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Abstract
We examine global economic dynamics under learning in a New Key-

nesian model in which the interest-rate rule is subject to the zero lower
bound. Under normal monetary and fiscal policy, the intended steady
state is locally but not globally stable. Large pessimistic shocks to ex-
pectations can lead to deflationary spirals with falling prices and falling
output. To avoid this outcome we recommend augmenting normal poli-
cies with aggressive monetary and fiscal policy that guarantee a lower
bound on inflation. In contrast, policies geared toward ensuring an
output lower bound are insufficient for avoiding deflationary spirals.
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1 Introduction

There is now widespread agreement that the zero lower bound on nominal
interest rates has the potential to generate a “liquidity trap” with major im-
plications for economic performance. A substantial literature has discussed
the plausibility of the economy becoming trapped in a deflationary state and
the macroeconomic policies that might be able to avoid a liquidity trap or
extricate the economy from one.1 Our own view, reflected in the current pa-
∗Earlier versions were presented in the ECB Conference on Monetary Policy, Asset Prices,

and Learning in November 2006, in the Conference on the Phillips Curve in Kiel in June
2007, and in a number of seminars. We thank Roger Guesnerie and the audiences for
many helpful comments. Financial support from National Science Foundation Grant No.
SES-0617859 and ESRC grant RES-000-23-1152 is gratefully acknowledged.

1See Krugman (1998) for a recent seminal discussion and Adam and Billi (2007), Co-
enen, Orphanides, and Wieland (2004), Eggertsson and Woodford (2003), Eggertsson and
Woodford (2004), and Goodfriend (2000) for representative recent analyses and further ref-
erences. Braun and Waki (2006) provide a calibrated model for Japan that incorporates the
zero interest-rate lower bound.
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per as well as in the earlier paper Evans and Honkapohja (2005), is that the
evolution of expectations plays a key role in the dynamics of the economy and
that the tools from learning theory are needed for a realistic analysis of these
issues.
The importance of expectations in the liquidity trap is now widely ac-

cepted. For example, Benhabib, Schmitt-Grohe, and Uribe (2001b), Benhabib,
Schmitt-Grohe, and Uribe (2001a) show the possibility of multiple equilibria
under perfect foresight, with a continuum of paths to an unintended low or
negative inflation steady state. Similarly, Eggertsson and Woodford (2003)
emphasize the importance of policy commitment for influencing expectations
under the rational expectations (RE) assumption. Evans and Honkapohja
(2005) emphasize how the learning perspective alters both the assessment of
the plausibility of particular dynamics and the impact of policy.
Under learning private agents are assumed to form expectations using an

adaptive forecasting rule, which they update over time in accordance with
standard statistical procedures. In many standard set-ups least-squares learn-
ing is known to converge asymptotically to rational expectations, but cases
of instability can also arise. Evans and Honkapohja (2005) examine a flex-
ible price model with a global Taylor-rule, which, because of the zero lower
bound, generates a low-inflation steady state below the one intended by pol-
icy. There it was found that while the intended steady state was locally stable
under learning, the lower one was not2 and there was also the possibility of
inflation slipping below the low-inflation steady state. It was also shown that
switching to a sufficiently aggressive monetary policy at low inflation rates
could avoid these unstable trajectories. Fiscal policy in these circumstances
was ineffective.
The analysis of Evans and Honkapohja (2005) was, however, conducted in

a flexible-price model with exogenous output. In the current paper we employ
a New Keynesian model to reexamine these issues in a framework that allows
for a serious analysis of monetary and fiscal policy for an economy in which
recessions or slumps can arise due to failures of aggregate demand.3 We obtain
a number of striking results.
The possibility of liquidity traps taking the form of a deflationary spiral,

under a global Taylor rule, emerges as a serious concern. Although the targeted
steady state is locally stable under learning, a large pessimistic shock to ex-
pectations can result, under learning, in a self-reinforcing deflationary process
in which inflation and output decline over time. We consider a number of
policies to insulate the economy from this possibility. Each of these policies
maintains the Taylor rule over most of the range, but augments it by switching

2See also McCallum (2002) for an argument that the low-inflation steady-state is not
stable under learning.The instability under learning of the low inflation steady state is
sensitive to the form of the interest-rate rule, as shown by Eusepi (2007).

3Our analysis provides a theoretical framework for the potential role of fiscal policy in
combatting liquidity traps, which has been a contraversial topic in the empirical literature
on Japan’s slump. See Ball (2005), Kuttner and Posen (2002) and Perri (2001).
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to aggressive policies if inflation or output falls below some threshold.
We first consider an inflation threshold policy in which aggressive monetary

policy is used whenever inflation falls below, or threatens to fall below, some
specified threshold. It turns out that this policy, although it does offer some
protection, is not sufficient if the negative expectations shock is very large.
Next, we augment the preceding policy by adding aggressive fiscal policy if
monetary policy alone is inadequate to keep inflation at or above the threshold.
We demonstrate that this combination of aggressive policies, with a threshold
chosen at a suitable level, can always eliminate the possibility of deflationary
spirals and ensure global stability of the targeted steady state. This is the
central policy finding that emerges from the adaptive learning perspective.
Our central policy result leads to several further questions. One natural

question is whether an output threshold could be substituted for an inflation
threshold. Surprisingly the answer is no: using an output threshold to trigger
aggressive monetary and fiscal policies will not necessarily avoid deflationary
spirals. Another question concerns the timing for implementing our recom-
mended policy in which normal monetary and fiscal policy is augmented by
inflation threshold policies. Using simulations we show that it is better to
adopt inflation threshold policies earlier rather than later. Ideally, our infla-
tion threshold policy is in place before substantial negative expectation shocks
impact the economy.

2 The Model

We adopt a fairly standard representative agent model along the lines of Ben-
habib, Schmitt-Grohe, and Uribe (2001b), Section 3, except that we allow for
stochastic shocks and conduct the analysis in discrete time.4 There is a con-
tinuum of household-firms, which produce a differentiated consumption good
under conditions of monopolistic competition and price-adjustment costs. We
allow for both fiscal and monetary policy and for the government to issue debt.

2.1 Private Sector

The objective for agent j is to maximize expected, discounted utility subject
to a standard flow budget constraint:

Max E0

∞X
t=0

βtUt,j

µ
ct,j,

Mt−1,j
Pt

, ht,j,
Pt,j

Pt−1,j
− 1
¶

(1)

st. ct,j +mt,j + bt,j +Υt,j = mt−1,jπ−1t +Rt−1π−1t bt−1,j +
Pt,j

Pt
yt,j, (2)

where ct,j is the Dixit-Stiglitz consumption aggregator, Mt,j and mt,j denote
nominal and real money balances, ht,j is the labor input into production,

4We develop our analysis within a closed-economy model. For discussions of liquidity
traps in open economies, see for example McCallum (2000) and Svensson (2003).
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bt,j denotes the real quantity of risk-free one-period nominal bonds held by
the agent at the end of period t, Υt,j is the lump-sum tax collected by the
government, Rt−1 is the nominal interest rate factor between periods t−1 and
t, Pt,j is the price of consumption good j, yt,j is output of good j, Pt is the
aggregate price level and the inflation rate is πt = Pt/Pt−1. The subjective
discount factor is denoted by β. The utility function has the parametric form

Ut,j =
c1−σ1t,j

1− σ1
+

χ

1− σ2

µ
Mt−1,j
Pt

¶1−σ2
− h1+εt,j

1 + ε
− γ

2

µ
Pt,j

Pt−1,j
− 1
¶2

,

where σ1, σ2, ε, γ > 0. The final term parameterizes the cost of adjusting prices
in the spirit of Rotemberg (1982).
The production function for good j is

yt,j = hαt,j

where 0 < α < 1. Output is differentiated and firms operate under monop-
olistic competition. Each firm faces a downward sloping demand curve given
by

Pt,j =

µ
yt,j
Yt

¶−1/ν
Pt. (3)

Here Pt,j is the profit maximizing price set by firm j consistent with its pro-
duction yt,j. The parameter ν is the elasticity of substitution between two
goods and is assumed to be greater than one. Yt is aggregate output, which is
exogenous to the firm.

2.2 Fiscal and Monetary Policy

The government’s flow budget constraint is

bt +mt +Υt = gt +mt−1π−1t +Rt−1π−1t bt−1, (4)

where gt denotes government consumption of the aggregate good, bt is the real
quantity of government debt, and Υt is the real lump-sum tax collected. We
assume that fiscal policy follows a linear tax rule as in Leeper (1991)

Υt = κ0 + κbt−1 + ηt, (5)

where ηt is a white noise shock and where β
−1 − 1 < κ < 1. The restriction

on κ means that fiscal policy is “passive” in the terminology of Leeper (1991),
and implies that an increase in real government debt leads to an increase in
taxes sufficient to cover the increased interest and at least some fraction of the
increased principal.
We assume that gt is stochastic

gt = ḡ + ut, (6)
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where ut is an observable stationary AR(1) mean zero shock. From market
clearing we have

ct = hαt − gt. (7)

Monetary policy is assumed to follow a global interest rate rule

Rt − 1 = θtf (πt) . (8)

The function f(π) is taken to be positive and non-decreasing, while θt is an
exogenous, observable stationary AR(1) positive random shock with mean 1
representing random shifts in the behavior of the monetary policy-maker. We
assume the existence of π∗, R∗ such that R∗ = β−1π∗ and f(π∗) = R∗ − 1. π∗
can be viewed as the inflation target of the Central Bank, and we will assume
that π∗ ≥ 1. In the numerical analysis we will use the functional form

f(π) = (R∗ − 1)
³ π

π∗

´AR∗/(R∗−1)
,

which implies the existence of a nonstochastic steady state at π∗. Note that
f 0(π∗) = AR∗, which we assume is bigger than β−1.
Equations (4), (5) and (8) constitute “normal policy”. In the first part

of the paper we examine the system under normal policy. Later we consider
modifications to these policy rules in exceptional circumstances.

2.3 Key Equations

In Appendix A.1 it is shown that private sector optimization yields the key
equations

αγ

ν
(πt − 1)πt = ht

µ
hεt − α

µ
1− 1

ν

¶
hα−1t c−σ1t

¶
+ β

αγ

ν
Et [(πt+1 − 1)πt+1] ,

(9)

c−σ1t = βRtEt

¡
π−1t+1c

−σ1
t+1

¢
, (10)

mt = (χβ)
1/σ2

Ã¡
1−R−1t

¢
c−σ1t

Etπ
σ2−1
t+1

!−1/σ2
, (11)

to which we add the equations (4) - (8). Equation (9) is the nonlinear New
Keynesian Phillips curve, which describes the optimal price-setting by firms.
To interpret this equation, note that the bracketed expression in the first
term on the right-hand side is the difference between the marginal disutility
of labor and the product of the marginal revenue from an extra unit of labor
with the marginal utility of consumption. The terms involving current and
future inflation arise from the price-adjustment costs resulting from marginal
variations in labor supply. Equation (10) is the standard Euler equation giving
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the intertemporal first-order condition for the consumption path.5 Equation
(11) is the money demand function resulting from the presence of real balances
in the utility function. Note that for our parameterization, the demand for
real balances becomes infinite as Rt → 1.
Consider first the nonstochastic steady states in the absence of random

shocks. For any steady state π, equation (10) implies that the nominal interest
rate factor satisfies the Fisher equation

R = β−1π. (12)

As emphasized by Benhabib, Schmitt-Grohe, and Uribe (2001b), because f(.)
is nonnegative, continuous (and differentiable) and has a steady state π∗ with
f 0(π∗) > β−1, there must be a second steady state πL < π∗ with f 0(πL) < β−1.
For our parametrization of f(·), there are no steady states other than the
intended steady state π∗ and the unintended low-inflation steady state πL.
The other steady state equations are given by

c = hα − ḡ, (13)

−h1+ε + αγ

ν
(1− β) (π − 1)π + α

µ
1− 1

ν

¶
hαc−σ1 = 0 (14)

and a steady state version of (11). For a given steady state π ≥ 1, it is shown
in Appendix A.2 that there is a corresponding unique interior steady state
c > 0 and h > 0. For steady states π < 1, there continue to be unique values
for c and h provided π is close to one and ḡ > 0.6

When there is a nonstochastic steady state, it can be shown that stochas-
tic steady states exist when the support of the exogenous shocks is sufficiently
small. Furthermore, in this case the steady state is locally determinate, pro-
vided the corresponding linearization is determinate. Throughout the paper
we assume that the shocks are small in the sense of having small support. We
now consider determinacy of the linearized system.
In a neighborhood of a nonstochastic steady state (c, π) we can derive a

linear approximation

ct = −σ1βπ−1cRt + cet+1 + σ1cπ
−1πet+1 + kc (15)

Rt = aπt + δθt + kR, where a = f 0(π), δ = f(π) (16)
αγ

ν
(2π − 1)πt =

βαγ

ν
(2π − 1)πet+1 −

1 + ε

α
(c+ ḡ)(1+ε)α

−1−1(ct + ut) (17)

+α(1− ν−1)
¡−(c+ ḡ)σ1c

−σ1−1ct + c−σ1(ct + ut)
¢
+ kπ

5If equation (9) is linearized around π = 1 we obtain π̃t = λh̃t + βEtπ̃t+1, where λ > 0,
π̃t = πt − 1 and h̃t is the proportional deviation of ht from the steady-state employment
corresponding to π = 1. The linearization of (9) thus corresponds closely to the New
Keynesian Phillips curve based on Calvo pricing. Similarly the linearization of (10) leads
to the standard New Keynesian IS curve c̃t = −σ−11 (R̃t − Etπ̃t+1) + Etc̃t+1, expressed in
proportional deviation form.

6Cases of multiple values for c and h for given π < 1 do exist. Throughout the paper we
rule out these exceptional cases.
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together with the linearized evolution of bonds

bt +mt + κ0 + ψt + ηt = gt + π−1mt−1 + (β−1 − κ)bt−1
+bπ−1Rt−1 − (mπ−1 + β−1b)π−1πt + kb

and the linearized money equation

mt = −σ−12 (χβ)1/σ2
¡
1−R−1

¢−1/σ2−1 cσ1/σ2
π1/σ2

×¡−σ1 ¡1−R−1
¢
πc−1ct + (1− σ2)

¡
1−R−1

¢
πet+1 + βR−1Rt

¢
+ km,

where b and m are steady-state values.
The block of the first three equations determines the values of ct, πt and

Rt solely in terms of cet+1, π
e
t+1 and the exogenous shocks. Determinacy of a

steady state can therefore be assessed from this block plus stationarity of the
bond dynamics. Substituting (16) into (15) yields a bivariate forward-looking
system of the formµ

ct
πt

¶
=

µ
Bcc Bcπ

Bπc Bππ

¶µ
cet+1
πet+1

¶
+

µ
Gcu Gcθ

Gπu Gπθ

¶µ
ut
θ̃t

¶
+

µ
k̃c
k̃π

¶
, (18)

where the coefficients can be computed by solving the equations. Here θ̃t =
θ1 − 1, so that the stochastic shocks have zero means. Denoting by B the
2 × 2 matrix multiplying (cet+1, πet+1)0, a necessary condition for determinacy
is that both eigenvalues of B lie inside the unit circle. There is then a unique
nonexplosive solution of the formµ

ct
πt

¶
=

µ
c
π

¶
+

µ
Gcu Gcθ

Gπu Gπθ

¶µ
ut
θ̃t

¶
. (19)

The corresponding solution formt then takes the form of a constant plus white
noise shocks. From the linearized bond equation it follows that the remaining
condition for determinacy is

¯̄
β−1 − κ

¯̄
< 1, which holds since we have assumed

that β−1 − 1 < κ < 1.
Determinacy needs to be assessed separately for the π∗ and πL steady

states. We have the following result:

Proposition 1 In the linearized model there are two steady states π∗ > πL.
Provided γ > 0 is sufficiently small, the steady state π = π∗ is locally determi-
nate and the steady state π = πL is locally indeterminate.

Proof. As noted above, from the steady-state interest-rate equation R −
1 = f (π) and the properties of f it follows that there are two steady state
inflation rates 0 < πL < π∗. As γ → 0 it is easily seen that Bcc, Bcπ → 0 and
Bππ → (aβ)−1. At π∗ we have a > β−1 while at πL we have a < β−1. Hence
for γ > 0 sufficiently small the roots of B are inside the unit circle at π∗, while
at πL one root is larger than 1. The result follows.

This result generalizes the corresponding results in Evans and Honkapohja
(2005), which considered an endowment economy with flexible prices.

7



3 Learning and Expectational Stability

We now formally introduce learning to the model in place of the hypothesis
that RE prevails in all periods. In the modeling of learning it is assumed
that private agents make forecasts using a reduced form econometric model
of the relevant variables and that the parameters of this model are estimated
using past data. The forecasts are input to agent’s decision rules and in each
period the economy attains a temporary equilibrium, i.e. an equilibrium for
the current period variables given the forecasts of the agents. The temporary
equilibrium provides a new data point, which in the next period leads to
re-estimation of the parameters and updating of the forecasts and, in turn,
to a new temporary equilibrium. The sequence of temporary equilibria may
generate parameter estimates that converge to a fixed point corresponding to
a rational expectations equilibrium (REE) for the economy, provided the form
of the econometric model that agents use for forecasts is consistent with the
REE. When the convergence takes place, we say that the REE is stable under
learning.
The literature on adaptive learning has shown that there is a close con-

nection between the possible convergence of least squares learning to an REE
and a stability condition, known as E-stability, based on a mapping from the
perceived law of motion (that private agents are estimating) to the implied
actual law of motion generating the data under these perceptions. E-stability
is defined in terms of local stability, at an REE, of a differential equation based
on this map. For a general discussion of adaptive learning and the E-stability
principle see Evans and Honkapohja (2001).
For the case at hand, when the exogenous shocks ut and gt are stationary

AR(1) processes, the appropriate forecast rule based on (19) is for private
agents to estimate the linear projections of ct+1 and πt+1 onto an intercept and
the exogenous shocks ut and θt. To estimate the coefficients of this projection,
agents use a version of Least Squares to estimate

cs = ac + dus−1 + eθ̃s−1 + εc,s

πs = aπ + fus−1 + gθ̃s−1 + επ,s,

using the data for periods s = 1, . . . , t− 1. Here the usual timing assumption
in the learning literature is being made that at the end of period t− 1, agents
estimate the parameters using data on all variables through time t− 1. This
yields estimates ac,t−1, dt−1, et−1, aπ,t−1, ft−1, gt−1. Then, at the start of time t
agents form forecasts using these estimates and exogenous data at t,

cet+1 = ac,t−1 + dt−1ut + et−1θ̃t
πet+1 = aπ,t−1 + ft−1ut + gt−1θ̃t.

Based on these expectations households and firms determine actual current
period values of ct, πt. Then, at the end of period t the parameters are updated
using the extra data point, and the process continues.
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It is now convenient to make a simplification, which does not in any way
affect our key theoretical results. It turns out that the stability under learning
of the two different steady states is governed by stability of the intercepts, not
by the coefficients of the exogenous shocks. We will therefore focus on the case
in which the exogenous shocks ut and θ̃t are iid processes. In this case the RE
solutions for πt and ct described above are simply noisy steady states, i.e. iid
processes, and forecasts πet+1 and cet+1 do not depend on current values of the
exogenous variables ut and θ̃t.7 This simplifies the presentation of the analysis
of learning since it is now natural for private agents to omit these variables
from their regressions and forecast by simply estimating the mean values of πt
and ct. In the learning literature this is often called “steady-state learning.”
Under steady state learning agents treat (19) as a Perceived Law of Motion

and for each variable they estimate simply the intercept or mean. We can thus
identify expectations of the variables with the estimates of their means, and
this has a simple formulation as recursive algorithms:

πet+1 = πet + φt(πt−1 − πet) (20)

cet+1 = cet + φt(ct−1 − cet), (21)

where φt is known as the gain sequence. Under least-squares learning the
gain-sequence is usually taken to be φt = t−1, often termed a “decreasing-
gain” sequence, whereas under “discounted least-squares” or “ constant gain”
learning it is set to φt = φ, where 0 < φ < 1 is a small positive constant.
Decreasing gains have the advantage that they can asymptotically converge to
RE, while constant-gain learning rules are more robust to structural change.
In what follows, we analyze both theoretically and numerically the model

under various specifications of monetary and fiscal policy. The theoretical re-
sults for learning are based on E-stability analysis of the system under the
learning rules (20)-(21). When we say that an equilibrium is stable (or unsta-
ble) under learning this implies that it is stable (or not) under these learning
rules with decreasing gain. In the simulations we instead use a small constant
gain. Under constant gain, when an equilibrium is E-stable there is local con-
vergence of learning in a weaker sense to a random variable that is centered
near the equilibrium.8

We next investigate our system under learning under the “normal policy”
rules that we have described. In studying the economy under learning we re-
turn to the nonlinear model so that we can examine the global dynamics of the
system. In doing so it is convenient to make the assumption of point expec-
tations, e.g. replacing the expectation of π−1t+1c

−σ1
t+1 by (π

e
t+1)

−1(cet+1)
−σ1 . For

stochastic shocks ut and θt with small bounded support this is a reasonable
approximation and it allows us to deal directly with expectations of future con-
sumption and inflation rather than with nonlinear functions of them. Making

7That is, in the RE stochastic steady state, the coefficients d = e = f = g = 0.
8For formal details see Section 7.4 of Evans and Honkapohja (2001).
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this assumption, and also using the production function to substitute out ht,
leads to the system

β
αγ

ν

¡
πet+1 − 1

¢
πet+1 = −(ct + gt)

(1+ε)/α +
αγ

ν
(πt − 1)πt (22)

+α

µ
1− 1

ν

¶
(ct + gt)c

−σ1
t

ct = cet+1(π
e
t+1/βRt)

σ1 , (23)

where gt = ḡ + ut. These equations, together with the interest-rate rule (8),
implicitly define the temporary equilibrium values for ct and πt given values
for expectations cet+1, π

e
t+1 and given the exogenous shocks ut, θt. Formally we

write the temporary equilibrium map as

πt = Fπ(π
e
t+1, c

e
t+1, ut, θt)

ct = Fc(π
e
t+1, c

e
t+1, ut, θt),

where it follows from the implicit function theorem that such a map exists
in a neighborhood of each steady state (the linearization was given above as
(19)).9

The dynamic system for ct and πt under learning is then given by (22)-
(23) and (8) together with (20)-(21). The full dynamic system under learning
augments these equations with the money equation

mt = (χβ)
1/σ2

Ã¡
1−R−1t

¢
c−σ1t

(πet+1)
σ2−1

!−1/σ2
and the bond equation (4).
The stability of a steady-state REE under learning is determined by E-

stability. The REE is said be E-stable if the differential equation (in notional
time τ) µ

dπe/dτ
dce/dτ

¶
=

µ
Tπ(π

e, ce)
Tc(π

e, ce)

¶
−
µ

πe

ce

¶
is locally asymptotically stable at a steady state (π, c), where

Tπ(π
e, ce) = EFπ(π

e, ce, ut, θt)

Tc(π
e, ce) = EFc(π

e, ce, ut, θt)

is the mapping from the Perceived Law of Motion to the corresponding Actual
Law of Motion. T (·) gives the actual means for πt and ct when private agents
have expectations (πe, ce). E-stability is determined by the Jacobian matrix
DT of T = (Tπ, Tc)0 at the steady state, which for small noise, is approximately
equal to the matrix B of (18) for the steady state in question. It follows that
the E-stability conditions are that both eigenvalues of B − I have real parts
less than zero. We have the following result for low levels of price stickiness.10

9Numerically it appears that this function is well-defined globally.
10Some further results for general γ > 0 are available. For example local stability of π∗

obtains for all γ > 0 and g ≥ 0 if σ1 ≥ 1.
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Proposition 2 For γ > 0 sufficiently small, the steady state π = π∗ is locally
stable under learning and the steady state π = πL is locally unstable under
learning taking the form of a saddle point.

Proof. In the limit γ → 0 it is straightforward to show that the eigenvalues
of B − I are −1 and (βf 0(π))−1 − 1. Since f 0(π∗) = A/β and A > 1 we have
that (βf 0(π∗))−1 − 1 = A−1 − 1 < 0. At the πL steady state we instead have
f 0(πL) < β−1 implying (βf 0(πL))−1 − 1 > 0, so that the roots are real and of
different signs.

The saddle point property of πL creates a region in which there can be
deflationary spirals. We illustrate this by numerically constructed phase dia-
grams. This also allows to examine larger γ > 0 and conduct a global analysis.
Parameters are set at A = 2.5, π∗ = 1.05, β = 0.96, σ1 = 0.95, α = 0.75, γ = 5,
ν = 1.5, ε = 1 and ḡ = 0.1. Figure 1 shows the E-stability dynamics under
normal monetary and fiscal policy. These indicate how expectations will ad-
just over time under learning when the economy is perturbed from its steady
state equilibrium.11

Figure 1: πe and ce dynamics under standard policy

11The role of an unstable steady state can also be seen in a rather different setting, the
monetary inflation model under learning. See Evans, Honkapohja, and Marimon (2001) and
Marcet and Nicolini (2003).
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It can be seen that while π∗ is locally stable, the low steady state πL ≈ 0.969
is a saddle. Under learning, normal policy works satisfactorily for moderate-
sized perturbations from the targeted steady state. However, there are also
starting points that lead to instability. In particular, if an exogenous shock
leads to a strong downward revision of expectations, relative to the normal
steady state, these pessimistic expectations generate paths leading to a defla-
tionary spiral.
The intuition for the instability of the low steady state πL is as follows.

Near πL we are close enough to the zero lower bound so that a reduction in
πt can only result in a small lowering of Rt. If πet+1 is slightly below πL this
must therefore lead to an increase in the real interest rate, to lower ct through
the household Euler equation and to lower πt thought the new Keynesian
Phillips curve. This set in motions downward movements in both ct and πt,
which are reinforced as they feed into expectations. Of course, along these
paths it is likely that eventually something would change, i.e. private agents
or policymakers would alter their reactions. We think that the most plausible
scenario is that policymakers would respond to the deteriorating situation by
major changes in policy. The goal of this paper is, first, to exhibit that normal
policies, while locally stable, have potential for instability after major shocks
and, second, to propose policies that move the economy out of a deflationary
spiral as well as insulate the economy against these unstable outcomes.
Proposition 2 indicates the need for more aggressive policies when expec-

tations are pessimistic. We begin by considering changing to an aggressive
monetary policy when inflation threatens to become too low. As we will see,
it may be important also to alter fiscal policy in certain circumstances.

4 Adding Aggressive Monetary Policy

We first consider modifying monetary policy so that it follows the normal
interest rate rule as long as πt ≥ π̃, but cuts interest rates to a low level floor
R̂ if inflation threatens to get below the threshold π̃. Thus

Rt =

½
1 + θtf (πt) if πt > π̃

R̂ if πt < π̃,

and
R̂ ≤ Rt ≤ 1 + θtf (πt) if πt = π̃.

We will assume throughout that π∗ > π̃ > π̂ ≡ βR̂ and 1 < R̂ < 1 + f (π̃).
We think of R̂ as a value very close to one.12 We therefore also assume that
R̂ < β−1πL, so that our modified interest-rate rule reduces interest rates for
all π ≥ πL.

12In our numerical examples we set R̂ = 1.0001. We set R̂ above one to keep money
demand finite. For technical reasons we also assume that βR̂ > 1/2.
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We remark that if πt < π̃ the temporary equilibrium is given by (22)-(23),
which yields

β
αγ

ν

¡
πet+1 − 1

¢
πet+1 = −(ct + gt)

(1+ε)/α +
αγ

ν
(πt − 1)πt

+α

µ
1− 1

ν

¶
(ct + gt)c

−σ1
t (24)

ct = cet+1(π
e
t+1/βR̂)

σ1. (25)

In the πt < π̃ regime, where Rt = R̂, expectations determine ct through the
Euler equation. Fiscal policy and the market-clearing condition hαt = ct + gt
then determine ht, and the Phillips Curve gives πt.
A policy question of major importance is whether an aggressive monetary

policy of this form is sufficient to eliminate deflationary spirals from arising
when expectations are pessimistic. We now show that aggressive monetary
policy will not always be adequate to avoid these outcomes (see Appendix B
for a proof):

Proposition 3 There is a steady state at π̂ = βR̂ and there no steady state
value for πt below π̂. For all γ > 0 sufficiently small the steady state at π̂ = βR̂
is a saddle point under learning.

R

π

π/β

1

π*π L

1 + f(π)

π~

R̂

Figure 2: Aggressive interest-rate policy.

The Proposition can be readily understood from Figure 2, which illustrates
the normal and aggressive monetary policy rules. Normal monetary policy is
represented by the convex curve 1 + f(π), while the straight line specifies the
Fisher equation, which holds in the steady-state. When the inflation threshold
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π̃ is introduced the interest-rate rule changes as shown, with R = R̂ for π < π̃.
In the Figure, we have set π̃ > πL, and this eliminates the πL steady state.
However, the intersection of the Fisher equation with R = R̂ creates a new
steady state with the even lower inflation rate of π̂. Not surprisingly, the
qualitative properties of π̂ are the same as of πL under normal policy, so that
π̂ is a saddle point under learning.13

We also illustrate this point numerically using a phase diagram showing
expectational dynamics. We here set R̂ = 1.0001, so that net nominal interest
rates are cut almost to zero. Figure 3 shows the impact of setting a value
π̃ = 1.01 > πL. Other parameter values are as in Figure 1. The aggressive
monetary policy triggered at π̃ eliminates the unstable steady state at πL
and increases the basin of attraction of the π∗ steady state. However, the
deflationary spiral continues to exist for sufficiently pessimistic expectations.

Figure 3: Two steady states with standard fiscal policy and πL < π̃ < π∗

The conclusion from this analysis is that aggressive monetary policy will
not always be sufficient to eliminate deflationary spirals and stagnation. We
therefore now take up fiscal policy as a possible additional measure.

13If π̂ < π̃ < πL there will be four steady states, and both π̂ and πL are locally saddle
points under learning.
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5 Combined Monetary and Fiscal Policy

We now introduce our recommended policy to combat liquidity traps and
deflationary spirals. Normal monetary and fiscal policy is supplemented by a
threshold for inflation that policy is designed to achieve:

πt ≥ π̃, (26)

where π̃ satisfies the assumptions given in the beginning of Section 4. If this
threshold were not to be achieved under normal policy, then monetary and/or
fiscal policy is as follows.
First, monetary policy is relaxed as required to achieve these targets, sub-

ject to the requirement that the interest rate does not fall below a minimum
value R̂. The value of R̂ can be set just above one, in accordance with the be-
ginning of Section 4. If this is not sufficient to achieve (26), then we set Rt = R̂
and fiscal policy is used, increasing gt as required to meet the threshold. The
following Lemma shows that this is indeed feasible:

Lemma 1 Given expectations cet+1 and π
e
t+1 and setting Rt = R̂, any value of

πt > 1/2 can be achieved by setting gt sufficiently high.

Proof. First, note that ct = cet+1(π
e
t+1/βR̂)

σ1 is fixed when Rt = R̂.
Implicitly differentiating (22) we obtain

dπt
dgt

=
ν

2αγ

(1 + ε)αh1+ε−αt − α2(1− ν−1)c−σ1t

πt − 1/2 .

Since dht
dgt
= αh1−αt is bounded above zero and ct > 0 is fixed in the temporary

equilibrium, there exists g0 such that dπt
dgt

> 0 for gt > g0. It follows that
πt →∞ as gt →∞: if πt were bounded then dπt

dgt
would be unbounded, which

would be a contradiction.
The Lemma shows that policy can be designed to guarantee an inflation

floor. We now specify a policy based on this result. If the inflation bound π̃
is not achieved under normal policy, then we (i) compute the interest rate R̆t

consistent with equations (22), (23) and πt = π̃, (ii) set Rt = max[R̆t, R̂]. If
Rt = R̂ > R̆t then gt is adjusted upward and is set equal to the minimum
value such that the bound is met. By the Lemma this is feasible.
Intuitively, if the target would not be met under normal policy the first

priority is to relax monetary policy to the extent required to achieve it. If
the zero net interest rate lower bound renders monetary policy inadequate
to the task, then aggressive fiscal policy is deployed. In terms of Figure 2,
monetary policy is unchanged, but fiscal policy ensures that the region of
interest is πt ≥ π̃. As we will see below, the choice of the threshold inflation
rate π̃ is crucial for the success of this policy, and our recommended policy
sets πL < π̃ < π∗. We have the result (see Appendix B for the proof):
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Proposition 4 (i) If πL < π̃ < π∗ then π∗ is the unique steady state, and it
is locally stable under learning for all γ > 0 sufficiently small.
(ii) If π̂ < π̃ < πL then there are three steady states π∗, πL and π̃. π∗ and π̃
are locally stable under learning for all γ > 0 sufficiently small.

The following figures illustrate two of the possibilities. In both figures
we set R̂ = 1.0001, so that when aggressive monetary policy is triggered the
nominal interest rate is cut almost all the way to the zero lower bound. (Other
parameters are as before.) Figure 4 sets π̃ = 1 > πL. This illustrates our
recommended policy in which we set πL < π̃ < π∗. There is now a unique
steady state at π∗ and it is evident in the figure that it is globally stable.

Figure 4: Inflation threshold πL < π̃ < π∗ for aggressive monetary and fiscal
policies.

It is crucial to set π̃ > πL to get the desired properties of our recommended
policy. As indicated in part (ii) of Proposition 4, setting π̃ too low can result
in multiple equilibria. An illustration is provided in Figure 4. To make the
figure clearer we have changed A = 1.5 to make πL ≈ 0.995 and set π̃ = 0.975.
This illustrates possibility (ii) of the Proposition, in which there are three
steady states, with the lowest steady state π̃ now also locally stable. This
particular case might possibly have empirical relevance. As we will see later
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in the simulations, if aggressive fiscal policy is used late in a deflationary
situation, policymakers may choose an inflation threshold too low, i.e. π̃ < πL,
with the result that the economy converges to a steady state below the targeted
inflation rate π∗.
Our main finding is that a combination of aggressive monetary and fiscal

policy to maintain a sufficiently high lower bound on inflation will eliminate
the possibility of a deflationary spiral. Choosing πL < π̃ < π∗ eliminates the
πL steady state and does not create any new ones. The key reason for this is
that the inflation threshold πt ≥ π̃ is achievable by bringing in aggressive fiscal
policy, if necessary, to supplement aggressive monetary policy. Having set the
policy to ensure this inflation threshold, we simultaneously ensure that the
system is restricted to a region in which there are stable learning dynamics.

Figure 5: Inflation threshold π̃ < πL for aggressive monetary and fiscal
policies.

6 An Output Threshold for Policy?

The preceding discussion naturally raises the question of whether another type
of threshold might be used for triggering aggressive policies. Consider in par-
ticular the possibility that the policy authorities choose an output lower bound,
so that policies ensure ct+ gt ≥ ỹ by first dropping interest rates as needed to
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ensure this threshold, subject to their not falling below the floor R̂. If setting
R = R̂ is not sufficient to meet the output threshold then also gt is raised as
required to ensure yt = ỹ. Thus this policy is analogous to the one recom-
mended in Section 5, except that we now have an output lower bound instead
of an inflation threshold.
Surprisingly, it turns out that this form of policy does not eliminate the

possibility of the economy getting stuck in a deflationary spiral. The details
of the analysis depend on the steady-state relationship between output and
inflation. Combining (13), (14) and the production function y = hα yields

−y(1+ε)/α + αγ

ν
(1− β) (π − 1)π + α

µ
1− 1

ν

¶
y(y − g)−σ1 = 0. (27)

We restrict attention to values π > 1/2, and so given y and g this equation
determines a unique π whenever a solution exists. Also, for a given g it can be
shown that a sufficient condition for ∂π/∂y > 0 is that σ1 > 1. (See Appendix
A.3 for details on these points.) The condition σ1 > 1 is sufficient but not
necessary for an upward sloping long-run Phillips curve. For convenience, we
here restrict attention to the case in which ∂π/∂y > 0 throughout the range
of admissible y. This in particular implies that yL < y∗, where yL denotes the
output level in the πL steady state and y∗ denotes output in the π∗ steady
state.
Let πỹ denote the steady-state inflation at y = ỹ when g = ḡ. As usual we

make an assumption that R̂ is above, but close to one. We have the following
result (see Appendix B for the proof):

Proposition 5 Assume that ∂π/∂y > 0.
(i) If ỹ < yL with πL > πỹ > π̂ there are four steady states. These include the
πL and π∗steady states, a constrained steady state with π = πỹ , g = ḡ and
R > R̂, and a steady state at π̂ = βR̂, with R = R̂, y = ỹ, g > ḡ. If instead
ỹ < yL with πỹ < π̂ then there are only the two unconstrained steady states at
πL and π∗.
(ii) if yL < ỹ < y∗ the steady states consist of the normal π∗ steady state and
a second steady state at π̂ = βR̂, with R = R̂, y = ỹ, g > ḡ.
(iii) if ỹ > y∗ then there is one steady state at π̂ as in (ii) and a second steady
state at πỹ > π∗ with R = β−1πỹ.
In each case, the steady state with the lowest inflation rate is a saddle point
under learning.

This Proposition shows that however an output target is set, the lowest
inflation steady state is a saddle under learning and therefore there are nearby
paths taking the form of a deflationary spiral.
To illustrate the results, suppose we set the output threshold so that yL <

ỹ < y∗. In particular we set ỹ at 99.5 percent of the high steady state output
(the other parameters are unchanged). In this case a constrained steady state
at π̂ = βR̂ exists, which again is locally a saddle point under learning. Figure
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6 shows that deflationary spirals exist at the bottom-left corner of the phase
diagram.

Figure 6: Learning dynamics with output threshold ỹ > yL.

On these deflationary spiral paths consumption falls steadily after a cer-
tain point. Output is then sustained by ever increasing government spending.
The intuition is that in a deflationary spiral, even at a near-zero net nominal
interest rate Rt = R̂, the ex-ante real interest rate increases, which depresses
private consumption. Simply maintaining output is not enough. In order to
put a floor on consumption it is critical to put an upper bound on real interest
rates, and this can only be done by stabilizing inflation. One might think that
stabilizing output at a high enough level is enough to stabilize πt, but this is
not the case. In the temporary equilibrium Phillips Curve (22), πt depends
separately on output yt = ct + gt and on consumption, ct. In particular πt
depends negatively on the marginal utility of consumption. Consequently, if
yt = ỹ is maintained by increasing gt in the face of falling ct, inflation will
continue to fall because household/firms become more willing to reduce prices
as the marginal utility of consumption rises.
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7 Stochastic Simulations

We now illustrate our recommended policy using real-time stochastic simula-
tions. We here assume a constant gain form of the learning rule with a small
gain. Simulations confirm local convergence to the stable targeted steady state
under normal policy and global convergence under our recommended policy
in which when normal policy is augmented by aggressive monetary and fiscal
policy if πt threatens to fall below a threshold π̃ > πL.
It is beneficial to have our recommended policies in place before a collapse

in expectations. We illustrate how our policies work in real time, in the face
of pessimistic expectations, if initially normal policies are used, and then our
recommended policies are implemented after some point t1. For the simulations
we have chosen π∗ = 1.02, corresponding to an inflation target of 2% p.a. With
an interest-rate rule parameter of A = 1.8 the low inflation steady state πL is
approximately πL = 0.975, a deflation rate of 2.5% p.a.. Other parameters are
close to those used earlier.14 For the inflation threshold that triggers aggressive
monetary and fiscal policy we choose π̃ = 1, i.e. zero net inflation or price
stability.
We consider the impact, under real-time learning, of a negative expec-

tations shock. We start in the targeted steady-state, with π∗ = 1.02 and
c∗ = 0.52864. Then at t = 1 there is a negative shock to expectations, in
which πe falls to 1.01 and ce falls to 0.486. This is a substantial fall in con-
sumption expectations, of just over 8%, combined with a drop in inflation
expectations. The magnitude of these expectation shocks, which we treat as
an exogenous pessimistic shift that is not rooted in fundamentals, turns out
to be just sufficient to put the economy on a path toward a deflationary spiral
under normal policy. We consider the impact if our recommended policy is not
implemented until t1 = 150 vs. implementation at t1 = 80, and we compare
both to the outcomes if recommended policy is initially in place. Figures 7 -
9 give the results in the form of time paths of π, πe, c, ce, R, g and b.

14Parameters are A = 1.8, π∗ = 1.02, β = 0.96, σ1 = 0.95, α = 0.75, γ = 5, ν = 1.5,
ε = 1, g = 0.1, R̂ = 1.002. Other parameters are φ = 1/30, σθ = 0.02, σu = 0.000001,
σψ = 0.000001, ση = 0.001, κ0 = −0.005, κ = β−1 − 1 + 0.15, and χ = 0.0005.
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Figure 7: Dynamics of π and πe after pessimistic expectations shock.

Figure 8: Dynamics of c and ce after pessimistic expectations shock.
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Figure 9: Dynamics of R, g and b after pessimistic expectations shock.

For t1 = 150 the Figures show consumption diverging to low values be-
fore the augmented policies are introduced. Inflation is on a steady downward
trajectory when only normal policy rules are in place. Introduction of the
aggressive policies at t1 leads to a recovery of inflation and consumption to
the targeted steady-state values. It is seen that interest rates fall to the floor
level R̂ and debt gradually rises under the normal policy regime in which
government spending is constant. At time 150, when the augmented policies
are introduced, this leads to an increase in government spending and conse-
quently a further substantial increase in debt in a short interval in time. With
the new policy government spending is gradually reduced as expectations of
inflation and consumption recover. This also allows debt to return gradually
to the steady state. Interest rates also return to normal levels and inflation
converges towards π∗.
The results for t1 = 80 show that introduction of our policies at an earlier

time avoids the worst part of stagnation. Consumption does not fall as much
and returns to normal levels much earlier, and the debt level does not rise
nearly as much. Finally, if our policies are in place at the time of the expec-
tations shocks, the impact of the shocks is much less severe. In fact, in this
case aggressive monetary policy is enough to maintain inflation at π̃ = 1 in the
face of the shocks, and consequently aggressive fiscal policy is never required.
These results clearly show that incorporation of an inflation threshold policy
can prevent the economy from sliding into a deflationary spiral and can greatly
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attenuate the impact of pessimistic expectations shocks.
However, monetary policy alone is not always sufficient. Consider the

economy with everything the same except that the initial drop in ce is larger.
Figure 10 shows the simulation results if πe again falls to 1.01 but ce now
initially falls to 0.47, about 11%. Even with the inflation threshold policy in
place, these shocks are sufficiently large that they cannot be offset by monetary
policy even though interest rates are dropped immediately to the floor. Some
use of fiscal policy is needed to stabilize prices and achieve πt ≥ π̃. However,
it can again be seen that only a modest use of fiscal policy is needed if the
threshold policy is in place when the shocks occur. Waiting to implement our
recommended policies leads to lower consumption, and greater use of fiscal
policy with a larger (though temporary) build-up of debt.

Figure 10: R, g and b after larger pessimistic shock to expectations.

Since the impact of aggressive monetary policy is limited by the zero lower
bound, one might expect that a higher inflation target π∗ would lead to a lower
likelihood of needing countercyclical fiscal policy. Figure 11 reports the results
for R, g and b when all the parameters and the sequence of random shocks are
the same, except that π∗ = 1.05 and that πe falls from 1.05 to 1.04 instead
of from 1.02 to 1.01. c∗ is about the same and the initial drop in ce is to the
same level as before. We keep the inflation threshold at π̃ = 1. As anticipated,
there is now no need for fiscal policy because there is greater room for aggres-
sive monetary policy. Although a higher π∗ provides additional flexibility for
monetary policy, this must be set against the greater inefficiency of having a
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higher steady state inflation rate.

Figure 11: Larger expectations shocks but higher inflation target π∗.

8 Further Discussion

Our analysis raises a number of questions, some of which may lead to fruitful
extensions. First, in principle one could dispense with aggressive monetary
policy and simply resort to aggressive fiscal policy whenever πt threatens to
fall below π̃. However, we think our recommended policy is clearly preferable
because there are good reasons to treat monetary policy as the primary tool
for counter-cyclical macroeconomic policy. It is reasonable to assume that
the mean levels of government spending have been set to balance costs and
benefits. If extensive government spending is used guarantee the inflation
threshold, then it is likely that much of the spending will be wasteful in the
sense that private consumption would be more highly valued. We therefore
prefer to use fiscal policy as a policy of last resort to ensure the inflation
threshold.
Second, our fiscal policy takes the form of changes in government spending,

since with lump-sum taxes Ricardian Equivalence holds under rational expec-
tations. We remark that if variations in gt are balanced by equal changes in
lump-sum taxes, then the temporary debt build-up, that sometimes accompa-
nied our recommended policy, could be avoided. Of course, lump-sum taxes
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are unrealistic and a useful extension would be to look at a model that in-
cludes tax distortions, to make sure that our recommended policy continues
to guarantee global stability in this set-up. With distortionary taxes there is
an efficiency advantage to tax-rate smoothing, so one would again expect a
temporary build-up of debt whenever aggressive fiscal policy is required.
Another issue concerns the potential role of commitment or announcements

of future policy changes. Commitment to an optimal policy rule can readily
be handled within an adaptive learning approach, as discussed by Evans and
Honkapohja (2003) and Evans and Honkapohja (2006) for monetary policy
in normal times. The history dependence introduced into the economy by
the Central Bank should be reflected in the form of the Perceived Law of
Motion used by private agents: the list of explanatory variables should be
augmented to include, for example, lagged GDP. The general orientation of
the adaptive learning approach is that commitment to a specific policy rule
will affect private-agent expectations, possibly gradually, as the parameters
of the agents’ forecasting model adapt statistically to observed outcomes. It
would be of interest to examine in our setting more general interest-rate rules
that incorporate some form of history dependence.
A related issue concerns the planning horizon assumed for our boundedly

rational agents. The approach we have adopted here is based on “Euler equa-
tion learning,” in which we treat the Euler equations (22)-(23) as the be-
havioral equations that determine πt and ct. This is a valid and convenient
approach to modeling bounded rationality since the Euler equations express
necessary first-order conditions for optimum decision-making. Euler equation
learning converges to rational expectations equilibria in a variety of contexts,
including Real Business Cycle models, simple Overlapping Generations Models
and New Keynesian models with appropriate interest-rate rules. An alterna-
tive approach, stressed in Preston (2005), retains adaptive learning, but asks
agents each to forecast infinitely far into the future and to re-solve their dy-
namic optimization problem each period. Frequently, these approaches do not
come to significantly different qualitative conclusions concerning stability. One
situation where the planning horizon is important is when private agents con-
fidently anticipate unique future structural or policy changes that have not yet
been implemented. How to treat this within an adaptive learning framework
is analyzed in Evans, Honkapohja, and Mitra (2007) for a flexible price model
and future fiscal policy changes.

9 Conclusions

The recent theoretical literature on the zero lower bound to nominal inter-
est rates has emphasized the possibility of multiple equilibria and liquidity
traps when monetary policy is conducted using a global Taylor rule. Most of
this literature has focused on models with perfect foresight or fully rational
expectations. We take these issues very seriously, but our findings for these
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models under adaptive learning are quite different and in some ways much
more alarming than suggested by the rational expectations viewpoint. We
have shown that under standard monetary and fiscal policy, the steady state
equilibrium targeted by policymakers is locally stable. In normal times, these
policies will appropriately stabilize inflation, consumption and output. How-
ever, the desired steady state is not globally stable under normal policies. A
sufficiently large pessimistic shock to expectations can send the economy along
an unstable deflationary spiral.
To avoid the possibility of deflation and stagnation we recommend a com-

bination of aggressive monetary and fiscal policy triggered whenever inflation
threatens to fall below an appropriate threshold. Monetary policy should im-
mediately reduce nominal interest rates, as required, even (almost) to the zero
interest floor if needed, and this should be augmented by fiscal policy if nec-
essary. Intriguingly, using an aggregate output threshold in the same way will
not always successfully reverse a deflationary spiral.
When aggressive fiscal policy is necessary, this will lead to a temporary

build-up of government debt. However, government spending and debt will
gradually return to their steady state values. An earlier implementation of
the recommended policies will mitigate the use of government spending, and
if our recommended policy is already in place at the time of the shocks, the
immediate use of aggressive monetary policy can in some (but not all) cases
entirely avoid the need to use fiscal policy. Raising the inflation target π∗ is an
alternative way of reducing the likelihood of needing to employ fiscal policy,
but this may be undesirable for other reasons.
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A Derivations

A.1 Private sector optimization

One can show that

Pt,j

Pt
yt,j = Y

1/ν
t y

1−1/ν
t,j

= Y
1/ν
t h

α(1−1/ν)
t,j

and that firm j0s gross inflation can be expressed as
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=
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These allow us to write the utility function in the form

Ut,j =
c1−σ1t,j

1− σ1
+
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1− σ2

¡
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Next, the Lagrangian can be expressed as

L = E0,j

∞X
t=0

[βtUt,j − βt+1λt+1,j[ct,j + wt+1j +Υt,j −mlt,jπ
−1
t

−Rt−1π−1t (wt,j −mlt,j)− Y
1/ν
t h

α(1−1/ν)
t,j ]

−βt+1μt+1,j (mlt+1,j −mt,j)− βt+1ηt+1,j (hlt+1,j − ht,j)]

where the notation

wt+1,j = mt,j + bt,j

mlt+1,j = mt,j

hlt+1,j = ht,j

is employed. Here wt,j, mlt,j and hlt,j are the state variables and ct,j, mt,j and
ht,j are the control variables. In addition, πt, Yt and Yt−1 are state variables,
which are viewed as exogenous by each agent. Here we also, for clarity, use
the notation Et,j for the expectation of agent j conditional on information at
time t.
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Following Chow (1996), we write the Lagrangian into the general form

L =E0
" ∞X
t=0

©
βtr (xt, ut)− βt+1ξ0t+1 [xt+1 − f (xt, ut)− εt+1]

ª#
,

for which the FOCs are expressed compactly as

∂

∂ut
r (xt, ut) + β

∂

∂ut
f 0 (xt, ut)Etξt+1 = 0

ξt =
∂

∂xt
r (xt, ut) + β

∂

∂xt
f 0 (xt, ut)Etξt+1.

Using these, the FOCs for the problem at hand are obtained as follows:
wrt ct,j :

c−σ1t,j − βEt,jλt+1,j = 0, (28)

wrt mt,j :
Et,jμt+1,j = 0, (29)

wrt wt,j :
λt,j = β

¡
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¢
Et,jλt+1,j, (30)

wrt mlt,j :
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wrt ht,j :
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First, we rewrite (33) in terms of πt,j = Pt,j/Pt−1,j. From the demand
function (3) we have µ
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and so
ηt,j = −
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Similarly we rewrite (32) as
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Et,jλt+1,j + βEt,jηt+1,j.

Using (28) and (34) we get

0 = −hεt,j +
αγ

ν
(πt,j − 1)πt,j 1

ht,j

+α

µ
1− 1

ν

¶
Y
1/ν
t

y
(1−1/ν)
t,j

ht,j
c−σ1t,j +−αγβ

ν

1

ht,j
Et,j(πt+1,j − 1)πt+1,j.

Since all agents are identical, we get the Phillips curve

−h1+εt +
αγ

ν
(πt − 1)πt + α

µ
1− 1

ν

¶
hαt c

−σ1
t = β

αγ

ν
Et [(πt+1 − 1)πt+1] ,

which is the same as equation (9) in the main text.
Combining equations (30) and (28) yields

λt,j = β
¡
Rt−1π−1t

¢
Et,jλt+1,j. (35)

Using (28) we have λt,j =
¡
Rt−1π−1t

¢
c−σ1t,j and substituting into (35) yields the

consumption Euler equation

c−σ1t,j = βRtEt,j

¡
π−1t+1c

−σ1
t+1,j

¢
.

Since all agents are identical, we arrive at (10) in the main text. Similarly, by
combining equations (29), (31) and (28), we get the money demand equation:

mt = (χβ)
1/σ2

Ã¡
1−R−1t

¢
c−σ1t

Etπ
σ2−1
t+1

!−1/σ2
,

which is equation (11) in the main text.

A.2 Further Properties of Steady States

We show existence of unique steady state values for c and h for a given steady
state π under normal policy. Combining (13) and (14), we have the equation

−h1+ε + (1− β)
αγ

ν
(π − 1)π + α(1− ν−1)hα(hα − g)−σ1 = 0.
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Let Λ = (1− β)αγ
ν
(π − 1)π > 0 and write the equation as

Λ+ α(1− ν−1)hα(hα − g)−σ1 = h1+ε.

The RHS is increasing and convex. Consider first the case π ≥ 1. For g = 0,
the LHS is increasing and concave for σ1 ≤ 1 and at h = 0 it is positive (or
zero if π = 1), so clearly there is a unique interior solution for h. For g = 0,
when σ1 > 1, the LHS is decreasing with limit Λ as h →∞ so again there is
a unique solution. If g > 0, the LHS has an asymptote at plus infinity when
h→ g1/α from above. For h > g1/α the LHS shifts up and also

∂

∂g

µ
∂

∂h
(hα(hα − g)−σ1)

¶
= σ1(h

α − g)−σ1−1
µ
1− 1 + σ1

1− g/hα

¶
< 0

for all values of σ1, so that the preceding arguments can be extended accord-
ingly and there is a unique interior solution.
Finally, if π < 1 (so that Λ < 0) various possibilities arise. There may

be zero or two interior solutions when g = 0. However, for g > 0 and π
sufficiently close to one, the argument above for the case π = 1 applies and
there is a unique solution.

A.3 Details on Output-Threshold Policies

For an output target ỹ we can find an equivalent employment target h̃ = (ỹ)1/α.
An output-target constrained steady state must satisfy the equation

−h1+ε + αγ

ν
(1− β) (π − 1)π + α

µ
1− 1

ν

¶
hαc−σ1 = 0

or
(π − 1) π = ν

αγ(1− β)
h̃1+ε − ν − 1

γ(1− β)
h̃α(h̃α − g)−σ1 ≡ L.

This equation is quadratic in π and solutions are

π =
1±√1 + 4L

2
.

The positive root gives the economically sensible solution, i.e., there is a unique
solution for π for any given h̃.
To show that for steady states ∂π/∂y > 0 if σ1 > 1 we consider the equation

(27) for π > 1/2. It is sufficient to show that the expression y(y − g)−σ1 is
decreasing in y. Clearly,

d

dy
(y(y − g)−σ1) = (y − g)−σ1[1− σ1y(y − g)−1] < 0

when σ1 > 1 and g ≥ 0.
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B Proof of Propositions

Proposition 3: First, π̂ is clearly a steady state and by equation (10) there
is no other steady state value below π̂. The corresponding value ĉ for con-
sumption can be computed from (24).
To prove the saddle-point property, we consider the temporary equilibrium

defined by the system (24) and (25) that pertains to the region where Rt = R̂.
Then we show that the determinant of the Jacobian matrix of the E-stability
differential equations evaluated at that steady state is always negative for γ
sufficiently small.
The temporary equilibrium equation for ct is simply (25). The correspond-

ing equation for πt is obtained by solving πt in terms of πet+1 and ct using (24),
which is a quadratic equation in πt (the relevant solution is the larger root),
and substituting (25) into the solution of the quadratic.
Using Mathematica (routine available on request) it can be shown that the

determinant of the Jacobian matrix of the E-stability differential equations at
the steady state (π̂, ĉ) is a ratio of two terms, of which the denominator is
always positive. The numerator is proportional to

−[c1+σ1(c+g) 1+εα (1+ε)ν+c2α2(ν−1)(σ1−1)+g2α2(ν−1)σ1+cgα2(ν−1)(2σ1−1)].
This expression in the square brackets is increasing in σ1, so that its minimal
value obtains when σ1 = 0. Imposing σ1 = 0 and using (24) at the steady
state the numerator can be simplified to

−(1 + ε)[−R̂(β − 1)β(βR̂− 1)γ + (c+ g)(ν − 1)] + α(c+ g)(ν − 1).
The final term α(c+ g)(ν−1) is dominated by the negative term −(1+ ε)(c+
g)(ν − 1), while the first term in square brackets −R̂(β − 1)β(βR̂ − 1)γ can
be made arbitrarily small by making γ sufficiently small. The result follows.

Proposition 4: We first remark that the Fisher equation βR = π holds in
all steady states. Furthermore, since π∗ is unconstrained in both cases, local
stability under learning has already been proved in Proposition 2.
Case (i) follows from the assumption that π̃ < π∗. In a steady state we

must have π ≥ π̃. For π̃ ≤ π < π∗ the interest rate given by β−1π > 1 + f(π),
which is impossible. For π > π∗ the floors are necessarily met but then the
only solution is π∗.
To prove (ii), suppose π̃ < πL. Since π̂ < π̃, then clearly there are interior

steady states at π∗and πL in which normal policy is being followed. In the
constrained region (where the constraint (26) is binding) we must have π = π̃
in a steady state. Clearly, π = π̃ is a steady state for R̆ = β−1π̃. To prove
local stability under learning of the steady state at π̃, note that the temporary
equilibrium map takes a special form. First, πt = π̃, which implies that the
E-stability differential equation for πe is dπe/dτ = π̃−πe, which is independent
of the ce differential equation and which is stable. In this steady state we have
normal fiscal policy. The temporary equilibrium value for ct is determined
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by (22) with πt = π̃ and has the form ct = Fc(π
e
t+1, ut), leading to Tc(π

e) =
EFc(π

e, ut).15 Since πe → π̃, under the E-stability differential equation, ce

converges to the steady-state value of c.

Proposition 5: First, there are no steady states with πL < π < π∗,
since for such π the value of R given by the Fisher equation would be greater
than the value given by normal monetary policy, which is not possible under
output-constrained monetary policy.
(i) Clearly both πL and π∗ are steady states. There cannot be a steady

state with π > π∗. In that case we would have g > ḡ (otherwise the output
target would be met), which implies R = R̂, but by the Fisher equation this
would be inconsistent. In the case πL > πỹ > π̂ it is easy to verify that πỹ
and π̂ are additional steady states. If instead πỹ < π̂ then πỹ cannot be a
steady state because the Fisher equation would imply R < R̂. Moreover, no
π with πỹ < π < πL can be a steady state because the corresponding y would
then satisfy y > ỹ and the steady state would be unconstrained. This is not
possible because for unconstrained steady states both the Fisher equation and
the normal interest-rate rule must hold.
(ii) It is clear that π∗ is a steady state. Any other steady state is con-

strained, so that y = ỹ. If g = ḡ, then πL < πỹ < π∗, which is impossible.
Thus, for any steady state other than π∗ we have g > ḡ, which implies that
R = R̂ and π = π̂.
(iii) In this case πỹ > π∗ and setting R = β−1πỹ we have a steady state

at π = πỹ and y = ỹ (with g = ḡ). Any other steady state is constrained at
y = ỹ but with g > ḡ. Hence R = R̂ and π = π̂.
We now turn to the stability of the steady states with the lowest inflation.

If the only steady states are at πL and π∗ then from earlier results we know
that πL is a saddle point under learning. Otherwise the steady state with the
lowest inflation rate is at π̂. In this case the constrained temporary equilibrium
is given by

ct = cet+1(π
e
t+1/βR̂)

σ1

and

αγ

ν
(πt − 1)πt = αγβ

ν

¡
πet+1 − 1

¢
πet+1 + (ỹ)

(1+ε)/α − α

µ
1− 1

ν

¶
ỹ(cet+1)

−σ1.

This system can be solved explicitly for (ct, πt) to obtain the constrained tem-
porary equilibrium. Using Mathematica (routine available on request), it can
be shown that the determinant of the linearized E-stability differential equa-
tion system is negative at the steady state. This implies that the steady state
is a saddle point.

15We remark that the consumption Euler equation (23) determines the temporary equi-
librium value of Rt = R̆t, given cet+1, π

e
t+1 and the temporary equilibrium value of ct.
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