Appendix S3. Finding model equilibria

Disease free equilibria

These correspond to equilibria for which $I=Z=0$. There are two such equilibria:

- E1: $(S, I, X, Z)=(N, 0,0,0)$
- E2: $(S, I, X, Z)=(N, 0, \kappa, 0)$
where the derived parameter κ is as defined in Equation (24), i.e.

$$
\kappa=\zeta\left(1-\frac{\alpha}{\sigma}\left(1+\delta\left(\frac{1}{\omega_{-}}-1\right)\right)\right)
$$

We note that the equilibrium E1 is always biologically meaningful, whereas E2 can only be attained in practice if $\kappa>0$.

At either equilibrium, the Jacobian of Equation (26) is given by

$$
J=\left(\begin{array}{cccc}
-\rho & 0 & 0 & * \\
0 & -(\rho+\mu) & 0 & \partial \Lambda / \partial \mathrm{Z} \\
* & * & \partial \mathrm{~g} / \partial \mathrm{X}-h_{-} & * \\
0 & \partial \Omega / \partial \mathrm{I} & 0 & -\left(\tau+h_{+}\right)
\end{array}\right)
$$

in which * denotes values not needed in the subsequent analysis, and where partial derivatives, and the two functions h_{-}and h_{+}are understood to be evaluated at the equilibrium under consideration.

The local stability of an equilibrium is controlled by the eigenvalues of J, i.e. by the characteristic equation $\operatorname{det}(J-\lambda I)=0$. Expanding down the third column indicates that one eigenvalue is given by

$$
\lambda=\partial \mathrm{g} / \partial \mathrm{X}^{-h_{-}}=\sigma\left(1-\frac{2 X}{\zeta}\right)-\alpha\left(1+\delta\left(\frac{1}{\omega_{-}}-1\right)\right)
$$

in which X is the value at the equilibrium in question.
For E1, $X=0$ meaning that $\lambda=\frac{\sigma \kappa}{\zeta}$ (and so that this equilibrium is definitely unstable whenever $\kappa>$ 0 - i.e. whenever E2 is biologically meaningful - but potentially stable if $\kappa<0$, depending on the other three eigenvalues).

For E2, $X=\kappa$ and so $\lambda=-\frac{\sigma \kappa}{\zeta}$ (meaning this equilibrium is potentially stable whenever $\kappa>0$, again depending on the rest of the eigenvalues, but must definitely be unstable if $\kappa<0$).

The remaining three eigenvalues are controlled by the eigenvalues of the 3×3 matrix

$$
J^{*}=\left(\begin{array}{ccc}
-\rho & 0 & * \\
0 & -(\rho+\mu) & \partial \Lambda / \partial \mathrm{Z} \\
0 & \partial \Omega / \partial \mathrm{I} & -\left(\tau+h_{+}\right)
\end{array}\right)
$$

Expanding the characteristic equation of this second matrix down the first column indicates there is always a negative eigenvalue $\lambda=-\rho$.

The remaining pair of eigenvalues come from the 2×2 matrix

$$
J^{* *}=\left(\begin{array}{cc}
-(\rho+\mu) & \partial \Lambda / \partial \mathrm{Z} \\
\partial \Omega / \partial \mathrm{I} & -\left(\tau+h_{+}\right)
\end{array}\right)
$$

This third matrix always has a negative trace, $\operatorname{Tr}\left(J^{* *}\right)=-(\rho+\mu)-\left(\tau+h_{+}\right)$, and has determinant

$$
\Delta\left(J^{* *}\right)=(\rho+\mu)\left(\tau+h_{+}\right)-\partial \Omega / \partial \mathrm{I} \partial \Lambda / \partial \mathrm{Z}=(\rho+\mu)\left(\tau+h_{+}\right)-\frac{\gamma \eta v_{-} X}{N \omega_{-} \omega_{+} \Gamma^{2}}
$$

in which again X is either $X=0$ (E1) or $X=\kappa$ (E2).
For E1, $\Delta\left(J^{* *}\right)=(\rho+\mu)\left(\tau+h_{+}\right)>0$, and since $\operatorname{Tr}\left(J^{* *}\right)<0$, both eigenvalues of $J^{* *}$ are negative.
For E2, the determinant is

$$
\Delta\left(J^{* *}\right)=(\rho+\mu)\left(\tau+h_{+}\right)\left(1-\frac{\gamma \eta v_{-} \kappa}{N \omega_{-} \omega_{+} \Gamma^{2}(\rho+\mu)\left(\tau+h_{+}\right)}\right)=(\rho+\mu)\left(\tau+h_{+}\right)\left(1-R_{0}^{2}\right)
$$

and so if $R_{0}^{2}<1$ then both eigenvalues are negative, whereas if $R_{0}^{2}>1$ then one is positive. This means that $R_{0}^{2}>1$ ensures this equilibrium is unstable.

Collating the conclusions of the results above

$\boldsymbol{\kappa}>\mathbf{0}$	$\boldsymbol{R}_{\mathbf{0}}>\mathbf{1}$	Stability of E1 (Disease- and vector-free equilibrium)	Stability of E2 (Disease-free but vector- present equilibrium)
\checkmark	\checkmark	Unstable	Unstable
\checkmark	\mathbf{x}	Unstable	Stable
\mathbf{x}	\checkmark	Stable	Not biologically meaningful
\mathbf{x}	\mathbf{x}	Stable	Not biologically meaningful

Disease present equilibria

This corresponds to equilibria for which $I \neq 0$.

Case I. Vector preference does not interact with population dynamics ($\boldsymbol{\beta}=\mathbf{1}, \boldsymbol{\delta}=\mathbf{0}$)

Adding the equations for $d S / d t$ and $d I / d t$ from Equation (26) and equating to zero indicates

$$
0=\rho N-\rho S-(\rho+\mu) I
$$

Adding the equations for $d X / d t$ and $d Z / d t$ indicates (at least when $\beta=1$ and $\delta=0$) that either $X+$ $Z=0$, which is guaranteed to generate no biologically meaningful equilibria, or that

$$
X+Z=\zeta\left(1-\frac{\alpha}{\sigma}\right)=\kappa
$$

Using these expressions to eliminate S and X from Equation (26), then eliminating Z, noting throughout that $\delta=0$ means that $h_{+}=\alpha$, eventually leads to

$$
I\left(\frac{\gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I\right) \eta \kappa v_{-}}{\left((\tau+\alpha) \omega_{-} \Gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I+v_{-} \epsilon_{-} I\right)+\eta v_{-} I\right)\left(\omega_{+} \Gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I+v_{+} \epsilon_{+} I\right)\right)}-(\rho+\mu)\right)=0
$$

Ignoring the equilibrium at $I=0$, which has been covered above, further equilibria are given by solutions to

$$
\frac{\gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I\right) \eta \kappa v_{-}}{\left((\tau+\alpha) \omega_{-} \Gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I+v_{-} \epsilon_{-} I\right)+\eta v_{-} I\right)\left(\omega_{+} \Gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I+v_{+} \epsilon_{+} I\right)\right)}=(\rho+\mu)
$$

Simple, albeit long-winded, algebraic manipulations reduce this to the quadratic

$$
a_{2} I^{2}+a_{1} I+a_{0}=0
$$

in which

$$
\begin{gathered}
a_{2}=\left(v_{-} \epsilon_{-}-\left(1+\frac{\mu}{\rho}\right)+\frac{\eta v_{-}}{(\alpha+\tau) \omega_{-} \Gamma}\right)\left(v_{+} \epsilon_{+}-\left(1+\frac{\mu}{\rho}\right)\right) \\
a_{1}=N\left(v_{-} \epsilon_{-}+v_{+} \epsilon_{+}+\frac{\eta v_{-}}{(\alpha+\tau) \omega_{-} \Gamma}+\left(1+\frac{\mu}{\rho}\right)\left(R_{0}^{2}-2\right)\right) \\
a_{0}=N^{2}\left(1-R_{0}^{2}\right)
\end{gathered}
$$

The values of the other state variables can then be obtained by back-substitution into

$$
\begin{gathered}
S=N-\left(1+\frac{\mu}{\rho}\right) I \\
Z=\frac{\eta v_{-} \kappa I}{(\alpha+\tau) \omega_{-} \Gamma\left(N-\left(1+\frac{\mu}{\rho}\right) I+v_{-} \epsilon_{-} I\right)+\eta v_{-} I} \\
X=\kappa-Z
\end{gathered}
$$

Case II. Vector preference interacts with population dynamics ($\boldsymbol{\beta} \neq \mathbf{1}$ and/or $\boldsymbol{\delta}>\mathbf{0}$)

Similar calculations indicate that again

$$
S=N-\left(1+\frac{\mu}{\rho}\right) I
$$

but in this case the values of X and Z can only be found implicitly in terms of the equilibrium value of X, with

$$
X=\frac{(\rho+\mu) \omega_{-} \Gamma\left(S+v_{-} \epsilon_{-} I\right)\left((\tau+\alpha-\alpha \delta) \omega_{+} \Gamma\left(S+v_{+} \epsilon_{+} I\right)+\alpha \delta \Gamma\left(S+v_{+} I\right)\right)}{\gamma \eta v_{-} S}
$$

and

$$
Z=\frac{(\rho+\mu) \omega_{+} \Gamma\left(S+v_{+} \epsilon_{+} I\right) I}{\gamma S}
$$

Extensive algebraic manipulations eventually indicate that the solutions for I are given by roots to the quartic

$$
a_{4} I^{4}+a_{3} I^{3}+a_{2} I^{2}+a_{1} I+a_{0}=0
$$

in which the coefficients are given by

$$
\begin{gathered}
a_{0}=\sigma P_{0} T_{0}-\alpha \zeta Q_{0} N \\
a_{1}=\sigma\left(P_{0} T_{1}+P_{1} T_{0}\right)+\alpha \zeta\left(Q_{0} L-Q_{1} N\right) \\
a_{2}=\sigma\left(P_{0} T_{2}+P_{1} T_{1}+P_{2} T_{0}\right)+\alpha \zeta\left(Q_{1} L-Q_{2} N\right)
\end{gathered}
$$

$$
\begin{gathered}
a_{3}=\sigma\left(P_{1} T_{2}+P_{2} T_{1}\right)+\alpha \zeta Q_{2} L \\
a_{4}=\sigma P_{2} T_{2}
\end{gathered}
$$

and where the coefficients are defined in terms of the quantities

$$
\begin{gathered}
L=1+\frac{\mu}{\rho} \\
P_{0}=\zeta N-C \omega_{-} J_{0} N \\
P_{1}=-\zeta L-C\left[\omega_{-} J_{0}\left(v_{-} \epsilon_{-}-L\right)+\omega_{+} J_{1} N+\eta v_{-} \omega_{+} N\right] \\
P_{2}=-C\left[\omega_{-} J_{1}\left(v_{-} \epsilon_{-}-L\right)+\eta v_{-} \omega_{+}\left(v_{+} \epsilon_{+}-L\right)\right] \\
Q_{0}=(1-\delta) \omega_{-} N J_{0}+\delta N J_{0} \\
Q_{1}=(1-\delta)\left[\omega_{-} N J_{1}+\omega_{-}\left(v_{-} \epsilon_{-}-L\right) J_{0}+\eta v_{-} \omega_{+} N\right]+\delta\left[N J_{1}+\left(v_{-}-L\right) J_{0}+\eta v_{-} N\right] \\
Q_{2}=(1-\delta)\left[\omega_{-}\left(v_{-} \epsilon_{-}-L\right) J_{1}+\eta v_{-} \omega_{+}\left(v_{+} \epsilon_{+}-L\right)\right]+\delta\left[\left(v_{-}-L\right) J_{1}+\eta v_{-}\left(v_{+}-L\right)\right] \\
T_{0}=\omega_{-} N J_{0} \\
T_{2}=\omega_{-}\left(v_{-} \epsilon_{-}-L\right) J_{1}+\eta v_{-} \omega_{+}\left(v_{+} \epsilon_{+}-L\right)+(\beta-1)\left[v_{-} \epsilon_{-} \omega_{-} J_{1}+\eta v_{-} v_{+} \epsilon_{+} \omega_{+}\right]
\end{gathered}
$$

in which

$$
\begin{gathered}
A=(\tau+\alpha-\alpha \delta) \omega_{+} \Gamma \\
B=\alpha \delta \Gamma \\
C=\frac{(\mu+\gamma) \Gamma}{\gamma \eta v_{-}} \\
J_{0}=(A+B) N \\
J_{1}=A v_{+} \epsilon_{+}+B v_{+}-(A+B) L
\end{gathered}
$$

