals and was therefore not yet aligned with the
final objective of helping ASC children.

Social activity that incorporates full-body activity is a fundamen-
tal constructor of non-verbal social interaction behaviors between
individuals. The project by Coppola [15] introduced one of the most
informative sets of features based on two interacting participants.
Although this was not designed for ASC specifically, their analysis
provides a robust automation of body cue recognition. Their results
show that their approach has a potential in ASC research.

In the present study we investigate how bodily expression differs
between ASC and non-ASC children during social initiation in MR
and LEGO settings. To analyze the body cues, we utilize and adapt
the methodology of Coppola [15] and extract a set of individual and
interpersonal spatio-temporal features from both subjects, using the
skeleton joints. We utilize statistical hypothesis testing to determine
if there are differences in the values of body features for social
initiation, generated by ASC and non-ASC participants, in both
platforms. As a next step, we evaluate a set of classification models
to study the joint impact of these body features. We also undertake
detailed visual analysis of social initiations of children with ASC
and non-ASC in order to better understand the context around
social initiation behaviors. Our analyses and results indicate that an
MR platform can be utilized to positively manipulate the nonverbal
body behavior between ASC and non-ASC children during social
initiation as much as a traditional therapy setting (LEGO).

2 MATERIALS AND METHODS
2.1 The MR system (Experimental Condition)
The system is a Mixed Reality full-body interaction environment
designed specifically for children with ASC as a space to practice
social initiation with a non-ASC peer [45]. It is an installation based
on a virtual environment (VE) that encourages an ecologically valid
exploration and discovery of hidden virtual items and surprises.
This installation targets an experience shared by an ASC child and
a non-ASC child during which they are scaffolded to socialize and
collaborate.

2.1.1 Setup. The visual interface is configured as a circular projec-
tion on the floor, six meters in diameter, generated by images from
two Full HD projectors. The children interact with the projected VE
through a physical object acting as a “pointer” and “placeholder”
(Figure 1). This object allows them to better focus on the activity
and have a better sense of control over that which they are affect-
ing in the VE. A multi-camera system tracks these objects on the
playing field plane.

2.1.2 Content. The interactive experience provides an enticing
range of visual and sound effects to spark the social initiation
behaviors in the child with ASC (Figure 2). The VE, animations,
and characters were designed with the help of children with ASC
through Participatory Design Workshops. The actions to be un-
dertaken by the children are adapted and balanced in difficulty for
each child to generate a fair and adequate equilibrium (Figure 2).



2.1.3 Interaction Design. The MR system designed provides a con-
text for the two players to adopt exploration and discovery attitudes
by navigating physical and virtual space simultaneously in a face-
to-face configuration. Discovery of interesting situations is meant
to generate the sufficient internal drive in the ASC child to want to
communicate with their peer. This ecologically valid configuration
is akin to situations they can find in real life, such as meeting chil-
dren in a public park or in the school playground. The full-body
interaction permits them use not only verbal communication but
also facial expressions and body language. The configuration also
allows for joint attention and collaborative activity.

2.2 Non-ICT play activity: Lego Game (Control
Condition)

We defined a LEGO activity by following Daniel Legoff’s effective
and well-known play-based therapy for children with ASC [39].
Their findings showed improved acquisition of social skills, partic-
ularly when peer interaction was initiated. We have adopted this
strategy and created a LEGO play environment with the advise from
the team of experts that we collaborated in the Hospital Sant Joan
de Déu. In our case, the children were asked to find a set of “lost”
LEGO figurines, then build a ship for the figures. This installation
targets an experience shared by an ASC child and a non-ASC child
(Figure 2).

Figure 1: Diagram of theMR system during an experimental
session

Figure 2: Two players can collaboratively manipulate props
in the scenario by bringing their nets together (left) / A con-
trol condition included LEGO social skills training elements
where children were asked to collaborate in a shared build-
ing task (right)

2.3 Experimental Design and Procedure
All procedures performed were in accordance with the ethical stan-
dards of the ethical committee of the hospital we collaborated with
and with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. Moreover, as a result of our col-
laboration with the Hospital Sant Joan de Déu, we contacted high-
functioning ASC children on a local basis in the city of Barcelona.
Eighteen ASC/non-ASC dyads (n = 3 female, n = 15 male), aged 8-12,
formally diagnosed with ASC as determined by the Autism Diag-
nostic Observation Schedule (ADOS) module 3 reaching a value of
4 [40], participated in the study. The psychologist started the exper-
imental session similar to a social skills therapy session weighing
the emotional sensitivity of children with ASC. A visual support
activity called “Jumby is Calm” was used to predict possible emo-
tional reactions which can arise during the session. Children were
then provided with the components used during the trial. Partici-
pants were fitted with a wearable designed by our lab for recording
psycho-physiological measurements and showed an introductory
video of how to use the handheld pointers to interact in the MR
System. The children with ASC spent 15 minutes in the MR envi-
ronment playing with their non-ASC peer, and 15 minutes in the
LEGO setup with the same partner. Children answered interview
questions administrated by tablets before and after each condition.
All children participated in both experimental conditions, following
a randomized order for each pair to compensate for order effects,
with a 5 min break and a relaxation exercise between conditions.

3 DATA ANALYSIS
3.1 Data
3.1.1 Definition. Aligned with the previous research [3, 39, 44, 46,
55], the social initiations were coded using an observational grid
with the categories derived from Bauminger’s Social Emotional
Intervention study [3]. With the help of our collaborator Hospital
and the project’s psychologist we adapted Bauminger’s scheme to
fit the real-time specificities of the data set we were analyzing. This
scheme allowed us to determine the social behavior “initiation”.
Initiation is defined as follows in this scheme: The child begins a new
social sequence directed towards other participant, distinguished
from a continuation of a previous sequence by a change in activity.

3.1.2 Data Annotation. In our study, the behaviors of social initia-
tion have primarily been identified by video recording and coding
for each condition of the trials. In order to code the overt behaviors
of children with ASC, Boris [26] video coding software was used.
All sessions were captured by two cameras installed at opposite
sides of the playground. The intercoder reliability has been calcu-
lated for the given class, both through percentage agreement and
Kappa (Cohen’s Kappa). Kappa scores were between 0.60 to 0.69 and
the percentage level of agreements were between 0.71 to 0.78 with
three coders. Moreover, to include the complex dynamics of body
gestures in our analysis, we defined clips of the social initiation
moments as temporal windows of 10 seconds (5 seconds before and
5 seconds after the coded social initiation moment).



3.2 Preprocessing and Feature Extraction
3.2.1 Automatic body and head pose tracking. To obtain the full
body skeleton joints, we used the fully automatic multi-person 2D
body tracker OpenPose [11]; which provides the joint locations
of the human body (e.g., hand, shoulder, etc.) in RGB sequences.
Similar to the approach followed in [15], we focused on 15 joints
for extracting features related to body pose. To track head pose
we adopted the Openheadpose framework [10] which leverages
on OpenPose. In order to characterize the labeled social interac-
tion clips, we extracted body features using tracked skeleton in-
formation. These features were divided into two main categories:
(i) individual features with n=51 for each individual totaling to
102 individual features; and (ii) interpersonal features with “prox-
imity” (prox) n=245, and “visual focus of attention”(vfoa) n=6, in
accordance with the labeled social initiation.

3.2.2 Spatio-Temporal Features from Individual Data. In order to
obtain features from both subjects, we implement the feature extrac-
tion methodology of [24] and [25] which have been used success-
fully in human day-to-day activity detection. These features also
encapsulate majority of the features that Kleinsmith [36] first intro-
duced in 2005 where they have attempted to understand whether
emotion categories and affective dimensions can be predicted from
affective postures. Following [24] and [25], we obtained 51 spatio-
temporal features, such as: euclidean distances between joints; an-
gles formed between joints; and torso inclination. Each individuals
individual features grouped under the category individual features
with 102 features in total.

3.2.3 Spatio-Temporal Features from Interpersonal Data. Gaze is
considered the primary focal point of social interactions [42]. Visual
Focus of Attention (vfoa) is a version of gaze that reveals “who
is looking and where” [57]. In order to detect the vfoa of each
participant we used the head pose estimation features expressed as
angles of pitch, roll and yaw for each individual (6 features in total).
We also used Hall’s [30] proxemics theory, to estimate proximity
features. Since the MR system facilitates the collaborative activities
on joint actions, children’s proximity might be a factor leading to
initiations. In this regard, similar to the strategy followed in [15],
we define social features as the ones that describe the relationship
between two skeletons based on physical proximity, i.e. inter-body
distance during the interaction. This set of features encompasses
different subsets of features as follows: (a) log-covariance of the
joints distances between bodies (120 features); (b) the minimum
distance between any joint of one person and the torso of the other
(2 features); (c) torso to torso distance (1 feature); (d) the energy over
the euclidean distances from all joints of skeleton one to the torso
of skeleton two and vice-versa (2 features); and (e) features that
were computed similarly to the first subset, however, in a temporal
way (a temporal window, herein defined as 10 frames). From all
subsets, we extracted 251 interpersonal features per frame given
both skeletons are interacting, which is similar to other feature
sets. We formed our feature vectors per frame given that each 10
second clip for social initiation moments consists of 300 frames
(recording 30 fps). As an initial step, we resampled every social
initiation clip and it was done with respect to the mean, computed
over 300 frames for each social initiation clip.

3.3 Experiments and Results
3.3.1 Statistical Hypothesis Testing. In this section, we present the
details of the statistical hypothesis testing to determine if there are
differences in the values of each body cue features for social initia-
tion generated by ASC and non-ASC participants in both platforms
( MR system and LEGO). Previous work found that children with
ASC exhibit a clear deficit in movement observable from birth [60]
and evident throughout life [14, 17, 20, 23, 52, 53, 61, 62]. Nonethe-
less, it has also been shown that children with ASC can identify
emotions in body language just as accurately as their non-ASC
peers [49].

Social communication includes both verbal and nonverbal com-
munication, therefore when fostering social initiation skills in chil-
dren with ASC with ICT we believe we must strive to incorporate
nonverbal communication as well as verbal. Nonverbal behavior
expression in children with ASC might have a role in the complex-
ity of the social context. In MR environments, communication is
not limited to verbal interaction and incorporates embodied inter-
action which goes hand in hand with social perception and social
understanding. However, no research has yet assessed the impact
of an MR full-body interactive system based on individual and in-
terpersonal body cues in fostering social initiation in children with
ASC, and compare it with a traditional intervention approach. In
this regard, our hypotheses are formulated as follows:

H1: There are statistically significant differences between ASC and
non-ASC nonverbal (body) behavior at individual and interpersonal
level in LEGO during social initiation.

H2: There are statistically significant differences between ASC and
non-ASC nonverbal (body) behavior at individual and interpersonal
level in the MR platform during social initiation.

To validate these hypotheses, the Mann-Whitney U test was run
as the difference in the values of each body cue features (averaged
over all the initiations taking place during each play session for each
participant) for the ASC and non-ASC. We present and compare the
results of theMann-Whitney U tests for LEGO and theMR system in
terms of individual and interpersonal features. All the significance
values reported in following result sections were at the significance
level p < .05. As a next step, we develop classification models as a
way to study the joint impact of aforementioned nonverbal body
cues.

Results for H1. Based on the Mann-Whitney U tests with the
target variable ASC/non-ASC, we found that several individual and
interpersonal feature types were significantly different between
ASC and non-ASC during social initiation in LEGO (see Table 1).
Among the six angles obtained from triangles formed by: shoulder,
hand and elbow; hip, shoulder and knee; hip, knee and foot, all
considering left and right sides for individuals; an angle obtained
from shoulder, hand and elbow was significantly different between
participants during social initiation. Moreover, the skeleton joint
distance between foot to nose was significantly different between
participants during social initiation.The spatio-temporal feature
type, the velocities and energy of the upper joints of the skeleton
were also significantly different between social initiations of the
participants. In terms of spatiotemporal proximity features 1 out



Table 1: Types of features which differ between ASC & non-
ASC during initiation in LEGO.

Feature Type Feature Category
foot to nose individual

angle right shoulder elbow hand individual
upper joints velocity individual

log-cov. of the joints distances (temporal) interpersonal-prox

of 120 features was significantly different between ASC and non-
ASC social initiation during LEGO. We have not observed any
visual focus of attention related features being significantly different
between participants.

Results for H2. Based on the Mann-Whitney U tests with the
target variable ASC/non-ASC, we found that several individual and
interpersonal feature types were significantly different between
ASC and non-ASC during social initiation in the MR system (see
Table 2). Similarly to the LEGO condition we found that an angle
obtained from shoulder, hand and elbow was significantly differ-
ent between participants during social initiation. Additionally, the
angle obtained from hip, knee and foot was significantly different
between participants during social initiation. Again similar to the
LEGO condition, foot to nose was significantly different between
participants during social initiation. However, this type of indi-
vidual difference also included nose to hip and distance between
hand features in the MR system. In terms of spatiotemporal prox-
imity features, 69 out of 120 features show significant differences
between participants. We also observed differences between torso
distance-based features. The minimum euclidean distance among
all joints from individual one to the torso of individual two, and
vice-versa, were significantly different between participants during
social initiation. The obtained energy over the euclidean distances
from all joints of skeleton one to the torso of skeleton two, and
vice-versa were, also significantly different between participants
during social initiation. Moreover, we have seen significant differ-
ences in head pose features expressed as yaw and roll between
participants during social initiation. We found that among 102 indi-
vidual features, four features for LEGO and five features for the MR
system showed significant differences between participants during
social initiation. On the other hand, we observed that among 251
(vfoa + prox) interpersonal features, 1 feature for LEGO and 81
features for the MR system showed significant differences between
participants during social initiation. These results show that most
of the features showing the nonverbal behavior differences between
ASC and non-ASC were individual features in LEGO, while in the
MR system these were interpersonal features. As a next step, we
develop classification models as a way to study the joint impact of
aforementioned nonverbal body features.

3.3.2 Automatic Classification. Automatic classification allows us
to study the differences between ASC and non-ASC nonverbal be-
havior in detail for both platforms ( MR system and LEGO). The
problem is formulated as a 2-class classification task for both plat-
forms. The initiations from ASC and non-ASC in the MR system

Table 2: Types of features which differ between ASC & non-
ASC during initiation in MR

Feature Type Feature Category
hand to hand individual

angle right shoulder elbow hand individual
nose to hip individual

angle hip knee foot individual
foot to nose individual
vfoa roll interpersonal-vfoa
vfoa yaw interpersonal-vfoa

energy joints ind. to ind. torso interpersonal-prox
ind. to ind. torso interpersonal-prox
torso to torso interpersonal-prox

log-cov. of the joints distances interpersonal-prox
log-cov. of the joints distances (temporal) interpersonal-prox

were named as ASCMR(n=117) and non-ASCMR(n=113). The initi-
ations from ASC and non-ASC in LEGO were named as ASCLEGO
(n= 121) and non-ASCLEGO (n=140).

We used the same features that were derived from the skeletons
based on individual and interpersonal body movements (proxy &
vfoa based social features). As a first step, all features were consid-
ered as a single feature set, as a combination of all the individual
and interpersonal features, for each of the 2 scenarios (LEGO and
MR).

We usedWeka Data Mining Software for automatic classification
[31]. We used the accuracy, precision, recall and F1-score metric
to evaluate the models. We compared the findings for classifiers
widely used in automated human motion analysis, namely Ran-
dom Forest (RF) and Support Vector Machine (SVM) [1, 6, 28]. The
hyperparameters of each model are tuned based on two grids of
parameters. The grid of parameters used for SVMmodel refers to; 1)
kernel (radial basis function -rbf, the polynomial kernel ), 2) penalty
parameter C of the error term (5 values ranging from 0.1 to 1000),
and 3) gamma Kernel coefficient for rbf (4 values ranging from 0.001
to 1). The best set of parameters leading to the best performance
of the SVM model was obtained across a 10-fold cross validation.
Moreover, the number of trees for our RF model was set to 500,
performing 10-Fold CV with each combination of values. Table 3
and Table 4 depict the overall scores obtained for the feature set
which consists of all the individual and interpersonal features, for
each participant in a subject-independent manner for LEGO and
the MR system, respectively.

With automatic classification we were able to show that social
initiation (ASC or non-ASC) recognition scores based on body fea-
tures, as a combination of individual and interpersonal feature sets,
for both LEGO and MR conditions are above chance level. Model
scores were significantly different from the baseline performance
(ZeroR). Moreover, we observed that classification scores were not
statistically different between LEGO and the MR system.

3.3.3 Video Analysis of the nonverbal behaviors between ASC and
non-ASC. Following the analysis from the previous 2 sections, we
also undertook a detailed visual analysis of social initiations of
children with ASC and non-ASC in order to better understand the



Table 3: Classification Performance of Different Algorithms
on LEGO data

Method Class Precision Recall F-Measure CV Acc
ZeroR ASC - - - 53.64%ZeroR non-ASC 53.60% 100.00% 69.80%
RF ASC 64.30% 52.10% 57.50% 64.37%RF non-ASC 64.40% 75.00% 69.30%
SMO ASC 64.90% 59.50% 62.10% 66.28%SMO non-ASC 67.30% 72.10% 69.70%

Table 4: Classification Performance of Different Algorithms
on MR data

Method Class Precision Recall F-Measure CV Acc
ZeroR ASC 50.90% 100.00% 67.40% 50.87%ZeroR non-ASC - - -
RF ASC 60.20% 60.70% 60.40% 59.57%RF non-ASC 58.90% 58.40% 58.70%
SMO ASC 60.90% 59.80% 60.30% 60.00%SMO non-ASC 59.10% 60.20% 59.60%

context around social initiation behaviors. The head and hands are
seen responsible for the most movement and have received the
highest attention in developing adequate coding strategies [32].
Therefore, we decided to focus on observing the movement of head
and hands in LEGO which reflects the features that are significantly
different between ASC and non-ASC in LEGO. MR environment
involves a large-scale setting which lets players engage in collab-
orative activities by moving closer to their partner. Moreover, in
body movement coding research the primary proxemic variable
has been the distance between interactants, and it has garnered the
most investigative attention [32]. Therefore, we decided to focus on
observing the distance between participants in each social initiation
moment from ASC and non-ASC in the MR environment which
might cover most of the proximity based features discovered as
significantly different in the previous sections. From 18 trials we
randomly selected 4 trials (appx corresponding to %25 of all the
trials) and from these 4 trials, a trained video coder, watched each
social initiation video clip from ASC and non-ASC for LEGO and
the MR system.

LEGO. As the upper joints velocity was significantly higher in
non-ASC initiation moments compared to ASC initiation moments
(Figure 3), we focused on hand and head movements. In the first
5 min of the sessions, searching the LEGO pieces from boxes was
common for both participants which required a lot of hand move-
ments and reaching out gestures to all boxes (Figure 4). However,
there are less pieces on the LEGO table in the non-ASC initiation
moments compared to the ASC initiation moments. This might
signal that during non-ASC initiation moments, the participants
are still in the searching process (Figure 4) and as a result they
might have had more body movements. Moreover, there were more
initiations (although it is not significantly different) in the first 5

mins of the session by the non-ASC kids compared to ASC kids
(Figure 3).

Figure 3: Top: upper joints velocity differences between ASC
andnon-ASCkids in social initiationmoments during LEGO
(left). Bottom: number of initiations generated by ASC and
non-ASC in the first and last 5 mins of the LEGO sessions
(right).

MR. As the torso to torso distance was significantly higher in
non-ASC initiation moments compared to ASC initiation moments
(see Figure 5), we focused on observing the torso to torso distances
between ASC and non-ASC in those clips. We observed that during
the initiation moments, when exploration is taking place in the
playing plane, ASC kids had a tendency to follow the non-ASC kids
more often and they were keeping a close proximity (see Figure 6).
As it can be seen in the Figure 6 top image, the ASC (red net) kid
initiates while he is following his non-ASC peer (blue net) during
exploration. On the bottom image it can be observed that non-ASC
discovers the virtual door under the virtual fog and shares this
experience by creating a social initiation (pointing out to the door,
calling the ASC kid) with the ASC kid (red net) who is at that stage
outside of the playing field.

4 DISCUSSION
In our statistical hypothesis testing, we saw that the angle obtained
from shoulder, hand and elbow, and the skeleton joint distance
between foot to nose, were significantly different between ASC and
non-ASC during social initiation in LEGO. In MR environment, the
angle obtained from hip, knee and foot; and nose to hip and distance
between hands, were significantly different between participants
during social initiation. The aforementioned features are useful
when discriminating between postures related to standing and
sitting or torso inclination. We observed that more of these features
play a role in differentiating between ASC and non-ASC during
initiation in MR setting. This might be related to the diversity of



Figure 4: Top: non-ASC kid (on the left) and ASC kid (on the
right) playing LEGO with social initiation by ASC kid. Bot-
tom: non-ASC kid (on the left) and ASC kid (on the right)
playing LEGO with social initiation by non-ASC kid.

full-body activities that the participants are motivated to undertake
in MR setting.

An representative example of initiation in LEGO setting would
involve changing the standing position which is likely to occur
when picking up the LEGO piece dropped onto the floor. We also
observed that the velocity and the energy of the upper joints were
statistically different between ASC and non-ASC during social ini-
tiation in LEGO. This feature plays a role in the formation of key
movement poses, e.g., in repeated movements, joints alternately ac-
celerate and decelerate which leads to changes in the energy model
representation. This information also helps the characterization of
drastic changes in skeleton direction and velocity. Observing this
type of feature in LEGO, but not in MR, might be related to the
amount of repeated movements generated by the children with ASC
in LEGO as compared to MR. Although generation of repetitive
behavior varies from person to person, the reasons motivating such
behavior might be the same, e.g., to deal with stress and anxiety
and to block out uncertainty [34].

We also observed differences in torso distance-based features in
MR. These features are important in identifying the most active
person (i.e., the person entering into the other person’s individual
space). We also observed that majority of the features represent-
ing nonverbal behavior differences between ASC and non-ASC in

Figure 5: Top: torso to torso differences between ASC and
non-ASC kids in social initiation moments during the MR
system (left). Bottom: number of initiations generated by
ASC and non-ASC in the first and last 5 mins of the MR sys-
tem sessions (right).

LEGO setting were the individual features, while in the MR setting
these were the interpersonal features. The large scale setting of
the MR system might have led to higher numbers of locomotive
actions, as players would display collaborative actions by moving
within proximity to their partner, sometimes coming from across
the play area. In such situations, players can accomplish joint ac-
tions without the need for verbal communication. As the LEGO
setting provided a context where players were already within prox-
imity to each other, sharing a focal point of joint attention, features
related to differences in proximity and vfoa were not as commonly
observed.

Using computational models, the combination of the aforemen-
tioned features allowed us to recognize the type of social initiation
moment (ASC or non-ASC) from body cues in both environments,
validating our hypotheses. Past research indicated that different
body cues work together [16] and may contribute more information
when treated together. We did not observe significant differences
between the evaluated models in terms of performance for LEGO
vs. MR environment. This might be interpreted as the MR system
encouraging similar nonverbal behaviors in children, as similarly
as the LEGO environment, perhaps even more similar as the per-
formance scores in MR setting are lower as compared to LEGO
setting. This also implies that if the children’s nonverbal behaviors
are encouraged to be similar, they also get to be in a similar position
to initiate social interaction.

When we consider the manual video analysis for LEGO settings,
the most common nonverbal behavior for both participants during



Figure 6: Top: non-ASCkid (with blue net) andASCkid (with
red net) playing in the MR environment and it is the mo-
ment of social initiation from ASC kid, Bottom: non-ASC
kid (on the left) and ASC kid (on the right) playing in MR
and it is the moment of social initiation from non-ASC kid.

initiation was related to searching LEGO pieces – i.e., hand move-
ments and reaching out gestures. However, the number of LEGO
pieces on the table for these initiation moments differed between
ASC and non-ASC. This might signal that during non-ASC initia-
tion moments, the participants are still in the process of searching
(Figure 4) and therefore they might have had more body move-
ments enabling easier detection of nonverbal behavior differences.
Moreover, searching activity for LEGO pieces might be related to
imitation as both participants are doing similar activity. Past work
on ASC demonstrated that motor imitation related impairments
were common during social communication [35, 54, 59]. On the
other hand, we observed that during the initiation moments, when
exploration is taking place in the play area, ASC kids had a tendency
to follow the non-ASC kids and they would keep a close proximity.
Data from several studies suggests that the ASC child usually has
less chance to take a leading role in activities with mixed dyads
of friendship. Therefore, settings that mediate communication be-
tween individuals should encourage balanced interactions to ensure
that children with ASC have an equal opportunity in leading the
interactions and the game [4]. As we were able to observe ASC
initiation taking place at these close proximity moments, it can
be said that the MR system might be providing balanced oppor-
tunity for ASC children to take the lead. We also note that it was
more likely to observe the non-ASC kids exploring the play area
individually during non-ASC initiation. Evidence from previous
comparison studies suggest that non-ASC children interact less
with ASC children [21, 37, 38]. This might explain why non-ASC
kids are away from their ASC peers in non-ASC social initiation

moments. In MR setting, observing non-ASC children initiating
is therefore promising in terms of fostering interaction between
mixed dyads.

5 CONCLUSION AND FUTUREWORK
This study is a first step in analyzing the body behaviour differences
between ASC and non-ASC children during social initiation in a
Mixed Reality (MR) environment and a typical LEGO-based inter-
vention on social skills, where both environments mediate dyadic
face-to-face play. To analyze the body cue differences between ASC
and non-ASC, we extracted a set of individual and interpersonal
spatio-temporal features derived from the skeletons of both subjects.
This allowed us to observe the specific individual and interpersonal
features which differ between ASC and non-ASC children during
social initiation in MR and LEGO settings. In general, most of the
features showing the nonverbal behavior differences between ASC
and non-ASC were individual features in LEGO setting and inter-
personal features in MR setting. Observing this difference for the
MR system is a promising result. MR systems exploit full-body in-
teraction, and incorporate navigation of physical and virtual space,
take advantage of body gestures, allow relationships in space with
the other user, and, in general, include non-verbal communication
compared to other types of intervention.

We also investigated the joint effect of the various sets of fea-
tures. As a result, we were able to automatically recognize the type
of social initiation moments (ASC or non-ASC) from body cues in
LEGO and in MR. Computational models evaluated for social ini-
tiation classification did not show significant differences between
LEGO and MR settings. This is a promising outcome indicating
that an MR platform can be utilized to positively manipulate the
nonverbal body behaviors between ASC and non-ASC children dur-
ing social initiation as well as a traditional therapy setting (LEGO).
However, further work is needed to discover hidden relationships
between different body cues and their differences between ASC
and non-ASC children.

Our manual video analysis confirmed that the body features
utilised for automatic analysis were perceivable and meaningful to
a human coder. However, these body features should be analyzed to-
gether with other data sources, such as system logs of game events,
to have a better understanding of the differences between ASC and
non-ASC social initiations. This will lead to a more insightful un-
derstanding of how a face-to-face, full-body interactive MR system
can become a mediator to foster socialization between the ASC and
the non-ASC children, and pave the way for designing novel tools
that can be utilised by the ASC therapists and caregivers.
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