
1	

Genomic risk prediction of coronary artery disease in nearly 500,000 adults: implications 
for early screening and primary prevention 
 
Michael Inouye PhD1,2,3,4,#,*, Gad Abraham PhD1,2,3,4,#,*, Christopher P. Nelson PhD5, Angela M. 
Wood PhD3, Michael J. Sweeting PhD3, Frank Dudbridge PhD3,6, Florence Y. Lai MPhil5, 
Stephen Kaptoge PhD3,7, Marta Brozynska PhD1,2,3, Tingting Wang PhD1,2,3, Shu Ye MD, PhD5, 
Thomas R Webb PhD5, Martin K. Rutter MD8,9, Ioanna Tzoulaki PhD10,11, Riyaz S. Patel 
MD12,13, Ruth J. F. Loos PhD14, Bernard Keavney MD15,16, Harry Hemingway MD17, John 
Thompson PhD6, Hugh Watkins MD, PhD18,19, Panos Deloukas PhD20, Emanuele Di 
Angelantonio MD, PhD3,7, Adam S. Butterworth PhD3,7, John Danesh FMedSci3,7,21, Nilesh J. 
Samani MD5,#,* for The UK Biobank CardioMetabolic Consortium CHD Working Group 
 
1 Cambridge Baker Systems Genomics Initiative 
2 Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne 3004, Victoria, Australia 
3 MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, 
University of Cambridge, Cambridge CB1 8RN, United Kingdom 
4 Department of Clinical Pathology and School of BioSciences, University of Melbourne, 
Parkville 3010, Victoria, Australia 
5 Department of Cardiovascular Sciences and NIHR Leicester Biomedical Centre, University of 
Leicester, UK 
6 Department of Health Sciences, University of Leicester, Leicester, UK 
7 National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in 
Donor Health and Genomics at the University of Cambridge, Cambridge, UK 
8 Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, 
Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic 
Health Science Centre, Manchester, UK 
9 Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester 
Academic Health Science Centre, Manchester, UK 
10 Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, 
UK 
11 Department of Hygiene and Epidemiology, University of Ioannina, 45110, Ioannina, Greece 
12 Institute of Cardiovascular Sciences, University College London, London, UK 
13 Barts Heart Centre, St Bartholomew's Hospital, London, UK 
14 Charles Bronfman Institute for Personalized Medicine, Mindich Child Health and 
Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA 
15 Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, 
Medicine and Health, University of Manchester, Manchester, UK 
16 Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, 
Manchester, UK 
17 The Farr Institute of Health Informatics Research and the National Institute for Health 
Research, Biomedical Research Centre, University College London, London, UK 
18 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of 
Oxford, Oxford, OX3 9DU, UK 
19 The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, 
UK 



2	

20 William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, 
Queen Mary University of London, London, EC1M 6BQ, UK 
21 Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 
1SA, UK 
 
* These authors contributed equally 
 

# Correspondence addressed to: 
Michael Inouye PhD  
Baker Heart and Diabetes Institute 
75 Commercial Road 
Melbourne, Victoria 3004, Australia 
 
Department of Public Health and Primary Care 
University of Cambridge 
Strangeways Research Laboratories 
2 Worts' Causeway 
Cambridge CB1 8RN, UK 
Telephone: +44 (0)1223761950 
Fax: +61435482767 (fax) 
E-mail: mi336@medschl.cam.ac.uk, minouye@baker.edu.au 
 
And  
 
Gad Abraham PhD 
Baker Heart and Diabetes Institute 
75 Commercial Road 
Melbourne, Victoria 3004, Australia 
Telephone: +61 385321522 
E-mail: gad.abraham@baker.edu.au 
 
and  
 
Nilesh J. Samani MD  
Department of Cardiovascular Sciences 
University of Leicester 
Cardiovascular Research Centre 
Glenfield General Hospital 
Leicester LE3 9QP, UK 
Telephone: +44 (0)1162044758 
Fax: +44 116 2875792 
E-mail: njs@leicester.ac.uk 
 
Disclosures  
MKR reports receiving honoraria and consulting fees from Novo Nordisk, Ascensia, Cell 
Catapult, and Roche Diabetes Care. Other authors have nothing to disclose. 



3	

Acknowledgements: We are grateful to UK Biobank for access to data to undertake our study. 
We thank Dr Joanna Howson, Dr Agus Salim, and Dr Brian Ference for their helpful input on 
the manuscript. 
 
Sources of Funding: This study was supported by funding from National Health and Medical 
Research Council (NHMRC) grant APP1062227. Supported in part by the Victorian 
Government’s OIS Program. M.I. was supported by an NHMRC and Australian Heart 
Foundation Career Development Fellowship (no. 1061435). G.A. was supported by an NHMRC 
Early Career Fellowship (no. 1090462). N.J.S., C.P.N. and B.K. are supported by the British 
Heart Foundation and N.J.S. is a NIHR Senior Investigator. R.S.P. is supported by the British 
Heart Foundation (FS/14/76/30933). The MRC/BHF Cardiovascular Epidemiology Unit is 
supported by the UK Medical Research Council [MR/L003120/1], British Heart Foundation 
[RG/13/13/30194], and UK National Institute for Health Research Cambridge Biomedical 
Research Centre.  J.D. is a British Heart Foundation Professor and NIHR Senior Investigator.  



4	

Abstract 
Background Coronary artery disease (CAD) has substantial heritability and a polygenic 
architecture. However, the potential of genomic risk scores to help predict CAD outcomes has 
not been evaluated comprehensively because available studies have involved limited genomic 
scope and limited sample sizes. 
Objectives This study sought to construct a genomic risk score for CAD and to estimate its 
potential as a screening tool for primary prevention.  
Methods Using a meta-analytic approach to combine large-scale genome-wide and targeted 
genetic association data, we developed a new genomic risk score for CAD (metaGRS), 
consisting of 1.7 million genetic variants. We externally tested metaGRS, by itself and in 
combination with available data on conventional risk factors, in 22,242 CAD cases and 460,387 
non-cases from UK Biobank. 
Results The hazard ratio (HR) for CAD was 1.71 (95% CI 1.68–1.73) per standard deviation 
increase in metaGRS, an association larger than any other externally tested genetic risk score 
previously published. The metaGRS stratified individuals into significantly different lifecourse 
trajectories of CAD risk, with those in the top 20% of metaGRS distribution having a HR of 4.17 
(3.97–4.38) compared with those in the bottom 20%. The corresponding HR was 2.83 (2.61–
3.07) among individuals on lipid-lowering or anti-hypertensive medications. The metaGRS had a 
higher C-index (C=0.623, 0.615–0.631) for incident CAD than any of six conventional factors 
(smoking, diabetes, hypertension, body mass index, self-reported high cholesterol, and family 
history). For men in the top 20% of metaGRS with >2 conventional factors, 10% cumulative risk 
of CAD was reach by age 48. 
Conclusions The genomic score developed and evaluated here substantially advances the 
concept of using genomic information to stratify individuals with different trajectories of CAD 
risk and highlights the potential for genomic screening in early life to complement conventional 
risk prediction. 
 
Condensed Abstract: Coronary artery disease (CAD) has substantial heritability and a 
polygenic architecture, thus we sought to construct a genomic risk score (GRS) for CAD and 
evaluate its potential as an early screening tool. In UK Biobank (N=480,000), we found that a 
meta-score (metaGRS) outperformed all other genetic risk scores as well as any single 
conventional risk factor for CAD. Furthermore, metaGRS predicted future CAD risk even in 
individuals on lipid-lowering or anti-hypertensive medications. As a screening tool in early life, 
metaGRS makes possible true primary prevention for CAD and shows promise in 
complementing conventional risk prediction. 
 
Keywords: Genomic risk prediction, Coronary artery disease, Primary prevention  
 
Abbreviations 
GRS: genomic risk score 
HWE: Hardy-Weinberg equilibrium 
LD: linkage disequilibrium 
FDR: false discovery rate 
APRC: area under precision-recall curve 
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Introduction 

As coronary artery disease (CAD) is the leading cause of morbidity and mortality 

worldwide, early identification of individuals at high risk of CAD is essential for primary 

prevention. As the heritability of CAD has been estimated to be 40–60%, comprehensive 

information on genetic susceptibility could contribute importantly to CAD risk stratification 

(1,2). Although family history has long been identified as a risk factor for CAD, elucidation of 

the genetic architecture of CAD has advanced substantially only during the past decade with the 

advent of genome-wide association studies. Results from these assumption-free surveys across 

the genome have laid foundations for developing genomic risk scores (GRSs) in the estimation 

of an individual's underlying genomic risk (3-9). Furthermore, because GRSs are based on 

germline DNA, they are quantifiable in early life, at or before birth. Hence, they offer the 

potential for early risk screening and primary prevention, before other conventional risk factors 

become informative.  

Due to several inter-related factors, however, previous GRSs for CAD have been unable 

to provide comprehensive assessment of the potential of using genomic information in CAD risk 

prediction. First, because previously published GRSs have utilized only genetic variants of 

genome-wide significance (4,5,8) or involved genotyping arrays that focused only on pre-

selected loci (3), they have not fully utilised genome-wide variation, preventing accurate 

estimation of the relative contribution of each genetic variant to CAD risk. Second, because 

previous studies of GRSs have tended to have moderate statistical power, they have been unable 

to provide precise effect size estimates (10-12). Third, because previous studies of GRSs have 

largely lacked external testing in large-scale cohorts that represent a diversity of ancestries (3,13) 



6	

and typically have involved only a narrow spectrum of CAD burden (e.g., inclusion of 

myocardial infarction only) (14,15), their generalizability has been limited. 

Here, we report a more powerful and generalizable genome-wide GRS for CAD to 

provide a more comprehensive evaluation. We utilise a meta-analytic strategy to construct a GRS 

for CAD (metaGRS) that captures the totality of information from the largest previous genome-

wide association studies, and then investigate the external performance of this metaGRS in 

stratifying CAD risk in >480,000 individuals from the UK Biobank (UKB) (16). Furthermore, 

we assess the effects of several conventional risk factors (smoking, blood pressure, BMI, 

diabetes, family history, and high cholesterol) on different genomic risk backgrounds, with the 

aim of delineating event rates across age, sex, clinical risk factors, and genomic risk score strata 

to identify individuals more likely to benefit from earlier and more intensive therapies. Finally, 

to assess the potential therapeutic implications of genomic risk scores, we test the impact of 

blood pressure and lipid lowering medication on the performance of the metaGRS.  

Methods 

Study design and participants 

The design of this study is shown in Online Figure 1. Details of the design of the UKB 

have been reported previously (16). Participants were members of the UK general population 

aged between 40–69 years at recruitment, identified through primary care lists, who accepted an 

invitation to attend one of the 22 assessment centers that were serially established across the UK 

between 2006 and 2010. At recruitment, detailed information was collected via a standardized 

questionnaire on socio-demographic characteristics, health status and physician-diagnosed 

medical conditions, family history, and lifestyle factors. Selected physical and functional 

measurements were obtained including height, weight, waist-hip ratio, and systolic and diastolic 
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blood pressures. The UKB data were subsequently linked to Hospital Episode Statistics (HES) 

data, as well as national death and cancer registries. The HES data available for the current 

analysis cover all hospital admissions to NHS hospitals in England and Scotland from April 1997 

to March 2015, with the Scottish data dating back as early as 1981. HES uses International 

Classification of Diseases ICD 9 and 10 to record diagnosis information, and OPCS-4 (Office of 

Population, Censuses and Surveys: Classification of Interventions and Procedures, version 4) to 

code operative procedures. Death registries include all deaths in the UK up to January 2016, with 

both primary and contributory causes of death coded in ICD-10.  

CAD was defined as fatal or non-fatal myocardial infarction (MI) cases, percutaneous 

transluminal coronary angioplasty (PTCA), or coronary artery bypass graft (CABG). The age of 

event in prevalent cases was determined by self-reported age and calculated age based on the 

earliest hospital record for the event; if both self-reported age and calculated age were available, 

the smaller value was used. For incident cases, hospital and/or death records were used to 

determined age of event. Prevalent versus incident status was relative to the UKB enrolment 

assessment. In UKB self-reported data, cases were defined as having heart attack diagnosed by 

doctor (data field #6150) or 'non-cancer illnesses that self-reported as heart attack' (data field 

#20002) or self-reported operation including PTCA, CABG, or triple heart bypass (data field 

#20004). In HES hospital episodes data and death registry data, MI was defined as hospital 

admission or cause of death due to ICD9 410–412, ICD10 I21–I24, or I25.2; CABG, PTCA were 

defined as hospital admission OPCS-4 K40–K46, K49, K50.1, or K75. 

We defined risk factors at the first assessment as follows: diabetes diagnosed by doctor 

(field #2443), body mass index (BMI; field #21001), current smoking (field #20116), 

hypertension, family history of heart disease, and high cholesterol. For hypertension we used an 
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expanded definition including self-reported high blood pressure (either on blood pressure 

medication, data fields #6177, #6153; or systolic blood pressure >140 mmHg, fields #4080, #93; 

or diastolic blood pressure >90 mmHg, data fields #4079, #94). For family history of heart 

disease, we considered history in any first degree relative (father, mother, sibling; fields #20107, 

20110, and 20111, respectively). For high cholesterol, we considered individuals with self-

reported high cholesterol at assessment, as well as diagnoses in the HES/death records 

(HES/death records (ICD9 272.0; ICD10 E78.0). For the analyses of the number of elevated risk 

factors, we considered diagnosed diabetes (Y/N), hypertension at assessment (Y/N), BMI >30 

kg/m2, smoking at assessment (Y/N), high cholesterol (Y/N), and family history of heart disease 

(Y/N). 

Genotyping of UK Biobank participants was undertaken using a custom-built genome-

wide array (the UK Biobank Axiom array: http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UK-Biobank-Axiom-Array-Datasheet-2014.pdf) of ~826,000 markers. 

Genotyping was done in two phases. 50,000 subjects were initially typed as part of the UK 

BiLEVE project (17). The rest of the participants were genotyped using a slightly modified 

array. Imputation to ~92 million markers was subsequently carried out using the Haplotype 

Reference Consortium (HRC) (18) and UK10K/1000Genomes haplotype resource panels, 

however at the time of analysis, known issues existed with the imputation using the latter panel.  

Data processing and quality control 

A detailed description is available in the Online Appendix. Briefly, we adapted 

appropriate quality control procedures to the set of GWAS summary statistics being utilised, 

filtering genetic variants for minor allele frequency, Hardy-Weinberg equilibrium, and 

imputation quality using PLINK (19). Population structure was controlled using the genetic 
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principal components supplied by UKB (17). Individuals from UKB were removed if they were 

diagnosed with coronary aneurysm or had no CAD event date information. 

Construction of the metaGRS 

A detailed description is available in the Online Appendix. Briefly, we built a meta-

score (metaGRS) based on three genetic risk scores: (i) a previously published score (GRS46K) 

of 46,000 SNPs derived from a genetic association study using Metabochip, a genotyping array 

with a focus on cardiometabolic genetic loci (3), (ii) a score of 202 genetic variants significantly 

associated with CAD at FDR<0.05 (FDR202) in a recent GWAS from CARDIoGRAMplusC4D 

(20), and (iii) a genome-wide polygenic score (1000Genomes) based on the same GWAS (20). 

To derive the 1000Genomes score and weight the three genetic risk scores for the metaGRS, we 

used a small training set from UKB (N=3,000 individuals). The remaining 482,629 UKB 

individuals not in the training set comprised the external validation set. 

Statistical analysis 

All scores were standardized to zero-mean and unit-variance. All scores were evaluated 

using logistic regression or age-as-time-scale Cox proportional hazards regression, with 

censoring at 75y, as well as with Kaplan-Meier estimates of cumulative incidence (censored at 

75y). Unless otherwise noted, analyses using only genetic risk scores include both prevalent and 

incident CAD cases (germline DNA variation being determined prior to any disease); to avoid 

reverse causation, analyses that included conventional risk factors (measured at the UKB 

assessment) used only incident CAD. The Cox models were stratified by sex and adjusted for 

genotyping array (BiLEVE vs UKB) and 10 genetic PCs. C-indices for the Cox models were sex 

stratified, using age as time scale. A competing risk analysis, using the Aalen-Johansen estimator 

(three states: CAD, non-CAD death, and censored), was conducted using the R package 
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‘survival’ (21). The precision-recall curves (equivalent to the positive-predictive-value vs 

sensitivity curve) were computed in the R package ‘ROCR’ (22), and the area under the curve 

(APRC) was computed using numerical integration. 

Results 

The characteristics of the UKB subjects in the external validation set (n=482,629) are 

shown in Table 1, comprising 22,242 CAD cases before age 75y and 460,387 non-cases in total. 

There were 9,729 prevalent cases of CAD at the time of recruitment and a further 12,513 

incident cases of CAD during a mean follow-up of 6.2 years, at the censoring age of 75 years in 

2017. Our meta-analysis approach resulted in a 'metaGRS' comprising 1,745,180 genetic 

variants, themselves explaining 26.8% of CAD heritability (Online Appendix). A comparison of 

the metaGRS with its individual components and previously published GRSs from Tikkanen et 

al (6) and Tada et al (8) in the UKB external validation set is given in Figure 1, showing the 

metaGRS had substantially greater association with CAD risk, in terms of hazard ratio as well as 

positive predictive value (PPV) at any given sensitivity.  

In the external UKB validation set, the metaGRS was accurate at classifying CAD cases 

versus non-cases with an area under the ROC curve (AUC) of 0.79 (+2.8% over the reference 

logistic model consisting of sex, age at assessment, genotyping array, and 10 PCs). The 

metaGRS offered greater PPV at any given sensitivity and thus greater Area under the Precision-

Recall Curve (APRC; recall is also known as sensitivity) compared to the reference model (0.161 

vs 0.123; Figure 2A). The distributions of the metaGRS amongst prevalent CAD cases, incident 

CAD cases and non-CAD were each approximately Gaussian and revealed a trend of increasing 

genomic risk (Online Figure 2), with prevalent cases more easily differentiable as they likely 

comprise individuals at higher genomic risk who have thus had earlier CAD events.  
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In sex-stratified Cox regression models for all CAD (prevalent and incident), the 

metaGRS had an HR of 1.71 (95% CI 1.68–1.73) per s.d. of metaGRS (P<0.0001) (Figure 1). 

The metaGRS was significantly but weakly associated with body mass index (BMI) at 

assessment (0.0044 log(kg/m2) per s.d., 95% CI 0.0039–0.0049, P<0.0001), diagnosed diabetes 

(OR=1.14 per s.d., 95% CI 1.13–1.16, P<0.0001), hypertension at assessment (OR=1.19 per s.d., 

95% CI 1.18–1.20, P<0.0001), current smoking at assessment (OR=1.06 per s.d., 95% CI 1.04–

1.07, P<0.0001), family history of heart disease (OR=1.21 per s.d., 95% CI 1.199–1.214, 

P<0.0001), and self-reported high cholesterol at/before assessment (OR=1.27 per s.d., 95% CI 

1.26–1.28, P<0.0001). No evidence for competing risk effects was observed (Online Figure 3). 

In Cox regression of incident CAD (Figure 2b), models based on the metaGRS had higher C-

index (C=0.623, 95% CI 0.615–0.630) than any of the individual conventional risk factors, with 

the second-best factor being self-reported high cholesterol at assessment (C=0.594, 95% CI 

0.587–0.601). A model combining the six conventional risk factors had only slightly better 

performance (C=0.670, 95% CI 0.663–0.678) than the metaGRS individually. Combining the 

metaGRS with all six conventional risk factors led to a model with C-index of 0.696 (95% CI 

0.688–0.703), an increase of 2.6% over the model consisting of the six conventional risk factors. 

When adjusting for conventional risk factors only incident CAD cases could be considered; 

however the HR for metaGRS was only modestly attenuated (HR=1.58 per s.d., 95% CI 1.55–

1.61 not adjusting for risk factors; HR=1.55 per s.d., 95% CI 1.52–1.58 adjusting for family 

history; HR=1.48 per s.d., 95% CI 1.45–1.51 after adjustment for six other risk factors). 

To investigate the potential role of the metaGRS in earlier life genetic screening, we 

compared the sex-stratified cumulative incidence of CAD across quintiles of the metaGRS 

(Figure 3). In UKB men, we observed that CAD risk in the highest metaGRS quintile began 
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exponentially increasing shortly after age 40, reaching a threshold of 10% cumulative risk by 61 

years of age (Figure 3). By comparison, CAD risk for men in the lowest metaGRS quintile did 

not begin increasing until age 50 and on average did not reach 10% by the censoring age of 75. 

In UKB women, the metaGRS results were similar but delayed given the lower absolute CAD 

risk overall compared to men. For women in the highest metaGRS quintile, CAD risk began 

increasing at age 49 and reached 10% at age 75; while women in the lowest metaGRS quintile 

were at extremely low levels of risk, reaching 2.5% CAD risk by the censoring age of 75. There 

was no evidence for a statistical interaction of the metaGRS with sex. Overall, on average UKB 

individuals in the top metaGRS quintile were at 4.17-fold (95% CI 3.97–4.38) higher hazard of 

CAD than those in the bottom metaGRS quintile (Figure 3). 

We next assessed the differences in incident CAD risk across metaGRS quintiles when 

combined with conventional risk factors (current smoking, diagnosed diabetes, high blood 

pressure, high BMI, family history of heart disease, and high cholesterol) individually (Online 

Figures 4–9) or as an unweighted score, the number (0–6) of conventional risk factors per 

individual (Figure 4). Broadly, the patterns were similar across all the analyses. Genomic risk 

and lifestyle/clinical factors combined to be associated with higher risk in both men and women; 

however, in most instances this was additive rather than interactive. In Cox regression models of 

incident CAD, adjusting for current smoking, diagnosed diabetes, hypertension, log BMI, family 

history, high cholesterol, genotyping array, and 10 genetic PCs, there was no strong evidence of 

statistical interactions between the metaGRS and either diabetes (P=0.074 for interaction), 

smoking (P=0.13 for interaction), hypertension (P=0.93 for interaction), family history (P=0.51 

for interaction), or high cholesterol (P=0.14 for interaction), but there was some evidence for 

interaction with log BMI (HR=0.85, 95% CI 0.76–0.95, P=0.0052). From a clinical perspective, 
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it was notable that men in the highest metaGRS quintile who had no conventional risk factors 

still reached 10% cumulative incidence of CAD by age 69, with a similar cumulative incidence 

as men in the lowest metaGRS quintile who had 2 elevated conventional risk factors (Figure 4). 

Men in the highest metaGRS quintile and with 3 or more conventional risk factors were at 

extremely high levels of CAD risk, reaching the 10% threshold by age 48. Approximately 79% 

of women did not reach 10% CAD risk before age 75, even if they had 2 conventional risk 

factors, due to compensation by low or moderate metaGRS risk. Even amongst women in the 

highest metaGRS quintile, only those with 2 or more conventional risk factors achieved 10% risk 

before age 75 (Figure 4). 

To assess the impact of use of treatments (lipid lowering and anti-hypertensive 

medication) that have been proven to lower CAD risk on the performance of the metaGRS, we 

analyzed the association of the metaGRS with incident CAD in those taking one or both of these 

classes of drugs at baseline. The hazard ratios for each s.d. in GRS were reduced but not negated 

by these therapies, with HRs of 1.44 (95% CI 1.40–1.48), 1.46 (95% CI 1.42–1.50) and 1.42 

(95% CI 1.37–1.47) for those individuals on lipid lowering, anti-hypertensives treatments or both 

treatments, respectively. Accordingly, the HRs between those in the top versus bottom metaGRS 

quintiles were also reduced but remained substantial with HRs of 2.71 (95% CI 2.47–2.98), 2.81 

(95% CI 2.56–3.09), and 2.55 (95% CI 2.28–2.86), for those individuals on lipid lowering, anti-

hypertensives treatments, or both treatments, respectively (Figure 5).  

Discussion 

In an analysis of almost 500,000 people in a prospective nationwide cohort study, we 

evaluated a combined genomic risk score (metaGRS) built from summary statistics of the largest 

previous genome-wide association studies of CAD. We report a series of findings that 
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substantially advance the concept of using genomic information to help stratify individuals for 

CAD risk in general populations, an approach that leverages the fixed nature of germline DNA 

over the lifecourse to anticipate different lifelong trajectories of CAD risk. 

First, our metaGRS achieved greater risk discrimination than have previously published 

genomic risk scores based on selected SNPs (3-9). For example, we found metaGRS had greater 

hazard ratio and positive predictive value at any given sensitivity, as well as a four-fold hazard 

ratio for CAD in a comparison of individuals in the top fifth versus those in bottom fifth of the 

risk score distribution. 

Second, we found that the predictive ability of the metaGRS was largely independent of 

established risk factors for CAD, implying that genetic information complements (rather than 

replaces) conventional risk factors. As our data have suggested that higher genetic risk can at 

least partly be attenuated by lipid-lowering and/or anti-hypertensive therapies, it implies that 

individuals at high genetic risk may gain most from early initiation of these therapies and, 

therefore, constitute a subpopulation for which primary prevention may be particularly cost-

effective (7). However, as our results have suggested that the metaGRS predicts CAD risk even 

among individuals taking CAD therapies at baseline, it also underscores the need to develop new 

therapies to address residual disease risk. 

Third, we found that the metaGRS identified individuals at high risk of premature CAD 

as well as those unlikely ever to reach a life-long risk level requiring intervention. For example, 

our findings have suggested that because men in the highest metaGRS quintile are at such high 

risk, they are likely benefit from more intensive preventative interventions regardless of levels of 

traditional clinical risk factors. By contrast, the present findings suggest that about 80% of 

women in general populations (i.e., those not in the top 20% of the metaGRS) may not benefit 
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from intensive preventive interventions, in the absence of other compelling indications, before 

age 75 years. This finding underscores the potential value of using genomic information to 

optimise use of scarce resources for disease prevention; however further health economic studies 

would be necessary. 

Although applied health studies will be needed to evaluate properly the clinical utility of 

CAD genomic risk scores, elements of potential clinical implementation can now be foreseen. 

For example, genome-wide array genotyping has a one-time cost (approximately US$50 at 

current prices) and can be used to calculate updated genomic risk scores for CAD as further more 

powerful association data emerge. Indeed, data from a genome-wide genotyping array can be 

utilised to calculate GRSs for a wide range of common diseases. To calculate genomic risk for 

individuals, simple algorithms can draw on information from such arrays, as well as from large 

reference groups from similar populations, such as UK Biobank. In translating genomic risk 

scores, standardization in assay and data processing will be necessary but achievable, including 

in imputation (e.g. reference panel and quality control) and handling of population stratification 

(e.g. using a population-specific GRS distribution and/or adjustment of GRS directly). We have 

made the metaGRS algorithm freely available (23) to facilitate development and translation of 

the concept of genomic risk as an early screening tool. 

Our study has several limitations. First, while previous studies have shown the added 

value of a GRS to clinical risk scores, such as Framingham Risk Score and ACC/AHA13 Risk 

Score (23), UK Biobank does not yet have measurements of lipids and other biochemical factors 

available, thus relationships of the metaGRS with lipids or traditional clinical risk scores (e.g. 

Framingham Risk Score, QRISK, etc) could not be assessed. Second, the UK Biobank has a 

minimum enrolment age of 40 years and participants have been shown to be healthier than the 
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UK general population (24,25), thus our study may have underestimated population-level 

lifetime CAD risk. Third, people of non-European ancestry make up a small proportion (< 5%) 

of the UK Biobank, suggesting the need for studies in people of other ancestries. Similarly, 

future studies that externally validate the metaGRS in large multi-ethnic cohorts would maximize 

generalisability and minimize risk of overfitting to any single dataset or population (26). Fourth, 

current GWAS sample sizes and imputation efficiencies are also limiting in that they introduce 

noise into GRS estimates; our meta score approach here addresses this to some extent, however 

future large-scale cohorts will offer more powerful genomic scores. Lastly, despite the metaGRS 

showing substantial CAD risk discrimination in individuals already on medication, we were also 

unable to assess the effect of medication versus non-medication in individuals at high metaGRS 

risk; as without blind randomisation, this analysis would be susceptible to reverse causation, with 

those on medication likely already at higher CAD risk. 

In conclusion, the genomic score developed and evaluated in the present study 

strengthens the concept of using genomic information to stratify individuals for CAD risk in 

general populations and demonstrates the potential for genomic screening in early life to 

complement conventional risk prediction. 
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Perspectives 

Competency in Medical Knowledge: Genetics plays a major part in coronary artery disease 

(CAD) risk. Genomic risk of CAD is largely independent of conventional risk factors, such as 

lipids, blood pressure and smoking.  

Translational Outlook 1: Because germline DNA does not vary with time, genomic risk can be 

quantified in early life, and thus play a role in primary prevention before conventional CAD risk 

factors become informative. 

Translational Outlook 2: Genomic risk of CAD can complement conventional risk factors, 

providing improved risk prediction models. 
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Figure Legends 

Central Illustration: Genomic risk score for coronary artery disease. The genomic score 

provides potential for risk screening early in life as well as complements conventional risk 

factors for coronary artery disease. 

Figure 1: Relative performance of individual genomic risk scores for CAD compared to the 

metaGRS. In the UKB validation set (n=482,629), (a) hazard ratios per s.d. of each score for all 

CAD (n=22,242), censored at 75y, from Cox regression stratified by sex and adjusted for 

genotyping array (BiLEVE/UKB) and 10 genetic PCs; (b) Positive predictive value vs sensitivity 

for a logistic regression for each GRS, adjusted for sex, age, genotyping array (BiLEVE/UKB) 

and 10 genetic PCs. 

Figure 2: Predictive measures of CAD using the metaGRS and conventional risk factors. 

(a) Positive predictive values vs sensitivity for the reference model (sex + age + array + 10 

genetic PCs) and when adding the metaGRS to the model for all CAD in the UKB testing set. 

APRC is Area under the Precision-Recall Curve. (b) C-index for sex-stratified age-as-time-scale 

Cox regression of incident CAD for conventional risk factors individually and in combination 

with the metaGRS, including genotyping array and 10 genetic PCs as covariates.  

Figure 3: Cumulative risk of CAD by quintiles of metaGRS in men and women. Dotted lines 

represent 95% confidence intervals. For subgroup sample sizes, see Supplementary Table 1. 

Figure 4: Cumulative risk of incident CAD for increasing numbers of conventional risk 

factors stratified by metaGRS quintile. Dotted lines represent 95% confidence intervals. 

Figure 5: Cumulative risk of incident CAD within individuals on lipid-lowering or BP-

lowering medication at assessment. Dotted lines represent 95% confidence intervals. 
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Table 1: Study characteristics 

 UK Biobank 

(n=482,629) 

Male 

n=220,284 

(45.6%) 

Female 

n=262,345 

(54.4%) 

Age at assessment, years [mean (sd)] 56.5 (8.1) 56.7 (8.2) 56.4 (8.0) 

Current smoker (%) 50,664 

(10.5%) 

27,391 

(12.4%) 

23,273 (8.9%) 

Blood pressure, systolic, mm Hg [mean (sd)] 139.8 (19.7) 142.8 (18.5) 137.3 (20.3) 

Diabetes diagnosed by doctor (%) 24,920 (5.2%) 15,336 (7.0%) 9,887 (4.5%) 

Hypertension (%) 254,564 

(52.7%) 

133,013 

(60.4%) 

121,533 

(46.3) 

Family history, 1st degree relative (%) 206,363 

(42.8%) 

87,946 

(39.9%) 

118,417 

(45.1%) 

High cholesterol 65,829 

(13.6%) 

37,801 

(17.2%) 

28,028 

(10.7%) 

Prevalent CAD events before age 75y (%) 9,729 (2.0%) 7950 (3.6%) 1779 (0.7%) 

Incident CAD events before age 75y (%) 12,513 (2.6%) 9320 (4.2%) 3193 (1.2%) 

On blood-pressure lowering medication 99,454 

(20.6%) 

53,535 

(24.3%) 

45,939 

(17.5%) 

On lipid-lowering medication 82,493 

(17.1%) 

49,459 

(22.5%) 

33,028 

(12.6%) 

Follow-up time, years [mean (sd)] 6.2 (2.1) 5.9 (2.6) 6.4 (1.4) 

 


