Appendix S3. Finding model equilibria

Disease free equilibria

These correspond to equilibria for which I = Z = 0. There are two such equilibria:

e E1:(51,X,Z) =(N,0,0,0)
e E2:(51,X,Z)=(N,0,k,0)
where the derived parameter k is as defined in Equation (24), i.e.
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We note that the equilibrium E1 is always biologically meaningful, whereas E2 can only be attained in
practice if k > 0.

At either equilibrium, the Jacobian of Equation (26) is given by
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in which * denotes values not needed in the subsequent analysis, and where partial derivatives, and
the two functions h_ and h, are understood to be evaluated at the equilibrium under consideration.

The local stability of an equilibrium is controlled by the eigenvalues of J, i.e. by the characteristic
equation det(J — AI) = 0. Expanding down the third column indicates that one eigenvalue is given by
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in which X is the value at the equilibrium in question.

For E1, X = 0 meaning that 1 = % (and so that this equilibrium is definitely unstable whenever k >

0—i.e. whenever E2 is biologically meaningful — but potentially stable if k < 0, depending on the other
three eigenvalues).

ForE2, X =kandso A = —% (meaning this equilibrium is potentially stable whenever k¥ > 0, again
depending on the rest of the eigenvalues, but must definitely be unstable if k < 0).

The remaining three eigenvalues are controlled by the eigenvalues of the 3x3 matrix
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Expanding the characteristic equation of this second matrix down the first column indicates there is

always a negative eigenvalue 4 = —p.

The remaining pair of eigenvalues come from the 2 x 2 matrix
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This third matrix always has a negative trace, Tr(J*) = —(p + u) — (t + h,), and has determinant
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in which again X is either X = 0 (E1) or X = k (E2).
ForE1l, AJ™) = (p + w)(t + hy) > 0, and since Tr(J**) < 0, both eigenvalues of /** are negative.

For E2, the determinant is
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and so if Rg < 1 then both eigenvalues are negative, whereas if RS > 1 then one is positive. This
means that RZ > 1 ensures this equilibrium is unstable.

Collating the conclusions of the results above

k>0 Ry >1 Stability of E1 (Disease- and vector-free | Stability of E2 (Disease-free but vector-
equilibrium) present equilibrium)
v v Unstable Unstable
v x Unstable Stable
x v Stable Not biologically meaningful
x x Stable Not biologically meaningful

Disease present equilibria
This corresponds to equilibria for which I # 0.

Case I. Vector preference does not interact with population dynamics (8 =1, § = 0)

Adding the equations for dS/dt and dI /dt from Equation (26) and equating to zero indicates
0=pN—-pS—(p+wWl

Adding the equations for dX/dt and dZ /dt indicates (at least when § = 1 and § = 0) that either X +

Z =0, which is guaranteed to generate no biologically meaningful equilibria, or that

X+Z={(1—§)=K

Using these expressions to eliminate Sand X from Equation (26), then eliminating Z noting
throughout that § = 0 means that h, = a, eventually leads to
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Ignoring the equilibrium at I = 0, which has been covered above, further equilibria are given by
solutions to
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Simple, albeit long-winded, algebraic manipulations reduce this to the quadratic
a212 +a11+a0 = 0

in which
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The values of the other state variables can then be obtained by back-substitution into
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Case Il. Vector preference interacts with population dynamics (8 # 1 and/or 6 > 0)

Similar calculations indicate that again
S=N- (1 + E)1
p
but in this case the values of X and Z can only be found implicitly in terms of the equilibrium value of X,
with
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Extensive algebraic manipulations eventually indicate that the solutions for I are given by roots to the
quartic

aJ* + azI® +a,l? +a;l +ag =0
in which the coefficients are given by
ag = aPyTy — alQyN
a; = o(PoTy + P1Tp) + ad(QoL — Q1N)
a; = 0(PoTy + PiTy + P,Ty) + ad(Q1L — Q2N)
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and where the coefficients are defined in terms of the quantities
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