
1	
	

TCP in the Internet of Things: from ostracism to prominence 
 

Carles Gomez1, Andrés Arcia-Moret2, Jon Crowcroft2 
1Universitat Politècnica de Catalunya (UPC) 

2University of Cambridge 
E-mail: carlesgo@entel.upc.edu, andres.arcia@cl.cam.ac.uk, 

jon.crowcroft@cl.cam.ac.uk 
 

Keywords- TCP, Internet of Things, evaluation, HTTP, CoAP, MQTT, AMQP. 

Abstract 

TCP has traditionally been neglected as a transport-layer protocol for the Internet of 
Things (IoT). However, recent trends and industry needs are favoring TCP presence in 
IoT environments. In this paper, we first motivate and describe the main IoT scenarios 
where TCP will be used. We then analyze the historically claimed issues of TCP in the 
IoT context. We argue that, in contrast to generally accepted wisdom, most of those 
possible issues fall in one of the following categories: i) are also found in well accepted 
IoT end-to-end reliability mechanisms, ii) can be solved, or iii) are not actual issues. 
Considering the future prominent role of TCP in the IoT, we provide recommendations 
for lightweight TCP implementation and suitable operation in such scenarios, based on 
our IETF standardization work on the topic. 

1. Introduction 

The Transmission Control Protocol (TCP) was designed four decades ago as a 
connection-oriented transport-layer protocol that provides end-to-end reliable and 
ordered data delivery between applications running on Internet hosts [1]. TCP has ever 
since been the dominant transport-layer protocol on the Internet, as many major 
applications (e.g. the WWW, e-mail, file transfer, instant messaging, etc.) have 
benefitted from its service. However, TCP has faced and overcome significant 
challenges as the Internet has evolved beyond its initial characteristics. For example, 
despite the underlying assumption of TCP congestion control whereby the Internet is a 
wired network, and the issues that arise in wireless environments [2], TCP has been 
successfully used in mobile networks. Optimization techniques have contributed to 
today’s TCP pervasive presence in mobile phones [3]. 

A new challenge for TCP is the Internet of Things (IoT). In this major networking trend, 
it is envisioned that tens of billions of inexpensive devices (e.g. sensors, actuators, etc.) 
attached to daily life objects will be connected to the Internet to enable smart scenarios. 
However, IoT devices typically exhibit significant constraints (regarding memory, 
processing, and energy), use low rate and error-prone links, and their networks often 
follow a multihop topology [4]. Due to these harsh networking conditions, TCP has 
often been severely criticized as a transport-layer protocol for the IoT. In consequence, 
many initial IP-based IoT deployments resorted to using UDP with application-layer 



2	
	

reliability [5]. The same approach was followed for the Constrained Application 
Protocol (CoAP), a lightweight RESTful application-layer protocol developed at the 
IETF for the IoT [6]. Likewise, the IPv6 over Low power Wireless Personal Area 
Networks (6LoWPAN) activity developed optimizations such as header compression 
for UDP, while TCP was neglected [7].  

However, the need for graceful integration of CoAP with enterprise infrastructure has 
recently triggered the development of a CoAP over TCP specification [8]. On the other 
hand, HTTP, which relies on TCP at the transport layer, has been used and is being 
optimized for IoT environments, leveraging its mainstream position [9]. Furthermore, 
messaging protocols such as Message Queue Telemetry Transport (MQTT) [21] and 
Advanced Message Queuing Protocol (AMQP) [22], both assuming TCP underneath, 
have achieved IoT market presence [27]. These recent industry and standardization 
tendencies suggest that TCP may gain extensive support in IoT scenarios soon. 
However, it is necessary to study the potential issues of TCP, and determine how it 
should be used, in IoT environments. This need has motivated our IETF standardization 
work to provide guidelines on the use of TCP for IoT [10].  

In this paper, we focus on issues of and solutions for TCP in the IoT. The remainder of 
the paper is organized as follows. In section 2, we analyze the IoT end-to-end 
connectivity scenarios where TCP will be used. In section 3, we discuss a 
comprehensive list of critiques to TCP in an IoT context. In sections 4 and 5, we 
describe and evaluate, respectively, simple measures for lightweight TCP 
implementation and suitable operation in IoT environments. Section 6 discusses 
implementation challenges, and Section 7 concludes the paper. 

2. TCP in the Internet of Things 

Connecting Things to the Internet allows end-to-end connectivity between IoT devices 
and other computers on the same network. In this paradigm, cloud backend systems can 
communicate with IoT devices (e.g. for sensor data centralization, actuator triggering, 
and device management). In this section, we describe the main protocol and 
architectural options for end-to-end connectivity with IoT devices where TCP is used. 
We focus on the scenarios that involve HTTP, CoAP, MQTT and AMQP.  

2.1. HTTP 

HTTP offers several advantages as a protocol for the IoT: it is a free, open standard and, 
being the mainstream application-layer protocol on the Internet, HTTP development 
tools are numerous. Moreover, it is the protocol with the highest probability of passing 
security middleboxes. The recent HTTP/2 is more suitable than HTTP/1.1 in an IoT 
context. HTTP/2 has a binary, compact header, while pseudo-header fields can be 
compressed by using a format called HPACK. Currently, an IETF specification is being 
developed for using HTTP/2 in IoT scenarios [9]. Therefore, HTTP (and thus TCP) is 
an important candidate for IoT device communication (Figure 1.a)). 



3	
	

 

 

2.2. CoAP 

CoAP was designed as a lightweight alternative to HTTP/1.1, keeping the basic 
principles of HTTP such as the REST architecture, albeit with considerably less 
complexity. To fully exploit its potential, CoAP allows interoperability with HTTP via 
protocol translation proxies (Figures 1.c) and 1.d)). CoAP was originally designed over 
UDP, with optional, stop-and-wait reliability. However, deployment experience has 
shown the need to enable CoAP over TCP (Figure 1.b)) or over WebSockets (WS, 
Figure 1.c)), in order to overcome connectivity limitations introduced by corporate 
firewalls [8]. 

2.3. MQTT  

MQTT is an ISO/IEC messaging protocol designed for monitoring applications. It is 
based on the publish-subscribe paradigm, by which publishers (e.g. sensors) transmit 
data messages to a broker; the latter delivers such messages to interested entities, called 
subscribers (e.g. backend systems). This flexible approach places complexity in the 
broker. Furthermore, MQTT defines a lightweight header format and requires a small 
code footprint. In MQTT, a TCP connection is established between a publisher or a 
subscriber and the broker (Figure 1.e)).  

2.4. AMQP 

AMQP is another ISO/IEC messaging protocol, originally developed for the finance 
industry. It supports a variety of broker-based architectures, including publish-
subscribe. AMQP provides more elaborate mechanisms (e.g. for fine-grained control, 
queue management and error handling) than MQTT, at the expense of greater 
implementation complexity and larger message headers. AMQP is also based on TCP 
(Figure 1.f)). 



4	
	

 

Figure 1. Main options for backend-to-IoT device communication: a) CoAP/TCP;         
b) HTTP/TCP; c) CoAP/UDP to CoAP/WS/TCP proxy; d) CoAP/UDP to HTTP/TCP 

proxy; e) MQTT/TCP; f) AMQP/TCP  

 

 



5	
	

3. Analysis of claimed TCP issues in Internet of Things scenarios 

TCP has been criticized as a protocol for the IoT. In this section we review the main 
potential problems, and the faults indicated by the networking community, of using 
TCP in IoT scenarios. Table 1 summarizes the claimed issues, the outcome of our 
discussion, solutions available (if any), and relevant use cases and application domains. 

Claimed issue Discussion Solution(s) Relevant use  
case(s) 

Relevant 
application 
domain(s) 

Congestion 
control 

activation after 
non-congestion 

losses 

Not specific to 
TCP 

(inability to 
distinguish the 

cause of 
packet loss) 

 
 

Experimental 

Remote control, 
switch, alarm  

Home, building 

Control and critical 
monitoring 

Health, industry 

Firmware update Potentially all 

 
 

Link layer 
interaction 

Not specific to 
TCP  

(common for 
end-to-end 

ARQ) 

 
 

Experimental 

Remote control, 
switch, alarm  

 

Home, building 

Control and critical 
monitoring 

Health, industry 

Firmware update Potentially all 
Header overhead At least 12 

bytes greater 
size than UDP 

header 

TCP header 
compression  

(to be 
developed) 

Battery-enabled 
sensors/actuators  

City, agriculture, 
forest, home, 

health, industry 

Long TCP 
connection 

infeasible due to 
sleep periods 

False claim 
(if properly 
configured 

RDC in use) 

Not needed Battery-enabled 
sensors/actuators 

City, agriculture, 
forest, home, 

health, industry 

Lack of transport 
service flexibility  

TCP always 
offers reliable 

service 

No Non-critical 
monitoring  

City, forest, 
agriculture, home 

High latency Due to three-
way 

handshake 

i) Long-lived 
connections 

ii) TFO 

Remote control, 
switch, alarm 

Home, building 

Control Industry 
Multicast 

incompatibility 
TCP is a 
unicast 

protocol 

No Lighting 
applications, scenes  

Home, building 

RTO algorithm 
issues 

RTO  not 
designed for 
IoT scenarios 

Use of 
CoCoA (see 
next section) 

All scenarios, except for high quality 
wired links in building automation [19]   

High complexity False claim 
(TCP was 

designed for 
computers 
similar to 

today’s IoT 
devices) 

Not needed All scenarios, except for higher 
performing IoT devices (e.g. Raspberry 

Pi)  

Table 1. Summary of claimed issues, discussion, solutions, relevant use cases and 
application domains for TCP in an IoT context 



6	
	

3.1. Congestion control and packet loss 

TCP congestion control was designed in the late eighties when Internet links were 
mostly wired. It was assumed that packet losses were due to congestion since  
corruption in a wired link was unlikely [15]. Congestion control mechanisms were 
designed to avoid congestion-induced network collapse. When a packet loss is detected, 
a TCP sender reduces its segment rate. However, in IoT environments, packet losses 
may occur for several reasons besides congestion. First, most IoT link technologies are 
wireless (or use wired noisy media, as in power-line communication), thus being 
typically error-prone. Secondly, many IoT networks follow a mesh topology. Route 
changes, e.g. due to node mobility or temporary link quality degradation, lead to 
connectivity gaps and may also induce packet reordering (which TCP may treat as 
packet loss). 
 
Suboptimal performance of TCP under non-congestion losses is a well-known problem 
[3]. Proposed solutions, such as Explicit Loss Notification, require distinguishing the 
reason of packet losses, which is not always possible, and neither have been 
standardized nor widely deployed. However, inability to determine the reason of packet 
losses is not specific to TCP. In fact, any other well designed Automatic Repeat reQuest 
(ARQ)-based mechanism for end-to-end reliability (e.g. the one in CoAP) will trigger 
congestion control measures after a packet loss, incurring underperformance like TCP 
[18]. 

3.2. Link layer interaction 

Many IoT link-layer protocols use ARQ. Examples include IEEE 802.15.4, ITU-T 
G.9959 (Z-Wave), Bluetooth Low Energy or IEEE 802.11ah. Link-layer ARQ may 
increase TCP performance, as link Round Trip Time (RTT) is expected to be lower than 
end-to-end path RTT, allowing local recovery of a lost packet before the TCP sender 
triggers a retransmission (and congestion control). However, if a link suffers quality 
degradation, the link-layer ARQ mechanism may perform retries, increasing end-to-end 
latency, and sometimes leading to spurious TCP retransmissions [14]. This problem is 
not TCP-specific, and will happen when two RTO mechanisms run in parallel at two 
different layers, as with CoAP (over UDP) RTO over any ARQ-based link layer.   

3.3. Header overhead 

The TCP header has a minimum size of 20 bytes, which is greater than the 8-byte UDP 
header. Furthermore, 6LoWPAN header compression allows to encode the UDP header 
efficiently (typically, reducing it to 4 bytes), but not the TCP one [7]. Note that RFC 
1144 TCP header compression [29] is not suitable for lossy links, and Robust Header 
Compression (ROHC), which addresses issues of the former, is too heavy for IoT 
devices. In fact, ROHC ranks among the most complex IETF protocols, thus unsuitable 
for constrained devices which often have 8- or 16-bit microprocessors and a RAM of 
~10 to ~50 kB [4]. TCP header compression was once proposed for 6LoWPAN 



7	
	

(achieving a 6-byte TCP header with 95% probability), but it was neither completed nor 
standardized. Therefore, TCP header compression for IoT scenarios is an open issue. 
 
3.4. TCP connection maintenance 

IoT devices may run on a limited energy source, e.g. a battery. Communication, and in 
particular, idle listening, is the main energy-consuming component in such devices. In 
order to save energy, many IoT devices use radio duty cycling (RDC), by which the 
radio interface is kept in off state by default, and is turned on for communication under 
certain conditions [11]. It has been claimed that “devices may frequently go into sleep 
mode, thus it is infeasible to maintain a long-lived connection in IoT applications” [12]. 
However, RDC techniques allow the exchange of packets between an energy-
constrained device and another device, at the expense of increased delay and buffering 
requirements [11]. With appropriately configured RDC mechanisms, and since storing 
state consumes a low amount of energy, we argue that long TCP connections are 
perfectly feasible.  
 
3.5. Latency 

Certain IoT applications require low latency, such as alarm activation (e.g. after fire 
detection), and human-triggered interaction between controls and actuators (e.g. 
lightbulbs, appliances, etc.). The requirement for short-lived TCP connections for IoT 
environments expressed by some researchers (see the previous subsection) may translate 
into opening a new connection every time new data has to be sent, increasing delay due 
to connection establishment [12]. In contrast, delay is minimized in a long-lived 
connection, which is only established once and may subsequently be reused for data 
exchanges. An alternative is TCP Fast Open (TFO), which allows embedding data in 
SYN and SYN-ACK packets, thus saving one RTT compared to the traditional 
approach whereby the three-way handshake precedes data exchange [13]. For security 
reasons, TFO requires the negotiation of a cookie, which is included in SYN packets.  

3.6. Always-reliable service 

Monitoring applications in IoT often tolerate a fraction of lost sensor readings. This can 
be exploited to save energy and bandwidth by using unacknowledged transmission. For 
instance, CoAP (over UDP) supports optional non-confirmable transmission. However, 
if TCP is used, all upper layer messages will be acknowledged at the transport layer, 
precluding the application developer from considering the lighter, unreliable approach. 

   
3.7. Multicast 

There exist IoT applications that involve communication between a sender and a group 
of receivers. Examples include controlling a specific group of lights (e.g. in smart 
homes or smart cities) and group firmware updates. Such applications benefit from the 
packet economy of multicast to save energy and bandwidth. For instance, CoAP group 



8	
	

communication uses IP multicast [16]. However, TCP is a unicast protocol: therefore it 
is not suitable as a transport-layer protocol for multicast. (This is one of the reasons that 
originally favored UDP as a transport-layer protocol for CoAP.)  
 
3.8. RTO algorithm 
 
TCP uses its well-known RTO algorithm, which adaptively determines the RTO by 
applying an EWMA smoothing scheme on RTT samples [17]. However, this algorithm 
was not designed considering IoT scenarios. Problems of TCP RTO in this context are 
summarized next [18].  

Karn algorithm 

By the Karn algorithm, only strong RTTs (i.e. RTTs for which the sender has not 
performed retransmissions) are considered for RTO computation. However, IoT 
scenarios are lossy; therefore it is also necessary to use weak RTTs (for which the 
sender has run into retransmission), to avoid long periods without any input to the RTO 
computation, even if weak RTTs provide ambiguous information.  

Lack of aging 

Network conditions may change over time in IoT environments, from temporary 
congestion due to message bursts (e.g. when several sensors detect and communicate a 
global event) to low offered load periods. The RTO algorithm may thus converge to a 
value adapted to an outdated situation. The TCP RTO lacks an aging mechanism, 
allowing to decay the RTO estimate towards the default RTO value after a long period 
without RTT samples.  

Constant backoff factor 

Many IoT networks follow the multihop topology and are connected to the Internet 
through a border router. In these scenarios, nodes that are close to the border router will 
be favored by a constant backoff factor of 2, as their RTO will converge to low values, 
allowing quick retries. However, remote nodes will converge to high RTO values, 
leading to high retry delay, creating a fairness problem that degrades network 
performance.  

Synchronization issues 

Due to the periodic nature of sensor transmissions in many IoT applications, such 
transmissions may synchronize, leading to collisions and losses. Dithering allows 
avoiding such effects; however, it is not available in TCP RTO. 
 
3.9. Protocol complexity 
 
The IoT community has often regarded TCP as a complex protocol [23, 24]. While TCP 
has evolved over time, it is backwards compatible with its RFC 793 specification. In the 



9	
	

early eighties, TCP was running on computers with very limited processing and 
memory characteristics. Those computers would be categorized today as constrained 
devices [4].  
 
 
4. A TCP profile for IoT devices 

As aforementioned, TCP presence in IoT scenarios is foreseen to increase dramatically. 
On the other hand, some of the potential issues of TCP for IoT environments may be 
addressed or mitigated by adequately configuring TCP. For these reasons, a 
specification is being developed in the IETF LWIG working group (WG), in 
cooperation with the IETF CoRE and TCPM WGs, intended to offer simple measures 
for lightweight and suitable TCP operation in IoT environments [10]. This section 
summarizes the main recommendations from the specification.  

4.1. Maximum Segment Size 

In many IoT scenarios, an adaptation layer based on 6LoWPAN is needed to enable 
IPv6 over the lower layers [19]. Such adaptation layer may not grant support for packets 
larger than 1280 bytes. Therefore, in order to avoid IP-layer fragmentation when TCP is 
used, the Maximum Segment Size (MSS) must be set appropriately.  

4.2. Window size 

TCP has often been criticized as a complex protocol by the IoT community [23, 24]. 
This claim is partly due to its sliding window management mechanisms, often 
optimized for high bandwidth scenarios [25]. However, in IoT networks, traffic patterns 
are typically transactional, e.g., sensors sending short data messages infrequently. In 
fact, the reliability mechanism in CoAP provides stop-and-wait operation, which is a 
lightweight approach well accepted by the IoT community [23]. TCP flow control can 
provide stop-and-wait functionality by using a single-MSS window. This approach 
simplifies TCP implementation and operation in several ways. Firstly, buffer space and 
buffer management requirements are reduced [26]. Secondly, segment reordering is 
avoided, as a new segment cannot be sent until the previous one has been 
acknowledged.  

Nevertheless, software updates is a use case where a window greater than one MSS may 
be beneficial, in order to reduce transfer time. An IoT device might also benefit from 
sending several segments consecutively (e.g. a batch of accumulated readings), as the 
energy cost of radio warm-up and cool-down transitions before and after 
communication, respectively, could be amortized. Therefore, we recommend using 
stop-and-wait, while allowing implementers choose the approach that better suits their 
needs. 

 



10	
	

4.3. RTO algorithm 

An enhanced RTO algorithm is being standardized by the IETF CoRE WG for CoAP, 
as part of the CoAP Congestion Control/Advanced (CoCoA) specification [18]. CoCoA 
has been designed for IoT scenarios. It is based on the TCP RTO algorithm [17]; 
however, it also uses weak RTTs, an aging mechanism, a variable backoff factor, and 
dithering. CoCoA outperforms state-of-art TCP RTO variants such as Linux RTO or 
Peak Hopper, at the expense of a complexity increase that does not pose a problem for 
IoT devices [18]. Therefore, we recommend using CoCoA for TCP. 

4.4. TCP connection establishment and maintenance 

In order to save energy and bandwidth resources in IoT scenarios, it is fundamental to 
minimize communication overhead. The penalty of TCP connection establishment 
becomes asymptotically negligible as TCP connection lifetime increases. Therefore, we 
recommend maintaining long-lived TCP connections whenever possible (e.g. for 
AMQP- or MQTT-based approaches). Otherwise, if the TCP connection needs to 
traverse a middlebox (e.g. a firewall, a NAT, etc.), it may face the issue that many 
middleboxes silently remove connection state after a few minutes of inactivity [20]. 
This behavior forces the two communicating TCP endpoints to establish a new TCP 
connection for transmitting new data. An alternative is TFO, which is more efficient 
than creating a new TCP connection per notification if the TFO cookie update rate is at 
least one order of magnitude below the notification rate.	

4.5. TCP options 

Several TCP options such as Timestamps, Window Scale, and Selective 
Acknowledgments (SACK) were designed to increase TCP performance over high 
bandwidth-delay product and high-speed paths, where using a high TCP window size is 
critical to achieving good performance. If stop-and-wait is used, these TCP options 
cannot provide benefits and thus their support can be avoided. However, if a window 
size greater than a single MSS is used in often lossy IoT environments, SACK is 
recommendable. With this option, a sender will not retransmit data unnecessarily. 

5. Evaluation 

This section evaluates performance of TCP in an IoT context, considering different 
settings, in terms of energy efficiency, delay, and throughput. 

5.1. Energy efficiency 

We investigate the energy efficiency of UDP- and TCP-based architectures and options 
for communication between a battery-enabled IoT device and the backend. The 
following conditions are assumed for the IoT device: the CC2530 IEEE 802.15.4 radio 
chip [28], RDC with a poll rate of 0.1 Hz, MAC-layer acknowledgments, a CR2032 
button-cell battery, 6LoWPAN header compression for IPv6 and UDP (with 11-byte 
and 4-byte headers, respectively), and periodic notification of 25-byte sensor readings.  



11	
	

Figure 2 shows the theoretical lifetime of the considered IoT device. Results illustrate 
that differences in the evaluated architectures are significant for notification periods 
lower than 104 seconds as energy consumption due to RDC and sleep intervals becomes 
dominant. Applications that do not require reliability benefit from CoAP non-
confirmable transmission over UDP. However, common security middleboxes only 
allow TCP traffic.  

Among the TCP-based approaches, an always-open TCP connection yields the best 
performance. MQTT and AMQP exploit this approach, by leveraging a TCP connection 
with a broker in the IoT device subnet. HTTP/2 or CoAP will need to use TFO if 
traversed firewalls’ state timers are set to values lower than the notification period. 
Small differences in application-layer protocol header size lead to IoT device lifetime 
differences below 1% (not shown in Figure 2 for clarity) due to the overhead incurred 
by the layers below TCP. Similarly, compressing the TCP header (see subsection 3.3) 
only achieves a minor IoT device lifetime increase (e.g. 3% and 1% for notification 
periods of 10 s and 100 s, respectively). For TCP payloads between 80 and 93 bytes, 
TCP header compression avoids fragmentation, yielding greater lifetime increase (up to 
~6%). Establishing a new TCP connection for each notification degrades IoT device 
lifetime for high notification rates.  

 

Figure 2. IoT device lifetime of UDP- and TCP-based approaches. Server push is 
assumed for HTTP/2 

 

5.2. Delay 

Figure 3 illustrates the theoretical delay for a notification sent by an IoT device under 
the conditions assumed in the previous subsection, over a single link. TFO yields 
slightly greater delay than using an always-open connection, due to addition of the 
cookie in the SYN packet. Opening a new TCP connection per notification increases 

0

0.5

1

1.5

2

2.5

10 10² 10³ 10⁴ 10⁵

Io
T	
de

vi
ce
	li
fe
tim

e	
(y
ea
rs
)

Notification	period	(s)

CoAP-confirmable;	UDP

CoAP-non-confirmable;	UDP



12	
	

delay significantly, since a three-way handshake precedes each notification. Finally, 
note that TCP header compression has a minor impact on delay, except for the range of 
TCP payload values where it avoids fragmentation.   

 

Figure 3. Notification delay as a function of TCP payload and TCP options. HC stands 
for Header Compression. 

5.3. Throughput 

In order to evaluate TCP throughput in an IoT scenario, we carried out single-flow 
experiments over up to 6-hop paths in a grid-shaped indoor testbed comprising            
60 TelosB motes. We measured ~35% throughput improvement by increasing the 
window size from 1 to 3 segments. However, increasing the window size further 
induces congestion and damages performance.  

On the other hand, network-wide throughput is relevant for IoT networks that suffer 
congestion intervals, e.g. when several sensors detect an event that must be 
communicated. In such situations, CoCoA RTO outperforms TCP RTO, yielding 
greater throughput, and lower settling time after message bursts [18].  

6. Implementation challenges 

Lightweight TCP implementation faces a fundamental challenge: the trade-off between 
simplicity and performance tunability. A Class 1 IoT device (with ~10 kB of RAM [4]) 
can run a complete IP-based protocol stack. However, a TCP implementation for such 
platform will probably need to be very simple (e.g. single-MSS window), with little 
margin for TCP tuning for a particular application. Less constrained IoT devices (e.g. 
Class 2 devices, with ~50 kB of RAM [4]) allow greater flexibility. Such platforms may 
afford higher-performing TCP implementations with higher memory footprint, which 
may however conflict with the rest of protocols in the stack and with the application 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

De
la
y	
(m

s)

TCP	payload	(bytes)

New	TCP	conn.	per	notif.
TFO	(16-byte	cookie)
TCP	Always	Open
New	TCP	conn.	per	notif.	+	HC
TFO	(16-byte	cookie)	+	HC
TCP	Always	Open	+	HC



13	
	

itself. In general, a holistic analysis must be carried out to determine which protocol 
features may need to be sacrificed across layers. In many scenarios, IoT devices in a 
subnet will share the same characteristics and application requirements; thus TCP 
settings may be homogeneous over the subnet. 

7. Conclusion 

While TCP has traditionally been neglected in IoT network designs, current trends 
suggest that TCP will gain extensive deployment in IoT scenarios. Particular drawbacks 
of TCP compared to UDP-based solutions include increased header overhead, lack of 
flexibility for loss-tolerant applications, and unsuitability for multicast (the latter 
precludes TCP for group-oriented applications). TCP underperforms UDP-based 
solutions for non-critical monitoring with relatively frequent sensor reading updates. 
However, with appropriate configuration, TCP can behave similarly to unicast end-to-
end reliability mechanisms well accepted for the IoT, while integrating with 
middleboxes much better than UDP.  

Acknowledgments 
 
Carles Gomez has been funded in part by the Spanish Government and by the ERDF 
through the Jose Castillejo grant CAS15/00336, and through project TEC2016-79988-P.  
His contribution to this work has been carried out in part during his stay as a visiting 
scholar at the Computer Laboratory of the University of Cambridge. Andrés Arcia-
Moret has been funded by the project Network as a Service (EP/K031724/2). 

References 

[1] V. Cerf, R. E. Kahn, “A Protocol for Packet Network Interconnection”,        
IEEE Transations on Communications, Vol Com-22, No 5, May 1974. 

[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, “A Comparison of Mechanisms 
for Improving TCP  Performance over  Wireless  Links”, IEEE/ACM 
Transactions on Networking, Vol. 5, No. 6, Dec. 1997. 

[3] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F. Khafizov, “TCP over 
Second (2.5G) and Third (3G) Generation Wireless Networks”, RFC 3481,      
Feb. 2003. 

[4] C. Bormann, M. Ersue, A. Keranen, “Terminology for Constrained-Node 
Networks”, May 2014. 

[5] D. Sturek, Z. Shelby, D. Lohman, S. Ashton, “Smart Energy Requirements for 
6LowApp”, IETF Internet Draft, Oct. 2009. 

[6] Z. Shelby, K. Hartke, C. Bormann, “The Constrained Application Protocol 
(CoAP)”, RFC 7252, Jun. 2014. 



14	
	

[7]  Z. Shelby, C. Bormann, “6LoWPAN: The Wireless Embedded Internet”, John 
Wiley & Sons, 2009. 

 
[8] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, B. Raymor, 

“CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets”, 
IETF Internet Draft, July 2016.  

[9] G. Montenegro, S. Céspedes, S. Loreto, R. Simpson, “H2oT: HTTP/2 for the 
Internet of Things”, IETF Internet Draft, July 2016. 

[10] C. Gomez, J. Crowcroft, “TCP over Constrained-Node Networks”, IETF Internet 
Draft, Mar. 2017. 

[11] C. Gomez, M. Kovatsch, H. Tian, Z. Cao, “Energy-Efficient Features of Internet 
of Things Protocols”, IETF Internet Draft, Mar. 2017. 

[12] Wentao Shang, Yingdi Yu, Ralph Droms, Lixia Zhang, “Challenges in IoT 
Networking via TCP/IP Architecture”, NDN Technical Report NDN-0038, Feb. 
2016.  

[13] Y. Chen, J. Chu, S. Radhakrishnan, A. Jain, “TCP Fast Open”, RFC 7413, Dec. 
2014. 

[14] P. Karn et al, “Advice for Internet Subnetwork Designers”, RFC 3819, July 
2004. 

[15] V. Jacobson, “Congestion avoidance and control”, in Proceedings of 
SIGCOMM, 1988. 

[16] A. Rahman, E. Dijk, “Group Communication for the Constrained Application 
Protocol (CoAP)”, RFC 7390, Oct. 2014. 

[17] V. Paxson, M. Allman, J. Chu, M. Sargent, “Computing TCP's Retransmission 
Timer”, RFC 6298, Jun. 2011. 

[18] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, “CoAP Congestion Control for 
the Internet of Things”, IEEE Communications Magazine, pp. 154-160, Jul. 
2016. 

[19] Y-G. Hong, C. Gomez, Y-H. Choi, D-Y. Ko, “IPv6 over Constrained Node 
Networks (6lo) Applicability & Use cases”, IETF Internet Draft, Mar. 2017. 

[20] S. Hätönen et al, “An Experimental Study of Home Gateway Characteristics”, In 
Proceedings of SIGCOMM, 2010. 

 
[21] “Information technology — Message Queuing Telemetry Transport (MQTT)”  
 v3.1.1, ISO/IEC 20922:2016, Jun. 2016. 
 



15	
	

[22] "Information technology -- Advanced Message Queuing Protocol (AMQP) v1.0 
specification", ISO/IEC 19464, Apr. 2014. 

 
[23]   C. Bormann, A. Castellani, Z. Shelby, “CoAP: an Application Protocol for 

Billions of Tiny Internet Nodes”, IEEE Internet Computing, pp. 62-67 Mar/Apr, 
2012. 

 
[24] A. Zanella, et al., “Internet of Things for Smart Cities”, IEEE Internet of Things 

Journal, pp. 22-32, Feb 2014. 
 

[25] D. Borman et al., “TCP extensions for high performance”, RFC 7323,            
Sep. 2014. 

[26] A. Dunkels, “Full TCP/IP for 8-bit Architectures”, in Proc. of MobiSys’03, May 
2003. 

[27] “Azure IoT device SDK for C”, Sep. 2016. Available online:  
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro 

[28] C. Kim, “Measuring Power Consumption of CC2530 With Z-Stack”, 
Application Note AN079, Sep. 2012. 

[29] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial Links”,     
RFC 1144, Feb. 1990. 

 

Biographies 

Carles Gomez received his Ph.D. degree from Universitat Politècnica de Catalunya in 
2007. He is an associate professor at the same university. He is a co-author of numerous 
technical contributions including papers published in journals and conferences, IETF 
RFCs, and the book “Sensors Everywhere — Wireless Network Technologies and 
Solutions”. His current research interests focus mainly on the Internet of Things. He 
serves as Associate Editor of the Journal of Ambient Intelligence and Smart 
Environments. 

Andrés Arcia-Moret received the B.Eng. and M.Sc. degree in Computer Science from 
the University of Los Andes, Venezuela. He received the PhD degree in Computer 
Science from the IMT Atlantique, France, in 2009. He has been a fellow researcher in 
the IRISA/CNRS, Rennes, France (2012), and in the Guglielmo Marconi Laboratory at 
the ICTP, Trieste, Italy (2013). Since 2015, he is a Research Associate in the Computer 
Laboratory at the University of Cambridge, UK.  

Jon Crowcroft has been the Marconi Professor of Communications Systems in the 
Computer Laboratory, University of Cambridge since October 2001. He has worked in 
the area of Internet support for multimedia communications for over 30 years. Three 
main topics of interest have been scalable multicast routing, practical approaches to 



16	
	

traffic management, and the design of deployable end-to-end protocols. Current active 
research areas are opportunistic communications, social networks, and scaling 
infrastructure-free mobile systems. 


