
Appendix S3. Finding model equilibria 

Disease free equilibria 
These correspond to equilibria for which 𝐼 =  𝑍 = 0. There are two such equilibria: 

• E1: (𝑆, 𝐼, 𝑋, 𝑍) = (𝑁, 0,0,0)  

• E2: (𝑆, 𝐼, 𝑋, 𝑍) = (𝑁, 0, 𝜅, 0) 
where the derived parameter 𝜅 is as defined in Equation (24), i.e. 

𝜅 = 𝜁 (1 −
𝛼

𝜎
(1 + 𝛿 (

1

𝜔−
− 1))) 

We note that the equilibrium E1 is always biologically meaningful, whereas E2 can only be attained in 

practice if 𝜅 > 0. 

At either equilibrium, the Jacobian of Equation (26) is given by 

𝐽 =

(

  
 

−𝜌 0 0 ∗

0 −(𝜌 + 𝜇) 0 𝜕Λ
𝜕Z⁄

∗ ∗
𝜕g
𝜕X
⁄ − ℎ− ∗

0 𝜕Ω
𝜕I⁄ 0 −(𝜏 + ℎ+))

  
 

 

in which * denotes values not needed in the subsequent analysis, and where partial derivatives, and 

the two functions ℎ− and ℎ+ are understood to be evaluated at the equilibrium under consideration.  

The local stability of an equilibrium is controlled by the eigenvalues of 𝐽, i.e. by the characteristic 

equation det(𝐽 − 𝜆𝐼) = 0. Expanding down the third column indicates that one eigenvalue is given by  

𝜆 =
𝜕g
𝜕X
⁄ − ℎ− = 𝜎 (1 −

2𝑋

𝜁
) − 𝛼 (1 + 𝛿 (

1

𝜔−
− 1)) 

in which 𝑋 is the value at the equilibrium in question. 

For E1, 𝑋 = 0 meaning that 𝜆 =
𝜎𝜅

𝜁
 (and so that this equilibrium is definitely unstable whenever 𝜅 >

0 – i.e. whenever E2 is biologically meaningful – but potentially stable if 𝜅 < 0, depending on the other 

three eigenvalues).  

For E2, 𝑋 = 𝜅 and so 𝜆 = −
𝜎𝜅

𝜁
 (meaning this equilibrium is potentially stable whenever 𝜅 > 0, again 

depending on the rest of the eigenvalues, but must definitely be unstable if 𝜅 < 0). 

The remaining three eigenvalues are controlled by the eigenvalues of the 3x3 matrix 

𝐽∗ = (

−𝜌 0 ∗

0 −(𝜌 + 𝜇) 𝜕Λ
𝜕Z⁄

0 𝜕Ω
𝜕I⁄ −(𝜏 + ℎ+)

) 

Expanding the characteristic equation of this second matrix down the first column indicates there is 

always a negative eigenvalue 𝜆 = −𝜌. 

The remaining pair of eigenvalues come from the 2 x 2 matrix 



𝐽∗∗ = (
−(𝜌 + 𝜇) 𝜕Λ

𝜕Z⁄

𝜕Ω
𝜕I⁄ −(𝜏 + ℎ+)

) 

This third matrix always has a negative trace, 𝑇𝑟(𝐽∗∗) = −(𝜌 + 𝜇) − (𝜏 + ℎ+), and has determinant 

Δ(𝐽∗∗) = (𝜌 + 𝜇)(𝜏 + ℎ+) −
𝜕Ω

𝜕I⁄
𝜕Λ

𝜕Z⁄ = (𝜌 + 𝜇)(𝜏 + ℎ+) −
𝛾𝜂𝜈−𝑋

𝑁𝜔−𝜔+Γ
2

 

in which again 𝑋 is either 𝑋 = 0 (E1) or 𝑋 = 𝜅 (E2). 

For E1, Δ(𝐽∗∗) = (𝜌 + 𝜇)(𝜏 + ℎ+) > 0, and since 𝑇𝑟(𝐽∗∗) < 0, both eigenvalues of 𝐽∗∗ are negative. 

For E2, the determinant is 

Δ(𝐽∗∗) = (𝜌 + 𝜇)(𝜏 + ℎ+) (1 −
𝛾𝜂𝜈−𝜅

𝑁𝜔−𝜔+Γ
2(𝜌 + 𝜇)(𝜏 + ℎ+)

) = (𝜌 + 𝜇)(𝜏 + ℎ+)(1 − 𝑅0
2) 

and so if 𝑅0
2 < 1 then both eigenvalues are negative, whereas if 𝑅0

2 > 1 then one is positive. This 

means that 𝑅0
2 > 1 ensures this equilibrium is unstable. 

Collating the conclusions of the results above 

𝜿 > 𝟎 𝑹𝟎 > 𝟏 Stability of E1 (Disease- and vector-free 
equilibrium) 

Stability of E2 (Disease-free but vector-
present equilibrium) 

✓ ✓ Unstable Unstable 
✓  Unstable Stable 
 ✓ Stable Not biologically meaningful 
  Stable Not biologically meaningful 

Disease present equilibria 
This corresponds to equilibria for which 𝐼 ≠ 0. 

Case I. Vector preference does not interact with population dynamics (𝜷 = 𝟏, 𝜹 = 𝟎) 

Adding the equations for 𝑑𝑆 𝑑𝑡⁄  and 𝑑𝐼 𝑑𝑡⁄  from Equation (26) and equating to zero indicates 

0 = 𝜌𝑁 − 𝜌𝑆 − (𝜌 + 𝜇)𝐼 

Adding the equations for 𝑑𝑋 𝑑𝑡⁄  and 𝑑𝑍 𝑑𝑡⁄  indicates (at least when 𝛽 = 1 and 𝛿 = 0) that either 𝑋 +
𝑍 = 0, which is guaranteed to generate no biologically meaningful equilibria, or that 

𝑋 + 𝑍 = 𝜁 (1 −
𝛼

𝜎
) = 𝜅 

Using these expressions to eliminate 𝑆 and 𝑋  from Equation (26), then eliminating Z, noting 
throughout that 𝛿 = 0 means that ℎ+ = 𝛼,  eventually leads to  

𝐼

(

 
 𝛾 (𝑁 − (1 +

𝜇
𝜌) 𝐼) 𝜂𝜅𝜈−

((𝜏 + 𝛼)𝜔−Γ(𝑁 − (1 +
𝜇
𝜌) 𝐼 + 𝜈−𝜖−𝐼) + 𝜂𝜈−𝐼)(𝜔+Γ (𝑁 − (1 +

𝜇
𝜌) 𝐼 + 𝜈+𝜖+𝐼))

− (𝜌 + 𝜇)

)

 
 
= 0 

Ignoring the equilibrium at 𝐼 = 0, which has been covered above, further equilibria are given by 
solutions to 



𝛾 (𝑁 − (1 +
𝜇
𝜌)
𝐼) 𝜂𝜅𝜈−

((𝜏 + 𝛼)𝜔−Γ(𝑁 − (1 +
𝜇
𝜌)
𝐼 + 𝜈−𝜖−𝐼) + 𝜂𝜈−𝐼)(𝜔+Γ (𝑁 − (1 +

𝜇
𝜌)
𝐼 + 𝜈+𝜖+𝐼))

= (𝜌 + 𝜇) 

Simple, albeit long-winded, algebraic manipulations reduce this to the quadratic 

𝑎2𝐼
2 + 𝑎1𝐼 + 𝑎0 = 0 

in which  

𝑎2 = (𝜈−𝜖− − (1 +
𝜇

𝜌
) +

𝜂𝜈−
(𝛼 + 𝜏)𝜔−Γ

)(𝜈+𝜖+ − (1 +
𝜇

𝜌
)) 

𝑎1 = 𝑁(𝜈−𝜖− + 𝜈+𝜖+ +
𝜂𝜈−

(𝛼 + 𝜏)𝜔−Γ
+ (1 +

𝜇

𝜌
) (𝑅0

2 − 2)) 

𝑎0 = 𝑁
2(1 − 𝑅0

2) 

The values of the other state variables can then be obtained by back-substitution into  

𝑆 = 𝑁 − (1 +
𝜇

𝜌
) 𝐼 

𝑍 =
𝜂𝜈−𝜅𝐼

(𝛼 + 𝜏)𝜔−Γ (𝑁 − (1 +
𝜇
𝜌) 𝐼 + 𝜈−𝜖−𝐼) + 𝜂𝜈−𝐼

 

𝑋 = 𝜅 − 𝑍 

Case II. Vector preference interacts with population dynamics (𝜷 ≠ 𝟏 and/or 𝜹 > 𝟎) 

Similar calculations indicate that again 

𝑆 = 𝑁 − (1 +
𝜇

𝜌
) 𝐼 

but in this case the values of 𝑋 and 𝑍 can only be found implicitly in terms of the equilibrium value of 𝑋, 
with 

𝑋 =
(𝜌 + 𝜇)𝜔−Γ(𝑆 + 𝜈−𝜖−𝐼)((𝜏 + 𝛼 − 𝛼𝛿)𝜔+Γ(𝑆 + 𝜈+𝜖+𝐼) + 𝛼𝛿Γ(𝑆 + 𝜈+𝐼))

𝛾𝜂𝜈−𝑆
 

and 

𝑍 =
(𝜌 + 𝜇)𝜔+Γ(𝑆 + 𝜈+𝜖+𝐼)𝐼

𝛾𝑆
 

Extensive algebraic manipulations eventually indicate that the solutions for 𝐼 are given by roots to the 
quartic 

𝑎4𝐼
4 + 𝑎3𝐼

3 + 𝑎2𝐼
2 + 𝑎1𝐼 + 𝑎0 = 0  

in which the coefficients are given by 

𝑎0 = 𝜎𝑃0𝑇0 − 𝛼𝜁𝑄0𝑁 

𝑎1 = 𝜎(𝑃0𝑇1 + 𝑃1𝑇0) + 𝛼𝜁(𝑄0𝐿 − 𝑄1𝑁) 

𝑎2 = 𝜎(𝑃0𝑇2 + 𝑃1𝑇1 + 𝑃2𝑇0) + 𝛼𝜁(𝑄1𝐿 − 𝑄2𝑁) 



𝑎3 = 𝜎(𝑃1𝑇2 + 𝑃2𝑇1) + 𝛼𝜁𝑄2𝐿 

𝑎4 = 𝜎𝑃2𝑇2 

and where the coefficients are defined in terms of the quantities 

𝐿 = 1 +
𝜇

𝜌
 

𝑃0 = 𝜁𝑁 − 𝐶𝜔−𝐽0𝑁 

𝑃1 = −𝜁𝐿 − 𝐶[𝜔−𝐽0(𝜈−𝜖− − 𝐿) + 𝜔+𝐽1𝑁 + 𝜂𝜈−𝜔+𝑁] 

𝑃2 = −𝐶[𝜔−𝐽1(𝜈−𝜖− − 𝐿) + 𝜂𝜈−𝜔+(𝜈+𝜖+ − 𝐿)] 

𝑄0 = (1 − 𝛿)𝜔−𝑁𝐽0 + 𝛿𝑁𝐽0 

𝑄1 = (1 − 𝛿)[𝜔−𝑁𝐽1 +𝜔−(𝜈−𝜖− − 𝐿)𝐽0 + 𝜂𝜈−𝜔+𝑁] + 𝛿[𝑁𝐽1 + (𝜈− − 𝐿)𝐽0 + 𝜂𝜈−𝑁] 

𝑄2 = (1 − 𝛿)[𝜔−(𝜈−𝜖− − 𝐿)𝐽1 + 𝜂𝜈−𝜔+(𝜈+𝜖+ − 𝐿)] + 𝛿[(𝜈− − 𝐿)𝐽1 + 𝜂𝜈−(𝜈+ − 𝐿)] 

𝑇0 = 𝜔−𝑁𝐽0 

𝑇1 = 𝜔−𝑁𝐽1 +𝜔−(𝜈−𝜖− − 𝐿)𝐽0 + 𝜂𝜈−𝜔+𝑁 + (𝛽 − 1)𝜈−𝜔−𝜖−𝐽0 

𝑇2 = 𝜔−(𝜈−𝜖− − 𝐿)𝐽1 + 𝜂𝜈−𝜔+(𝜈+𝜖+ − 𝐿) + (𝛽 − 1)[𝜈−𝜖−𝜔−𝐽1 + 𝜂𝜈−𝜈+𝜖+𝜔+] 

in which 

𝐴 = (𝜏 + 𝛼 − 𝛼𝛿)𝜔+Γ 

𝐵 = 𝛼𝛿Γ 

𝐶 =
(𝜇 +  𝛾)Γ

𝛾𝜂𝜈−
 

𝐽0 = (𝐴 + 𝐵)𝑁 

𝐽1 = 𝐴𝜈+𝜖+ + 𝐵𝜈+ − (𝐴 + 𝐵)𝐿 

 


