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Abstract

Random matrix theory (RMT) has found applications throughout physics and applied mathematics,
in subject areas as diverse as communications networks, population dynamics, neuroscience, and
models of the banking system. Many of these analyses exploit elegant analytical results, particularly the
circular law and its extensions. In order to apply these results, assumptions must be made about the
distribution of matrix elements. Here we demonstrate that the choice of matrix distribution is crucial.
In particular, adopting an unrealistic matrix distribution for the sake of analytical tractability is liable
to lead to misleading conclusions. We focus on the application of RMT to the long-standing, and at
times fractious, ‘diversity-stability debate’, which is concerned with establishing whether large
complex systems are likely to be stable. Early work (and subsequent elaborations) brought RMT to
bear on the debate by modelling the entries of a system’s Jacobian matrix as independent and
identically distributed (i.i.d.) random variables. These analyses were successful in yielding general
results that were not tied to any specific system, but relied upon a restrictive i.i.d. assumption. Other
studies took an opposing approach, seeking to elucidate general principles of stability through the
analysis of specific systems. Here we develop a statistical framework that reconciles these two
contrasting approaches. We use a range of illustrative dynamical systems examples to demonstrate
that: (i) stability probability cannot be summarily deduced from any single property of the system (e.g.
its diversity); and (ii) our assessment of stability depends on adequately capturing the details of the
systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis
and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.

1. Introduction

The notion of stability of stationary solutions is central to the study of dynamical systems. For many applied
questions, it is pivotal to know that the solution will return to the stationary values/orbits upon perturbation [1—-
4]. Examples include, but are not limited to: ecology and population dynamics; [5, 6]; (celestial) mechanics;
different areas of engineering; banking systems [7]; communication networks [4]; and neuroscience [8].
Different studies have shown that very diverse complex dynamical systems can be modelled using similar
mathematical tools [9, 10]. Formal aspects of stability have been studied extensively in the analysis of such
complex systems, as well as in applied mathematics.

For linear time-invariant systems, the Routh—Hurwitz criterion sets out the conditions for global stability.
More generally, the local stability of an equilibrium state of a non-linear ordinary differential equation (ODE)
system can be assessed by inspecting the eigenvalues of the system’s Jacobian matrix evaluated at the equilibrium
[11]. Ifthe real parts of the eigenvalues are all negative, then the equilibrium is (locally) stable. For any non-
linear systems, only local stability is implied by a negative leading eigenvalue. Given our interest in typically non-
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linear systems, we here consider the spectra of the Jacobians (or the sign of the largest eigenvalue, to be precise)
directly, but keep in mind that the basin of stability may be finite, and potentially confined to a small region.

In ecology, where the analysis has perhaps been particularly divisive, early studies suggested that complexity
—or ecological diversity—was key to stability [ 12, 13]. First Gardner and Ashby [14] (who considered the
problem from a wider perspective, with implications for examples as diverse as airport traffic and the human
brain), and then May [5, 15], investigated the way in which stability changes as complexity increases. In these
examples, complexity was defined in terms of the number of state variables (e.g. in the case May considers, the
number of species) and the probability of an interaction between two variables.

In order to generalise the analysis of the relationship between complexity and system stability, May avoided
focusing on specific examples and instead considered ensembles of Jacobians defined in terms of matrix
probability distributions. For suitably defined random matrix ensembles (RME) [16—18] he showed that
sufficiently large or complex systems have a probability of stability close to zero. Subsequent studies considered
different RMEs designed to reflect a variety of features found in real systems, and have drawn different or more
nuanced conclusions regarding stability [19-21]. Other authors, especially from the ecological sphere, have
pointed out the lack of realism of this approach [22] and estimated stability probabilities for specific ODE
systems, either through experiments [23, 24] or by sampling values for the system’s parameters and—for each
sample—identifying the equilibrium points (EPs) and determining their stability [25-32]. By repeatedly
sampling in this way, Monte Carlo estimates of stability probabilities may be obtained. The advantage of such
Monte Carlo approaches is that it is possible to condition on properties such as the feasibility of EPs (i.e. whether
or not they are physically meaningful), which can again yield different conclusions regarding stability [25].
These approaches also define RMEs, but do so implicitly and with reference to specific ODE models. Given the
variety of conclusions that have been drawn by different authors, the choice of RME is clearly crucial in
determining the stability probability [4].

Random matrices have also, of course, a distinguished track-record in different branches of physics.
Following Wigner’s earliest work on calculating fluctuations in the eigenvalue spectra of Hamiltonians
describing atomic nuclei [33], they have found use in the analysis of a whole range of fluctuations in different
application areas: solid state physics, chemical reactions and transition state theory, and quantum chaos [34] are
only some of the areas where they, in particular in the guise of the Gaussian Orthogonal Ensemble and its
generalisations, have come to use. But RMEs have also been found useful in pure mathematics [35, 36], and, for
example, the spectral properties of the Gaussian Unitary Ensemble capture the statistical properties of the zeros of
Riemann’s zeta function; more recently they have also been employed in cryptography.

In all these applications RMEs are used to describe fluctuations which are believed to be separable from the
secular dynamics of the underlying system. Here our use is subtly different. Instead of considering RMEs as
general descriptors of some system—this has also been the strategy of May and, perhaps to a lesser extent, his
followers—we are trying to condition the RME on the properties of real systems that determine whether or not
the stationary states are stable or not. This then allows us to calculate a probability for a system to become
unstable upon a small but finite perturbation. So, rather than making general statements about stability, our
RMEs—which we refer to as conditional RMEs—are explicitly geared towards being used in specific contexts.
While the success of traditional RMEs in capturing universal dynamics is based on assuming symmetries and
homogeneity in the matrix entries, the stability analysis of specific real-world systems requires our conditional
RME:s to exhibit the same heterogeneities that characterise real-world (i.e. problem-derived) Jacobian matrices.
We will show below that this is necessary in order to understand when and why a large dynamical system can be
stable, but that this fully conditioned RME should not be used to draw general conclusions, as any rule from this
system-specific approach can only highlight the behaviour of that system or systems with similar dynamics.

2. Stability and random matrix ensembles

For any particular parametric ODE model, the Jacobian matrix will usually exhibit structure and dependency
between its entries, and will typically be a function of the model parameters and the state variables. The present
work addresses the question of how assessments of stability change when the structure and dependency present
in the Jacobian is properly taken into account.

For example, for the Lorenz system of ODEs (see supplementary information for details), the Jacobian is
given by,

-6 o 0
J,rbx,y,z)=|r—z -1 —x|.
y x =b
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Figure 1. Stability of example equilibrium points (EPs) of ODEs. We consider different values for a and b and show as hatched areas
(labelled ‘unstable regions’) the regions of the plane for which the resulting matrix has an eigenvalue with non-negative real part. The

non-hatched area corresponds to the stable region for matrices of the form ( _bl al ) We illustrate regions of the plane which

correspond to the Jacobians that may be obtained for the various ODE systems and equilibrium points considered in examples 1-3
(blue shaded area, and red, green, and purple lines, as indicated). We also represent using contours the random matrix distribution
that has traditionally been considered in the literature when assessing stability probabilities.

As a consequence of this structure and dependency, and regardless of how we choose the parameters of the
system, only a particular family of n X n real matrices will be obtainable as Jacobians of the system. For example,
no matter what values we take for the parameters of the Lorenz system, the (1, 3)-entry of the Jacobian matrix
will always be zero, and the (1, 1)-entry will always be equal to the negative of the (1, 2)-entry. It follows that if we
were interested in assessing the stability probability of one of the Lorenz system’s EPs, it would be inappropriate
to calculate P (stable| k) using, for example, a matrix probability density function, ki, that associates non-zero
density with matrices for which the (1,3)-entry is non-zero or (1, 1)# —(1, 2). Nevertheless, many previous
analyses have failed to account for the structure and dependency present in realistic Jacobian matrices (i.e. ones
derived from models of real systems), instead restricting attention to matrix probability density functions that
yield analytically tractable results and assuming that the results so obtained were general.

2.1. Anillustration
To further illustrate the implications of neglecting Jacobian structure, we consider a number of examples from a

family of ODEs whose Jacobians have the form ( _bl _“1 ), with a, b € R. In this case, the space of all matrices
can be straightforwardly represented as a 2-dimensional Cartesian coordinate plane, in which the abscissa
describes the value taken by a and the ordinate the value taken by b (as in figure 1).

More precisely, we consider systems of the form,

dx
—=—-x+ )0)
PP 5 0)

dy
E=—y+g2(x, 0), (1)
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whose Jacobians are given by,

0
-1 —g,(y, 0
oy & (> 0)
a >
—g,(x, 0 -1
ox 8% 0)
where 0 s the vector of model parameters, and x and y are the state variables.

Example 1. We start by considering the following (simple, linear) choices for g, and g,:

8 (y: 9) = 91)’)
8 (x) 6) = 9236,

with ) and 6, both non-zero. In this case, the Jacobian for the system is

-1 6
0, —-1)
which is a function only of 8, and 6, (and notof x or y).

The EPs are given by solving the simultaneous equations:

dx

—=0=}’—x+6 =0)

dt 4

dy

—=0=—y+0,x=0. 2
ar Yy + 6, (2)

Itis straightforward to show that the only solution that holds for all values of 6y, 6, is [x, ¥] = [0, 0]. For this

b
of the parameters 6, and 6, can take any value in R. We do note, however, that in practice this model is likely to

be of only limited interest, since it describes a system in which both of the interacting variables (e.g. species) will
eventually become extinct.

system, the form of the Jacobian means that we may obtain any matrix of the form ( a ] ), provided that each

Example 2. We next consider a nonlinear example:

gl (}’> 9) = (91)/2,
k53 (X, 0) = 92x)

with 6, and 6, both non-zero. In this case, the Jacobian for the system is

-1 291}/
0, -1)
which is a function not only of 8) and 6, butalso y.
It is straightforward to show that the only EPs that exist for all permitted values of 6, and 8, are: (i) EP1:

[x, ] = [0, 0} and (i) EP2: [x, y] = [ﬁ ﬁ]

The Jacobian evaluated at EP1 is ( 0 01). Thus the region of the (a, b) Cartesian coordinate plane
, -

representing the possible Jacobians associated with EP1 is simply the line a = 0. Similarly, the Jacobian evaluated

tEP2i
a is ( 0,

2/0
_ 12), and hence the region representing the possible Jacobians associated with EP2 is the line

b =2/a.

Example 3. We consider a further nonlinear example:

g1 ()/, 9) = 01}/3)
g (x, 0) = O1x,
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with ) and 6, both non-zero. In this case, the Jacobian for the system is

-1 30,y?
0, -1)
which is again a function of 6y, 8,,and y.
In this case, it is again straightforward to show that the only EPs that exist for all permitted values of 8; and 6,

. ) _ ) . . _ 0, 1
are: (1) EP1: [x, y] = [0, O];and (ii) EPs 2 and 3: [x, y] = i[—m, —m].

The Jacobian evaluated at EP1 is again ( 0, _01) Thus the region of the (a, b) Cartesian coordinate plane
representing the possible Jacobians associated with EP1 is again the line a = 0. The Jacobian evaluated at EP 2 or 3
is ( ;21 3161’2), and hence the region representing the possible Jacobians associated with these EPs is the line
b =3/a.

Assessing stability for these examples

-1 a
b -1

(=1 =2A)(=1—=2) —ab = 0,ie. (1 + 1)* — ab = 0. The eigenvalues of ] are the solutions of this equation, and

aregivenby 4, = -1 + Jab . Jisin the stable region, ASZ, provided the real parts of 4, , are both negative. First,

we note that if ab is negative (i.e. if sgn (a) = —sgn (b)) then the real part of both eigenvalues is —1 and hence Jis

For any matrix of the form ] = ( ), the characteristic equation |/ — AL| = 0 maybe expanded as

in the stable region. If ab is positive, then 1, = —1 — \/ab < —1, so this eigenvalue is certainly negative, and it
remains only to consider the sign of the other eigenvalue, 4, = —1 + +/ab. This eigenvalue is negative ifand

b -1
illustrated in figure 1. We also show the regions representing the Jacobians evaluated at the EPs for the systems
considered in examples 1-3. Wherever these regions intersect the stable region, the corresponding EP(s) will be
stable. The probability of a particular system being stable around a given EP, X, is therefore equivalent to the
probability of the relevant Jacobian evaluated at x falling within one of these intersections. We consider how
this probability should be defined in the next section. However, it is clear that if we ignore the existence of these
regions when defining 4, the matrix probability density function, and instead choose 4 in an arbitrary manner
for the sake of analytical tractability (as illustrated by the contour lines in figure 1), then the resulting value we
obtain for the ‘stability probability’ will be similarly arbitrary, and hence have little meaning or validity for any
specific model.

onlyif ab < 1. We may thus completely determine the stable region for matrices of the form -1 oa ),as

2.2. Formal description
For any system of n ODEs, the Jacobian matrix of the system evaluated at a particular EP x, will be an element, ],
oftheset of n X n real matrices M,, (R). The EP x; islocally stable if all of the eigenvalues of ] have negative real
part. An equivalent criterion is that the real part of the leading eigenvalue (i.e. the one having maximal real part)
is negative.

We first consider the set of all # X 7 real matrices, M, (R). The eigenvalues of any matrix ] € M,,(R) are the
solutions of the characteristic equation,

|J] — AL,| =0,

where I, denotes the n X n identity matrix [11]. We define Ag' C M, (R) to be the setof n X n matrices having
all negative eigenvalues, and refer to this as the stable region of M,, (R).

The choice of a particular RME specifies a probability density function, i, on M,, (R). The stability
probability associated with 4 is then

P (stable |h) = f] L hO, (3)

i.e. itis the total probability mass that falls within the stable region.

Crucially, the stability probability is determined by two factors: A and h. A¢' is not random: for a given n it
is a well-defined region of M,, (R). For systems of practical interest, however, this area cannot be determined
analytically, and needs instead to be evaluated computationally, using e.g. Monte Carlo techniques (which are
outlined below in 2.3). The results of stability analyses will therefore be completely determined by the choice of
h, and how it distributes probability mass over the stable and unstable regions (see figure 2). If i is defined
through the specification of an ODE model and a distribution for its parameters, then only matrices that can

5
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5
A D Stable region

. Unstable regions

a a

a

Figure 2. The means, variances and covariances of entries of random Jacobian matrices all have an impact upon stability probability.
To illustrate, we consider 2 X 2 random matrices with off-diagonal terms [a, b]T ~ N (i, X)and —1 on the diagonal. Itis
straightforward to show that such matrices are stable if ab < 1and unstable if ab > 1. We take various choices for g and %, and
illustrate the resulting bivariate normal distributions using coloured contours. (A) The location of the mean has an impact on stability
probability: (I) represents the usual choice, g = [0,0]"; however other choices can clearly lead to (II) lower or (III) higher stability
probabilities. (B) The variances of a and b have an impact on stability probability: e.g. for fixed mean g = [0,0]", taking smaller or
larger variances leads to, respectively, (I) higher or (II) lower stability probabilities. (C) The covariance between a and b has an impact
on stability: e.g. for fixed mean g = [0,0]7, whether aand b covary negatively or positively leads to, respectively, (I) higher or (II)
lower stability probabilities.

occur as Jacobians for that particular system will have non-zero density. Similarly, if 4 is defined without
reference to a real system, then only some of the matrices in M,, (R) will be associated with non-zero density.
However, for any given real ODE system, these matrices might not be obtainable as Jacobians, and—conversely
—not all matrices obtainable as Jacobians will necessarily be associated with non-zero density by such a defined
h, therefore limiting its relevance.

An appropriate choice of 1 is thus vital. In particular, choosing & for the sake of mathematical convenience
can only provide limited insight, if doing so comes at the cost of sacrificing realism. The so-called ‘diversity-
stability debate’ [6] arose because general conclusions about stability were drawn from RMEs that were either
specific to a particular system [25-32] or chosen for mathematical convenience [19, 20]—e.g. to invoke the
circular law [5, 15, 21]—yielding results unlikely to be meaningful for any interesting realistic system [37].

Here we show that the dichotomy resulting from the use of different RMEs can be overcome by constructing
RME:s that are appropriate for, and conditioned on, the properties of Jacobian matrices of real systems.

2.3. Monte Carlo estimates of stability probability
We consider autonomous ODE systems of the form

x(t) = f(x(1); 9),

where x(t) = [x(?), ..., x, (1) ]" is the vector of state variables at time t, @ is the vector of parameters, and
f(x(t); 0) = [f,(x(t); 9), ..., fp (x(t); @)]". By definition, an EP, x}, of the system has the property:

f(x},; 0) =0.

We include the subscript @ in our notation for the EP to emphasise that its location, existence, and stability
will generally depend upon the particular values taken by the parameters. We denote by J the Jacobian matrix
of f evaluated at xj.

We can induce an ensemble, R, of Jacobian matrices by specifying a distribution, 7', for the parameters 6: a
collection of N parameter vectors 8, ..., ™) sampled from F defines an ensemble of corresponding matrices
Jow» --+> Jyu - For any such RME, we may calculate a Monte Carlo estimate of the probability of stability, simply
as the proportion of matrices that are stable; i.e. for which the leading eigenvalue has negative real part. That s,
we obtain an estimate of the stability probability as,

6
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N
, 1 .,
P (stable |R) » — ; [I(]a(,.) € Al ) (4)
where [ (X) is the indicator function, which is 1 if X is true and 0 otherwise.

2.4. Conditional random matrix ensembles

The estimated stability probability defined in the previous section is the probability of a system being stable,
conditional on a given system architecture; as discussed in section 2 and illustrated in section 2.1 such
architectures do not arise without a concrete context. However, the conditions for which the circular law is
believed to hold lack this connection to reality, at least for mesoscopic systems. To study the effects of this
context, which is encapsulated by the statistical properties of, and dependencies among, the entries in the
Jacobian matrices | PO ] o> We consider two further random matrix distributions, constructed by

permutation of the entries of our original RME. First, we form a new matrix ensemble, K()s -5 Kiyy»in which
the dependency between entries is broken. Foreach # € {1, ..., N}and (i, j) € {1, ..., p} X {1, ..., p} weset

(K(}) )ij = ( Ty )i]_, with g drawn uniformly at random from {1, ...N}. In this way, the marginal distribution of

the ij-entries across the ensemble of K* matrices is the same as the marginal distribution of ij-entries across the
ensemble of ]y matrices. Maintaining the marginal distributions ensures that the dependency between entries is
the only quantity that we are altering: in particular, the location of zeros in the matrix and the magnitudes of
interaction strengths are maintained. We construct a further RME, L), ..., L(y), where for each

£ efl,..,Nland (i j) € {1, ..., p} x {1, ...,p},weset(L(}) )ij = (]0*@ )rs,withqdrawnuniformlyat

random from {1, ...N},and rand s (independently) drawn uniformly at random from {1, ...p}. Now, the
location of zeros in the matrix is no longer fixed; although the probability of an entry being zero is the same for
the L* matrices as for the J;’s and K*’s. Moreover, each entry of the L* matrices is i.i.d. We henceforth refer to
the Jp matrices as the fully conditioned system (FCS) ensemble (most structure); the K* matrices as the
independent ensemble (intermediate structure); and the L* matrices as the i.i.d. ensemble (least structure). We
illustrate the properties of these three RMEs, and the methods for their construction, in figure 3.

To further our investigation we defined four more RMEs (which are presented in more detail in the
supplementary information). The first one will be referred to as the independent normal ensemble. It is
constructed as follows: For each (4, j), we fit an independent normal distribution to the ij-entries of the sampled

Jacobians, [, ..., ]y, . Thatis, for each (4, j), we calculate the mean,
Pt P J
L X
ind _ © .
Hijy = N Z(]g(q) )ij’
q=1
and standard deviation,
N
i )
o) = s.d.{ (]0(/1) )i]}
q=1
We then construct the new RME, M(ifl)d, o M(i;\’,‘)j,where foreachZ € {1, ..., N}and
(i, 7)) € {1, ..., p} x {1, ..., p}, weset (M(i}‘)d ) to be a sample drawn from the univariate normal distribution
ij

with mean u (lf;‘; and standard deviation a(iif}‘;. By construction, the mean and standard deviation of the ij-entries
across the ensemble of M™ matrices are the same as the mean and standard deviation of the ij-entries across the
ensemble of J; matrices (the FCS ensemble) and across the ensemble of K* matrices (the independent ensemble).
A further ensemble is given by the independent Pearson ensemble. As in the independent normal case defined
above, this new RME is defined by fitting a distribution to the 7j entries of the sampled Jacobians, except that
rather than using a normal distribution and just capturing the mean and standard deviation, we also capture the
ind

skewness and kurtosis of the 7j-entries of the Jy matrices. That is, in addition to u i) and a(iif}‘)i defined earlier, we

also calculate skewness
N
ind _ .
7(11'3‘) = skewness{ (]0<q> )1} .
i) e
and kurtosis,

N
ind . "
K(lir,lj) = kurtOSlS{ (]o(q) )lj} .

=1
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FCS: (1) 1 (1) 2 -2 2
e . Jin 2 s Ji G2 i3
Random matrix distribution, R, defined by: ” ” " (1 (1 (1 * (2) (20 (2
Jors- Jgon ~ R Jgay = Jél) J%) J%f; o = J%%; J%) Jé;
-0 [ 0 i s is i
1 -1 —/Blp—1) Independent:
J(s) J(IOI) J(l?) 1(645) j(z) J(sss)
11 12 13 11 12 13
VB(p—1) /Bp—1) -8 . - R . _ 973 253 791 rx 434 719) (314
Ky Ky o8 Ky = Jém; J%ézsz J%Gﬂi i J%én) Jé;gz)) J%gn;
with J31 Jz2 J33 Ja1 Jz2" Jss
3 ~ Uniform(0, 10)
o ~ Uniform(0, 10) i.i.d.:
(742) (JS8) (47; (378)  .(43)  .(985)
p ~ Uniform(1,11) J %%z ) (332) (7 .]%3 ¥ 143% ) ;(15]x
M " * (729 93) * (o1 5 9
Ly Ly, o8 Ly = | g Ly = | 38 5P
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Figure 3. Random matrix ensembles (RMEs). (A) For a given ODE system (e.g. the Lorenz equations) and equilibrium point,
specifying a distribution for the parameters defines a random Jacobian matrix distribution. (B) Samples from this distribution define
the FCS matrix distribution; the independent and i.i.d. distributions are obtained from this by permuting elements as illustrated. ]("')
the term in row k and column / obtained in the mth sample from the random Jacobian matrix distribution R. The marginal
distributions for the elements of the matrices in the three distributions. In the FCS case, these reflect the parameter distributions and
the expressions for the Jacobian entries presented in (A); by construction, the marginals in the independent case are the same as for the
FCS; while in the i.i.d. case, all entries have the same marginal distribution. (D) We illustrate the joint distribution for two matrix
entries: in the FCS case, the two entries exhibit dependency, whereas in the independent and i.i.d. cases, the joint is the product of the
marginals.

We then construct an RME, MAT, ..., M}, where foreach 7 € {1, Ntand (i, j) € {1, ..., p} X

pear
{1, ..., p}, weset (M(f) ) to be asample drawn from a univariate Pearson distribution with mean Hiij md

standard deviation 6 y skewness %,y and kurtosis k; j). This RME thus shares many of the properties of the

marginal dlstr1but10ns of ij-entries across the ensemble of J, matrices, but does not capture the dependencies
between them.

The third additional RME will be referred to as the i.i.d. normal ensemble. This time we will not fita
distribution to the 7j-entries of the Jj matrices, but instead we fit a normal distribution, using the same technique
that we used for the independent normal ensemble defined above, to the ij-entries of the L* matrices (i.e. those
fromthei.i.d. ensemble ).

Finally, we construct an RME that attempts to capture some of the dependencies between the entries of the
Jp matrices. We define c(M) to be the vector obtained by concatenating the columns of the matrix M (and
further define ¢! be the inverse operation, so that, for example, ¢~ (c (M)) = M). Applying ¢ ( - ) to the
matrices from our FCS RME, we obtain N vectors of length p X p, namely: ¢ (] P )y . c(J ) ). To these, we fit
(by maximum likelihood) a (p X p)-variate normal distribution. We then sample N vectors, v, ..., vy, of
length p X p from this distribution, and form a new ensemble M3}, ..., M(R\" by setting M@™ = ¢~*(v;). We
will call this new ensemble the multivariate normal ensemble.

These new ensembles allow us to control which aspect of the structure of the FCS gives it its stability
properties. For instance comparing the independent normal ensemble, the independent Pearson ensemble and the
independent ensemble we can show the impact of the different moments of the distribution. The multivariate
normal and FCS ensembles can be used for the same purpose in the case where dependencies are considered.
More detail about the different RMEs is provided in the supplementary information.
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Figure 4. Stability results for the four example models. (A) The eigenspectra for each model and random matrix distribution, shown as
scatterplots. (B) The eigenvalue distributions visualised using heat maps (to aid visualisation, we omit pure imaginary eigenvalues).
(C) The distributions of maximal eigenvalues together with the estimated stability probabilities.

3. Results

3.1.RME choice determines stability assessment

Stability, as stressed above and in the literature, is an issue in a wide variety of domains, and therefore we
consider a set of systems that cover different qualitative behaviour of dynamical systems. The four ODE models
that we consider have in common that the EPs and Jacobians can be identified analytically, which makes analysis
straightforward; they are: (i) the Lorenz system [38]; (ii) a model of the cell cycle due to Tyson [39]; (iii) a model
of viral dynamics due to Nowak and Bangham [40]; and (iv) an SEIR (susceptible-exposed-infective-recovered)
population dynamics model [41]. For brevity, we will refer to these four example models as: (i) ‘Lorenz’; (ii)
‘Tyson’; (iii) ‘N & B’; and (iv) ‘SEIR’. In each case, we present results for physically or biologically feasible EPs
and generate 100 000 matrices from our RMEs in order to obtain Monte Carlo estimates of stability
probabilities. Full details of these models and their corresponding RMEs are provided in the supplementary
information.

Figure 4(A) shows the eigenspectra for the FCS, independent, and i.i.d. RME regimes. While thei.i.d.
eigenspectra are broadly circular, we observe diverse and decidedly non-circular shapes for the other two cases,
highlighting the limitations of previous analyses based upon the circular law. Figure 4(B) shows the density of
eigenvalues in the complex plane for the different models and RMEs. The eigenspectra distributions are typically
much less dispersed for the FCS ensemble than for the other two. As shown in figure 4(C) this also leads to
systematic differences in the real parts of the leading eigenvalues, which determine stability.

Table 1 shows that, whatever the model considered, the probability of stability of the i.i.d. ensemble is always
very different from the stability probability of the FCS. The RMEs that include more of the structure of the

9



I0OP Publishing NewJ. Phys. 17 (2015) 083025 PKirketal

Table 1. Estimated stability probabilities for the four example models using our seven different RME regimes.

Tyson SEIR N&B Lorenz
FCS 0.32109 1 1 1
Multivariate Normal 0.1105 0.72188 0.43744 0.92382
Independent 0.11151 0.56483 0.57161 0.7225
Univariate Pearson 0 0.58252 0.93296 0.43542
Univariate Normal 0.116 0.53502 0.26504 0.48366
L.i.d Normal 0.0377 0.14904 0.12702 0.14602
Lid. 0.03209 0.1371 0.12173 0.10419

system in their construction, yield stability probabilities closer to those of the FCS. In most cases, the univariate
Pearson ensemble had a probability stability closer to that of the FCS than the univariate normal, showing that
considering more moments when building the RME improves the estimation of the stability of the system.

In summary, Monte Carlo estimates for the stability probabilities decrease as we decrease the amount of
realism captured by the RME. Thus, failing to condition on the real-world heterogeneity and dependency
present in the Jacobian can result in an unnecessarily pessimistic assessment of stability, even for these small
systems. Considering RMEs in which we tightly control the mean, standard deviation, skewness and kurtosis of
the marginal distributions of Jacobian entries, demonstrates that all of these properties also have an impact on
stability.

3.2. Large dynamical systems can be stable

To illustrate the effects of inadequately capturing model structure and parameter dependencies on the stability
probabilities of larger systems, we consider extensions to the SEIR model (figure 5(A)). We allow for multiple
subpopulations of exposed (E) individuals (in the supplementary information we also investigate extensions
with heterogeneous infective subpopulations), enabling us to control system size. We again consider the three
RME:s described above (see supplementary information for full details). As we increase the size of the system, the
probability of stability remains 1 in the FCS case, but rapidly diminishes in the i.i.d. case (figure 5(B)). The
independent case is intermediate, indicating that not only can the dependence between matrix entries be
important, but also their heterogeneity. Heterogeneity changes the location of the centre of the matrix p.d.f. A,
and also how it stretches in different directions, which modifies the proportion of probability mass falling in the
stable region, Ag' € M, (R).

Figure 5(C) shows how summaries of the distributions of leading eigenvalues change as we increase the
number of exposed populations, with figure 5(D) providing corresponding density estimates for a selection of
these numbers. In the i.i.d. case, the distributions and median values shift away from stable negative values
toward unstable positive values. This is in stark contrast to the FCS case where, regardless of the number of
exposed populations, the distribution of leading eigenvalues only has support on the negative real line (and
hence we always have stability probability 1). Moreover, as we increase the number of exposed populations, the
median value of the leading eigenvalue tends to become more negative. The independent case is again
intermediate, with the median value staying relatively constant.

Figures S4 and S5 in the supplementary material, where we consider the effect of the i.i.d. normal, the
independent normal, the independent Pearson, and the multivariate normal ensembles on these models, bring
more evidence to our previous observations. As we would expect, the more of the underlying system’s structure
that we capture using our chosen RME, the closer we get to the stability probability estimated using the FCS
ensemble. The i.i.d. normal RME, which does not include any more structure than the i.i.d. ensemble, leads to
similar stability probabilities to those obtained using that RME. The independent normal, which allows the
heterogeneity of variances and means found in the real system to be described, yields stability probabilities closer
to the FCS ensemble. The independent Pearson, which also takes into account information about the skewness
and kurtosis of each entry, gets even closer to the FCS ensemble, and is very similar to the independent case.
Finally, the multivariate normal RME (which allows us to model—in a simplistic fashion—some of the
dependencies between the entries of the Jacobian) results in stability probabilities that are always closer to the
FCS ensemble than those obtained using the independent normal RME. We found that the stability probabilities
obtained using the multivariate normal RME are not consistently more different from FCS stability probabilities
than those obtained using the independent Pearson RME. Thus, accounting for dependency between the
Jacobian’s entries may, depending on the problem at hand, be more or less important than accounting for higher
order properties of the marginal distributions of the entries.

10



I0OP Publishing NewJ. Phys. 17 (2015) 083025 PKirketal

(@]

-1 0 1 2
Maximum real part
of eigenvalues

A
D Number of subpopulations
| =10 =20
10—5 —20 —100
FCS
2
g 5
(]
B 0
— — 10 —50
—_—5 =20 100
> 6
= 0.8 s % ¢ é § % % independent
8 ¥ Sl
8 os ¥ 4l
S Tpebitiete z
=) 0.4 3
= 0.4 Q,|
ﬁ 2
? 02} t ~ N
0 ‘ — :
C OM“W—H—O—H—O—O—’—C — — 10 =50
W 2»—5 — 20 —100_
2 i.i.d.
©
= 1.5¢
S =
'a £ 1
© o
E 0.5¢
Q
©
2
&
S
£
<
©
=

246810 30 50 70 90
Number of exposed subpopulations

Figure 5. How stability changes with system size depends on the random matrix distribution. (A) An extension of the SEIR model in
which we model n exposed populations, Ej, ..., E,. (B) Plot showing for each of the random matrix distributions how estimated
stability probability changes as we increase the number of exposed populations. Bars denote +2 s.d. Monte Carlo error bars. (C) Plot
showing median (filled circle) and interquartile range (bars) for the distributions of leading eigenvalues. (D) Density estimates for the
distributions of leading eigenvalues.

4. Discussion

The stability of real-world systems—which is nearly ubiquitously observed [ 1-3]—might seem perplexing in
light of classical results in random matrix theory. By considering how random matrices can be made to reflect
the properties of the Jacobian matrix of real dynamical systems it becomes possible to resolve and reconcile
apparent contradictions in the literature [5, 30, 31].
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In agreement with previous authors, our results demonstrate that stability probability can be affected by the
mean and standard deviation of the entries in the Jacobian, as well as the dependencies between them [30, 31],
and further show that properties such as the skewness and kurtosis of the entries can also have an impact. This is
unsurprising: as is clear from equation (2) and illustrated in figure 2, RMEs with different properties will result in
different proportions of probability mass falling within the stable region, Ag' C M, (R). Reported stability
probabilities should therefore always explicitly acknowledge that they are conditioned on a particular choice of
RME, which has to be carefully justified.

While May’s mathematical study clearly shows that in some circumstances an increase in complexity can
lead to instability [5], Haydon’s study highlights cases where complexity, in the shape of strong and numerous
interconnections, is necessary to get higher stability [19]. Other examples where complex systems have been
shown to be stable can be found in the literature, in particular Kokkoris et al show that different variances of the
interaction strength will allow for different levels of complexity of the system while keeping the same stability
[30]. However, none of these results can be generalised lightly. They in fact show that different systems are
impacted differently by changes in complexity, and that no general prediction can be made.

Here, the FCS ensemble conditions on the model structure, so that the RME is defined through the
distribution of model parameters. In our case, these distributions have been chosen by selecting plausible or
interesting ranges for the parameters, and taking uniform distributions within these ranges (in the
supplementary information we consider alternative possibilities). In real applications, a natural choice for the
distribution of model parameters would be provided in the Bayesian formalism by the posterior parameter
distribution (or, if no data are available, by the prior). From this, we may obtain the posterior (or prior)
predictive distributions [42] of the leading eigenvalues, from which we may derive the probability of stability. In
this way, a truly realistic assessment of stability may be obtained for the system, in which we have conditioned on
both our current understanding of the system architecture (encapsulated in our mathematical model) and our
current uncertainty in the model’s parameters.

Through our analyses, we have demonstrated that identifying any single property of the RME as being the
general determinant of stability is misleading, except in some cases when the system has been very strictly
defined [20, 27, 30, 31]. Stability probability is determined by the topology of the stable region, and how much
probability mass is deposited within that region by the RME. This cannot be summarily deduced from any single
property of the RME. At this stage it seems that system stability is system specific and that little can be gleaned
from general approaches that will at best be uninformative if not entirely misleading. In particular, we cannot
assess the probability of a system being stable based only on its size, diversity or complexity. It is especially
important to keep this in mind as the stability of more complicated systems is considered (see e.g. [7,43]).

This does not rule out the possibility that there are sets of rules or principles that could greatly shift the
balance in favour of stability. Negative feedback, for example, is likely to lead to more stable behaviour (even for
stochastic systems). It is in principle possible to condition on such local structures (in terms of correlated entries
in the Jacobian) that may confer or contribute to overall stability of a system [44]. To apply such knowledge to
real systems, however, would require a level of certainty about the underlying mechanisms that we currently lack
for all but the most basic examples. Nevertheless, even in the presence of uncertainty about system structures,
local negative feedback between species, for example, would tend to favour stability, whereas positive feedback
(or merely the lack of negative feedback) would typically result in amplification of initially small perturbations to
asystem’s behaviour [45].

Appendix. Methods

Two main methods were used. The first used an analytical approach, while the second used a numerical
approach. The first method was used on models 1 to 4, and on models 5 and 6 for n = 1-6. In these cases the
number of samples used was 100 000. The second method was used on model 5 and 6 for n = 1-10 and n = 20,
30,...,100, this time, for computational reasons, the sample size was 1000.

A.1. The analytical method
For each of the models, the EPs were found using Matlab’s analytic equation solver, solve. The Jacobian was also
described analytically using Matlab’s jacobian function.

The different parameters were sampled from a uniform distribution using Matlab’s rand function. The
choice of the range of the parameters will be described in detail below.
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A.1.1. Algorithm.  For each of the model, the EPs and their stability for a different range of parameters are
evaluated in the following way.
(i) Define the system of ODEs.

(i) Solve x; = 0, Vi € {1, ..., p}, where p is the number of species in the system and x;, i € {1, ..., p}isthe
set of species in our system.

(iii) Compute the Jacobian matrix of our system.
(iv) Sample a set of parameters for the system.
(v) Evaluate the EPs for that set of parameters.

(vi) If the EPs are biologically realistic, i.e. all of the species have a concentration that is positive or null, then
evaluate the Jacobian matrix at those EPs.

(vii) Else, ‘reject’ that set of parameters and sample a new set.
(viii) Reproduce steps 5-7 until the number of samples accepted reaches the number of samples wanted.

(ix) For each Jacobian matrix obtained, compute the eigenvalues; consider their maximum real part, each
system is considered as stable if and only if that maximum real part is strictly negative.

(x) The probability of a system being stable is then the number of stable systems divided by the number of
samples.

In order to evaluate the stability under the independent and i.i.d. conditions we add a step between steps 8
and 9: we process the Jacobian matrices by doing some permutations of the entries as described in section 2.4.

A.2. The numerical method

For each of the models, the EPs were found using Matlab’s equation solver, solve. The Jacobian was described
analytically using Matlab’s jacobian function. The different parameters were sampled from a uniform
distribution using Matlab’s rand function. The choice of the range of the parameters will be described in detail
below.

This method was used only on the S(nE)IR and the SE(nI)R models for computational reason (the
numerical method becoming too expensive with big 7). This method works well in this case because for these
models we know that there are 2 EPs and they are easily identified, so we can easily segregate the cases
corresponding to each of them when computing the probability of stability. The first EP, where the whole
population is composed of recovered individuals, is not interesting because it is obviously stable, so we only
consider the other EP in each system.

A.2.1. Algorithm.  For each of the model, the EPs and their stability for a different range of parameters are
evaluated in the following way.
(i) Define the system of ODEs.
(ii) Compute the Jacobian matrix of our system analytically.
(iii) Sample a set of parameters.

(iv) Solve x; = 0, V i € {1, ..., p}, where p is the number of species in the system and x;, i € {1, ..., p}is the
set of species in our system, using the set of parameters sampled.

(v) Only keep the EP which is not a population fully composed of recovered individuals and no other type of
individuals.

(vi) If the EPs are biologically realistic, i.e. all of the species have a concentration that is positive or null, then
evaluate the Jacobian matrix at those EPs.

(vii) Else, ‘reject’ that set of parameters and sample a new set.
(viii) Reproduce steps 3—7 until the number of samples accepted reaches the number of samples wanted.

(ix) For each Jacobian matrix obtained, compute the eigenvalues; consider their maximum real part, each
system is considered as stable if and only if that maximum real part is strictly negative.
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(x) The probability of a system being stable is then the number of stable systems divided by the number of
samples.

In order to evaluate the stability under the independent and i.i.d. conditions we add a step between steps 8
and 9: we process the Jacobian matrices by doing some permutations of the entries as described in section 2.4.

A.3.Parameter ranges

Two criteria were used to choose the range of the parameters: first they had to be realistic; second the range had
to be small enough to allow a thorough sampling of the space obtained to be computationally tractable. In the
cases when the ranges were fixed arbitrarily, we verified that choosing different ranges would not impact the
qualitative results.

A.3.1. Model 1: the Lorenz system.  To get the results obtained in the main article, we sampled the parameters
from the following ranges:

p €0, 10],
p € [1, 11],
o €10, 10].

p is considered to be bigger or equal to 1 in order to ensure more than just the origin as a equilibrium point,
which makes our study more interesting.

A.3.2. Model 2: amodel of the cell division cycle. ~ All the parameters were taken to be uniformly distributed
between Oand 1.

A.3.3. Model 3: the Nowak and Bangham model. ~ All the parameters were taken to be uniformly distributed
between 0 and 1.

A.3.4. Models 4, 5 and 6: the SEIR and extended SEIR models.
Model 4: the SEIR model. All the parameters were taken to be uniformly distributed between 0 and 1.
Model 5: the S(nE)IR model. All the parameters were taken to be uniformly distributed between 0 and 1.
Model 6: the SE(nI)R model. All the parameters were taken to be uniformly distributed between 0 and 1.
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