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High pressure studies of  superconductivity and anomalous
normal states in novel quantum materials

This dissertation contains a wide range of studies of many intriguing physical systems,

including a novel incommensurate host-guest structure, strange metal, low-dimensional

system, iron-based superconductivity, and a geometrically frustrated magnetic system. We

used pressure as the primary tool in our studies, not only as one of the tuning parameters for

accessing or tuning away from the quantum critical point but also to enter novel phases that

cannot usually be found in any materials at ambient conditions.

Sb (Chapter 4): High-pressure phase Sb-II exhibits a novel incommensurate host-guest

structure, giving rise to exotic sliding mode between host and guest chain. In principle,

this sliding mode has a very flat dispersion relation perpendicular to the chain, enhancing

electron-phonon coupling greatly. This unusual phonon spectrum causes the normal-state

resistivity at low temperature to be linear, as previously observed in Bi-III phase. However,

it is not the case in Sb-II as it shows a quadratic Fermi liquid-like relation, suggesting the

pinning of the phason mode. The phason-pinning is supported by the estimation of electron-

phason coupling parameter λ ∼ 0.18, which is surprisingly small. Furthermore, we observed

an anomalous first-order transition at a high temperature in resistivity. Combining our results

with the experiments from other literature that the interaction between host and guest chain is

very strong in Sb-II, we propose that Sb-II may be the first material ever to exhibit Aubry’s

transition.

Ca2RuO4 (Chapter 5): Calcium ruthenate has a long history of studies due to its similarity

in structure to cuprates. There are series of transitions in the crystal structure and magnetic

ground state under pressure, going from an antiferromagnetic Mott insulator, itinerant ferro-

magnetic, to unconventional superconductivity. Our experiment has revealed a possibility of

a new phase in Ca2RuO4. The most prominent features that we observed are (i) a cross-over

from the power-law exponent n = 4/3 to n = 1 in resistivity from below and above 100 kbar

(ii) a coexistence between a magnetic ordering and superconductivity. We interpret this to be



viii

a cross-over between itinerant ferromagnetic state and itinerant antiferromagnetic state, or

more general, a spin texture state.

YFe2Ge2 (Chapter 6): The anomaly in the low-temperature resistivity power-law exponent

of the iron-based superconductor YFe2Ge2 has posed a question since its discovery. This

work aims to answer this question. We found that the application of pressure can completely

suppress superconductivity in YFe2Ge2. Moreover, the power-law study demonstrates the

recovery of Fermi-liquid behaviour at high pressure. Our results support the picture that

the exponent 3/2 in the resistivity power-law temperature dependence emerges from its

proximity to the quantum critical regime.

PdCrO2 (Chapter 6): This work aims to explore any possible quantum critical point that

may arise in the geometrically frustrated magnet PdCrO2. It is shown that the transition

temperature of antiferromagnetic ordering that arises in this system is very much pressure

independent. However, resistivity measurement suggests that there may be a structural phase

transition to some unknown phase above 80 kbar. The physics of the high-pressure phase are

unknown and requires further studies.

Puthipong Worasaran 
August 2021
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Chapter 1

Introduction

Condensed matter physics (CMP) is one of the most active fields in physics. A condensed

matter system is so complicated, which makes it so rich. The complexity of an exact

calculation for any system is way beyond the ability of any human ever existed or even the

most powerful computer available to date. However, this does not mean we cannot gain

insights into such systems. Instead of focusing on and tracking every particle in a system, one

has to adapt their point of view to focus on important degrees of freedom and interactions.

Because of these complications, it usually happens that condensed matter physicists gain

insights from experimental results then write down theories rather than getting a theory out

purely from a mathematical point of view. This links theoretical CMP and experimental CMP

very strongly compared to other branches in physics - high energy and general relativity,

to name a few. As an experimentalist, we identify interesting materials and study various

aspects of them, such as transport properties, thermodynamics properties, optical properties,

and fermiology.

One interesting question is what happens to materials when we fine-tune them. There are

a few ways to tune material, such as hydrostatic pressure, uniaxial strain, chemical doping,

chemical substitution, and external fields. The role of hydrostatic pressure is to change the

lattice constant. Consequently, it alters the wavefunction overlap, hopping parameter, and

hence kinetic energy. In a strongly correlated system where there is competition between

kinetic energy and interactions, pressure can fine-tune these parameters. Most of the time,

pressure can drive materials to different phases, such as a magnetic phase, superconducting

phase, or even a complete change in the crystal structure. The role of pressure alone gives us

so many intriguing results in both fundamental studies and technological applications. For

example, pressure can be used as a fine-tune parameter in quantum phase transition studies
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[125]. Furthermore, carbonaceous sulfur hydride has been discovered to be room-temperature

superconductivity under pressure [132].

In this dissertation, we studied four materials under a high-pressure environment. The

first material is element Sb (antimony). At high pressure, antimony undergoes a structural

transition and becomes an incommensurate host-guest crystal. Superconductivity in this Sb-II

phase is believed to be mediated by phason. The very flat dispersion of phason gives rise to a

large McMillan parameter, making the system an excellent place to study strong-coupling

superconductivity. The second material is Ca2RuO4. There has been a long history of

Sr2RuO4 for a few reasons: (i) It has the same structure as the cuprate (ii) Although not

yet settled, it has an exotic order parameter, either p-wave [120] or multi-component [57].

The Ca-substitute version, Ca2RuO4, introduces distortions to the prototype Sr2RuO4. As it

was speculated that high-pressure Ca2RuO4 should have a similar physics to Sr2RuO4 [98],

we desire to study high-pressure Ca2RuO4 in greater detail. The third material is YFe2Ge2,

which is an iron-based superconductor. The ability to grow high-quality YFe2Ge2 makes the

material suitable for definitive studies. The last material is PdCrO2, which is a geometrically

frustrated magnet. It is natural to investigate the effect of pressure on the antiferromagnetic

ordering that arises from the frustrating system, especially if we can suppress the magnetic

order. Since there are many materials to review, we decide to give more detailed introductions

at the starting of each chapter.



Chapter 2

Basic Notions

In this chapter, we discuss basic concepts in condensed matter physics that are related to our

materials.

2.1 Landau-Fermi Liquid Theory

In the early condensed matter era, physicists explain metal, semi-conductor, and insulator

using band theory. In this picture, insulators are materials whose chemical potential lies at an

energy gap, unlike metals where the chemical potential is located far from any energy gap. For

metals, we can also model the conduction electron subsystem as a non-interacting electron

system (or electron gas) in a box (imagine our sample to be a container for conduction

electrons). Then, we can find the ground state by solving the one-particle Schrödinger

equation and implementing Pauli’s exclusion principle. In the ground state, electrons form a

three dimensional-ball (B3) in k-space, called the Fermi sphere. The boundary of this ball is

called the Fermi surface. The electrons that contribute to the electronic properties are only

close to this Fermi surface (within the energy scale ∼ kBT ) due to Pauli’s exclusion principle

that electrons deep down in the Fermi sphere are frozen.

However, this Fermi gas model is not complete because it does not consider the strong

Coulomb’s interaction between electrons. The Fermi liquid theory (invented by a Russian

physicist Lev Landau - so it is sometimes called the Landau-Fermi liquid) corrected the

Fermi gas model by taking into account the electron-electron interaction (hence the name

Fermi liquid)! To appreciate the difficulty when we have this interaction, we quote the full
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Hamiltonian

H = ∑
i

(
− ℏ2

2m
∇

2 +U(rrri)

)
+∑

i< j

q2

4πε0
∣∣rrri − rrr j

∣∣ (2.1)

With the interaction term, the Hamiltonian is not diagonalisable in terms of single-particle

states, and there is no way to solve this exactly. How can we understand such a system then?

The main idea here is the concept of quasiparticle. In the Fermi gas system, we can set the

ground state as our vacuum (which is, of course, different from the real vacuum).

|Ω0⟩ : npppσ =

 1, if |ppp|⩽ pF

0, if |ppp|> pF

There are two types of elementary excitations of the system, electrons and holes.

Single Electron State : c†
pppσ |Ω0⟩ where |ppp|> pF

Single Hole State : cpppσ |Ω0⟩ where |ppp|⩽ pF

Fig. 2.1 The evolution of the energy levels of the free electron system to the interacting
electron system.

Now, we turn on the interactions adiabatically. By that, we mean turning on the inter-

actions very slowly (imagine we have Hamiltonian H = H0 +λHI and vary λ slowly from
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zero to unity). A question arises naturally, what happens to these elementary excitations?

Are they still well defined in the presence of interactions? To answer this question, we

look at what happens to the system’s energy levels as we turn on the interactions. Figure

2.1 shows the energy levels of three different states - one, two and three-electron states (by

electron, we mean the elementary excitation as explained above, not referring to the actual

electrons in solid in this sense). Now, going from the one-electron state to the two-electron

state costs energy ∆E. This energy comes from adding a particle into the system. As we

tune λ from 0 to 1, we would not expect a level crossing if our system is far from phase

transition. The reason is that, as the levels come close to each other, the second-order term

in the perturbation theory will make those two states repel each other. However, this is

not true if the matrix element between those states is zero, and it is the case if the system

undergoes phase transition because both states have different symmetries in the ground

state. (Actually, not all continuous phase transitions break the symmetry of a system. The

symmetry breaking picture comes from Ginzberg-Landau theory of phase transition only.

Renormalisation analysis shows that the symmetries of two fixed points can be the same

[156]. Topological phase transition is an example of this). When λ approaches unity, we

arrive at the right side of the diagram. Since there is no level crossing, the state that used to

be the one-electron state still has lower energy than the state that used to be the two-electron

state (this applies to all other states), suggesting that we still have a well-defined particle-like

excitation and ∆E ′ is the energy cost for putting this particle into our system. Since this new

particle may have different properties from the original particle, we call them a quasiparticle.

With the presence of interaction, electron evolves into quasi-electron, and hole evolves into

quasi-hole. This is a beautiful one-to-one correspondence in Landau-Fermi Liquid theory!

Now, we would like to understand these quasiparticles better. We need to do everything

more rigorously. Since we have quasi-electron and quasi-hole, which are particle-antiparticles,

it is only natural for us to use the quantum field theory framework. The partition function for

the free fermion system with the source terms at zero temperature is [5, 43, 86]

Z0 =
∫

D(ψ,ψ∗)exp

[
i
∫ t

0
dt ∑

kkk

(
iψ∗

kkk ψ̇kkk −ξkkkψ
∗
kkk ψkkk + j∗kkkψkkk + jkkkψ

∗
kkk
)]

=
∫

D(ψ,ψ∗)exp

[
i
∫ t

0
dt ∑

kkk

(
ψ

∗
kkk (i∂t −ξkkk)ψkkk + j∗kkkψkkk + jkkkψ

∗
kkk
)] (2.2)
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where ψkkk and ψ∗
kkk are anti-commuting Grassmann variables. Since the Green function is

defined to be a time-ordered two-point correlation function

iG(0)(kkk, t − t ′) = ⟨ψkkk(t)ψ
∗
kkk (t

′)⟩ (2.3)

we see that it is just a second derivative of the partition function with respect to the source

terms

iG(0)(kkk, t) =− 1
Z0

∂ 2

∂ jkkk∂ j∗kkk
Z0 (2.4)

The partition function can be calculated using Gaussian integration,

Z0 = Z0( jjj = 0)exp
(

jjj†(i∂t −ξkkk)
−1 jjj
)

(2.5)

We obtained the Green function immediately to be the inverse of the operator (i∂t − ξkkk).

Hence,

(i∂t −ξkkk)G
(0)(k, t − t ′) = δ (t − t ′) (2.6)

In the frequency space, we finally have

G(0)(kkk,ω) =
1

ω −ξkkk
(2.7)
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Fig. 2.2 Feynman diagrams of the interacting fermions.

Fig. 2.3 1PI diagrams.

Fig. 2.4 Dressed propagator as an infinite sum of 1PI diagrams.
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When the interaction is turned on, the propagator is modified by interactions. It is

easier to write down the Feynman diagram rather than explaining things in words at this

stage. Here, the single line propagator represents a bare electron, the dash line represents

interaction between electrons, and the double line propagator represents a particle dressed by

the interactions.

Some of the Feynman diagrams in figure 2.2 can be reduced into two or more diagrams

connected by a single propagator in series. A diagram that cannot be reduced further is called

a 1-part irreducible diagram (or 1PI diagram). The 1PI diagram is represented as a shaded

blob. The first few terms in the 1PI diagram are shown in figure 2.3. Finally, the dressed

propagator can be written as an infinite summation of 1PI diagrams connected in series, as

shown in figure 2.4. Denote the 1PI self-energy diagram by Σ(kkk,ω). The interacting Green

function in momentum space becomes

G(kkk,ω) =G(0)(kkk,ω)+G(0)(kkk,ω)Σ(kkk,ω)G(0)(kkk,ω)

+G(0)(kkk,ω)Σ(kkk,ω)G(0)(kkk,ω)Σ(kkk,ω)G(0)(kkk,ω)+ · · ·
(2.8)

The result of this sum is (we absorbed the iε description into the self-energy)

G(kkk,ω) =
1(

G(0)(kkk,ω)
)−1

−Σ(kkk,ω)

(2.9)

What does this equation tell us? Before that, we need to give two remarks about the

quasiparticles. Firstly, the momentum of a quasiparticle does not change in turning on

interactions because momentum is quantised due to a constrain in boundary conditions.

Since adiabatic evolution is very slow, it will not cause a quasiparticle to jump from one

momentum state to another. We can conclude that the momentum of quasiparticles does not

change by the interactions. Secondly, quasiparticles are only well defined close to the Fermi

surface. Why? It is because they are not free. They are allowed to interact with each other

via 4-legs Feynman diagrams, meaning that a quasiparticle can disintegrate into a bunch

of quasi-electrons and quasi-holes. Thus, they have a finite lifetime - and if their lifetimes

are too short, we cannot say they behave like a well-defined particle anymore. When a

quasiparticle is very close to the Fermi surface, however, its lifetime becomes very long

because the phase-space volume of the final state after its disintegration is small (and that

suppressed the scattering amplitude). Then, we can consider the wave vector to be very close

to the Fermi wave vector throughout the analysis. The interacting Green function can then be
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written as

G(kkk,ω) =
1

ω − vF(k− kF)−Σ(kkk,ω)
(2.10)

which has a pole at ωp = vF(k− kF)+Σ(kkk,ωp). This is, of course, the dispersion relation of

a quasi-particle. From the 1-1 correspondence between particle and quasi-particle, we know

that ωp|k=kF = 0. This means ωp can be written as

ωp = v∗F(k− kF) (2.11)

where k is close to kF . The effective Fermi velocity is

v∗F =
∂ωp

∂k
=

∂

∂k

(
vF(k− kF)+Σ(k,ωp)

)
= vF +

∂

∂k
Σ(k,v∗F(k− kF))

= vF +
∂

∂k

Σ(k,0)+ v∗F(k− kF)
∂Σ(k,ω)

∂ω

∣∣∣∣∣
ω=0


= vF +

∂Σ(k,0)
∂k

+ v∗F
∂Σ(k,ω)

∂ω

∣∣∣∣∣
ω=0

(2.12)

By defining

Z ≡

1− ∂Σ(k,ω)

∂ω

∣∣∣∣∣
ω=0

−1

(2.13)

the effective Fermi velocity becomes

v∗F = Z
(

vF +
∂Σ(k,0)

∂k

)
(2.14)

If the self-energy does not depend on the momentum, the effective mass of the particle reads

m∗ =
m
Z

(2.15)

The behaviour of the Green function in 2.10 is not very clear since the self-energy term

also contains ω in it. To understand this Green function, we consider its behaviour around

the pole by expanding the self-energy around ωp
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Σ(k,ω) = Σ(k,ωp)+(ω −ωp)

(
∂Σ

∂ω

)
ω=ωp

(2.16)

the denominator is

ω − vF(k− kF)−Σ(k,ω) = ω − vF(k− kF)−Σ(k,ωp)− (ω −ωp)

(
∂Σ

∂ω

)
ω=ωp

= ω −ωp − (ω −ωp)

(
∂Σ

∂ω

)
ω=ωp

≈ Z−1(ω −ωp)

(2.17)

Substitute this into the Green function, we finally obtained

G(kkk,ω) =
Z

ω − v∗F(k− kF)
(2.18)

where Z = (1− (∂Σ/∂ωp))
−1 and v∗F = pF/m∗. The denominator of the Green function

confirms the particle behaviour of a quasi-particle, and effectively, it has a mass m∗. The

effect of having interactions is equivalent to changing the mass. This is a remarkable result

from Landau-Fermi liquid theory.

We have to be very careful because the Green function here contains only one part of the

full Green function. The part that we quoted here is called the coherence Green function,

and the incoherence Green function part was ignored. Where did the incoherent part go? We

have to go back to the definition of the Green function. The non-interacting Green function

is defined as

G(0)(x− x′, t − t ′) = ⟨Ω0|T ψ(x, t)ψ†(x′, t ′) |Ω0⟩ (2.19)

which contains the term ψ†(x, t) |Ω0⟩. In the non-interacting theory, this term is interpreted

as a state of a single particle at the position (x, t) in spacetime. The interpretation of this

non-interacting Green function is thus the probability amplitude to find a particle at (x, t)

given that it was at (x′, t ′) initially. Therefore, this corresponds to a single propagator line.

When we go to the interacting theory, we evolve |Ω0⟩ → |Ω⟩ but leave ψ and ψ† unchanged.

It is here that we missed the incoherence part. We know that the action of operators (ψ,ψ†)

to |Ω0⟩ is to create a single hole or a single electron in the free theory, but that does not

mean they create just only one quasi-particle when they act upon the interacting ground
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state |Ω⟩! For instance, ψ
†
kkk |Ω⟩ also contains terms like two quasi-electrons plus one quasi-

hole or three quasi-electrons plus two quasi-holes (or even 101 quasi-electrons plus 100

quasi-holes!). It contains many terms as long as the number of quasi-electrons minus the

number of quasi-holes is one and the total momentum is kkk. Accordingly, the interacting

Green function must contain diagrams with many external legs (for example, three incoming

quasiparticles and five outgoing quasiparticles, as shown in figure 2.5). These diagrams

contribute to the incoherence part, and since they do not contain a particle with definite

momentum (particles can exchange momenta with each other), we expect no singularity

in this part. Consequently, the incoherence Green function only contributes to a smooth

background in the full Green function. Finally, equation 2.18 gets modify to be (now, we

also put the lifetime of a quasi-particle back into the imaginary part of the denominator)

G(kkk,ω) =
Z

ω − v∗F(k− kF)+ iτ sign(k− kF)
+ (Smooth Background From Incoherence Part).

(2.20)

By doing Fourier transform from frequency space to time on this Green function, one

gets the number density of the real electrons in solid (why real electrons rather than quasi-

particles? It is because ψ† is the operator that create a real electron, and when it appears in

⟨Ω|ψ†ψ |Ω⟩, it counts the number of the real electrons),

nkkk = iG(kkk, t = 0−) (2.21)

This becomes

nkkk = Zθ(kF − k)+(Smooth Background) (2.22)

The plot of the number density as a function of wave vector is shown in figure 2.6. There

is still a discontinuity at the Fermi surface with a size Z. This is the distribution at zero

temperature (or ground state) of electrons. If one asks for the distribution of quasi-particle in

the ground state, it is even easier to answer - there is no quasi-particle at zero temperature

because the lowest energy state is the one without any quasi-particle!

By the same analogy to the renormalisation of the electron propagator, we also need to

renormalise the interaction line. The result of doing so will modify the long-range interaction

to be exponential short-range. This effect is the so-called Thomas-Fermi screening

The notion of the dressed particle is crucial since it gives the new language in which

one can understand the physics of the system much more easily. For instance, the electron-
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Fig. 2.5 An example of a diagram in the incoherence Green function.

Fig. 2.6 Number density as a function of wave vector.

electron scattering can be calculated by just looking at how much phase space electrons

occupy after their collision (by treating them as if they are free), and it contributes to the

resistivity1 at low temperature by the amount of ρe−e ∼ T 2. The other important thing is the

ability to explain how quantum oscillation happens in Fermi liquid2.

To end the section on Fermi liquid theory, let’s look briefly how we can obtain ρe−e ∼ T 2.

As we already discussed the notion of quasiparticle earlier, we can use the quasiparticle

picture to calculate scattering rate. The most intuitive method to prove the T 2 power-law

would be to use the phase space argument. A scattering of two particles 1+2 → 3+4 is

equivalent to a decay of one particle into a hole and two particles 1 → 2̄+ 3+ 4. If the

1This way of explaining the T 2 law in resistivity does not sound correct but somehow gives the correct
result. This should not be correct because the scattering between two electrons is elastic - meaning that there
must not be any energy or momentum lost, and hence this scattering should not contribute to the resistivity. The
correct explanation to this matter is still not settled despite the theory being developed since 1956. One possible
explanation is that the electron-electron scatterings enhance them to scatter off with defects or phonons (defects
destroy the discrete translational symmetry and hence the crystal momentum no longer conserves).

2This, on the other hand, does not give any prediction on other systems (it does not say that quantum
oscillation should be seen in only Fermi liquid system). For instance, the quantum oscillation has also been
observed in topological insulators such as SmB6 [61]
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energy of particle 1 is fixed to be E1, the energy of other three particles have to lie within the

shell of energy (E1 −EF) from the Fermi surface. Quasiparticles 2 and 3 have freedom to

choose energy within this region, and quasiparticle 4 is fixed by the conservation of energy.

Therefore, the scattering rate must be proportional to (E1 −EF)
2 (which is the volume of

phase space). At finite temperature T , the Fermi surface is smeared by thermal broadening,

meaning that (E1 −EF) is in the order of kBT . Thus, resistivity is proportional to T 2.

2.2 Non-Fermi Liquid

Although Fermi liquid theory has succeeded in explaining low-temperature behaviour of

various metallic materials, it fails to capture physics of many compounds such as the metallic

phase in an underdoped [75] and overdoped [161] cuprate. The non-Fermi liquid criterion is

reflected in the transport behaviours, such as resistivity, thermal conductivity, and optical

conductivity. In resistivity measurement, we have non-Fermi liquid whenever resistivity

at low tempemrature is not proportional to T 2. The early theory that tried to capture the

non-Fermi liquid is called the ’marginal Fermi liquid theory’ [148]. In Fermi-liquid, we

have a well-defined peak in spectral representation. The width of the peak is determined

by the imaginary part of self-energy term. To obtain a well-defined peak, we require that

limω→0 ImΣ(ω) = 0 and is an even function. Therefore, ImΣ(ω) ∝ ω2 to the lowest order

of expansion. The real part of the self-energy can be obtained by the aids of Kramer-Kronig

relations, which gives ReΣ(ω) ∝ ω [26, 41]. On the other hand, the concept of a well-defined

quasiparticle does not hold in non-Fermi liquid, meaning that the renormalisation Z must

vanish to destroy the peak in spectral function A(ω). To get Z = 0, we need the differential

dΣ/dω to diverge at ω = 0. For this condition to be met, Varma [148] proposed the self-

energy to be ImΣ(ω) ∝ |ω| and ReΣ(ω) ∝ ω ln|ω|. It is worth noting that this way of getting

self-energy is purely by the phenomenological mean.

One of the important factors that breaks down the quasiparticle description is the existence

long-range interaction between quasiparticles (another requirement is that the interaction

must be repulsive in nature), which increases the scattering rate at low temperature and

increase the width of the peak in spectral function [131]. When the system is at the border

of magnetism, electrons interact via long-range spin-spin interaction. One of the standard

approaches to deal with these systems is the self-consistent renormalisation (SCR) theory.

This theory is essentially an effective theory where the fermionic field is integrated out,

leaving with only local magnetisation mmm(rrr, t) as a dynamical variable [82]. The results
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from SCR theory that will be related to out work is the power-law exponent in the transport

measurements, which is as follows [87]:

1. At the critical boundary of the ferromagnetic phase at zero temperature, the resistivity

follows the T 2-law with diverging A-coefficient. The temperature range for the T 2-law

also shrinks to zero as the boundary is approached.

2. In 2D ferromagnetic, resistivity follows R ∼ T 4/3, whereas 3D ferromagnetism gives

R ∼ T 5/3.

3. In 2D antiferromagnetic, resistivity follows R ∼ T , whereas 3D antiferromagnetism

gives R ∼ T 3/2.

Note that the power-law behaviour above holds only when there is no magnetic long-

range order. When there is a magnetic order presence in a system, the situation becomes

very complicated and the exact form of resistivity is sensitive to the anisotropy on magnetic

moments. However, if the magnon’s dispersion relation is gapped, we expect the exponential

(activation like) behaviour in resistivity. Therefore, the qualitative features in resistivity

profile would not be very sentitive to the anisotropy. In the presence of strong uniaxial

anisotropy, the contribution from the scattering with ferromagnetic reads [6, 55]

ρFM ∝ T ∆

[
1+

2T
∆

]
e−(∆/T ) (2.23)

whereas the contribution from the scattering with antiferromagnetic reads [55]

ρAFM ∝ ∆
2

√
T
∆

[
1+

2
3

(
T
∆

)
+

2
15

(
T
∆

)2
]

e−(∆/T ) (2.24)

2.3 Superconductivity

One of the most significant achievements in twentieth-century condensed matter physics is

undeniably the discovery of superconductivity and the theory behind it. Superconductivity

was first discovered in Mercury by Onnes in 1911, but it took almost half a century to

understand the phenomenon. In those fifty years, many great physicists, such as Einstein,

Heisenberg, Landau, Feynman, Born, and many more, have attempted to solve the mystery

of superconductivity, but they failed. This in itself tells us how difficult this subject is. Then,
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in 1957, three physicists, Bardeen, Cooper, and Schrieffer, proposed the microscopic theory

of superconductivity, and the theory is named after them - the BCS theory!

The rough idea of the superconductivity is that electrons at the opposite side of Fermi

surface3, with the opposite spin, pair up together. This makes the excitation become gapped

and causes a dissipationless flow

2.3.1 Phenomenological Approach

As the order parameter in a superconductor can be represented by a complex wave function4

ψ , the Ginzberg-Landau free energy is

f (ψ,AAA) = f0 +α|ψ|2 + β

2
|ψ|4 + 1

2m

∣∣(iℏ∇−qAAA)ψ
∣∣2 + 1

2µ0
(∇×AAA−∇×AAAE)

2 (2.25)

where AAAE is a vector potential corresponding to an external field. By minimising the free

energy with respect to ψ and AAA, we obtained the so-called Ginzberg-Landau equations. The

first GL equation reads

1
2m

(−iℏ∇−qAAA)2
ψ +(α +β |ψ|2)ψ = 0 (2.26)

and the second GL reads

JJJs =
nsq2

m

(
ℏ
q

∇θ −AAA
)

(2.27)

where JJJs is superconducting current and θ is the phase in the superconducting wave function.

From these two GL equations, one can see that there are two length scales involved. The

first one is the coherence length, which associates with the first GL equation. It tells us how

fast the wave function can vary in inhomogeneous superconductivity (for example, how fast

the wave function grows from zero at the surface to a constant value in bulk). The coherence

length is defined to be

ξ =

(
ℏ2

2m|α|

)1/2

(2.28)

3The reason it has to be opposite is to maximise the phase space of both electrons after the scattering. If
they are not opposite to each other, the phase space of states after collision gets significantly suppressed due to
the momentum conservation constraint.

4This complex wave function ψ is interpreted as the wave function of centre of mass of a Cooper pair.
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The second length scale associated with the second GL equation is the penetration depth,

which tells us how far the magnetic field can penetrate into the superconducting bulk. The

penetration depth is given by

λ =

(
m

µ0nsq2

)1/2

(2.29)

The non-zero penetration depth tells us that superconductors expel flux, and the magnetic

field should be zero in bulk - this is called the ’Meissner state’. However, it is possible to

lower the GL free energy by letting a quantum flux pass through the superconductor in some

circumstances. Doing so lowers the field energy but raises the stiffness energy (the gradient

term) - this is called the ’vortex state’. When the field is very close to zero, the system is

always in the Meissner state. When the external field is large enough, the vortex state is

preferred. This critical field is given by

Bc1 =
φ0

4πλ 2 (2.30)

where φ0 = h/2e is the quantum of flux. When the field is increased further, there will be

more and more vortices in the material, and they finally form vortex lattice due to the vortex-

vortex repulsion - this is called the ’Abrikosov flux lattice’. The lattice gets squeezed as the

external field is larger (since there are more vortices). Once the lattice parameter reaches

the coherence length, it loses the screening completely and, hence, is not superconducting

anymore. This critical field is defined by

Bc2 =
φ0

2πξ 2 (2.31)

It is clear that there should be two types of superconductors. Type-I superconductor is the one

with Bc1 > Bc2. This means that the vortex state does not exist in this type, and it goes from

Meissner state to normal state directly under applied magnetic field. Type-II superconductor,

in contrast, happens when Bc1 < Bc2. The transitions in field of this type undergo from

Meissner state to vortex state and finally normal state. These criteria can be translated into a

dimensionless parameter κ ≡ λ/ξ . If κ < 1/
√

2, it is type-I superconductor. If κ > 1/
√

2,

it is type-II superconductor.
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2.3.2 Microscopic Description

Weak Coupling Limit

Although the GL phenomenological approach can predict a few superconductors’ propertiess,

it does not explain how superconductivity forms. To begin with, the interacting Hamiltonian

in the Grand canonical ensemble casts the form.5,6

H = ∑
kkk
(εkkk −µ)a†

kkkσ
akkkσ +

g
2V ∑

kkkkkk′qqq

a†
kkk+qqq,σ a†

kkk′−qqq,σ ′akkk′σ ′akkkσ (2.32)

In the mean field approximation where the fluctuation of the system is neglected, the effective

Hamiltonian becomes

Heff =
1
2 ∑

kkk

[
ξkkk

(
a†

kkkσ
akkkσ +a†

−kkkσ
a−kkkσ

)
+∆

(
a†

kkk↑a†
−kkk↓+akkk↑a−kkk↓

)]
(2.33)

where the diagonal terms absorb both direct and exchange terms, and the off-diagonal terms

are Bogoliubov terms. By diagonalising7 Heff, the energy spectrum shows the energy gap of

2∆ at the chemical potential. Thus, we can interpret parameter ∆ to be the energy gap of the

Bogoliubov excitation. By looking at the full Hamiltonian, we can see immediately that the

energy gap is

∆ =
g
V ∑

kkk
⟨a−kkk↓akkk↑⟩ (2.34)

In the diagonal basis, the new creation and annihilation operators obey the anticommuta-

tion relation, suggesting the Fermi-Dirac distribution at finite temperature. Therefore, by

evaluating the energy gap in the diagonal basis, one arrives at the expression

∆ =
|g|
V ∑

kkk

∆

2Ekkk

(
1−2 f (Ekkk)

)
(2.35)

5The ω and kkk independent coupling constant is a good approximation in the case of phonon mediated
superconductor. Since the estimated form of the effective potential is proportional to (ω2 −ω2

D)
−1 and the

Debye frequency is generally much larger than the temperature scale we usually consider, it means we can treat
the potential to be just a constant.

6Einstein’s summation convention is applied here in the spin indices.
7By using Bogoliubov transformation.
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where Ekkk =
√

ξ 2 +∆(T )2. By changing the discrete summation into the integration, we

obtain the self-consistent equation, called the ’BCS gap equation’

1 = |g|
∫ ℏωD

0
dξN (ξ )

1√
ξ 2 +∆(T )2

tanh

(√
ξ 2 +∆(T )2

2kBT

)
(2.36)

where N (ξ ) is the density of state. This equation has to be solved numerically. However,

one can extract some useful information by considering two limiting cases. The first one is

∆(T )→ 0, which happens when the temperature reaches the critical temperature Tc. Plug in

this condition to the gap equation, one obtains

kBTc = 1.13ℏωD exp
(
− 1

N (0)|g|

)
(2.37)

The second limit is the zero-temperature limit, where the energy gap becomes ∆(0). In this

limit, one obtains

∆(0) = 1.76kBTc (2.38)

In parameter in the exponential in the first limiting case can be identified as electron-phonon

coupling parameter λ ≡ N (0)|g|. Thus, in achieving high critical temperature, we need

high phonon frequency and strong electron-phonon coupling8.

The value of the critical temperature or the energy gap can also be related to the coherence

length and the Fermi velocity. The argument was given by Sir Brian Pippard as followed:

since the dispersion relation got modified only in the vicinity of the Fermi surface, only

electrons in the width δk form pairs. This width can be estimated to be the ratio of the energy

gap to the gradient of the dispersion relation (which is the Fermi velocity), δk ∼ ∆/ℏvF .

Using Heisenberg’s uncertainty principle, we obtained the estimated size of Cooper’s pair,

which is basically the coherence length. By doing more careful analysis, the result can be

expressed as

ξ (T ) =
ℏvF

π∆(T )
(2.39)

8Metallic hydrogen is a candidate for room temperature superconductor due to the very small mass of
hydrogen atom and strong hydrogen bonds- hence very large phonon frequency [11].
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At zero temperature, one arrived at the expression (upper critical field in terms of critical

temperature)

Bc2 = 1.22φ0

(
kBTc

ℏvF

)2

(2.40)

Strong Coupling Limit

When the electron-phonon couple becomes strong, the previous discussions do not hold

anymore. One has to generalise the BCS gap equation to be

∆(kkk, iωn) =−kBT ∑
kkk′

∞

∑
n′=−∞

V (kkk− kkk′, iωn − iωn′)∆(kkk
′, iωn′)

∣∣G(kkk′, iωn′)
∣∣2 (2.41)

where ωn is the Matsubara frequency for fermions. The result of the critical temperature in

the strong coupling limit is given by the Eliashberg-McMillan theory

Tc =
ΘD

1.45
exp
(
− 1.04(1+λ )

λ −µ∗(1+0.62λ )

)
(2.42)

where µ∗ is the Coulomb pseudopotential, which is given by

µ
∗ =

µ

1+µ ln
(
TF/ΘD

) (2.43)

The electron-phonon coupling constant, when taking into account the phonon density of state,

is also modified to be

λ = 2
∫

ωD

0
dω

α2(ω)F(ω)

ω
(2.44)

where F(ω) is the phonon density of state and α(ω) is the electron-phonon matrix element.

Effectively, this term can be written as

α
2F(ω) =

1
ℏ
⟨N (0)

∣∣gqqq
∣∣2 δ (ω −νqqq)⟩FS (2.45)

2.3.3 Unconventional Superconductivity

Although the understanding of superconductivity seems complete with the BCS theory, the

discovery of superfluidity in 3He opens up physicists to the possibility of pairing mechanisms
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beyond BCS. Such a discovery is unexpected9 because 3He is a fermion and thus cannot

undergo Bose-Einstein condensation. This discovery has led to the idea that 3He atom tends

to form pairs as in superconductivity. Since phonon does not exist in liquid, the interaction

must be different from the conventional BCS theory. It turns out that the pairing mechanism

in 3He comes from magnetic fluctuation, giving rise to p-wave type in the 3He-A phase,

which is in contrast to the conventional s-wave pairing by phonon. This discovery has led

physicists to speculate if Cooper’s pair in metal also arise from other pairing mechanisms.

Unlike 3He atom, electron carries an electric charge and repels each other strongly. One

may ask how Cooper’s pair formation is stable even with repulsive Coulomb interaction

between electrons. The answer to this kind of question may differ between conventional

superconductivity and unconventional superconductivity. In conventional superconductivity

or BCS theory, electrons in Cooper’s pair can avoid getting close to each other by having

retarded attractive interaction. Since atoms are much heavier than electrons, the characteristic

time scale for the lattice to relax back to its equilibrium position is much larger than the

time scale associated with the electron’s Fermi velocity. When an electron flies past a region

in solid, it distorts lattice for an extended period, which can affect another electron when

it passes this area later on. In this way, electrons can effectively attract each other via

phonon mediation without getting close to each other, promoting s-wave pairing. This picture

is confirmed by measuring the coherence length of Cooper’s pair, which turns out to be

much larger than the lattice constant. On the other hand, paired-electrons in unconventional

superconductors can avoid the overlap by having a non-zero angular momentum in the spatial

wave function. In other order parameters (such as p-wave and d-wave), the wave function

vanishes when two electrons occupy the same position in space, minimising the overlap and

coulomb interaction.

One signature of unconventional superconductivity is the gap structure. In contrast to

conventional superconductor where the gap is uniform in every direction, the gap structure in

an unconventional superconductor is non-uniform and averaged to zero throughout Fermi

surface, that is [84] ∫
∂M

∆(k) = 0 (2.46)

where ∂M is the boundary of the Fermi surface. The zero-averaged gap structure also

indicates that the superconducting transition temperature should be sensitive to the impurity

9As in conventional superconductivity, 3He superfluidity gives a Nobel prize twice: one in 1996 for the
discovery and one in 2003 for the theoretical work.
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scattering. When there is a large amount of impurity in the material, electrons on the Fermi

surface scatter each other randomly, making the gap parameter effectively zero and destroying

superconductivity completely.

2.4 Mott Transition

In the band structure picture, whether a material behaves as a conductor or an insulator only

depends on partially filled bands10. If there are any partially filled bands in the system, it is

typically a conductor. However, the band structure picture completely neglects the electron-

electron Coulomb’s interaction. In some cases of half-filled systems where the band structure

picture predicts them to be metallic, however, are insulating. This situation is entirely possible

due to the strong electron-electron repulsion. When the system is exact half-filled, each

lattice site is filled by exactly one electron, and they cannot move to the neighbouring sites.

This causes the insulating behaviour, which is called the ’Mott insulator’11.

This type of insulator also prefers to have antiferromagnetic order. To understand why,

we can follow the qualitative argument here. If the interaction energy between electrons

is very large but not infinite, the total energy of the system can be lowered by allowing an

electron to hop to neighbouring sites (this is due to the Heisenberg uncertainty - if a particle

is allowed to occupy larger space, it will have smaller energy). In order to do so, electrons in

the nearest neighbour sites must have spins in the opposite direction to each other (otherwise,

it is forbidden to hop around by Pauli’s exclusion principle). The process of this hopping

comes from the second-order perturbation theory12. This particular virtual process is called

the superexchange.

To understand this in more detail, we look at the mean-field Hamiltonian, called the

Hubbard Hamiltonian

H =−t ∑
⟨i j⟩

a†
iσ aiσ +U ∑

i
ni↑ni↓ (2.47)

Applying degenerate second-order perturbation and using the identity on Pauli’s matrices

∑
i

σ
i
αβ

σ
i
γδ

= 2δαδ δβγ −δαβ δγδ (2.48)

10An insulator that arises from the completely filled band is called the ’band insulator’
11There is also another type of insulator, which arises from the Anderson localisation. Sir Nevil Mott and

Philip Anderson worked in Cavendish Laboratory and shared Nobel prize in the same year!
12So this hopping is actually a virtual process.
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one arrived at the correction [5]

H ′ =
4t2

U

(
SSS1 ·SSS2 −

1
4

)
(2.49)

which suggests the Mott insulator to be the Heisenberg antiferromagnetic13.

The fact that a strongly interacting half-filled system becomes insulating, as well as

antiferromagnetic, has a deep connection to the nesting effect. The most intuitive way to

understand this is as following: when a system undergoes antiferromagnetic transition, the

’magnetic’ unit cell is doubled, shrinking Brillouin’s zone by half and the introducing energy

gap. Hence, the system becomes an insulator. However, we cannot tell how strong the

interaction needs to be to have a magnetic ordering. To calculate the critical interaction

strength, we need to look at Lindhard’s function, defined by [54]

χ
(0)(qqq) = ∑

ppp

fppp − fppp+qqq

εppp+qqq − εppp
(2.50)

The susceptibility, calculated from the second-order perturbation theory (RPA approximation

yields the same result), reads [54]

χ(qqq) = (gµB)
2 χ(0)(qqq)

1−Uχ(0)(qqq)
(2.51)

Therefore, magnetic instability tends to happen at the wavevector of the peak in Lindhard’s

function.

2.5 Aubry’s Transition

In this section, we discuss the role of interaction and the Aubry’s transition. We postpone the

discussion of sliding mode to chapter 4 on Sb-II. The general role of interactions between

host and guest chains in an incommensurate system is to modulate the position of atoms in

the chain. To understand the effect of interactions intuitively, we can simplify the system to

have only one kind of chain in a perfect periodic potential, which comes from sub-lattice.

The situation is shown in figure 2.7a. If the chain has finite rigidity, it is clear that there is

a force acting on each atom, modulating the chain’s atomic position. When the interaction

13Although it is relatively easy to solve the exact half-filled system, the case of away from half-filled’ is
extremely complicated. A strong interacting system close to half-filled with small amount of holes can be
describe by effective t-J Hamiltonian [134].
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is stronger, there is a higher tendency for atoms to reach minima of the potential, shown in

figure 2.7b. In the extreme limit of very strong potential, we can see pictorially that all atoms

will sit at the bottom of potential minima as in figure 2.7c. Since the number of atoms in the

host and guest chain is not equal, defects of missing atoms are introduced (a small empty

circle in figure 2.7c). This transition between the incommensurate phase and commensurate

phase with defects is known as Aubry’s transition. A rigorous analysis of this kind of system

was done in the literature [13].

(a) Weak interaction between host and guest chains

(b) Intermediate interaction between host and guest chains

(c) Strong interaction between host and guest chains

Fig. 2.7 Figures showing Aubry’s transition between incommensurate phase and commensu-
rate phase with defects.





Chapter 3

Experimental Techniques

3.1 Pressure Cell Technique

3.1.1 Introduction

As pressure is one of the most important tuning parameters in condensed matter systems,

there has been much development in techniques to achieve higher and higher pressure. The

fact that we require such high pressure in our field of research (at least ten thousand bars up

to a few hundred thousand bars) makes this work very difficult. There are a few types of

pressure cells available to use. The suitability of the pressure cell depends on the nature of

the projects. For relatively low pressure, one might consider setting up a piston-cylinder cell

(PCC, or another name - ’clamp cell’) [150]. For the PCC cell, one can reliably set it up for

the pressure range up to 25-30 kbar. It is relatively easy to set up compared to other types

of pressure cell due to the very large sample space (with the dimension of approximately

4mm×××4mm×××3cm). This means that we can use very large samples for the measurement,

up to a millimetre. Apart from that, we also have advantages of using this PCC over other

types of pressure cells: (i) multiple samples (up to five samples and one tin manometer) can

be measured in the cell simultaneously. (ii) excellent hydrostaticity condition due to large

sample space. However, to go higher than 30 kbar, one needs to consider using other types of

pressure cells. There are two options - Bridgman anvil cell [25] and (Moissanite/Diamond)

anvil cell. The Bridgman anvil cell can be pressurised up to above 100 kbar, and the sample

space is large (2 mm). However, the nature of the gasket is porous (it is made of pyrophyllite)

- it requires a pressure medium to be solid powder, in which Steatite is commonly used. By

using a solid powder pressure medium, we trade off a homogeneity in the sample space.

Thus, Bridgman anvil cell is suitable for only certain studies (such as to observe the existence
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of superconductivity) but not so for wide range of studies such as to observe some subtle

transition (ferromagnetism, antiferromagnetism, etc), tracking phase transition temperature

as a function of pressure (as the transition would be generally very broad due to pressure

inhomogeneity), or power law studies. Finally, we move to the moissanite anvil cell (MAC)

and diamond anvil cell (DAC). We only used these MAC/DAC cells for our entire work in

this dissertation. Hence, we will dedicate this section of pressure technique to describe the

MAC/DAC.

3.1.2 Moissanite Anvil Cell and Diamond Anvil Cell

In the MAC cell (and DAC cell - they work the same way, only diamond is much harder than

moissanite and much more expensive), it is one of the best kinds of cell that both give an

excellent hydrostaticity and can go up to very high pressure. Depending on the size of the

culet, DAC cells can potentially go up to many hundreds of kilobars or megabars. Moreover,

we only use liquid medium to transmit pressure in this cell. That is why we expect a decent

hydrostaticity in the MAC and DAC cells. The only trade-off of this anvil cell is that it is

extremely difficult to set up. The working space in this cell is generally no more than 0.4mm

in diameter and 0.1mm in thickness - everything has to be crammed into this space (a sample

with four wires, a micro-coil, a ruby, and a pressure medium). The sample size is hence no

larger than 200 microns in length and 40 microns in thickness. We will now describe each

component in detail.
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Fig. 3.1 The diagram showing components in pressure cell. The labels are: (1) piston - this is
used to hold the anvil (2) anvil (3) gasket - for making the sample space and getting squashed
by two anvils (4) guiding screw (5) tilting screws. The figure is taken from [32]
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Material for the body

In one pressure cell, we can use it for many kinds of experiments, resistivity, AC susceptibility

and TDO technique, by preparing the gasket in different ways. Therefore, we have to choose

a material for the body that allows us to use it for all measurements mentioned above. A

good candidate for this is the beryllium copper (BeCu), as it provides good strength and

gives a low magnetic background.

Anvil

We mainly use two different types of anvil, moissanite and diamond, depending on the

pressure range we aim for. For the pressure range of less than 120 kbar, moissanite works

perfectly fine. Above this pressure, one needs to go for a diamond. Then, we need to polish

the flat surface of the anvils to the desired diameter. To choose the culet size, in the case of

moissanite, we follow the table (quoted from the manual made by Dr Patricia Alireza).

Culet Size (mm) Estimated Maximum Pressure (kbar)

1.2 40

1.0 70

0.8 120
Table 3.1 Table shows the estimated maximum pressure that a pressure cell with different
culet size is expected to reach.

And in the case of a diamond, the estimated maximum pressure follows a rule of thumb.

Pmax =
125(

d(mm)
)2 kbar (3.1)

where d is diameter of the culet in millimetre.

Finally, the most crucial step in preparing anvils is to align both anvils in such a way

that they align in the x-y direction and parallel to each other. To see if they align in the x-y

direction, we look at the silhouette as we shine light into a hole on the side of the pressure

cell. To check if two anvils are parallel, we look at the interference pattern that arises between

them. The pattern will be like Newton’s rings if the surfaces are parallel to each other.
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Gasket

A gasket is undoubtedly the most crucial element in the anvil cell. There are two types of

gasket - metallic gasket and insulating gasket. There are equally advantages and disadvantages

for both types of the gasket. For a metallic gasket, the advantage is that it is stable, but the

disadvantage is that the wires/leads or sample in the cell can short to the gasket, which will

make the cell unusable and needs to be reset. For an insulating gasket, the advantage is that

it is really unlikely to have a short to any part of the cell, but the disadvantage is that it is not

stable - the gasket can crumble and collapse very easily. Moreover, the pressure inside the

insulating gasket is always prone to relax (sometimes even by a factor of two).

To set up a metallic gasket, we start with choosing the suitable material for this. There

are primarily three candidates - beryllium copper (BeCu), stainless steel 316, and alloy MP35

(nickel-cobalt base). The material we use highly depends on the type of measurement and

target pressure. For AC susceptibility or tunnel diode oscillator (TDO) measurement, BeCu

is the only option as it gives the smallest magnetic background amongst the three of them.

Stainless steel and MP35 are highly magnetic and hence give too large background and are

not suitable for any magnetic property measurement. For transport measurement (resistivity),

the option is more open. BeCu is the standard material for relatively low pressure (up to 100

kbar) because it is easy to work with (as it is soft but needs to be heat-treated later). However,

one can also use stainless steel with moissanite to improve the stability of the gasket with

the trade-off that it is harder to work with. For diamond, we have to go for MP35 as it is the

most rigid material amongst the three to stand the tremendous force we use with diamond.

A table below shows the yield strength of each material

Material Yield Strength (GPa)

BeCu half-hardened 0.59

BeCu half-hardened and ageging at 370 C for 10 minutes 1.2

Stainless Steel 316 1.5

MP35 2.2
Table 3.2 Mechanical yield strength of a few candidate materials to be used for gasket.

Then, the gasket needs to be pre-indented - to make the part at the centre become very

thin. Since the physics of the gasket is rather complicated (very non-linear, and one has

to take into account deformations), the pressure is not simply P = F/A but depends highly

on the gasket’s thickness. The theory of gasket is provided in the Dunstan 1989 article
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[50]. It is generally known that the thinner the gasket, the higher the pressure it can reach.

For resistivity measurement, the gasket has to be pre-indented down below 100 microns.

However, the AC susceptibility measurement needs a thicker gasket to obtain more turns of a

micro-coil we put inside the pressure region. The usual thickness for both AC susceptibility

and TDO cells is 140 microns. The next step is to make a hole at the centre of the gasket. As

a rule of thumb, the hole should not be larger than half the size of the culet. For instance,

with a 0.8 mm culet, the maximum size of the hole should be 0.4 mm. The smaller the hole,

the better the stability of the gasket. The final step for the gasket preparation is to insulate it.

There are many ways of doing insulation, and it also depends on what type of measurement

one needs to do. For resistivity, one usually carves two beds and fills them with insulation

(which is made of Stycast 1266 mixed with alumina oxide power). For the AC susceptibility,

one makes two narrow channels using a scalpel and fills them with the insulation.

There are fewer steps to do to set up an insulating gasket, but it is only suitable for

resistivity measurement (since one cannot make channels on it). Instead of just drilling half

of the size of the culet, we remove the whole flat area. Then fill the hole with the prepared

cubic boron nitride powder (the way to prepare this powder is to mix cubic boron nitrite with

Stycast 1266 in the ratio 12:1 and grind it very well) and press it very hard. Finally, this will

give us an insulating gasket. One has to drill a hole of less than half the size of a culet, and

the gasket is ready.

Pressure Medium

The next step is to choose what pressure medium to use. There are, again, many options

one can choose, depending on how much hydrostaticity one would like to acquire. We can

classify pressure medium in four groups as follows: (i) solid pressure medium (ii) ’oil’ type

(iii) organic fluid (iv) condensed gas. The solid pressure medium, such as NaCl, is the easiest

one to load because there is no risk of leaking, and it does not compress (that means there will

be no movement inside the gasket - then the low risk of wires getting destroyed). However,

they give the worst homogeneity amongst the four groups. Oil type pressure mediums, such

as Glycerol and Daphne Oil 7474, on the other hand, give much better homogeneity than

the solid medium but are a little bit harder to make it work because of the possibility of

leaking and more compressibility. Organic fluids, such as 4:1 methanol-ethanol and 1:1

pentane-isopentane, is much more challenging than the two former groups for a few reasons:

(1) high volatility (2) aggressiveness toward epoxy and insulation (3) high risk of leaking and

high compressibility. To use organic fluid, we must submerge the whole pressure cell in the
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liquid when we close it due to high volatility (it evaporates too fast). The homogeneity from

the organic fluid is also much better than both solid pressure medium and oil type. Finally,

the condensed gases, such as argon and nitrogen, are the best pressure medium in terms of

homogeneity. It is neither easier nor harder to load compare to organic fluids. The easy

aspect of the condensed gases is that they are usually very inert - hence they do not damage

epoxy and insulation. The problematic aspect is that it is very compressible - once pressure

is applied, the hole inside may close and destroy wires/leads.

The table below shows the hydrostaticity limit of each medium. The data was acquired

from [143].

Type Pressure Medium Estimated Hydrostatic Limit (kbar)

Solid NaCl 15

Oil

Glycerine 50

Silicon Oil 35

Daphne 7373 40

Daphne 7474 60

Organic

1:1 n-pentane and isopentane 85

4:1 methanol and ethanol 90

Petroleum Ether 95

Condensed Gas

Nitrogen >100

Argon >100

Helium >100
Table 3.3 Hydrostatic limit of some pressure media. The data was acquired from [143].

Ruby Fluorescence

The pressure inside a sample space is usually measured using a tin manometer in a piston-

cylinder or Bridgman cell. Tin undergoes superconductivity at 3.72 K at ambient pressure,

and this transition changes under pressure. Therefore, pressure is measured by measuring

superconducting transition temperature. This can be done efficiently and accurately in the

pressure cells mentioned above since they have large chamber spaces. On the other hand, the

space inside the MAC/DAC is very limited, and another way of measuring pressure must be

employed.
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In the case of the anvil cell, we gauge pressure inside the cell using Ruby Fluorescence.

Ruby is made of α −Al2O3 with some impurity of Cr3+ in it. There is some good literature

on the physics of optical properties of ruby in high pressure [139]. We shall not go into

much detail here. To summarise things briefly, we quoted a figure of the energy spectrum

of Cr3+ in ruby from the paper [139]. There is a strong crystal field in the environment of

Cr3+ atoms. Hence, we expect series of crystal field splitting in the energy spectrum. Figure

3.2 includes the effect of crystal field, electron-electron coupling and spin-orbit coupling.

Some of the energy levels are broadened into energy bands. In this case, they are the U, Y,

and X bands, which absorb green and blue light (that is why ruby is pinkish or reddish). In

our experiment, we use a green laser to excite electrons to the U band. Subsequently, they

relaxed to the ground state via the process 4T2 → 2E → 4A2. The energy differences between
2E states and 4A2 give visible light in the red spectrum - we called them R1 and R2 lines. The

spectrum of these two lines shifts upward in high pressure. Therefore, we can gauge pressure

by a mean of measuring the shift in photon frequency. Since the R1 line gives a stronger and

sharper signal than the R2 line, we use it as a reference.

At relatively low pressure, the relationship between pressure and wavelength at room

temperature (293 K) very well follows the equation [139]

P = (18700±300) ln
(
λ/λ0

)
kbar (3.2)

where λ0 is the wavelength of R1 line at ambient pressure, which is 694.30 nm in our case.

Since we measure pressure by ruby fluorescence only at room temperature, it is only

natural to ask how reliable it is at low temperature (which is the temperature we usually are

interested in). One may expect pressure to drop once the system is cooldown to cryogenic

temperature. However, measurements using tin and lead show that the drop in pressure from

room temperature to low temperature is usually less than two kbar. Thus measuring pressure

by mean of ruby fluorescence at room temperature is quite reliable.
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Fig. 3.2 Energy spectrum of Cr3+ in ruby in the presence of crystal field. This figure is taken
from [139].

Fig. 3.3 The ruby spectrum from a pressure cell. A green laser is used to illuminate the ruby.
The blue curve is at ambient pressure and the red curve is at 58 kbar.
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3.2 Measurement Systems

3.2.1 Physical Property Measurement System (PPMS)

PPMS is a cryostat made by Quantum Design company (QD). It is a convenient and versatile

measurement system. There are many different kinds of measurements in this system -

resistivity, AC susceptibility and heat capacity, to name three. The temperature range that

PPMS can go without helium-3 probe is between 2 K and 400 K. The cooling system uses

liquid nitrogen to cool down to 77 K and followed by liquid helium-4 to cool down to 4.2

K. To cool the system further to the base temperature, which is 2 K, it needs to pump out

helium gas to go to significantly lower pressure. By doing so, it lowers the boiling point of

helium. As there is a limited amount of helium one can pump out, we have to keep feeding

helium into a pot. It is just an optimisation problem of how much helium should be fed into

the system per unit time. If it is too fast, it will not be able to go down much below 4.2 K,

but if it is too slow, it can stay at the base temperature for only a short amount of time (until

helium is empty). The work of controlling the flow rate when the system initially cool down

is done automatically - called the ’pot operation’. There are basically two impedance tubes -

the large one and the small one (capillary). When the system starts cooling down below 10

K, the large impedance tube is fully open to fill the pot. Once it reaches 4.2K, this tube is

completely closed by heating up the gas inside to make a bubble that blocks the flow (this

is the subject mathematicians have been working a lot on - slow viscous flows). Finally,

as the capillary tube is always open, the flow rate is the optimised value that balances the

evaporation rate of helium to the pump. Ideally, if there is no blockage, the system should be

able to stay at the base temperature as long as one desires.

The strongest point of PPMS is the ability to do very fine temperature control. It can

do a temperature sweep with the rate between 10 mK/min to 20 K/min. The ability to cool

down and warm up with such a slow rate as 10 mK/min is crucial to study phase transition in

many systems (such as a shoulder in resistivity that arises from ferromagnetic transition or

a kink in resistivity that arises from antiferromagnetic transition). Moreover, the ability to

have a very reliable PID controller is very crucial to study the system in fine detail (such as

power-law study, or fitting data to known equations).

Finally, the PPMS we are using is also capable of producing a magnetic field of up to 9 T.

The field is produced by a superconducting magnet, which is submerged in liquid helium-4.

The superconducting magnet is a solenoid made by superconducting wire (usually made of

filaments of niobium-titanium or niobium-tin embedded in copper). Because of a persistent
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current in a superconductor, we can produce a constant magnetic field without needing much

energy consumption and cooling power. A superconducting heat switch in the magnet is used

to change the current in a superconducting magnet.

Fig. 3.4 The diagram showing PPMS probe and its cross section. The figure was taken from
[48].

3.2.2 SQUID Magnetometry

The measurements of magnetisation (or SC susceptibility) in this work have been carried out

in the commercial Quantum Design Magnetic Property Measurement System (MPMS), which

is based on a DC SQUID magnetometry (Superconducting Quantum Interference Device).

The DC SQUID is made of a superconducting loop with two Josephson’s junctions and is

really sensitive to the magnetic field passing through the loop. The sensitivity of this MPMS

is as good as 10−9 emu or 10−12 A ·m2 (this number tells us how small a magnetic dipole
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this device can detect). The SQUID is composed of two Josephson junctions connecting

together to form a ring.

A Josephson junction is composed of a normal metal sandwiched between two super-

conductors. By doing so, there are many interesting phenomena. We start by noting that,

even if a thin layer of normal metal is inserted at the middle, a supercurrent still exists. This

is because of the tunnelling of Cooper pairs across the junction. However, the current can

flow in the absence of voltage across the junction only if it is smaller than the ’Josephson

critical current’ - IJ (This value is different from the critical current Ic in superconductor and

depends on properties of the junction). The current across the junction can be written by

I = IJ cos(Θ) (3.3)

where Θ is the phase difference between Cooper pair’s wavefunction in those two supercon-

ductors (to the left and to the right of the junction). Once the current exceeds this critical

current, normal electrons (non-superconducting) will contribute to the total current. Hence, a

voltage is developed across the junction as I > IJ (and SQUID is now operating in a ’resistive

mode’).

In SQUID ring, the total current is the sum of the contribution from each junction

I = IJ1 cos(Θ1)+ IJ2 cos(Θ2) (3.4)

with IJ1 = IJ2 and Θ1 = Θ2. Once we apply an external magnetic field, these conditions do

not hold anymore. Firstly, currents in each junction are not equal, so the flux quantisation

requirement is satisfied. Secondly, phases across each junction also change. By using the

fact that flux passing through the ring is equal to the line integral of vector potential along

the circumference, and A = (ℏ/2e)∇θ , one can calculate the critical current of the whole

system to be

IC−SQUID = IC−Jospehson cos
(

πΦ

Φ0

)
(3.5)

where Φ0 = h/2e. Therefore, once SQUID works in the resistive mode, the measured voltage

will be a periodic function of Φ0. That way, we can measure the magnetic field’s change very

accurately by counting the number of periods.

In real SQUID magnetometry, it is impractical to count the number of the period since

the frequency is too large. It is operated by using a flux transformer that transfers the flux

from a sample to SQUID. Then, the SQUID (which has a bias current Ib > IC−SQUID) is
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connected to the feedback coil, which produces a magnetic field into the SQUID loop and

keeps the voltage across it constant. Then the signal one gets come from this feedback coil.

The sample is sandwiched between two pickup coils for the input, and the sample position

can be varied. If we can measure the magnetic field accurately at a different sample position,

the sample’s magnetisation can be calculated by modelling it to be a perfect dipole.

Fig. 3.5 The schematic diagram for a SQUID circuit. Figure credit: [34].





Chapter 4

Incommensurate Host-Guest Antimony,
and Possible Aubry’s Transition

We dedicate this chapter to the study of high-pressure antimony. This work was inspired by

the previous studies of bismuth, especially the high-pressure one in Cavendish Laboratory

[29]. Antimony has many similarities to bismuth. Firstly, they are both semi-metals at

ambient pressure and undergo phase transitions to an incommensurate phase at high pressure.

Both of them show superconducting transition at low temperatures in this incommensurate

phase. High-pressure bismuth is already quite well studied compared to high-pressure

antimony since it requires significantly lower pressure to access those high-pressure phases.

For instance, it requires 28 kbar to enter the Bi-III (incommensurate) but 86 kbar to enter

Sb-II (incommensurate).

For the sake of completeness, we will include the high-pressure study in Sb-I, although it

does not have an incommensurate host-guest structure (and hence not the main focus of our

research).

This project results from collaborations between Puthipong Worasaran, Stephen Hodgson

(3rd year PhD student at the time of preparing this dissertation), Dr Patricia Alireza, and Dr

Jiasheng Chen. The resistivity pressure cells setup was done by PW and were measured in

PPMS by SH. The SQUID pressure cell setup was done by PLA (and she helped with most
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of the measurements in the MPMS system). JC measured the upper critical field carefully in

the DMS.

4.1 Sb-I

4.1.1 Introduction and Literature Review

Antimony is an element in the pnictogen group with the valence electron configuration

5s2 5p3. In contrast to bismuth, which is soft, antimony is somewhat brittle. The crystal

structure of antimony is the rhombohedral A7, similar to both arsenic and bismuth. The

rhombohedral A7 can be thought of as the distorted version of a primitive simple cubic

structure. Since the distortion doubles the unit cell, it opens a gap at the Fermi energy and

lowers the electronic energy. Hence, the distortion in antimony is like a Peierls transition [95],

doubling the total number of atoms per unit cell (from half-filled band to filled band) and

accounting for the poor metallic behaviour. Crystallographically, the rhombohedral structure

with an angle of α = 60◦ is isomorphic to a simple cubic. When the distortion comes in, it

produces two effects. Firstly, the angle α is reduced slightly below 60 degrees. Secondly, the

sublattice (atom at the middle of the unit cell) gets displaced slightly toward point (0,0,0).

The distorted angle α ranges from 54.11◦ to 57.23◦ in bismuth, antimony, and arsenic [8].

The Peierls distortion in antimony decreases when external pressure is applied [70]. As

a result, the crystal structure tends to go toward cubic at high pressure, with many debates

about whether it ever reaches a complete simple cubic structure [70, 149]. Later on, it was

found that there is an intermediate phase at a pressure between 70-85 kbar, which is not a

simple cubic phase but a monoclinic incommensurate phase Sb-IV [45]. Antimony undergoes

another structural transition to a tetragonal incommensurate phase Sb-II above 86 kbar [127].

We will not discuss these incommensurate phases in this section but will be thoroughly

investigated later in this chapter. The crucial point here is that the antimony structure tends

to revert back to simple cubic under pressure but never reaches it.

A similar change in the crystal structure under pressure also happens in bismuth and

arsenic. It is of great interest to briefly overview both bismuth and antimony (we do

not discuss arsenic as there are only a few studies available). Bismuth is a compensated

semimetallic at ambient pressure with extremely tiny Fermi surfaces. The carrier density is

as tiny as one per ten thousand atoms, giving rise to a very light electron effective band mass

due to a high curvature at band minimum. The effective mass in bismuth is as small as 0.001

of the bare electron mass [28], giving bismuth to host various intriguing phenomena. For
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example, it is straightforward to measure the quantum oscillatory effect in bismuth due to

the small effective mass, making it the first to observe quantum oscillation [114]. Another

example is an exotic fractionalisation in the quantum limit of bismuth (which can be achieved

even in a moderate field due to a small Fermi surface) [18]. The Fermi surface of bismuth

is shown in figure 4.1a. Under hydrostatic pressure, the electron band is pushed up, while

the hole band is pushed down, resulting in becoming more insulating [28]. The mechanism

behind this is still unclear [27]. One evidence of the reduction in the band-overlap was clearly

seen in the resistivity measurement, which shows a low-temperature upturn at a pressure

above ∼ 17 kbar [15]. Hall measurement and quantum oscillation measurement also agree

with this interpretation well [23, 69, 68, 71]. At the pressure between 25-28 kbar, bismuth

undergoes a structural phase transition from Bi-I to Bi-II [27]. This structural transition

masks the Lifshitz transition1, which is supposed to happen in this vicinity (by extrapolating

from the quantum oscillation measurement), making the physics unclear if the insulating

nature arises because the Fermi surface shrinks to zero continuously or if it is because of the

change in the crystal structure.

Surprisingly, the effect of pressure on antimony is completely opposite to bismuth and ar-

senic, despite having isostructure and isoelectronic to both of them. Under pressure, antimony

becomes more metallic [93]. The metalisation in antimony is caused by the enlargement of

the Fermi surface, which was comfirmed by the quantum oscillation measurement up to 14

kbar in [96]. To this date, it is still unclear why antimony behaves so differently from bismuth.

Quantum oscillation in antimony is more difficult to observe than in bismuth due to the larger

Fermi surface and heavier effective mass. Figure 4.1b shows the antimony Fermi surfaces,

consisting of three electron pockets and six distorted elliptical hole pockets, which translate

into each other by a 120◦ rotation. In this literature, only one frequency was observed, which

turns out to be the one from the holes. Since antimony has small Fermi pockets as in bismuth,

it is expected to show very strong and non-saturated magnetoresistance [44, 53].

1Lifshitz transition is a continuous transition between two topologically distinct Fermi surface state.
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(a) Fermi surface of bismuth. The figure is from [66].

(b) Fermi surface of antimony. The figure is from [72].

Fig. 4.1 Fermi sufaces of bismuth and antimony
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4.1.2 Results and Discussions

Resistivity Measurement in Sb-I

We performed resistivity measurement in Sb-I using the standard 4-terminal technique. The

contacts geometry is such that all of them are connected to the sample’s corners. The medium

used to transmit pressure is a 4:1 mixture between methanol and ethanol, which gives an

excellent hydrostatic condition. Due to the high failure rate in the anvil cell, we had to set up

seven different pressure cells dedicated to the study of Sb-I only. The range of pressure we

measured in Sb-I is between 7 kbar and 62 kbar. Since the contact geometry is not simply a

straight line, it is not easy to obtain the electrical resistivity from the geometrical factors. We

adopt a different way of getting the resistivity values by comparing them with the resistivity

at ambient pressure, known in the literature to be 41.7µΩ · cm(however, we do not have the

ambient pressure data for the one at 46 kbar and 62 kbar - we extrapolate the resistivity of 46

kbar from the lower pressure data and use the same geometrical factor here for 62 kbar since

it is the same sample). The measurement was performed using the AC transport option in the

PPMS with 2 mA excitation current and 23 Hz excitation frequency.

Figure 4.2 shows the resistivity of Sb at different pressure. The RRR of Sb in every

sample is above 100, indicating good quality samples. The resistivity as a function of

pressure agrees well with the literature where the sample becomes more metalised. On

studying low-temperature power-law behaviour (figure 4.3), resistivity follows the power-law

ρ = ρ0 +AT 2 between 0 K to 10 K in the whole range of pressure we have, suggesting the

Fermi liquid behaviour in the entire Sb-I phase.

The A-coefficient in ρ = ρ0+AT 2 decreases from ∼ 7.8×10−4µΩ ·cm ·K−2 at ambient

pressure to ∼ 1.6×10−4µΩ ·cm ·K−2 at 62 kbar. According to the Kadowaki-Woods relation

A/γ2 ∼ constant, where γ ∝ m∗ ∝ ε
−1
F is the linear coefficient of the specific heat at zero

temperature, one can infer that the A-coefficient is inversely proportional to the square of

the Fermi energy, i.e. A ∼ ε
−2
F . Comparing this to the experimental result, we can obtain the

Fermi surface’s dimension indirectly. It turns out that the Fermi surface is enlarged by more

than a factor of two from ambient pressure to 62 kbar.
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Fig. 4.2 The resistivity profile of Sb-I at different pressures.
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Fig. 4.3 Low temperature resistivity of Sb-I, plotting against T 2.
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Magnetoresistance in Sb-I

In this section, we present the magnetoresistivity up to 9 T in high-pressure Sb-I (figure 4.4).

Remarkably, Sb-I shows an extremely large non-saturated magnetoresistance, over 3000

times at 9 T at ambient pressure, and gets suppressed significantly at high pressure. The

two-band model can be used to explain the non-saturated nature of magnetoresistance in a

compensated semi-metal. The resistance as a function of field, calculated from the two-band

model, reads [113, 167],

ρxx(B) =
1
e
(neµe +nhµh)+(neµh +nhµe)µeµhB2

(neµe +nhµh)2 +(ne −nh)2µ2
e µ2

h B2 (4.1)

where µe and µh are electron mobility and hole mobility, repectively. In a compensated metal

where ne = nh ≡ n, magnetoresistance is quadratic in the applied magnetic field

ρxx(B) =
1

ne(µe +µh)

(
1+µeµhB2

)
(4.2)

Figure 4.5 shows the plot between resistivity and B2 at various pressure. The plots at low

pressures follow a linear trend only in the high field regime, whereas the plot at 62 kbar

shows the linearity in the whole magnetic field range. The slight discrepancy in our data

from this equation may arise from the anisotropy of the Fermi surface since the simplified

two-band model assumes an isotropic Fermi surface [73].
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Fig. 4.4 Magnetoresistivity of Sb-I at 2K, at various pressures.
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There are two interesting features in the plots 4.4 and 4.5: (i) magnetoresistance decreases

as a function of pressure, (ii) prefactor of the B2-term reduced under pressure. According to

equation 4.2, it is likely that the carrier density is enhanced by pressure. To determine this

effect conclusively, we have to perform the quantum oscillation study.

We conclude this magnetoresistance section by investigating Kohler’s plot. Kohler’s rule

states that a ratio ρ(T,B)/ρ(T,0) is a universal function of B/ρ(T,0) [1]:

ρ(T,B)
ρ(T,0)

= f
(

B
ρ(T,0)

)
(4.3)

The only assumption of Kohler’s rule is that the mean free path is momentum-independent,

making this rule quite general. Figure 4.6 show Kohler’s plot at various pressures, showing

excellent agreement with Kohler’s rule.
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Fig. 4.6 Kohler plot in Sb-I at 2K, 4K, 7K, and 10K. The pressure range is from 12 kbar to
62 kbar.

Quantum Oscillation in Sb-I

We study the effects of pressure on the quantum oscillation frequency in this section. Due

to the small Fermi surfaces in antimony, corresponding to a small frequency in quantum
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oscillation, the fitting using the QFFT2 programme may not be reliable. So instead, we use

QFFT only as a guide and do a fitting carefully directly to the Lifshitz-Kosevich formula

[128, 130]:

ρ ∝

(
8π

eℏ7

)1/2 m∗2kBT∣∣A′′
k

∣∣1/2 B1/2

∞

∑
p=1

exp
(
−2π2 pkBTDm∗/eℏB

)
cos
(

pπgm∗/2me
)

p−1/2 sinh
(
2π2 pkBT m∗/eℏB

)
× cos

(
2π p

(
F
B
− 1

2

)
± π

4

)
(4.4)

where A′′
k is the Fermi surface curvature at the extremum cross-section, TD is the Dingle

temperature, m∗ is the the electron effective mass, g ≈ 2 is the electron g-factor, and F is the

quantum oscillation frequency. Keeping in mind that we observed only one frequency and

only the fundamental mode dominates, this equation is simplified greatly into

ρ ∼ C1√
B
×

exp
(
−C2/B

)
sinh

(
C3/B

) cos
(

2πF
B

+C4

)
(4.5)

Figures 4.7 and 4.8 show the quantum oscillation in antimony from 0-33 kbar and the fit

to the LK formula. We were unable to observe any quantum oscillation in the data at 46

kbar and 62 kbar, probably due to the Fermi surface enlargement (it is easier to observe the

quantum oscillatory effect in a small Fermi surface). We note that the 12 kbar data does not

fit well to the LK fitting because the oscillation contains more than one frequency, which can

be seen clearly in the FFT spectrum in figure 4.11. The spurious frequency may come from

the twinning effect in antimony, reported in some literature [59, 109]. Since antimony is not

very soft as in bismuth, twinning is less likely to happen in antimony.

2QFFT is a Matlab code to perform fast fourier transform to the data. The output is the amplitude in
frequency domain
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Fig. 4.7 Shubnikov - de Haas quantum oscillation in the moissanite anvil cell. The field B ∥ c
is parallel to the c-axis. The red curves show the fit to the LK formula. This figures contain
data with pressure of 1 bar, 7 kbar, and 12 kbar
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Fig. 4.8 Shubnikov - de Haas quantum oscillation in the moissanite anvil cell. The field B ∥ c
is parallel to the c-axis. The red curves show the fit to the LK formula. This figures contain
data with pressure of 22 kbar, 25 kbar, and 33 kbar
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The extracted frequencies from the data are summarised in the table 4.1. The quantum

oscillation frequency decreases with increasing pressure. This result seems to contradict

what has been found in previous literature. However, if the Fermi surface does not change

isotropically, it could be possible that the Fermi surface in one direction gets squeezed, but

overall volume still increases. The best methodology to investigate is to do a careful rotation

study to map out the extremal cross-section of the Fermi surface at different angles, which

can take up a long time. We solved this discrepancy by comparing our result to the data from

a piston-cylinder pressure cell, in which the sample aligns in magnetic field differently from

the anvil cell.

Quantum Oscillation Frequency in Sb-I for B ∥ c

Pressure (kbar) Quantum Oscillation Frequency (T)

0 92.6 ± 1.3

7 93.3 ± 1.5

12 83.1 ± 2.6

22 67.8 ± 0.2

25 64.1 ± 1.2

33 56.1 ± 1.7
Table 4.1 Quantum oscillation frequency as a function of pressure in moissanite anvil cell.
The applied magnetic field is parallel to the c-direction.

Comparison to Results from Low-Pressure Piston-Cylinder Cell

We dedicate this subsection to compare our results in the anvil cells with the measurements

from the piston-cylinder cell, which was set up and measured by Stephen Hodgson. What we

are looking for is the quantum oscillation data at a different field orientation. Figures 4.9 and

4.10 show the quantum oscillation in antimony from 0-21 kbar and the fit to the LK formula.

The extracted frequencies from the data are summarised in the table below
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Quantum Oscillation Frequency in Sb-I for B ⊥ c

Pressure (kbar) Quantum Oscillation Frequency (T)

0 65.3 ± 0.3

5 65.3 ± 2.0

9 68.6 ± 0.1

12 67.5 ± 1.4

18 76.4 ± 4.6

21 84.9 ± 0.4
Table 4.2 Quantum oscillation frequency as a function of pressure in piston-cylinder cell.
The applied magnetic field is perpendicular to the c-direction.

This result shows an opposite tendency to what has been observed in the moissanite anvil

cell, with B ∥ c, suggesting that Fermi surface does not change isotropically and involves a

deformation. Figure 4.12 summarises how the frequency varies under pressure in two cases -

B ∥ c and B ⊥ c.

The observation of anisotropic evolution of Fermi surface under pressure agrees well

with the paper by EI-Rahman [51]. Our work expands the pressure range greatly to over 30

kbar, and it shows how strong the anisotropy is at high pressure. In this paper, the minimum

value and the maximum value of hole’s cross section is 61.86 T and 196.0 T, respectively.

The quantum oscillation frequency when the magnetic field is parallel to the trigonal axis

(which is equivalent to c-axis in our case) is approximately 90 T. This value agrees very well

with our observed values. From our result (field parallel to c-axis), we can see that the hole

pocket is elongated as pressure is applied. However, we cannot quantify the dimension in

the other axis as we do not know at what angle the field is oriented on the ab-plane. The

observation that the hole pocket is getting thinner at higher pressure may give us a hint to

the question of why antimony becomes more metallic under pressure (i.e. higher carrier

concentration), which is in contrast to bismuth and arsenic.
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Fig. 4.9 Shubnikov - de Haas quantum oscillation in the clamp cell. The field B ⊥ c is
perpendicular to the c-axis. The red curves show the fit to the LK formula. This figures
contain data with pressure of 1 bar, 5 kbar, and 9 kbar
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Fig. 4.10 Shubnikov - de Haas quantum oscillation in the clamp cell. The field B ⊥ c is
perpendicular to the c-axis. The red curves show the fit to the LK formula. This figures
contain data with pressure of 12 kbar, 18 kbar, and 21 kbar
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Fig. 4.12 A summary of the quantum oscillation frequency in Sb as a function of external
pressure.
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4.2 Sb-II

4.2.1 Introduction and Literature Review

The periodic nature of crystalline solids has been the most fundamental assumption in solid-

state physics [12]. The observation of 10-fold symmetry in the x-ray diffraction pattern of

aluminium-manganese, belonging to the icosahedral point group, was completely unexpected

[129]. Perhaps, the most surprising thing is that this structure is fully ordered but does not

repeat in any way in space (unlike amorphous, where they are disordered).

In this work, we focus on another kind of aperiodic structure - the incommensurate

host-guest (H-G) structure. This H-G structure comprises host atoms and guest chains. The

ratio between the lattice constant of host atoms and the guest chain is irrational, meaning

that we cannot have the actual unit cell. The lack of unit cells poses many difficulties in

understanding the system. For example, we do not have Brillouin’s zone, making it very

difficult to visualise the Fermi surface. Figures 4.13 show an incommensurate host-guest

structure in Bi-III and Sb-II.

Fig. 4.13 Structure of the tetragonal host-guest incommensurate in both Bi-III and Sb-II. The
left figure is the view from the c-direction whereas the right picture is the view from the
a-direction. The red atoms represent guest and the blue atoms represent hosts. Figure credit:
[27].

One of the most prominent features of the incommensurate host-guest structure is the

emergence of a new low-frequency phonon mode. In a d-dimensional periodic lattice, it is

not hard to see that there is one acoustic mode corresponding to each direction, making up d

acoustic modes in total. Hence, there are 3N −d modes left to be optical modes, where N is

the number of atoms in the unit cell. The H-G structure introduces another low-lying phonon

in addition to the acoustic modes, resulting in the total d +1 low-lying phonon modes. The

origin of this additional phonon mode comes from the fact that host atoms and guest chains
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can slide through each other without changing the potential energy. Since the additional

mode has a different origin and is specific to the H-G structure, we give it a particular name,

’sliding mode’ or ’phason mode’. The dispersion in phonon perpendicular to the c-direction

comes from coupling between chains. If the couple is weak enough, the phonon dispersion

is essentially one-dimensional. The distortion can modulate the atomic position and lift the

frequency. The flat dispersion relation of the sliding mode is a crucial ingredient for getting

a strong electron-phonon coupling parameter, which can be understood by looking at the

equation

λ = 2
∫

ωD

0
dω

α2(ω)F(ω)

ω
(4.6)

where λ is the electron-phonon coupling parameter (or the McMillan parameter). If ω → 0

in an extended region, the McMillan’s parameter gets enhanced significantly. However,

although there is also a region where ω → 0 in the acoustic phonons, it does not enhance the

coupling parameter. This is because the mode ω → 0 in the acoustic modes is Goldstone’s

mode. This means that it associates with the whole lattice translation and gives a zero matrix

element. By contrast, the sliding mode involves relative motion of host and guest sublattice

and can therefore cause large matrix elements. This aspect makes the incommensurate

host-guest structure to be a good candidate for studying strong coupling superconductivity.

Generally, the incommensurate host-guest structure is stable at high pressure in many

element materials except for Hg3−δ AsF6, which possesses the host-guest structure even

at ambient pressure [62]. Some remarkable examples of high-pressure incommensurate

elements are from groups 1, 2, 15, and 16 [91]. The table below gives information on some

materials that possess an incommensurate structure.
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A list of element materials that exhibit incommensurate host-guest structure

Group Material Pressure Range (kbar) cH/cG Superconductivity Tc (K) Reference

2 Ba-IV 126 - 450 1.390 5.0 [158]

2 Sr-V >460 n/a 3-4 [49, 90]

2 Ca-VI† >1220 n/a ∼25 [9, 162]

15 Bi-III 28 - 77 1.310 7.1 [29]

15 Sb-II 86 - 280 1.310 3.6 [157]

15 As-III 410 - 970 1.305 ∼1.8 [33]
Table 4.3 Properties of some incommensurate host-guest material. †Based on computational
calculation.

One exciting thing in the table above is that the ratio cH/cG is close to 4/3, consistent

in every material, making it possible to construct an approximated commensurate supercell

with cH/cG = 4/3 containing 42 atoms in a unit cell of Bi-III and Sb-II. Amongst elements,

bismuth draws the most attention to study the incommensurate phase since the pressure

requirement is relatively low compared to others, hence achievable in piston-cylinder pressure

cells. Before Dr Philip Brown did the work in Bi-III, the only thing we knew in Bi-III was

that it has an incommensurate structure and undergoes the superconducting transition at 7.1

K. His thorough investigations of high-pressure resistivity and magnetisation, combined with

numerical calculations, have shed light on physics and excitations of the underlying system

[27]. The key results from the study of Bi-III are

1. Bi-III is a type-II superconductor with a very large electron-phonon coupling constant

λ ≃ 2.75 [29]. Both properties are very unusual in an element material

2. Resistivity in the normal state right above superconducting shows a strong linear

relationship with temperature (figure 4.14), which is evidence of strong electron-

phonon coupling.

3. A huge upper critical field Bc2 = 2.5 T is the highest value recorded amongst element

metals.
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Fig. 4.14 Resistivity in Bi-III [29].

As well as in the bismuth case, there are still not yet many detailed studies in the other

incommensurate host-guest materials, especially the effects of the phason mode on the

superconductivity. There is a set of data that shows how resistivity looks like in Ba-IV [99].

Unsurprisingly, low-temperature resistivity in Ba-IV also exhibits a linear trend (figure 4.15)

as in Bi-III, which is possibly evidence of strong electron-phason coupling.
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Fig. 4.15 Resistivity in Ba-IV [99].

Having learned all of these, we seek more systems to investigate with one objective in

our mind: to compare a well-known system with other similar systems and analyse any

robust features they shared or any differences. It is possible in this way also to validate any

limitation of the theory for systems of this kind. The suitable material that we can work on

would be antimony because (i) it is the most similar to bismuth, sharing the same crystal

structure and the same electronic structure (ii) the required pressure of 86 kbar is somewhat

accessible, second to only bismuth.

There are literature on Sb-II available, mainly focus on optical measurements. The

phase diagram of antimony (figure 4.16) was studied in [42] using the high-pressure X-ray

diffraction technique. Some publications also support the existence of a monoclinic incom-

mensurate Sb-IV phase between Sb-I and Sb-II phases [45, 95, 151]. The superconductivity

in Sb-II has been confirmed in resistivity measurement, showing a drop in resistance at about

3.5 K [157]. However, there is no transport study beyond this.
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Fig. 4.16 Phase diagram of element antimony. The figure is from [42]

Finally, many intriguing effects happen when tuning the interaction between hosts and

guests. Some examples are (i) Chain melting - it was observed in K-III abd Rb-IV that

the guest chains ’melt away’, losing their long-range order and turn into 1D liquid state

[92, 121]. The origin of the chain melting was speculated to come from the reduction in

the interaction between chains. (ii) Aubry’s transition - it was theoretically predicted that

when the interaction between hosts and guests is strong enough, the system undergoes an

incommensurate-to-commensurate transition [13]. The interaction between chains can be

observed via x-ray diffraction. The large modulation gives rise to strong satellite peaks. In

Bi-III, the modulation can be seen in the diffraction pattern (figure 4.17). However, this

modulation is much stronger in Sb-II, suggesting a strong coupling between host atoms and

guest chains (figure 4.18).
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Fig. 4.17 Diffraction Pattern in Bi-III. The arrows indicate the peaks from the modulation
reflection [91].

Fig. 4.18 Diffraction Pattern in Sb-II. The arrows indicate the peaks from the modulation
reflection [91].
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4.2.2 Results and Discussions

Resistivity Measurement in Sb-II

Antimony samples were obtained from Alfar Aesar company with 99.999% purity. It is

purified further in a ’distil’ process where samples of antimony were put in a long sealed

quartz ampoule with high vacuum. One end of the tube is heated above the melting point

of antimony, whereas the other end is below it. Resistivity measurements of Sb-II have

been done using the standard 4-point measurement. The measurements were carried out

in a diamond anvil cell with 0.7 mm culet size. The insulating gasket was used in these

measurements to avoid a possibility of shorting to the pressure cell. The way we extract the

resistivity value is by measuring the same sample at zero pressure. Then, the geometrical

factor can be obtained by comparing this value with the literature (41.7 µΩ·cm at room

temperature, zero pressure). Glycerol was used as a pressure medium. We have measured

two different samples of Sb in this phase, up to 110 kbar. Figure 4.19 shows a sample with a

gasket used in the experiment.

Fig. 4.19 A sample of antimony in the pressure cell with insulating gasket. The size of the
sample is approximately 80µm×××80µm×××20µm and the size of the hole is 300µm

Figure 4.20 shows the resistivity profile of Sb-II from room temperature down to 2 K. In

sample #8, we managed to measure at only one pressure point and the pressure cell failed

afterward. In sample #9, we measured from 95 kbar to 110 kbar, subsequently reduced

pressure back to 60 kbar, and finally repressurised back up to 96 kbar. There are a few
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features to be noted here. Firstly, the wiggle in resistivity which appears at high temperature.

Secondly, the observed superconductivity at 3.4 K - 3.6 K. Thirdly, the flattening of the

resistivity before the material goes superconducting. Fourthly, the large residual resistivity.

And finally, the negative curvature of the resistivity at high temperatures.
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Fig. 4.20 The resistivity of Sb-II at various pressures.

We are starting with the high-temperature wiggle, which is very robust in our measure-

ments of Sb-II. These wiggles come with a strong hysteresis in temperature, suggesting some

first-order phase transition. There are a few situations where the first-order transition can

occur. In our case, it is likely to be a structural transition since antimony is non-magnetic.

The hysteresis is shown in figure 4.21. As there are literature suggesting the existence of

Sb-IV between Sb-I and Sb-II, in which the transition between them is first-order nature

[42, 45], one may interpret this to be the transition between Sb-IV and Sb-II. However, the

pressure range for Sb-IV to be stable is less than 90 kbar, whereas the hysteresis in resistivity

persists even at above 100 kbar in our data. Therefore, the Sb-II to Sb-IV interpretation is

not conducing.

Another possibility of this high-temperature transition is the Aubry transition. According

to the diffraction pattern in Sb-II, it has very strong satellite peaks, suggesting strong

modulations. Once the interaction between host atoms and guest chain is strong enough,

the system can undergo a structural transition from incommensurate to commensurate with
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defects. The constant large residual resistivity at 96 kbar, 105 kbar and, 110 kbar (with the

RRR of less than 10 whereas the RRR was above 100 in the Sb-I phase) also supports this

interpretation - the constant density induced defects contribute to a large constant ρ0. The

discrepancy of ρ0 in the 86 kbar and 95 kbar data may come from the mixture between two

phases (more evidence on this when investigating superconductivity in the magnetic field).

Because some publications suggest the mixture of two phases around this pressure range

[42, 45], this situation is not entirely impossible. Although the large residual resistivity in

Bi-III (even with very pure samples) was interpreted to be disorder induced by the transition,

the large ρ0 in Sb-II seems to be an intrinsic property of this phase as ρ0 in Bi-III varied

by over 10% between measurements [27] (ρ0 in Sb-II shows similar value even after the

repressurisation from 60 kbar to 96 kbar).
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Fig. 4.21 Hysteresis in Sb-II at high temperature. The arrows indicate direction of the change
in temperature.

With the interpretation of the phason’s pinning, we can also explain the flattening of the

resistivity curve above the superconducting phase. This flattening feature is very different

from what has been observed in Bi-III, in which the resistivity above the superconducting

state is very linear. Figure 4.22 shows the low-temperature resistivity, plotting against both

temperature and temperature-squared. The plot with temperature-squared is mostly linear,

suggesting Fermi-Liquid behaviour in this Sb-II phase. The linear resistivity in bismuth-III
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arises from the scattering between electrons and phasons, which are contributed by the flat

dispersion relation. When Aubry’s transition happens, phasons get pinned, and we thus expect

a weak electron-phason coupling, which gives rise to the quadratic resistivity instead of linear.

By extracting the A-coefficient from the graph, we obtain A = 3.06×10−3 µΩ · cm ·K−2.

Comparing this value with other heavy-fermion materials in the Kadowaki-Wood diagram

(figure 4.23), the A-coefficient in Sb-II resistivity is anomalously large despite being an

element. We are still unable to explain the large A-coefficient in Sb-II. To understand the

origin of this anomaly, we wish to study a few things: (i) Heat capacity in Sb-II - Such a

study will provide us the location of Sb-II in the Kadowaki-Wood diagram and will give us

the coefficient α = A/γ2. It is vital to obtain this value since it α ∼ n−2
e , meaning that we

can relate it to the carrier density [43]. (ii) Quantum oscillation - we can extract effective

mass from this study. Moreover, it is fundamentally interesting if one could observe quantum

oscillation in an aperiodic material. However, this study may not be suitable for Sb-II since it

shows a large residual resistivity.
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Fig. 4.22 Low temperature resistivity of Sb-II at 96 kbar from 2 K to 40 K. The figure (a)
shows the plot with temperature whereas the figure (b) shows the plot with the temperature-
squared.
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Fig. 4.23 Kadowaki-Wood diagram taken from [43]. The horizontal dash line is added to
indicate the A-coefficient of Sb-II.
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Superconductivity in Sb-II

Although the superconductivity in Sb-II has been discovered for a few decades [157], there

is no detailed study of this superconductivity available. Therefore, it is crucial to study the

system thoroughly and compare our results with the previous study in Bi-III. We study the

superconductivity Sb-II using both resistivity and DC magnetisation measurements in this

section (for the Meissner effect study), which are necessary to obtain the complete picture of

this superconductivity state.

We start with the superconducting transition in resistivity measurement in figure 4.24.

The transition temperature is approximately Tc = 3.5±0.1 K, varying slightly in the pressure

range between 96-110 kbar. Next, we investigate the effect of the magnetic field on the

transition temperature in the resistivity measurement, shown in figure 4.25. As the magnetic

field of less than 0.3 T completely suppresses the transition, it confirms that this is indeed

the superconducting transition. Before going further, let us also discuss the low-temperature

resistivity in the field at other pressure points. As we interpreted in the previous section that

the discrepancies of ρ0 in the 86 kbar and 95 kbar data come from the mixture between Sb-I

and Sb-II, our interpretation is supported by the magnetoresistivity measurement. The 86

kbar and 95 kbar data in figure 4.26 show upturns before going fully SC, indicating a sign of

non-homogeneity in the sample (as it causes a redistribution of the current paths).

To analyse the superconducting parameters, we plot the superconducting transitions as a

function of the magnetic field and extrapolate to get the value of the critical fields. Figure

4.27 shows the plot of superconductivity transition temperature against the magnetic field.

The red line in the plot is fitted to equation [74]

Bc2(T ) = Bc2(0)

1−
(

T
Tc

)2

1+
(

T
Tc

)2

 (4.7)

The parameters obtained from the fit are Bc2(0) = 0.212 T and Tc = 3.57 K.
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Fig. 4.24 Resistivity of Sb-II in low temperature, showing a sharp superconducting transition.
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Fig. 4.25 Resistivity of Sb-II in low temperature with magnetic field. The field ranges from 0
T to 0.3 T.
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(b) 95 kbar
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(c) 105 kbar
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(d) 110 kbar

Fig. 4.26 Resistivity of Sb-II in low temperature with magnetic field.
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Fig. 4.27 The plot of the critical temperature versus magnetic field to estimate the upper
critical field Bc2 of Sb-II at 96 kbar. The red line is the fit to equation 4.7.

DC magnetisation of the Sb-II has been measured in the SQUID cell3, and the measure-

ment was done in the MPMS measurement system. However, as the sample size is about a

million times smaller than the pressure cell, the background from the cell is overwhelmingly

large. For this reason, the cell was made of copper-titanium alloy to minimise the background

while keeping a good strength. Thanks to how sensitive SQUID magnetometry is, we can

measure the sample DC magnetisation by measuring both the empty cell and the cell with a

sample inside, then subtract these two signals to get the sample signal. The subtraction of

between two signals was analysed using SquidLab [40]. Figure 4.28 shows the DC magneti-

sation versus temperature for the different input magnetic fields. Due to the limitation in the

cooling power of MPMS, we could only obtain a few superconducting data in a very small

range, from 2 K to 3.5 K, which is the range between the transition temperature at zero field

and the base temperature of measurement system. The problem of blockage and temperature

control in the MPMS also make the data becomes less accurate. Thus, we only obtained a

crude estimated value for the lower critical field Bc1.
3The SQUID cell was designed by Dr Patricia Lebre Alireza - so another name of this cell is LA cell!
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Figure 4.29 shows the relationship between critical temperature measured in the DC

magnetisation and the applied magnetic field. The data is fitted to the equation [27]

Bc1(T ) = Bc1(0)

(
1−
(

T
Tc

)2
)

(4.8)

The parameters obtained from the fit are Bc1(0) = 12.8 mT and Tc = 3.50 K.
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Fig. 4.28 The plot of the DC magnetisation in Sb-II at 93 kbar as a function of temperature at
difference input field.



74 Incommensurate Host-Guest Antimony, and Possible Aubry’s Transition

0 1 2 3 4
Temperature (K)

0

2

4

6

8

10

12

14

M
ag

ne
tic

 F
ie

ld
 (

m
T

)

Fig. 4.29 The plot of the critical temperature versus magnetic field to estimate the lower
critical field Bc1 of Sb-II at 96 kbar. The red line is the fitting to the Ginzberg-Landau theory,
and is the guide to the eyes.
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Fig. 4.30 Figure showing the fit of Sb-II resistivity in the linear regime.
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These values of the upper critical field and the lower critical field can be translated into

coherence length and penetration depth, respectively. The Ginzberg-Landau theory gives

us lξ = 39.6±2.8 nm and lλ = 113±13 nm, where lξ is the coherence length and lλ is the

penetration depth. To get the idea of how strong the electron-phason coupling parameter is,

we look at the equation [29]

λ =
ε0ℏΩ2

p

2πkB

dρ

dT
+∆λ (4.9)

where ∆λ is the contributions from high-frequency phonons ℏω ≫ kBT , and Ωp is the

plasma frequency. The derivation of this equation is provided in [29], which uses the

Bloch-Grüneisen formula [60]

ρ(T ) = ρ0 +
4π

ε0Ω2
p
∑
qqq

α
2
qqqT (∂nqqq/∂T )ωqqq (4.10)

where αqqq is the effective electron-phonon matrix element averaging over Fermi surface,

and nqqq =
(

exp
(
ℏωqqq/kBT

)
−1
)−1

is the Bose occupation number. For low-frequency

phonon ℏωqqq ≪ kBT , the exponential term in the denominator can be approximated to be

exp
(
ℏωqqq/kBT

)
≈ 1+ℏωqqq/kBT and hence

ρ = ρ0 +
4πkBT
ε0ℏΩ2

p
∑
qqq

α2
qqq

ωqqq
(4.11)

The summation in the equation above basically represents the McMillan parameter (or

electron-phonon coupling parameter) as in equation 2.44: λ = 2∑qqq α2
qqq/ωqqq. Finally, we

arrived at

dρ

dT
=

2πkB

ε0ℏΩ2
p

λ (4.12)

Hence, in the limit where the phason contribution is much larger than the high frequency

phonons contribution, we have

λ ≈
ε0ℏΩ2

p

2πkB

dρ

dT
(4.13)
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Furthermore, the London penetration depth, McMillan’s parameter, and plasma frequency

can be related together via the equation [27, 29]

lλ =
(1+λ )1/2c

Ωp
(4.14)

where c is the speed of light. Combining equation 4.13 and 4.14, we arrived at the final

equation

λ =

(
2πkBl2

λ

ε0ℏc2ρ ′ −1

)−1

(4.15)

The problem here is the quadratic behaviour in resistivity at low temperature, which does not

let us to extract the ρ ′ at low temperature. Instead, we extracted ρ ′ in the linear regime, which

is between 30-50 K in our case. By plugging in our measured parameters, lλ = 113±13 nm

and ∂ρ/∂T = 0.20±0.5 µΩ·cm/K (fitted in figure 4.30), we obtained λ = 0.18±0.06. This

coupling constant between electrons and the sliding modes is surprisingly small compared to

the value of λ = 2.75 in Bi-III. Obviously, the assumption that we can neglect the contribution

from high-frequency phonon must break down at this point, but it does not change the fact

that the coupling constant of electron-phason is really small. The table below compares these

parameters between Bi-III and Sb-II.
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Physical Parameter Symbol Bi-III Sb-II

Transition Temperature Tc 7.05±0.05 K 3.5±0.1 K

Lower Critical Field Bc1 15±5 mT 13±3 mT

Upper Critical Field Bc2 2.5±0.2 T 0.21±0.03 T

Superconducting Coherence Length lξ 11.4±0.4 nm 39.6±2.8 nm

Superconducting Penetration Depth lλ 108±17 nm 113±13 nm

Resistivity Gradient ρ ′ 0.9±0.15 µΩ·cm/K 0.20±0.05 µΩ·cm/K

Plasma Frequency from DFT Ωp 3.5±0.2 eV n/a

Electron-Phason Coupling Constant

from Calculated Plasma Frequency
λDFT 2.75±0.7 n/a

Electron-Phason Coupling Constant

from equation 4.15
λexp 2.70±1.0 0.18±0.06

Table 4.4 Comparison of physical properties between Bi-III and Sb-II. Data for Bi-III is
taken from [27].

Finally, it is vital to calculate the electron-phonon coupling (the whole phonon spectrum

range) using a different method. To do this, we know that the coherence length can be written

as (refer to section 2.2.2)

ξ =
ℏvF

π∆
(4.16)

Density functional theory predicts that Fermi velocity is renormalised by a factor of (1+λ )

in the presence of electron-phonon interaction [29]. We can compare our value to those in

Bi-III to estimate the electron-phonon coupling constant. If we make an assumption that the

original Fermi velocity in Bi-III and Sb-II are not much different (or in the same order of

magnitude), we obtain

1+λSb

1+λBi
=

(Tcξ )Bi

(Tcξ )Sb
(4.17)

This equation gives λSb = 1.17, which is totally reasonable. Note that this result does not

disagree with the previous estimation of λ . We considered electrons scatter with phonon
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at every frequency here, while we take into account for only low frequency phonon in our

previous calculations.

4.3 Summary

We have studied two phases in antimony in this chapter - the low-pressure phase Sb-I and the

incommensurate phase Sb-II. Although many studies in Sb-I are already available, we have

extended the high-pressure work to the highest pressure achievable in the Sb-I phase before

transforming into the Sb-II phase. The effect of pressure on the Sb-I is to enlarge the Fermi

surface. The magnetoresistance measurement also confirmed this picture as it is suppressed

strongly under pressure. The magnetoresistance shows strong quadratic dependence on an

external magnetic field, especially at high pressure, confirming the validity of the two-band

model. Quantum oscillation has been measured by the mean of resistivity measurement

(Shubnikov - de Haas) with the field both parallel and perpendicular to the c-axis. The

developments of quantum oscillation frequencies under pressure in both cases disagree with

each other, meaning that the Fermi surface does not change in an isotropic manner.

In the Sb-II phase, we have done both resistivity and DC magnetisation measurements.

The key results can be summarised as follows: (i) Sb-II exhibits type-II superconductivity

(similar to Bi-III) at 3.5±0.1 K. (ii) The low-temperature normal state power-law resistivity

is ρ ∼ T 2 (Fermi liquid-like) rather than linear resistivity (in contrast to Bi-III) (iii) The

gradient dρ/dT in the linear regime of Sb-II (0.20±0.05 µΩ·cm/K) is much smaller than

that in Bi-III (0.9±0.15 µΩ·cm/K). These results were translated into the electron-phason

coupling constant, which turns out to be very small in Sb-II (∼0.18), compared to Bi-III

(∼2.5). (iv) Anomalous first-order transition were observed at ∼250 K. All of the results

above point toward the situation where the sliding mode (or phason mode) gets heavily

pinned. It is not yet conclusive what causes the phason pinning. However, the first-order

transition at high temperature suggests a structural phase transition. This has led us to

speculation about the possibility of having Aubry’s transition in this material. With this

interpretation, we could explain all features observed in our experiment - quadratic resistivity

at low temperature, the small gradient of resistivity in the linear regime, anomalous first-order

transition at high temperature, and large residual resistivity. The more direct experiment such

as low-temperature XRD is desirable to perform in the future, as it will confirm whether

there is Aubry’s transition happening in Sb-II or not.



Chapter 5

Studies of High-Pressure Phases of
Ca2RuO4

5.1 Introduction and Literature Review

5.1.1 What is Perovskite, and why are they so interesting?

Prototypically, a material in the perovskite family is one with structure ABX3, where A and

B are cations, and X is an anion [154]. The perovskite family can be made more complex

by inserting layers. The simplest layer structure is called the Ruddlesden-Popper phase

(or RP phase), possessing structure An+1BnX3n+1 where n > 1. The non-layered perovskite

can be recovered in the limit of n → ∞. Perovskite materials give many exotic phenomena,

including:

• High-temperature superconductor: many cuprate superconductors have a structure in

the perovskite family. Some examples are La2−xSrxCuO4−δ [108] and YBa2Cu3O7

[122, 160].

• Potential p-wave superconductor: There is speculation that superconductivity in stron-

tium ruthenate Sr2RuO4 may be analogous to the He-3 A phase, and the pairing

mechanism may be the chiral p-wave type [76].

• Ferroelectricity: many titanate materials exhibit ferroelectricity. Some example are

SrTiO3 [39] and BaTiO3 [115].
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• Colossal magnetoresistance: a very strong negative magnetoresistance (sometimes

can be an order of magnitude), primarily found in manganate. Some examples are

La1−x(Sr/Ca)xMnO3 [146].

Although there are many different structures in the perovskites family, many of them

have octahedra of oxygens with transition metal at the centre. Many features in the layer

perovskites enrich their physics, giving rise to the phenomena mentioned above. The features

worth mentioning are (i) quasi-two-dimensional nature, enhancing pairing energy and favour

superconductivity [98]. (ii) Strong crystal field leads to lattice distortions, changing the

electronic structure. (iii) A plane of alternating transition metals and oxygens leads to many

possible exchange mechanisms, such as superexchange and double-exchange, resulting in

various magnetic phases.

5.1.2 Introduction to Sr2RuO4

Since the discovery of the high-Tc cuprate superconductor in 1986 [17], numerous efforts

have been made to understand the pairing mechanism and order parameters in these uncon-

ventional superconductors. Physicists continuously seek to find and study other systems

that share similarities to cuprates to gain more hints on cuprate superconductors. In 1994,

Y. Maeno discovered the new material Sr2RuO4, sharing the same crystal structure (figure

5.1) to cuprate, but without copper [166]. This discovery attracts so much attention to

the condensed matter community, as it is very significant for fundamental studies related

to cuprate. Sr2RuO4 has a superconducting ground state at 1.5 K, in contrast to its sister

cuprates, where Tc is significantly higher by more than an order of magnitude.
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Fig. 5.1 The undistorted structure of strontium ruthenate Sr2RuO4 belongs to the I4/mmm
space group with tetragonal structure. The brown, yellow and blue atoms are Sr, Ru and O,
respectively. The figure was taken from [3].

The pairing mechanism in Sr2RuO4 can be elusive since we do not know its parent

phase. On the other hand, the ground state of cuprates in the parent phase is usually

antiferromagnetism, favouring the d-wave pairing. To access the parent phase of Sr2RuO4,

we need to apply a negative pressure, which is not practical. However, it is certain that

Sr2RuO4 is an unconventional superconductor [83] due to how sensitive Tc is toward the non-

magnetic impurity level. Strontium ruthenate is one of the most important unconventional

superconductors for the fundamental study because: (i) As the high-Tc nature in cuprates

arises from the 2D nature of the copper-oxide plane, Sr2RuO4 was the first material that

has the same structure as the lanthanum cuprate, but without copper. Thus, Sr2RuO4 can be

used as a system to verify our understanding. (ii) It superconducts without doping, making

Sr2RuO4 a very clean unconventional superconductor and suitable for definitive studies (such
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as quantum oscillation to map out Fermi surfaces of this material). (iii) low Tc makes it

possible to study normal state without any interference from phonon. Initially, Sr2RuO4

was believed to be a p-wave superconductor [120]. This thought stems from a few facts: (i)

Its sister compounds SrRuO3 has a ferromagnetic ground state [81]. (ii) Fermi liquid-like

behaviour in the normal state with the mass enhancement, susceptibility enhancement, and

Wilson ratio similar to He-3, leading to speculation that Sr2RuO4 is analogous to He-3

[10, 84]. However, there is not yet a conclusive result on the pairing symmetry. For instance,

the observation of the shear elastic modulus suggests the order parameter to be of two-

component [57]. Some literature also points out that there is a comparable tendency for both

odd and even parity [85].

Strontium ruthenate Sr2RuO4 has 4d4 electronic configuration. The effect of the octahe-

dral crystal field is to split the five-fold degenerate d-bands into three t2g and two eg levels1.

All four d-electrons occupy t2g bands, leaving eg empty. The occupancy of each band is

then 2/3. Fermi surfaces of Sr2RuO4 comprises three sheets - α , β , and γ . The γ sheet,

which derives from the dxy orbit, is almost cylindrical. The cylindrical nature is evidence

of being two-dimensional material. It is speculated that the γ sheet plays the dominant role

[2, 76]. Ferromagnetic tendency comes from van Hove singularity on the γ sheet, whereas

antiferromagnetic tendency comes from nesting between α and β with Q =
(
2π/3,2π/3,0

)
[84].

The tendencies in both ferromagnetic and antiferromagnetic interactions can also be

seen in the calculated Lindhard function. The peaks in this generalised susceptibility locate

at Q =
(
2π/3,2π/3,0

)
[52]. The existence of this peak and the van-Hove singularity at

(±π,0),(0,±π) is an evidence of the competition between these two interactions.

1eg states consist of dz2 and dx2−y2 whereas t2g states consist of dxy, dxz and dyz.
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Fig. 5.2 Fermi surfaces of Sr2RuO4. Figure credit: [88]

More recent developments have suggested that the pairing mechanism in Sr2RuO4 should

not be of the chiral p-wave, and many of them point towards even parity order parameter.

Although it was found earlier that there is no change in the spin susceptibility by Knight shift

measurement (from nuclear magnetic resonance of oxygen-17) in Sr2RuO4 (which is the

main evidence for being a p-wave superconductor) [67], several experiments do not agree

with this pairing mechanism. For instance, in a strained Sr2RuO4, the transition temperature

is proportional to quadratic in strain, but no linear term is observed (which is expected

in a chiral p-wave superconductor) [153]. Moreover, there is no edge current (which is

supposed to be another signature of the px + ipy wave) observed in Sr2RuO4 [64]. The latest

measurements of Knight shift (using nuclear magnetic resonance of oxygen-17) in strained

Sr2RuO4 show a drop in spin susceptibility at all values of strain, contradicting with the

previous NMR measurements [116].

5.1.3 Introduction to Ca2RuO4

Calcium, being an element above strontium in the periodic table and having the same

electronic configuration, can replace strontium atoms in Sr2RuO4 and obtain Ca2RuO4

instead. In the case of this material, it introduces flattening, rotation, and tilt in the RuO6

octahedra. We can therefore regard Ca2RuO4 to be a distorted version of Sr2RuO4. The roles

of these distortions are: (i) Flattening - remove the degeneracy further. (ii) Tilt and rotation -
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change the angle of the Ru-O bonds, reducing the bandwidth. The structure of Ca2RuO4 is

orthorhombic with the S-Pbca2 space group at ambient pressure and room temperature. The

calcium ruthenate structure is susceptible to external pressure and temperature. It undergoes a

series of structural phase transitions once pressure is applied. Firstly, in the S-Pbca structure,

the Ru-O octahedra are tilted and rotated (as shown in figure 5.3). In this phase, the calcium

ruthenate is canted antiferromagnetic insulator. Once an external pressure of 5 kbar is

applied, it undergoes first-order structural transition towards the L-Pbca3 structure and starts

to lose the tilt. In contrast to the S-Pbca phase, the L-Pbca phase is associated with itinerant

ferromagnetism. At the pressure of 70 kbar, the tilt completely disappears, whereas the

rotation remains. This phase is described by the space group Bbcm [135]. The phase diagram

of Ca2RuO4 is shown in figure 5.5.

Fig. 5.3 The tilt and rotation in Ru-O octrahedra that happens in the S-Pbca phase of Ca2RuO4.
(A) shows the undistorted strucutre of the Ru-O octrahedron. (B) shows distorted structure
of the Ru-O octrahedron. (C) shows the top view of the undistorted structure. (D) shows the
top view of the distorted structure. The figure was taken from [3].

2S stands for short, as the c-axis is shorter than that in the undistorted tetragonal structure.
3L stands for long, as the c-axis is longer than that in the undistorted tetragonal structure.
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Fig. 5.4 The rotation and tilt as a function of pressure. The figure was taken from [135].

Fig. 5.5 The phase diagram of Ca2RuO4. The figure was taken from [4].

We begin with some brief reviews of the S-Pbca phase. Since the electronic structure

of calcium ruthenate comes from the 4d4 electrons from the ruthenate atoms, which live in

octahedral cages of oxygen, the crystal field is important. As in Sr2RuO4, the d-orbital splits

into two-fold degenerate eg states and three-fold degenerate t2g states with the octahedral
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environment. However, the octahedral gets flatten in the S-Pbca phase, resulting in further

splitting and pushing the dxy orbital down while pushing the dxz and dyz orbitals up. The

distortion of the octahedral is preferred since it lowers the electronic energy. This effect is

known as the Jahn-Teller effect. As there are four conduction electrons, this filled the dxy

bands while half-filled the dxz and dyz bands [138]. The existence of the unfilled bands in

the calcium rutherate (despite the insulating behaviour) suggests that this is a Mott insulator.

The measured Mott gap from the transport measurement is approximately 0.4 eV [103]. The

insulating behaviour was also confirmed in the low-temperature heat capacity measurement

[? ]. The neutron scattering measurement confirms the antiferromagnetic ordering with Neel

temperature TN = 110 K, with the easy axis on a or b direction [22]. A few ways to induce

the metal-insulator transition in this phase are temperature, pressure, and electric field. For

temperature and pressure, it induced the MI transition once the material is heated above 357

K at ambient pressure or five kbar at room temperature [105]. This transition accommodates

the structural transition from S-Pbca to L-Pbca. For the electric field-induced MI transition,

the threshold field is 40 V/cm, much smaller than the Mott gap [102]. Moreover, it has been

observed that a magnetic field of 9 T at 5 K can also cause a jump in magnetic susceptibility,

making it similar to metamagnetic transition [79].

In the L-Pbca phase, the material becomes itinerant ferromagnetic. The evidence for the

metallic phase is the drastic drop in resistivity by orders of magnitude (figure 5.6) [101].

In this paper, the hysteresis in the DC magnetisation of the sample was also observed,

which is the signature of ferromagnetic phase. At 50 kbar, the remnant magnetisation gives

the maximum value in the a-direction (hence suggesting a-axis to be an easy direction),

approximately 0.4µB per Ru ion. This value is smaller than the saturated moment of 2µB in

the localised Ru ion, suggesting the itinerant nature. The antiferromagnetic phase persists at

pressure well above 5 kbar, and the sample is in a mixture state between antiferromagnetic

and ferromagnetic. The evidence of this is the Raman scattering measurement from [133],

showing the two-magnon peak persists even at the pressure above Mott transition.
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Fig. 5.6 Resistivity of Ca2RuO4 as a function of pressure. The figure was taken from [101].

Fig. 5.7 The raman scattering in Ca2RuO4 showing the two-magnon mode. The figure was
taken from [133].
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Finally, ferromagnetic transition suddenly disappeared at a pressure above 80 kbar4 and

superconductivity was observed by quasi four-point measurement above 90 kbar [4]. The

superconducting transition temperature is 100 mK at 90 kbar, and it rises to 400 mK at 140

kbar.

Doped Ca2−xSrxRuO4

One important tuning parameter of this is the isoelectronic doping in Ca2RuO4 by strontium.

The study was performed in the range of x ∈ [0,0.7] [105]. Figure 5.8 shows the phase

diagram of the Sr-doped in Ca2RuO4. The effect of the isovalence doping is to tune the

bandwidth and the band filling factor (since it changes the relative energy of each band).

Fig. 5.8 Phase diagram of Sr-doped in Ca2RuO4. Figure credit [105]

At x < 0.2, the system is antiferromagnetic insulating, as is expected for Ca2RuO4. Be-

yond this point where 0.2 < x < 0.5, the system undergoes insulator-metal transition. At the

low-concentration side (x= 0.2), the system shows antiferromagnetic correlation, and crossed

over to ferromagnetic correlation at the high-concentration end (x = 0.5). Power-law studies

have been carried out, and non-Fermi liquid was observed [105]. The low-temperature resis-

tivity follows the form ρ = ρ0+AT 1.4, which is a signature of two-dimensional ferromagnetic

4Private communication with Dr Patricia Alireza.
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spin fluctuation (where the power-law exponent is 4/3), according to the self-consistence

one-loop theory [100]. Above x > 0.5, the system becomes paramagnetic metallic. In this

region, the tilt of the RuO6 octahedra is removed completely, but the rotation remains.

5.2 Results and Discussions

This project results from collaborations between Puthipong Worasaran, Dr Patricia Alireza,

Dr Jiasheng Chen, and Prof Gil Lonzarich. PW and PLA set up two resistivity pressure cells

for Ca2RuO4 (PLA helps with the sample preparation, and PW helps with the pressure cell

preparation). The measurements were done by PW in PPMS, and by JC in the DMS system.

GL helps to provide many valuable discussions.

5.2.1 Experimental Detail

The resistivity measurement was performed using the standard 4-point measurement tech-

nique. Making contacts on this material proved to be extremely difficult. Firstly, we have to

be very careful on the position of the contact placement due to the huge anisotropy in the

sample (the resistivity in the c-axis is three orders of magnitude larger than in the ab-plane).

We must place current wires at the sides of the sample while voltage wires on top (ab-plane).

As a result, this type of contact geometry makes it a lot more difficult than placing contacts

at the corners due to the limitation in working space. Secondly, the silver epoxy we use must

be the kind that cures at low temperatures because Ca2RuO4 has the structural transition at

above 357 K (or 84 C) that is likely to introduce a crack in a sample - Dupont silver paste

6838 is not an option here. The silver epoxy we used to make contacts is the two-part silver

epoxy for circuits that cures at 60 C for one hour. This epoxy is extremely runny (compare

to 6838, where it is rather sticky), hence makes it hard to place four 10 microns gold wires

on 180 microns samples. We have set up two pressure cells for this project for the reason

we will explain later. Both pressure cells are set up in the same way. Moissanites were used

for the anvils. The culet size is 0.8 mm, and an insulating gasket was used. The first sample

dimension is 180×100×40 µm3, the second sample dimension is 200×100×40 µm3, and

the third sample dimension is 100× 80× 40 µm3. The resistivity was calculated directly

from the formula R = ρl/A.
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5.2.2 Ferromagnetic Ground State Phase

Resistivity Measurement

We start by investigating the itinerant ferromagnetic phase. Figure 5.9 shows the resistivity

measurement of Ca2RuO4 at 48 kbar. The measurement gives RRR to be approximately

100, indicating a very high-quality sample. The residual resistivity is less than 1 µΩ·cm,

very promising to observe two interesting aspects (i) quantum oscillatory effect, and (ii) the

possibility of a first-order transition. However, we will see later that it is impossible to observe

the Shubnikov - de Haas quantum oscillation due to the strong negative magnetoresistance (as

the oscillation signal would be smaller than noise). A possible way to measure the quantum

oscillation of this FM phase is to do via the de Haas - van Alphen. There was already a study

measuring AC susceptibility using a micro coil in pressure cells [58]. However, the study is

not yet conclusive - the study using the tunnel diode oscillator technique is desirable due to

its great sensitivity.

There are a few exciting features in this graph. Firstly, there is a shoulder at roughly 20 K.

Secondly, the flattening resistivity curve at low temperature. Thirdly, the superlinear power

law above the transition. We will go through these features in more detail.
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Fig. 5.9 Resistivity profile in Ca2RuO4 at 48 kbar in sample 1. The temperature range is
between 2 K and room temperature. The measurement was done in the PPMS. The cooling
rate for the whole temperature sweep is 0.3 K/min.
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Starting with the shoulder at around 20 K, this is a sign of a phase transition. According

to previous works in AC susceptibility and SQUID measurements, we can infer that the

shoulder arises from paramagnetic-ferromagnetic transition. Figure 5.10 shows resistivity at

low temperature for a clear picture of this shoulder. We perform derivative in the resistivity

to see how sharp the transition is, showing in Figure 5.11. The width of the peak in the

differential resistivity is remarkably broad. There are a few possible explanations for the

broad transition: (i) inhomogeneity in a liquid medium; however, it should not be the case

in our system as glycerol has an excellent hydrostatic condition up to ∼50 kbar. (ii) the

cooling/warming rate is too fast; to test this possibility, we perform a very slow sweep rate of

0.02 K/min in a different pressure cell (Figures 5.12 and 5.13). The nature of the observed

transition did not change with a slow temperature sweep rate. (iii) the transition is first-order

(as it is observed in many clean system at low temperature - The first-order transition is due to

the interaction between magnetic fluctuation and electronic soft mode [19]); we have checked

very carefully by comparing warmup data and cooldown data at 0.02 K/min (figure 5.14).

However, there is no visible hysteresis. It is unlikely that the broad transition is connected to

first-order transition (also see later section in AC susceptibility measurement). Although we

have ruled out some possibilities, we still cannon explain this mysterious broad transition

nature.
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Fig. 5.10 Low temperature resistivity in Ca2RuO4 at 38 kbar in sample 1, showing shoulder
at the ferromagnetic transition. The measurement was done in the commercial DMS. The
cooling rate is 0.3 K/min
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Fig. 5.11 Differential resistivity of Ca2RuO4 at 38 kbar in sample 1. The measurement was
done in the commercial DMS. The cooling rate is 0.3 K/min
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Fig. 5.12 Low temperature resistivity in Ca2RuO4 at 39 kbar in sample 2, showing shoulder
at the ferromagnetic transition. The measurement was done in the PPMS. The cooling rate is
0.02 K/min
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Fig. 5.13 Differential resistivity of Ca2RuO4 at 39 kbar in sample 2. The measurement was
done in the PPMS. The cooling rate is 0.02 K/min
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Fig. 5.14 Comparing slow warmup and cooldown through the transition of Ca2RuO4 at 48
kbar in sample 1. The measurement was done in the PPMS with the rate of 0.02 K/min.

Next, we study the form of resistivity at the base temperature. It is clear in figure 5.10

that the resistivity is very flat at low temperatures. By fitting the curve to the simplest power

law equation ρ = ρ0 +AT n, one finds n ∼ 4.3. It may be tempting to view this as the usual

low-temperature electron-phonon scattering ρ ∼ T 5. However, the existence of a shoulder at

below 20 K suggests that the resistivity flattening may come from the electron-spin wave

scattering instead. Any anisotropy introduces an energy gap in the magnetic spectrum. Hence,

the low-temperature resistivity should follow exponential function instead of power-law. The

form of resistivity with the strong uniaxial anisotropy reads [6, 55]

ρ = ρ0 +AT 2 +BT ∆

[
1+

2T
∆

]
e−(∆/T ) (5.1)

In this equation, the first term represents the residual resistivity, the second term represents the

usual Fermi liquid term, and the third term represents scattering between electron and gapped

magnetic fluctuation. The energy gap in magnetic fluctuation comes from anisotropies,

which destroys the gapless Goldstone mode. Anisotropy can arise from many things, such

as crystal structure and spin-orbit coupling. The form of resistivity above is correct for the

ferromagnetic magnon in strong uniaxial anisotropy. The exponential of the energy gap can

be understood roughly from the Boltzmann factor. Since magnetic fluctuations get frozen out
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at a low enough temperature, the exponential term does not contribute to the resistivity at

this temperature. However, at high temperatures, the scattering with magnetic fluctuation

overcomes electron-electron interaction, giving rise to the rapid increase in resistivity. We

fit the resistivity graph to this function, as shown in figure 5.15. The fitting parameter

are the following: ρ0 = 0.436 µΩ·cm, A = 0.0113 µΩ·cm/K2, B = 0.0308 µΩ·cm/K2, and

∆ = 47.1 K. From the fit, we see that the resistivity follows equation 5.1 very well, suggesting

gapped ferromagnetic ground state.
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Fig. 5.15 Resistivity in Ca2RuO4 at 48 kbar in sample 1. The fit to the equation 5.1. The
fitting parameters are ρ0 = 0.436 µΩ·cm, A = 0.0113 µΩ·cm/K2, B = 0.0308 µΩ·cm/K2,
and ∆ = 47.1 K. The red line is a guide to the eye.

Next, we discuss the high-temperature power law. By plotting resistivity versus T 4/3, the

curve is highly linear, suggesting that resistivity is proportional to T 4/3, or at least close to this

function. The plot of resistivity versus T 4/3 is shown in figure 5.16. We investigate power-law

more carefully by the direct fitting. The candidate function for this high-temperature regime

resistivity is

ρ = ρ0 +BT n (5.2)
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However, as we know that there should be a contribution from electron-phonon scattering at

high temperature, we can add that term by hand, and the resistivity becomes

ρ = ρ0 +AT +BT n (5.3)

We have fitted the curve using the two equations above. Both equations fit well to the

resistivity data, with slight differences in the power law. Figure 5.17 shows the fit without

the electron-phonon contribution, and figure 5.18 shows the fit with the electron-phonon con-

tribution. The values of the power-law obtained from these fits are n = 1.41 and n = 1.43 for

the one without and with phonon, respectively. There is only a small change when excluding

the phonon scattering from our power-law fitting. The power law of 1.43 may be explained

by the self-consistent renormalisation theory in 2D itinerant ferromagnetic (the description is

given in chapter 2). Since Ca2RuO4 is expected to be quasi-2D itinerant ferromagnetic (the

fact that the material is quasi-2D is also suggested by the fact that resistivity in c-direction

is ∼ 1000 times larger than resistivity in ab-plane at room temperature), it is reasonable to

see that the exponent in resistivity, n ∼ 1.4, is close to the value predicted by SCR theory,

n = 1.33. The deviation may be because it is not perfectly two-dimensional.
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Fig. 5.16 Resistivity versus T 4/3 in Ca2RuO4 at 48 kbar in sample 1. The red line is the
linear fit and is the guide to the eye.
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Fig. 5.17 Resistivity in Ca2RuO4 at 48 kbar in sample 1. The fit to the equation 5.2, which
excludes the phonon contribution. The power law is n = 1.41. The full equation reads
ρ = 2.19+0.0113×T 1.41 µΩ·cm. The red line is a guide to the eye.
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Fig. 5.18 Resistivity in Ca2RuO4 at 48 kbar in sample 1. The fit to the equation 5.2, which
includes the phonon contribution. The power law is n = 1.43. The full equation reads
ρ = 2.14+0.00559×T +0.00960×T 1.43 µΩ·cm. The red line is a guide to the eye.
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Problem with Contacts Placement in Magnetoresistivity Measurement

Before we move to magnetoresistance measurement in ferromagnetic Ca2RuO4, we start

by discussing a problem we have encountered in measuring magnetoresistivity. When we

measured the magnetoresistance in sample 1 at 48 kbar, we observed a negative resistance.

The data is shown in figure 5.19.
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Fig. 5.19 Negative absolute resistivity of Ca2RuO4 sample 1 at 48 kbar in field. The
temperature is 3 K.

Since this problem is significant and may relate to the reliability of all the previous

measurements so far, it must be explained how it happens. We attempt to explain this negative

resistance: this negative resistance may arise when two things happen simultaneously.

1. The contact geometry is not a perfectly straight line, but they are in the zigzag geometry.

2. The material exhibits very strong negative magnetoresistance when the field is in the

c-axis.

When this happens, there are a few ways to observe negative resistance. Simple examples

are: (i) resistivity in a and b directions respond to magnetic field differently. (ii) the sample

orientation is slightly tilted and it has some magnetic field component in the ab-plane. If we

measure voltage not exactly parallel to the current, these anisotropies can change the polarity

of the signal.
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Note that since the magnetoresistivity is symmetric in switching the field polarity, the

Hall effect can be ruled out.

Magnetoresistivity

We have set up another pressure cell to study magnetoresistivity properly to ensure that: (i)

All four contacts are as colinear as possible. (ii) Two voltage terminals are on the plane

only and not touching the side (as this will cause picking up signal arising from c-direction,

which is particularly bad for material with large anisotropy like this one - further discussion

in [155]). (iii) Two currents terminals cover the side of the sample very well to make sure

uniform current flow.

Remeasuring magnetoresistivity in the new pressure cell, we obtained a much more

reasonable result. The magnetoresistivity at 2.5 K in sample 2 at 39 kbar is shown in figure

5.20.

The magnetoresistivity at different temperatures is shown in figure 5.21. The strong

negative magnetoresistance is observed in the ferromagnetic phase (below ∼20 K) and the

paramagnetic phase (above ∼20 K). At the lowest temperature of 2.5 K, the resistance

drops by a factor of 4 in the magnetic field of 9 T. Usually, the origin of the negative

magnetoresistance in ferromagnetic relates to the scattering of electrons with magnetic

fluctuations [163]. However, with this very strong negative magnetoresistance, we may

classify it as colossal magnetoresistance, similar to the case of manganite. The origin of the

colossal magnetoresistance can be very complicated and vary from system to system [145].

We do not yet understand what causes the colossal magnetoresistance in this ferromagnetic

phase. Next, we present the fractional change in magnetoresistance, defined by

%∆ρ =
ρ(T,B)−ρ(T,0)

ρ(T,0)
(5.4)

For the sake of clarity, we plot the graphs separately; one in the ferromagnetic phase and

one in the paramagnetic phase. Figure 5.22 shows the percentage magnetoresistance in

the ferromagnetic phase, while figure 5.23 shows the percentage magnetoresistance in the

paramagnetic phase. It is surprising to see that %∆ρ in the ferromagnetic phase is very much

temperature-independent.

Finally, we measure the temperature-dependent of resistivity in the field (figure 5.24).

This suppression of the shoulder is similar to the colossal magnetoresistance. By subtracting

resistivity with field to resistivity without field, we observe a dip in data which can be
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interpreted as the Curie temperature. By extracting the transition temperature this way, we

obtain Tc = 17.5 K.
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Fig. 5.20 Magnetoresistivity of Ca2RuO4 sample 2 at 39 kbar. The temperature is 2.5 K.
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Fig. 5.21 Magnetoresistivity of Ca2RuO4 sample 2 at 39 kbar. The temperature range is
between 2.5 K to 50 K.
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Fig. 5.22 Magnetoresistivity (percentage) in ferromagnetic phase of Ca2RuO4 sample 2 at
39 kbar.
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Fig. 5.23 Magnetoresistivity (percentage) in paramagnetic phase of Ca2RuO4 sample 2 at 39
kbar.
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Fig. 5.24 Resistivity versus temperature of Ca2RuO4 sample 2 at 39 kbar with the applied
magnetic field of 0 T, 3 T, 6 T and 9 T.
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Fig. 5.25 The difference between resistivity with and without field versus temperature of
Ca2RuO4 sample 2 at 39 kbar.
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Magnetic Susceptibility

Apart from the resistivity measurements, we have also performed the susceptibility mea-

surement in the ferromagnetic phase to explore the possibility of having a first-order phase

transition. Dr Patricia Alireza kindly set up the pressure cell used in this section.

The measurements were done in the Coldhead (4K measurement system). Pre-amplifier

and transformer (10X) were used to get a better signal-to-noise ratio. The frequency used is

777 Hz, and the phase of the lock-in amplifier is set to 90 degrees. The current for the drive

coil is 8 mA.

Figures 5.26 and 5.27 show AC susceptibility data in Ca2RuO4 at 38 kbar and 79+5
−4 kbar,

respectively. Before the measurement, pressure read 84 kbar while it dropped to 75 kbar after

the measurement. The peak in the susceptibility of the 79 kbar measurements is at a higher

temperature than that of 38 kbar. However, the peak does not represent the Curie temperature

directly. To find the Curie temperature Tc, one needs to fit the data in the paramagnetic phase

to the equation χ ∝ (T −Tc)
−1. Since our signal from the sample is combined with the

enormous background (we need to use an extremely small sample), we cannot simply do this

fit well. The divergence in magnetic susceptibility is concrete evidence for the second-order

transition nature, meaning that the FM-PM transition is second-order up to at least 79 kbar.
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Fig. 5.26 The X-component of AC susceptibility of Ca2RuO4 at 38 kbar.
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Fig. 5.27 The X-component of AC susceptibility of Ca2RuO4 at 79+5
−4 kbar.

There are two possibilities that we did not observe the FM-PM transition to be first-order:

(i) the disorder strength is too high, suppressing tricritical temperature to zero Kelvin [19].

(ii) transition temperature is too high, suppressing electronic soft mode that induced the

first-order transition. To pursue this, we have to suppress the curie temperature by applying

more pressure.

5.2.3 Superconducting Ground State Phase

To have a hint of what phase diagram looks like, we decided to investigate in the region

far from ferromagnetism. Transport measurement at 108 kbar was conducted in this study.

Figure 5.28 shows the resistivity measurement from room temperature down to 3 K. The

most interesting feature in this plot is the linear resistivity at high temperature. The linear

resistivity ρ ∼ T differs drastically from the one above the FM phase, ρ ∼ T 4/3. There are

two ways to interpret this result: (i) electron-phonon scattering - however, it is unlikely to

be the case because of the existence of the shoulder at less than 50 K. For a pure electron-

phonon scattering, the resistivity usually goes smoothly from ρ ∼ T 5 to ρ ∼ T 2 and ρ ∼ T

as temperature increases. (ii) electrons scatter with magnetic fluctuation. This could be

2D antiferromagnetic fluctuation or a spin-texture state. The scattering with magnetic
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fluctuation is a more plausible scenario because of the shoulder in the resistivity curve. We

will investigate the ground state carefully next.
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Fig. 5.28 Resistivity measurement of Ca2RuO4 up to room temperature. The measurement
was done in the coldhead. The black line is the linear fitting of the high-temperature phase,
and is a guide to the eye.

A careful low-temperature study was performed in the DMS. Figure 5.29 shows the resis-

tivity profile at low temperatures. The observed flattening in resistivity at low temperatures

is a sign of a gapped magnetic ground state. We fitted the data to the equation [55]

ρ = ρ0 +AT 2 +B∆
2

√
T
∆

[
1+

2
3

(
T
∆

)
+

2
15

(
T
∆

)2
]

e−(∆/T ) (5.5)

The third term comes from electron scattering with antiferromagnetic magnons in a large

uniaxial anisotropy. The fitting paramter are ρ = 3.5 µΩ·cm, A = 4.0×10−4 µΩ·cm/K2,

B = 3.9×10−2 µΩ·cm/K2, and ∆ = 21.1 K. Unfortunately, this is not really the evidence of

having AFM ground state. The data also fits well with the FM ground state. We can only

conclude that the system has some kind of gapped magnetic ordering.
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Fig. 5.29 Resistivity measurement of Ca2RuO4 at low temperature. The measurement was
done in the DMS. The black line is the fitting to equation 5.5, and is a guide to the eye.

These two features of having linear resistivity at high temperature and the resistivity

flattening at low temperature is being suggestive of having an antiferromagnetic metallic

ground state. According to the previous work at this pressure (however, with two-point

measurement), the ground state has an instability towards the superconducting phase at about

a few hundred milli-Kelvins [4]. Figure 5.30 shows the resistivity in the sub-Kelvin regime.

Without a magnetic field, we observed an initial drop in resistivity at about 400 mK, followed

by a clear peak at about 200 mK. The origin of the peak is unclear. As we apply a magnetic

field, the peak disappears. The drop in the resistivity is likely to be from the superconductivity.

However, the resistivity drops by only a factor of less than 10% at a hundred milli-Kelvin.

This suggests that only some part of the sample undergoes superconducting transition (in

this case, it may only be filamentary). This result of the critical field, however, contradicts to

what has been observed before. The critical field that was observed previously was in the

order of 10 mT [4]. There may be some effects from strain, which is expected to occur at this

pressure. To investigate this phase more concisely, we need a smaller sample and a better

pressure medium such as argon.
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Fig. 5.30 Possible superconducting transition in Ca2RuO4.

We propose a possible phase diagram of the calcium ruthenate. What we have added to

what has been known is a possible antiferromagnetic phase at a pressure beyond the itinerant

ferromagnetic phase. This also implies that superconductivity in high-pressure Ca2RuO4

should be even-parity. In fact, antiferromagnetic fluctuation is not the only route to obtain

linear resistivity in two-dimensional systems. For example, we have seen in Chapter 4 that

linear resistivity in Bi-III arises from scatterings between electrons and soft-phonon (i.e.

phason). MnSi also shows this type of non-Fermi liquid ρ ∼ T 3/2 [111] (3D system) but

does not have any antiferromagnetic ground state. In the case of MnSi, it was believed that

this anomalous power-law arises from the Skyrmion spin-texture state [20, 112].

The non-Fermi liquid behaviour (linear resistivity) in high-pressure Ca2RuO4 does not

seem to arise from the vicinity of quantum critical point as we do not observe any suppression

magnetic ordering transition temperature. A possible scenario is that there is a competition

between ferromagnetic and antiferromagnetic interactions, which can be tuned by external

pressure.



108 Studies of High-Pressure Phases of Ca2RuO4

Fig. 5.31 A possible phase diagram of Ca2RuO4.

To test the antiferromagnetic phase, one can conduct other experiments that are more

direct. For example, neutron scattering or MRI can give the magnetic structure of the system.

5.3 Comparison/Relation to other materials

5.3.1 La1−xSrxMnO3

Lanthanum Manganite LaMnO3 has a prototypical perovskite structure (with n = ∞ in the

RP-formula). The lanthanum valence configuration is 5d1 6s2, giving three valence electrons.

Oxygen has 2s2 2p4, taking two electrons per oxygen. Therefore, manganese (which is 3d5

4s2) must give three electrons to form a complete bond, becoming Mn3+ and leaving 3d4

electrons to the system. The 3d4 states get split due to the crystal field, resulting in electrons

occupying t2g and eg states. The energy of this electronic configuration can be lowered by

having a Jahn-Teller distortion (it is not hard to see that Mn3+ is a Jahn-Teller atom - one

can see that the electronic energy is lowered by the further energy splitting by a distortion).

Remarkably, the phase diagram of Sr-doped LaMnO3 is almost identical to the proposed

phase diagram of Ca2RuO4. This similarity may not be coincidental. Firstly, both lanthanum

manganite and calcium ruthenate have four d-electrons. However, the spin configurations are

different in these systems. In LaMnO3, 3d electrons are very much localised and the crystal

field splitting is not so large. All four electrons prefer to align in the same direction (due to

Hund’s rule). This makes three electrons occupy t2g states and one electron occupy eg state.
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On the other hand, 4d electrons in Ca2RuO4 is much less localised, resulting in much larger

interaction with the environment, making all four electrons occupy the t2g states.

Fig. 5.32 A phase diagram of Sr-doped LaMnO3. CI stands for canted insulating, FI stands for
ferromagnetic insulation, PI stands for paramagnetic insulatings, FM stands for ferromagnetic
metal, PM stands for paramagnetic metal, and AFM stands for antiferromagnetic metal.
Figure credit: [145].

Both LaMnO3 and Ca2RuO4 have Jahn-Teller distortion at manganate and ruthenate

octahedra [145]. In LaMnO3, the conduction electrons mainly come from eg state (since dz2

state hybridises strongly with the 2p electron in oxygen), the Jahn-Teller distortion makes

the system becomes insulating according to the following mechanism: (i) The distortion

lowers the energy of dz2 and raises dx2−y2 . When the eg electron from one site moves to

another site, it can singly occupy dx2−y2 (not energetically favourable due to Jahn-Teller

splitting) or doubly occupy dz2 (again, not energetically favourable due to Hund’s coupling)

[21]. (ii) The distortion reduces the hybridisation to the 2p electron from oxygen, hence

lowering the hopping parameter of dz2 state [145]. This picture is effectively the same as the

Mott-Hubbard model, where electrons get jammed and become an insulator. The Jahn-Teller
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effect causes LaMnO3 to be insulators. In Ca2RuO4, the mechanism for being an insulator

is different since there is no electron occupying eg state. The reduction in bandwidth in

Ca2RuO4 mainly comes from the tilt in the RuO6 octahedra.

When lanthanum (trivalent atom) in LaMnO3 is replaced by strontium (a divalent atom),

manganese loses one more electron and becomes Mn4+, which is not a Jahn-Teller atom.

The distortion is completely removed when x = 0.175, where x is the doping level in

La1−xSrxMnO3 [21]. This is also similar to the effect of pressure on Ca2RuO4 [3, 4].

When the doping level exceeds x = 0.175, lanthanum manganite becomes ferromagnetic

metal. The mechanism for this ferromagnetic metallic is the double exchange interaction

[21], where electrons are delocalised if all local spins align (otherwise, it is not favourable

for electrons to hop around due to Hund’s coupling). Furthermore, this ferromagnetic

exhibits a strong negative magnetoresistance, called the colossal magnetoresistance. The

CMR in La1−xSrxMnO3 is believed to be connected to double exchange in ferromagnetic:

As electrons can hop better when neighbour spins are aligned (due to Hund’s coupling),

magnetic field reduces resistivity as it makes local spin align in the same direction. [21]. We

also observed the CMR in ferromagnetic Ca2RuO4 (figure 5.24), showing how similar they

are.

One important feature to notice is that the magnetic ordering temperature in La1−xSrxMnO3

is an order of magnitude larger than that in high-pressure Ca2RuO4. The cause of this dis-

crepancy is likely to come from the dimensionality of the system. In two dimensional system,

there is no true long-range order due to the large fluctuation. That means we expect the or-

dering temperatures in high-pressure Ca2RuO4 to be much smaller than La1−xSrxMnO3 due

to its quasi-2D in nature. Moreover, a two-dimensional system promotes superconductivity

[98], and that is why superconductivity arises in Ca2RuO4 but not La1−xSrxMnO3.

As we have seen, the pressurised Ca2RuO4 could turn out to be the two-dimensional

analogy of the strontium-doped LaMnO3. The origin of the similarities between these two

scenarios is still unclear. However, this may make the high-pressure antiferromagnetic

Ca2RuO4 more convincing.
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Fig. 5.33 Magnetoresistance in La1−xSrxMnO3 with x = 0.175. Figure credit: [147].

5.3.2 Sr2RuO4

As there is much evidence of competition between antiferromagnetic and ferromagnetic

tendencies in Sr2RuO4, it was suspected that the order parameter might change the parity

by the application of pressure [89]. The story in high-pressure Ca2RuO4 may be similar.

One difference between high-pressure Ca2RuO4 and Sr2RuO4 is that the former is unstable

towards magnetic ordering. As pointed out in [98] that superconductivity with antiferromag-

netic interaction is more stable than ferromagnetic interaction; the same thing happens in

high-pressure Ca2RuO4. Superconductivity in Ca2RuO4 becomes observable when ferro-

magnetic ordering disappears [4], and the transition temperature rises when the system is

tuned away from ferromagnetism (and go into an antiferromagnetic state).

5.4 Summary

There have been many extensive studies on Ca2RuO4 over the past twenty years, ranging

from pressure works, isovalent doping, the effect of electric field and magnetic field. For

the pressure works, they were done mainly in piston-cylinder pressure cells. The detailed

resistivity measurement above 30 kbar still lacks. We expand the works by doing detailed



112 Studies of High-Pressure Phases of Ca2RuO4

resistivity studies in the ferromagnetic phase. Firstly, we found that resistivity in the ordered

state is well-described by the scattering between electrons and gapped magnons. Furthermore,

resistivity above the transition temperature follows the power-law ρ ∼ T 4/3, agreeing to

the result from the SCR theory of 2D ferromagnetic. The nature of the transition was also

studied carefully. It was found that the transition is of second-order up to 75 kbar as there is

no hysteresis in warmup-cooldown and the divergence in susceptibility. The differential in

resistivity shows that the transition of the ordered state is broad, despite being second-order

in nature. This broad transition feature needs to be understood theoretically in the future.

Magnetoresistance of both the ferromagnetic phase and the paramagnetic phase are negative.

The ferromagnetic phase shows a giant percentage negative magnetoresistance, up to 80% at

9T, 2.5 K.

At the pressure above 100 kbar, we observed the cross-over from ρ ∼ T 4/3 to ρ ∼ T

in the resistivity measurements. The suggests a change in the magnetic interaction from

2D ferromagnetic to 2D antiferromagnetic. Furthermore, we also observed a magnetic

ground state, according to the flattening of the resistivity at low temperatures. Combining

these results, we conjecture that the ferromagnetic ground state has transformed into an

antiferromagnetic ground state at high pressure.



Chapter 6

Iron-Based Superconductor YFe2Ge2

and Frustrated Magnet PdCrO2

This chapter contains two small pieces of work - high pressure study of iron-based supercon-

ductor YFe2Ge2 and high-pressure study of geometically frustrated magnet PdCrO2. The

main theme of this chapter is the exploration of unknown phases.

6.1 YFe2Ge2

6.1.1 Introduction and Literature Review

Iron-based superconductivity is a relatively new class of superconductors. It was first

discovered in 2006 in LaOFeP [77], which shows superconductivity at 4 K. The discovery

was a big surprise in the field since element iron, which is a d-metal, is highly magnetic.

In terms of the transition temperature, the highest Tc that has been discovered to date is

55 K in SmFeAsO0.85 [119], exceeding the maximum Tc expected for conventional BCS

superconductor. Moreover, they are promising to exhibit a large critical field. For instance,

BaFe1.8Co0.2As2 was predicted to have an upper critical field of 43 T by measuring the

coherence length using scanning tunnelling spectroscopy and vortex imaging techniques

[165]. Therefore, iron-based superconductivity attracts much attention in the condensed

matter community in both fundamental study and its potential applications in industry.

Many iron-based superconductors combine with pnictogen 1 and chalcogen2 and can be

classified by the a different chemical formula. They can be classified into a few groups:

1Pnictogen are materials in group 15
2Chalcogen are materials in group 16



114 Iron-Based Superconductor YFe2Ge2 and Frustrated Magnet PdCrO2

1. 11-family has a general formula of FeX where X is a chalcogen. Some examples of

materials in this class are FeSe [117] and FeTe [46].

2. 111-family has a general formula of AFeX where A is an alkaline metal and X is a

pnictogen. Some examples of material in this class are LiFeAs [152] and NaFeAs [37].

3. 122-family has a general formula of AeFe2X2 where Ae is an alkaline-earth metal and

X is a pnictogen. Some examples of material in this class are BaFe2As2 [123] and

SrFe2As2 [126].

4. 1111-family has a general formula of RFeXO where R is a rare-earth metal and X is

pnictogen. Some examples of material in this class are LaFeAsO [78], SmFeAsO [36],

and PrFeAsO [119].

5. More exotic families, such as 42622-family with a notable example of Sr2ScFePO3

[164].

Although all of these families seem very different in structure, all of them have layers of iron

with pnictogen/chalcogen, which is seen in figure 6.1 (This somehow resembles the cuprate

superconductors where they have layers of copper oxide instead). It becomes clear afterwards

that it is these two-dimensional electronic structures that gives rise to high-temperature

superconductivity. The 2D behaviours are observed in the intraplane and interplane magnetic

coupling. In cuprate superconductor, J⊥/J ∼ 10−5 whereas J⊥/J ∼ 10−4 in 1111 pnictides

and J⊥/J ∼ 10−2 in 122 pnictides [86]. Another evidence is the electronic band structures

which are usually in the form of two-dimension cylindrical sheets [80].

Usually, these undoped iron-based compounds have a spin density wave ground state at

ambient pressure. The doping of electron/hole, isovalent doping, or external pressure can

usually suppress the magnetically ordered state, and eventually, superconductivity emerges

around the expected quantum critical point. A general phase diagram of the iron-based

superconductor is shown in figure 6.2. Notice that the phase diagrams of iron-based super-

conductors have some similarity to cuprates, as superconductivity arises when a magnetic

order gets suppressed3.

The belief that iron-based superconductor is unconventional stems from (i) the high

transition temperature, exceeding the BCS prediction4, (ii) the similarity of the phase diagram

between iron-based superconductor and cuprates.
3One of the most significant differences between cuprate superconductors and iron-based superconductors

is that the parent compounds of the former are insulator whereas the latter are conductors.
4This way of looking may be dubious since there are a few materials that exhibit close to room temperature

superconductor (however, under extremely high pressure) but are conventional ones. Examples are hydrogen
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Fig. 6.1 Structures of iron-based superconductors coming from five different families in
chemical formula. The figure was taken from [110]

Although not a consensus, it is widely believed that the pairing mechanism must come

from magnetic fluctuations. It may not be difficult to convince ourselves that it should be

the case by looking at the phase diagram. In these unconventional superconductors, the

parent compounds usually have some magnetic order. As we suppress the magnetic order

and reach the phase boundary where magnetic fluctuation is strongest5, superconductivity

arises6. In contrast to cuprate, which is believed to be d-wave, many experiments and

theoretical predictions point the iron-based superconductors toward an s-wave [16, 38,

65, 107] superconducting order parameter. However, there is a significant difference to

sulfide and carbonaceous sulfur hydride [132]. This may be something very fundamentally incomplete to the
way we think about superconductivity.

5This is due to the divergence in correlation functions.
6Hence, the quantum phase transition is the subject that is currently growing very fast and is needed for a

better understanding of unconventional superconductors.
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Fig. 6.2 General phase diagram of iron-based superconductors, based on BaFe2As2. The
figure was taken from [80].

conventional superconductors, namely that there is a relative sign change amongst different

Fermi surfaces. This pairing mechanism is called s±-wave.

Now, we give an overview of a particular material, YFe2Ge2, which we have been working

on and will be the main subject in this section. YFe2Ge2 is classified into the 122-family

iron-based superconductor. However, it does not fall into either pnictide or chalcogenide

categories. Instead, Fe is combined with the carbon group, which is group 14 in the periodic

table. We can identify the valency of this material by counting as follows: Firstly, the

electronegativity of Y < Fe < Ge, meaning that yttrium tends to give all valence electrons,

and germanium tends to fill its shells. Yttrium has valence 4d1 5s2, iron has valence 3d6 4s2,

and germanium has valence 4s2 4p2. In this material, Ge-Ge forms a covalent bonds, sharing

two electrons together. Therefore, germaniums take only 6 electrons in total, and iron needs

to give 1.5 electrons each. The electronic configuration is then 6.5 electrons per iron.

YFe2Ge2 has a tetragonal structure shown in figure 6.3. As the value of c/a = 2.64 is

comparatively smaller than other iron-based superconductors (for example, c/a = 3.61 in

KFe2As2 at ambient pressure [136]), it is expected that this material exhibits more three-

dimensional character rather than quasi-two-dimensional. The 3D character arises because of

the covalent bond between Ge-Ge, which is strong enough to collapse the structure and make

it tightly packed. The Fermi surface of YFe2Ge2 is shown in figure 6.3 shows very much

3D character compared to its sibling compound KFe2As2. By applying external pressure,
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KFe2As2 undergoes a structural phase transition and becomes the ’collapsed’ tetragonal

structure, which is very similar to YFe2Ge2 in both structures and the Fermi surface (with a

difference only at the vicinity of Γ point).

Fig. 6.3 (Upper figure) Left: The structure of YFe2Ge2 with the lattice parameters a =
3.9617(5), c = 10.421(1) and the position of Ge atoms in c-direction is 0.3789(3). Right:
Fermi surface of YFe2Ge2. The Z and X labels indicate hole pocket and electron pocket,
respectively. (Middle figure) Left: Structure of uncollapsed KFe2As2. Right: Fermi surface
of uncollapsed KFe2As2. (Bottom figure) Left: Structure of collapsed KFe2As2. Right:
Fermi surface of collapsed KFe2As2. The figure was taken from [35].

YFe2Ge2 at ambient pressure has a superconducting ground state. The transition temper-

ature depends heavily on the amount of the disorders which suggests its superconductivity is

unconventional. It was first observed to be a superconductor in 2014 [168], but any detailed

studies are complicated due to the effect of disorders in YFe2Ge2. In 2020, Dr Jiasheng Chen

managed to grow high-quality single crystal of YFe2Ge2 with an RRR of better than 400,

which opens up the possibility to investigate the intrinsic properties of superconductivity in

this material. The observed transition temperature is approximately between 1.5-1.8 K. In this

aspect, YFe2Ge2 is quite different from most iron-based superconductors since most of them

have a magnetic ground state at ambient pressure. In the normal state above superconducting,
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YFe2Ge2 shows non-Fermi liquid behaviour in resistivity, with a power-law ρ ∼ T 3/2. The

exponent 3/2 is not well understood but is speculated to arise from the vicinity of a QCP.

Therefore, it is desirable to investigate the effect of pressure on YFe2Ge2, especially to see if

it can be tuned away from the proposed QCP by applying pressure.

It is also worth noting a sibling compound LuFe2Ge2 which has an AFM ground state.

The ordering temperature of TN = 9 K (at ambient pressure) is observed to increase as a

function of pressure. On the other hand, the effect of chemical substitution of Lu by Y

gives the opposite result. This can be view as the effect of chemical pressure - lutetium

has a smaller atomic radius (227 pm) than yttrium (240 pm) and thus gives rise to negative

chemical pressure (larger average unit cell). Substituting Lu by Y in Lu1−xYxFe2Ge2, the

Néel temperature is suppressed completely at x = 0.2. The phase diagrams are shown in

figure 6.4.

Fig. 6.4 Phase diagram of LuFe2Ge2 in two situtations. The left figure is the phase diagram
under pressure. The right figure is the phase diagram under chemical substitution of Y to Lu.
The figure was taken from [128], and the data come from [56, 118].

Why study YFe2Ge2?

The reasons why this material is very interesting can be summarised as follows:
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1. It is now possible to grow very high-quality samples of YFe2Ge2 with a residual

resistivity ratio of more than 600. This is very crucial in the studying of unconventional

superconductors due to its sensitivity to the impurity level.

2. With these high-quality samples, it is now possible to map out every single sheet of

the Fermi surface in YFe2Ge2. This is very important to fundamental studies. Without

these conclusive experimental results, it would be impossible to understand iron-based

superconductivity fully.

3. Low superconducting transition temperature allows us to study the normal-state prop-

erties without any interference from phonon, which is again very important since we

only focus on magnetic interactions in these unconventional superconductors.

4. Dimensionality: YFe2Ge2 has a very different character from other iron-based su-

perconductors. The covalent Ge-Ge bonds change the usual 2D character to a 3D

character. This means that we can understand the role of dimensionality better by

studying YFe2Ge2.

6.1.2 Previous High Pressure Works in AC Susceptibility Measurement

This section quotes previous measurements in AC susceptibility study at high-pressure

done by Dr Patricia Alireza and Dr Jiasheng Chen. Figure 6.5 shows the result from AC

susceptibility measurement from ambient pressure to 70 kbar, giving a significant result that

the superconductivity in YFe2Ge2 can be suppressed entirely by applying pressure of 70

kbar. Interestingly, there is not much effect in pressure up to 40 kbar, but superconductivity

is suppressed quickly above 40 kbar and eventually disappears at 70 kbar.

The study in AC susceptibility which follows the transition temperature as a function

of pressure raised a new question: what kind of phase is YFe2Ge2 in after suppressing

superconductivity? The answer to this question will led us construct the phase diagram of

YFe2Ge2, which would answer the origin of the unusual power-law behaviour in resistivity.

Therefore, the desired experiment is resistivity measurement. We will pay attention closely

on the development of the power-law exponent in resistivity as a function of pressure.
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Fig. 6.5 AC susceptibility measurement in YFe2Ge2 from ambient pressure up to 70 kbar.

6.1.3 Results and Discusstions

This project results from collaborations between Puthipong Worasaran, Dr Patricia Alireza,

and Dr Jiasheng Chen. PW and PLA set up two resistivity pressure cells for YFe2Ge2 (PLA,

PW, JC prepared the samples, and PW prepared the pressure cells). The sample was grown

by JC, and he did the measurement in the DMS system.

The difficulty in this project is the following: since YFe2Ge2 is an unconventional

superconductor, the transition temperature is highly sensitive to the impurity concentration.

In order to get a reliable result, the measurement of all pressure points needs to be done on a

single sample. This poses a significant difficulty due to the high failure rate in pressure cells,

meaning we have to start over from zero if the pressure cell breaks. Because of this, we use a

different strategy to maximise efficiency. Our strategy is to set up two pressure cells. The

first pressure cell was set up to go quickly to 80 kbar only for exploration and to confirm that

the project is worth pursuing. The second pressure cell is dedicated to more careful studies

by going up slowly in pressure.
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Superconducting Transition

In both pressure cells, the samples are contacted using a 4-point measurement technique

with the straight line contacts geometry. The liquid medium used is glycerol. The anvil is

moissanite with the culet of 0.8 mm. We have measured the first pressure cell at 3.5 kbar,

58 kbar, 68 kbar, and 79 kbar. The second pressure cell was measured with smaller interval,

from 6 kbar to 61 kbar. The current used in the first pressure cell (and a first few pressure

points in the second cell) is 0.3 mA with a room-temperature transformer, while 0.1 mA was

used with a low-temperature transformer in most of the measurements in second pressure

cell.

We start by showing data in the first pressure cell as a preliminary study. Figure 6.6

shows the overall results from resistivity measurements in this first pressure cell. Note that

the data at 3.5 kbar was shifted slightly due to non-zero voltage in the superconducting state.

There are a few possibilities for the offset in resistivity. Firstly, voltage wire and current

wire could be touching each other, giving rise to a non-zero signal coming from reading

contact resistance. However, by a careful optical inspection through a microscope, it is

unlikely that this happens (although we cannot say with certainty since the sample is tiny).

Secondly, the common-mode problem in the DMS is more likely to happen in this case (as a

similar problem also happens in the second pressure cell - the resistivity goes below zero

- this was eventually fixed by replacing resistive measurement wires with superconducting

wires). Interestingly, there is still some trace of superconducting in the sample even at 79

kbar, which is in contrast with the susceptibility measurement, suggesting that there may be

some filaments of superconducting left at this pressure.

We are not certain about why the data at 58 kbar shows almost twice resistivity to

those at 68 and 79 kbar. However, since the measurement system was not very reliable

(using conductive wires and no low-temperature transformer) in this first pressure cell, the

measurement in this cell can be used as only a guide.

Now, we present data from the second pressure cell, which was done more carefully

with a better measurement setup. Firstly, superconducting transition is almost completely

suppressed at pressure ∼60 kbar, agreeing well with the first pressure cell. Secondly, there is

no jump in the residual resistivity anymore (as in the 58 kbar data of the first pressure cell).

This suggests that the jump in the first pressure cell is likely to be an artifact.

We extract the superconducting transition temperature from the point at which resistivity

drops by 50% to the normal state resistivity. Figure 6.8 shows the effect of pressure on the

superconducting transition temperature.
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Fig. 6.6 Resistivity measurement in YFe2Ge2 in the cell #1 from ambient pressure up to 79
kbar.

Normal State Power Law

In the preliminary measurement of the first pressure cell, we study the power-law behaviour

by fitting normal-state resistivity to the equation ρ = ρ0 +AT n. It can be seen clearly that

the value of the exponent n increases as a function of pressure as shown in figures 6.9. At

low pressure, the power law exponent is approximately n ∼ 1.6. Then the exponent reaches

n ∼ 1.9−2 at about 80 kbar. At this pressure, superconductivity has disappeared in the AC

susceptibility measurement.

The careful study was performed in the second pressure cell, confirming the trend that has

been observed in the first pressure cell. The plot of the power-law exponent as a function of

pressure is shown in figure 6.10. The increase in the power-law exponent can be interpreted

as the cross-over from non-Fermi liquid to Fermi liquid. This result is also suggestive that

superconductivity arises from the vicinity to a QCP, showing a similar phase diagram to

cuprates.

This result is very curious when comparing with the doped material Lu1−xYxFe2Ge2. In

the simplest picture, the substitution of yttrium by lutetium in YFe2Ge2 should resemble the

effect of presure (as lutetium atom is smaller than yttrium atom). However, the recovery of

Fermi liquid at high pressure makes it impossible to connect the high-pressure YFe2Ge2 to
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Fig. 6.7 Resistivity measurement in YFe2Ge2 in the cell #2 from ambient pressure up to 61
kbar.

the antiferromagnetic phase in LuFe2Ge2. It is also possible that the effect of pressure is

not the same as a chemical substitution. For instance, YFe2Ge2 exhibits two types of spin-

fluctuation, (π,0,π) and (0,0,π) [159], while LuFe2Ge2 shows only the latter one [56, 159].

Therefore, it is possible that Lu-Y substitution affects (0,0,π) more than (π,0,π), while

pressure affects both. The effect of pressure is to increase the kinetic energy of electrons,

broadening energy bands and lowering density of states. A criterion for magnetic instability

is Ug(εF) > 1 (g(εF) is density of state at Fermi energy: this is the Stoner criterion for

ferromagnetism), or more generally, Uχ(0)(qqq)>1 (χ(0)(qqq) is the Lindhard function of non-

interaction electrons system). Therefore, we may not expect to find any magnetic order at

higher pressure. A few things we can do to investigate further: (i) track the antiferromagnetic

transition in LuFe2Ge2 at a broader pressure range. One may expect the antiferromagnetic

transition to go down when pressure is applied futher. However, this is not practical as the

signature of the antiferromagnetic ordering transition in resistivity is very subtle [56]. Any

inhomogeneity at high pressure will smear out the transition completely. Although the heat

capacity measurement gives more visible hump, it is not simple to do it accurately in a

smaller pressure cell (thus limit the pressure range). (ii) produce high-quality samples of

yttrium-doped LuFe2Ge2 to see if superconductivity can be observed, and then study the

power-law behaviour under pressure.
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Fig. 6.8 Superconducting transition temperature versus pressure in YFe2Ge2 in the cell #2.

We conclude this section by drawing the temperature-pressure phase diagram of YFe2Ge2,

shown in figure 6.11, from the results of our study. The phase diagram represents super-

conducting ground state of YFe2Ge2 at ambient pressure with non-Fermi liquid state above

it. We have seen the suppression of superconductivity and the Fermi liquid signature in the

power-law study. This allows us to make a phase diagram and understand the position of this

material much better.
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Fig. 6.9 Power law fitting to the normal state resistivity of high pressure YFe2Ge2. The red
lines are the guides for the eye.
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Fig. 6.10 Power-law exponent as a function of pressure. The averaging is done before the
fitting. The range of the fitting is between 2 K and 6.7 K.

Fig. 6.11 Temperature-Pressure phase diagram of YFe2Ge2.
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6.2 PdCrO2: Exploration

6.2.1 Introduction and Literature Review

Magnetic frustration in the spins system has been a subject of significant interest for many

decades. There are two types of frustration - random (spin glass is an example of this type)

and geometrical. We will focus on geometrical frustration here since it is directly related to

our work. The geometry of the underlying lattice can cause geometrical frustration. This

phenomenon occurs specifically in the spin system with antiferromagnetic interaction, in

which two adjacent spins prefer to align antiparallel to each other. We give a simple example

of how this happens by considering the antiferromagnetic Ising spin system (in which spins

are forced to be in either up or down direction). For a square lattice, the ground state is simply

an antiferromagnetic Néel state, as shown in figure 6.12a. On the other hand, triangular

lattice could not fulfil the condition of the Néel state, which is demonstrated in figure 6.12b.

When two spins at the bottom of the triangle are opposite, the third spin cannot be antiparallel

with those two spins simultaneously.

The situation above implies that the ground state is highly degenerate. When we extend

the situation above to the whole lattice, the degeneracy is usually of the order of total lattice

site number. In a triangular lattice, this degeneracy gives a non-zero entropy of S = 0.323NkB

down to zero temperature [14]. The frustration, in turn, enhances spin fluctuation and destroys

magnetic order. If the fluctuation is strong enough, there may be no magnetic ordering even

at absolute zero. This state is the so-called spin liquid state, which Philip Anderson predicted

to be the ground state of the frustrated spin-1/2 system [7]. The degrees of frustration is

defined to be f = |ΘCW |/Tc where ΘCW is a parameter from the Curie-Weiss susceptibility

χ ∼ (T −ΘCW )−1 and Tc is the magnetic transition temperature. For non-frustrated system,

we have f = 1. With frustration, the transition temperature gets suppressed due to the

fluctuation, giving rise to a larger value of f . Some other interesting related examples of

geometrical frustration is the spin-ice system, which gives a very exotic magnetic monopole

elementary excitation [31]. Application-wise, frustration systems are also good candidates

for adiabatic demagnetisation refrigeration at low temperatures since the ground state entropy

is highly tunable by magnetic field [144]. Furthermore, it has a potential to be realised in

quantum computing technology [124].

Palladium Chromate, or PdCrO2, is a delafossite layered material with a triangular lattice.

The crystal is made of stacks of conducting Pd layers alternating with Mott insulating CrO2

layers, as shown in figure 6.13.



128 Iron-Based Superconductor YFe2Ge2 and Frustrated Magnet PdCrO2

(a) Square lattice (b) Triangular lattice

Fig. 6.12 Demonstration of magnetic frustration due to lattice geometry. The interaction
between spins is of AFM type.

PdCrO2 has a local moment of S = 3/2 located at each Cr+ site, forming a frustrating

triangular lattice. The valence electrons 3d3 of chromium atom split due to the octahedral

crystal field into half-filled t2g and empty band eg. The strong electron-electron interaction

drives the CrO2 plane into a Mott insulator [63]. The local spin is found to behave in

accordance with the Heisenberg spin from the susceptibility measurement [141]. Due to the

local moment being larger than 1/2, the frustration is partially relaxed by having a short-range

120 degrees antiferromagnetic order even at room temperature [137]. At the temperature

TN = 37.5 K, PdCrO2 undergoes a weakly first-order antiferromagnetic transition with

120 degrees spins alignment. The moment direction is mostly on ab-plane. [63, 94, 140].

This transition can be observed clearly in electrical transport, magnetic susceptibility, and

heat capacity measurements [142]. The result from magnetic susceptibility gives f = 13,

which indicates extreme frustration in the system. The Pd plane, sandwiched between

chromate layers, is metallic due to the itinerant 4d conduction electrons. Because of this

two-dimensional nature, PdCrO2 shows an extreme anisotropy between the ab-plane and

the c-direction. The anisotropy can be observed directly in resistivity measurement, in

which resistivity in the c-axis is significantly larger than that in the ab-plane by a factor

of ρc/ρab ∼ 150 depending on temperature [141]. The quantum oscillation technique also

mapped out the Fermi surface of PdCrO2, and it matches the reconstructed Fermi surface of

PdCoO2 into magnetic unit cell [63], suggesting the strong interacting between itinerant 4d

electrons in the Pd planes and localised magnetic electrons in the CrO2 planes.



6.2 PdCrO2: Exploration 129

Fig. 6.13 Structure of PdCrO2. The lattice constants are a = b = 2.930 Å and c = 18.087 Å.
The figure was taken from [142].

Although there are many studies already in PdCrO2, no pressure study has been conducted

in this material. Therefore, this project aims to study the effect of pressure on the AFM

transition and explore any unknown high-pressure phase.

The other intriguing aspect of this material is that it has anomalously small residual

resistivity, reported to be 0.05 µΩ·cm in [141], suggesting some kind of enhancements in

conductivity. In fact, the small residual resistivity was observed in this family of materials,

including PdCoO2 and PtCoO2 [106]. Moreover, there are evidence that the flow of electrons

in these materials are in the hydrodynamic limit [97].

6.2.2 Results and Discusstions

We present our result of resistivity measurement of PdCrO2 under pressure, up to 108 kbar.

The moissanite anvil of 0.8 mm culet and beryllium copper gasket was employed in the

experiment. Glycerol was used as the liquid medium. We make contacts in the straight-line
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geometry with the voltage contacts on the ab-plane without touching the side to avoid any

anisotropy. The AC transport mode in PPMS was used with a current of 8 mA and 23 Hz.

The value of resistivity is obtained by comparing the ambient pressure resistivity of 9.4

µΩ · cm from [141]. The sample we used has RRR≳100, which is of very high quality. The

small resistivity at room temperature, and even a hundred times smaller at 2 K, makes it

rather challenging to observe the antiferromagnetic transition (since we need both excellent

temperature control and an immaculate measurement system - it is not easy to have both at

the same time). This fact has posed another problem in our measurement in the PPMS, as we

describe in the following section.

Inductive Cross-Talk Problem in PPMS

In the PPMS anatomy, there is a vacuum feedthrough made of ’Inconel’ (this is the trademark

name, it is nickel-chromium superalloy) at the bottom of the system. Inconel, in turn, has

a peak in magnetic susceptibility between 25 K and 40 K. When performing AC transport

or AC susceptibility, there is an inductive cross-talked between the current leads to the

Inconel and to the voltage leads (and the temperature-dependent susceptibility in Inconel

manifests the same effect as changing the vacuum magnetic permeability). This induction

effect will distort the waveform measured by the ACT option, resulting in a spurious peak

in the translated value right at the temperature of the peak in Inconel’s susceptibility. This

effect does not appear in most measurements because the signal from inductive cross-talk

is usually tiny compared to a sample signal. However, when we work with samples with

very small resistance as is the case here, the cross-talk with the Inconel vacuum feedthrough

becomes much more pronounce and can be seen in the measured signal. The way to deal

with this kind of cross-talk is to suppress the peak in the susceptibility by applying a few

hundred Oes of magnetic field. The full explanation of this issue is given in [47].

In our PPMS, the peak in AC susceptibility is right at 38 K (very close to the antiferromag-

netic transition in the sample), making it difficult to notice this problem in the low-pressure

region. This effect manifests as a dip (or a hump) in the resistivity measurement, as shown in

figure 6.14. The dip at 38 K is not the transition that we are looking for, but it comes from the

cross-talk with the Inconel. The nature of AFM should be kink-like rather than a dip, which

can be seen in figure 6.15. Because of this reason, we do not have good data below 37 kbar.
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Fig. 6.14 Resistivity measurement in PdCrO2 at 21 kbar between 30 K to 45 K. The dip at 38
K is not due to the sample, but the cross-talk with the Inconel.

Resistivity Measurement

In this section, we present data from 37 kbar up to 108 kbar. Due to the problem with

Inconel cross-talk, we applied a magnetic field of 500 Oe. We start by presenting the overall

resistivity in the vicinity of the transition at all pressure points, showing in figure 6.16. The

temperature sweep rate is 0.02 K/min.

There are a few features we will talk about in this graph. The most noticeable feature

is the significant increase in resistivity in the 85 kbar data compared to lower pressure data,

suggesting that we may have entered into some unknown phase. However, the nature of this

phase is unclear, and we have not investigated this further. At this pressure, we were unable

to observe any antiferromagnetic transition, which may be because of inhomogeneity in

liquid medium. Therefore, we need to clearify if the antiferromagnetic transition temperature

can be suppressed to zero, or if the material undergoes a structural transition before the

antiferromagnetic ordering gets completely suppressed. A follow-up experiment to do in

the future is to perform the same experiment but with better liquid medium, and study

more carefully at pressure above 80 kbar. Power-law study down to base temperature is

very much desirable to study as the data at 108 kbar shows the resistivity flattening at low

temperature. Once the antiferromagnetic transition is truly suppressed, we may expect
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Fig. 6.15 Resistivity measurement in PdCrO2 at ambient pressure. The figure was taken from
[141].

to see superconductivity emerging at sub-Kelvin temperature as it is the case in many

unconventional superconductors.

Now, we show the data in the pressure range between 37 kbar and 75 kbar for clarity in

the kinks. The plot of the data is shown in figure 6.17. The kink at 37 kbar is highly apparent,

whereas it gets broadened at a higher pressure and almost disappears at 75 kbar due to

inhomogeneity of the pressure medium. To extract the AFM transition temperature properly,

we differentiate the resistivity curve and obtain the peak right at the transition temperature, as

shown in figure 6.19. The plot in figure 6.18 shows the transition temperature as a function

of pressure. In this phase diagram, the AFM transition initially goes up, reaching almost

45 K at 46 kbar, and drops back down slowly. The error bars in the graph are obtained by

measuring the half-width of the peak in the differential resistivity.

In conclusion, the antiferromagnetic transition temperature is insensitive to external

pressure. The high-pressure transition gets broadened due to pressure medium inhomogeneity.

It is desirable to study more carefully using a better pressure medium, such as an organic

liquid medium or a compressed gas, at a pressure higher than 50 kbar. The studies at about

85 kbar also deserve more attention, as there may be a structural phase transition below this

pressure.
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Fig. 6.16 Resistivity measurement in PdCrO2 from 37 kbar to 108 kbar.
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Fig. 6.17 Resistivity measurement in PdCrO2 from 37 kbar to 75 kbar.
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pressure.
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6.3 Summary

In this chapter, we have presented our works on YFe2Fe2 and PdCrO2.

In the YFe2Fe2 project, we studied an unconventional superconductor which is speculated

to be in the quantum critical region. We have managed to suppress superconductivity and

enter the Fermi liquid state. This result matches the high-pressure susceptibility measurement

done previously, which also showed suppression in superconductivity. However, in our

case, we still observed a slight trace of superconductivity, even at the pressure as high as

79 kbar, suggesting some filament of the superconducting left. The power-law study shows

the cross-over from non-Fermi liquid (n ∼ 1.5− 1.6) at ambient pressure to Fermi liquid

(n ∼ 1.9−2.0) at pressure about 80 kbar.

Then, we explored high-pressure PdCrO2, which is entirely new. We could track the

antiferromagnetic transition of the frustrated lattice up to 75 kbar. However, the transition

temperature is very insensitive to external pressure. At 85 kbar, the low-temperature resis-

tivity suddenly by a factor of 5-10 compared to the lower pressure resistivity at the same

temperature, suggesting the presence of a new unknown phase. A thorough study of this

phase in the future is desirable, especially to study power-law behaviour and also explore the

sub-Kelvin regime at this pressure.



Chapter 7

Outlook

Further Evidence of Aubry’s Transition in Sb-II

Incommensurate host-guest antimony (Sb-II) is unexpectedly different from incommensurate

host-guest bismuth (Bi-III). At low temperature, antimony shows a quadratic relationship

between resistivity and temperature whereas the relationship is linear in bismuth. Moreover,

there is a well-defined first-order phase transition at high temperature in Sb-II, which was

not observed in Bi-III. These, in themselves, are very interesting since both materials have

the same crystal and electronic structure. We proposed the solution to these discrepancies by

interpreting that Sb-II undergoes a symmetry-breaking transition (i.e. Aubry’s transition) at

temperature below room temperature.

This Aubry’s transition is intriguing since it has never been observed in any real materials

before (although the transition has been observed already in optical lattices [24, 30]). One

of the reasons why it is very difficult to observe in a real material is that incommensurate

host-guest structure is relatively rare to find, and many of them require exceedingly high

pressure to access this phase.

To investigate more whether Aubry’s transition really happens in Sb-II, the list of possible

further experiments are:

• High-pressure low-temperature x-ray diffraction, which will resolve low-temperature

Sb-II structure and give us more insight into the anomalous transition at about 250 K.

• High-pressure heat capacity measurements in Bi-III and Sb-II. In the case of Bi-III, we

may expect to see a very small Debye temperature due to a significant contribution of

phason mode. With the phason-pinning in mind, we anticipate Sb-II to have a relatively

large Debye temperature. However, the heat capacity measurement in Sb-II will be
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very difficult as we require at least 86 kbar of pressure. In this case, we may need to

use thermocouple technique, in which it is not possible to obtain the absolute value of

heat capacity.

Antiferromagnetic in High-Pressure Ca2RuO4

The observation of the change in power-law exponent of resistivity has led us to the spec-

ulation of a possible antiferromagnetic phase at a pressure above 100 kbar. Since the

superconducting phase was observed at the border of ferromagnetism, it was believed that the

pairing mechanism must due to the presence of ferromagnetic correlation, hence spin-triplet

pairing. The antiferromagnetic phase has changed our understanding of this material and

the nature of superconductivity in Ca2RuO4 completely. In term of pairing mechanism,

due to our results, electrons should from a pair in a spin-singlet channel rather than spin-

triplet. Moreover, the antiferromagnetic implies that there is a strong competition between

ferromagnetic and antiferromagnetic interaction, which can be fine-tuned by hydrostatic

pressure.

As we go to higher and higher pressure, we should expect the complete suppression of

antiferromagnetic (due to stronger fluctuations). In this view, it may be possible to have a

quantum critical point at very high pressure, and we might be able to observe the rise in

transition temperature in superconductivity, which may make Ca2RuO4 becomes another

high-Tc superconductor at high pressure.

A list of potential future experiments are:

• Higher pressure studies of the superconducting transition. This can be done in resistiv-

ity measurement or AC susceptibility measurement in diamond anvil cell. To see the

substantial change in superconducting transition temperature, we may need to go to

pressure higher than 200 kbar.

• High-pressure neutron scattering: this will provide the direct evidence of any magnetic

ordering in the material.

• As mentioned in the introduction section in Chapter 5, there is a metamagnetic tran-

sition at magnetic field of about 9 T. In such a high quality sample as the one we

currently have, it would be possible to observe the quantum oscillation close to the

meta magnetic transition. This would also be a great opportunity to study the quantum

oscillatory phenomena in correlated insulating state.
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Ambient Pressure Quantum Critical Point YFe2Ge2

In this project, we have successfully answered the origin of the unusual power-law exponent

in normal state resistivity of YFe2Ge2. The suppression of superconductivity and the recovery

of Fermi liquid led us to the interpretation that YFe2Ge2 is located right at the quantum

critical point at ambient pressure. The fact that YFe2Ge2 is in non-Fermi liquid state above

quantum critical point would allow us to do definitive studies on the quantum oscillatory

phenomena in non-Fermi liquid state. This study was not possible before because (1) to

access the non-Fermi liquid state, we need to do doping or applying pressure to a sample.

This will cause impurity or inhomogeneity to a sample. which will smear out any possible

quantum oscillation. (2) YFe2Ge2 is our in-house grown sample, which is now possible to

grow a single crystal with residual resistivity ratio of above 600. This means that it would be

possible to observe the quantum oscillation at very low enough field, where we are still in

the non-Fermi liquid state. Therefore, the quantum oscillation study in the non-Fermi liquid

state in YFe2Ge2 would give us the opportunity to understand the microscopic physics of

non-Fermi liquid for the first time.

Furthermore, the experiment to prove the quantum criticality in YFe2Ge2 is the uniaxial

strain experiment. The quantum criticality without quantum tuning is observed in very few

materials such as YbAlB4 [104], which is still currently under debates. Therefore, it would

also be a good opportunity to have another material that exhibits similar behaviour to extend

our understanding.

Further Studies of High-Pressure Phase in PdCrO2

As PdCrO2 has an unusual antiferromagnetic ordering at low temperature with two-dimensional

in nature, it would be possible to have superconductivity emerges from a point where antifer-

romagnetic ordering is completely suppressed. However, as the antiferromagnetic transition

temperature only changes slightly up to 75 kbar of pressure, the required pressure to sup-

pressed the antiferromagnetic ordering might be much higher than 100 kbar. Some possible

future experiments are:

• High-pressure resistivity measurement using better pressure medium (e.g. ethanol-

methanol mixture or a noble gas such as argon). This will allow us to track the

antiferromagnetic transition at high pressure
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• High-pressure AC susceptibility: it is easier to go to high pressure in AC susceptibility

then in resistivity. This will allow us to investigate any possibility of superconductivity

at higher pressure.
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