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The long-range periodic order of a crystalline surface is generally represented by means of a two-
dimensional Bravais lattice, of which only five symmetrically distinct types are possible. Here, we
explore the circumstances under which each type may or may not be found at the surfaces of face-
centred cubic materials, and provide means by which the type of lattice may be determined with
reference only to the Miller indices of the surface; the approach achieves formal rigour by focussing
upon the number theory of integer variables rather than directly upon real geometry. We prove that
the {100} and {111} surfaces are, respectively, the only exemplars of square and triangular lattices.
For surfaces exhibiting a single mirror plane, we not only show that rectangular and rhombic lattices
are the only two possibilities but also capture their alternation in terms of the parity of the indices.
In the case of chiral surfaces, oblique lattices predominate, but rectangular and rhombic cases are
also possible and arise according to well-defined rules, here partially recounted.

INTRODUCTION

When a three-dimensional crystal is ideally truncated
to form an unrelaxed surface, the positions of the re-
maining atoms are completely determined by the orien-
tation of the truncation plane. This orientation may,
in turn, be precisely defined by specifying three integer
Miller indices [1] and hence these three integers must in
some sense encode all relevant information pertaining to
the structure and symmetry of the corresponding surface.
Any facts that can subsequently be elicited by a detailed
empirical investigation of the surface atomic positions
must, in principle, be implicit in the Miller indices them-
selves and ought, therefore, to be deducible from them
without recourse to mere empiricism. To take a concrete
example relating to the face-centred cubic (fcc) structure,
one might wish to investigate the (643) surface, say, and
certainly could do so by constructing a detailed geomet-
rical model incorporating the positions of all the atoms
down to some arbitrary depth. The fact that this partic-
ular surface lacks all improper symmetry elements, and is
therefore chiral, would then emerge naturally from empir-
ical examination of the geometrical model. Alternatively,
however, one could make use of the proven fact [3, 4] that
all surfaces of fcc materials having three non-zero Miller
indices of differing magnitudes are chiral, without trou-
bling to construct a geometrical model at all. Once this
handy rule-of-thumb is discovered, the practical business
of categorising surfaces according to their symmetry is
massively simplified.

In an earlier paper [5], several similar rules-of-thumb
were provided that enable one to deduce the presence
of certain surface symmetries (mirror, glide, etc) and
the presence of certain surface structures (steps, kinks,
etc) directly from the Miller indices, not only for the
surfaces of fcc crystals, but also for those of bcc (body-

centred cubic) and hcp (hexagonal close-packed) crystals.
One intriguing problem was deferred until later, however,
namely that of determining the nature of the surface’s
two-dimensional Bravais lattice from its Miller indices
alone. This two-dimensional lattice describes the fun-
damental crystalline periodicity of the surface, dictates
the patterns obtained in surface diffraction experiments,
constrains the supercell that must be employed in compu-
tational modelling of the surface, yet remains something
that surface scientists are content to view as an entirely
contingent feature of the surface geometry. We typically
construct a detailed geometrical model of the surface we
wish to study, and note only after-the-fact that it has
either a square, a triangular, a rectangular, a rhombic or
an oblique Bravais lattice [2] (Fig. 1). On the contrary,
however, it ought to be possible in principle to extract
this information directly from the Miller indices without
first constructing a geometrical model, in just the same
way as it is possible to identify the attribute of chirality
or the presence of steps.

Before doing so, it will be advisable to clarify one point
of potential confusion. Since the space group of the sur-
face must necessarily be a sub-group of the bulk space
group, it is evidently (relatively) straightforward to ob-
tain the former by judiciously striking out symmetry el-
ements from the latter that are broken by the truncation
of the crystal. The resulting space group will belong to
one of just seventeen possible cases, each of which is as-
sociated with a particular lattice of minimal symmetry.
For example, the {100} surfaces of the fcc structure will
be found to conform to the p4m space group, which im-
plies a lattice of at least square symmetry, and indeed
we find that the two-dimensional lattice of such a sur-
face is square as expected. The {100} surfaces of the
diamond structure, on the other hand, conform only to
the pmm space group, which implies only a lattice of
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FIG. 1. Two-dimensional Bravais lattices of square, triangular, rectangular, rhombic and oblique symmetry. In each case, the
primitive unit cell of maximum symmetry is shaded; in the rhombic case, a conventional (non-primitive) rectangular unit cell
is also depicted.

at least rectangular symmetry; nevertheless, the actual
periodicity of the surface again corresponds to a square
lattice. It has been suggested (e.g. [6]) that one should
indeed consider such a case as corresponding to a rect-
angular two-dimensional lattice whose lattice constants
just happen to be “accidentally the same,” which seems
less than satisfactory to the present author; the primi-
tive lattice vectors are constrained to be of equal length
in this case because the ideal surface is necessarily com-
mensurate with the underlying bulk crystal, and surely
a rectangle whose sides are necessarily constrained to be
equal in length can be described as nothing other than
a square. For absolute clarity, the convention employed
within this paper is that two-dimensional lattices are to
be categorised according to their actual symmetry prop-
erties, including any that arise because of the unavoid-
able constraint that the ideal surface is commensurate
with the underlying bulk.

The present work will be limited to the fcc case, which
is quite difficult enough to unravel without adding the
bcc and hcp cases. In seeking to decode the information

carried by the Miller indices, we shall find ourselves deal-
ing with Diophantine equations (i.e. equations involv-
ing only integer variables) and often making arguments
based upon the parity of variables (i.e. whether they are
even or odd) rather than their actual values. The ap-
plication of number theory to problems in surface crys-
tallography is extremely powerful and has a long history
dating back at least to the pioneering work of Voigt [7]
and Minkowski [8] in the early twentieth century. Sev-
eral examples are very well summarised in an excellent
introductory textbook on the subject by Hermann [9]. As
this remains quite unfamiliar territory for most surface
scientists, however, we begin with some rather funda-
mental observations about the bulk geometry of three-
dimensional crystals, which nevertheless illustrate just
how subtle the application of number theory to vector
geometry can be.
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BULK LATTICE VECTORS

The treatment of bulk lattice vectors in this section
does not, in itself, contribute any new revelations. In-
deed, the same conclusions have been drawn previously
by others, and the interested reader is once again re-
ferred to the work of Hermann for further details [9].
Nevertheless, the notation used in the later sections of
the present paper are most easily introduced in the bulk
context and so it seems appropriate to recapitulate the
three-dimensional case at this stage.
In fcc crystals, the set of all lattice vectors contains el-

ements of two types. Firstly, there are those that may be
represented as linear combinations of the vectors span-
ning the conventional cubic unit cell, thus

u = a〈xyz〉 (1)

with a being the lattice constant and the vector compo-
nents x, y and z taking integer values with any combi-
nation of signs (note that, for fcc lattices, angle brackets
imply that the order and sign of the vector components
may be permuted at will). Secondly, there are those that
can be obtained from the first type by adding a vector of
the form a

2
〈110〉, yielding

u = a〈xyz〉+ a

2
〈110〉 = a

2
〈(2x+ 1) (2y + 1) 2z〉 (2)

where clearly the integers 2x + 1, 2y + 1 and 2z have
well-defined parities of odd, odd and even respectively.
Indeed, the two types of lattice vector may be written
together in a single expression

u =
2a

f(ux + uy + uz)
〈uxuyuz〉 (3)

with ux, uy and uz all integers, and where

f(x) = 3 + (−1)x (4)

is a useful “parity discriminator function” returning val-
ues f(x) = 2 for odd-integer x and f(x) = 4 for even-
integer x.
The veracity of Eqn. 3 may be confirmed by setting ux =
2x + 1, uy = 2y + 1 and uz = 2z to yield the complete
set of vectors defined by Eqn. 2, whilst setting ux = 2x,
uy = 2y and uz = 2z to yield the complete set of vectors
defined by Eqn. 1. No vectors failing to conform either
to Eqn. 1 or to Eqn. 2 can be formed by inserting any
other parity combinations of ux, uy and uz into Eqn. 3.
The lengths of the general fcc lattice vectors thus take

the form

L =
2Ua

f(ux + uy + uz)
. (5)

where we have introduced

U2 = u2

x + u2

y + u2

z (6)

as a convenient shorthand.
Alternatively, in units of the shortest lattice vector

length, L0 = a/
√
2, we have

L =
2
√
2UL0

f(ux + uy + uz)
(7)

which we can simplify further by considering two cases
separately. Firstly, when ux + uy + uz is odd, we obtain

L =
√
2UL0 (8)

with U2 odd, and secondly, when ux + uy + uz is even,
we get

L =
√
2UL0/2 (9)

with U2 even. It is evident, therefore, that lattice vector
lengths in fcc must take the form L0

√
n, with integer n.

The question we now wish to address is that of which
values of n are possible.
We start by noting the theorem (first postulated by

Legendre, and subsequently proved by Gauss [10]) that
any integer can be represented as the sum of three squares
except for those that may be expressed as 4b(8m+7) with
m and b integers and b ≥ 0. We can certainly, therefore,
find values of ux, uy and uz for which U2 = 2n, so long as
2n 6= 4b(8m+ 7). It follows that we can generate lattice
vectors with lengths L = L0

√
n from Eqn. 9 subject only

to the constraint that n 6= 22b−1(8m+ 7) with b > 0.
Furthermore, lengths with n equal to 22b−1(8m + 7)

cannot be obtained from Eqn. 8 either, since this would
require U2 = 4b−1(8m + 7) with b > 0, which is itself
a subset of the integers disallowed as the sum of three
squares by the theorem of Legendre and Gauss.
Thus, the set of allowed lengths for fcc lattice vectors

consists of the values L = L0

√
n, with n being any integer

not of the form 22b−1(8m+ 7) with b > 0. Alternatively,
in terms of the lattice constant, we have L = a

√

n/2.
Either way, lengths with n = 1, 2, ..., 13 are allowed, for
example, but n = 14 is not. Then, lengths with n =
15, 16, ..., 29 are found, but n = 30 is not, and so on.

SCARCITY OF SQUARE AND TRIANGULAR

TWO-DIMENSIONAL SURFACE LATTICES

Surface scientists are, of course, familiar with the fact
that the {100} surfaces of fcc materials feature a square
two-dimensional lattice, while the {111} surfaces feature
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a triangular one. The present author is not, however,
aware of any rigorous proof that these are the only two
classes of surfaces to conform to these lattice types. Al-
though the matter “feels” as if it ought to be trivial, we
here present a formal proof based upon number theory
and integer (Diophantine) equations.

The Square Surface Lattice

Imagine that a bulk fcc lattice has been cut to create
a surface in which the first (i.e. outermost) layer of lat-
tice points forms a square two-dimensional lattice. We
label the corners of one square primitive unit cell in this
layer as O1, A1, B1 and C1 (Fig. 2). Now, since all lat-
tice points in the bulk must have had identical environ-
ments, the second layer of lattice points must also form
a square two-dimensional lattice, and again four points
O2, A2, B2 andC2 may be labelled, such that each point
in the second-layer is displaced laterally from its corre-
spondingly labelled point in the first layer by a distance
dx measured along the x̂ direction and by a distance dy
measured along the ŷ direction. Furthermore, let the
side-length of the two-dimensional square lattice in each
layer be L0

√
n, as required by the fact that this surface

has been created from a bulk fcc lattice (with a restriction
on allowed values of the integer n, as discussed above).
The area of the square O1A1B1C1 is thus nL2

0
, and the

volume of the parallelopiped O1A1B1C1O2A2B2C2 is
nL2

0
dz, where dz is the interplanar spacing.

Now, clearly this parallelopiped must be a primitive
unit cell of the bulk fcc lattice, and as such should have
a volume a3/4, which is equivalent to L3

0
/
√
2. Thus, we

have nL2
0dz = L3

0/
√
2, and hence

dz =
L0

n
√
2

(10)

for the interplanar spacing.
Invoking the requirement that O1O2 must be a bulk

fcc lattice vector, we insist that

d2x + d2y + d2z = pL2

0 (11)

with p being a positive integer (as per the preceding dis-
cussion of bulk lattice vector lengths). Similarly, the re-
quirement that A1O2 must be a bulk fcc lattice vector
dictates that

(L0

√
n− dx)

2 + d2y + d2z = qL2

0 (12)

and the same restriction forC1O2 imposes the constraint

d2x + (L0

√
n− dy)

2 + d2z = rL2

0
(13)

O1 A1

B1C1

O2 A2

B2C2

dy

dx

FIG. 2. Schematic illustration of a surface with a square two-
dimensional lattice. Full lines indicate the two-dimensional
lattice formed by the uppermost layer of bulk lattice points,
while dashed lines show the displaced two-dimensional lattice
of the second layer. A single primitive unit cell is highlighted
in each layer.

with q and r both positive integers.
Solving Eqns. 11–13 simultaneously, and inserting our

expression for dz from Eqn. 10, permits us to write

dx =
L0

2
√
n
(n+ p− q) (14)

dy =
L0

2
√
n
(n+ p− r) (15)

and thus to fully locate the lateral position of O2 relative
toO1 if the integer variables p, q and r were to be known.
We may, without loss of generality, insist that p ≤ q ≤ r
by invoking the symmetry of the lattice.
Crucially, however, it must also be the case that B1O2

is a bulk fcc lattice vector, which means that we should
have

(L0

√
n− dx)

2 + (L0

√
n− dy)

2 + d2z = sL2

0 (16)

where s is yet another positive integer, which we may
deduce satisfies s ≥ r. But, substituting our expressions
for dx, dy and dz into this, we obtain

s =
1

4n

[

(n+ q − p)2 + (n+ r − p)2 + 2/n
]

(17)
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which can only be true if the factor in square brackets is
an integer divisible by 4n. Since the squared terms are
necessarily integers, it follows that we must insist upon
an integer value for 2/n, which in turn dictates that n ≥ 3
is impossible. Moreover, one can show that the sum of
two squares must always be expressible as 4t+ u with t
an integer and u an integer smaller than three, allowing
one to rule out the n = 2 case on the grounds that the
factor in square brackets cannot then be divisible by 4n.
Consequently, we conclude that the only case that does

not lead to a contradiction is that in which n = 1, having
the sole solution p = q = r = s = 1, and corresponding
to the {100} family of surfaces. No other surface of an
fcc lattice can have a square two-dimensional lattice.

The Triangular Surface Lattice

We can tackle the case of a triangular two-dimensional
lattice in much the same way as we approached the square
two-dimensional lattice in the preceding section. Imagine
now that the first layer of lattice points forms a triangu-
lar two-dimensional lattice, and label the corners of one
primitive unit cell in this layer as O1, A1, B1 and C1

(Fig. 3). Now, since all lattice points in the bulk must
have had identical environments, the second layer of lat-
tice points must also form a triangular two-dimensional
lattice, and again four points O2, A2, B2 and C2 may be
labelled, such that each point in the second-layer is dis-
placed laterally from its correspondingly labelled point
in the first layer by a distance dx measured along the
x̂ direction and by a distance dy measured along the ŷ
direction. As before, we insist that the side-length of
the two-dimensional triangular lattice in each layer must
be L0

√
n (with now-familiar restrictions on the value of

n). The area of the two-dimensional primitive unit cell
O1A1B1C1 is thus nL

2

0

√
3/2, and the volume of the par-

allelopipedO1A1B1C1O2A2B2C2 is nL
2

0

√
3dz/2, where

dz is the interplanar spacing.
Now, as before, we note that this parallelopiped must

be a primitive unit cell of the bulk fcc lattice, hav-
ing therefore a volume of L3

0/
√
2. Thus, we have

nL2

0

√
3dz/2 = L3

0
/
√
2, and hence

dz =

√

2

3

L0

n
(18)

for the interplanar spacing.
Invoking the requirement that O1O2 must be a bulk

fcc lattice vector, we insist that

d2x + d2y + d2z = pL2

0 (19)

with p being a positive integer. Similarly, the require-
ment thatA1O2 must be a bulk fcc lattice vector dictates
that

O1 A1

B1C1

O2 A2

B2C2

dx

dy

FIG. 3. Schematic illustration of a surface with a trian-
gular two-dimensional lattice. Full lines indicate the two-
dimensional lattice formed by the uppermost layer of bulk
lattice points, while dashed lines show the displaced two-
dimensional lattice of the second layer. A single primitive
unit cell is highlighted in each layer.

(L0

√
n/2− dx)

2 + (L0

√
3n/2 + dy)

2 + d2z = qL2

0 (20)

and the same restriction forC1O2 imposes the constraint

(L0

√
n/2− dx)

2 + (L0

√
3n/2− dy)

2 + d2z = rL2

0
(21)

with q and r both positive integers.
Solving Eqns. 19–21 simultaneously, and inserting our

expression for dz from Eqn. 18, permits us to write

dx =
L0

2
√
n
(2n+ 2p− q − r) (22)

dy =
L0

2
√
n
(r − q) (23)

and thus, once again, to fully locate the lateral position
of O2 relative to O1 if the integer variables p, q and r
were to be known. Here, the symmetry of the lattice
allows us to again insist upon p ≤ q ≤ r, without loss of
generality.
We proceed, as before, by noting that it must also be

the case that B1O2 is a bulk fcc lattice vector, which
means that we should have

(L0

√
n− dx)

2 + d2y + d2z = sL2

0
(24)



6

where s is a positive integer that we may restrict, by
invoking the symmetry of the lattice, to the range q ≤
s ≤ r. Upon substituting our expressions for dx, dy and
dz into this, we obtain (after some algebra)

s =
1

6n

[

3(p− r)2 + 3(p− q)2 − (r − q)2 + 4/n
]

(25)

which can only be true if the factor in square brackets is
an integer divisible by 6n. Since the squared terms are
necessarily integers, it follows that we must insist upon an
integer value for 4/n, which now dictates that n = 1, n =
2 and n = 4 are the only valid possibilities. Of these, the
case with n = 1 has the sole solution p = q = s = 1 with
r = 2, and corresponds to the {111} family of surfaces.
In contrast, the only fcc lattice vectors of length L0

√
2

are those of 〈100〉 type, which meet only at right angles,
whereas the only fcc lattice vectors of length L0

√
4 are

those of 〈220〉 type, which are simple multiples of shorter
lattice vectors and hence cannot span a primitive unit
cell. We therefore conclude that only the {111} family
of surfaces displays a triangular two-dimensional surface
lattice.

RECTANGULAR, RHOMBIC AND OBLIQUE

TWO-DIMENSIONAL SURFACE LATTICE

General Strategy

Consider the (hkl) surface, which in a cubic system has
a surface normal parallel to the [hkl] lattice vector [11].
The round and square brackets used here indicate that
permutation in the sign and order of the vector com-
ponents will not be allowed in this Section (i.e. that
we refer always to a specific surface orientation and sur-
face normal relative to the crystallographic axes, not to
the family of symmetry-related planes and normals that
would be indicated by curly and angle brackets respec-
tively). We will furthermore insist that the Miller indices
h, k and l must be coprime (i.e. share no common divi-
sors) though not necessarily pairwise coprime (i.e. any
pair of indices may share a common divisor) conforming
to the most widespread usage within the surface science
community.
Let us begin, then, by identifying a particular pair of

fcc lattice vectors, u and v, which span an orthogonal
two-dimensional unit cell (not necessarily a primitive unit
cell) lying in the surface plane. That is,

u =
2a

f(ux + uy + uz)
[uxuyuz] (26)

and

v =
2a

f(vx + vy + vz)
[vxvyvz ] (27)

with

uxvx + uyvy + uzvz = 0 (28)

uxh+ uyk + uzl = 0 (29)

vxh+ vyk + vzl = 0 (30)

and the vector components ux, uy and uz being coprime
(though not necessarily pairwise coprime) as are the vec-
tor components vx, vy and vz. Since the vectors u and v

are thus precluded from being simple multiples of shorter
lattice vectors, the area spanned by them is a candidate

for consideration as a primitive unit cell, but to determine
whether this is actually the case will require a calculation
of the included area.
Now, the area A, spanned by the vectors u and v, must

satisfy the equation

A2 =
16a4

α2
U2V 2 (31)

with

α = f(ux + uy + uz)f(vx + vy + vz) (32)

and

V 2 = v2x + v2y + v2z (33)

as may be seen simply by multiplying the squared vector
lengths (U2 has already been defined, analogously to V 2,
in Eqn. 6). It would be useful, however, to express this in
terms of the Miller indices, rather than as a function of
the vector components of the cell sides. To achieve this,
we write

ω(h, k, l) = (uyvz−uzvy, uzvx−uxvz , uxvy−uyvx) (34)

where the Miller indices are written explicitly as the vec-
tor product of the cell side vectors, guaranteeting that
Eqns. 29 and 30 are satisified, and where ω is defined as
the greatest common divisor shared by the three vector
components on the right hand side. That is,

ω = gcd(uyvz − uzvy, uzvx − uxvz , uxvy − uyvx) (35)

where the gcd function returns the (positive) greatest
common divisor of its arguments.
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We may then note (after some algebra, and making use
of Eqn. 28) that

ω2M2 = U2V 2 (36)

with

M2 = h2 + k2 + l2 (37)

from which it follows that

A2 =
16a4

α2
ω2M2 (38)

On the other hand, it can be shown [5] that the area
of a primitive unit cell, A0, for an fcc surface satisfies the
relation

A2

0
=

16a4

β2
M2 (39)

with

β =
32

f(hkl)
(40)

and, consequently, we conclude that

A

A0

=

(

β

α

)

ω (41)

which will turn out to be of great value in ascertaining the
type of two-dimensional lattice displayed by the surface.

For a given choice of h, k and l, we must determine the
particular combination of three u and three v components
that minimises A/A0 whilst satisfying Eqns. 28–30. In
the event that the minimum value of A/A0 is unity, then
the two-dimensional lattice must be rectangular (i.e. the
smallest possible unit cell with orthogonal sides is proven
to be a primitive unit cell). If the minimum value of
A/A0 is two, however, then the two-dimensional lattice
must be rhombic (i.e. the smallest possible unit cell with
orthogonal sides is twice the area of a primitive unit cell).
And if the minimum value of A/A0 exceeds two, then the
two-dimensional lattice must be oblique. Strictly speak-
ing, this test would count a square lattice as a special
case of the rectangular lattice, and the triangular lattice
as a special case of the rhombic lattice, but the argu-
ments presented in the preceding sections allow us to
eliminate the square and triangular possibilities for all
but the {100} and {111} surfaces respectively.

Permitted Parity Combinations

Given nine variables (the three u and three v compo-
nents, together with h, k and l) each of which may take
either an even or an odd value, one might imagine that
a total of 29 = 512 different parity combinations could
conceivably arise. The stipulation that the vector com-
ponents ux, uy and uz be coprime, however, implies that
it is not possible for all three to be even numbers. Sim-
ilarly, the fact that the vector components vx, vy and
vz are coprime implies that they too cannot all be even,
and the same is separately true for h, k and l. A total
of 188 parity combinations may thus be eliminated from
our enquiries, leaving “only” 324. Moreover, considera-
tion of Eqns. 28–30 introduces further restrictions upon
the parity of these variables, for example the necessity
that precisely one of the variables vx, vy or vz must be
even in the event that ux, uy and uz are all odd. Collat-
ing all such restrictions, we can eliminate a further 297
parity combinations, leaving only 27 that are consistent
with our fundamental requirements; these are enumer-
ated in Table 1, together with the values of α and β that
are implied in each case. The division of rows into four
blocks within the table highlights that only four distinct
combinations of α and β can arise, and each of these leads
in turn to one of just three distinct expressions for A/A0

tabulated in the penultimate column. Furthermore, for
all the parity combinations listed in the upper two blocks
of Table 1 we find that ω must be odd, while for all com-
binations in the lower two blocks we deduce that ω must
be even, as indicated in the final column.

Restrictions on the ω Parameter

Now, the foregoing discussion indicates that there are
only three possible expressions linking the ratio A/A0 to
the value of ω. Specifically, this ratio is either equal to
ω, twice ω or half ω. Furthemore, we are particularly in-
terested only in the cases where the ratio itself takes the
values of one (indicating a rectangular two-dimensional
lattice) or two (indicating a rhombic two-dimensional lat-
tice). Clearly these situations can only arise when ω is
equal to either one, two or four, so let us now examine
carefully the question of whether these values can actu-
ally occur in practice.

To begin, consider Eqn. 36, which involves two factors
on the right-hand side (RHS) and one on the left-hand
side (LHS) that are each formed as the sum of the squares
of three coprime integers. Now, it is an interesting fact
that such a sum can never be divisible by four [12], so we
can write

[U2] mod 4 ≡ γ (42)
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TABLE 1. Parity combinations and their implications.

ux uy uz vx vy vz h k l α β A/A0 ω

Even Even Odd Even Odd Even Odd Even Even 4 8 2ω Odd
Even Even Odd Odd Even Even Even Odd Even 4 8 2ω Odd
Even Odd Even Even Even Odd Odd Even Even 4 8 2ω Odd
Even Odd Even Odd Even Even Even Even Odd 4 8 2ω Odd
Odd Even Even Even Even Odd Even Odd Even 4 8 2ω Odd
Odd Even Even Even Odd Even Even Even Odd 4 8 2ω Odd

Even Even Odd Odd Odd Even Odd Odd Even 8 8 ω Odd
Even Odd Even Odd Even Odd Odd Even Odd 8 8 ω Odd
Odd Even Even Even Odd Odd Even Odd Odd 8 8 ω Odd
Even Odd Odd Odd Even Even Even Odd Odd 8 8 ω Odd
Odd Even Odd Even Odd Even Odd Even Odd 8 8 ω Odd
Odd Odd Even Even Even Odd Odd Odd Even 8 8 ω Odd
Even Odd Odd Odd Odd Odd Even Odd Odd 8 8 ω Odd
Odd Even Odd Odd Odd Odd Odd Even Odd 8 8 ω Odd
Odd Odd Even Odd Odd Odd Odd Odd Even 8 8 ω Odd
Odd Odd Odd Even Odd Odd Even Odd Odd 8 8 ω Odd
Odd Odd Odd Odd Even Odd Odd Even Odd 8 8 ω Odd
Odd Odd Odd Odd Odd Even Odd Odd Even 8 8 ω Odd

Even Odd Odd Even Odd Odd Even Odd Odd 16 8 ω/2 Even
Odd Even Odd Odd Even Odd Odd Even Odd 16 8 ω/2 Even
Odd Odd Even Odd Odd Even Odd Odd Even 16 8 ω/2 Even
Even Odd Odd Even Odd Odd Odd Even Even 16 8 ω/2 Even
Odd Even Odd Odd Even Odd Even Odd Even 16 8 ω/2 Even
Odd Odd Even Odd Odd Even Even Even Odd 16 8 ω/2 Even

Even Odd Odd Even Odd Odd Odd Odd Odd 16 16 ω Even
Odd Even Odd Odd Even Odd Odd Odd Odd 16 16 ω Even
Odd Odd Even Odd Odd Even Odd Odd Odd 16 16 ω Even

[V 2] mod 4 ≡ δ (43)

[M2] mod 4 ≡ ǫ (44)

where γ, δ and ǫ can take only the values 1, 2 or 3.
It follows immediately that the RHS of Eqn. 36 cannot

be divisible by 16 (it is the product of two factors that are
each not multiples of four) and hence that no solutions
with ω = 4 are possible (since they would require that
the LHS would be divisible by 16).
The case with ω = 2, on the other hand, is not so

easily dismissed, since this only requires that the LHS
be divisible by four. Let us proceed by taking Eqn. 36
modulo four, to make this more explicit

[ω2M2] mod 4 = [U2V 2] mod 4 (45)

from which we may deduce

[ω2ǫ] mod 4 = [γδ] mod 4 (46)

and hence that if we have ω = 2 then the product γδ
must be divisible by four. Since this product can only
take values of 1, 2, 3, 4, 6 or 9, it follows that we must
have γ = δ = 2 in this case. The RHS of Eqn. 36 is then
the product of two even numbers not divisible by four,
which is entirely consistent with the LHS being divisible
by four due to its factor of ω2. It is important to note,
however, that the RHS of Eqn. 36 cannot ever be divisible
by eight (since we already know that it is not divisible
by four) and hence that there can be no ω = 2 solutions
if the factor M2 on the LHS is even (i.e. if there are
precisely two odd Miller indices).
Finally, turning to the ω = 1 case, we deduce from

Eqn. 46 that

[ǫ− γδ] mod 4 = 0 (47)

which can be solved with ǫ = 1 and γδ = 9, or with
ǫ = 2 and γδ = 2 or 6, but which cannot be solved with
ǫ = 3 for any value of γδ. It therefore follows that ω = 1
solutions are not possible if the factor h2+k2+ l2 on the
LHS of Eqn. 36 yields remainder three upon division by
four (i.e. if all three Miller indices are odd).
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Collating these results, we may be confident (i) that no
ω = 1 solutions are possible if all three Miller indices are
odd, (ii) that no ω = 2 solutions are possible if there are
precisely two odd Miller indices, and (iii) that no ω = 4
solutions are possible under any circumstances. The first
of these statements adds no further information to that
already implied by Table 1, but the second and third do
provide additional restrictions.

Identification of Lattice Types

In the case where all three Miller indices are odd, it
is evident that only the parity combinations listed in the
final block of Table 1 can occur, and since this implies
A/A0 = ω, with an even value of ω, it follows that such a
surface can never possess a rectangular two-dimensional
lattice (which would require A/A0 = 1). A rhombic two-
dimensional lattice, on the other hand, may be indicated,
but only if it is possible to find a combination of u and v
components that satisfy Eqn. 36 with ω = 2. There is no
general prohibition against finding a solution with ω = 2
for the case where all three Miller indices are odd, but
neither is there a guarantee that one may be found for
any particular set of indices. If no such combination can
be found, the surface must necessarily display an oblique
two-dimensional lattice.
In the case where precisely two Miller indices are odd,

half of the parity combinations from the third block of
Table 1 can occur, as can all of those from the second
block. A general prohibition exists against finding solu-
tions to Eqn. 36 with ω = 2 in this case, however, so the
third-block combinations with two odd Miller indices can
never indicate a rectangular two-dimensional lattice (nor
a rhombic one, since ω = 4 solutions are similarly pro-
hibited). According to the second-block combinations,
on the other hand, a rectangular two-dimensional lattice
will be indicated if it is possible to satisfy Eqn. 36 with
ω = 1. If this is not possible, then the surface must
necessarily display an oblique two-dimensional lattice.
Finally, in the case where just one Miller index is odd,

all of the parity combinations from the first block of Ta-
ble 1, and half of those from the third block, can occur.
A rectangular two-dimensional lattice can never be re-
vealed by one of the first-block parity combinations, since
for these A/A0 is guaranteed to be even, but (according
to the final three combinations of the third block) a rect-
angular two-dimensional lattice will be indicated if it is
possible to satisfy Eqn. 36 with ω = 2. Alternatively, a
rhombic lattice is indicated (according to parity combi-
nations in the first block of Table 1) if it is possible to
satisfy Eqn. 36 with ω = 1. The final three parity com-
binations in the third block can never indicate a rhombic
lattice, since it is never possible to find solutions satisfy-
ing Eqn. 36 with ω = 4. Aside from these situations, the
surface must again display an oblique two-dimensional

lattice.

In effect, therefore, it is possible to determine the na-
ture of the two-dimensional lattice for a given surface
from its Miller indices alone, simply by searching for
all solutions to Eqn. 36 with ω = 1 or 2, and cross-
referencing against the number of odd Miller indices. If
a valid solution with ω = 2 can be found for a case with
one odd Miller index, or if a valid solution with ω = 1
can be found for a case with two odd Miller indices, then
the surface must have a rectangular two-dimensional lat-
tice. If, on the other hand, one can find either a valid
solution with ω = 1 for a case with one odd Miller in-
dex, or a valid solution with ω = 2 for a case with three
odd Miller indices, then the surface must have a rhombic
two-dimensional lattice. Otherwise, the two-dimensional
lattice must be concluded to be oblique.

In searching for solutions matching a given set of Miller
indices, h, k and l, it may, of course, be possible that so-
lutions of Eqn. 36 with ω 6= 1 or 2 are found, which in no
way precludes the possibility that a solution with ω = 1
or 2 may be found subsequently. In general, one would
have to search through all combinations of u and v com-
ponents compatible with the known size of the primitive
unit cell, before concluding which values of ω are possi-
ble for that set of Miller indices. To determine the limits
of compatibility, we may make use of our previous ex-
pression for the area of a primitive unit cell (Eqn. 39) to
deduce that the smallest orthogonal unit cell of a surface
having a rectangular or rhombic two-dimensional lattice
must have a longest side length, L, that satisfies

L2 <
128a2

β2
M2 (48)

and hence to further deduce that no solutions need be
sought for which either U2 or V 2 exceeds 8M2.

Now, letting Ω be the smallest value of ω found during
the search within these limits, the nature of the two-
dimensional lattice is given simply by the entries in Ta-
ble 2. Note, however, that values of ω = 1 and of ω = 2
are mutually exclusive, so that the search may be termi-
nated unambiguously as soon as either result is obtained,
with Ω taking the corresponding value of ω. A flow-chart
crystallises the resulting procedure (Fig. 4). The com-
putational cost of this approach is not dissimilar to the
method of Minkowski reduction, which generates a high-
symmetry unit cell from an arbitrary two-dimensional
lattice by iterative means [9].

Implementation of this simple and efficient algorithm
allows one readily to enumerate surfaces having either
rectangular, rhombic or oblique two-dimensional lattices.
Doing so, one finds that those having oblique lattices
dominate, with rectangular lattices being the next most
common and rhombic lattices the least. As one progres-
sively includes surfaces of higher and higher index, the
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h, k, l

Cycle ux, uy, uz with

  hux + kuy +luz =0

    and  U2 � 8M2

vx=vx/gcd(vx,vy,vz)

vy=vy/gcd(vx,vy,vz)

vz=vz/gcd(vx,vy,vz)

U2V2 = M2 ? U2V2 = 4M2 ?

One odd index?

Rectangular

Rhombic

 One odd index?

NO

NO

YES

YES

YES

NO

NO

YES

  ux, uy, uz

exhausted?

YES

vx = kuz  -  luy

vy = lux  -  huz

vz = huy -  kux

Oblique

NO

FIG. 4. Flow-chart to determine whether a given {hkl} surface has a rectangular, rhombic or oblique two-dimensional lattice.

TABLE 2. Lattice types implied by Miller index parity and
the Ω parameter (i.e. the smallest possible value of ω com-
patible with Eqn. 36).

1 Odd Index 2 Odd Indices 3 Odd Indices
Ω = 1 Rhombic Rectangular Impossible
Ω = 2 Rectangular Impossible Rhombic
Ω 6= 1, 2 Oblique Oblique Oblique

TABLE 3. Proportions of chiral fcc surfaces having rhombic,
rectangular and oblique two-dimensional lattices, as a func-
tion of the maximum permitted magnitude of Miller index.

Maximum Index Rhombic Rectangular Oblique
8 8% 17% 75%
16 6% 11% 83%
32 4% 7% 89%
64 3% 4% 93%

dominance of oblique lattices becomes ever more pro-
nounced, but the imbalance between rectangular and
rhombic lattices becomes less so (see Table 3). The full
set of chiral surfaces with Miller indices not exceeding
a magnitude of eight are categorised according to their
two-dimensional lattices in Table 4.

TABLE 4. Chiral fcc surfaces with rhombic, rectangular or
oblique two-dimensional lattices (up to a maximum Miller
index of eight).

Rhombic Rectangular Oblique
{531} {421} {321}, {731}, {832}
{542} {521} {431}, {732}, {841}
{751} {541} {432}, {742}, {843}
{854} {652} {532}, {743}, {851}

{653} {543}, {753}, {853}
{741} {621}, {754}, {861}
{752} {631}, {761}, {863}
{852} {632}, {762}, {865}
{871} {641}, {763}, {872}

{643}, {764}, {873}
{651}, {765}, {874}
{654}, {821}, {875}
{721}, {831}, {876}

CLOSED EXPRESSIONS

Although the algorithm presented above is simple, ef-
ficient and based only upon integer operations (i.e. it
is ideal for computational implementation) it would, of
course, be highly desirable to be able to deduce the lat-
tice status of a surface directly by inspection of its Miller
indices. That is, we would like to possess a closed ex-
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pression for one of the indices (let us say the l index, for
the sake of argument) in terms of the other two (in this
case, h and k) for rhombic, rectangular or oblique cases.
One could simply then ascertain whether the closed ex-
pression is satisfied for any given surface, without the
need for any iterative procedure at all, however simple
and efficient.

Family 1

Let us first focus, in pursuit of this goal, on surfaces
whose smallest orthogonal unit cell features at least one
side defined by a lattice vector parallel to a [p q 0] di-
rection, where p and q are coprime. For such surfaces,
we can set ux = p, uy = −q and uz = 0 without loss
of generality (as it makes no practical difference whether
we associate this particular direction with the u vector
or the v vector in the analysis). Doing so, we can im-
mediately infer that we must have vx = rq and vy = rp
in order to satisfy Eqn. 28, whereas we are free to set
vz = −s without any restriction on the values of either r
or s except that they must be coprime integers. Inserting
these assignments into Eqn. 34, we find

ω(h, k, l) = (qs, ps, r(p2 + q2)) (49)

with ω the greatest common divisor shared by qs, ps and
r(p2 + q2). Systematically scanning through all possible
combinations of p, q, r and s (with p and q coprime, and
similarly r and s coprime) will then produce a variety
of Miller index sets, (h, k, l), each with its own specific
value of ω, whose parities can be looked up in Table 2 to
determine the type of two-dimensional surface lattice for
that surface.
Now, unpacking the content of Eqn. 49, we see that

p = k/ gcd(h, k) (50)

q = h/ gcd(h, k) (51)

where gcd(h, k) is the greatest common divisor of h and
k (equal to s/ω). Accordingly, the expression

ωl = r(p2 + q2) (52)

may be written as

l =
r(h2 + k2)

ω[gcd(h, k)]2
(53)

with r being, as noted above, any integer coprime with
s. Since we may write s = ω gcd(h, k), however, it fol-
lows that r must be separately coprime with both ω and
gcd(h, k).

TABLE 5. Expressions for l, in terms of h and k, that imply
rhombic or rectangular lattices belonging to Family 1. Here,
m is any integer, defined in such a way as to ensure that the
integers r snd ω appearing in Eqn. 54 are coprime.

1 Odd Index 2 Odd Indices 3 Odd Indices

Rhombic m(h2+k2)

[gcd(h,k)]2
– (2m+1)(h2+k2)

2[gcd(h,k)]2

Rectangular (2m+1)(h2+k2)

2[gcd(h,k)]2
m(h2+k2)

[gcd(h,k)]2
–

Surfaces within this family, therefore, must have Miller
indices conforming to the type

{

h, k,
r(h2 + k2)

ω[gcd(h, k)]2

}

(54)

and the value of ω, combined with the parity of the in-
dices, will allow one to determine the symmetry of the
surface lattice. If it is possible to write any permutation
of the Miller indices in this form whilst setting ω = 1,
then a rhombic two-dimensional lattice will be implied,
if there is a single odd Miller index, or a rectangular two-
dimensional lattice, if there are two. Alternatively, if one
can find a permutation of the Miller indices in this form
whilst setting ω = 2, then a rectangular two-dimensional
lattice will be implied if there is one odd Miller index, or
a rhombic two-dimensional lattice if there are three. If
the Miller indices can be permuted into this form only
by setting ω > 2, then we can conclude that this sur-
face does not have either a rectangular or a rhombic
two-dimensional lattice within this particular family; this
does not preclude the possibility that the surface may yet
possess such a lattice, but the u and v vectors spanning
it must not conform to the type considered above. These
results are summarised in Table 5.
By way of example, consider setting h = 1 and k = 3,

with m = 0 in Table 5, yielding l = 5 and thus identify-
ing the {531} surfaces as having rhombic two-dimensional
lattices within the presently discussed family (noting that
there are three odd indices). Indeed, inspection reveals
that the smallest orthogonal unit cell of a {531} surface
is spanned by primitive surface lattice vectors of 〈310〉
and 〈132〉 type, conforming to our expectations.

Family 2

If we now consider surfaces whose smallest orthogonal
unit cell features at least one side defined by a lattice
vector parallel to a [p p q] direction, where p and q are
coprime and q 6= 0, then we can set ux = uy = p and
uz = −q with no loss of generality. Setting vx = −r,
vy = s and vz = t, with r, s and t coprime, though not
necessarily pairwise coprime, we must insist that

p(s− r) = qt (55)
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in order to satisfy Eqn. 28. Then, from Eqn. 34, we find

qω(h, k, l) = (p2(s− r) + q2s, p2(r − s) + q2r, pq(s+ r))
(56)

having eliminated t, from which we may readily deter-
mine that

ω(h+ k) = q(s+ r) (57)

and hence that

p(h+ k) = ql (58)

whereupon the requirement that p and q are coprime then
implies that we must have

p = l/ gcd(l, h+ k) (59)

q = (h+ k)/ gcd(l, h+ k) (60)

with gcd(l, h+ k) being the greatest common divisor of l
and h+ k.
Inserting these expressions for p and q into Eqns. 55

and 56, we can solve simultaneously for r, s and t, ob-
taining

r =
ω gcd(l, h+ k)[l2 + k(h+ k)]

2l2 + (h+ k)2
(61)

s =
ω gcd(l, h+ k)[l2 + h(h+ k)]

2l2 + (h+ k)2
(62)

t =
ω gcd(l, h+ k)l(h− k)

2l2 + (h+ k)2
(63)

All that remains, to ensure that we have located a
surface with either a rectangular or a rhombic two-
dimensional lattice, is to confirm that r, s and t are
coprime, but not necessarily pairwise coprime, integers.
Equivalently, we must determine whether h, k and l sat-
isfy

2l2 + (h+ k)2

ω gcd(l, h+ k)
= gcd(l2+k(h+k), l2+h(h+k), l(h−k))

(64)
or some cyclic permutation of the same.
After some manipulation, one can show that this re-

quirement may be stated equivalently as

l =

√

m2n(h+ k)2

ωθ − 2m2n
(65)

TABLE 6. Expressions for l2, in terms of h and k, that imply
rhombic or rectangular lattices belonging to Family 2. Here,
m and n are any pair of coprime integers, and θ is defined by
Eqn. 66.

1 Odd Index 2 Odd Indices 3 Odd Indices

Rhombic m2n(h+k)2

θ−2m2n
– m2n(h+k)2

2(θ−m2n)

Rectangular m2n(h+k)2

2(θ−m2n)

m2n(h+k)2

θ−2m2n
–

with

θ = gcd(m2(h+ k) + n2k,m2(h+ k) + n2h, (h− k)nm)
(66)

where m and n are a pair of coprime integers.
Surfaces within this family, therefore, must have Miller

indices conforming to the type

{

h, k,

√

m2n(h+ k)2

ωθ − 2m2n

}

(67)

and again the value of ω, combined with the parity of the
indices, will allow one to determine the symmetry of the
surface lattice. If it is possible to write any permutation
of the Miller indices in this form whilst setting ω = 1,
then a rhombic two-dimensional lattice will be implied,
if there is a single odd Miller index, or a rectangular
two-dimensional lattice, if there are two. Alternatively,
if one can find a permutation of the Miller indices in
this form whilst setting ω = 2, then a rectangular two-
dimensional lattice will be implied if there is one odd
Miller index, or a rhombic two-dimensional lattice if there
are three. As for the previous family, if the Miller indices
can be permuted into this form only by setting ω > 2,
then we can conclude that this surface does not have
either a rectangular or a rhombic two-dimensional lattice
within this particular family; this does not preclude the
possibility that the surface may yet possess such a lattice,
but the u and v vectors spanning it must not conform to
the type considered above. These results are summarised
in Table 6.
Once again, let us examine a typical example, setting

h = 2 and k = 4, with m = 1 and n = 2 in Table 6,
yielding θ = 6 and hence l = 1. This, proves that surfaces
of {421} type, having but a single odd index, possess
rectangular two-dimensional lattices within the presently
discussed family. Indeed, the smallest orthogonal unit
cell of a {421} surface is spanned by primitive surface
lattice vectors of 〈112〉 and 〈132〉 type, again conforming
to our expectations.

MIRROR-SYMMETRIC SPECIAL CASES

Although the general criteria outlined above are rather
complex, they do collapse to quite simple rules for special
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cases in which the surface possesses mirror symmetry.

Surfaces on the 〈110〉 Zones

Let us consider surfaces whose smallest orthogonal unit
cell has the a

2
[110] lattice vector as one of its sides. We

can ascertain the nature of the two-dimensional lattice
for surfaces of this type from Eqn. 49 simply by setting
p = q = 1, yielding

ω(h, k, l) = (s, s, 2r) (68)

with

ω = gcd(s, 2) (69)

by virtue of s and r being coprime.
Now, in the case that s is odd, we necessarily have

ω = 1, which implies that

(h, k, l) = (s, s, 2r) (70)

and that the two-dimensional lattice is rectangular (see
Table 2). This case encompasses all surfaces on the [110]
zone having precisely two odd indices.
On the other hand, if s is even, we get ω = 2, implying

(h, k, l) = (s/2, s/2, r) (71)

for which the two-dimensional lattice is rectangular when
r is even and s/2 odd (repeating the same surfaces found
with odd s) but also when r is odd and s/2 even (encom-
passing all surfaces on the [110] zone having precisely one
odd index). We now, however, also find surfaces with
rhombic two-dimensional lattices, in the case where both
r and s/2 are odd, encompassing all surfaces on the [110]
zone having three odd indices.
We have thus proved that all surfaces lying on the [110]

zone have the a
2
[110] lattice vector as one side of their

smallest orthogonal unit cell, and consequently that all
surfaces lying on a 〈110〉 zone have an a

2
〈110〉 lattice vec-

tor as one side of their smallest orthogonal unit cell. Fur-
thermore, all such surfaces may be categorised as having
either rectangular or rhombic two-dimensional lattices
based purely upon the parity of their Miller indices –
three odd indices imply that the two-dimensional lattice
is rhombic, and any other situation that it is rectangular.

Surfaces on the 〈100〉 Zones

In a similar fashion to the preceding section, let us
now consider surfaces whose smallest orthogonal unit cell

has the a
2
[100] lattice vector as one of its sides. We can

ascertain the nature of the two-dimensional lattice for
surfaces of this type from Eqns. 49 simply by setting
p = 1 and q = 0, yielding

ω(h, k, l) = (0, s, r) (72)

with

ω = 1 (73)

by virtue of s and r being coprime.
Immediately, we see that Table 2 specifies a rectan-

gular surface if two indices are odd (which will require
that both s and r must be odd) and a rhombic surface
if only one index is odd (which will require that only s
or r must be odd, but not both). Once again, the set
of surfaces defined in this way happens to encompass all
possible surfaces lying on the [100] zone.
Thus, we conclude that all surfaces lying on the [100]

zone have the a
2
[100] lattice vector as one side of their

smallest orthogonal unit cell, and consequently that all
surfaces lying on a 〈100〉 zone have an a

2
〈100〉 lattice vec-

tor as one side of their smallest orthogonal unit cell. Fur-
thermore, all such surfaces may be categorised as having
either rectangular or rhombic two-dimensional lattices
based purely upon the parity of their Miller indices –
one odd index implies that the two-dimensional lattice is
rhombic, and any other situation that it is rectangular.

CONCLUSIONS

We have examined the two-dimensional lattice types
presented by the surfaces of face-centred cubic materi-
als, taking a number-theoretic approach rooted in the
solution of diophantine equations. The {100} and {111}
surfaces are shown to be the only examples resulting, re-
spectively, in square and triangular two-dimensional lat-
tices. For the mirror-symmetric surfaces, only rhombic
or rectangular two-dimensional lattices are possible – for
those surfaces lying on a 〈110〉 zone the rhombic cases
occur when all three Miller indices are odd, all others
being rectangular, while for those lying on a 〈100〉 zone
the rhombic cases occur when one (and only one) Miller
index is odd.
Amongst surfaces that do not lie upon either 〈110〉 or

〈100〉 zones (i.e. those possessed of three inequivalent
and non-zero Miller indices) two-dimensional lattices of
rhombic, rectangular and oblique form may be found, but
simple rules to distinguish between these on the basis of
Miller indices alone are difficult to derive. We can, how-
ever, assert that surfaces with three odd indices can never
display a rectangular two-dimensional lattice, while those
having two odd indices can never possess a rhombic one.
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Closed forms have been derived, relating one Miller in-
dex to the other two, for surfaces with either rectangular
or rhombic two-dimensional lattices that fall within two
well-defined families, but a completely general expression
remains to be determined. Surfaces with rectangular or
rhombic two-dimensional lattices that do not fall within
one or other of these families certainly exist, but cannot
yet be rendered in closed form. An efficient integer al-
gorithm has been presented, however, that captures all
cases.

The general approach taken in the present work, based
on assessment of the area ratio between orthogonal and
primitive unit cells, ought to be readily applicable to
other crystal structures. The body-centred cubic case
should be quite straightforward to analyse, for instance,
but less symmetric materials are likely to prove more
troublesome. Clearly the returns from conducting such
analysis must be weighed against the frequency with
which any given structure occurs in nature. On this ba-
sis, the hexagonal close-packed structure would be an
attractive non-cubic example to attempt.

It is to be hoped that the analysis presented here will
raise awareness of the latent symmetries present in the
two-dimensional lattice of the surface, even when the sur-
face space group is of lower symmetry. In the study of
chiral surfaces, for example, it is rare to find attention
drawn to rectangular or rhombic two-dimensional lat-
tices, and this state of affairs downplays the key role of
layers beneath the topmost in breaking the latent mirror
symmetry. The proper recognition of the highest sym-
metry two-dimensional lattice for a surface is, therefore,
an outcome greatly to be desired.
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FIG. 5. Table of Contents Graphic - No matter how complex the surface, its periodic repetition reflects one of only five
two-dimensional lattices; here a {531} surface of a face-centred cubic metal displays its rhombic symmetry.


