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Abstract

We present a new mechanistic, phase field-based formulation for predicting

hydrogen embrittlement. The multi-physics model developed incorporates,

for the first time, a Taylor-based dislocation model to resolve the mechanics

of crack tip deformation. This enables capturing the role of dislocation hard-

ening mechanisms in elevating the tensile stress, hydrogen concentration and

dislocation trap density within tens of microns ahead of the crack tip. The

constitutive strain gradient plasticity model employed is coupled to a phase

field formulation, to simulate the fracture process, and to a multi-trap hy-

drogen transport model. The analysis of stationary and propagating cracks

reveals that the modelling framework presented is capable of adequately cap-

turing the sensitivity to the hydrogen concentration, the loading rate, the ma-

terial strength and the plastic length scale. In addition, model predictions

are compared to experimental data of notch tensile strength versus hydro-

gen content on a high-strength steel; a very good agreement is attained. We

define and implement both atomistic-based and phenomenological hydrogen
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degradation laws and discuss similarities, differences and implications for the

development of parameter-free hydrogen embrittlement models.
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1. Introduction

The ingress of hydrogen into a metal is known to cause a dramatic

reduction in material strength, ductility, toughness and fatigue resistance

(Gangloff, 2003). This phenomenon, referred to as hydrogen embrittlement,

has attracted the attention of the material science and solid mechanics com-

munities for decades due to its important technological implications and the

scientific challenges inherent to its complex chemo-micromechanical nature

(Djukic et al., 2019). Moreover, the problem has come very much to the fore

in recent years as a consequence of the higher susceptibility of new, high-

strength alloys, and because of the promise that hydrogen holds as a future

energy carrier, requiring the development of suitable structures for hydrogen

storage and transport (Gangloff and Somerday, 2012; Paxton et al., 2017).

A notable effort has been devoted to the development of multi-physics

models for predicting hydrogen assisted failures; despite the complexity of un-

derstanding and reproducing the underlying mechanisms, which span multi-

ple scales and can vary significantly from one material to another (Dadfarnia et al.,

2010; Harris et al., 2018; Lynch, 2019; Shishvan et al., 2020; Kristensen et al.,

2020a). A wide variety of continuum-like models have been presented to pre-
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dict and couple the multiple elements of this phenomenon: the deformation

of the solid, the uptake and diffusion of hydrogen through the crystal lat-

tice, and the resulting hydrogen assisted damage. The constitutive behaviour

of the solid is typically characterised by using conventional von Mises plas-

ticity theory, occasionally incorporating the effects of hydrogen-induced di-

latation (Lufrano et al., 1998) and hydrogen-induced softening (Dı́az et al.,

2016). Recently, there has been a growing interest in enriching the consti-

tutive behaviour using strain gradient plasticity, so as to provide a more

accurate description of crack tip fields by incorporating the influence of

Geometrically Necessary Dislocations (GNDs) and plastic strain gradients

(Mart́ınez-Pañeda et al., 2016; Kumar and Mahajan, 2020). In regard to

hydrogen transport, models based on Fickian diffusion have been devel-

oped to capture bulk transport (Van Leeuwen, 1974), and subsequently ex-

tended to capture stress-assisted diffusion and the role of microstructural

traps in retaining hydrogen. These models take as primal kinematic variable

either the lattice hydrogen concentration (Sofronis and McMeeking, 1989;

Barrera et al., 2016; Fernández-Sousa et al., 2020) or the chemical potential

(Di Leo and Anand, 2013; Elmukashfi et al., 2020). In addition, generalised

boundary conditions have been proposed to resolve the electrochemical-diffusion

interface (Mart́ınez-Pañeda et al., 2020a), in a first step to quantifying not

only hydrogen diffusion but also ingress (Kehler and Scully, 2008). Finally,

coupled deformation-diffusion models have been extended to explicitly pre-

dict hydrogen-assisted crack initiation and growth. The vast majority of

these models are based on the concept of a fracture process zone, with

hydrogen degrading the fracture energy of the solid. The most popular
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methodology has arguably been the use of cohesive zone models; see, e.g.,

(Serebrinsky et al., 2004; Yu et al., 2016; del Busto et al., 2017) and Refs.

therein. However, phase field fracture models have recently been proposed

to overcome the limitations intrinsic to cohesive zone formulations and other

discrete methods. The phase field has emerged as a promising variational

tool for fracture; enabling capturing - on the original finite element mesh

and in arbitrary geometries and dimensions - complex cracking phenomena

such as crack nucleation, branching, kinking or merging (Bourdin et al., 2000;

Duda et al., 2015; Miehe et al., 2016; Kristensen and Mart́ınez-Pañeda, 2020;

Simoes and Mart́ınez-Pañeda, 2021). This success has recently been ex-

tended to hydrogen embrittlement, with multi-physics phase field fracture

formulations quickly gaining traction, and demonstrating their ability to re-

produce experimental results and predict failures in service conditions (Mart́ınez-Pañeda et al.,

2018; Duda et al., 2018; Mart́ınez-Pañeda et al., 2020b; Wu et al., 2020a;

Kristensen et al., 2020b).

In this work, we present a new phase field-based formulation for hydro-

gen assisted cracking. The model incorporates, for the first time, the in-

fluence of hydrogen traps in a phase field framework. Multiple trap types

are considered, capturing their influence on diffusion and fracture. More-

over, phase field fracture is coupled with a mechanism-based strain gradi-

ent plasticity model, also for the first time. This is of notable importance

as it provides an enriched description of crack tip fields over the critical

length scale for hydrogen damage. Consider for example the fracture experi-

ments on Monel K500 reported in (Mart́ınez-Pañeda et al., 2016); the crack
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growth rate in stage II (da/dtII), where cracking is intermittent and da/dt is

constant (diffusion-controlled), is on the order of 0.04 µm/s for three repli-

cate experiments under an applied potential of EA = −1000 mVSCE. Given

that the diffusion distance can be approximated as d = 2
√
Dt, with Monel

K500 having a diffusion coefficient D = 0.01 µm2/s, this results in a criti-

cal distance of xcrit ∼ 1 µm. It is well known that conventional continuum

models fail to capture the dislocation hardening mechanisms governing ma-

terial deformation at the micro-scale. Of particular relevance to cracks in

engineering components is the flow stress elevation associated with plastic

strain gradients and large dislocation densities, as measured under simi-

lar conditions using indentation or a plethora of micro-scale experiments;

from micro-torsion to constrained shear of thin films (Fleck et al., 1994;

Tvergaard and Niordson, 2004; Gurtin and Anand, 2005; Mu et al., 2014;

Voyiadjis and Song, 2019). The plastic zone adjacent to the crack tip is

physically small and contains large gradients of plastic strain, leading to lo-

cal strengthening and a stress elevation that can have important implications

for hydrogen embrittlement, given the exponential dependence of the hydro-

gen concentration on hydrostatic stresses and the central role that crack tip

stresses play in triggering interface decohesion (Wei and Hutchinson, 1997;

Wei and Xu, 2005; Komaragiri et al., 2008; Mart́ınez-Pañeda and Betegón,

2015; Mart́ınez-Pañeda and Niordson, 2016). In addition, the dislocation

trap density near the crack tip could be larger than that predicted by con-

ventional continuum theories, due to the GNDs contribution. These features

are captured here by means of a formulation based on Taylor (1938) disloca-

tion density model.
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The remainder of this paper is organised as follows. In Section 2 we

present our theoretical framework. Then, the finite element implementa-

tion is described in Section 3. Representative numerical results are shown in

Section 4. First, a boundary layer model is used to gain insight into crack

initiation and growth under small scale yielding conditions. Secondly, we

compare the predictions of our model with experiments conducted on high-

strength alloys exposed to hydrogenous environments. Concluding remarks

end the paper in Section 5.

Notation. We use lightface italic letters for scalars, e.g. φ, upright bold

letters for vectors, e.g. u, and bold italic letters, such as σ, for second and

higher order tensors. Inner products are denoted by a number of vertically

stacked dots, corresponding to the number of indices over which summation

takes place, such that σ : ε = σijεij, with indices referring to a Cartesian

coordinate system. The gradient and the Laplacian are respectively denoted

by ∇u = ui,j and ∆φ = φ,ii. Finally, divergence is denoted by ∇ · σ = σij,j,

the trace of a second order tensor is written as tr ε = εii, and the deviatoric

part of a tensor is written as σ′ = σij − δijσkk/3, with δij denoting the

Kronecker delta.

2. Theory

In this section, we formulate our theory, which couples deformation, frac-

ture and hydrogen transport in strain gradient plasticity solids. The theory

refers to the response of a body occupying an arbitrary domain Ω ⊂ IRn
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(n ∈ [1, 2, 3]), with external boundary ∂Ω ⊂ IRn−1, on which the outwards

unit normal is denoted as n. In the following, we restrict our attention to

isothermal conditions and isotropic solids.

2.1. Kinematics

We shall now discuss the independent fields that will be used to describe

the kinematical structure of Ω. In regard to the deformation of the solid, the

motion of a material point x at a time t is characterised by a displacement

vector field u(x, t). Such that, assuming a small strain formulation, the local

deformation is determined by the infinitesimal strain tensor field ε; given by

ε =
1

2

(

∇uT +∇u
)

. (1)

Our constitutive theory considers both elastic and plastic strains, adopt-

ing the standard partition:

ε = εe + εp . (2)

The nucleation and growth of cracks are described by means of a phase

field variable, or order parameter, φ(x, t) ∈ [0, 1]. Following standard damage

mechanics arguments, the phase field equals φ = 0 for intact material and

φ = 1 for fractured material points. Using a phase field auxiliary variable

to implicitly track interfaces has opened new horizons in the modelling of

fracture (Wu et al., 2020b), microstructural evolution (Provatas and Elder,

2011), and metal corrosion (Cui et al., 2021). Here, in the context of fracture,

the phase field variable must grow monotonically,

φ̇(x, t) ≥ 0, (3)
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so as to ensure that the microstructural changes associated with damage are

irreversible.

In addition, we consider the changes in composition of material points in

Ω. The presence of guest hydrogen atoms in a host metallic lattice is charac-

terised by the hydrogen concentration C(x, t). Here, C(x, t) denotes the total

number of moles of hydrogen atoms per unit reference volume. Even though

mass concentration is the sought variable, the thermodynamic driving force

for diffusion is the chemical potential gradient ∇µ. As in Duda et al. (2018),

we define a scalar field η(x, t) to determine the kinematics of composition

changes, such that

η̇ = µ and η(x, t) =

∫ t

0

µ(x, t) dt . (4)

2.2. Principle of virtual work. Balance of forces

We shall now derive the balance equations for the coupled system using

the principle of virtual work. Consider the three-field boundary value prob-

lem resulting from the primal kinematic variables described before: u, φ, and

η. The Cauchy stress σ is introduced, which is work conjugate to the strain

tensor ε. Correspondingly, for an outwards unit normal n on the boundary

∂Ω of the solid, a vector traction T is defined, which is work conjugate to

the displacement field u. The damage response involves a scalar stress-like

quantity ω, which is work conjugate to the phase field φ, and a phase field

micro-stress vector ξ that is work conjugate to the gradient of the phase field

∇φ. The phase field is assumed to be driven by the displacement problem

alone; i.e., no external traction is associated with φ. In regard to the mass
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transport, the surface flux is denoted by J, and accordingly, a concentration

flux entering the body across ∂Ω can be defined as q = J · n. Then, making

use of three virtual fields (δu, δφ, δη), the principle of virtual work for the

coupled system reads,
∫

Ω

(

σ : δε+ ω δφ+ ξ · ∇δφ− Ċ δη + J · ∇δη
)

dV =

∫

∂Ω

(q δη +T · δu) dS
(5)

The principle of virtual work must hold for an arbitrary domain Ω and

for any kinematically admissible variations of the virtual quantities. Thus,

by making use of Gauss’s divergence theorem, the local force balances are

obtained as:

∇ · σ = 0

∇ · ξ− ω = 0

Ċ +∇ · J = 0

in Ω, (6)

with natural boundary conditions:

σ · n = T

ξ · n = 0

q = J · n

on ∂Ω. (7)

2.3. Energy imbalance

We shall now impose the first and second laws of thermodynamics through

an energy imbalance. The first two laws of thermodynamics for a continuum

body within a dynamical process of specific internal energy E and specific

entropy Λ read (Gurtin et al., 2010),

d

dt

∫

Ω

E dV = Ẇe (Ω)−
∫

∂Ω

Q · n dS +

∫

Ω

Q dV

d

dt

∫

Ω

Λ dV > −
∫

∂Ω

Q

T
· n dS +

∫

Ω

Q

T
dV .

(8)
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Here, Ẇe is the power of external work, Q is the heat flux, and Q is the heat

absorption. The thermodynamic laws in the presence of species transport

require that the temporal increase in free energy of any part Ω is less than

or equal to the power expended on Ω plus the flux of energy carried into Ω

through its boundary ∂Ω by the diffusing species (see Anand et al., 2019).

Denoting ψ as the free energy per unit reference volume, this constraint takes

the form of the following free energy imbalance,

d

dt

∫

Ω

ψ dV ≤
∫

∂Ω

Ẇe dS +

∫

∂Ω

µJ · n dS . (9)

Consider now the local balance equations and recall that the external

work is given by the right-hand side of (5). Applying the divergence theorem

to the last term in (9), considering the strain partitioning (2) and replacing

virtual fields (δa) by realisable velocity fields (ȧ), one reaches:

∫

Ω

[

ψ̇ −
(

σ : ε̇e + q : ε̇p + ωφ̇+ ξ · ∇φ̇
)

+ µĊ − J · ∇µ
]

dV ≤ 0 , (10)

where a plastic micro-stress tensor q has been defined (work-conjugate to

εp). Since (10) must hold for any volume Ω, it follows that it must also hold

in a local fashion, such that the local free-energy imbalance reads,

ψ̇ − σ : ε̇− ωφ̇− ξ · ∇φ̇+ µĊ − J · ∇µ ≤ 0 . (11)

Accordingly, appropriate constitutive relations must be considered in or-

der to fulfil the following imbalance:

(

σ − ∂ψ

∂εe

)

: ε̇e +

(

q − ∂ψ

∂εp

)

: ε̇p +

(

ω − ∂ψ

∂φ

)

φ̇+

(

ξ− ∂ψ

∂∇φ

)

· ∇φ̇

−
[(

µ− ∂ψ

∂C

)

Ċ − J · ∇µ
]

≥ 0, (12)
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2.4. Constitutive theory

We shall now proceed to develop a constitutive theory for the coupled

deformation-diffusion-fracture problem that is consistent with the free energy

imbalance, Eq. (12).

2.4.1. Mechanism-based elasto-plasticity

We start by outlining the constitutive choices that characterise the mi-

crostructural changes leading to plasticity and fracture. First, the influence

of damage into the mechanical deformation of the body is captured by defin-

ing a deformation free energy that decreases with the phase field variable φ.

Specifically, the following quadratic degradation function is chosen:

g (φ) = (1− φ)2 . (13)

Thus, the relation between the Cauchy stress tensor σ and the undamaged

stress tensor σ0 follows immediately. Omitting the negligible role of lattice

dilation (Hirth, 1980) and consistent with (12), the stress tensor is given by

σ =
∂ψ

∂εe
= (1− φ)2 σ0 = (1− φ)2Ce : εe = (1− φ)2C : ε , (14)

where Ce denotes the elastic stiffness tensor and C is the consistent elastic-

plastic material Jacobian. As discussed in the introduction, the latter is

defined in a suitable manner to capture the important role that dislocation

hardening mechanisms associated with GNDs and plastic strain gradients

play on crack tip mechanics. For this, a mechanism-based formulation is de-

veloped, grounded on Taylor (1938) dislocation model (Huang et al., 2004;

Liu et al., 2005).
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Considering Taylor (1938) model as underlying principle, the shear flow

stress τ is formulated in terms of the dislocation density ρ as

τ = αGb
√
ρ , (15)

where α is an empirical coefficient taking values between 0.3 and 0.5, G

denotes the shear modulus, and b corresponds to the Burger’s vector. The

dislocation density can be additively decomposed into the sum of the density

of statistically stored dislocations (SSDs) ρS, which trap each other in a

random way, and the density of geometrically necessary dislocations (GNDs)

ρG, which are required for the compatible deformation of the crystal. Hence,

ρ = ρS + ρG . (16)

The GND density ρG is related to the effective plastic strain gradient ηp by:

ρG = r
ηp

b
, (17)

where r is the Nye-factor, which is assumed to be approximately 1.90 (Arsenlis and Parks,

1999; Shi et al., 2004). Following Fleck and Hutchinson (1997), three quadratic

invariants of the plastic strain gradient tensor are used to represent the ef-

fective plastic strain gradient ηp as

ηp =
(

c1η
p
iikη

p
jjk + c2η

p
ijkη

p
ijk + c3η

p
ijkη

p
kji

)1/2
. (18)

The coefficients have been determined to be equal to c1 = 0, c2 = 1/4 and

c3 = 0 from three dislocation models for bending, torsion and void growth

(Gao et al., 1999), leading to

ηp =
1

2
(ηpηp)1/2 , (19)
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where the components of the strain gradient tensor are obtained by ηpijk =

εpik,j+ ε
p
jk,i−ε

p
ij,k. The tensile flow stress σf is related to the shear flow stress

τ through the Taylor factor M , such that

σf =Mτ =MαGb
√
ρ . (20)

This linear dependence of the square of plastic flow stress on strain gra-

dients, resulting from Taylor (1938) dislocation model, is intrinsic to the

mechanism-based strain gradient (MSG) plasticity theory and is grounded

on the nano-indentation experiments by Nix and Gao (1998). Rearranging

Eqs. (15-17) and substituting into (20), the flow stress can be re-formulated

as

σf =MαGb

√

ρS + r
ηp

b
. (21)

The SSD density ρS can be determined from (21) knowing the relation in

uniaxial tension between the flow stress and the material stress-strain curve

as follows

ρS =

(

σreff(ε
p)

MαGb

)2

(22)

Here, σref is a reference stress and f is a non-dimensional function of the

equivalent plastic strain εp, as given from the uniaxial stress-strain curve.

Substituting back into (21), σf yields:

σf = σref

√

f 2(εp) + Lpηp (23)

where Lp is the intrinsic plastic material length. It can be readily seen that

conventional von Mises plasticity is recovered if Lp = 0 or if the gradient-

related term Lpη
p becomes negligible relative to the characteristic length of

plastic deformation. Also, we emphasise that the theory is intended to model
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a collective behaviour of dislocations, implying that it is only applicable at

a much larger scale than the average dislocation spacing; i.e. distances of

100 nm or larger. This is also the scale over which the differences between

higher order and lower order versions of mechanism-based strain gradient

plasticity are relevant (Shi et al., 2001). I.e., identical results are expected

over the regime where continuum models are applicable - a distance of 100

nm or larger ahead of the crack tip. Thus, we choose to adopt a lower order

formulation by using a viscoplastic approach, following Huang et al. (2004).

The purpose is to overcome the need for higher order stresses by constructing

a self-contained model through the viscoplastic relation between ε̇p and the

effective von Mises stress σe. To mimic a rate-independent response, we use

the viscoplastic-limit approach by Kok et al. (2002), which entails replacing

the reference strain rate ε̇0 with the effective strain rate ε̇. Accordingly, the

effective plastic strain rate is defined as,

ε̇p = ε̇

[

σe

σref
√

f 2 (εp) + Lpηp

]m

, (24)

where m is the strain rate sensitivity exponent; values larger than 5 provide

a response similar to that of rate-independent solids, with no differences

being observed for m ≥ 20 (Huang et al., 2004). A value of m = 20 is

adopted in this work. The consistent material Jacobian is then given by

(Mart́ınez-Pañeda et al., 2017; Qu et al., 2004),

σ0 = Ktr (ε̇) δ + 2µ

{

ε̇′ − 3ε̇

2σe

[

σe

σref
√

f 2 (εp) + Lpηp

]m}

. (25)

Here, K is the bulk modulus and δ is the Kronecker delta. Finally, the plastic
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hardening behaviour is given by the following isotropic hardening power law:

σ = σY

(

1 +
Eεp

σY

)N

(26)

where N is the strain hardening exponent (0 ≤ N ≤ 1). Accordingly,

σref = σY (E/σY )
N and f(εp) = (εp + σY /E)

N . The mechanical constitu-

tive response of the solid is then completely characterised by the damage

degradation function (13), the Cauchy stress definition (14) and the consis-

tent material Jacobian (25).

2.4.2. Hydrogen-sensitive phase field damage

We proceed to describe the fracturing process by following and extending

the phase field model for hydrogen embrittlement developed by Mart́ınez-Pañeda et al.

(2018). The idea is to approximate the fracture energy density ψf over a dis-

continuous surface Γ by using a smooth and continuous auxiliary (phase) field

that smears the crack. The model is non-local and involves as a consequence a

phase field length scale ℓ, which governs the smearing of the crack. It has been

shown using Gamma-convergence that the regularised fracture energy con-

verges to the original form for a vanishing value of ℓ (Bellettini and Coscia,

1994; Chambolle, 2004). Accordingly, for a material of toughness Gc,

ψf =

∫

Γ

Gc dS ≈
∫

Ω

Gcγ (φ, ∇φ) dV . (27)

Here, γ is the crack density functional, which is here chosen to be:

γ (φ, ∇φ) = φ2

2ℓ
+
ℓ

2
|∇φ|2 . (28)

This phase field approximation circumvents the need to track discrete

crack surfaces, enabling the modelling of complex fracture phenomena (see,
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e.g., McAuliffe and Waisman, 2015; Hirshikesh et al., 2019; Quintanas-Corominas et al.,

2020).

Hydrogen comes into the picture by degrading the toughness of the solid,

as consistently observed in laboratory experiments (Gangloff, 2003). The

specific degradation law can be chosen in a phenomenological manner or

by establishing a connection with the underlying physical micromechanisms.

Both options will be explored here. In its most general form, the evolution

of the critical fracture energy can be given by,

Gc(C) = f (C)Gc(0) , (29)

where f (C) is a hydrogen degradation function. In this work, the focus will

be on alloys that exhibit intergranular fracture in the presence of hydrogen.

Thus, we enrich (29) by defining f(C) to be a function of the hydrogen

trapped at the grain boundaries, as predicted by the multi-trap hydrogen

transport model described below.

It remains to define the constitutive relations for the micro-stress variables

work conjugate to the phase field and the phase field gradient. Denoting by

ψb the bulk strain energy density of the solid, the scalar micro-stress ω is

given by,

ω =
∂ψ

∂φ
= −2(1 − φ)ψb +Gc(C)

φ

ℓ
. (30)

Likewise, the phase field micro-stress vector ξ reads:

ξ =
∂ψ

∂∇φ = Gc(C) ℓ∇φ. (31)
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Accordingly, the phase field local balance (6c) can be re-formulated by

considering the constitutive choices (30) and (31). Assuming a zero con-

centration gradient along the small region where ∇φ 6= 0, the phase field

evolution equation reads:

Gc(C)

(

φ

ℓ
− ℓ∇2φ

)

− 2(1− φ)ψb = 0 . (32)

Fracture is assumed to be driven by the bulk strain energy density of the

solid, which is here defined as the summation of the elastic and plastic strain

energy densities:

ψb = ψe + ψp =
1

2
εe : Ce : εe +

∫ t

0

(σ : ε̇p) dt . (33)

where Ce is the linear elastic stiffness matrix. Thus, both elastic and plastic

strain energy densities contribute on an equal footing to the fracture pro-

cess, as in e.g. (Miehe et al., 2016; Mart́ınez-Pañeda et al., 2020b). Other

approaches have also been proposed, including a driving force for fracture

based purely on the elastic stored energy (Duda et al., 2015, 2018) or the

consideration of elastic and plastic energies with a different weighting (see,

e.g., Borden et al., 2016; You et al., 2021). A physically-sound choice is not

straightforward as it is unclear to what extent a Griffith-type energy balance

applies to ductile fracture (Hutchinson, 1983; Orowan, 1948).

2.4.3. A multi-trap model for hydrogen transport

Our theory deals with the dilute transport of hydrogen in metals. Hydro-

gen atoms occupy normal interstitial lattice sites (NILS) and can addition-

ally reside at trapping sites such as interfaces or dislocations. We adopt the

common assumptions of the literature (see, e.g., Di Leo and Anand, 2013;
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Sofronis and McMeeking, 1989) and base our modelling on the equilibrium

theory presented by Oriani (Oriani and Josephic, 1974). The subscript L

refers to lattice sites and the subscript T to trap sites. Superscripts are used

to denote the different trap sites. It is assumed that traps are isolated (i.e.,

do not form an extended network). Hence, hydrogen transport between trap

sites is by lattice diffusion.

The hydrogen concentration in lattice sites is given by,

CL = NLβ θL (34)

where NL is the density of the host metal lattice measured in solvent atoms

per unit volume, β is the number of interstitial sites per atom, and θL is

the lattice occupancy fraction (0 ≤ θL ≤ 1). The number of interstitial

sites per solvent atom β is typically taken to be equal to 6 for bcc met-

als, as indirect evidence suggests that tetrahedral site occupancy is favoured

relative to octahedral site occupancy at room temperature (Hirth, 1980;

Kiuchi and McLellan, 1983). For fcc lattices, β = 1 is usually assumed,

resulting from the more favourable octahedral site occupancy. The density

of solvent atoms is a function of the molar volume of the host lattice VM and

Avogadro’s number NA as,

NL =
NA

VM
=
NAρM
MM

, (35)

where ρM is the density and MM is the molar mass. In the case of iron at

293 K, the density equals ρM = 7.87 × 103 kg/m3 and the atomic weight

MM = 55.8× 10−3 kg/mol; this implies NL = 8.46× 1028 sites/m3.
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Hydrogen can also be retained at so-call hydrogen traps. These are typ-

ically microstructural defects such as dislocations, grain boundaries, voids,

carbides and interfaces. These traps can be reversible or irreversible, and

can also be classified as saturable or unsaturable. Reversible traps are those

that can immobilize and release hydrogen while irreversible traps are those

that absorb hydrogen and prevent it from escaping. However, one should

note that the term irreversible is not fundamentally correct but rather prag-

matic, as leakage can always take place for a sufficiently long timescale or a

sufficiently high temperature (Turnbull, 2015). Multiple trap types are con-

sidered here - the hydrogen concentration in the ith type of trapping site can

be defined as:

C
(i)
T = θ

(i)
T α

(i)N
(i)
T (36)

where NT is the trap density, α is the number of atom sites per trap and

θT is the fraction of occupied trapping sites. Hence, αNT is the number of

trapping sites per unit volume. We choose to adopt α = 1 and use apparent

binding energies. The total hydrogen concentration is, therefore, the sum of

the lattice hydrogen concentration and the concentration at each of the trap

types considered:

C = CL +
n
∑

i

C
(i)
T . (37)

where n is the total number of trap types.

The relation between the lattice and trapped hydrogen concentrations

is assumed here following Oriani’s equilibrium theory (Oriani and Josephic,

1974). Thus, there is a Fermi-Dirac relation between the occupancy of the
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ith type of trapping sites and the fraction of occupied lattice sites

θ
(i)
T

1− θ
(i)
T

=
θL

1− θL
K(i) , (38)

with K(i) being the equilibrium constant for the ith type of trap, given by

K(i) = exp

(

−W (i)
B

RT

)

. (39)

Here, R is the gas constant, T is the absolute temperature, and WB is the

binding energy - an inherently negative quantity that quantifies the energy

required for a hydrogen atom to escape a trap site and move into a lattice

site. In many alloys, especially in bcc lattices, conditions of low occupancy

θL << 1 are usually assumed, such that

θL
1− θL

≈ θL (40)

Considering (34), (36) and (38), then the relation between the lattice and

trapped concentration is established as,

C
(i)
T =

K(i)α(i)N
(i)
T

βNL + (K(i) − 1)CL

CL (41)

Mass diffusion is driven by gradients of chemical potential ∇µ. The mass

flux is related to ∇µ through a linear Onsager relation, grounded on Ein-

stein’s equation of diffusion. Accordingly, for a material with a diffusion

coefficient D, the flux reads

J = − D

RT
CL∇µ . (42)

Thus, hydrogen atoms migrate from regions of high chemical potential to

regions of low chemical potential. Note that, for simplicity, the L subscript
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is omitted from J and µ but both are related to the transport of hydrogen

between interstitial lattice sites. The chemical potential is defined as,

µ = µ0 +RT ln
θL

1− θL
− V̄HσH , (43)

where µ0 denotes the chemical potential in the standard state, σH is the

hydrostatic stress, and V̄H is the partial molar volume of hydrogen in solid

solution (V̄H = 2000 mm3/mol for iron-based materials). As evident from

(43), the role of hydrostatic tensile stresses (volumetric strains) is to lower

the chemical potential, increasing the hydrogen solubility in the lattice as a

result of lattice dilatation.

Substituting (43) into (42) and adopting the common approximation of

a constant interstitial sites concentration (∇NL = 0) gives:

J = −D∇CL +
D

RT
CLV̄H∇σH (44)

Fluxes, due to the chemical potential gradient, and hydrogen concentra-

tions are related through the requirement of mass conservation:

d

dt

∫

V

C dV +

∫

S

J · n dS = 0 (45)

Exploiting Oriani’s equilibrium, an effective diffusion coefficient De can

be defined for a multi-trap system, such that the D/De ratio reads,

D

De
= 1 +

∑

i

∂C
(i)
T

∂CL
= 1 +

∑

i

(

K(i)α(i)N
(i)
T / (βNL)

[1 + (K(i) − 1)CL/ (βNL)]
2

)

(46)

Now, consider Eqs. (37), and (44)-(46). Making use of the divergence

theorem and noting that (45) must hold for any arbitrary volume, the local
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mass balance can be derived as,

D

De

∂CL

∂t
= D∇2CL −∇

(

DCL

RT
V̄H∇σH

)

. (47)

It remains to define a constitutive choice for the trap density N
(i)
T . The

trap density is often a material property that remains constant throughout

the analysis, as it is the case for traps such as carbides or grain bound-

aries. However, dislocation traps evolve with mechanical loading and thus a

constitutive law must be defined for N
(d)
T . We build upon the Taylor-based

formulation presented above to establish an evolution law for N
(d)
T in terms

of the total dislocation density ρ, including both contributions from SSDs

and GNDs. By assuming one trap site per atomic plane threaded by a dislo-

cation, the following relation between the dislocation density ρ and the trap

site density N
(d)
T can be identified:

N
(d)
T =

1

b
ρ (48)

where the pre-factor is the inverse of the Burgers vector, as slip occurs along

the plane of the shortest Burgers vector. The total dislocation density can be

computed from Eqs. (16), (17) and (22). Denoting a the lattice parameter,

the Burgers vector is given by b =
√
2/a = 0.2555 nm for fcc metals, as slip

occurs along the closed packed plane 111 and slip direction 〈1̄10〉. For bcc

metals b = 2/(
√
3a) = 0.2725 nm, as slip is assumed to occur along the {110}

plane and 〈111〉 direction. The reader is referred to, e.g., (Davey, 1925) for

a list of lattice constants for various metals.
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3. Numerical implementation

We shall now describe the numerical implementation of our coupled the-

ory, in the context of the finite element method. First, the elastic strain

energy density is decomposed to prevent the evolution of damage under com-

pressive loading (Section 3.1). Secondly, in Section 3.2, a history field is de-

fined to prevent phase field damage reversibility. Finally, in Section 3.3, we

address the discretisation of the weak formulation of our theory and formulate

the residuals and the stiffness matrices. The implementation is conducted

within an Abaqus user-element (UEL) subroutine, with the pre-processing

of the input files carried out using Abaqus2Matlab (Papazafeiropoulos et al.,

2017).

3.1. Addressing damage in compression and crack interpenetration

Several formulations have been proposed to effectively decompose the

elastic fracture driving force into tension and compression components, so

as to prevent the nucleation of cracks under compressive stresses. Here, we

follow the spherical/deviatoric split proposed by Amor et al. (2009). Thus,

in a solid with Lame’s first parameter λ, the elastic strain energy density can

be decomposed as ψe = ψe
+ + ψe

−
, with

ψe
+ =

1

2

(

λ+
2

3
G

)

〈tr εe〉2+ +G |εe′ |2

ψe
−
=

1

2

(

λ+
2

3
G

)

〈tr εe〉2
−
,

(49)

and only ψe
+ contributing to damage. Here, 〈〉 denotes the Macaulay brack-

ets. The strain energy decomposition is implemented by means of a hybrid

approach, following Ambati et al. (2015). This implies that the split of the
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elastic strain energy density is incorporated into the phase field force balance

but not considered in the balance of linear momentum. In addition, crack in-

terpenetration is prevented by adding the following constraint (Ambati et al.,

2015)

φ = 0 if ψe
+ < ψe

−
. (50)

3.2. Damage irreversibility

Additional numerical restrictions are needed to ensure damage irreversibil-

ity, Eq. (3). These constraints are restricted to the evolution of the elastic

strain energy density, as it is assumed that the effective plastic work is mono-

tonically increasing. We follow Miehe et al. (2010) and introduce a history

variable field H. To ensure irreversible growth of the phase field variable, the

history field must satisfy the Kuhn-Tucker conditions:

ψe
+ −H ≤ 0 , Ḣ ≤ 0 , Ḣ

(

ψe
+ −H

)

= 0 (51)

Thus, for a total time tt, the history variable at time t corresponds to the

maximum value of ψe
+, i.e.:

H = max
t∈[0,tt]

ψe
+(t). (52)

3.3. Finite element discretisation

We proceed now to describe the finite element discretisation and the for-

mulation of the residuals and stiffness matrices. Our numerical implemen-

tation uses as nodal unknowns the following fields: displacement u, phase

field φ, and lattice hydrogen concentration CL. We derive the weak form

of the balance equation for each of these fields considering the constitutive

choices outlined in Section 2. Neither body forces nor external tractions are
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considered, for simplicity. Thus, recalling (5) and (13), the weak form for

the mechanical problem reads,

∫

Ω

{[

(1− φ)2 + k
]

σ0 : δε
}

dV = 0 . (53)

where k is a small positive-valued constant that is introduced to prevent ill-

conditioning when φ = 1; a value of k = 1 × 10−7 is chosen throughout this

study. Regarding the phase field, the weak form is derived upon considering

the history field H described above and combining (5) and (32), rendering:

∫

Ω

[

−2(1 − φ)δφH+Gc (C)

(

φ

ℓ
δφ+ ℓ∇φ · ∇δφ

)]

dV = 0 . (54)

Finally, the weak form for the hydrogen transport problem can be readily

obtained by multiplying Eq. (47) by a test function δCL and integrating over

the problem domain, such that:

∫

Ω

[

δCL

(

1

De

dCL

dt

)

+∇δCL∇CL −∇δCL

(

V̄HCL

RT
∇σH

)]

dV = 0 . (55)

Now make use of Voigt notation. The nodal variables for the displacement

field û, the phase field φ̂ and the lattice hydrogen concentration ĈL are

interpolated as:

u =
m
∑

i=1

Niûi, φ =
m
∑

i=1

Niφ̂i, CL =
m
∑

i=1

NiĈLi
. (56)

Here, Ni denotes the shape function associated with node i and Ni is the

shape function matrix, a diagonal matrix with Ni in the diagonal terms. Also,

m is the total number of nodes per element such that, assuming plane strain

conditions, ûi = {ux, uy}T , φ̂i and ĈLi
respectively denote the displacement,

phase field and lattice hydrogen concentration at node i. Consequently, the
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associated gradient quantities can be discretised using the corresponding B-

matrices, containing the derivative of the shape functions, such that:

ε =

m
∑

i=1

Bu

i ûi, ∇φ =

m
∑

i=1

Biφ̂i, ∇CL =

m
∑

i=1

BiĈLi
. (57)

Considering the discretisation (56)-(57), we derive the residuals for each

primal kinematic variable as:

Ru

i =

∫

Ω

{

[

(1− φ)2 + k
]

(Bu

i )
T
σ0

}

dV , (58)

Rφ
i =

∫

Ω

{

−2 (1− φ)NiH +Gc(C)

[

φ

ℓ
Ni + ℓ (Bi)

T ∇φ
]}

dV , (59)

RCL

i =

∫

Ω

[

Ni

(

1

De

dCL

dt

)

+BT
i ∇CL −BT

i

(

V HCL

RT
∇σH

)]

dV . (60)

The consistent tangent stiffness matrices K, required to complete the

finite element implementation, are obtained by considering the constitutive

relations and differentiating the residuals with respect to the incremental

nodal variables as follows:

Ku

ij =
∂Ru

i

∂uj
=

∫

Ω

{

[

(1− φ)2 + k
]

(Bu

i )
T
CBu

j

}

dV , (61)

K
φ
ij =

∂Rφ
i

∂φj
=

∫

Ω

{(

2H +
Gc (C)

ℓ

)

NiNj +Gc (C) ℓB
T
i Bj

}

dV , (62)

KCL

ij =
∂RCL

i

∂cj
=

∫

Ω

(

NT
i

1

Dedt
Nj +BT

i Bj −BT
i

V H

RT
∇σHNj

)

dV . (63)

The Newton-Raphson method is used to iteratively solve the global finite

element system. A so-called staggered or alternative minimisation solution

scheme is used, following (Miehe et al., 2010; Mart́ınez-Pañeda et al., 2018).

A time sensitivity study is conducted in all computations.
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4. Results

We proceed to demonstrate the potential of the theoretical and compu-

tational framework presented by simulating several boundary value prob-

lems of particular interest. First, in Section 4.1, the boundary layer concept

is exploited to demonstrate that the model can capture the main experi-

mental trends and to gain insight into the interplay between hydrogen and

dislocation-hardening mechanisms. Then, in Section 4.2, model predictions

are benchmarked against experiments conducted on AISI 4135 steel.

4.1. Crack tip mechanics and growth resistance

We shall first investigate the mechanics of stationary and propagating

cracks by considering the fracture of a metallic sample under small scale

yielding conditions. The concept of a boundary layer formulation is illus-

trated in Fig. 1, using as example a Compact Tension specimen. For a

cracked solid, the crack tip stress state is characterised by the stress inten-

sity factor; KI , assuming mode I conditions. The Williams (1957) solution

for a linear elastic solid can be used to relate the displacement field to the

magnitude of KI . Considering a polar coordinate system (r, θ) and a Carte-

sian coordinate system (x, y) centred at the crack tip, with the crack plane

along the negative x-axis, the displacement solution reads:

ui =
KI

E
r1/2fi (θ, ν) , (64)

where the subscript index i equals x or y, and the functions fi (θ, ν) are given

by

fx =
1 + ν√
2π

(3− 4ν − cos θ) cos

(

θ

2

)

(65)
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fy =
1 + ν√

2π
(3− 4ν − cos θ) sin

(

θ

2

)

. (66)

After a mesh-sensitivity analysis, the finite element model is discretised

with approximately 24,000 quadratic, quadrilateral elements with reduced

integration. The mesh is uniformly refined in the vicinity of the crack and

the region of crack extension, such that the fracture process is resolved by

ensuring that the characteristic element length is at least 6 times smaller than

the phase field length scale. In this boundary value problem, the results

obtained are independent from the size of the crack and the radius of the

specimen, as long as these two dimensions are significantly larger than the

plastic zone size, Rp.

Plastic

zone

Figure 1: Boundary layer concept under small scale yielding conditions, illustrated on a

Compact Tension specimen.

We simulate crack initiation and growth in a model steel with Young’s

modulus E = 200 GPa, Poisson’s ratio ν = 0.3, yield stress σY = 600

MPa, and strain hardening exponent N = 0.2. Regarding the mass diffusion

properties, a lattice diffusion coefficient of D = 0.0127 mm2/s is adopted, fol-
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lowing Sofronis and McMeeking (1989). We consider the existence of three

types of traps: dislocations, carbides and grain boundaries. The disloca-

tion trap density N
(d)
T is given by Eq. (48) and the binding energy is as-

sumed to be W
(d)
B = −20.2 kJ/mol (Hirth, 1980). Carbide trap sites are

characterised by a trap density of αN
(c)
T = 8.464× 1017 sites/mm3 (Li et al.,

2004) and a binding energy ofW
(c)
B = −11.5 kJ/mol (Dadfarnia et al., 2011).

Lastly, the trapping characteristics of grain boundaries are given by W
(gb)
B =

−30 kJ/mol (Serebrinsky et al., 2004) and αN
(gb)
T = 8.464× 1013 sites/mm3

(Dadfarnia et al., 2011).

To facilitate interpretation of the crack growth resistance results, we shall

first investigate the behaviour of a stationary crack; i.e., disregarding the

damage part of the formulation. Crack tip fields are shown normalising the

distance ahead of the crack r with Irwin’s estimate of the plastic zone size:

Rp =
1

3π

(

KI

σY

)2

. (67)

The distribution of the tensile stress component σyy is shown in Fig.

2a for both the cases of Lp = 0.03Rp and Lp = 0 (conventional plastic-

ity). It is observed that dislocation hardening mechanisms associated with

plastic strain gradients are negligible far away from the crack tip but be-

come significant within a distance of r/Rp = 0.01. The GND densities re-

sulting from the large gradients of plastic strain present near the crack tip

result in stress levels that are significantly larger than those predicted by

conventional plasticity models (Lp = 0). This is in agreement with expecta-

tions (Mart́ınez-Pañeda and Fleck, 2019). The hydrostatic stress distribution

shows similar differences between gradient-enriched and conventional plastic-
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ity predictions and this leads, in turn, to a larger hydrogen concentration.

The lattice hydrogen concentration ahead of the crack tip is shown in Fig. 2b.

The results have been obtained with a loading rate of K̇I = 0.183 MPa
√
m/s

and by defining an initial hydrogen concentration of C0 = 0.1 wt ppm. The

higher lattice hydrogen concentration predicted in the case of Lp > 0 is not

surprising given the dependence of the lattice hydrogen concentration on the

hydrostatic stress; under steady state conditions, their relation reads:

CL = C0 exp

(

V̄HσH
RT

)

. (68)

Thus, small changes in the hydrostatic stress distribution can lead to signif-

icant differences in the lattice hydrogen concentration.
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Figure 2: Stationary crack tip analysis: (a) tensile stress and (b) lattice hydrogen con-

centration distributions ahead of the crack (r, θ = 0◦). Results are shown for both

mechanism-based strain gradient (MSG) plasticity (Lp/Rp = 0.03) and conventional plas-

ticity (Lp/Rp = 0).

Moreover, the enriched crack tip mechanics description provided by the

31



model captures another interesting effect. While local hardening due to strain

gradients increases crack tip stresses and reduces the degree of plastic dissi-

pation, this does not necessarily translate into a smaller crack tip dislocation

density. The density of Statistically Stored Dislocations (SSDs) ρS diminishes

with increasing Lp/Rp but this is counteracted by the associated increase in

the density of Geometrically Necessary Dislocations (GNDs) ρG. The dis-

tributions of ρG and ρS are shown in Fig. 3. It can be observed that, for

the choice Lp/Rp = 0.03, the density of GNDs ρG becomes larger than the

density of SSDs ρS close to the crack tip. This elevates the total density

close to the crack tip, which has implications for the hydrogen trapped in

dislocations.
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Figure 3: Stationary crack tip analysis: dislocation density distribution (in m−2) ahead of

the crack (r, θ = 0◦). Results are shown for Lp/Rp = 0.03, presenting the distribution of

the GND dislocation density ρG, the SSD dislocation density ρS and the total dislocation

density ρ.

The results shown in Fig. 4, where the concentration of hydrogen trapped

at dislocation sites C
(d)
T is shown for both Lp = 0.03Rp and Lp = 0, reveal

that the consideration of mechanistic, strain gradient plasticity models can

lead to a more significant effect of dislocation trap sites in the vicinity of the

crack, relative to conventional plasticity models. For the binding energies

and trap densities considered here, the hydrogen trapped at dislocation sites

can reach levels of up to 2 wt ppm if the GND contribution to the disloca-

tion trap density is accounted for. In all the coupled deformation-diffusion

studies reported so far, the dislocation density is assumed to be that SSDs

only, neglecting this important contribution (see, e.g., Sofronis et al., 2001
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and references therein). The higher CL levels predicted when Lp > 0 are

also likely contributing to the higher magnitude of C
(d)
T , as a higher trap

occupancy is attained.
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Figure 4: Stationary crack tip analysis: Contours of the trapped hydrogen concentration

at dislocation sites C
(d)
T . Results are shown for both mechanism-based strain gradient

(MSG) plasticity (Lp/Rp = 0.03) and conventional plasticity (Lp/Rp = 0).

Now, let us turn attention to crack propagation. The phase field fracture

formulation for hydrogen embrittlement described in Section 2.4.2 is taken

into consideration. Following (Tvergaard and Hutchinson, 1992; Mart́ınez-Pañeda et al.,

2019), for a material with toughness Gc, a reference stress intensity fracture

for crack initiation can be defined as,

K0 =

(

EGc

1− ν2

)1/2

, (69)

and a reference size of fracture process zone R0 reads

R0 =
1

3π (1− ν2)

EGc

σ2
Y

. (70)
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Thus, the relevant non-dimensional group for the phase field fracture process

is given by ℓ/R0. As discussed extensively in Tanné et al. (2018), the choice

of a positive ℓ > 0+ in the phase field formulation introduces the concept of

a material strength σ̂; e.g., in a one-dimensional setting:

σ̂ =
9

16

√

EGc

3ℓ
(71)

Accordingly, the phase field length scale ℓ not only acts as a regularising pa-

rameter but is attributed a physical meaning. As discussed by Kristensen et al.

(2020a), an analogy can then be drawn with cohesive zone analyses based

on material cohesive strength σ̂. Specifically, combining (70) and (71), one

reaches,
R0

ℓ
=

256

81π (1− ν2)

(

σ̂

σY

)2

. (72)

We shall first examine, in the absence of hydrogen, the role of the non-

dimensional groups Lp/R0 and ℓ/R0 (or σ̂/σY ) in the fracture process. The

results computed for the case of a varying Lp/R0 are shown in Fig. 5. Re-

sults are presented in terms of a normalised remote load KI/K0 versus the

normalised crack extension ∆a/R0. It can be observed that the initiation of

crack growth takes place at KI = K0 (or G = Gc) for all cases, in agreement

with expectations. However, the degree of dissipation is sensitive to the ratio

between the plastic length scale and the fracture process zone. Larger Lp/R0

values translate into a greater influence of plastic strain gradients and this

results in a smaller fracture resistance. Quantitative predictions are thus

sensitive to the capacity of the material to strengthen or harden in the pres-

ence of plastic strain gradients, characterised via Lp, and on the work of

fracture, as given by Gc. Also, this necessarily implies that gradient effects
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have a larger influence in brittle fracture processes, where Gc is small and

consequently Lp/R0 is large.

Figure 5: Influence of the plastic length scale (Lp) on crack growth resistance. Material

properties: σ̂/σy ≈ 6 (ℓ/R0 = 1/40), σy/E = 0.003, ν = 0.3, N = 0.2.

Consider now a fixed Lp/R0 = 40 and vary the ratio of phase field length

scale to fracture process zone size, ℓ/R0. We emphasise that this is equivalent

to varying the material strength σ̂/σY . The results obtained are shown in

Fig. 6. Crack growth resistance diminishes with decreasing σ̂/σY (increasing

ℓ/R0). This agrees with the trends observed in cohesive zone model studies,

36



where a higher crack growth resistance is observed for larger values of the

cohesive strength. The larger the material strength the more plastic dissi-

pation takes place during the crack propagation stage. It is important to

note that brittle interfaces, such as grain boundaries, have strength values

on the order of σ̂/σY ∼ 10 and consequently for brittle fracture to be pre-

dicted two conditions must be met: (i) gradient effects must be considered,

as otherwise the stress elevation is insufficient, and (ii) the magnitude of Gc

has to be small, e.g. through an embrittlement process, so that gradient

effects (Lp/R0) are sufficiently large. In the case of hydrogen embrittlement,

there is a dual contribution of the hydrogen in reducing Gc and the interface

strength σ̂, as shown in atomistic simulations (Van der Ven and Ceder, 2003;

Jiang and Carter, 2004; Alvaro et al., 2015), which enables predicting deco-

hesion of brittle interfaces if GNDs and dislocation hardening are accounted

for. In other words, the combination of strain gradient plasticity, a fracture

process zone approach and a degradation of the toughness with hydrogen

content provides a modern rationale for hydrogen enhanced decohesion.
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Figure 6: Influence of the material strength σ̂/σY (ℓ/R0) on crack growth resistance.

Material properties: σY /E = 0.003, ν = 0.3, N = 0.2, and Lp/R0 = 40.

Now, let us explicitly incorporate the influence of hydrogen. For this, a

constitutive choice for the hydrogen degradation law remains to be made. A

mechanistic, multi-scale approach is adopted for this boundary value prob-

lem. The fracture process is assumed to be intergranular, as observed experi-

mentally in many material systems exposed to hydrogen (see, e.g., Banerji et al.,

1978; Harris et al., 2018; Pouillier et al., 2012), and thus driven by the hydrogen-

assisted decohesion of grain boundaries - the occupancy of grain boundary

trap sites θ
(gb)
T is the quantity of interest. A connection with the atomic
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scale process of grain boundary decohesion is established defining a degrada-

tion law that exhibits the linear decrease in surface energy with increasing

hydrogen coverage observed in atomistic calculations (Alvaro et al., 2015;

Jiang and Carter, 2004):

Gc (θ) =
(

1− χθ
(gb)
T

)

Gc (0) . (73)

The parameter χ is a hydrogen damage coefficient, which can be fitted

to quantitatively reproduce the atomistic results (Mart́ınez-Pañeda et al.,

2018). For example, here we adopt a value of χ = 0.89, which provides a

good fit to the Density Functional Theory data for iron (Jiang and Carter,

2004). The hydrogen transport properties are those described for the station-

ary crack analysis and the loading rate equals K̇I/K0 = 4×10−7 s−1. Samples

are continuously exposed to an environmental hydrogen concentration Cenv

and are exposed to the same environment for a sufficiently long time before

mechanical loading is applied, such that CL = Cenv ∀ x at t = 0. A mov-

ing chemical boundary condition is applied, as in (Mart́ınez-Pañeda et al.,

2020b), to capture how the environment (hydrogen gas or aqueous elec-

trolyte) promptly occupies the space created by crack advance.

The crack growth resistance curves obtained for different hydrogen en-

vironments are shown in Fig. 7. The results show a significant decrease in

the load for crack initiation with increasing hydrogen content; the initiation

of crack growth takes place at KI values lower than hydrogen-free K0 (com-

puted from Gc(0)). Accordingly, the crack growth resistance also diminishes

as the magnitude of Cenv increases. In addition, it is shown that the fracture

of brittle interfaces (σ̂/σy = 10) can occur for hydrogen concentrations as
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low as 0.1 ppm if Lp/R0 = 5.

Figure 7: Effect of the environmental hydrogen concentration on the fracture resistance.

Material properties: σy/E = 0.003, ν = 0.3, N = 0.2, σ̂/σy = 10 (ℓ/R0 = 1/110),

Lp/R0 = 5, D = 0.0127 mm2/s, and χ = 0.89. Loading rate K̇I/K0 = 4× 10−7 s−1.

Finally, we conclude the crack growth resistance analysis by assessing the

influence of the loading rate. In this case, the specimens are pre-charged to a

hydrogen content of 0.5 wt ppm but are then subjected to mechanical load in

an inert environment, implying the application of a Dirichlet-type boundary

condition CL = 0 in the crack surface. As in the hydrogen environmentally

assisted cracking example, the CL = 0 condition is enforced at all times at
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the crack surfaces by means of a penalty approach. This reflects the fact

that the newly created crack surfaces are immediately exposed to an inert

environment.

Figure 8: Effect of the loading rate (K̇I/K0) on the fracture resistance of samples pre-

charged with a uniform hydrogen concentration of 0.5 wt ppm. Material properties:

σy/E = 0.003, ν = 0.3, N = 0.2, σ̂/σy ≈ 6 (ℓ/R0 = 0.025), Lp/R0 = 5, D = 0.0127

mm2/s, and χ = 0.89.

The results obtained varying the loading rate from K̇I/K0 = 4 × 10−7

to K̇I/K0 = 4 s−1 are shown in Fig. 8. The results reveal that the model

can rigorously capture how hydrogen damage becomes more significant for
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smaller loading rates. The smaller the magnitude of K̇I/K0, the larger the

time available for the hydrogen to diffuse to the fracture process zone. The

influence is observed over a range of loading rates spanning at least four orders

of magnitude, consistent with experimental observations (Momotani et al.,

2017).

4.2. Experimental validation: failure of pre-charged AISI 4135 steel bars

We shall now compare model predictions with experimental measure-

ments of failure stress versus hydrogen concentration. The experiments by

Wang et al. (2005) on pre-charged notched AISI 4135 steel bars are taken as

a benchmark. The geometry and dimensions are given in Fig. 9. The bar is

cylindrical and we thus adopt an axisymmetric formulation, modifying the

strain-displacement matrix and integrating the discretised equations in polar

coordinates. We also take advantage of symmetry and model only half of

the plane problem. The model is discretised with a total of 20,373 quadratic

quadrilateral axisymmetric elements with reduced integration. The finite

element mesh is refined along the crack propagation region, with the char-

acteristic element length being ten times smaller than the phase field length

scale, ℓ = 0.029 mm. The material properties are listed in Table 1. Following

Wang et al. (2005), the mechanical properties of the AISI 4135 steel bars are

given by a Young’s modulus of E = 210 GPa, a Poisson’s ratio of ν = 0.3,

and a yield stress of σY = 1235 MPa. The work hardening behaviour is cap-

tured by reproducing the stress-strain curve reported in (Wang et al., 2005)

with the hardening law given in Eq. (26), this fitting exercise renders a strain

hardening exponent of N = 0.05.
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Figure 9: Experimental comparison. Geometry, dimensions (in mm) and finite element

mesh for the simulation of notch strength degradation of AISI 4135 steel bars with hydro-

gen content.

The hydrogen transport properties are also listed in in Table 1. A lattice

diffusion coefficient of D = 3.8 × 10−11 m2/s is considered, as reported in

Wang et al. (2005). Also, following their findings, two types of traps are

considered: dislocations and grain boundaries. Quantitative values for the

density and the binding energy of each trap type are not available. Thus,

we take the trapping information from the study by Fernández-Sousa et al.

(2020) on AISI 4140 steel. Namely, the grain boundary trap density and

binding energy are respectively given by N
(gb)
T = 5.06 × 1025 sites/m3 and

W
(gb)
B = −24.7 kJ/mol. The dislocation trap binding energy is given by
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W
(d)
B = −35.2 kJ/mol, while N

(d)
T is estimated from the total dislocation

density by using Eq. (48). An initial dislocation density of ρ0 = 1014 m−2 is

assumed for the unstressed state. Fracture properties are not reported in the

benchmark study by Wang et al. (2005). Thus, the material toughness in the

absence of hydrogen Gc(0) is estimated by calibrating with the experiment

conducted in air: the experimental notch tensile strength is attained with a

magnitude of Gc = 25 kJ/m2.

Table 1: Material properties used in the validation with the experiments on pre-charged

AISI 4135 steel bars by Wang et al. (2005). The parameters are taken from (Wang et al.,

2005) and (Fernández-Sousa et al., 2020).

Parameter Magnitude

Mechanical properties

Young’s modulus, E 210,000 MPa

Poisson’s ratio, ν 0.3

Yield stress, σY 1235 MPa

Strain hardening exponent, N 0.05

Hydrogen transport properties

Lattice diffusion coefficient, D 3.8×10−11 m2/s

Grain boundary trap density, N
(gb)
T 5.06×1025 sites/m3

Grain boundary binding energy, W
(gb)
B -24.7 kJ/mol

Initial dislocation trap density, N
(d)
T (t = 0) 5.06×1025 sites/m3

Dislocation binding energy, W
(d)
B -35.2 kJ/mol

To capture the hydrogen degradation, a phenomenological approach is

followed, building upon the experimental data available: sensitivity of the
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notch tensile strength σf versus pre-charged hydrogen content C0. First,

we conduct a series of virtual experiments in the absence of hydrogen to

determine the magnitude of Gc that corresponds to each critical stress value.

We then estimate the magnitude of θ
(gb)
T that corresponds to the value of the

lattice hydrogen concentration at the beginning of the experiment. Thus,

assuming Oriani’s equilibrium, the occupancy of grain boundary trapping

sites can be determined for a given CL by considering Eqs. (38) and (39).

This allows plotting Gc vs θ
(gb)
T , which is accurately fitted with the following

law:

Gc = Gc (0)
(

3.519 exp(−103.1θ
(gb)
T ) + 0.1567 exp(−5.572θ

(gb)
T )

)

(74)

This two-term exponential relation that provides the best fit to the simu-

latedGc vs θ
(gb)
T data is introduced into the model, replacing the atomistic law

employed in Section 4.1. We proceed then to run a number of deformation-

diffusion-fracture computations to determine the notch failure strength as a

function of the pre-charged hydrogen content. The strain loading rate equals

ε̇ = 8.3× 10−7 s−1, as in the experiments by Wang et al. (2005). The results

obtained are shown in Fig. 10, together with the experimental data.
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Figure 10: Experimental comparison. Predictions of the reduction in tensile strength

with pre-charged hydrogen concentration for notched AISI 4135 steel bars. The solid lines

denote model predictions (present work) while the symbols correspond to the experimental

data reported by Wang et al. (2005).

An excellent agreement with the experimental results by Wang et al.

(2005) is obtained. This is not surprising, given the phenomenological ap-

proach adopted, where the experimental data is used to construct the degra-

dation law. It is of interest to compare this degradation law with the atom-

istic one adopted in Section 4.1 - Eq. (73). Values of θ
(gb)
T equal or higher

than 0.2 result in a significantly larger degradation for the phenomenological
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approach. In fact, Eq. (74) exhibits a sharp drop for small values of θ
(gb)
T

(≤ 0.05), followed by a milder slope (relative to the atomistic curve). The

phenomenological degradation law is a reflection of the experimental results;

as shown (e.g.) in Fig. 1 of (Fernández-Sousa et al., 2020), Oriani’s equilib-

rium dictates that for a trap with binding energy W
(gb)
B = −24.7 kJ/mol, an

occupancy of θT = 0.05 is attained for CL ≈ 0.4 ppm. Thus, experiments sug-

gest a reduction in notch tensile strength of more than 50% for θ
(gb)
T = 0.05.

Is such a small occupancy value capable of bringing such a significant re-

duction in grain boundary strength or are there other mechanisms involved?

We note that this analysis is based on the bulk concentration; while this

is reasonable for notched samples, the consideration of a small pre-existing

crack would lead to much higher local levels of CL and grain boundary trap

occupancy. Also, these estimations are very sensitive to the magnitude of

W
(gb)
B . If the trap binding energy of -35.2 kJ/mol were to be interpreted as

that of grain boundaries (as opposed to dislocations), the grain boundary

occupancy would be approximately θ
(gb)
T = 0.7 for CL = 0.4 ppm, bringing

the phenomenological and atomistic laws very close to each other. Undoubt-

edly, there is a strong need to develop rigorous procedures for quantifying

the hydrogen trapping characteristics of metals.

5. Conclusions

We have presented a new mechanistic framework for predicting the em-

brittlement of metallic components exposed to hydrogen-containing environ-

ments. Key features of the model include: (i) a mechanism-based strain gra-

dient constitutive characterisation of crack tip stresses and dislocation den-
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sities, (ii) a coupled deformation-diffusion transport formulation, accounting

for multiple trap types, and (iii) a hydrogen-dependent phase field descrip-

tion of fracture. The model was numerically implemented in the context of

the finite element method, with displacements, hydrogen concentration and

phase field parameter being the primary kinematic variables. First, station-

ary cracks were investigated to assess the influence on crack tip mechanics

of the Taylor-based constitutive model adopted. Results showed that large

plastic strain gradients close to the crack led to crack tip stresses that were

notably higher than those predicted using conventional continuum models.

We also investigated the interplay between the various length scales involved:

the fracture process zone length R0, the plastic length scale Lp and the phase

field length scale ℓ, which governs the material strength. Also, it was shown

that the crack growth resistance decreases with increasing strength, as there

is a greater degree of plastic dissipation, and with Lp/R0, as gradient ef-

fects become more significant. Thirdly, model predictions were benchmarked

against experiments on cylindrical notched bars made of AISI 4135 steel,

which were pre-charged with different levels of hydrogen content. The re-

sults showed that the model can quantitatively capture how the notch tensile

strength drops with increasing hydrogen concentration. During the analy-

ses, two options were considered to define the degradation of the material

toughness with hydrogen: (i) a first principles approach, in which atom-

istic calculations are used to establish the relation between fracture energy

and hydrogen coverage, and (ii) a new phenomenological procedure, which

is based on experimental data but does not require conducting coupled sim-

ulations. It was shown that both approaches led to a similar sensitivity of
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the fracture energy to hydrogen coverage if grain boundary cracking drives

embrittlement and if the grain boundary trap binding energy lies within the

range of -35 to -40 kJ/mol. These results highlight the need for an accurate

characterisation of the hydrogen diffusion energy landscape.
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