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Abstract
We establish and generalise several bounds for various random walk quantities including the mixing
time and the maximum hitting time. Unlike previous analyses, our derivations are based on rather
intuitive notions of local expansion properties which allow us to capture the progress the random
walk makes through t-step probabilities.

We apply our framework to dynamically changing graphs, where the set of vertices is fixed while
the set of edges changes in each round. For random walks on dynamic connected graphs for which
the stationary distribution does not change over time, we show that their behaviour is in a certain
sense similar to static graphs. For example, we show that the mixing and hitting times of any
sequence of d-regular connected graphs is O(n2), generalising a well-known result for static graphs.
We also provide refined bounds depending on the isoperimetric dimension of the graph, matching
again known results for static graphs. Finally, we investigate properties of random walks on dynamic
graphs that are not always connected: we relate their convergence to stationarity to the spectral
properties of an average of transition matrices and provide some examples that demonstrate strong
discrepancies between static and dynamic graphs.
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1 Introduction

Problem and Motivation. A random walk is a stochastic process on an undirected connected
graph G = (V,E). A particle starts on a specified vertex, and then at each time-step
t = 1, 2, . . . it moves to a neighbouring vertex chosen uniformly at random. Random walks
have proven to be extremely powerful in the design of various sampling schemes, exploration
strategies, and distributed algorithms [26]. They provide a simple yet robust way to explore
a large network. Most of the studies on random walks, however, assume the underlying graph
to be fixed. In contrast, many prevalent networks today (such as the Internet, social networks,
and wireless communication networks) are subject to dramatic changes in their topology
over time. Therefore, understanding the theoretical power and limitations of dynamic graphs
has been identified as one of the key challenges in computer science [28].
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93:2 Random Walks on Dynamic Graphs

Recently, several works have considered this problem and investigated the behaviour of
random walks [3, 4, 34, 12, 25, 32, 33] or similar processes [6, 9, 11, 18, 23] on such dynamic
graphs, and their applications to distributed networks [3, 34, 23]. Moreover, rather than a
property of the underlying network itself, dynamic graphs may naturally arise in distributed
algorithms when communication is performed on a changing, possibly disconnected, subgraph
like a spanning-tree or a matching (see, e.g., [7]).

One very popular model is that of an evolving graph, where we consider a sequence of
graphs G(1), G(2), . . . over the same set of vertices but with a varying set of edges. This model
has been the subject of the majority of previous studies of random walks on dynamic graphs
and will be the object of our study as well. Another important feature of dynamic networks
is that, with a changing set of edges, the resulting connectivity (i.e., expansion) changes.
This might be very common in communication networks, where nodes change their location
in space over time and can only communicate if they are within a certain distance of each
other. For example, [23] highlights the need to study such evolving graphs with relatively
poor connectivity and [28] emphasises the unpredictable nature of fast-changing dynamic
networks. To incorporate these features into our model, we will consider evolving graphs
with relatively mild assumptions on their connectivity and will not make any restriction on
how fast they are changing. Our quantitative analysis is focused on the mixing time, the
time to converge to the equilibrium distribution, and the hitting time, the expected number
of steps required by a random walk that starts in a vertex u to reach a vertex v. Analysing
the mixing time of dynamic graphs is also useful for load balancing applications, where
the mixing time represents the time it takes for all nodes to have (roughly) a load that is
proportional to their stationary distribution. Most theoretical studies of load balancing so
far assumed the graph to be fixed.

Our Results. The main motivation for our work comes from the results by Avin et al. [4],
which describe a remarkable dichotomy with respect to the behaviour of random walks
in evolving graphs: while sequences of connected graphs that share the same stationary
distribution are guaranteed to have mixing and hitting times polynomial in the size of the
graphs, even small incremental changes to the stationary distribution can cause hitting times
to become exponential in the worst case. We focus on the first case of this dichotomy and
prove that, at least regarding mixing and hitting times, there is essentially no difference
in the behaviour of random walks on static and evolving graphs with a time-independent
stationary distribution.

Recall that, for static graphs, it is well-known that the worst-case hitting time is O(n2)
for regular graphs and O(n3) for arbitrary graphs [14, 15]. Quite surprisingly, we can show
that something very similar holds in the setting of evolving graphs: our theorem below
proves an upper bound of O(n2) for the mixing and hitting times of regular evolving graphs,
which is optimal even for static graphs, an upper bound of O(n3) for the mixing time of
non-regular evolving graphs, which is again optimal even for static graphs, and an O(n3 logn)
upper bound for the maximum hitting time, which is only a factor of O(logn) short from the
optimal bound on static graphs (simply consider the Barbell graph, i.e., two cliques of size
n/3 connected by a path of length n/3, which has O(n3) mixing and maximum hitting time).
Below, we use p[0,t]

u,v for the probability that a random walk started in u is in v after t steps.

I Main Result 1 (restated, see Theorem 3.3 on page 9). Let G = {G(t)}∞t=1 be a sequence of
connected graphs with n vertices, the same stationary distribution π with π∗ = minu π(u),
and at most m∗ edges. Then:
1. tmix(G) = O(n/π∗),
2.
∣∣p[0,t]
u,v

πv
− 1
∣∣ . m∗

t + 1
π∗
√
t
, simplifying to

∣∣p[0,t]
u,v

πv
− 1
∣∣ . n√

t
if all graphs in G are d-regular,

3. thit(G) = O(n logn/π∗). Furthermore, if the graphs in G are d-regular, thit(G) = O(n2).
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We point out that the second statement in the above result is implied by [34, Lemma 4.6] for
the class of regular and bounded-degree graphs.
I Remark 1.1. In this work, we never explicitly derive upper bounds on the cover time (i.e.,
the expected time for a random walk to visit all vertices). However, analogous to Matthew’s
Bound for static graphs [26, Chapter 11.2], all the stated upper bounds on hitting times can
be converted into upper bounds on cover times at the cost of an additional O(logn)-factor.
I Remark 1.2. Unlike static graphs where the gap between cover and hitting time is O(logn)
(thanks to Matthew’s Bound), for evolving graphs the gap could be Ω(n) even if the sequence
consists of regular connected graphs. For example, for any t 6 cn lnn, let G(t) be a complete
graph with n vertices, while for any t > cn lnn, let G(t) be a cycle with n vertices. We can
choose the constant c so that, with probability 1 − Θ(n−1), every fixed vertex is visited
before cn lnn steps, but with constant nonzero probability, there is at least one unvisited
vertex which is at distance Ω(n) from the location of the walk at step cn lnn. This yields a
Θ(n) maximum hitting time, but a Θ(n2) cover time.
I Remark 1.3. Since the stationary distribution of a random walk depends only on the
degrees of the vertices, having the same stationary distribution means that the degrees in
each graph of the sequence are the same up to scaling.

A natural question is of course under which conditions the worst-case bound on the
hitting time can be improved. For static graphs, it has been observed that for many regular
networks, the hitting time is indeed optimal, i.e., O(n). One very general and unifying
condition is the conjecture of Aldous and Fill [1, Open Problem 6.20] stating that for any
bounded-degree, d-regular graph, an isoperimetric dimension of 2 + ε is enough for hitting
times to be linear (which is as good as possible). Since the isoperimetric dimension is equal
to the dimension of grids, it follows that grids of dimension 3 or higher have a linear hitting
time, while grids of dimension 2 have a hitting time of O(n logn).

For static graphs, a positive answer to the above conjecture by Aldous and Fill was first
given by [5], and another proof was found by [2]. Both these proofs, however, exploit the
connection between hitting times and electrical resistances [8], which is not known to exist
for general evolving graphs (however, for a special class of randomly evolving graphs such a
connection has been used in [4, Theorem 18]). Since our techniques for bounding hitting
times are more probabilistic in nature and avoid arguments based on electrical networks, we
are able to show that the conjecture by Aldous and Fill is true even in a dynamic setting.

I Main Result 2 (restated, see Theorem 4.2 on page 9). Let G = {G(t)}∞t=1 be a sequence of
n-vertex graphs such that each G(t) is regular, has bounded degree, and satisfies the following
isoperimetric condition: there exists ε ∈ [0, 1/4] such that, for any subset of vertices A with
1 6 |A| 6 n/2, |E(A, V \A)| = Ω(|A| 12 +ε). Then,
1. tmix(G) = O(n1−2ε),
2.
∣∣p[0,t]
u,v

n − 1
∣∣ = O

( 1
t1+2ε

)
,

3. thit(G) = O(n) if ε > 0, thit(G) = O(n logn) if ε = 0.

Note that the isoperimetric condition essentially says that each graph in the sequence
must be at least as well-connected as a (2 + ε)-dimensional grid. For ε = 0, we recover the
O(n logn) hitting time for static two-dimensional grids. Both of these cases might be relevant
in certain applications of moving wireless devices or robots performing terrain exploration.

The first two results apply to settings where there is a “stable connectivity”, but each
graph in the sequence may have a relatively poor expansion. The next result applies to
scenarios where connectivity is more intermittent, in fact some of the vertices may even be
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93:4 Random Walks on Dynamic Graphs

isolated at some time steps. However, “averaging” over a sufficiently long time window, the
graph will not only be connected but might also satisfy some reasonably strong expansion
guarantee. In this sense, this model is somewhat related to that of [22], which stipulates the
existence of a spanning subgraph over any time-interval of a certain length. More formally, in
the next theorem we assume that the random walk is on a sequence G of graphs with transition
matrices P (1), P (2), ... and there exists a time-independent distribution π which is stationary
for any P (i). We remark that we do not assume connectivity and, therefore, any individual
P (i) might have multiple stationary distributions. We assume, however, that there exists a
large enough time window t such that, for any i > 1, P [i,i+t] = 1

t (P
(i) +P (i+1) + · · ·+P (i+t))

is ergodic with a unique stationary distribution π and spectral gap λ(P [i,i+t]) > λ > 0. We
then can show that the distribution of a lazy random walk on G converges to π at a rate
that depends on t and the spectral gap λ. We refer to Section 5 for details on the set-up.

I Main Result 3 (restated, see Corollary 5.3 on page 11). Consider a dynamically evolving
sequence G = {G(t)}∞t=1 of graphs with transition matrices {P (i)}∞i=1 such that (1) there exists
π which is a stationary distribution for any P (i); and (2) there exists a time-window t > 0
such that, for any i > 0, P [i,i+t] = 1

t (P
(i) + P (i+1) + · · ·+ P (i+t)) is ergodic and has spectral

gap λ
(
P

[i,i+t])
> λ > 0. Then, tmix(G) = O

(
t2 log(1/π∗)λ−1), where π∗ = minu π(u).

This result is not only significant in the context of dynamically evolving graphs, but
also in settings of static graphs where communication is restricted to a bounded-degree
subgraph which potentially changes in each round. One prominent example are matching-
based communications, where in each round a random matching is generated and only those
edges can be used for averaging or exchanging information, e.g., [7].

Even when the assumptions of Main Theorem 3 are satisfied for a small time-window
t, we cannot always guarantee that hitting and mixing times will be polynomial in the size
of the graphs. Indeed, we exhibit examples of dynamic evolving graphs of n vertices that
satisfy such conditions but have mixing and/or hitting times that are exponential in n and
t. We show in Proposition 5.5 that, since graphs in the sequences need not be connected,
it is possible to construct examples where the stationary distribution π has exponentially
small probability mass on some vertices. This could result in exponential mixing and hitting
times, but somewhat surprisingly also possibly in polynomial mixing time and exponential
maximum hitting time. Both of the constructed graph sequences rely on the idea of simulating
a directed graph by a sequence of disconnected bipartite graphs. We note that the idea of
simulating directed graphs with a sequence of evolving graphs was introduced in [4], where it
is shown how to simulate a directed graph by a sequence of connected evolving graphs with
varying stationary distribution. In contrast, our result rely on simulating dynamic graphs
with a sequence of disconnected evolving graphs with the same stationary distribution.

A natural question is whether we can relax the assumptions on the regularity or existence
of a time-invariant stationary distribution. Unfortunately, we show that this is not always
possible. We exhibit in Proposition 5.4 a sequence of graphs which are connected, have
bounded-degree and constant spectral gap, but for which t-step probabilities are very far
from the uniform distribution even for a time t which is larger than the mixing time of a
random walk on any (static) graph in the sequence.

Going back to Main Result 2, the essence behind the proof is that, to achieve an optimal
O(n) hitting time, we do not need large sets to have high expansion. What we only need is
that small sets have a “sufficiently high” expansion. We derive another result in the same
spirit by upper bounding a variational characterisation of the commute time in terms of
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some version of the conductance profile [27]. However, since we need to exploit a variational
characterisation of the commute time, as opposed to the earlier results, this bound only holds
for static graphs. Let Cst be the commute time from s to t. Then, we have the following.

I Main Result 4 (restated, see Lemma 6.1 on page 12). For any static graph G = (V,E) and
s, t ∈ V , there exists a labelling of the vertices from 1 to n such that Cst 6 2m

∑n−1
j=1 |∂[j]|−1,

where ∂[j] is the set of edges with one endpoint in {1, . . . , j} and one in {j + 1, . . . , n}.

Note the relation between Main Theorem 4 and the well-known Nash-Williams’ inequality
[26, Proposition 9.15] which states that, for every set {E1, E2, . . . , Ek} of edge-disjoint cut-
sets separating s from t, Cst > 2m

∑k
j=1 |Ej |−1. Our upper bound, however, differs from the

Nash-Williams’ inequality in two ways: (1) the cut-sets ∂[j] are in general not edge-disjoint;
(2) we prove the existence of a “good” labelling, while Nash-Williams holds for any labelling.

As an application of this result, we consider the hitting time on d-regular graphs in terms
of the edge-connectivity (i.e., the smallest number of edges that would need to be removed
to make the graph disconnected), which does not impose any condition on the expansion of
large sets.

I Main Result 5 (restated, see Theorem 6.3 on page 13). Let G = (V,E) be any static d-
regular graph with edge-connectivity ρ. Then thit(G) 6 O(n2 · ( log d

d + 1
ρ )). In particular, since

ρ 6 d, we get the simpler (but potentially slightly weaker) upper bound thit(G) = O(n2 log d/ρ).

We remark that in Aldous and Fill [1, Proposition 6.22], it was shown that for any d-
regular graph G which is ρ-edge-connected, the maximum hitting time is O(n2d ·ρ−3/2). They
also mention that if the graph is Ω(d)-edge-connected, they obtain a bound of O(n2 · d−1/2).
For this case of maximal edge-connectivity, ρ = Θ(d), our bound is considerably better than
the one by Aldous and Fill, and, modulo the log d-factor, gives also the right dependency on
d. In particular, we demonstrate in Section 6 that the dependency on the edge-connectivity
ρ is as good as possible (neglecting logarithmic factors) in the sense that for any pair of
ρ and d, there exists a d-regular graph with edge-connectivity ρ which matches the upper
bound in Main Result 5 (Theorem 6.3) up to constant factors.

Further Related Work. While in this work we focus on standard (lazy) random walks on
graphs, we should point out that previous work has established an alternative in form of
the so-called max-degree walk [4, 12]. In this random walk variant, a large loop probability
depending on the degree of the current vertex and (an estimate of) the maximum degree
∆ is added. With this modification, the stationary distribution of each graph is identical
(and uniform), which makes the analysis of this walk easier. However, one downside of this
approach is that it either requires a good estimate of ∆ (or even n), or the random walk may
potentially be slowed down significantly. Also, studying standard random walks seems more
natural and, as we will see later, it also helps us to uncover some of the subtle boundaries
between fast mixing and polynomial hitting, and slow mixing and exponential hitting.

One of the earliest appearances of dynamic graphs is in the context of load balancing [17],
where the authors assumed a uniform (i.e., time-independent) lower bound on the edge
and vertex expansion. A refinement is to instead relate the balancing (mixing) time to
the geometric mean of the spectral gaps, which was used in [13]. A result of a similar
flavour for both the conductance and the vertex expansion was shown in [18] in the context
of randomised rumour spreading, and more recently a similar result was shown for the
voter model [6]. In [22], the authors analyse a sequence of graphs satisfying a T -interval
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93:6 Random Walks on Dynamic Graphs

connectivity property, which asserts that for every T consecutive rounds there exists a stable
connected spanning subgraph. The authors present upper bounds for several distributed
computational problems.

One specific graph model that has been very popular is the so-called Markovian evolving
graph. In this model every edge is associated to the same but independent two-state birth
and death chain which decides whether the edge is present or not in the next step. Many
aspects of this network have been studied, most notably the (dynamic) diameter [10] and
the time to spread a piece of information [11]. Recently, however, Lamprou et al. [25] also
considered the cover time of these graphs. In particular, suppose there exists an underlying
graph G with minimum degree δ such that at each time t the graph G(t) contains each edge
in G independently with probability p (i.e., the presence of an edge does not depend on the
past). They show the cover time of such dynamic graph is at most tcov(G)/(1− (1− p)δ),
where tcov(G) is the cover time of G. They also study random walks with a delay, where
at each step a particle chooses a random neighbour of the current vertex according to the
topology of the underlying graph G, and moves there if the corresponding edge is present,
otherwise waits till it becomes available. For this perhaps slightly less natural process, they
give bounds on the cover time also for the case where the probability of an edge being
available at time t depends on whether that edge was available at time t − 1. We also
highlight dynamical percolation, a particular type of Markovian evolving graphs that has
received recent attention (see, e.g., [20, 30, 36]). Here, an “open” edge becomes “close” with
probability p, while a close edge becomes open with probability 1 − p. In contrast to the
literature above, however, works on random walks on dynamical percolation usually refer to
continuous-time random walks.

Another class of dynamic graph models involves agents that move in some bounded space
and can interact only if they are close enough [24, 29, 31]. In contrast to these works, our
bounds are less tight but hold under much weaker assumptions on the graph and therefore
capture a more dynamic and less “regular” setting.

Finally, we mention that Saloff-Coste and Zuniga [32, 33] have generalised spectral and
geometric techniques, such as Nash and log-Sobolev inequalities, to time-inhomogeneous
Markov Chains (of which random walks on dynamic graphs are a subset). In particular, in
contrast to our results, they study chains where the individual transition matrices might
not have the same time-independent stationary distribution. For this reason, they focus
on merging properties of these chains, i.e., the ability of the chain to “forget” the initial
distribution. They obtain bounds on merging for chains that satisfy the c-stability property,
which implies (but it is not equivalent) that the stationary distributions of the individual
transition matrices do not change too much over time. Unfortunately, proving that a time-
inhomogeneous chain is c-stable is itself very difficult, and they are able to obtain concrete
bounds on merging only for very simple time-inhomogeneous Markov chains.

2 Notation and preliminaries

Let G = {G(t)}∞t=1 be an infinite sequence of undirected and unweighted graphs defined on
the same vertex set V , with |V | = n. We study (lazy) random walks on G: suppose that
at a time t > 0 a particle occupies a vertex u ∈ V . At step t + 1 the particle will remain
at the same vertex u with probability 1/2, or will move to a random neighbour of u in
G(t). In other words, it will perform a single random walk step according to a transition
matrix P (t), which is the transition matrix of a lazy random walk on G(t): P (t)(u, u) = 1/2,
P (t)(u, v) = 1/(2du) if there is an edge between u and v in G(t) (and in this case we write
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u ∼t v), or P (t)(u, v) = 0 otherwise. We denote with p[t1,t2]
u,v the probability that a random

walk that visits vertex u ∈ V at time t1 will visit v ∈ V at time t2 > t1. Notice that given
an initial probability distribution p(0) : V → [0, 1], p[0,t] = p(0)P [0,t] = p(0)P (1)P (2) · · ·P (t) is
the probability distribution after t steps.

Unless stated otherwise we assume that all the graphs in G are connected and have
the same stationary distribution π, i.e., πP (t) = π for any t > 0. We denote the smallest
value assumed by π as π∗ = minx∈V π(x). We define the `2(π)-inner product as 〈f, g〉π =∑

u∈V f(u)g(u)π(u) for any f, g : V → R. Analogously, we denote with ‖f‖2,π =
√
〈f, f〉π

the `2(π)-norm of f : V → R. Notice that since all the graphs in G are undirected, for
any t > 0, P (t) is reversible with respect to π, i.e., π(x)P (t)(x, y) = π(y)P (t)(y, x) for any
x, y ∈ V (this is also called the detailed balance condition). Moreover, P (t) is self-adjoint for
the `2(π)-inner product: for any f, g : V → R,

〈P (t)f, g〉π = 〈f, P (t)g〉π. (1)

We will often work with the likelihood ratio ρ[0,t]
u,· = p

[0,t]
u,· /π(·). When it is clear from the

context, we will drop the starting point u and use the shorthands p(t) and ρ(t) to indicate
(respectively) the probability distribution of the random walk at time t and its likelihood
ratio. We define the `2 mixing time as

tmix(G) = min{t : ‖ρ[0,t]
u,· − 1‖2,π 6 1/3 for any u ∈ V }.

Observe that, since Eπ ρ(t) = 1, we have that ‖ρ(t) − 1‖22,π = Varπ ρ(t) = Eπ
(
ρ(t))2 − 1.

Let p be a probability distribution with likelihood ratio ρ = p/π. For a reversible P ,

Pρ(u) =
∑
v∈V

P (u, v)ρ(v) =
∑
v∈V

P (u, v) p(v)
π(v) = 1

π(u)
∑
v∈V

P (v, u)p(v) = pP (u)
π(u) ,

from which it follows that P (t) · · ·P (1)ρ(0)(u) = ρ(t)(u).
Given a transition matrix P with stationary distribution π and a function f : V → R, we

define the Dirichlet form as

EP (f, f) = 1
2
∑
u,v∈V

(f(u)− f(v))2
π(u)P (u, v).

When P is a transition matrix of a lazy random walk on a graph G = (V,E) with |E| = m,
EP (f, f) = 1

4m
∑
u∼v (f(u)− f(v))2, where u ∼ v stands for {u, v} ∈ E. As long as P is

lazy (i.e., P (u, u) > 1/2 for any u ∈ V ), we can relate the `22 distance of a distribution from
stationary to its Dirichlet form [16, Proposition 2.5]:

Varπ ρ(t) > Varπ ρ(t+1) + EP (t+1)(ρ(t), ρ(t)). (2)

The spectral gap of P is defined as

λ(P ) = inf
f :V→R

Varπ f 6=0

EP (f, f)
Var f .

We denote with ΦP (A) the conductance of a subset of vertices A ⊂ V :

ΦP (A) =

∑
u∈A,v 6∈A

π(u)P (u, v)

min {π(A), π(V \A)} ,
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93:8 Random Walks on Dynamic Graphs

where π(A) =
∑
u∈A π(u). The conductance of P is then defined as Φ(P ) = minA⊂V ΦP (A).

Cheeger’s inequality [35] relates λ(P ) to the conductance Φ(P ) of a reversible P : 2Φ(P ) >
λ(P ) > Φ(P )2/2.

Given two vertices u and v, we denote with τu,v the hitting time of v from u, i.e.,
the expected time to reach v starting from u. The maximum hitting time is defined as
thit(G) = maxu,v τu,v. The commute time between u and v, denoted by Cu,v, is defined as
the expected time for a random walk starting from u, to reach v and then return to u.

Finally, we write A . B, respectively A & B, to mean that there exists some absolute
constant C > 0, independent of the parameters of the sequence of graphs G, such that
A 6 C ·B, respectively A > C ·B.

3 Worst-case bounds for mixing and hitting times

In this section we assume that a particle performs a random walk on a sequence of graphs
G = {G(t)}∞t=1 where all the G(t) share the same set of n vertices V , are connected, and have
a time-independent stationary distribution π with π∗ = minu π(u). In general, graphs in the
sequence might have a different number of edges, but the ratio degree of a node over total
number of edges remains the same. We denote with m∗ 6 n2 the maximum number of edges
a graph in the sequence can have.

Our goal is to bound mixing and maximum hitting times of a random walk on G. We
start by studying the rate of convergence to stationarity. By equation (2), our goal then
becomes to study Var ρ(t) 6 Var ρ(0) −

∑t−1
i=1 EP (i)(ρ(i−1), ρ(i−1)). The next lemma provides

a lower bound on the Dirichlet form of graphs in G. The main insight of this lemma is that
it shows a faster decrease of the `2-distance to stationarity when this distance is large, i.e.,
at the beginning of the walk. This is in the same vein as, for example, bounds on mixing
based on the spectral profile [19].

I Lemma 3.1. Let P be the transition matrix of a lazy random walk on a graph G ∈ G.
Given a probability distribution σ : V → [0, 1] with likelihood ratio f = σ/π such that
Varπ f = ε > 0,

EP (f, f) & max
{

ε2

m∗ + 1/(π2
∗(1 + ε)) ,

π∗ε
2

n

}
.

While the previous lemma will be directly used to derive bounds on mixing, to obtain a
bound on the hitting time we will need to study t-step probabilities. For this reason, we prove
a technical lemma that relates 2t-step probabilities to the variance of the likelihood ratio
of a t-step probability distribution, generalising a well-known result for time-homogeneous
reversible Markov chains (see, e.g., [1, Lemma 3.20]). We remark, however, that while in
time-homogeneous Markov chains 2t-step transition probabilities will be as small as the
variance of their t-step likelihood ratio, in our case, since the order in which transition
matrices are applied can matter significantly, this might not be necessarily true: we can only
relate these probabilities to the variance of the t-step likelihood ratio of a related but slightly
different Markov chain.

I Lemma 3.2. Let t1 < t2. Then, for any u, v ∈ V , it holds that∣∣∣ρ[t1,t2]
v,u − 1

∣∣∣ 6 max
{

Varπ
(
P (b t1+t2

2 c) · · ·P (t2)ρ
[t1,t1]
u,·

)
,Varπ

(
P (b t1+t2

2 −1c) · · ·P (1)ρ
[t1,t1]
v,·

)}
.

Using Lemma 3.1 and Lemma 3.2 we can obtain almost optimal worst case bounds on
mixing, hitting, and t-step probabilities of a random walk on G. In particular, when G
comprises only regular graphs, the next theorem implies a O(n2) bound on mixing and
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hitting times, which matches the well-known results for a random walk on a static undirected
graph. In the general non-regular case, we prove a O(n3) bound on mixing and a O(n3 logn)
bound on hitting, which almost matches the O(n3) bound for mixing and hitting in static
graphs. This improves upon [4], which presents a bound of O(n3 logn) for hitting on regular
graphs and a bound of O(n5 logn) for hitting in the general case.

I Theorem 3.3. Let G be a sequence of connected graphs with n vertices, the same stationary
distribution π, and at most m∗ edges in each graph. Then, for a lazy random walk on G:
1. tmix(G) = O(n/π∗),
2.
∣∣p[0,t]
u,v

πv
−1
∣∣ . m∗

t + 1
π∗
√
t
, simplifying to

∣∣p[0,t]
u,v

πv
−1
∣∣ . n√

t
if all the graphs in G are d-regular,

3. thit(G) = O(n logn/π∗). Furthermore, if the graphs in G are d-regular, thit(G) = O(n2).

The proof, which is omitted here, proceeds roughly as follows. First we establish the
bound on the mixing time based on Lemma 3.1, which readily implies that starting from a
distance to stationarity equal to ε, such distance is halved in O(n/(επ∗)) steps. We then
connect the distance to stationarity to t-step probabilities with Lemma 3.2, obtaining the
second result of Theorem 3.3. Finally, to bound the hitting time, we employ a probabilistic
argument already exploited in, e.g., [21], and which makes use of both our bounds on mixing
time and on t-step probabilities.

4 Bounds on hitting times based on the isoperimetric dimension

Aldous and Fill conjectured in their book [1, Open Problem 6.20] that whenever a regular
bounded-degree graph satisfies |E(A,Ac)| = Ω(|A| 12 +ε) for any small positive ε, the maximum
hitting time should be O(n). Observe that this isoperimetric condition is satisfied by the
torus in 3 or higher dimensions, which has indeed O(n) maximum hitting time. Furthermore,
to have O(n) maximum hitting time, ε needs to be strictly greater than zero: take for
example the 2-dimensional torus: there is a set A for which |E(A,Ac)| = Θ(|A|1/2) and,
indeed, the maximum hitting time is Θ(n logn).

The conjecture was first proved in [5], with a proof based on the relation between
commute times and effective resistances in a graph. Since a similar relation is not known for
time-inhomogeneous Markov chains, such a proof cannot be generalised to random walks on
dynamic graphs. In this section we present a new proof of this result based on the “conditional
expectation trick” already used in the proof of Theorem 3.3. We start by obtaining a bound
on the Dirichlet form of a graph satisfying the aforementioned isoperimetric condition.

I Lemma 4.1. Let G = (V,E) be a d-regular undirected graph with |V | = n and d = O(1)
such that, for any A ⊂ V with 1 6 |A| 6 n/2, |E(A, V \ A)| = Ω(|A| 12 +ε) for 1/4 > ε > 0.
Consider the transition matrix P of a lazy random walk in G. Let σ be any probability
distribution and f = σ/π, where π is the uniform distribution. If Eπ f2 = β > C for a large
enough constant C, then

EP (f, f) & β2−2ε

n1−2ε .

We now apply the previous lemma to prove the main result of this section in an analogous
way to the proof of Theorem 3.3.

I Theorem 4.2. Let G = {G(t)}∞t=1 be a sequence of n-vertex graphs such that each G(t) is
regular, has bounded degree, and satisfies the following isoperimetric condition: there exists
ε ∈ [0, 1/4] such that, for any subset of vertices A with 1 6 |A| 6 n/2, |E(A, V \ A)| =
Ω(|A| 12 +ε). Then,
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1. tmix(G) = O(n1−2ε),

2.
∣∣p[0,t]
u,v

n − 1
∣∣ = O

( 1
t1+2ε

)
,

3. thit(G) = O(n) if ε > 0, thit(G) = O(n logn) if ε = 0.

5 Bounds on mixing based on average transition probabilities

Unlike in the time-homogeneous case, eigenvalues of the individual transition matrices of a
time-inhomogenous Markov chain are not necessarily indicative of its mixing time, even when
there exists a unique time-independent stationary distribution. An emblematic example
is the following: consider a sequence of graphs G = {G(t)}∞t=1 defined over a vertex set
V = {1, . . . , 2n} such that, at odd t, G(t) is the union of two expanders (graphs with constant
spectral gap), one over {1, . . . , n}, the other over {n + 1, . . . , 2n}, while at even t, G(t)

is a perfect matching between {1, . . . , n} and {n + 1, . . . , 2n}. Since all the graphs are
disconnected, each transition matrix has spectral gap equals to 0, and eigenvalue bounds are,
in this case, useless to analyse convergence to stationarity. On the other hand, it is quite
clear that a lazy random walk on G mixes in Θ(logn) time.

A more precise way to study mixing in time-inhomogeneous random walks would be to
consider the spectral gap of the product of the transition matrices P (1) · · ·P (t). Unfortunately,
spectral bounds for the product of matrices are notoriously hard to come by. What is
significantly easier is to study the average transition matrix P = 1

t

(
P (1) + P (2) + · · ·+ P (t)),

which at least does not depend on the order in which the transition matrices appear. For this
reason, in this section we give bounds on mixing on G that depend on the Dirichlet form of
P . In particular, consider the aforementioned example where G(t) is two disjoint expanders
at odd times, and a perfect matching between the two sets at even times. Consider the
average transition matrix P = 1

2
(
P (`) + P (`+1)) for any two consecutive steps `, `+ 1: P is

just the transition matrix of a random walk on an expander graph defined over the entire set
of vertices. Our results, then, make us easily derive the correct bound tmix(G) = O(logn).

Throughout this section we assume that G = {G(t)}∞t=1 is a sequence of undirected graphs
over a vertex set V with |V | = n. The graphs are not necessarily connected, which means
they might have multiple stationary distributions. We require, however, that there exists a
time-independent distribution π which is a stationary distribution for all the graphs in G.
Fixing a time interval [t1, t2], we consider P = 1

t2−t1

(
P (t1) + · · ·+ P (t2)). We consider time

intervals for which P is irreducible. Note since the transition matrices {P (i)}i are strongly
aperiodic and reversible with respect to π, so is P . Therefore, we can always assume that P
is ergodic and has a unique stationary distribution π, unlike the individual matrices P (i).

For simplicity, we assume in our proofs that each graph in G has the same number of edges
m. Our results, however, also hold for sequences of graphs with different edges densities.

Notice that, by the detailed balance condition, if u ∼i v for some step i, π(u)/π(v) = du/dv,
where du and dv are, respectively, the (time-independent) degrees of u and v1. In particular,
this means there exists some αu > 0, which is independent from t, such that π(u) = αudu/2m
and π(v) = αudv/2m.

1 it may happen that u is isolated in some round i, leading to u having degree 0 in that round. However,
in that case, u can be safely ignored when computing EP (i) . Hence, because the stationary distribution
is always the same and so is the number of edges, we may assume that the degree of u is always du
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I Lemma 5.1. Let p(0) be an arbitrary initial probability distribution, and ρ(0) = p(0)/π.
Suppose that for some t > 1 and u ∈ V , |ρ(t)(u)− ρ(0)(u)| > ε > 0. Then,

Varπ ρ(0) −Varπ ρ(t) >
αu
4m

t∑
i=1

∑
v∼iu

(
ρ(i−1)(u)− ρ(i−1)(v)

)2
>

2ε2π(u)
t

.

We are now able to relate Varπ ρ(0) − Varπ ρ(t) to EP (ρ(0), ρ(0)). The proof of the next
theorem works roughly as follows. We divide the vertices in two classes: U contains all
the vertices for which there exists an 1 6 i 6 t − 1 such that ρ(i)(u) differs significantly
from ρ(0)(u), while V \ U contains the rest. We then use Lemma 5.1 to lower bound the
contribution given by vertices in U to Varπ ρ(0) − Varπ ρ(t). Since for u 6∈ U , ρ(i)(u) has
not changed much from ρ(0)(u), we can instead directly lower bound its contribution to
Varπ ρ(0) −Varπ ρ(t) just looking at its contribution to EP (ρ(0), ρ(0)).

I Theorem 5.2. Given a time interval of length t labelled [1, t], let P = 1
t (P

(1) +P (2) + · · ·+
P (t)) with spectral gap λ(P ). Then, for any initial probability distribution p(0) with likelihood
ρ(0) = p(0)/π, it holds that

Varπ ρ(0) −Varπ ρ(t) >
1

15tEP (ρ(0), ρ(0)) > λ(P )
15t .

We remark we do not know if the dependency of t in the bound of Theorem 5.2 (which
appears as a result of an application of the Cauchy-Schwarz inequality) is tight, or even if
any dependency on t is needed at all.

From Theorem 5.2 it is easy to derive the following corollary:

I Corollary 5.3. Given a lazy random walk on a sequence G of graphs with transition matrices
{P (i)}∞i=1 such that (1) there exists π which is a stationary distribution for any P (i); (2)
a time-window t > 0 such that, for any i > 0, P [i,i+t] = 1

t (P
(i) + P (i+1) + · · ·+ P (i+t)) is

ergodic and has spectral gap λ
(
P

[i,i+t])
> λ > 0. Then, tmix(G) = O

( t2 log(1/π∗)
λ

)
.

To highlight the applicability of Corollary 5.3, consider a sequence of connected graphs G
with time-independent stationary distribution π in which, for any interval of t consecutive
steps and subset of vertices A, there exists a transition matrix P (i) of a graph in the interval
such that ΦP (i)(A) > φ. Then, Φ

(
P
)
> φ/t and λ

(
P
)
> φ2/t2. Hence, Corollary 5.3 gives

us that tmix(G) = O(t3 logn/φ2).
Another natural question is whether our condition on the stationary distribution being

fixed could be relaxed. This question is answered negatively by the following result:

I Proposition 5.4. For any t = ω(logn), there is a sequence of connected n-vertex bounded-
degree expander graphs G = {G(i)}∞i=1 and a constant c > 0 so that p(t)

u,v > n−1+c for some
vertices u and v.

In Section 3 and Section 4 we have shown that the behaviour of a lazy random walk on
a sequence of connected graphs with the same stationary distribution is comparable to the
behaviour of random walks on static graphs, at least regarding mixing and hitting times.
When the graphs are disconnected, however, the behaviour of random walks on dynamic
graphs becomes more complicated. Theorem 5.2 shows that, if every t steps the average
of the transition matrices applied in those steps is irreducible and strongly aperiodic with
stationary distribution π, then the random walk will converge to π. However, π can be highly
imbalanced and, as a result, mixing and hitting can be exponential in t and the number of
vertices n. The next proposition shows an example of this behaviour.
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I Proposition 5.5. There is a sequence of n-vertex bounded-degree graphs G = {G(i)}∞i=1
with transition matrices {P (i)}∞i=1 and a probability distribution π such that (1) for any i,
π is stationary for P (i); (2) the average transition matrix P of any 4n consecutive steps is
ergodic; (3) for any t > 0 there are two vertices u, v such that p[0,t]

u,v 6 2−(n/4)−2. Moreover,
tmix(G) = O(poly(n)), while thit(G) = 2Ω(n). There is also a sequence G′ satisfying (1), (2),
and (3) such that tmix(G) = 2Ω(n).

6 Bounds in terms of average edge connectivity

Recall that in Section 4 we proved several bounds which hold for graphs with sufficient
expansion for small sets of vertices. Following a different direction, we now derive bounds on
commute times for random walks on d-regular static graphs based on average connectivity
measures (see the end of Section 2 for some basic relations between the commute time and
hitting time). We assume G = (V,E) is a connected, undirected and static graph with vertex
set V = {1, . . . , n} and m edges. We denote with P the transition matrix of a lazy random
walk on G and π its stationary distribution. Given A,B, the probability flow between A
and B is defined as

∑
u∈A

∑
v∈B π(u)P (u, v). The edge boundary of A, denoted with ∂A, is

the set of edges with one endpoint in A and one in V \ A. For ease of notation we define
[i] = {1, . . . , i}. Also recall that we denote with Cst the expected commute time between s
and t. We will use the following variational characterisation of the average commute time
(see Aldous and Fill, [1, Theorem 3.36]):

Cst = max
g : V→R

{1/EP (g, g) : 0 6 g 6 1, g(s) = 0, g(t) = 1}. (3)

I Lemma 6.1. For any graph G = (V,E) and s, t ∈ V , there exists a labelling of the vertices
from 1 to n such that

Cst 6 2m
n−1∑
j=1

1
|∂[j]| .

Furthermore, by considering the reversal of the labelling, we can also conclude that Cst 6
4m
∑n/2
j=1

1
|∂[j]| .

Note that the well-known Nash-Williams’s inequality [26, Proposition 9.15] gives a very
similar lower bound: it states that for every set of edge-disjoint cutsets separating s from t,
{E1, E2, . . . , Ek}, Cst > 2m

∑k
j=1

1
|Ej | . Note that in our upper bound however, the cutsets

∂[j] are in general not edge-disjoint.
Finally, it can be shown that the lemma above holds even for a labelling such that the

subgraph induced by [i] is connected for every 1 6 i 6 n.

6.1 Commute times and edge-connectivity
We now apply Lemma 6.1 to obtain a bound on commute times that depends on the
edge-connectivity of the graph, improving a result by Aldous and Fill [1, Proposition 6.22].

I Lemma 6.2. Let G = (V,E) be any graph with minimum degree δ so that any subset
S ⊆ V with 1 6 |S| 6 n− 1 satisfies |∂S| > ρ (in other words, G has edge-connectivity at
least ρ). Then we have

n−1∑
i=1

1
|∂[i]| = O(n/δ2 · log δ + n/(ρδ)).
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I Theorem 6.3. Let G = (V,E) be any graph with minimum degree δ, average degree d and
edge-connectivity ρ. Then any commute time is bounded by O(n2d · ( log δ

δ2 + 1
δρ )).

We remark that Aldous and Fill [16, Proposition 6.22] proved that for any graph G with
average degree d which is ρ-edge-connected, the maximum commute time is O(n2d · ρ−3/2).
They also mention that if the graph is Ω(d)-edge-connected, they obtain a bound of O(n2 ·
d−1/2). For this case of maximal edge-connectivity, ρ = Θ(d), our bound is considerably
better than the one by Aldous and Fill, and, modulo the log d-factor, gives also the correct
dependency on d. Furthermore, since the edge-connectivity ρ satisfies ρ 6 δ 6 d, it is easy to
verify that our bound is never worse than the bound in Aldous and Fill. In fact, as soon as
δ →∞, our upper bound will be asymptotically smaller than the bound by Aldous and Fill.
I Remark 6.4. For any pair of ρ and d there is a graph matching the upper bound in
Theorem 6.3 up to a factor of O(log d).

References
1 David Aldous and Jim Fill. Reversible Markov chains and random walks on graphs. unpublished

monograph, 2002.
2 Nima Anari and Shayan Oveis Gharan. Effective Resistance and Simple Random Walks.

unpublished, 2014. URL: https://homes.cs.washington.edu/~shayan/courses/cse599/
adv-approx-4.pdf.

3 John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed Algorithmic Founda-
tions of Dynamic Networks. SIGACT News, 47(1):69–98, 2016.

4 Chen Avin, Michal Koucký, and Zvi Lotker. Cover time and mixing time of random walks on
dynamic graphs. Random Structures Algorithms, 52(4):576–596, 2018.

5 Itai Benjamini and Gady Kozma. A resistance bound via an isoperimetric inequality. Combin-
atorica, 25(6):645–650, 2005.

6 Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and Frederik Mallmann-Trenn.
Bounds on the voter model in dynamic networks. In Proceedings of the 43rd International
Colloquium on Automata, Languages and Programming (ICALP), pages 146:1–146:15, July 12–
15 2016.

7 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE Trans. Inform. Theory, 52(6):2508–2530, 2006.

8 Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon
Tiwari. The electrical resistance of a graph captures its commute and cover times. Comput.
Complexity, 6(4):312–340, 1996/97.

9 Andrea E. F. Clementi, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud, Francesco
Pasquale, and Riccardo Silvestri. Rumor spreading in random evolving graphs. Random Struct.
Algorithms, 48(2):290–312, 2016.

10 Andrea E. F. Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo
Silvestri. Flooding Time of Edge-Markovian Evolving Graphs. SIAM J. Discrete Math.,
24(4):1694–1712, 2010.

11 Andrea E. F. Clementi, Riccardo Silvestri, and Luca Trevisan. Information spreading in
dynamic graphs. Distributed Computing, 28(1):55–73, 2015.

12 Oksana Denysyuk and Luís E. T. Rodrigues. Random Walks on Evolving Graphs with
Recurring Topologies. In Distributed Computing - 28th International Symposium, DISC 2014,
Austin, TX, USA, October 12-15, 2014. Proceedings, pages 333–345, 2014.

13 Robert Elsässer, Burkhard Monien, and Stefan Schamberger. Load Balancing in Dynamic
Networks. In 7th International Symposium on Parallel Architectures, Algorithms, and Networks
(I-SPAN 2004), 10-12 May 2004, Hong Kong, SAR, China, pages 193–200, 2004.

14 Uriel Feige. A Tight Lower Bound on the Cover Time for Random Walks on Graphs. Random
Struct. Algorithms, 6(4):433–438, 1995. doi:10.1002/rsa.3240060406.

ICALP 2019

https://homes.cs.washington.edu/~shayan/courses/cse599/adv-approx-4.pdf
https://homes.cs.washington.edu/~shayan/courses/cse599/adv-approx-4.pdf
http://dx.doi.org/10.1002/rsa.3240060406


93:14 Random Walks on Dynamic Graphs

15 Uriel Feige. A Tight Upper Bound on the Cover Time for Random Walks on Graphs. Random
Struct. Algorithms, 6(1):51–54, 1995. doi:10.1002/rsa.3240060106.

16 James Allen Fill. Eigenvalue bounds on convergence to stationarity for nonreversible Markov
chains, with an application to the exclusion process. Ann. Appl. Probab., 1(1):62–87, 1991.

17 Bhaskar Ghosh, Frank Thomson Leighton, Bruce M. Maggs, S. Muthukrishnan, C. Greg
Plaxton, Rajmohan Rajaraman, Andréa W. Richa, Robert Endre Tarjan, and David Zuckerman.
Tight Analyses of Two Local Load Balancing Algorithms. SIAM J. Comput., 29(1):29–64,
1999. doi:10.1137/S0097539795292208.

18 George Giakkoupis, Thomas Sauerwald, and Alexandre Stauffer. Randomized Rumor Spread-
ing in Dynamic Graphs. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, pages
495–507, 2014.

19 Sharad Goel, Ravi Montenegro, and Prasad Tetali. Mixing time bounds via the spectral profile.
Electron. J. Probab., 11:1–26, 2006.

20 Jonathan Hermon and Perla Sousi. Random walk on dynamical percolation. arXiv preprint,
2019. arXiv:1902.02770.

21 Varun Kanade, Frederik Mallmann-Trenn, and Thomas Sauerwald. On coalescence time
in graphs: When is coalescing as fast as meeting? In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 956–965, 2019.

22 Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 513–522, 2010.

23 Fabian Kuhn and Rotem Oshman. Dynamic networks: models and algorithms. SIGACT
News, 42(1):82–96, 2011.

24 Henry Lam, Zhenming Liu, Michael Mitzenmacher, Xiaorui Sun, and Yajun Wang. Information
dissemination via random walks in d-dimensional space. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 1612–1622, 2012.

25 Ioannis Lamprou, Russell Martin, and Paul Spirakis. Cover time in edge-uniform stochastically-
evolving graphs. Algorithms (Basel), 11(10):Paper No. 149, 15, 2018.

26 David A. Levin and Yuval Peres. Markov chains and mixing times. American Mathematical
Society, Providence, RI, 2017.

27 László Lovász and Ravi Kannan. Faster mixing via average conductance. In 31st Annual
ACM Symposium on Theory of Computing, pages 282–287. ACM, 1999.

28 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commun.
ACM, 61(2):72, 2018. doi:10.1145/3156693.

29 Yuval Peres, Alistair Sinclair, Perla Sousi, and Alexandre Stauffer. Mobile Geometric Graphs:
Detection, Coverage and Percolation. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 412–428, 2011.

30 Yuval Peres, Alexandre Stauffer, and Jeffrey E. Steif. Random walks on dynamical percolation:
mixing times, mean squared displacement and hitting times. Probab. Theory Related Fields,
162(3-4):487–530, 2015.

31 Alberto Pettarin, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal. Tight bounds on
information dissemination in sparse mobile networks. In Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June
6-8, 2011, pages 355–362, 2011.

32 Laurent Saloff-Coste and Jessica Zúñiga. Merging for time inhomogeneous finite Markov
chains. I. Singular values and stability. Electron. J. Probab., 14:1456–1494, 2009.

33 Laurent Saloff-Coste and Jessica Zúñiga. Merging for inhomogeneous finite Markov chains,
Part II: Nash and log-Sobolev inequalities. Ann. Probab., 39(3):1161–1203, 2011.

http://dx.doi.org/10.1002/rsa.3240060106
http://dx.doi.org/10.1137/S0097539795292208
http://arxiv.org/abs/1902.02770
http://dx.doi.org/10.1145/3156693


T. Sauerwald and L. Zanetti 93:15

34 Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan. Distributed computation
in dynamic networks via random walks. Theor. Comput. Sci., 581:45–66, 2015.

35 Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82(1):93–133, 1989.

36 Perla Sousi and Sam Thomas. Cutoff for Random Walk on Dynamical Erdos-Renyi graph.
arXiv preprint, 2018. arXiv:1807.04719.

ICALP 2019

http://arxiv.org/abs/1807.04719

	Introduction
	Notation and preliminaries
	Worst-case bounds for mixing and hitting times
	Bounds on hitting times based on the isoperimetric dimension
	Bounds on mixing based on average transition probabilities
	Bounds in terms of average edge connectivity
	Commute times and edge-connectivity


