
Towards a Competitive 3-Player Mahjong AI using
Deep Reinforcement Learning

Xiangyu Zhao
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom

xz398@cam.ac.uk

Sean B. Holden
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom

sbh11@cl.cam.ac.uk

Abstract—Mahjong is a multi-player imperfect-information
game with challenging features for AI research. Sanma, being
a 3-player variant of Japanese Riichi Mahjong, possesses unique
characteristics and a more aggressive playing style than the 4-
player game. It is thus challenging and of research interest in
its own right, but has not been explored. We present Meowjong,
the first ever AI for Sanma using deep reinforcement learning
(RL). We define a 2-dimensional data structure for encoding the
observable information in a game. We pre-train 5 convolutional
neural networks (CNNs) for Sanma’s 5 actions—discard, Pon,
Kan, Kita and Riichi, and enhance the major (discard) action’s
model via self-play reinforcement learning. Meowjong demon-
strates potential for becoming the state-of-the-art in Sanma,
by achieving test accuracies comparable with AIs for 4-player
Mahjong through supervised learning, and gaining a significant
further enhancement from reinforcement learning.

Index Terms—Mahjong, deep learning, reinforcement learning,
convolutional neural networks, policy gradient methods

I. INTRODUCTION

Mahjong is a popular tile-based, multi-round, multi-player,
imperfect-information game developed in China in the late
19th century. It has hundreds of millions of players worldwide.
It is a game of skill, strategy and calculation, and involves a
degree of chance. It is challenging for AI because:
• It is played by more than 2 players and has significant

hidden information;
• It has complex playing and scoring rules;
• It has a huge number of winning hands in various

patterns, allowing flexible in-game strategy adaptation.
While there are many variants of Mahjong, we focus on
Sanma, a 3-player variant of Japanese Riichi Mahjong. Sanma
differs fundamentally from 4-player Mahjong because most of
the tiles in one suit (Manzu) are removed, and one of the ac-
tions (Chii) is replaced with another (Kita). Consequently, both
the number of states and the amount of hidden information are
reduced, and hands tend to develop faster. As a result, players
tend to play more aggressively, and valuable winning hands

This work was performed using resources provided by the Cambridge
Service for Data Driven Discovery (CSD3) operated by the University of
Cambridge Research Computing Service, provided by Dell EMC and Intel
using Tier-2 funding from the Engineering and Physical Sciences Research
Council (capital grant EP/T022159/1), and DiRAC funding from the Science
and Technology Facilities Council. For the purpose of open access, the
authors have applied a Creative Commons Attribution (CC BY) licence to
any Author Accepted Manuscript version arising. The code and data related
to this publication are available at https://github.com/VictorZXY/meowjong.

are more frequent. Since it is commonly understood by expert
players that 4-player Mahjong should be played defensively,
an AI trained to learn optimal strategy for the 4-player game
is not guaranteed to acquire the optimal strategy for Sanma.
Therefore, though Sanma is seemingly simpler than 4-player
Mahjong, it still preserves all the challenging characteristics of
Mahjong, and the difference in strategy makes it a worthwhile
target for research.

In this paper, we describe Meowjong, the first Sanma AI
based on deep RL. We propose a data structure for encoding
the observable information in a game round. We then pre-train
5 deep CNNs, each corresponding to one action in Sanma,
and improve the discard model using the Monte Carlo policy
gradient method for self-play RL.

II. RELATED WORKS

As far as we are aware, there has been no published attempt
to develop an AI player for Sanma. Various machine learning
approaches have addressed 4-player Mahjong, including Baku-
uchi by Mizukami et al. [1], Kurita et al. [2], Gao et al. [3]
and Suphx by Li et al. [4]. While the performance of these
systems is impressive, we emphasize that, as we are unaware
of comparable work addressing Sanma, no such comparisons
with human players are available in this context.

III. FEATURES AND DATA STRUCTURE DESIGN

Sanma has 108 tiles of 27 different kinds, with four identical
tiles in each kind. Actions of Sanma include discard, Pon,
Kan, Kita and Riichi, with discard being the major action.
A description of the rules and terminology of Sanma can
be found in the full version of this paper [5]. Unlike board
games such as chess and Go, the layout of a Mahjong board
is not standardized, and the observable information must be
encoded to be digested by CNNs. As there are 34 tiles, we use
a 34×366 array to represent a state. Although 2m–8m are not
included in Sanma, leaving only 27 of the 34 tiles to be used,
we include all the tiles and leave the excluded tiles blank,
to add transferability of Meowjong to 4-player Mahjong. The
mapping between the tiles and their row indices in the array
encoding is shown in TABLE I.

To simulate the game environment and maximize Me-
owjong’s performance, all observable information should be
included. Thus, we use 366 columns to represent 22 features,



Fig. 1. Encoding of an example private hand using 4 channels (transposed to save space). Graphical resources of the tiles are adapted from
https://github.com/FluffyStuff/riichi-mahjong-tiles under the Creative Commons Attribution (CC BY) licence (https://creativecommons.org/licenses/by/4.0/).

TABLE I
TILES AND THEIR CORRESPONDING ROW INDEX REPRESENTATIONS

Tiles Corresponding indices
Manzu, i.e., 1m–9m 0–8
Pinzu, i.e., 1p–9p 9–17
Souzu, i.e., 1s–9s 18–26
Winds, i.e., East, South, West, and North 27–30
Honours, i.e., Haku, Hatsu, and Chun 31–33

TABLE II
INPUT FEATURES FOR THE MODELS

Feature Number of channels
Target tile 1
Self private tiles 4
Red Doras1in hand 1
Self open triplets/quads (4 + 5)× 4 = 36
Self Kitas 4
Self discards 30
Dora indicators 5
Other players’ Riichi status (1 + 5)× 3 = 18
Scores 11× 4 = 44
Round (Kyoku) number 4
Repeats count (i.e., Honba number) 4
Deposit count 4
Self wind 1
Other players’ open tiles2and discards (36 + 4 + 30)× 3 = 210
Total 366

as listed in TABLE II. We do not include the number of
remaining tiles, as it can be calculated from the number of
discarded tiles. For triplets, quads and Riichi status, we include
not only the triplet/quad tiles and the Riichi status, but also
the turn numbers of the Pon/Kan/Riichi calls. Although the
spaces for the fourth player are not needed for Sanma, they
are created for the sake of transferability of Meowjong to 4-
player Mahjong.

The features can be divided into two categories:
• Tile features involve sets or sequences of tiles, such

as private tiles, triplets/quads, and so on. They can be
encoded by setting the corresponding row indices to 1
and leaving the rest to 0, as, for example, shown in Fig. 1.

• Numerical features such as player scores can be binary-
encoded into multiple columns, each being either all zeros
or all ones.

IV. METHOD

We parameterize Meowjong’s policy on an action basis: we
use models, called action models, to parameterize Meowjong’s

1One of each of the fives in Manzu, Pinzu and Souzu are marked red and
count as Doras, called the red doras or Akadoras). They are the same tiles as
the ordinary fives, but are worth extra points in the score calculation.

2Triplets, quads, and Kitas.

TABLE III
INPUT AND OUTPUT DIMENSIONS OF THE ACTION MODELS

Discard Pon Kan Kita Riichi
Input 34× 366

Output 34 2

TABLE IV
FILTER SIZES (x, y) OF THE ACTION MODELS

Discard Pon Kan Kita Riichi
Filter size (x, y) (4, 5) (5, 4) (2, 3) (3, 2) (3, 4)

policy for each action (discard, Pon, Kan, Kita, and Riichi).
After experimenting with various choices for the model struc-
tures, including the number of hidden layers and the number of
filters per layer, we adopted a CNN with 4 convolutional layers
followed by a fully-connected layer. The first 3 layers have 64
filters, and the last has 32 filters. All filters share the same
size, which is a hyperparameter to be tuned individually for
each action model. The fully-connected layer has 256 hidden
nodes. A batch normalization layer and a dropout layer with
dropout rate 0.5 are added after each convolutional and fully-
connected layer to prevent over-fitting. Action models share
a similar structure, differing in the filter sizes and the output
dimensions (34 for the discard network, and 2 for the rest).
ReLU is used for the activation function of all layers except
the outputs, for which softmax is used. The input and output
dimensions of the models are shown in TABLE III. Since
the decision-making problems in Sanma can be converted to
multi-class classification problems, we define the loss for our
CNNs to be the categorical cross-entropy

L(w) = −
m∑
i=1

K∑
k=1

y
(i)
k · log ŷ

(i)
k (1)

where m is the number of examples, and K is the number
of classes. Although pooling is recognized as an efficient
down-sampling tool for CNNs in computer vision tasks, in
Meowjong’s case the data structure is not an image, but an
encoding of discrete feature data, and we would expect the
use of pooling to lose too much information, leading to lower
accuracy. Therefore, pooling is not used in Meowjong’s CNN
structure. No padding is used in any convolutional layer.

The discard problem can be interpreted as a 34-class classi-
fication problem, since there are 34 kinds of tile in total, or a
14-class classification problem, since each player can have at
most 14 tiles in their private hand. As recommended by Li et



TABLE V
SIZES OF THE DATASETS

Action Dataset Size
Training Validation Test

Discard 797,285 88,588 147,444
Pon 151,348 16,817 16,887
Kan 34,319 3,814 3,548
Kita 136,924 15,214 15,498

Riichi 109,804 12,201 11,944

al. [4] and Gao et al. [3], we adopt the 34-class classification
interpretation. The only potential risk of the 34-class method is
of illegal discards, where the discard model outputs a tile that
does not exist in the player’s private hand. However, in practice
all discard choices made by our discard model are legal. For
all the rest of the actions, a player can either declare or skip
that action in appropriate situations, so all those actions are
binary classification problems and we set up a 2-dimensional
output for each of their action models.

Hyperparameter tuning for the pre-training of the CNNs
focuses on the filter size for each action model. As there is
no guarantee that the same filter size works for every action,
the filter sizes are tuned for each model. Grid search is used
for hyperparameter tuning: for each action, all candidate filter
sizes (x, y) ranging from 2 ≤ x, y ≤ 5 are tried, making 16
candidates in total. The best-performing filter sizes are shown
in TABLE IV.

For RL training of Meowjong, we adopt the Monte Carlo
policy gradient method to update the weights w of the discard
model by

w′ = w + ηγtGt∇w log π(At|St,w) (2)

where St denotes the game state at step t = 0, 1, · · · , T , At

denotes the action taken at step t, and Gt denotes the agent’s
cumulative reward, with the value at the terminal state GT

being the round score/penalty. A detailed description of our RL
algorithm can be found in [5]. After hyperparameter tuning, we
adopt η = 10−3 and γ = 0.99 as the optimum hyperparamter
setting.

V. EXPERIMENTS

A. Supervised Learning

We sampled 50,000 rounds of Sanma game records from
2019 from the “Houou” table on Tenhou [6] for training our
models. 10% of those data were divided, with stratification, to
form the validation datasets of the actions. The “Houou” table
is only open for the top 0.1% of the ranked players, so its
game records can be considered to be of high quality. To test
the generalizability of our models, we sampled another 5,000
rounds from 2020 to form the test dataset. We use data from
2020, rather than 2019, as this potentially represents a harder
generalization problem. The sizes of the datasets are shown in
TABLE V. Our models are implemented using TensorFlow,
and after hyperparameter tuning, Adam with learning rate
10−3 is used as the models’ optimizer. The discard models
are trained in mini-batches of size 64 for 200 epochs, and the
rest of the models are trained in mini-batches of size 32 for

TABLE VI
TEST ACCURACIES FOR THE ACTION MODELS IN SUPERVISED LEARNING

Model Test Accuracy
Meowjong Gao et al. [3] Suphx [4]

Discard 65.81% 68.8% 76.7%
Pon 70.95% 88.2% 91.9%
Kan 92.45% — 94.0%
Kita 94.26% — —

Riichi 62.63% — 85.7%

Fig. 2. Win and loss rates of Meowjong in RL training

500 epochs. Each model is trained on 4 NVIDIA P100 GPUs
with 64GB memory in total, and takes from 10 hours (Kan
model) to 30 hours (discard model).

TABLE VI shows the test accuracies of Meowjong’s mod-
els, along with those achieved by previous works. Note that
these test accuracies are not directly comparable due to the
different training/validation/test data sources and structures,
but they can serve as an approximate reference. The test
accuracies of Meowjong are very satisfactory, achieving Gao et
al.’s level [3] at the most important action—discard. Although
there is still a gap between Meowjong and Suphx, it is worth
noting that Suphx used very large, 102/104-layer residual CNN
structures, with training datasets of 4M–15M examples, and
cost much more to train [4], whereas Meowjong adopted a
much simpler CNN structure, used a much smaller training
dataset, and was much cheaper and faster to train.

B. Reinforcement Learning

The discard model was improved through self-play RL as
described for 400 episodes. Evaluations against 2 baseline
agents (described in Section VI-A) were carried out and
recorded after every 10 episodes, each playing 500 rounds as
East, South, and West. The curves of the win (1st place) and
loss (3rd place) rates are in Fig. 2, showing an improvement on
all winds. The curves also suggest that the RL agent is likely to
have learned an aggressive style, and finessed its skill through
self-play, increasing its win rate while lowering its loss rate.

VI. AGENT EVALUATION

A. Agents

We trained the following agents for evaluation:
• SL agent: the supervised learning agent with all 5 models

trained using supervised learning;
• RL agent: the reinforcement learning agent with the Pon,

Kan, Kita and Riichi models inherited from the SL agent,
but its discard model enhanced through RL.

We also built an agent that takes actions randomly to serve as
a baseline. This agent is believed to have a similar power to
the bots on the major online platforms.



TABLE VII
COMPARISONS BETWEEN MEOWJONG AGENTS VS. BASELINE AGENTS

Agents
(vs. Baseline) Wind 1st Place

Rate
2nd Place

Rate
3rd Place

Rate Draw Rate

Baseline — 0.02% 0.02% 0.02% 99.94%

SL

East 22.00% 0.06% 0.08% 77.86%
South 22.68% 0.06% 0.02% 77.24%
West 20.72% 0.16% 0.04% 79.08%
Total 21.80% 0.09% 0.05% 78.06%

RL

East 73.59% 0.02% 3.27% 23.12%
South 71.93% 0.08% 3.46% 24.53%
West 71.61% 0.06% 2.85% 25.48%
Total 72.38% 0.05% 3.19% 24.38%

TABLE VIII
COMPARISONS BETWEEN SL AND RL AGENTS

Agents Wind 1st Place
Rate

2nd Place
Rate

3rd Place
Rate Draw Rate

SL vs. SL

East 18.70% 11.90% 24.84% 44.56%
South 19.74% 24.32% 11.38% 44.56%
West 17.00% 19.22% 19.22% 44.56%
Total 18.48% 18.48% 18.48% 44.56%

SL vs. 2RL

East 5.76% 7.09% 81.53% 5.62%
South 6.10% 38.09% 49.36% 6.45%
West 4.90% 37.69% 51.68% 5.72%
Total 5.59% 27.62% 60.86% 5.93%

RL vs. 2SL

East 57.46% 7.75% 13.92% 20.87%
South 57.90% 16.34% 4.93% 20.83%
West 55.68% 18.18% 5.25% 20.89%
Total 57.02% 14.09% 8.03% 20.86%

B. Results Against Baseline

We simulated 5,000 rounds of Sanma amongst 3 baseline
agents, and 5,000 rounds for each of the SL and RL agents
against 2 baseline agents, in each wind position. Their re-
sults, in terms of 1st/2nd/3rd-place and draw rates, are in
TABLE VII. The results show that both Meowjong’s trained
agents can outperform a baseline agent, and the RL agent’s
1st place rates are also much larger than both SL agents. The
RL agent also has higher 3rd-place rates, which suggests that
it has learned an aggressive style. This is also confirmed by
the box plots of all scores shown in Fig. 3. We also devised
a significance test to formally assess the differences between
agents, which can be found in [5].

C. Comparison Between SL and RL Agents

In this series of evaluations, we simulated 5,000 rounds
amongst 3 SL agents, and 5,000 rounds in each wind position
in both SL vs. 2RL and RL vs. 2SL. The results are in
TABLE VIII. It is clear that an RL agent can outperform an
SL agent. The higher 3rd place rates at the East position are
due to the rule that the East player pays twice as much as the
other player when a non-East player wins by self-draw. The
difference can be confirmed by the box plots of the scores
in the simulation in Fig. 4. Both SL agents seem to perform
better at the South position.

VII. CONCLUSIONS

In this paper, we design a data structure to encode the
observable states in Sanma, build a CNN structure that solves
Sanma’s decision-making problem, and train several agents
using supervised learning and RL. All our action models
achieve test accuracies comparable with AIs for 4-player
Mahjong through supervised learning, and gain a significant
further enhancement from RL. Being the first AI for Sanma,

Fig. 3. Scores of Meowjong agents against baseline agents

Fig. 4. Scores of the SL agents vs. RL agents

we can claim that Meowjong stands as state-of-the-art in
this game, and possesses potential to be successful in future
evaluations against human players.

Future work might include taking multi-round ranking in-
formation into account, letting Meowjong try to maximize the
full-game results in addition to the single-round performance.
An expert player adapts to different strategies flexibly based on
their score and ranking at the beginning of each round along
with the progress of the entire game. For example, a player
may play defensively in the later rounds when they have a
lead, and may lose deliberately to the lowest-placed player in
the last round to secure 1st place. If Meowjong could learn
such a flexible full-game strategy, this would surely improve
its multi-round performance. Our data structure for encoding
the state already supports such an upgrade, and sequential
neural network structures such as GRUs and LSTMs might
have potential for tackling this task. We would also like to
include a recent advance in RL for Mahjong, using variational
latent oracle guiding [7], and seek to reproduce their results
as well as leveraging Meowjong’s performance.

REFERENCES

[1] N. Mizukami and Y. Tsuruoka, “Building a computer Mahjong player
based on Monte Carlo simulation and opponent models,” in 2015 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE,
2015, pp. 275–283.

[2] M. Kurita and K. Hoki, “Method for constructing artificial intelligence
player with abstractions to Markov decision processes in multiplayer
game of Mahjong,” IEEE Transactions on Games, vol. 13, no. 1, pp.
99–110, 2021.

[3] S. Gao, F. Okuya, Y. Kawahara, and Y. Tsuruoka, “Supervised learning
of imperfect information data in the game of Mahjong via deep convolu-
tional neural networks,” The 23rd Game Programming Workshop of the
Information Processing Society of Japan, 2018.

[4] J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao,
T. Qin, T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering Mahjong with deep
reinforcement learning,” arXiv preprint arXiv:2003.13590, 2020.

[5] X. Zhao and S. B. Holden, “Building a 3-player Mahjong AI using deep
reinforcement learning,” arXiv preprint arXiv:2202.12847, 2022.

[6] S. Tsunoda, “Tenhou.net,” https://tenhou.net/.
[7] D. Han, T. Kozuno, X. Luo, Z.-Y. Chen, K. Doya, Y. Yang, and

D. Li, “Variational oracle guiding for reinforcement learning,” in 10th
International Conference on Learning Representations (ICLR 2022).
OpenReview.net, 2022.


