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Supplementary Fig. 1. Gene ontology analysis of digitonin lysates. 

a Schematic of time course experiments. b Cholesterol abundance in subcellular fractions at 

indicated times (n=3). These data exclude time-of-day variation in the extraction efficiency of 

digitonin that, in principle, might have arisen from a circadian rhythm of membrane cholesterol 

abundance. Significance was calculated using one-way ANOVA and Tukey’s multi 

comparisons test (MCT). c Gene ontology analysis on digitonin extracts (n=4) using PANTHER 

enrichment test. Shown are top 6 terms for GO-Slim Cellular Component and GO-Slim Biological 

Process annotation data categories. Mann-Whitney U test and Benjamini-Hochberg correction 

(FDR, p<0.05) were performed. d Absolute values for soluble and total protein presented in Fig. 

1b. p-values indicate comparison of damped cosine wave with straight-line fit (null hypothesis = 

no rhythm) (n=3). 

Mean ± SEM shown throughout. Cell type used in (b-d) was lung fibroblasts. 
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Supplementary Fig. 2. Cytosolic pH measurements. 

Use of firefly luciferase (Fluc) as a ratiometric pH reporter demonstrates no circadian rhythm in 

cytosolic pH. a Luminescence emission spectra of purified luciferase solutions at different pH, 

confirming the pH-sensitivity of native Fluc102. b 560nm/610nm emission ratio plotted as a 

function of pH. c Validation of Fluc as a pH sensor in U2OS cells expressing Fluc constitutively 

(SV40:LUC), where cells were incubated with media of different pH (7.0-7.6) which has only a 

modest effects on basal cytosolic pH. Following treatment with FCCP (a proton ionophore), 

intracellular pH equilibrates with extracellular pH, with a commensurate shift in 560 nm/620 nm 

ratio. d 560/620 emission ratio plotted as a function of pH, confirming a linear relationship 

between pH and the 560 nm/620 nm ratio of Fluc bioluminescence in living cells (n=3). e, f 

Representative traces showing gene expression rhythms and pH measured in human U2OS cells 

and mouse lung fibroblasts using the Bmal1:LUC transcriptional reporter (e) or PER2::LUC 

translational reporter (f). Whilst circadian gene expression rhythms were observed in total 

bioluminescence of both reporters, no such oscillation in pH was observed. This contrasts with 

data collected using exactly the same method during the yeast respiratory oscillation, where 

cytosolic pH varies consistently and was robustly detected by the ratio of Fluc bioluminescence 

emmission45. This demonstrates that overall cytosolic pH does not consistently vary over the 

circadian cycle of cultured mammalian cells but leaves open the possibility that daily variation in 

highly localised pH transients might fulfil some specific timing function. g We tested this in 

PER2::LUC lung fibroblasts (n=4) under sustained treatment with FCCP or DMSO (vehicle). 

FCCP treatment was clearly effective, since it was cytotoxic to cells with media of pH 6.4 (no 

recovery of bioluminescence rhythms after a media change, compared with DMSO controls). In 

contrast, addition of FCCP to cells with media of pH 7.4 had no effect on the period or amplitude 

of PER2::LUC rhythms, or on cell viability. Therefore, cytosolic pH is not circadian regulated and 

does not regulate circadian rhythms. Data are shown as mean ± SEM.  
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Supplementary Fig. 3. Validation of QDs as a method to measure cytosolic macromolecular 

crowding. 

The diffusion of macromolecules in solution is affected by many factors, including pH, 

temperature, and size, but the most physiologically-relevant determinant is macromolecular 

crowding. a Measurement of the effective diffusion quantum dots (QDs) in solution. Diffusion 

of QDs is sensitive to increasing concentrations of macromolecules, such as polyethylene glycol 

(PEG 35K) (n= 8, 10, 10, 10, 10, 10 fields of view per concentration from 100 to 350 mg/mL) 

and bovine serum albumin (BSA, 300 mg/mL) (n=7, 10, 10 fields of view, respectively) but is 

not sensitive to changes in physiological pH (n=10 fields of view). b Validation of diffusion 

quantification from the effective diffusion rate of quantum dots (QDs) in fibroblasts upon 

treatment with media of different osmolality (n=10, 16, 5, 5) and representative tracking images. 

Scale bar: 1µm. c Effective diffusion coefficient of QDs in untreated cells and cells stimulated 

for the indicated time with 10% serum after starvation (n= 32, 32, 32, 30, 33).  

Data are presented as Mean ± SEM. Statistical test used was one-way ANOVA with Dunnet’s 

MCT. Cell type used was cardiac fibroblasts for (b) and lung fibroblasts for (c). 
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Supplementary Fig. 4. mTORC inhibition attenuates soluble protein rhythms and time of day 

variation in the diffusion coefficient of Quantum Dots. 

a Quantification of soluble protein (n=3) in fibroblasts ± 50 nM torin1 at peak and trough of protein 

rhythms and bioluminescence data of the circadian clock reporter (n=3). b Effective diffusion rate 

of QDs in fibroblasts ± 50 nM torin1 (n= 57, 39, 49, 46 for DMSO and n=47, 57, 46, 37 for torin1). 

For both (a) and (b) torin1 was added to the medium at time 0 h and kept for the duration of the 

experiment. 

Data are presented as mean ± SEM. Statistical significance calculated using one-way ANOVA 

with Sidak’s MCT in (a) and two-way ANOVA in (b). Cell type used was lung fibroblasts. 
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Supplementary Fig. 5. Relationship between concentration and osmolality of macromolecules 

and ionic solutes. 

Osmolality of PEG-20K, KCl, and haemoglobin solutions (n=3 technical replicates). Unlike KCl, 

the crowding agent PEG20K and haemoglobin exhibit a non-linear relationship between 

concentration and osmolality due to increasing proportions of solvent molecules being affected by 

the extended hydration shells around macromolecules, compared with simple hydration shells of 

small ionic solutes103–106. We note that other interpretations for this phenomenon have been 

proposed107. At high concentrations, small changes in macromolecule concentration (unstructured 

and globular proteins) trigger much larger changes in osmolality than ionic solutes 

Data are presented as mean ± SD. Non-linear fit of a third order polynomial was applied to PEG 

and haemoglobin datasets. 
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Supplementary Fig. 6. Ion rhythms in fibroblasts occur with no volume change. 

a Representative measurements and quantification of fibroblast volume over several circadian 

cycles reveals that most (91%) cells show no significant circadian variation in volume. While 

feeding-dependent diurnal variation in hepatocyte volume was recently reported6, only a small 

proportion (9%) of individual fibroblasts showed significant ~24 h variation in volume i.e. where 

a damped sine wave fit was preferred (p<0.05) over a straight-line fit (null hypothesis = no 

rhythm), and the period between 20 and 28 h. Moreover, the relative amplitude of these few cells 

that showed circadian variation was much lower than changes in ion content. Thus, changes in 

cellular volume cannot account for the daily variations in ion and cytosolic protein abundances we 

observe. b ICP-MS quantification of biologically-relevant ions in primary fibroblasts (n=4). p-

values indicate comparison between a damped cosine wave fit compared with a straight-line (null 

hypothesis, no rhythm). c Bioluminescence control for WT and tau mutant fibroblasts. Comparison 

of ∆Period for clock reporter, soluble protein rhythms, and Na+ rhythms (n=3). Statistical test used 

was 2-way ANOVA and Holm-Sidak’s MCT.  

Data are presented as mean ± SEM. Cell type used was cardiac fibroblasts for (a, b) and lung 

fibroblasts for (c). 
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Supplementary Fig. 7. Effect of OXSR1-SLC12A inhibition on soluble protein. 

a % change in soluble protein abundance upon treatment with the indicated stimuli for 4 h (n=6). 

Statistical test used was 2-way ANOVA and Dunnet MCT. b Left: immunoblot showing knock 

down efficiency of siRNA against NKCC1 (n=3). GAPDH was used as loading control. Right: 

soluble protein abundance upon 10% serum stimulation for 4 h in serum-starved fibroblasts 

transfected with non-targeting siRNA pool or siRNA against NKCC1. Statistical test used was 

two-way ANOVA with Sidak’s MCT. c Soluble protein abundance at peak and trough of protein 

rhythms in fibroblasts ± 30 µM of OXSR1 inhibitor closantel (n=6). Closantel was added at time 

0h. Data were normalised to control at 24 h. Statistical test used was two-way ANOVA with 

Sidak’s MCT. 

Data are presented as mean ± SEM. Cell type used was lung fibroblasts in (a-b) and cardiac 

fibroblasts in (c). 
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Supplementary Fig. 8. Rhythms in the WNK-OXSR1 pathway. 

a Composite figure summarizing S6 Kinase, soluble protein, Cl, and OXSR1 rhythms, and phase 

relationship (n=3). Intensity profiles (phosphorylation) of indicated proteins taken from Wong et 

al.57 (b) (n=3), Robles et al., 201712 (c) (n=3), and Brüning et al., 201930 (d) (n=3). Data are 

presented as mean ± SEM, p and q values are reported from the original papers. 
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Supplementary Fig. 9. Working model. 

Schematic of working model, from top left: (1) mTORC activation facilitates increased 

macromolecular crowding in the cytosol, whose osmotic potential is buffered by electroneutral 

KCl export; (2) increased crowding and reduced intracellular Cl- concentration stimulates 

increased NKCC activity via WNK/OSXR1 allowing Cl- recycling to sustain KCC-mediated K+ 

efflux; (3) mTORC inactivation elicits a fall in cytosolic protein which is buffered by net K+ influx 

via NKCC and other transporters; until (4) a new steady state is achieved without any net K+ 

transport. Whilst SLC12A family members clearly contribute to this osmotic buffering system, 

other transporters are likely involved.  
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Supplementary Fig. 10.  Genetic ablation of NKCC1 affects ion/protein ratio in fibroblasts. 

a Ion and protein abundance per cell in NKCC1+/+ and NKCC1-/- fibroblasts (n=6). b Change in 

soluble protein abundance upon 10% serum stimulation for 4 h (n=6). c Representative 

immunoblots and quantification of S6 Kinase and OXSR1 phosphorylation upon serum 

stimulation (4 h) in NKCC1+/+ and NKCC1-/- fibroblasts (n=3). 

Mean ± SEM shown throughout. Statistical tests used were two-way ANOVA and Sidak MCT (a, 

c) and two-tailed Student t-test (b). Cell type used was lung fibroblasts. 
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Supplementary Fig. 11. Genetic ablation of NKCC1 affects cellular and organismal circadian 

rhythms. 

a Detrended PER2::LUC traces and circadian period quantification upon genetic ablation of 

NKCC1 (n=4) in cardiac fibroblasts. b Representative double-plotted actograms of NKCC1+/+ 

and NKCC1-/- mice under light/dark cycles (L/D) and constant darkness (D/D), with circadian 

period and amplitude of wheel running activity under D/D (n=4 males per genotype). Yellow 

shading indicates lights ON.  

Mean ± SEM shown throughout. Statistical tests used were two-tailed Student t-test. 
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Supplementary Fig. 12. Ion rhythms in cardiomyocytes and firing frequency. 

a ICP-MS quantification of biologically-relevant ions in primary cardiomyocytes (n=4). p-values 

indicate comparison between a damped cosine wave fit compared with a straight-line (null 

hypothesis = no rhythm). b Firing frequency of primary cardiomyocytes at the peak and trough of 

ion rhythms in two more independent biological replicates (mean values from active electrodes are 

presented). Statistical significance was calculated using one-way ANOVA with Tukey’s test. 

c Representative traces of ex vivo Langendorff recordings (monophasic action potentials) from 

control or rapamycin-treated mice at indicated times (n=6 for all but rapamycin autonomic 

blockade for which n=5). d RR interval standard deviation and Heart rate (HR) before and after 

autonomic blockade in control and rapamycin-treated mice (n=6). Reduction in RR interval 

standard deviation confirms the effect of autonomic blockade. Note that this does not affect the 

time-of-day variation in HR in control mice but only in the rapamycin-treated group. e Summary 

cartoon of the temporal relationships for ex vivo measurements with respect to gene expression 

and behaviour in vivo.  

Data are presented as mean ± SEM. Statistical tests used were two-way ANOVA and Sidak MCT 

(d, RR) and mixed effect analysis and Sidak MCT (d, HR). 
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Ion  Extracellular 
concentration 

Intracellular 
concentration (IC) 

%change (IC) Peak (IC) Trough (IC) 

K 4.5 mM 145 mM ~30% ~170 mM ~120 mM 
Na 145 mM 12 mM ~40% ~14 mM ~10 mM 
Cl 115 mM 10 mM ~20% ~11 mM ~9 mM 

 
 

Supplementary Table 1. Intracellular and extracellular ion concentrations in mammalian 

cells. 

Intracellular and extracellular ion concentrations in mammalian cells from16. Calculation of 

predicted intracellular concentration at peak and trough of ion rhythms (% change calculated from 

data in Fig. 2B). 
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Ion Concentration (mM)  
Cardiac fibroblasts Cardiac myocytes 

Na 94.07 88.51 
P 88.99 137.89 

Cl 113.39 114.83 
K 114.55 183.45 

Ca43 13.27 10.37 
Ca44 10.99 11.27 

Cr 0.06 0.11 
Mn 0.02 0.02 
Fe 0.53 0.78 
Co 0.00 0.00 
Ni 0.03 0.03 

Cu63 0.10 0.14 
Cu65 0.10 0.14 

Zn 0.43 0.84 
Pb 0.00 0.00 

 
 
Supplementary Table 2. Imputed values for ion concentrations in cardiac fibroblasts and 

cardiac myocytes. Values were calculated from ICP-MS data assuming an average cell volume 

of 3.5 pL (80.000 cells lysed in 110 mM of 5% HNO3). Data are from whole cell lysates and 

include ions stored into organelles. 
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