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Two-part models with stochastic
processes for modelling longitudinal
semicontinuous data: Computationally
efficient inference and modelling the
overall marginal mean

Sean Yiu and Brian DM Tom

Abstract

Several researchers have described two-part models with patient-specific stochastic processes for analysing longitudinal

semicontinuous data. In theory, such models can offer greater flexibility than the standard two-part model with patient-

specific random effects. However, in practice, the high dimensional integrations involved in the marginal likelihood (i.e.

integrated over the stochastic processes) significantly complicates model fitting. Thus, non-standard computationally

intensive procedures based on simulating the marginal likelihood have so far only been proposed. In this paper, we

describe an efficient method of implementation by demonstrating how the high dimensional integrations involved in the

marginal likelihood can be computed efficiently. Specifically, by using a property of the multivariate normal distribution

and the standard marginal cumulative distribution function identity, we transform the marginal likelihood so that the high

dimensional integrations are contained in the cumulative distribution function of a multivariate normal distribution, which

can then be efficiently evaluated. Hence, maximum likelihood estimation can be used to obtain parameter estimates and

asymptotic standard errors (from the observed information matrix) of model parameters. We describe our proposed

efficient implementation procedure for the standard two-part model parameterisation and when it is of interest to

directly model the overall marginal mean. The methodology is applied on a psoriatic arthritis data set concerning

functional disability.
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1 Introduction

Semicontinuous data arise when the outcome is a mixture of true zeros and continuously distributed positive
values.1 Some examples in the literature have included average daily alcohol consumption,1 hospital lengths of
stay2 and medical expenditures.3,4 In these situations, and more generally, it is natural to view the outcome as a
result of two processes, the first determines if the outcome is zero, and if not the second determines the positive
value. Two-part models are therefore convenient for the analysis of semicontinuous data and have been used
extensively. Recently, Smith et al.3,4 considered the interesting notion of reparameterising the mean of the positive
values in terms of the overall mean, which is arguably a more justified target of inference (see Tom et al.5 and the
references therein). We also consider this notion with respect to the overall marginal mean in our framework.

Two-part marginal models and two-part mixed models have both been proposed for the analysis of longitudinal
semicontinuous data. The first is motivated by obtaining population-based inference and have been constructed
using generalized estimating equations.6 The second is more convenient when patient-specific inference
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is of interest and are constructed by incorporating correlated patient-specific random effects in both parts of the
model.7 This paper focuses on the two-part mixed modelling approach, although considerations are provided on
how population-based inference can be obtained.

In some situations, correlated patient-specific random effects models will not provide an adequate fit to the
data. This may especially be the case when the lengths of follow-up are relatively long. Here, it may be less
plausible to assume that patients can only have consistently high or low outcomes throughout their entire
follow-up. In terms of the correlation structure, it may not be reasonable to assume constant correlation
between outcomes from the same patient regardless of their gap times (which is induced by patient-specific
random effects). Flexible two-part models that allow for random changes in the trajectory through serially
correlated stochastic processes may then be more plausible and these have been proposed in the literature.
Albert and Shen8 and Ghosh and Albert9 proposed two-part mixed models that consisted of correlated
Gaussian processes and random walks (in addition to correlated patient-specific random effects), respectively,
in both parts of the model. Albert and Shen8 demonstrated, through their application and a simulation study, that
overall conditional means may suffer from bias if serial correlation (which is not captured by patient-specific
random effects) is present but ignored. It is also worth noting, both models incorporating stochastic processes
provided considerable improvements of fit to their data.

A main drawback of fitting models with stochastic processes is the computationally intensive nature of the
model fitting procedure. The primary difficulty results from the following feature: if a patient has mi observations,
then a model consisting of correlated stochastic processes in each part of the model will require 2mi integrations to
evaluate the marginal likelihood contribution from that patient (assuming, as is usual, the stochastic processes are
realised at the observation times). For manageable values of mi, Albert and Shen8 and Ghosh and Albert9 have
developed methods based on a Monte Carlo Expectation Maximization algorithm and Markov chain Monte
Carlo, respectively, to evaluate the marginal likelihood. Both of these procedures can be computationally
intensive, with the former also requiring standard errors of parameter estimates to be computed by bootstrap.
The primary aim of this paper is to demonstrate, using a property of the multivariate normal distribution and the
standard marginal cumulative distribution function identity, how a marginal likelihood can be obtained in terms
of the cumulative distribution function of a multivariate normal distribution. Implicitly, because it is possible to
efficiently evaluate the cumulative distribution function of a multivariate normal distribution, maximum likelihood
estimation can be used to obtain parameter estimates and (asymptotic) standard errors (from the observed
information matrix) of model parameters.

The rest of this paper is organised as follows. In Section 2, the motivating application concerning functional
disability in psoriatic arthritis is introduced. Section 3 describes the flexible two-part modelling framework of
Albert and Shen8 and Ghosh and Albert9 (including additional comments regarding implementation). Section 4
proposes an efficient maximum likelihood estimation procedure for the models in Section 3. Section 5 applies the
methodology in Section 4 to the data described in Section 2. While retaining the flexibility of using stochastic
processes models and the practicality of the proposed efficient implementation procedure, Section 6 extends the
modelling framework of Section 3 to allow for the direct modelling of the overall marginal mean. Finally,
concluding remarks are made in Section 7.

2 Functional disability in psoriatic arthritis

Psoriatic arthritis (PsA) is an inflammatory arthritis associated with the skin condition psoriasis. Because of both
skin and joint involvement of the disease, PsA can result in patients having severe physical functional disability.
The dominant measure of functional disability in PsA, as well as in many other disease areas,10 is the self-reported
health assessment questionnaire (HAQ). This produces an essentially continuous measure11�14 between zero,
representing no disability, and three, representing severe disability.

The HAQ scores of 698 patients observed longitudinally at the University of Toronto PsA clinic were
considered for this analysis. Figure 1 shows the frequencies of HAQ scores from these patients. From Figure 1,
it is evident that a large proportion of zeros exist in this data set (1526/4811¼ 0.32). The clumping at zero, together
with the continuous distributed outcomes for the non-zero values, suggests that the HAQ score can be viewed as a
semicontinuous outcome. Su et al.12,13 considered two-part models with patient-specific random effects for
analysing an earlier version of this PsA data set. In this paper, we relax the assumption of constant patient-
specific random effects to patient-specific stochastic processes and consider the extent to which they improve
understanding of the disability process. This includes making easy interpretable inference on the overall
marginal mean HAQ scores, a concept that has not been considered before with stochastic processes models
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(see Section 6 for more details). On average, patients had 6.89 clinic visits (ranging from 2 to 20) with mean inter-
visit and follow-up times of 1 year and 5 months (standard deviation (SD) of 1 year and 1 month) and 8 years and
3 months (SD of 5 years and 10 months), respectively.

3 Model

Let Yij (i ¼ 1, . . . ,N) denote the semicontinuous response from patient i at time tij (j ¼ 1, . . . ,mi), where tij
represents the time of the jth observation from patient i. Because of true zeros, it is natural to decompose the
response into

Uij ¼
1 : Yij 4 0

0 : Yij ¼ 0

�

and gðYijÞjYij 4 0, where gð�Þ is a monotonic function such that gð0Þ ¼ 0 and gðYijÞjYij 4 0 is positive and
approximately Gaussian with constant variance �2. For convenience, the model for Uij is referred to as the
binary component, while the model for gðYijÞjYij 4 0 is referred to as the continuous component.

We now describe the flexible modelling framework. Let Xij and Zij be column vectors of covariates that
influence the probability of Yij> 0 and the mean of gðYijÞjYij 4 0, respectively. Then conditional on correlated
patient-specific random effects ðBr

i ¼ bri ,C
r
i ¼ cri Þ and correlated stochastic processes fBs

i ðtijÞ ¼ bsij,C
s
i ðtijÞ ¼ csijg,

where the random effects are assumed independent of the stochastic processes, we model Uij as Bernoulli with
response probability

PðUij ¼ 1jbsij, b
r
i Þ ¼ �ðX>ij bþ bsij þ bri Þ ð1Þ

where �ð�Þ is the cumulative distribution function of a standard Gaussian distribution (i.e. probit model), and
½ gðYijÞjYij 4 0; csij, c

r
i � as Gaussian with mean Z>ij cþ csij þ cri and constant variance �2 (i.e. linear mixed effect model

Figure 1. Frequencies of HAQ scores in our data.

Yiu and Tom 3



on gðYijÞjYij 4 0). Here, b and c are column vectors of regression coefficients. The patient-specific random effects
ðBr

i ,C
r
i Þ allow patients to have a consistently high or low probability of having disability and a consistently high or

low mean for the non-zero HAQ scores across time. While the patient-specific stochastic processes
fBs

i ðti1Þ, . . . , Bs
i ðtimi
Þ, Cs

i ðti1Þ, . . . , Cs
i ðtimi
Þg can capture serial correlation and non-predictable changes in

unobserved heterogeneity.9

We assume fBr
i ,C

r
i g follows a bivariate normal distribution with mean vector zero and

VarðBr
i Þ ¼ �

2
b , VarðCr

i Þ ¼ �
2
c , CovðBr

i ,C
r
i Þ ¼ �b�c� ð2Þ

where �2b and �
2
c are variance parameters and � is the correlation between Br

i and Cr
i . Furthermore, we consider two

classes of stochastic processes for fBs
i ðtÞ,C

s
i ðtÞg that are subsequently described. For convenience, define

BiðtÞ ¼ Br
i þ Bs

i ðtÞ and CiðtÞ ¼ Cr
i þ Cs

i ðtÞ, i.e. the patient-specific random effects Br
i and Cr

i are absorbed into the
stochastic processes BiðtÞ and CiðtÞ, respectively, and let the covariance matrix of fBiðti1Þ, . . . , Biðtimi

Þ,
Ciðti1Þ, . . . , Ciðtimi

Þg be

Di ¼
Dib Dibc

Dibc Dic

� �
:

3.1 Correlated Gaussian processes

The first and most general model that we consider is defined when fBs
i ðtÞ,C

s
i ðtÞg are correlated stationary Gaussian

processes. That is the model proposed by Albert and Shen8

CovfBs
i ðtijÞ,B

s
i ðtikÞg ¼ �

2
gb�
jtij�tikj

gb , CovfCs
i ðtijÞ,C

s
i ðtikÞg ¼ �

2
gc�
jtij�tikj
gc

CovfBs
i ðtijÞ,C

s
i ðtikÞg ¼ �gb�gc�g�

jtij�tikj

gbc

ð3Þ

where �2gb and �
2
gc are variance parameters, �g is the correlation between the Gaussian processes at the same time

point, and �gb, �gc, �gbc are the degradation parameters governing the serial correlation within and between
processes, respectively. Following Albert and Shen,8 the processes BiðtÞ and CiðtÞ are taken to be exchangeable
Ornstein-Uhlenbeck (EOU) processes, and the model containing these processes is called the general model, i.e.
(1–3). Some special cases of the general model are

. Shared EOU process model when cij ¼ �bij,

. Correlated OU processes model when �2b � �
2
c � � � 0,

. Shared OU process model when csij ¼ �b
s
ij and �

2
b � �

2
c � � � 0,

. Correlated random effects model when �2gb � �
2
gc � �g � �gb � �gc � �gbc � 0,

. Shared random effect model when cri ¼ �b
r
i and �

2
gb � �

2
gc � �g � �gb � �gc � �gbc � 0,

where � is a parameter to be estimated.

3.1.1 Remarks on �gb, �gc and �gbc

Although the general model is very flexible, it will not always be mathematically valid. Let the covariance matrices
D
s
ib, D

s
ic and D

s
ibc have (j, k)th entry �2gb�

jtij�tikj

gb , �2gc�
jtij�tikj
gc and �gb�gc�g�

jtij�tikj

gbc respectively, i.e. described by equation
(3). If �gb, �gc and �gbc are unconstrained (as specified by Albert and Shen8), the matrix D

s
i where

D
s
i ¼

D
s
ib D

s
ibc

D
s
ibc D

s
ic

� �

will not in general be a valid covariance matrix since D
s
i , although symmetric, is not constrained to be positive

semi-definite and therefore Bs
i ðtÞ and Cs

i ðtÞ will not necessarily form a jointly Gaussian process. The primary
difficulty results when �g (the correlation between Bs

i ðtÞ and Cs
i ðtÞ at each time t) is close to one because the

processes Bs
i ðtÞ and Cs

i ðtÞ are similar and therefore it will not be plausible for them to degrade at vastly
different rates (i.e. for �gb, �gc and �gbc to be vastly different). A reasonable approximation in this situation
would be to constrain the degradation and cross degradation parameters to be same, specifically
�gb � �gc � �gbc � �g1. This constraint would then enforce D

s
i to be a valid covariance matrix since the Schur
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component Ds
ib � D

s
ibcðD

s
icÞ
�1
D
s
ibc � �

2
gbð1� �

2
gÞD

s
i ð�g1Þ, where D

s
i ð�g1Þ has (j, k)th entry �

jtij�tikj
g1 , is constrained to be

positive semi-definite. The resulting correlation structure would then be

CorfBs
i ðtijÞ,B

s
i ðtikÞg ¼ CorfCs

i ðtijÞ,C
s
i ðtikÞg ¼ �

jtij�tikj
g1

CorfBs
i ðtijÞ,C

s
i ðtikÞg ¼ �g�

jtij�tikj
g1

ð4Þ

In the motivating application, �g was estimated close to one. Slight deviations from the correlation structure
described by equation (4) (for example �gb � �gc � �g1 and �gbc ¼ �g1� where � 2 ð0, 1Þ) resulted in non-positive
semi-definite matrices for various Di, and therefore the model fitting procedure was problematic. Note that a
further simplification would be to constrain �g ¼ 1 (in addition to �g1 ¼ �gb), this would result in the shared EOU
process model. If, however, �g takes a smaller value, and therefore the two Gaussian processes are less correlated,
it would then be more plausible for the Gaussian processes to degrade at different rates. Hence, having
unconstrained degradations parameters will likely be less problematic.

For completeness, note that

fDibgjk ¼ �
2
b þ �

2
gb�
jtij�tikj

gb

fDicgjk ¼ �
2
c þ �

2
gc�
jtij�tikj
gc

fDibcgjk ¼ �b�c�þ �gb�gc�g�
jtij�tikj

gbc

ð5Þ

3.2 Correlated random walks

The second model structure that we consider is defined when fBs
i ðtÞ,C

s
i ðtÞg are correlated continuous-time random

walks. That is the model proposed by Ghosh and Albert.9 Specifically, define sequentially
fBiðtijþ1Þ,Ciðtijþ1ÞgjfBiðtijÞ ¼ bij,CiðtijÞ ¼ cijg to be bivariate normal with mean ðbij, cijÞ and covariance matrix

�2wbðtijþ1 � tijÞ �wb�wc�wðtijþ1 � tijÞ

�wb�wc�wðtijþ1 � tijÞ �2wcðtijþ1 � tijÞ

 !

In addition ðbi1, ci1Þ ¼ ðb
r
i , c

r
i Þ are initiated at realisations of the patient-specific random effects. Here, �2wb, �

2
wc

and �w are variance and correlation parameters that quantify serial correlation (both within and across processes).
This model will be denoted by a correlated random walks (CRW) model and it contains as special cases.

. Shared random walk model when cij ¼ �bij,

. Correlated random effects model when �2wb � �
2
wc � �w � 0,

. Shared random effect model when cri ¼ �b
r
i and �

2
wb � �

2
wc � �w � 0.

Although the CRW model is less flexible than the general model, it has the advantage, from its sequential
construction, of always being well defined even when the parameters are unconstrained (apart from the usual
constraint that correlation parameters have modulus less than or equal to unity). Moreover

fDibgjk ¼ �
2
b þ �

2
wbfminðtij, tikÞ � ti1g

fDicgjk ¼ �
2
c þ �

2
wcfminðtij, tikÞ � ti1g

fDibcgjk ¼ �b�c�þ �wb�wc�wfminðtij, tikÞ � ti1g

ð6Þ

4 Efficient maximum likelihood estimation procedure for stochastic processes models

This section describes our efficient maximum likelihood estimation procedure for the flexible models described in
Section 3. Firstly, in Section 4.1, we describe a generic likelihood function for all of the described models.
The multivariate normal identity that can be used to evaluate certain multi-dimensional integrals in terms
of a multivariate normal cumulative distribution function is introduced in Section 4.2. Finally, in Section 4.3,
we outline how to apply the multivariate normal identity in Section 4.2 to the generic likelihood function in
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Section 4.1, thus culminating in a computationally efficient likelihood. For completeness, we also provide
computational simplifications for correlated stochastic processes models in the appendix.

4.1 Likelihoods

For ease of exposition, we describe the likelihood contribution from patient i. The likelihood can then be obtained
by taking the product of all likelihood contributions from each patient. Firstly, we consider models that contain
two (correlated) stochastic processes. For these models, the likelihood contribution from patient i is

Lið?Þ ¼

Z
bi

Z
ci

Ymi

j¼1

�ðX>ij bþ bijÞ
uijf1��ðX>ij bþ bijÞg

1�uij

" #

�
Ymi

j¼1

1ffiffiffiffiffiffiffiffiffiffi
2��2
p exp �

ð gð yijÞ � Z>ij c� cijÞ
2

2�2

( )" #uij" #
�ð2miÞðbi, ci; 0,DiÞdbidci

ð7Þ

where ? is a vector comprising all of the unknown parameters, bi ¼ ðbi1, . . . , bimi
Þ
>,

ci ¼ ðci1, . . . , cimi
Þ
>, �ðmÞð:; l,DÞ is an m dimensional multivariate normal density with mean vector l and

covariance matrix D, and Di is defined by either equation (5) or equation (6). Similarly, for models containing a
single stochastic process (i.e. shared process models), the likelihood contribution from patient i is

Lið?Þ ¼

Z
bi

Ymi

j¼1

�ðX>ij bþ bijÞ
uijf1��ðX>ij bþ bijÞg

1�uij

" #

�
Ymi

j¼1

1ffiffiffiffiffiffiffiffiffiffi
2��2
p exp �

ð gð yijÞ � Z>ij c� �bijÞ
2

2�2

( )" #uij" #
�ðmiÞðbi; 0,DibÞdbi

ð8Þ

where Dib can again be obtained from equation (5) or equation (6). We now define our generic likelihood
contribution from patient i which encompasses all of the described models. Throughout we apply the following
notation: 0 and 1 are mi � 1 vectors with all entries being zero and one respectively, diagðvÞ is a matrix with
diagonal elements v and zero otherwise, and Id is a d� d identity matrix. We also follow the convention that binary
operations with a scalar and vector or matrix argument and unary operations with a vector argument are
performed element-wise. In matrix form, we have

Lið?Þ ¼

Z
li

�ðmiÞ Ai1lib þ Ai2li; 0, Imi

� � 1ffiffiffiffiffiffiffiffiffiffi
2��2
p

� �Pmi

j¼1

uij

� exp �
ð gðyiÞ � Ai3lic � Ai4liÞ

>
ð gðyiÞ � Ai3lic � Ai4liÞ

2�2

� �
�fdimðliÞgðli; 0,DilÞdli

ð9Þ

where yi ¼ ð yi1, . . . , yimi
Þ
>, lib ¼ Xib, lic ¼ Zic, Xi ¼ ðXi1, . . . ,Ximi

Þ
>, Zi ¼ ðZi1, . . . ,Zimi

Þ
>, and Ai1 ¼

diagð2ui � 1Þ, Ai3 ¼ diagðuiÞ are mi �mi matrices with ui ¼ ðui1, . . . , uimi
Þ
>. Here �ðd Þð:; 0,DÞ represents the

distribution function of �ðd Þð:; 0,DÞ and li is a (to be specified) column vector of random effects. Note that
equation (9) has resulted from repeated application of the identity 1��ðxÞ ¼ �ð�xÞ.

The likelihood contribution from patient i, Lið?Þ, is then obtained by specifying the vector of random effects li
and its covariance matrix Dil together with the mi � dimðliÞ matrices Ai2 and Ai4 which describe how the random
effects act on the binary and continuous components of the model. For (7), li ¼ ðbi, ciÞ, Ai2 ¼

ðdiagð2ui � 1Þ, diagð0ÞÞ and Ai4 ¼ ðdiagð0Þ, diagðuiÞÞ. While for equation (8), li ¼ bi, Ai2 ¼ diagð2ui � 1Þ and
Ai4 ¼ diagð�uiÞ. Similarly, for the correlated random effects model, li ¼ ðbi, ciÞ, Ai2 ¼ ð2ui � 1, 0Þ and
Ai4 ¼ ð0, uiÞ, and for the shared random effect model, li¼ bi, Ai2 ¼ 2ui � 1 and Ai4 ¼ �ui.

4.2 Multivariate normal identity

In order to evaluate the likelihood described by equation (9), we derive a multivariate normal identity that makes
use of a property of the multivariate normal distribution and the standard marginal cumulative distribution
function identity. Firstly, suppose that x ¼ ðx1,x2Þ

> follows a multivariate normal distribution with mean

6 Statistical Methods in Medical Research 0(0)



vector ð0, gÞ> where x1 and 0 are k1 � 1 vectors and x2 and g are k2 � 1 vectors, respectively. Furthermore,
suppose that the covariance matrix of x is the ðk1 þ k2Þ � ðk1 þ k2Þ matrix D where the first k1 rows of D is the
k1 � ðk1 þ k2Þ matrix ðD22,D

>
12Þ and the remaining k2 rows of D is the k2 � ðk1 þ k2Þ matrix ðD12,D11Þ respectively.

It is a well-known result that �ðk1þk2Þðx; ð0, gÞ>,DÞ ¼ �ðk1Þðx1;D
>
12D
�1
11 ðx2 � gÞ,D22 � D

>
12D
�1
11 D12Þ�

ðk2Þðx2; g,D11Þ

where the right-hand side is the product of the conditional density of x1jx2 and the marginal density of x2. By
applying the standard marginal cumulative distribution function identity Fx1

ðx1Þ ¼
R
x2

Fx1jx2
ðx1jx2Þ fx2

ðx2Þdx2

where the integrand is based on the right-hand side of the above result, we obtain the multivariate normal identity:

�ðk1Þðx1; 0,D22Þ ¼

Z
x2

�ðk1Þ x1 � D
>
12D
�1
11 ðx2 � gÞ; 0,D22 � D

>
12D
�1
11 D12

� �
�ðk2Þ x2; g,D11ð Þdx2 ð10Þ

by noting that the marginal distribution of x1 is multivariate normal with mean vector 0 and covariance
matrix �22.

Returning to the application, the general idea is to rearrange equation (9) to take the form of the right-hand side
of equation (10), and then to use equation (10) to compute the integrations over the random effects in terms of an
mi dimensional normal cumulative distribution function. Because there exists efficient implementations of the
multivariate normal cumulative distribution function, this approach will allow for the efficient computation of
the generic likelihood. We note that Barrett et al.15 used equation (10) to obtain computationally efficient
likelihoods of flexible models that jointly consider longitudinal and time to event outcomes. Equation (10) also
arises frequently in results concerning the multivariate skew normal distribution.16–19

4.3 Re-expressing the likelihoods

This section demonstrates how equation (9) (the likelihood contribution from patient i) can be re-expressed. We
firstly consider the integrand terms resulting from the continuous component and random effects. That is

1ffiffiffiffiffiffiffiffiffiffi
2��2
p

� �Pmi

j¼1

uij

exp �
ð gðyiÞ � Ai3lic � Ai4liÞ

>
ð gðyiÞ � Ai3lic � Ai4liÞ

2�2

� �
�fdimðliÞgðli; 0,DilÞ ð11Þ

By completing the square in li (see the appendix for more details), equation (11) can be rearranged as

Li1�
fdimðliÞgðli; hi,H

�1
i Þ ð12Þ

where

Hi ¼ A>i4Ai4=�
2 þ ðDilÞ

�1

hi ¼ H�1i A>i4ð gðyiÞ � Ai3licÞ=�
2

ð13Þ

and

Li1 ¼
1ffiffiffiffiffiffiffiffiffiffi
2��2
p

� �Pmi

j¼1

uij 1

jDilHij
1=2

exp �
ð gðyiÞ � Ai3licÞ

>
ð gðyiÞ � Ai3licÞ

2�2
þ
h>i Hihi

2

� �
ð14Þ

is independent of li. Substituting equation (12) into equation (9), we consider the integral (ignoring Li1)Z
li

�ðmiÞ Ai1lib þ Ai2li; 0, Imi

� �
�fdimðliÞgðli; hi,H

�1
i Þdli: ð15Þ

We can re-express the argument and covariance matrix of the multivariate normal distribution function in
equation (15) as

Ai1lib þ Ai2li ¼ Ai1lib þ Ai2hi � ð�H
�1
i A>i2Þ

>Hiðli � hiÞ

Imi
¼ Imi

þ Ai2H
�1
i A>i2 � ð�H

�1
i A>i2Þ

>Hið�H
�1
i A>i2Þ

ð16Þ
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Therefore equation (15), after applying the multivariate normal identity (described equation (10)), is
equivalent to

�ðmiÞ Ai1lib þ Ai2hi; 0, Imi
þ Ai2H

�1
i A>i2

� �
ð17Þ

Based on the above expressions, the likelihood contribution from patient i can now be re-expressed as

Lið?Þ ¼ �ðmiÞ Ai1lib þ Ai2hi; 0, Imi
þ Ai2H

�1
i A>i2

� � 1ffiffiffiffiffiffiffiffiffiffi
2��2
p

� �Pmi

j¼1

uij

�
1

jDilHij
1=2

exp �
ð gðyiÞ � Ai3licÞ

>
ð gðyiÞ � Ai3licÞ

2�2
þ
h>i Hihi

2

� � ð18Þ

where

Ai1 ¼ diagð2ui � 1Þ

Ai3 ¼ diagðuiÞ

Hi ¼ A>i4Ai4=�
2 þ ðDilÞ

�1

hi ¼ H�1i A>i4ð gðyiÞ � Ai3licÞ=�
2

ð19Þ

and Dil ¼ Di or Dib with Ai2 and Ai4 defined by the specified model.
From equations (18) and (19), it is now evident that evaluating the integrations involved in Lið?Þ reduces to

computing the cumulative distribution function of a multivariate normal distribution. This can be performed
efficiently, for example by using the R20 package mnormt.21 The model fitting procedure is then completed by
maximizing the log-likelihood, for example by using the BFGS22 optimization technique, to obtain parameter
estimates and asymptotic standard errors (from the observed Fisher information matrix) of model parameters.

5 Application: Patient-specific inference

Using the estimation procedure described in Section 4, we demonstrate how patient-specific inference on the
probability of being disabled and the transformed mean HAQ score conditional on disability can be obtained.
Specifically, how a unit change in covariate values impacts these quantities for any specific patient. We consider
the covariate effects of the number of clinically damaged joints (time-dependent), the number of actively inflamed
joints (time-dependent), sex (coded as 1 for males and 0 for females), arthritis duration in years (time-dependent),
and age at onset of arthritis in years (standardise). Following Su et al.,12,13 no transformation was applied to the
non-zero HAQ scores, i.e. g(y)¼ y.

Initially, models with two stochastic processes were fitted to the HAQ data. This resulted in large estimated
correlation parameters between the random effects (i.e. � � 1) and stochastic processes for both the correlated
Gaussian processes and random walks cases (i.e. �g and �w � 1). These results therefore suggested a single
stochastic process would be sufficient for describing the data. The shared EOU model was then fitted.
However, the analysis provided evidence for model over-parameterisation as �̂2 appeared to converge at
virtually zero and a positive-definite observed Fisher information matrix could not be attained (even when a
considerably smaller tolerance level than the default was specified for the computation of multivariate normal
probabilities). We therefore considered the shared random walk and OU process models, and for comparative
purposes, the shared random effect model. The models containing stochastic processes were fitted using the
likelihood described by equations (18) and (19), while the shared random effect model was fitted using
numerical integration (since only a single integration per patient is required). The same parameter estimates for
the shared random effect model were obtained when equations (18) and (19) were used in the model fitting
procedure.

Table 1 presents the results of the fitted models. Across the models, the covariate effects on the mean
conditional on disability are seen to be relatively similar as the confidence intervals generally overlap. In
addition, the models are in agreement with regard to the association of each covariate apart from arthritis
duration. Arthritis duration is statistically significant in the shared random effect model but is not statistically
significant in the models that incorporate stochastic processes. It is interesting to note that there are strong
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agreements regarding the covariate effect of the number of active joints (similar parameter estimates across models
and relatively narrow confidence intervals). The models indicate an additional actively inflamed joint will increase
the mean HAQ score conditional on disability by approximately 0.21 for any specific patient. For the binary
component, the covariate effects are again seen to be relatively similar due to the overlapping confidence intervals.
Their interpretation through the direction of association and statistical significance are also consistent across
models. The covariate effects from the shared random effect model does, however, consistently demonstrate
attenuation to the null when compared to the other models with stochastic processes.

A generalized likelihood ratio test of �2wb ¼ 0 and �gb ¼ 1 produced p values of< 0.001 therefore suggesting
preference towards the shared random walk and OU process models respectively when compared to the shared
random effect model. Since the shared random walk and OU process models contain the same number of
parameters, information criteria, such as AIC, would indicate (weakly) that the shared random walk model is
preferable. It is also worth noting that the heterogeneity parameter in the binary component (i.e. �2b or �2gb) is
significantly lower in the shared random effect model. For this model, this parameter governs both the
heterogeneity and correlation due to repeated measurements and therefore in light of greater unaccounted
heterogeneity (compared to the models with stochastic processes), less correlation is expected.23 In the
continuous component, where �2 also accounts for heterogeneity, a smaller difference between the
heterogeneity parameters (i.e. �2�2b or �2�2gb) is seen; in the order of the models displayed in the table (from
right to left), the heterogeneity parameters are 0.24, 0.36 and 0.25, respectively.

6 Modelling the overall marginal mean

In many cases, it is of interest to obtain population-based inference in addition/as opposed to patient-specific
inference. For example, for strategic public health policy purposes, it would be more clinically meaningful to
obtain covariate effects on quantities of interest after averaging over all patients. Currently, the proposed models
are parametrised to allow easily interpretable patient-specific covariate effects, those with BiðtijÞ ¼ bij
and CiðtijÞ ¼ cij, to act on the patient-specific mean of the transformed positive values
(i.e. E½ gðYijÞjYij 4 0,CiðtijÞ ¼ cij�) and the patient-specific probability of a having a positive value (i.e.

Table 1. Table displaying patient-specific effects and corresponding 95% Wald intervals on the probability of being disabled and the

mean HAQ score conditional on disability.

Shared random walk Shared OU process Shared random effect

Binary component

Damaged joints 0.031 (0.013, 0.049) 0.04 (0.021, 0.059) 0.012 (0.002, 0.022)

Active joints 0.16 (0.13, 0.18) 0.17 (0.15, 0.2) 0.15 (0.13, 0.16)

Sex �1.72 (�1.9, �1.54) �2.17 (�2.92, �1.42) �1.34 (�1.65, �1.02)

Arthritis duration 0.042 (0.025, 0.058) 0.044 (0.022, 0.065) 0.034 (0.023, 0.044)

Age at arthritis onseta 0.56 (0.45, 0.66) 0.68 (0.48, 0.88) 0.45 (0.3, 0.6)

Intercept 1.77 (1.62, 1.92) 1.97 (1.07, 2.87) 1.11 (0.81, 1.41)

Continuous component

Damaged joints 0.0065 (0.0032, 0.0097) 0.0078 (0.0046, 0.011) 0.0033 (0.00086, 0.0058)

Active joints 0.021 (0.019, 0.023) 0.021 (0.019, 0.023) 0.02 (0.018, 0.022)

Sex �0.29 (�0.34, �0.24) �0.35 (�0.46, �0.23) �0.29 (�0.37, �0.21)

Arthritis duration 0.0025 (�0.0008, 0.0058) 0.0035 (�0.001, 0.0081) 0.0067 (0.0041, 0.0093)

Age at arthritis onseta 0.076 (0.048, 0.1) 0.093 (0.046, 0.14) 0.086 (0.048, 0.12)

Intercept 0.62 (0.57, 0.66) 0.59 (0.44, 0.74) 0.63 (0.56, 0.7)

� 0.2 (0.19, 0.22) 0.19 (0.17, 0.21) 0.27 (0.24, 0.3)

�2 0.074 (0.069, 0.079) 0.066 (0.06, 0.072) 0.12 (0.11, 0.12)

�2
b 6.3 (5.64, 7.04) 3.29 (2.64, 4.1)

�2
gb 10.11 (8.03, 12.74)

�2
wb 0.58 (0.52, 0.65)

�gb 0.95 (0.94, 0.96)

Log-likelihood �3279.08 �3282.11 �3500.48

aDenotes the standardised version of the covariate.
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PðUij ¼ 1jBiðtijÞ ¼ bijÞ). However, under this parametrisation, it no longer becomes straightforward to obtain
easily interpretable population-level covariate effects on the marginal mean of the transformed positive values
(the mean of the transformed positive values after averaging over all bij and cij, i.e. E½ gðYijÞjYij 4 0�) since it is a
highly non-linear function of the linear predictors in the binary and continuous components.5 Thus, the effect of a
single covariate is generally interpreted by fixing other covariates at certain values.8 This problem remains even
when population-level covariate effects on the overall marginal mean of the transformed values (i.e. E½ gðYijÞ�) are
of primary interest, which has strongly been argued as an important target of inference;24 it is estimated using data
from the same patients over time (unlike E½ gðYijÞjYij 4 0�) and it is a measure of the undecomposed outcome. We
reiterate that in considering the overall marginal mean of the transformed values as a target of inference, we
assume that the monotonic transformation function is such that gð0Þ ¼ 0 and gðYijÞjYij 4 0 is positive and
approximately Gaussian with constant variance �2.

In order to obtain population-based inference on the overall marginal mean of the transformed values, Smith
et al.4 proposed the following model parameterisation

PðUij ¼ 1jBr
i ¼ bri Þ ¼ g1ðX

>
ij bþ bri Þ

E½ gðYijÞjC
r
i ¼ cri � ¼ g2ðZ

>
ij aþ cri Þ

ð20Þ

where g1ð�Þ and g2ð�Þ are monotonic link functions and Br
i ,C

r
i are, as before, zero mean bivariate normal patient-

specific random effects. Recall that transformation and link functions differ in that transformation functions are
applied prior to modelling. In their specific context, Smith et al.4 considered the identity transformation for gð�Þ but
allowed the positive values of Yij to follow a log-skew-normal distribution. Under this parametrisation, for a
suitably chosen link function such as g�12 being the identity or log link, it is implicit that easily interpretable
covariate effects on the overall marginal mean of gðYijÞ, a, can now be obtained. Smith et al.4 implemented this
model by using a Bayesian estimation approach with

E½ gðYijÞjYij 4 0, Br
i ¼ bri ,C

r
i ¼ cri � ¼

g2ðZ
>
ij aþ cri Þ

g1ðX
>
ij bþ bri Þ

specified in the likelihoods defined by equation (7) or equation (8). Note that E½ gðYijÞjYij 4 0,Br
i ¼ bri ,C

r
i ¼ cri � is

no longer parametrised to be equivalent to a monotonic function of a linear predictor, as was specified before.
While this approach for modelling the overall marginal mean is intuitive, it is clear that the multivariate normal
identity in Section 4.2 can no longer be used to compute the integrations over the multi-dimensional random
effects in the marginal likelihood. Thus, as mentioned in the introduction, implementation of such models can be
computationally challenging, especially for our situation where it would be of interest to consider bij and cij (i.e.
realisations of stochastic processes) instead of bri and cri (i.e. realisations of patient-specific random effects) in
equation (20).

We now propose another method which would allow easily interpretable covariate effects to act on the overall
marginal mean of gðYijÞ. In contrast, this method facilitates the inclusion of stochastic processes because it retains
the proposed efficient implementation procedure described in Section 4. To the best of our knowledge, there are no
other methods in the literature that facilitates the practical implementation of stochastic processes models for
directly modelling the overall marginal mean.

We first begin by computing the overall marginal mean of gðYijÞ when

PðUij ¼ 1jBiðtijÞ ¼ bijÞ ¼ g1ðX
>
ij bþ bijÞ

E½ gðYijÞjYij 4 0,CiðtijÞ ¼ cij� ¼ �ij þ cij
ð21Þ

where �ij is a function of covariates (at the jth visit from patient i) and regression coefficients only. That is cij is
now assumed to act additively on the mean of the transformed positive values and not on the overall mean of the
transformed values as is the case in equation (20). For models with two processes, the overall marginal mean of
gðYijÞ is defined by

E½ gðYijÞ� ¼

Z
b

Z
c

�ðX>ij bþ bijÞð�ij þ cijÞ�
ð2Þðbij, cij; 0,DijÞdbijdcij
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where

Dij ¼
�2bij �bij�cij�bcij

�bij�cij�bcij �2cij

 !

and �2bij, �
2
cij and �bcij are the variances and correlation of BiðtijÞ and CiðtijÞ, respectively. Similarly, the overall

marginal mean for a shared process model is given by

E½ gðYijÞ� ¼

Z
b

�ðX>ij bþ bijÞð�ij þ �bijÞ�
ð1Þðbij; 0, �

2
bijÞdbij:

Conveniently, these integrals can be computed analytically and this results in

�
X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA�ij þ

�bij�cij�bcijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q �
X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA

and

�
X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA�ij þ

��2bijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q �
X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA

respectively. The derivation of the first overall marginal mean of gðYijÞ (resulting from models with two processes)
can be found in the supplementary material of Tom et al.,5 and the second overall marginal mean of gðYijÞ is
derived in the appendix. If we specify E½ gðYijÞ� ¼ Z>ij a, we can then reparametrise

�ij ¼ Z>ij a�
�bij�cij�bcijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2bij

q �
X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA

2
64

3
75	�

X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA ð22Þ

and

�ij ¼ Z>ij a�
��2bijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q �
X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA

2
64

3
75	�

X>ij bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
0
B@

1
CA

in the respective models. Thus, as in equation (20), a offers easily interpretable covariate effects of Zij on the overall
marginal mean of gðYijÞ (by definition). In particular, a unit change in components of Zij will increase the overall
marginal mean of gðYijÞ by the respective components in a. However, from equations (21) and (22), it is also
evident that replacing Z>ij c with �ij in Section 4 will still allow the proposed efficient estimation procedure to be
applied. It is also possible to reparametrise patient-specific covariate effects b in the binary component in terms of
population-level covariate effects n, specifically b ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
, since it can be shown that

PðUij ¼ 1Þ ¼ �ðX>ij b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
Þ. This relationship is easily proved. In the motivating application, this

reparametrisation led to a numerically unstable optimization routine, therefore ðb, aÞ was estimated with n̂

obtained as b̂=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �̂2bij

q
and standard errors were calculated using the delta method.

6.1 Population-based inference

Using the parameterisations described in the previous subsection, we demonstrate how population-based inference
on the probability of being disabled and the overall marginal mean HAQ score can be obtained. Specifically, on
averaging across patients, how a unit change in covariate values impacts these quantities. For illustrative purposes,
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the same covariates as those considered in the patient-specific case are considered. Note that for generalized linear
models, conditional and marginal covariate effects will generally differ unless certain random effects distributions
and link functions are chosen.25

As mentioned, marginal covariate effects on the probability of being disabled, n, were obtained from

b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2bij

q
with b and �2bij (the variance of BiðtijÞ) estimated using the model fitting procedure. The shared OU

process and random effect models, where �2bij does not depend on j (or i) for these models, were considered. For

models with random walks, �2bij varies with j and therefore n will have a time-dependent interpretation. For

simplicity, these models are not considered. The shared random effect model was fitted using the
parameterisation described by equation (20), with g1ð yÞ ¼ �ð yÞ and g2ð yÞ ¼ y, and using the parameterisation
described by equations (21) and (22), thus the same link functions are used and the inferences (at the population-
level) from these models are comparable. These models will be denoted as shared random effect model-overall and
-conditional respectively. Note that unlike at the population-level, the patient-specific assumptions from the
shared random effect model-overall and -conditional are vastly different. The shared random effect-overall
model assumes that the overall patient-specific mean, i.e. E½YijjB

r
i ¼ bri ,C

r
i ¼ cri �, has a linear form, namely

Z>ij aþ cri . While the shared random effect-conditional model assumes that this quantity takes a particular non-

linear form, namely ð�ij þ cri Þ�ðX
>
ij bþ bri Þ. As before, the shared random effect models (both -overall and -

conditional) were fitted using numerical integration and maximum likelihood estimation under the assumption
that the positive values follow a normal distribution with constant variance.

Table 2 presents the results. Population-level covariate effects on the overall marginal mean are seen to be
relatively similar across models due to the considerable overlap in confidence intervals. All three models are in
strong agreement regarding the population-level covariate effect of the number of active joints. That is, on average,
patients with an additional actively inflamed joint have an overall mean HAQ score increased by approximately
0.02. In contrast to the patient-specific case, the population-level covariate effects on the probability of being
disabled are now more consistent across models. A generalized likelihood ratio test of �gb ¼ 1 produced a p value
of< 0.001 and therefore the shared OU process model is to be preferred over the shared random effect-conditional

Table 2. Table displaying population-level effects and corresponding 95% Wald intervals on the probability of being disabled and the

overall marginal mean HAQ score.

Shared OU process Shared random effect-conditional Shared random effect-overall

Binary component

Damaged joints 0.012 (0.006, 0.018) 0.0057 (0.0006, 0.011) 0.0066 (0.002, 0.011)

Active joints 0.05 (0.043, 0.058) 0.063 (0.054, 0.071) 0.051 (0.044, 0.058)

Sex �0.65 (�0.88, �0.43) �0.64 (�0.8, �0.48) �0.61 (�0.76, �0.46)

Arthritis duration 0.013 (0.0057, 0.02) 0.014 (0.0095, 0.02) 0.012 (0.0078, 0.017)

Age at arthritis onseta 0.19 (0.14, 0.24) 0.2 (0.13, 0.27) 0.19 (0.12, 0.26)

Intercept 0.59 (0.35, 0.83) 0.56 (0.42, 0.7) 0.68 (0.55, 0.81)

Overall marginal mean

Damaged Joints 0.0064 (0.0036, 0.0094) 0.0029 (0.00054, 0.0053) 0.004 (0.0016, 0.0065)

Active joints 0.02 (0.018, 0.022) 0.021 (0.019, 0.023) 0.022 (0.02, 0.024)

Sex �0.3 (�0.4, �0.19) �0.28 (�0.36, �0.21) �0.31 (�0.39, �0.23)

Arthritis duration 0.0035 (0.00032, 0.0068) 0.006 (0.0038, 0.0082) 0.0054 (0.0031, 0.0077)

Age at arthritis onseta 0.073 (0.049, 0.098) 0.08 (0.048, 0.11) 0.09 (0.052, 0.13)

Intercept 0.62 (0.5, 0.73) 0.61 (0.54, 0.68) 0.59 (0.52, 0.66)

� 0.18 (0.16, 0.2) 0.27 (0.24, 0.29) 0.22 (0.2, 0.24)

�2 0.064 (0.057, 0.071) 0.12 (0.11, 0.12) 0.12 (0.11, 0.13)

�2
b 3.63 (2.92, 4.5) 5.19 (4.26, 6.34)

�2
gb 11.12 (8.71, 14.19)

�gb 0.95 (0.94, 0.96)

Log�likelihood �3277.2 �3507.63 �3582.78

aDenotes the standardised version of the covariate.
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model. Log-likelihood values also indicate slight preference to the shared random effect-conditional model
(�3507.63) over the shared random effect-overall model (�3582.78).

7 Discussion

This paper reconsiders the flexible two-part models of Albert and Shen8 and Ghosh and Albert9 and proposes an
efficient method of implementation. Specifically, the problem of integrating over high dimensional random effects
is replaced by evaluating the cumulative distribution function of a multivariate normal distribution. This leads to
efficient algorithms being employed and results in only an optimization procedure being required for model fitting.
Furthermore, while retaining the flexibility of including stochastic processes and the practicality of an efficient
model fitting procedure, this paper also provides model parameterisations which allow easily interpretable
covariate effects to act on the overall marginal mean. The proposed methodology was applied to a psoriatic
arthritis data set with extensive follow-up information.

Through their application and a simulation study, Albert and Shen8 demonstrated that overall conditional
means (conditional on realisations of stochastic processes) may suffer from bias if serial correlation is present but a
shared random effect model is used instead. Furthermore, as the shared random effect model becomes more
misspecified (�gb decreases from one), the degree of bias increases. However, under the same set-up, overall
marginal means were less susceptible to bias. In the motivating application, the estimated degradation
parameters from the shared OU process models were �̂gb ¼ 0:95 in both applications (Sections 5 and 6.1). The
reasonably high estimated correlation may therefore explain why the shared random effect model ð�gb ¼ 1Þ was a
reasonable approximation in terms of estimating regression coefficients, although it was substantially the worst
fitting model.

Preliminary analyses suggested shared process models were reasonable for our data since �̂, �̂w and �̂g � 1 when
the described bivariate processes models were fitted. Although this may not be surprising as both parts of the
model are describing the same response process, it is worth noting that the estimated correlation parameter
(between processes) can in principle take a value between ð�1, 1Þ as evidenced in other works.7,9 Our
preliminary analyses also demonstrated the need for careful evaluation of models fitted as problems with over
fitting may arise. This was evident when the estimated random variation parameter was estimated to be virtually
zero (i.e. �̂2 � 0) and the observed Fisher information matrix was non positive-definite, even when a considerably
smaller tolerance level than the default was specified for computing multivariate normal probabilities.

As mentioned in Section 6, the proposed model parameterisations were motivated by making inference on the
overall marginal mean. In this regard, covariate effects (both patient-specific and population-level) on the mean of
the positive values and its correlation structure were assumed not of interest. If the mean of the positive values is of
primary interest, it would be more sensible to directly use equations (18) and (19), as in Section 5, to obtain
patient-specific effects or derive a similar parameterisation, as in Section 6, to obtain population-level effects.

A limitation of the current framework is that it is based on the assumption gðYijÞjYij 4 0 is approximately
Gaussian with constant variance �2. Specifically, in situations where gð�Þ is required to be complex so that this
assumption will at least approximately hold, the resulting inferential targets will no longer be intuitively
interpretable owing to the complexity of the transformation function. One approach that may weaken the need
to assume normality of gðYijÞjYij 4 0, particularly when the outcome exhibits a large amount of right skewness
(e.g. medical expenditures), would be to make the alternative assumption gðYijÞjYij 4 0 follows a log-normal
distribution. This may allow less complex and hence more interpretable transformation functions to be applied
to the outcome without having to strongly violate the assumption on gðYijÞjYij 4 0. Under this alternative
assumption, we provide details in the supplementary materials of how easily interpretable inference on the
overall marginal mean and on the mean of the positive transformed outcomes can be obtained with
computationally efficient likelihoods. Similar techniques to those in the supplementary materials can also be
used when the assumption gðYijÞjYij 4 0 follows a log-skew-normal distribution is of interest. Although this
comes at the cost of having an increased number of integrations in the marginal likelihood.

Finally, the model described by equations (18) and (19) with possible simplifications described in Appendix 2
is very general. Although it was derived in the context of longitudinal semicontinuous data, it contains the
model described by Barrett et al.15 for the longitudinal and survival outcomes setting and implicitly provides a
model for clustered cross-sectional semicontinuous data, where the index (i, j) specifies the jth outcome from the
ith cluster. The multivariate normal identity described in Section 4.2 can also facilitate the fitting of flexible
models describing clustered binary data and continuous bounded outcome data.14 However, it should be noted
that care is required when specifying an appropriate/suitable correlation structure. Particularly, the covariance
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matrix must be constrained to be symmetric and positive semi-definite otherwise the model fitting procedure will
likely be problematic, as was found here. For these alternative situations, the proposed methodology does
nevertheless offer a strong basis, especially with regard to implementation, for the developing of flexible models.
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Appendix 1. Rearranging equation (11)

The continuous and random effects component in the integrand of equation (9) is

1ffiffiffiffiffiffiffiffiffiffi
2��2
p

� �Pmi

j¼1

uij

exp �
ð gðyiÞ � Ai3lic � Ai4liÞ

>
ð gðyiÞ � Ai3lic � Ai4liÞ

2�2

� �
�fdimðliÞgðli; 0,DilÞ:

We rearrange this expression by completing the square in li. This results in

1ffiffiffiffiffiffiffiffiffiffi
2��2
p

� �Pmi

j¼1

uij

exp �
ð gðyiÞ � Ai3licÞ

>
ð gðyiÞ � Ai3licÞ

2�2

� �
jH�1i j

1=2

jDilj
1=2

1

ð2�ÞdimðliÞ=2jH�1i j
1=2

exp �
l>i Hili
2
þ l>i Hihi

� �
: ð23Þ

Focusing on terms containing li, we have

exp �
l>i Hili
2
þ l>i Hihi

� �
¼ exp �

ðli � hiÞ
>Hiðli � hiÞ

2
þ
h>i Hihi

2

� �
: ð24Þ

Equations (12) to (14) now follows by substituting equation (24) into equation (23).

Appendix 2. Simplification for correlated stochastic processes model

For the models containing correlated stochastic processes (described by equation (7)), recall that Dil ¼ Di (where Di

is described by either equation (5) or equation (6)), Ai2 ¼ ðdiagð2ui � 1Þ, diagð0ÞÞ and Ai4 ¼ ðdiagð0Þ, uiÞ are
mi � 2mi matrices. Simplification of equation (18) for this model structure is possible, specifically the following
(to be derived) equations

Ai2hi ¼ D
u
ibc � D

u
ibcðImi

þ D
u
ic=�

2Þ
�1
D
u
ic=�

2
� �

ð gðyiÞ � Ai3licÞ=�
2

Ai2H
�1
i A>i2 ¼ D

u
ib � D

u
ibcðImi

þ D
u
ic=�

2Þ
�1
D
u
ibc=�

2

jDiHij ¼ jDicdiagðuiÞ=�
2 þ Imi

j

h>i Hihi ¼ ð gðyiÞ � A3licÞ
>
ðDu

ic � D
u
icðImi

þ D
u
ic=�

2Þ
�1
D
u
ic=�

2Þð gðyiÞ � Ai3licÞ=�
4

ð25Þ

where

D
u
ib ¼ diagð2ui � 1ÞDibdiagð2ui � 1Þ

D
u
ic ¼ diagðuiÞDicdiagðuiÞ

D
u
ibc ¼ diagð2ui � 1ÞDibcdiagðuiÞ

reduce the dimension of the respective matrix calculations (from 2mi to mi dimensional).
In order to derive the equations in (25), we begin by simplifying DiHi. That is

DiHi ¼ DiA
>
i4Ai4=�

2 þ I2mi
¼

Dib Dibc

Dibc Dic

� �
diagð0Þ diagð0Þ

diagð0Þ diagðuiÞ=�
2

� �
þ I2mi
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¼
Imi

DibcdiagðuiÞ=�
2

diagð0Þ DicdiagðuiÞ=�
2 þ Imi

 !
:

It now follows that

jDiHij ¼ jImi
jjDicdiagðuiÞ=�

2 þ Imi
j ¼ jDicdiagðuiÞ=�

2 þ Imi
j:

Next, we simplify h>i Hihi ¼ ð gðyiÞ � Ai3licÞ
>Ai4H

�1
i A>i4ð gðyiÞ � Ai3licÞ=�

4. By using the Woodbury matrix
identity, specifically

H�1i ¼ Di � DiA
>
i4ðImi

þ Ai4DiA
>
i4=�

2Þ
�1Ai4Di=�

2

and noting that

Ai4DiA
>
i4 ¼ diagðuiÞDicdiagðuiÞ � D

u
ic

we have

h>i Hihi ¼ ð gðyiÞ � Ai3licÞ
>Ai4H

�1A>i4ð gðyiÞ � Ai3licÞ=�
4

¼ ð gðyiÞ � Ai3licÞ
>
ðDu

ic � D
u
icðImi

þ D
u
ic=�

2Þ
�1
D
u
ic=�

2Þð gðyiÞ � Ai3licÞ=�
4:

To simplify Ai2hi, consider

Ai2hi ¼ Ai2H
�1
i A>i4ð gðyiÞ � Ai3licÞ=�

2

¼ Ai2DiA
>
i4 � Ai2DiA

>
i4ðImi

þ D
u
ic=�

2Þ
�1
D
u
ic=�

2
� �

ð gðyiÞ � Ai3licÞ=�
2:

By noting that

Ai2DiA
>
i4 ¼ diagð2ui � 1ÞDibcdiagðuiÞ � D

u
ibc

we have

Ai2hi ¼ D
u
ibc � D

u
ibcðImi

þ D
u
ic=�

2Þ
�1
D
u
ic=�

2
� �

ð gðyiÞ � Ai3licÞ=�
2:

Furthermore

Ai2H
�1
i A>i2 ¼ D

u
ib � D

u
ibcðImi

þ D
u
ic=�

2Þ
�1
D
u
ibc=�

2

where

D
u
ib � Ai2DiA

>
i2 ¼ diagð2ui � 1ÞDibdiagð2ui � 1Þ:

Appendix 3. Overall marginal mean of shared process model

To obtain the overall marginal mean of a shared process model, the following integral must be evaluatedZ
b

�ðX>bþ bÞðZ>cþ �bÞ�ð1Þðb; 0, �2bÞdb ¼ Z>c

Z
b

�ðX>bþ bÞ�ð1Þðb; 0, �2bÞdb

þ �

Z
b

b�ðX>bþ bÞ�ð1Þðb; 0, �2bÞdb:

ð26Þ
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The first term in equation (26) can be evaluated using the skew normal result, i.e. using equation (10), that is

Z>c

Z
b

�ðX>bþ bÞ�ð1Þðb; 0, �2bÞdb ¼ Z>c�ð1ÞðX>b; 0, 1þ �2bÞ ¼ Z>c�
X>bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2b

q
0
B@

1
CA:

To compute the second term in equation (26), consider

�

Z
b

b�ðX>bþ bÞ�ð1Þðb; 0, �2bÞdb ¼ ��b

Z
b�
b��ðX>bþ �bb

�Þ�ðb�Þdb�:

This integral can be computed using equation (10) (011.3) in Owen,26 which results in

��2bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2b

q �
X>bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2b

q
0
B@

1
CA:

The overall marginal mean now follows.
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