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Abstract
Randommatrix theory (RMT) has found applications throughout physics and appliedmathematics,
in subject areas as diverse as communications networks, population dynamics, neuroscience, and
models of the banking system.Many of these analyses exploit elegant analytical results, particularly the
circular law and its extensions. In order to apply these results, assumptionsmust bemade about the
distribution ofmatrix elements. Herewe demonstrate that the choice ofmatrix distribution is crucial.
In particular, adopting an unrealisticmatrix distribution for the sake of analytical tractability is liable
to lead tomisleading conclusions.We focus on the application of RMT to the long-standing, and at
times fractious, ‘diversity-stability debate’, which is concernedwith establishingwhether large
complex systems are likely to be stable. Early work (and subsequent elaborations) brought RMT to
bear on the debate bymodelling the entries of a system’s Jacobianmatrix as independent and
identically distributed (i.i.d.) randomvariables. These analyses were successful in yielding general
results that were not tied to any specific system, but relied upon a restrictive i.i.d. assumption.Other
studies took an opposing approach, seeking to elucidate general principles of stability through the
analysis of specific systems.Herewe develop a statistical framework that reconciles these two
contrasting approaches.Weuse a range of illustrative dynamical systems examples to demonstrate
that: (i) stability probability cannot be summarily deduced from any single property of the system (e.g.
its diversity); and (ii) our assessment of stability depends on adequately capturing the details of the
systems analysed. Failing to condition on the structure of dynamical systemswill skew our analysis
and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.

1. Introduction

The notion of stability of stationary solutions is central to the study of dynamical systems. Formany applied
questions, it is pivotal to know that the solutionwill return to the stationary values/orbits upon perturbation [1–
4]. Examples include, but are not limited to: ecology and population dynamics; [5, 6]; (celestial)mechanics;
different areas of engineering; banking systems [7]; communication networks [4]; and neuroscience [8].
Different studies have shown that very diverse complex dynamical systems can bemodelled using similar
mathematical tools [9, 10]. Formal aspects of stability have been studied extensively in the analysis of such
complex systems, as well as in appliedmathematics.

For linear time-invariant systems, the Routh–Hurwitz criterion sets out the conditions for global stability.
More generally, the local stability of an equilibrium state of a non-linear ordinary differential equation (ODE)
system can be assessed by inspecting the eigenvalues of the system’s Jacobianmatrix evaluated at the equilibrium
[11]. If the real parts of the eigenvalues are all negative, then the equilibrium is (locally) stable. For any non-
linear systems, only local stability is implied by a negative leading eigenvalue. Given our interest in typically non-
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linear systems, we here consider the spectra of the Jacobians (or the sign of the largest eigenvalue, to be precise)
directly, but keep inmind that the basin of stabilitymay befinite, and potentially confined to a small region.

In ecology, where the analysis has perhaps been particularly divisive, early studies suggested that complexity
—or ecological diversity—was key to stability [12, 13]. First Gardner andAshby [14] (who considered the
problem fromawider perspective, with implications for examples as diverse as airport traffic and the human
brain), and thenMay [5, 15], investigated theway inwhich stability changes as complexity increases. In these
examples, complexity was defined in terms of the number of state variables (e.g. in the caseMay considers, the
number of species) and the probability of an interaction between two variables.

In order to generalise the analysis of the relationship between complexity and system stability,May avoided
focusing on specific examples and instead considered ensembles of Jacobians defined in terms ofmatrix
probability distributions. For suitably defined randommatrix ensembles (RME) [16–18] he showed that
sufficiently large or complex systems have a probability of stability close to zero. Subsequent studies considered
different RMEs designed to reflect a variety of features found in real systems, and have drawn different ormore
nuanced conclusions regarding stability [19–21]. Other authors, especially from the ecological sphere, have
pointed out the lack of realism of this approach [22] and estimated stability probabilities for specificODE
systems, either through experiments [23, 24] or by sampling values for the system’s parameters and—for each
sample—identifying the equilibriumpoints (EPs) and determining their stability [25–32]. By repeatedly
sampling in this way,Monte Carlo estimates of stability probabilitiesmay be obtained. The advantage of such
Monte Carlo approaches is that it is possible to condition on properties such as the feasibility of EPs (i.e. whether
or not they are physicallymeaningful), which can again yield different conclusions regarding stability [25].
These approaches also define RMEs, but do so implicitly andwith reference to specificODEmodels. Given the
variety of conclusions that have been drawn by different authors, the choice of RME is clearly crucial in
determining the stability probability [4].

Randommatrices have also, of course, a distinguished track-record in different branches of physics.
FollowingWigner’s earliest work on calculating fluctuations in the eigenvalue spectra ofHamiltonians
describing atomic nuclei [33], they have found use in the analysis of awhole range offluctuations in different
application areas: solid state physics, chemical reactions and transition state theory, and quantum chaos [34] are
only some of the areas where they, in particular in the guise of theGaussianOrthogonal Ensemble and its
generalisations, have come to use. But RMEs have also been found useful in puremathematics [35, 36], and, for
example, the spectral properties of theGaussianUnitary Ensemble capture the statistical properties of the zeros of
Riemann’s zeta function;more recently they have also been employed in cryptography.

In all these applications RMEs are used to describe fluctuationswhich are believed to be separable from the
secular dynamics of the underlying system.Here our use is subtly different. Instead of considering RMEs as
general descriptors of some system—this has also been the strategy ofMay and, perhaps to a lesser extent, his
followers—we are trying to condition the RMEon the properties of real systems that determinewhether or not
the stationary states are stable or not. This then allows us to calculate a probability for a system to become
unstable upon a small butfinite perturbation. So, rather thanmaking general statements about stability, our
RMEs—whichwe refer to as conditional RMEs—are explicitly geared towards being used in specific contexts.
While the success of traditional RMEs in capturing universal dynamics is based on assuming symmetries and
homogeneity in thematrix entries, the stability analysis of specific real-world systems requires our conditional
RMEs to exhibit the same heterogeneities that characterise real-world (i.e. problem-derived) Jacobianmatrices.
Wewill showbelow that this is necessary in order to understandwhen andwhy a large dynamical system can be
stable, but that this fully conditioned RME should not be used to draw general conclusions, as any rule from this
system-specific approach can only highlight the behaviour of that systemor systemswith similar dynamics.

2. Stability and randommatrix ensembles

For any particular parametricODEmodel, the Jacobianmatrix will usually exhibit structure and dependency
between its entries, andwill typically be a function of themodel parameters and the state variables. The present
work addresses the question of how assessments of stability changewhen the structure and dependency present
in the Jacobian is properly taken into account.

For example, for the Lorenz systemofODEs (see supplementary information for details), the Jacobian is
given by,

σ
σ σ

=
−
− − −

−
J r b x y z r z x
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As a consequence of this structure and dependency, and regardless of howwe choose the parameters of the
system, only a particular family of n × n realmatrices will be obtainable as Jacobians of the system. For example,
nomatter what valueswe take for the parameters of the Lorenz system, the (1, 3)-entry of the Jacobianmatrix
will always be zero, and the (1, 1)-entry will always be equal to the negative of the (1, 2)-entry. It follows that if we
were interested in assessing the stability probability of one of the Lorenz system’s EPs, it would be inappropriate
to calculate ∣P h(stable )using, for example, amatrix probability density function, h, that associates non-zero
density withmatrices for which the (1,3)-entry is non-zero or (1, 1)≠ −(1, 2). Nevertheless,many previous
analyses have failed to account for the structure and dependency present in realistic Jacobianmatrices (i.e. ones
derived frommodels of real systems), instead restricting attention tomatrix probability density functions that
yield analytically tractable results and assuming that the results so obtainedwere general.

2.1. An illustration
To further illustrate the implications of neglecting Jacobian structure, we consider a number of examples from a

family ofODEswhose Jacobians have the form
−

−( )a
b
1

1
, with ∈ a b, . In this case, the space of allmatrices

can be straightforwardly represented as a 2-dimensional Cartesian coordinate plane, inwhich the abscissa
describes the value taken by a and the ordinate the value taken by b (as infigure 1).

More precisely, we consider systems of the form,

θ

θ

= − +

= − +

x

t
x g y

y

t
y g x

d

d
( , ),

d

d
( , ), (1)

1

2

Figure 1. Stability of example equilibriumpoints (EPs) ofODEs.We consider different values for a and b and show as hatched areas
(labelled ‘unstable regions’) the regions of the plane for which the resultingmatrix has an eigenvalue with non-negative real part. The

non-hatched area corresponds to the stable region formatrices of the form
−

−( )a
b
1

1
We illustrate regions of the planewhich

correspond to the Jacobians thatmay be obtained for the variousODE systems and equilibriumpoints considered in examples 1–3
(blue shaded area, and red, green, and purple lines, as indicated).We also represent using contours the randommatrix distribution
that has traditionally been considered in the literaturewhen assessing stability probabilities.
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whose Jacobians are given by,

θ

θ

− ∂
∂

∂
∂
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where θ is the vector ofmodel parameters, and x and y are the state variables.

Example 1.We start by considering the following (simple, linear) choices for g1 and g2:

θ θ
θ θ

=
=

g y y

g x x

( , ) ,

( , ) ,
1 1

2 2

with θ1 and θ2 both non-zero. In this case, the Jacobian for the system is

θ
θ
−

−
1

1
,

1

2

⎛
⎝⎜

⎞
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which is a function only of θ1 and θ2 (and not of x or y).

The EPs are given by solving the simultaneous equations:

θ

θ

= ⇒ − + =

= ⇒ − + =

x

t
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d

d
0 0,

d

d
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2

It is straightforward to show that the only solution that holds for all values of θ θ,1 2 is =x y[ , ] [0, 0]. For this

system, the formof the Jacobianmeans thatwemay obtain anymatrix of the form
−

−( )a
b
1

1
, provided that each

of the parameters θ1 and θ2 can take any value in .We do note, however, that in practice thismodel is likely to
be of only limited interest, since it describes a system inwhich both of the interacting variables (e.g. species) will
eventually become extinct.

Example 2.Wenext consider a nonlinear example:

θ θ
θ θ

=
=

g y y

g x x

( , ) ,

( , ) ,
1 1

2

2 2

with θ1 and θ2 both non-zero. In this case, the Jacobian for the system is

θ
θ
−

−
y1 2

1
,

1

2

⎛
⎝⎜

⎞
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which is a function not only of θ1 and θ2, but also y.
It is straightforward to show that the only EPs that exist for all permitted values of θ1 and θ2 are: (i) EP1:

=x y[ , ] [0, 0]; and (ii) EP2: =
θ θ θ θ

x y[ , ] ,1 1

1 2
2

1 2

⎡
⎣⎢

⎤
⎦⎥.

The Jacobian evaluated at EP1 is θ
−

−
1 0

12
⎜ ⎟⎛
⎝

⎞
⎠. Thus the region of the (a, b) Cartesian coordinate plane

representing the possible Jacobians associatedwith EP1 is simply the line a=0. Similarly, the Jacobian evaluated

at EP2 is
θ

θ
−

−
1 2

1
2

2

⎛
⎝⎜

⎞
⎠⎟, and hence the region representing the possible Jacobians associatedwith EP2 is the line

=b a2 .

Example 3.Weconsider a further nonlinear example:

θ θ
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=
=
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with θ1 and θ2 both non-zero. In this case, the Jacobian for the system is

θ
θ
−

−
y1 3

1
,1

2

2

⎛
⎝⎜

⎞
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which is again a function of θ θ,1 2, and y.
In this case, it is again straightforward to show that the only EPs that exist for all permitted values of θ1 and θ2

are: (i) EP1: =x y[ , ] [0, 0]; and (ii) EPs 2 and 3: = ± θ

θ θ θ θ
x y[ , ] , 11

1
3

2
3 1 2

⎡
⎣⎢

⎤
⎦⎥.

The Jacobian evaluated at EP1 is again θ
−

−
1 0

12
⎜ ⎟⎛
⎝

⎞
⎠. Thus the region of the (a, b) Cartesian coordinate plane

representing the possible Jacobians associatedwith EP1 is again the line a=0. The Jacobian evaluated at EP 2 or 3

is
θ

θ
−

−
1 3

1
2

2

⎛
⎝⎜

⎞
⎠⎟, and hence the region representing the possible Jacobians associatedwith these EPs is the line

=b a3 .

Assessing stability for these examples

For anymatrix of the form = −
−( )J a

b
1

1
, the characteristic equation λ∣ − ∣ =J I 02 may be expanded as

λ λ− − − − − =ab( 1 )( 1 ) 0, i.e. λ + − =ab( 1) 0.2 The eigenvalues of J are the solutions of this equation, and
are given by λ = − ± ab1 .1,2 J is in the stable region, ΛS

2, provided the real parts of λ1,2 are both negative. First,
we note that if ab is negative (i.e. if = −a bsgn( ) sgn( )) then the real part of both eigenvalues is−1 and hence J is

in the stable region. If ab is positive, then λ = − − < −ab1 12 , so this eigenvalue is certainly negative, and it

remains only to consider the sign of the other eigenvalue, λ = − + ab11 . This eigenvalue is negative if and

only if <ab 1.Wemay thus completely determine the stable region formatrices of the form
−

−( )a
b
1

1
,as

illustrated infigure 1.We also show the regions representing the Jacobians evaluated at the EPs for the systems
considered in examples 1–3.Wherever these regions intersect the stable region, the corresponding EP(s) will be
stable. The probability of a particular systembeing stable around a given EP, x0, is therefore equivalent to the
probability of the relevant Jacobian evaluated at x0 fallingwithin one of these intersections.We consider how
this probability should be defined in the next section.However, it is clear that if we ignore the existence of these
regionswhen defining h, thematrix probability density function, and instead choose h in an arbitrarymanner
for the sake of analytical tractability (as illustrated by the contour lines infigure 1), then the resulting valuewe
obtain for the ‘stability probability’will be similarly arbitrary, and hence have littlemeaning or validity for any
specificmodel.

2.2. Formal description
For any systemof nODEs, the Jacobianmatrix of the system evaluated at a particular EP x0 will be an element, J,
of the set of ×n n realmatrices M ( )n . The EP x0 is locally stable if all of the eigenvalues of J have negative real
part. An equivalent criterion is that the real part of the leading eigenvalue (i.e. the one havingmaximal real part)
is negative.

Wefirst consider the set of all ×n n realmatrices, M ( )n . The eigenvalues of anymatrix ∈ J M ( )n are the
solutions of the characteristic equation,

λ∣ − ∣ =J I 0,n

where In denotes the n × n identitymatrix [11].We define Λ ⊂ M ( )S
n

n to be the set of ×n n matrices having
all negative eigenvalues, and refer to this as the stable region of M ( )n .

The choice of a particular RME specifies a probability density function, h, on M ( )n . The stability
probability associatedwith h is then

∫∣ =
Λ∈

P h h J J(stable ) ( )d , (3)
J S

n

i.e. it is the total probabilitymass that falls within the stable region.
Crucially, the stability probability is determined by two factors: ΛS

n and h. ΛS
n is not random: for a given n it

is a well-defined region of M ( )n . For systems of practical interest, however, this area cannot be determined
analytically, and needs instead to be evaluated computationally, using e.g.MonteCarlo techniques (which are
outlined below in 2.3). The results of stability analyses will therefore be completely determined by the choice of
h, and how it distributes probabilitymass over the stable and unstable regions (see figure 2). If h is defined
through the specification of anODEmodel and a distribution for its parameters, then onlymatrices that can
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occur as Jacobians for that particular systemwill have non-zero density. Similarly, if h is definedwithout
reference to a real system, then only some of thematrices in M ( )n will be associatedwith non-zero density.
However, for any given realODE system, thesematricesmight not be obtainable as Jacobians, and—conversely
—not allmatrices obtainable as Jacobians will necessarily be associatedwith non-zero density by such a defined
h, therefore limiting its relevance.

An appropriate choice of h is thus vital. In particular, choosing h for the sake ofmathematical convenience
can only provide limited insight, if doing so comes at the cost of sacrificing realism. The so-called ‘diversity-
stability debate’ [6] arose because general conclusions about stability were drawn fromRMEs thatwere either
specific to a particular system [25–32] or chosen formathematical convenience [19, 20]—e.g. to invoke the
circular law [5, 15, 21]—yielding results unlikely to bemeaningful for any interesting realistic system [37].

Here we show that the dichotomy resulting from the use of different RMEs can be overcome by constructing
RMEs that are appropriate for, and conditioned on, the properties of Jacobianmatrices of real systems.

2.3.MonteCarlo estimates of stability probability
Weconsider autonomousODE systems of the form

θ=t tx f x˙ ( ) ( ( ); ),

where = … ⊤t x t x tx( ) [ ( ), , ( )]p1 is the vector of state variables at time t, θ is the vector of parameters, and

θ θ θ= … ⊤t f t f tf x x x( ( ); ) [ ( ( ); ), , ( ( ); )] .p1 By definition, an EP, θx* , of the systemhas the property:

θ =θ( )f x 0; .*

We include the subscript θ in our notation for the EP to emphasise that its location, existence, and stability
will generally depend upon the particular values taken by the parameters.We denote by θJ * the Jacobianmatrix

of f evaluated at θx* .
We can induce an ensemble, , of Jacobianmatrices by specifying a distribution,  , for the parameters θ: a

collection ofN parameter vectors θ θ…, , N(1) ( ) sampled from  defines an ensemble of correspondingmatrices
…θ θJ J, ,* * N(1) ( ) . For any suchRME,wemay calculate aMonte Carlo estimate of the probability of stability, simply

as the proportion ofmatrices that are stable; i.e. for which the leading eigenvalue has negative real part. That is,
we obtain an estimate of the stability probability as,

Figure 2.Themeans, variances and covariances of entries of random Jacobianmatrices all have an impact upon stability probability.
To illustrate, we consider 2 × 2 randommatrices with off-diagonal terms μ Σ∼⊤ a b[ , ] ( , ) and−1 on the diagonal. It is
straightforward to show that suchmatrices are stable if <ab 1 and unstable if >ab 1.We take various choices for μ andΣ, and
illustrate the resulting bivariate normal distributions using coloured contours. (A) The location of themean has an impact on stability
probability: (I) represents the usual choice, μ = ⊤[0,0] ; however other choices can clearly lead to (II) lower or (III) higher stability
probabilities. (B) The variances of a and bhave an impact on stability probability: e.g. forfixedmean μ = ⊤[0,0] , taking smaller or
larger variances leads to, respectively, (I) higher or (II) lower stability probabilities. (C) The covariance between a and b has an impact
on stability: e.g. forfixedmean μ = ⊤[0,0] , whether a and b covary negatively or positively leads to, respectively, (I) higher or (II)
lower stability probabilities.
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∑ Λ∣ ≈ ∈θ
=

 ( )P
N

Jˆ (stable )
1

, (4)
i

N

S
n

1

* i( )

where  X( ) is the indicator function, which is 1 ifX is true and 0 otherwise.

2.4. Conditional randommatrix ensembles
The estimated stability probability defined in the previous section is the probability of a systembeing stable,
conditional on a given system architecture; as discussed in section 2 and illustrated in section 2.1 such
architectures do not arise without a concrete context. However, the conditions for which the circular law is
believed to hold lack this connection to reality, at least formesoscopic systems. To study the effects of this
context, which is encapsulated by the statistical properties of, and dependencies among, the entries in the
Jacobianmatrices …θ θJ J, ,* * N(1) ( ) , we consider two further randommatrix distributions, constructed by

permutation of the entries of our original RME. First, we form a newmatrix ensemble, …K K, , N(1)
*

( )
* , inwhich

the dependency between entries is broken. For each ℓ ∈ … N{1, , } and ∈ … × …i j p p( , ) {1, , } {1, , }we set

= θℓ ( )( )K J
ij ij

( )
* * q( ) , with q drawnuniformly at random from …N{1, }. In this way, themarginal distribution of

the ij-entries across the ensemble ofK*matrices is the same as themarginal distribution of ij-entries across the
ensemble of θJ * matrices.Maintaining themarginal distributions ensures that the dependency between entries is
the only quantity thatwe are altering: in particular, the location of zeros in thematrix and themagnitudes of
interaction strengths aremaintained.We construct a further RME, …L L, , N(1)

*
( )
* , where for each

ℓ ∈ … N{1, , } and ∈ … × …i j p p( , ) {1, , } {1, , }, we set = θℓ ( )( )L J
ij rs

( )
* * q( ) , with q drawn uniformly at

random from …N{1, }, and r and s (independently) drawn uniformly at random from …p{1, }. Now, the
location of zeros in thematrix is no longer fixed; although the probability of an entry being zero is the same for
the L*matrices as for the θJ *ʼs andK*ʼs.Moreover, each entry of the L*matrices is i.i.d.We henceforth refer to

the θJ * matrices as the fully conditioned system (FCS) ensemble (most structure); theK*matrices as the
independent ensemble (intermediate structure); and the L*matrices as the i.i.d. ensemble (least structure).We
illustrate the properties of these three RMEs, and themethods for their construction, infigure 3.

To further our investigationwe defined fourmore RMEs (which are presented inmore detail in the
supplementary information). Thefirst onewill be referred to as the independent normal ensemble. It is
constructed as follows: For each (i, j), wefit an independent normal distribution to the ij-entries of the sampled
Jacobians, …θ θJ J, ,* * N(1) ( ) . That is, for each (i, j), we calculate themean,

∑μ = θ
=

( )N
J

1
,i j

q

N

ij( , )
ind

1

* q( )

and standard deviation,

σ = θ
=

( )Js.d. .i j
ij

q

N

( , )
ind

*

1
q( )

⎧⎨⎩
⎫⎬⎭

We then construct the newRME, …M M, , N(1)
ind

( )
ind , where for each ℓ ∈ … N{1, , } and

∈ … × …i j p p( , ) {1, , } {1, , }, we set ℓ( )M
ij

( )
ind to be a sample drawn from the univariate normal distribution

withmean μ i j( , )
ind and standard deviation σ i j( , )

ind. By construction, themean and standard deviation of the ij-entries

across the ensemble ofMindmatrices are the same as themean and standard deviation of the ij-entries across the
ensemble of θJ * matrices (the FCS ensemble) and across the ensemble ofK*matrices (the independent ensemble).

A further ensemble is given by the independent Pearson ensemble. As in the independent normal case defined
above, this newRME is defined by fitting a distribution to the ij entries of the sampled Jacobians, except that
rather than using a normal distribution and just capturing themean and standard deviation, we also capture the
skewness and kurtosis of the ij-entries of the θJ * matrices. That is, in addition to μ i j( , )

ind and σ i j( , )
ind defined earlier, we

also calculate skewness

γ = θ
=

( )Jskewness .i j ij
q

N

( , )
ind

*

1
q( )

⎧⎨⎩
⎫⎬⎭

and kurtosis,

κ = θ
=

( )Jkurtosis .i j
ij

q

N

( , )
ind

*

1
q( )

⎧⎨⎩
⎫⎬⎭
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We then construct anRME, …M M, , N(1)
pear

( )
pear, where for each ℓ ∈ … N{1, , } and ∈ … ×i j p( , ) {1, , }

… p{1, , }, we set ℓ( )M
ij

( )

pear
to be a sample drawn from aunivariate Pearson distributionwithmean μ i j( , )

ind,

standard deviation σ i j( , )
ind, skewness γ i j( , ), and kurtosis κ i j( , ). This RME thus sharesmany of the properties of the

marginal distributions of ij-entries across the ensemble of θJ * matrices, but does not capture the dependencies
between them.

The third additional RMEwill be referred to as the i.i.d. normal ensemble. This timewewill notfit a
distribution to the ij-entries of the θJ * matrices, but insteadwefit a normal distribution, using the same technique
thatwe used for the independent normal ensemble defined above, to the ij-entries of the L*matrices (i.e. those
from the i.i.d. ensemble ).

Finally, we construct anRME that attempts to capture some of the dependencies between the entries of the

θJ * matrices.We define c(M) to be the vector obtained by concatenating the columns of thematrixM (and

further define −c 1be the inverse operation, so that, for example, =−c c M M( ( ))1 ). Applying c ( · ) to the
matrices fromour FCSRME,we obtainN vectors of length p × p, namely: …θ θc J c J( ), , ( ).* * N(1) ( ) To these, wefit

(bymaximum likelihood) a ×p p( )-variate normal distribution.We then sampleN vectors, …v v, , N1 , of

length ×p p from this distribution, and form anew ensemble …M M, , N(1)
mvn

( )
mvn by setting = −M c v( )q q( )

mvn 1 .We
will call this new ensemble themultivariate normal ensemble.

These new ensembles allow us to control which aspect of the structure of the FCS gives it its stability
properties. For instance comparing the independent normal ensemble, the independent Pearson ensemble and the
independent ensemblewe can show the impact of the differentmoments of the distribution. Themultivariate
normal and FCS ensembles can be used for the same purpose in the case where dependencies are considered.
More detail about the different RMEs is provided in the supplementary information.

Figure 3.Randommatrix ensembles (RMEs). (A) For a givenODE system (e.g. the Lorenz equations) and equilibriumpoint,
specifying a distribution for the parameters defines a random Jacobianmatrix distribution. (B) Samples from this distribution define
the FCSmatrix distribution; the independent and i.i.d. distributions are obtained from this by permuting elements as illustrated. jkl

m( ) is
the term in row k and column l obtained in themth sample from the random Jacobianmatrix distribution . Themarginal
distributions for the elements of thematrices in the three distributions. In the FCS case, these reflect the parameter distributions and
the expressions for the Jacobian entries presented in (A); by construction, themarginals in the independent case are the same as for the
FCS; while in the i.i.d. case, all entries have the samemarginal distribution. (D)We illustrate the joint distribution for twomatrix
entries: in the FCS case, the two entries exhibit dependency, whereas in the independent and i.i.d. cases, the joint is the product of the
marginals.
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3. Results

3.1. RME choice determines stability assessment
Stability, as stressed above and in the literature, is an issue in awide variety of domains, and therefore we
consider a set of systems that cover different qualitative behaviour of dynamical systems. The fourODEmodels
that we consider have in common that the EPs and Jacobians can be identified analytically, whichmakes analysis
straightforward; they are: (i) the Lorenz system [38]; (ii) amodel of the cell cycle due to Tyson [39]; (iii) amodel
of viral dynamics due toNowak andBangham [40]; and (iv) an SEIR (susceptible-exposed-infective-recovered)
population dynamicsmodel [41]. For brevity, wewill refer to these four examplemodels as: (i) ‘Lorenz’; (ii)
‘Tyson’; (iii) ‘N&B’; and (iv) ‘SEIR’. In each case, we present results for physically or biologically feasible EPs
and generate 100 000matrices fromourRMEs in order to obtainMonteCarlo estimates of stability
probabilities. Full details of thesemodels and their corresponding RMEs are provided in the supplementary
information.

Figure 4(A) shows the eigenspectra for the FCS, independent, and i.i.d. RME regimes.While the i.i.d.
eigenspectra are broadly circular, we observe diverse and decidedly non-circular shapes for the other two cases,
highlighting the limitations of previous analyses based upon the circular law. Figure 4(B) shows the density of
eigenvalues in the complex plane for the differentmodels andRMEs. The eigenspectra distributions are typically
much less dispersed for the FCS ensemble than for the other two. As shown infigure 4(C) this also leads to
systematic differences in the real parts of the leading eigenvalues, which determine stability.

Table 1 shows that, whatever themodel considered, the probability of stability of the i.i.d. ensemble is always
very different from the stability probability of the FCS. The RMEs that includemore of the structure of the
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Figure 4. Stability results for the four examplemodels. (A) The eigenspectra for eachmodel and randommatrix distribution, shown as
scatterplots. (B) The eigenvalue distributions visualised using heatmaps (to aid visualisation, we omit pure imaginary eigenvalues).
(C) The distributions ofmaximal eigenvalues together with the estimated stability probabilities.
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system in their construction, yield stability probabilities closer to those of the FCS. Inmost cases, the univariate
Pearson ensemble had a probability stability closer to that of the FCS than the univariate normal, showing that
consideringmoremoments when building the RME improves the estimation of the stability of the system.

In summary,Monte Carlo estimates for the stability probabilities decrease aswe decrease the amount of
realism captured by theRME. Thus, failing to condition on the real-world heterogeneity and dependency
present in the Jacobian can result in an unnecessarily pessimistic assessment of stability, even for these small
systems. Considering RMEs inwhichwe tightly control themean, standard deviation, skewness and kurtosis of
themarginal distributions of Jacobian entries, demonstrates that all of these properties also have an impact on
stability.

3.2. Large dynamical systems can be stable
To illustrate the effects of inadequately capturingmodel structure and parameter dependencies on the stability
probabilities of larger systems, we consider extensions to the SEIRmodel (figure 5(A)).We allow formultiple
subpopulations of exposed (E) individuals (in the supplementary informationwe also investigate extensions
with heterogeneous infective subpopulations), enabling us to control system size.We again consider the three
RMEs described above (see supplementary information for full details). Aswe increase the size of the system, the
probability of stability remains 1 in the FCS case, but rapidly diminishes in the i.i.d. case (figure 5(B)). The
independent case is intermediate, indicating that not only can the dependence betweenmatrix entries be
important, but also their heterogeneity. Heterogeneity changes the location of the centre of thematrix p.d.f. h,
and also how it stretches in different directions, whichmodifies the proportion of probabilitymass falling in the
stable region, Λ ⊂ M ( )S

n
n .

Figure 5(C) shows how summaries of the distributions of leading eigenvalues change aswe increase the
number of exposed populations, with figure 5(D) providing corresponding density estimates for a selection of
these numbers. In the i.i.d. case, the distributions andmedian values shift away from stable negative values
toward unstable positive values. This is in stark contrast to the FCS casewhere, regardless of the number of
exposed populations, the distribution of leading eigenvalues only has support on the negative real line (and
hencewe always have stability probability 1).Moreover, as we increase the number of exposed populations, the
median value of the leading eigenvalue tends to becomemore negative. The independent case is again
intermediate, with themedian value staying relatively constant.

Figures S4 and S5 in the supplementarymaterial, wherewe consider the effect of the i.i.d. normal, the
independent normal, the independent Pearson, and themultivariate normal ensembles on thesemodels, bring
more evidence to our previous observations. Aswewould expect, themore of the underlying system’s structure
thatwe capture using our chosenRME, the closer we get to the stability probability estimated using the FCS
ensemble. The i.i.d. normalRME,which does not include anymore structure than the i.i.d. ensemble, leads to
similar stability probabilities to those obtained using that RME. The independent normal, which allows the
heterogeneity of variances andmeans found in the real system to be described, yields stability probabilities closer
to the FCS ensemble. The independent Pearson, which also takes into account information about the skewness
and kurtosis of each entry, gets even closer to the FCS ensemble, and is very similar to the independent case.
Finally, themultivariate normalRME (which allows us tomodel–in a simplistic fashion–some of the
dependencies between the entries of the Jacobian) results in stability probabilities that are always closer to the
FCS ensemble than those obtained using the independent normalRME.We found that the stability probabilities
obtained using themultivariate normalRME are not consistentlymore different fromFCS stability probabilities
than those obtained using the independent PearsonRME.Thus, accounting for dependency between the
Jacobian’s entriesmay, depending on the problem at hand, bemore or less important than accounting for higher
order properties of themarginal distributions of the entries.

Table 1.Estimated stability probabilities for the four examplemodels using our seven different RME regimes.

Tyson SEIR N&B Lorenz

FCS 0.32109 1 1 1

MultivariateNormal 0.1105 0.72188 0.43744 0.92382

Independent 0.11151 0.56483 0.57161 0.7225

Univariate Pearson 0 0.58252 0.93296 0.43542

UnivariateNormal 0.116 0.53502 0.26504 0.48366

I.i.dNormal 0.0377 0.14904 0.12702 0.14602

I.i.d. 0.03209 0.1371 0.12173 0.10419
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4.Discussion

The stability of real-world systems—which is nearly ubiquitously observed [1–3]—might seemperplexing in
light of classical results in randommatrix theory. By considering how randommatrices can bemade to reflect
the properties of the Jacobianmatrix of real dynamical systems it becomes possible to resolve and reconcile
apparent contradictions in the literature [5, 30, 31].

Figure 5.How stability changeswith system size depends on the randommatrix distribution. (A)An extension of the SEIRmodel in
whichwemodel n exposed populations, …E E, , n1 . (B) Plot showing for each of the randommatrix distributions how estimated
stability probability changes as we increase the number of exposed populations. Bars denote ±2 s.d.Monte Carlo error bars. (C) Plot
showingmedian (filled circle) and interquartile range (bars) for the distributions of leading eigenvalues. (D)Density estimates for the
distributions of leading eigenvalues.
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In agreement with previous authors, our results demonstrate that stability probability can be affected by the
mean and standard deviation of the entries in the Jacobian, as well as the dependencies between them [30, 31],
and further show that properties such as the skewness and kurtosis of the entries can also have an impact. This is
unsurprising: as is clear from equation (2) and illustrated infigure 2, RMEswith different properties will result in
different proportions of probabilitymass fallingwithin the stable region, Λ ⊂ M ( )S

n
n . Reported stability

probabilities should therefore always explicitly acknowledge that they are conditioned on a particular choice of
RME,which has to be carefully justified.

WhileMay’smathematical study clearly shows that in some circumstances an increase in complexity can
lead to instability [5], Haydon’s study highlights cases where complexity, in the shape of strong and numerous
interconnections, is necessary to get higher stability [19]. Other examples where complex systems have been
shown to be stable can be found in the literature, in particular Kokkoris et al show that different variances of the
interaction strengthwill allow for different levels of complexity of the systemwhile keeping the same stability
[30].However, none of these results can be generalised lightly. They in fact show that different systems are
impacted differently by changes in complexity, and that no general prediction can bemade.

Here, the FCS ensemble conditions on themodel structure, so that the RME is defined through the
distribution ofmodel parameters. In our case, these distributions have been chosen by selecting plausible or
interesting ranges for the parameters, and taking uniformdistributions within these ranges (in the
supplementary informationwe consider alternative possibilities). In real applications, a natural choice for the
distribution ofmodel parameters would be provided in the Bayesian formalismby the posterior parameter
distribution (or, if no data are available, by the prior). From this, wemay obtain the posterior (or prior)
predictive distributions [42] of the leading eigenvalues, fromwhichwemay derive the probability of stability. In
this way, a truly realistic assessment of stabilitymay be obtained for the system, inwhichwe have conditioned on
both our current understanding of the system architecture (encapsulated in ourmathematicalmodel) and our
current uncertainty in themodel’s parameters.

Through our analyses, we have demonstrated that identifying any single property of the RME as being the
general determinant of stability ismisleading, except in some cases when the systemhas been very strictly
defined [20, 27, 30, 31]. Stability probability is determined by the topology of the stable region, and howmuch
probabilitymass is depositedwithin that region by theRME. This cannot be summarily deduced from any single
property of the RME. At this stage it seems that system stability is system specific and that little can be gleaned
fromgeneral approaches that will at best be uninformative if not entirelymisleading. In particular, we cannot
assess the probability of a systembeing stable based only on its size, diversity or complexity. It is especially
important to keep this inmind as the stability ofmore complicated systems is considered (see e.g. [7, 43]).

This does not rule out the possibility that there are sets of rules or principles that could greatly shift the
balance in favour of stability. Negative feedback, for example, is likely to lead tomore stable behaviour (even for
stochastic systems). It is in principle possible to condition on such local structures (in terms of correlated entries
in the Jacobian) thatmay confer or contribute to overall stability of a system [44]. To apply such knowledge to
real systems, however, would require a level of certainty about the underlyingmechanisms thatwe currently lack
for all but themost basic examples. Nevertheless, even in the presence of uncertainty about system structures,
local negative feedback between species, for example, would tend to favour stability, whereas positive feedback
(ormerely the lack of negative feedback)would typically result in amplification of initially small perturbations to
a system’s behaviour [45].

Appendix.Methods

Twomainmethodswere used. Thefirst used an analytical approach, while the second used a numerical
approach. Thefirstmethodwas used onmodels 1 to 4, and onmodels 5 and 6 for n=1–6. In these cases the
number of samples usedwas 100 000. The secondmethodwas used onmodel 5 and 6 for n=1–10 and n=20,
30,…,100, this time, for computational reasons, the sample size was 1000.

A.1. The analyticalmethod
For each of themodels, the EPswere found usingMatlab’s analytic equation solver, solve. The Jacobianwas also
described analytically usingMatlab’s jacobian function.

The different parameters were sampled from a uniformdistribution usingMatlab’s rand function. The
choice of the range of the parameters will be described in detail below.
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A.1.1. Algorithm. For each of themodel, the EPs and their stability for a different range of parameters are
evaluated in the followingway.

(i) Define the systemofODEs.

(ii) Solve = ∀ ∈ …x i p˙ 0, {1, , }i , where p is the number of species in the system and ∈ …x i p, {1, , }i is the
set of species in our system.

(iii) Compute the Jacobianmatrix of our system.

(iv) Sample a set of parameters for the system.

(v) Evaluate the EPs for that set of parameters.

(vi) If the EPs are biologically realistic, i.e. all of the species have a concentration that is positive or null, then
evaluate the Jacobianmatrix at those EPs.

(vii) Else, ‘reject’ that set of parameters and sample a new set.

(viii) Reproduce steps 5–7 until the number of samples accepted reaches the number of samples wanted.

(ix) For each Jacobian matrix obtained, compute the eigenvalues; consider their maximum real part, each
system is considered as stable if and only if thatmaximum real part is strictly negative.

(x) The probability of a system being stable is then the number of stable systems divided by the number of
samples.

In order to evaluate the stability under the independent and i.i.d. conditions we add a step between steps 8
and 9: we process the Jacobianmatrices by doing some permutations of the entries as described in section 2.4.

A.2. The numericalmethod
For each of themodels, the EPswere found usingMatlab’s equation solver, solve. The Jacobianwas described
analytically usingMatlab’s jacobian function. The different parameters were sampled from a uniform
distribution usingMatlab’s rand function. The choice of the range of the parameters will be described in detail
below.

Thismethodwas used only on the S(nE)IR and the SE(nI)Rmodels for computational reason (the
numericalmethod becoming too expensive with big n). Thismethodworkswell in this case because for these
models we know that there are 2 EPs and they are easily identified, sowe can easily segregate the cases
corresponding to each of themwhen computing the probability of stability. Thefirst EP, where thewhole
population is composed of recovered individuals, is not interesting because it is obviously stable, sowe only
consider the other EP in each system.

A.2.1. Algorithm. For each of themodel, the EPs and their stability for a different range of parameters are
evaluated in the followingway.

(i) Define the systemofODEs.

(ii) Compute the Jacobianmatrix of our system analytically.

(iii) Sample a set of parameters.

(iv) Solve = ∀ ∈ …x i p˙ 0, {1, , }i , where p is the number of species in the system and ∈ …x i p, {1, , }i is the
set of species in our system, using the set of parameters sampled.

(v) Only keep the EP which is not a population fully composed of recovered individuals and no other type of
individuals.

(vi) If the EPs are biologically realistic, i.e. all of the species have a concentration that is positive or null, then
evaluate the Jacobianmatrix at those EPs.

(vii) Else, ‘reject’ that set of parameters and sample a new set.

(viii) Reproduce steps 3–7 until the number of samples accepted reaches the number of samples wanted.

(ix) For each Jacobian matrix obtained, compute the eigenvalues; consider their maximum real part, each
system is considered as stable if and only if thatmaximum real part is strictly negative.
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(x) The probability of a system being stable is then the number of stable systems divided by the number of
samples.

In order to evaluate the stability under the independent and i.i.d. conditions we add a step between steps 8
and 9: we process the Jacobianmatrices by doing some permutations of the entries as described in section 2.4.

A.3. Parameter ranges
Two criteria were used to choose the range of the parameters: first they had to be realistic; second the range had
to be small enough to allow a thorough sampling of the space obtained to be computationally tractable. In the
cases when the ranges were fixed arbitrarily, we verified that choosing different ranges would not impact the
qualitative results.

A.3.1.Model 1: the Lorenz system. To get the results obtained in themain article, we sampled the parameters
from the following ranges:

β
ρ
σ

∈
∈
∈

[0, 10],

[1, 11],

[0, 10].

ρ is considered to be bigger or equal to 1 in order to ensuremore than just the origin as a equilibriumpoint,
whichmakes our studymore interesting.

A.3.2.Model 2: amodel of the cell division cycle. All the parameters were taken to be uniformly distributed
between 0 and 1.

A.3.3.Model 3: theNowak and Banghammodel. All the parameters were taken to be uniformly distributed
between 0 and 1.

A.3.4.Models 4, 5 and 6: the SEIR and extended SEIRmodels.
Model 4: the SEIRmodel. All the parameters were taken to be uniformly distributed between 0 and 1.
Model 5: the S(nE)IRmodel. All the parameters were taken to be uniformly distributed between 0 and 1.
Model 6: the SE(nI)Rmodel. All the parameters were taken to be uniformly distributed between 0 and 1.

References

[1] Jirsa V andDingM2004Will a large complex systemwith time delays be stable?Phys. Rev. Lett. 93 070602
[2] TimmeM,Geisel T andWolf F 2006 Speed of synchronization in complex networks of neural oscillators: analytic results based on

randommatrix theoryChaos 16 015108
[3] Kriener B 2012How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory

oscillatorsChaos 22 033143
[4] Couillet R andDebbahM2013 Signal processing in large systems: a new paradigm IEEE Signal Process.Mag. 30 24–39
[5] MayRM1972Will a large complex system be stable?Nature 238 413–4
[6] McCannKS 2000The diversity-stability debateNature 405 228–33
[7] Haldane AGandMayRM2011 Systemic risk in banking ecosystemsNature 469 351–5
[8] Feng J, Jirsa VK andDingM2006 Synchronization in networks with random interactions: theory and applicationsChaos: Interdiscip. J.

Nonlinear Sci. 16 015109
[9] Boccaletti S, LatoraV,Moreno Y,ChavezMandHwangD 2006Complex networks: structure and dynamics Phys. Rep. 424 175–308
[10] Carlson JMandDoyle J 2002Complexity and robustnessProc. Natl Acad. Sci. USA 99 (Suppl. 1) 2538
[11] Strogatz SH 2001NonlinearDynamics AndChaos:With Applications To Physics, Biology, Chemistry And Engineering (Studies in

Nonlinearity) (Reading,MA: Addison-Wesley)
[12] EltonC 1958The Ecology of Invasions by Animals and Plants (London: Chapman andHall)
[13] MacArthur R 1955 Fluctuations of animal populations and ameasure of community stability Ecology 36 533
[14] GardnerMRandAshbyWR1970Connectance of large dynamic (cybernetic) systems: critical values for stabilityNature 228 784
[15] MayR 1973 Stability andComplexity inModel Ecosystems (Princeton,NJ: PrincetonUniversity Press)
[16] EdelmanA andRaoNR1999Randommatrix theoryActaNumer. 14 233–97
[17] MehtaML 2004RandomMatrices (NewYork: Academic)
[18] Tao T, VuV andKrishnapurM2010Randommatrices: universality of esds and the circular lawAnn. Probab. 38 2023–65
[19] HaydonDT 2000Maximally stablemodel ecosystems can be highly connected Ecology 81 2631–6
[20] Neutel AM2002 Stability in real foodwebs: weak links in long loops Science 296 1120–3
[21] Allesina S andTang S 2012 Stability criteria for complex ecosystemsNature 483 205–8
[22] Lawlor LR 1978A comment on randomly constructedmodel ecosystemsAm.Nat. 112 445–7
[23] TilmanD andDowning J A 1994 Biodiversity and stability in grasslandsNature 367 363–5
[24] Givnish T J 1994Does diversity beget stability?Nature 371 113–4
[25] Roberts A 1974The stability of a feasible random ecosystemNature 251 607–8
[26] GilpinME1975 Stability of feasible predator-prey systemsNature 254 137–9

14

New J. Phys. 17 (2015) 083025 PKirk et al

http://dx.doi.org/10.1103/PhysRevLett.93.070602
http://dx.doi.org/10.1063/1.2150775
http://dx.doi.org/10.1063/1.4749794
http://dx.doi.org/10.1109/MSP.2012.2207490
http://dx.doi.org/10.1109/MSP.2012.2207490
http://dx.doi.org/10.1109/MSP.2012.2207490
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/35012234
http://dx.doi.org/10.1038/35012234
http://dx.doi.org/10.1038/35012234
http://dx.doi.org/10.1038/nature09659
http://dx.doi.org/10.1038/nature09659
http://dx.doi.org/10.1038/nature09659
http://dx.doi.org/10.1063/1.2180690
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1073/pnas.012582499
http://dx.doi.org/10.2307/1929601
http://dx.doi.org/10.1038/228784a0
http://dx.doi.org/10.1017/S0962492904000236
http://dx.doi.org/10.1017/S0962492904000236
http://dx.doi.org/10.1017/S0962492904000236
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1890/0012-9658(2000)081[2631:MSMECB]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2000)081[2631:MSMECB]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2000)081[2631:MSMECB]2.0.CO;2
http://dx.doi.org/10.1126/science.1068326
http://dx.doi.org/10.1126/science.1068326
http://dx.doi.org/10.1126/science.1068326
http://dx.doi.org/10.1038/nature10832
http://dx.doi.org/10.1038/nature10832
http://dx.doi.org/10.1038/nature10832
http://dx.doi.org/10.1086/283286
http://dx.doi.org/10.1086/283286
http://dx.doi.org/10.1086/283286
http://dx.doi.org/10.1038/367363a0
http://dx.doi.org/10.1038/367363a0
http://dx.doi.org/10.1038/367363a0
http://dx.doi.org/10.1038/371113b0
http://dx.doi.org/10.1038/371113b0
http://dx.doi.org/10.1038/371113b0
http://dx.doi.org/10.1038/251607a0
http://dx.doi.org/10.1038/251607a0
http://dx.doi.org/10.1038/251607a0
http://dx.doi.org/10.1038/254137a0
http://dx.doi.org/10.1038/254137a0
http://dx.doi.org/10.1038/254137a0


[27] King AWandPimmSL 1983Complexity, diversity, and stability—a reconciliation of theoretical and empirical resultsAm.Nat. 122
229–39

[28] PimmS1984The complexity and stability of ecosystemsNature 307 321–6
[29] McCannK,Hastings A andHuxel GR 1998Weak trophic interactions and the balance of natureNature 395 794–8
[30] Kokkoris GD, JansenVAA, LoreauMandTroumbis AY 2002Variability in interaction strength and implications for biodiversity

J. Animal Ecol. 71 362–71
[31] JansenVAA andKokkoris GD2003Complexity and stability revisitedEcol. Lett. 6 498–502
[32] ChristianouMandKokkoris GD2008Complexity does not affect stability in feasiblemodel communities J. Theor. Biol. 253 162–9
[33] Wigner E P 1959 Statistical properties of real symmetricmatrices withmany dimensionsProc. 4thCanadianMathematical Congress ed

MSMacPhail (Toronto: University of Toronto Press) pp 174–84
[34] Andreev AV et al 1996Quantum chaos, irreversible classical dynamics, and randommatrix theory Phys. Rev. Lett. 76 3947–50
[35] Tao T 2012Topics in RandomMatrix Theory (Providence, RI: AmericanMathematical Society)
[36] SchroederMR2009Number Theory in Science andCommunication 5th edn (Berlin: Springer)
[37] EvansMR et al 2013Do simplemodels lead to generality in ecology?Trends Ecol. Evol. 28 578–83
[38] Lorenz EN1963Deterministic nonperiodic flow J. Atmos. Sci. 20 130–48
[39] Tyson J J 1991Modeling the cell division cycle: cdc2 and cyclin interactions Proc. Natl Acad. Sci. USA 88 7328–32
[40] NowakMAandBanghamC1996 Population dynamics of immune responses to persistent viruses Science, NY 272 74–79
[41] Aron J L and Schwartz I B 1984 Seasonality and period-doubling bifurcations in an epidemicmodel J. Theor. Biol. 110 665–79
[42] GelmanA,Carlin J B, SternHS andRubinDB 2003BayesianData Analysis 2nd edn (London/Boca Raton, FL: Chapman and

Hall/CRC)
[43] Wilkinson RD2013Approximate Bayesian computation (ABC) gives exact results under the assumption ofmodel error Stat. Appl.

Genet.Mol. Biol. 12 129–41
[44] Thorne TWand StumpfMPH2007Generating confidence intervals on biological networksBMCBioinform. 8 467
[45] CosentinoC andBates D 2011 Feedback Control in Systems Biology (Boca Raton, FL: CRCPress)

15

New J. Phys. 17 (2015) 083025 PKirk et al

http://dx.doi.org/10.1086/284132
http://dx.doi.org/10.1086/284132
http://dx.doi.org/10.1086/284132
http://dx.doi.org/10.1086/284132
http://dx.doi.org/10.1038/307321a0
http://dx.doi.org/10.1038/307321a0
http://dx.doi.org/10.1038/307321a0
http://dx.doi.org/10.1038/27427
http://dx.doi.org/10.1038/27427
http://dx.doi.org/10.1038/27427
http://dx.doi.org/10.1046/j.1365-2656.2002.00604.x
http://dx.doi.org/10.1046/j.1365-2656.2002.00604.x
http://dx.doi.org/10.1046/j.1365-2656.2002.00604.x
http://dx.doi.org/10.1046/j.1461-0248.2003.00464.x
http://dx.doi.org/10.1046/j.1461-0248.2003.00464.x
http://dx.doi.org/10.1046/j.1461-0248.2003.00464.x
http://dx.doi.org/10.1016/j.jtbi.2008.03.001
http://dx.doi.org/10.1016/j.jtbi.2008.03.001
http://dx.doi.org/10.1016/j.jtbi.2008.03.001
http://dx.doi.org/10.1103/PhysRevLett.76.3947
http://dx.doi.org/10.1103/PhysRevLett.76.3947
http://dx.doi.org/10.1103/PhysRevLett.76.3947
http://dx.doi.org/10.1016/j.tree.2013.05.022
http://dx.doi.org/10.1016/j.tree.2013.05.022
http://dx.doi.org/10.1016/j.tree.2013.05.022
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1073/pnas.88.16.7328
http://dx.doi.org/10.1073/pnas.88.16.7328
http://dx.doi.org/10.1073/pnas.88.16.7328
http://dx.doi.org/10.1126/science.272.5258.74
http://dx.doi.org/10.1126/science.272.5258.74
http://dx.doi.org/10.1126/science.272.5258.74
http://dx.doi.org/10.1016/S0022-5193(84)80150-2
http://dx.doi.org/10.1016/S0022-5193(84)80150-2
http://dx.doi.org/10.1016/S0022-5193(84)80150-2
http://dx.doi.org/10.1515/sagmb-2013-0010
http://dx.doi.org/10.1515/sagmb-2013-0010
http://dx.doi.org/10.1515/sagmb-2013-0010
http://dx.doi.org/10.1186/1471-2105-8-467

	1. Introduction
	2. Stability and random matrix ensembles
	2.1. An illustration
	Assessing stability for these examples

	2.2. Formal description
	2.3. Monte Carlo estimates of stability probability
	2.4. Conditional random matrix ensembles

	3. Results
	3.1. RME choice determines stability assessment
	3.2. Large dynamical systems can be stable

	4. Discussion
	Appendix.
	A.1. The analytical method
	A.1.1. Algorithm

	A.2. The numerical method
	A.2.1. Algorithm

	A.3. Parameter ranges
	A.3.1. Model 1: the Lorenz system
	A.3.2. Model 2: a model of the cell division cycle
	A.3.3. Model 3: the Nowak and Bangham model
	A.3.4. Models 4, 5 and 6: the SEIR and extended SEIR models


	References



