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Summary

Material flow analysis (MFA) is widely used to study the life cycles of materials from
production, through use, to reuse, recycling, or disposal, in order to identify environmental
impacts and opportunities to address them. However, development of this type of analysis
is often constrained by limited data, which may be uncertain, contradictory, missing, or
over-aggregated.

This article proposes a Bayesian approach, in which uncertain knowledge about material
flows is described by probability distributions. If little data is initially available, the model
predictions will be rather vague. As new data is acquired, it is systematically incorporated
to reduce the level of uncertainty.

After reviewing previous approaches to uncertainty in MFA, the Bayesian approach is
introduced, and a general recipe for its application to material flow analysis is developed.
This is applied to map the global production of steel using Markov Chain Monte Carlo
simulations. As well as aiding the analyst, who can get started in the face of incomplete
data, this incremental approach to MFA also supports efforts to improve communication
of results by transparently accounting for uncertainty throughout.
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Introduction

The threat of climate change has led to global agreement (at
COP21 Paris, in 2015) on the need to limit mean temperature
rise to 2 °C or less. Ensuring an acceptable probability of keep-
ing within this limit will require much more dramatic cuts in
emissions in industrialized countries than have been achieved
to date (Anderson and Bows 2011). As approximately one-third
of industrial and energy emissions are associated with making
materials and goods, and as there are limited options to reduce
these emissions using upstream measures (Allwood and Cullen
2012), it is crucial to understand the whole life cycle of materi-
als from production, through use, to reuse, recycling, or disposal,
in order to identify opportunities to improve the efficiency with
which embodied-emissions-intensive materials are used.
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Material flow analysis (MFA) is widely used to understand
these material systems and the associated environmental im-
pacts, whether carbon emissions associated with steelmaking
(Milford et al. 2013) or releases of nanoparticles to the en-
vironment (Gottschalk et al. 2010). It can be applied at the
level of whole economies (Fischer-Kowalski et al. 2011), re-
gionally (Baccini and Brunner 2012), or for particular sectors
(Cullen et al. 2012); it can be used to give a static snapshot
of a single year or to show accumulations of stock over time
in dynamic MFA (Müller et al. 2004). MFA describes material
systems in terms of flows of materials moving between processes
(Brunner and Rechberger 2003), which may represent physi-
cal transformation processes (such as blast furnaces), societal
subsystems (such as households), or ecological compartments
(such as rivers).
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Figure 1 The Gaussian approximation works well when uncertainties are small and symmetric (left). The approximation can be poor for
large uncertainties that occur during early iterations of an MFA, such as when a quantity must be positive but its value is poorly known
(right). In this case the Gaussian approximation describes a significant chance that the value is negative, which is physically meaningless.

In this type of analysis data limitations are inevitable,
whether from inaccuracies in sampling or measurement, ex-
trapolation of data collected for different regions, products, or
time periods, or because data is simply not available. This leads
to “epistemic” uncertainty (due to lack of knowledge), on top
of the “aleatory” uncertainty due to inherent variability in the
system (Laner et al. 2014). Dealing with this uncertainty is
important for two reasons. Firstly, it helps with the interpreta-
tion of the results of the analysis, by showing which numbers
or comparisons are significant (Danius and Burström 2001);
conversely, ignoring uncertainty raises doubts about the relia-
bility of results (Laner et al. 2014). Secondly, by acknowledg-
ing that developing an MFA is an iterative, incremental process
(Brunner and Rechberger 2003), tracking uncertainty helps the
analyst. First iterations can begin even without good data, pro-
ducing results with high uncertainty, which can be reduced as
more data becomes available. At each iteration, knowledge of
uncertainties allows prioritization of data collection and mod-
eling effort.

Laner and colleagues (2014) reviewed the methods used to
deal with uncertainty in MFA studies and identified three types
of approaches. In the first, qualitative descriptions of confidence
in results are chosen by the analyst, such as “high confidence”
or “very low confidence” (e.g. Graedel et al. 2004). In the sec-
ond type, more formal methods for assigning confidence are used
(Hedbrant and Sörme 2001; Laner et al. 2015), based on infor-
mation such as the source of the data and how specific it is, the
transparency of its provenance, or other means of characterizing
the data (Schwab et al. 2017). In the third type of approach,
quantitative statistical methods are used to describe uncertainty.
The first two types of approach tackle the issue of communi-
cating uncertainty of data and results, but do not provide a
framework to track, update, and propagate uncertainty, leaving
the burden on the analyst to judge this themselves. To achieve
the vision above of incremental development of MFA using
uncertainty, the third type of approach, quantitative statistical
methods, are needed.

The statistical methods identified by Laner and colleagues
(2014) are of four types:

1. Sensitivity analysis considers possible variations in model
parameters, but does not necessarily seek to track actual
knowledge about uncertainty in the parameters. For ex-
ample, Milford and colleagues (2013) considered ± 10%
variations in the parameters controlling their model of
carbon emissions associated with steelmaking, but these
were intended to give insight into the behavior of the
model and are not meant to imply that each parameter
value is known to that level of certainty.

2. Methods based on Gaussian error propagation, sometimes
including data reconciliation, quantify uncertainty in pa-
rameters using standard deviations, and propagate this
uncertainty through the model to find the standard devi-
ation of results. For example, Bader and colleagues (2011)
used this method in analyzing stocks of copper in Switzer-
land. This can be very effective when the Gaussian ap-
proximation is appropriate, but it can break down when
uncertainties are large (figure 1) making it unsuitable
for tracking uncertainty from the early iterations of an
analysis.

3. “Mathematical MFA” approaches (Baccini and Bader
1996) relax the assumption of Gaussian distributions,
instead using arbitrary probability distributions to rep-
resent uncertainty, which are propagated through the
model using Monte Carlo simulations. For example,
Glöser and colleagues (2013) used uniformly-distributed
parameters to assess uncertainty in recycling indicators
for copper, while Gottschalk and colleagues (2010) used
uniform, lognormal, and triangular distributions of pa-
rameters to find concentrations of nanoparticles in the
environment, using a method they call “probabilistic
MFA”. Later, Bornhöft and colleagues (2016) extended
this method to include dynamic MFA models. These
methods see the process of MFA development as it-
erative. Sensitivity analysis has been used to prioritize
areas which need improvement in the next iteration
(Do-Thu et al. 2011) but formal methods for tracking
and updating knowledge about uncertain model parame-
ters are not typically used.
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4. Methods based on possibility theory use fuzzy intervals to
represent uncertainty. This allows information to be spec-
ified in a less precise way than by using probability dis-
tributions, which may be appropriate when only vague
information is known about the system. Dubois and col-
leagues (2014) present an approach using fuzzy intervals
for data reconciliation in linear MFA models. Džubur
and colleagues (2017) describe a reconciliation algorithm
which can handle more general non-linear membership
functions. They use the “degree of consistency” between
data sources and the model to assess data quality and drive
iterative improvements to model or data.

Of these, the probabilistic and possibilistic approaches are
therefore most suitable for describing uncertainty through the
development of a material flow analysis. A method of tracking
and updating knowledge about the model is needed to support
an incremental approach. In other fields, Bayesian inference
(Jaynes and Bretthorst 2003) has provided a successful frame-
work for systematic understanding of uncertain knowledge, es-
pecially in recent years as more problems have become computa-
tionally feasible. In this framework, the analyst’s current state of
knowledge about the model is tracked using probability distribu-
tions. If little data is initially available, the initial model predic-
tions will be rather vague, but as more data is acquired it can be
incorporated in a rigorous way to reduce the level of uncertainty.

The Bayesian inference approach has been discussed in
connection with MFA by Gottschalk and colleagues (2010),
who mentioned inference as an extension of probabilistic
MFA, but as there was no real data available in their study
they did not develop the idea further. Cencic and Frühwirth
(2015) used a Bayesian approach for data reconciliation, for
the case that the available data relates directly to flows in
the model, and the model is expressed as linear constraints.
However, there is a large class of useful data which are not
direct observations of flows (e.g., aggregated observations of
many flows, or knowledge about percentage inputs/outputs of
a process), and in many cases models cannot be expressed as
linear constraints, limiting the applicability of that method.
This article builds on these to develop a Bayesian inference
approach to all types of MFA, allowing knowledge about
flow rates, stock accumulations and other parameters to be
incrementally built up as new data becomes available.

Bayesian inference is a very general framework, so the fol-
lowing section examines what needs to be done to apply it to a
new area, resulting in a list of requirements that must be met to
use an MFA model in the Bayesian inference framework. Then,
a case study of a static Bayesian MFA model is presented, which
is used to incrementally map global steel flows from incomplete
and uncertain data, before the last section concludes with a
discussion of results and future developments.

What Is Required to Apply Bayesian
Inference to MFA?

The development of an MFA analysis typically starts with
the choice of system boundaries, and definition of the processes

and stocks to be considered as well as the flows of goods and sub-
stances which connect them, to yield an idealized mathemati-
cal model of the system being studied (Brunner and Rechberger
2003). The model includes equations enforcing conservation
of mass, and may include further relationships describing the
behavior of processes within the system. By setting up these gov-
erning equations, the modeler is setting the scope of the possible
situations to be considered in the analysis. Together these form
the “hypothesis space”, where each hypothesis is a particular
possible (although not necessarily likely) configuration of the
system, each consistent with the model equations. For example,
figure 2a shows a simple MFA model with one process, with a
single governing equation y0 = y1 + y2 (conservation of mass),
and the corresponding hypothesis space. Traditionally, the next
step is calibration, in which data is collected and used to pick
out the one “correct” or best-estimate hypothesis. In contrast,
in the Bayesian approach, probability distributions are used to
track knowledge about the relative merit of all the hypothe-
ses, giving a more nuanced picture of what is known about the
system.

Rather than explicitly listing individual hypotheses, such
as the nine Sankey diagrams shown in figure 2a, generally it
is more convenient to work with a continuous space of hy-
potheses. To do this, a set of model parameters, denoted θ , are
introduced, whose purpose is to uniquely define a particular con-
figuration of the model. To describe the example one-process
model uniquely, two parameters are needed; in figure 2a, the
input y0 and the efficiency η are used, from which the output
flows can be found as y1 = ηy0 and y2 = y0 − y1 (the mass-
balance constraint). For example, (y0 = 40, η = 0.4) refers to
the bottom-left Sankey diagram in figure 2a. The choice of
model parameters is not fixed; other choices of parameter, such
as (y1, y2) or (y0, y1) also uniquely describe the configuration
of the model, and are valid choices; the decision of which to
use is mostly a matter of convenience. More generally, real-
istic MFA models will have a larger hypothesis space defined
by more than two model parameters. For a static MFA, pos-
sible parameters would be the import flows entering the sys-
tem, together with the pattern of relative allocation of flows
to subsequent processes within the system (e.g., Gottschalk
et al. 2010). A dynamic analysis would require additional pa-
rameters such as lifetimes of in-use stocks (e.g., Müller et al.
2004).

When new evidence is acquired, the probability distribu-
tions are updated accordingly (figure 2b). This new evidence,
denoted generically as the “observed data” D, can include data
directly observed by the analyst, or collected from other sources.
In figure 2b, the updated knowledge P (θ |DI ) differs from the
initial knowledge P (θ |I ) by being conditional on D: it is the
probability of a particular set of model parameters (and hence a
particular hypothesis), given that the data D has been observed.1

Probabilities in Bayesian inference are conventionally condi-
tional on I (Jaynes and Bretthorst 2003), which represents
the “background information”: the assumptions and experience
which goes into choosing a particular system boundary, model
equations, and so on.
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Figure 2 Material flow analysis in a Bayesian inference framework. (a) For a simple one-process MFA model, there are a range of
possible hypotheses consistent with the mass-balance constraints and other assumptions. The small Sankey diagrams illustrate 9 possibilities
drawn from the hypothesis space, arranged according to two model parameters, the input y0 and the efficiency η. (b) The inference
process takes new observed data and combines it with the predictions of the model to update knowledge about the model parameters. In
this sketch, a measurement of y0 results in knowledge about parameters becoming more specific (i.e., the probability distribution becomes
more peaked).

Table 1 Steps of Bayesian inference and the corresponding terms in Bayes’ theorem

Name Term in eq (1) Meaning

Likelihood P (D|θ I ) How likely is the model to predict the observed data D for a specific set of parameter values θ ?
Prior P (θ |I ) Initial knowledge about parameter values, before seeing D
Posterior P (θ |DI) Updated knowledge about parameter values, having seen D
Evidence P (D|I ) Acts as a normalization constant, because D is considered fixed (only important when choosing

between multiple models)

This updated state of knowledge about the model parameters,
having seen the observed data D, can be found from Bayes’
theorem:

P (θ |DI) = P (D|θ I )P (θ |I )
P (D|I )

(1)

The terms appearing in this equation are defined in table 1.
To apply Bayesian inference to a particular MFA model, the
form of each of these probabilities must be determined. In the
following, each is considered in turn.

Likelihood: Models and Observation

The likelihood P (D|θ I ) describes the probability that the
model would have predicted the actually-observed data D, for
particular values of the parameters θ . Due to measurement error,
and mismatches between the idealized model and the observed
data, the model prediction is not expected to exactly match the
observed value. For example, in figure 2a, imagine the parameter
values are θ = (y0, η) = (40, 0.4), corresponding to a predicted

value for y1 of y0η = 16. If these were the correct parameter
values, the probability of observing y1 = 14 might be quite
high, whereas observing y1 = 100 would be very unlikely. So
the likelihood depends on both the model equations and the
process of observation/measurement itself.

Models can be deterministic or random (Tarantola 2005).
In deterministic models, the modeled relationship is assumed
to be certain, so the only uncertainty is about the correct
parameter values. Most MFA models are deterministic, and
so this article focuses on deterministic models, for which the
model predictions can be written as an explicit function of the
parameters:

y = f (θ) (2)

The second step is the process of observation. The model pre-
dictions y are not observed directly, but instead some functions
g i (y) are observed. For example, the aggregated total of several
flows, predicted individually by the model, may be known. The
individual values di , which make up the observed data D, are
measured with some error ei :

di = g i (y) + ei (3)
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The particular form of g i (y) and the errors ei must be de-
fined for the particular MFA model and type of observed data.
In many cases, the assumption of Gaussian errors is appro-
priate (Jaynes and Bretthorst 2003). If all the observations
are independent, they can be multiplied to give the complete
likelihood:

P (D|θ I ) =
∏

i

P (di |θ I) (4)

For the example of figure 2a, the model predictions y =
(y0, y1, y2) are given by

f (θ) =
⎡
⎣ y0

y0η

y0(1 − η)

⎤
⎦ (5)

where θ = (y0, η). Suppose that the flow y1 is measured to
have a value of d1 with measurement uncertainty σ1, expressed
probabilistically as

d1|y1 I ∼ N (y1, σ1) (6)

where x |A ∼ N (μ, σ ) means that, given A, x is normally dis-
tributed with mean μ and standard deviation σ . Using the
model equations (5) to substitute y1 = y0η, this can be written
in terms of the standard normal probability density function as

P (d1|θ I) = 1

σ1
√

2π
exp

(
− (d1 − y0η)2

2σ 2
1

)
(7)

which has a peak at d1 = y0η. Further measurements can be
defined in the same way. For example, if the flow y0 was also
measured as d2 ± σ2, this would give

P (d2|θ I) = 1

σ2
√

2π
exp

(
− (d2 − y0)2

2σ 2
2

)
(8)

In most cases, nothing is known to suggest that this measure-
ment is not independent of the measurement of d1 above, so
the likelihood would be found by substituting equations (7)
and (8) into equation (4). If more specific information is
available to determine how the measurement of d1 and d2 is
dependent, the joint distribution P (D|θ I ) must be defined
directly.

Specific or Vague Initial Knowledge

Initial knowledge about model parameters is described by
the prior probabilities P (θ |I ). In some cases this knowledge
may be quite specific, such as “the process efficiency is between
75% and 85%” or “the flow rate is estimated as 130 tonnes
per year with a standard deviation of 10 tonnes per year”. In
these cases, prior probabilities can be directly assigned using
suitable distributions, such as normal, lognormal, or uniform
distributions. In other cases, however, initial knowledge about
a model parameter may be more vague, such as “the process
efficiency is between 0% and 100%” or “the flow rate is positive”.
Then a “vague” prior distribution should be assigned, which
should reflect the little that is known, but avoid inadvertently

implying any further knowledge which could bias the results
(Jaynes and Bretthorst 2003).

The choice of prior distribution can be difficult, especially
when initial knowledge is vague, and there has been consid-
erable philosophical debate about what a “vague” probability
distribution might mean (Kass and Wasserman 1996). More
widely, possibility theory (e.g., Dubois et al. 2014) offers one
way of addressing this. In modern applied Bayesian inference,
a more pragmatic approach is preferred (e.g., by Gelman et al.
2013) in which a convenient prior distribution is assumed, and
the effect of different assumptions on the results can be checked
through a sensitivity analysis, as with any other assumption. To
illustrate this, the following examples are given of possible prior
distributions for two common parameter types: flow rates (or
other positive quantities) and transfer coefficients (which sum
to one).

Priors for Flow Rates
A flow rate is a parameter such as “global production of

pig iron,” which must have a positive value. If nothing else is
known, what prior distribution should be used?

An intuitive response might be to use a uniform distribution
p(θ) = const, from 0 to ∞ (or some sufficiently-large number).
An alternative is to work on a log scale and set p(log θ) = const,
equivalent to the Jeffreys prior p(θ) = 1/θ , which is scale-
invariant (Jaynes and Bretthorst 2003). These two alternatives
represent two plausible descriptions of the parameter: the former
assigns equal probability to equal ranges (e.g., 10–20 kilograms
[kg] and 90–100 kg), while the latter assigns equal probability
to different orders of magnitude (e.g., 1–10 kg and 10–100 kg),
equivalent to saying that units of kilograms and tonnes are
equally likely to be appropriate.

The difference is only significant for large uncertainties that
span multiple orders of magnitude. Even then, if high qual-
ity data is available then that will dominate the results, re-
gardless of the choice of prior. If in doubt, different types of
vague prior can be tested, and if the model results are sensi-
tive to the choice, then more data may be needed to reach a
conclusion.

If, on the other hand, an approximate value and uncertainty
range are known, this type of parameter is most commonly
represented by a truncated normal or a lognormal distribution
(see, e.g., work by Gottschalk et al. 2010).

Priors for Transfer Coefficients
Transfer coefficients describe the fractions of a process’s out-

put that flow to different destinations. For a process with N
outputs, there are N transfer coefficients αi which must satisfy
the constraints αi > 0 and

∑
i αi = 1. If this is all that is known

about the process outputs, what initial probability distribution
for the αi should be chosen, which is as vague as possible to
avoid biasing the results?

One method that has been used in other studies (e.g.,
Bornhöft et al. 2016) is to sample N numbers βi from a uni-
form distribution between 0 and 1, then normalize to give
αi = βi /

∑
j β j . Although this seems intuitively reasonable,

1356 Journal of Industrial Ecology



M E T H O D S , TO O L S , A N D S O F T WA R E

Figure 3 Sampling transfer coefficients uniformly in the range [0,
1], then normalizing, fails to give a uniform distribution (left): the
prior is biased towards a 50–50% split. The uniform Dirichlet
distribution (right) correctly gives a uniform prior. This figure shows
only two transfer coefficients, for ease of plotting, but the same
conclusions apply to cases with more coefficients.

it turns out to produce transfer coefficients that are biased to-
wards allocating equal fractions to each destination (figure 3,
left), which is probably not what was intended. A better al-
ternative is to use a uniform Dirichlet distribution (figure 3,
right).

If specific information is known about the average values of
the transfer coefficients, a concentrated Dirichlet distribution
can be used. More complicated distributions that account for
correlations between coefficients can be produced from trans-
formed multivariate Gaussian distributions (Gelman et al. 1996;
Pawlowsky-Glahn et al. 2015).

Example
For the example model shown in figure 2a, suppose that

nothing is known about the process efficiency, while it is known
that the process input is less than 100. Prior distributions are
chosen to reflect this initial knowledge: the efficiency η is as-
signed a uniform prior between 0 and 1, and the process input
y0 is assigned a uniform prior between 0 and 100. These dis-
tributions are shown in the top row of figure 4, along with the
consequential distributions for y1 and y2 according to the model
equations (5).

Inference: Updating Knowledge about Parameters
from Observed Data

Once vague or specific initial knowledge is defined as prior
distributions, and the model and likelihood are defined, Bayes’
theorem (equation 1) can be used to find the posterior distri-
bution, which describes the improved knowledge about model
parameters as a result of the new, observed data. Although in
some cases it is possible to find analytical results, generally the

posterior distribution is found approximately using numerical
stochastic methods.

To get an intuitive understanding of the procedure, imag-
ine taking every possible hypothesis (i.e., every combination
of parameter values), and calculating the model predictions.
For each, find the prior probability of the hypothesis, and the
likelihood that the model predictions are consistent with the
observed data (as discussed above). Combining these according
to equation (1) gives the posterior probability of that hypoth-
esis. If each hypothesis is kept or rejected with a probability
proportional to the posterior probability, the kept hypotheses
form a set of samples which are representative of the likely pa-
rameter values, taking into account both the initial knowledge
and the observed data.

In practice, for any realistic number of parameters, the num-
ber of possible hypotheses is extremely large and it is not pos-
sible to test them all. Markov Chain Monte Carlo sampling
is a technique for randomly exploring the possible parameter
combinations, focusing on the most interesting (most likely)
hypotheses (Gelman et al. 2013, chapter 10). The result is a
set of samples which are statistically representative of the cur-
rent knowledge about the model. These can be used to calculate
best-estimate values by averaging, to visualize variation through
histograms, to find probabilities of certain events occurring, or
directly visualized as Sankey diagrams to show individual pos-
sible situations.

There are various algorithms for carrying out the sampling.
Classic ones such as Metropolis-Hastings (Gelman et al. 2013,
chapter 11) are simple but need tuning to work efficiently, re-
quiring a more detailed understanding from the analyst. More
recent algorithms such as the No U-Turn Sampler (Hoffman
and Gelman 2014) and ensemble samplers (Goodman and
Weare 2010) require less tuning to the point that they can
be fairly easily used as a routine tool. In this article, the No U-
Turn Sampler implemented in PyMC3 (Salvatier et al. 2016)
was used.

Example
Continuing the example from the previous section, posterior

distributions were found representing updated knowledge about
the model parameters in two stages: after measuring y1 = 30 ± 3
(equation 7) and after measuring y0 = 60 ± 3 (equation 8). The
resulting distributions are shown in the middle and bottom rows
of figure 4.

After the first measurement, the value of y1 is well known,
but the remaining parameters are still only vaguely known
(figure 4, middle row). This is because there are multiple situ-
ations which could lead to the observed data: the throughput
could be high, with a low efficiency, or it could be lower, with
a high efficiency. Nonetheless, the distributions have adjusted
to show that the input y0 cannot be less than the output y1,
and the efficiency η cannot be less than about 0.3 (due to the
maximum value of y0 being 100).

After the second measurement, all parameters and outputs
are known to within the measurement uncertainty (figure 4,
bottom row).
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Figure 4 Prior (top row) and posterior (middle & bottom rows) distributions for the one-process model shown in figure 2a.

Summary

To apply Bayesian inference to material flow analysis, the
following should be done:

1. The particular MFA model should be formulated as a
deterministic model, which predicts outputs (such as flow
rates and stock levels) based on a set of parameters. This
encompasses the use of most, if not all, existing MFA
modeling approaches.

2. The relationship between model predictions and ob-
served data should be defined, including any aggregation,
and the confidence in the observed value.

3. Initial knowledge about model parameters should be
quantified as probability distributions.

This is a recipe for applying Bayesian inference to MFA. In the
following section, a concrete example is given for a particular
MFA model, applied to map global flows of steel.

Case Study: Global Steel Flows

The Bayesian inference approach discussed above is now
tested by mapping global steel flows, following Cullen and
colleagues (2012). The aim is to demonstrate an incremen-
tal development of the analysis, by starting with only a limited
amount of data. Further data will then be added to iteratively
reduce the uncertainty in the results. At every stage, the results
should include the values found by Cullen and colleagues as a
possibility.

The next three subsections explain the specific model, the
observed data, and the initial knowledge applied in the case

Figure 5 Process units, similar to the one shown in figure 2a, can
be assembled to define more complicated model structures.

study, corresponding to the three general requirements identi-
fied above. The last subsection then presents the results.

Model Structure

For the purposes of this case study, a relatively simple model
structure is sufficient, as no dynamic stock accumulations are
included. The model is built up from a set of connected process
units, as shown in figure 5. Conservation of mass determines
flows between process units in the model, with the overall pat-
tern of flows being driven by a few external inflows, which in this
case include inputs of iron ore and end-of-life scrap. Applying
conservation of mass at process j gives:

q j +
∑

i

zij =
∑

k

zjk (9)

where zjk represents the flow from process j to process k, and
q j is the external inflow to process j (figure 5). By introducing
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transfer coefficients αjk, which describe the flows leaving process
j as a fraction of the total output x j ,

zjk = x j αjk x j =
∑

k

zjk (10)

the conservation equations (9) can be rewritten as

q j +
∑

i

xi αij = x j (11)

These mass balances can be assembled into a linear system of
equations (as used by, e.g., Gottschalk et al. 2010) which can
be solved to give the total flow through each process x j :

x = (I − A)−1q (12)

where Aij = αji and I is the identity matrix.
The state of the model is therefore characterized by the

external inflows q and the transfer coefficient matrix A, but it
is inconvenient to work with this matrix directly as it contains
many zeros, and its columns must sum to 1. Instead, each column
of the matrix is defined by a sub-model for each process unit:

A = [α1 α2 . . .] (13)

It is helpful to distinguish two types of process units in model-
ing the steel system. A ‘real’ process is modeled by a conversion
process with two output flows, a main product and a loss flow,
parameterized by the efficiency η. For example, a blast furnace
is modeled as a conversion process with two outputs, “pig iron”
and “losses”. Various fractions of the pig iron are then sent to dif-
ferent steelmaking and casting processes; this is modeled by an
allocation process, parameterized by a set of transfer coefficients.
It is helpful to separate the conversion and allocation process
steps, since the conversion process efficiencies are meaning-
fully related to the physical process, whereas the allocation is
more arbitrary. These two process types correspond to two fun-
damental types of process identified by Pauliuk and colleagues
(2016).

The column of transfer coefficients corresponding to a con-
version process is

α j (η j ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
η j
...

1 − η j
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The locations of η j and 1 − η j in the vector correspond to
the indices of the destination processes for the flows, with all
other entries being 0. An allocation process produces a similar
column vector α j (φ j ), where φ j are the fractions of the output
flow at process j allocated to each destination.

The model parameters therefore consist of external inflows
q, efficiency parameters η = {η j } and allocation parameters
φ = {φ j }:

θ =
⎡
⎣ q

η

φ

⎤
⎦ (15)

The model predictions consist of the flows, both external q =
{q j } and internal z = {zjk}:

y =
[

q
z

]
(16)

which are defined in terms of the parameters θ by equa-
tions (10)–(14).

To model global steel flows, these conversion and allocation
process units were assembled to replicate the model structure
shown in the supporting information of Cullen and colleagues
(2012). The resulting structure is detailed in the supporting
information available on the Journal’s website for this article.

Observations of Model Predictions

Three types of data were available to inform the global steel
model: flow rates between processes (e.g., production of pig iron
from blast furnaces), external input flow rates (e.g., input of iron
ore), and flows as fractions of total process throughputs (e.g.,
fraction of scrap input to steel casting). These data values were
related to the model predictions by Gaussian errors, similar to
equation (6):

(di |θ I )

∼

⎧⎪⎪⎨
⎪⎪⎩
N (zJK, σi ) for observation of internal flow J to K

N (q J , σi ) for observation of external inflow to process J

N (zJK/xK , σi ) for observations of input fraction of flow J to K

(17)

Observed data was added in two stages, using values quoted
in the Supporting Information of Cullen and colleagues (2012).
In the first stage, only data from a few readily-available sources
was used. After reviewing the resulting uncertain Sankey di-
agram, for the second stage additional sources describing the
most uncertain areas were added. Details of the data used in
each stage are given in the supporting information on the Web
for this article. Note that the calculations performed by Cullen
and colleagues to balance the analysis were not used, only the
cited data values. For lack of better information, Gaussian un-
certainty ranges of ±10% were applied to all values; in a real
analysis it would be important to consider more carefully the
confidence in the different observed data sources.

Initial Knowledge about Model Parameters

Where original estimates of process yields are quoted in the
Supporting Information of Cullen and colleagues (2012), these
are taken as prior information for the process efficiency pa-
rameters η j , using a logistic-transformed normal distribution
(details are given in the supporting information on the Web
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for this article). Only cited data values were included; process
yields which were calculated by Cullen and colleagues to satisfy
mass-balance constraints were not used.

Most allocation parameters φ j were given uniform Dirich-
let prior distributions (see above), reflecting an initial lack of
knowledge about allocations. However, Cullen and colleagues
give estimates of the relative shares of casting and rolling losses
which are lost, immediately reused, and reprocessed as scrap.
To incorporate this information into the model, these param-
eters were assigned weak Dirichlet prior distributions centered
on the estimated shares (details are given in the supporting
information available on the Web for this article).

The remaining model parameters, the external inflow rates
q, were assigned uniform prior distributions.

Software

The full data and code used to generate the Markov Chain
Monte Carlo samples and to produce the figures in the article are
available online (Lupton 2017) in the form of IPython Jupyter
notebooks (Pérez and Granger 2007; Kluyver et al. 2016). They
can be downloaded and run to reproduce the analysis, or viewed
online.2

The code makes use of PyMC3 for doing the Markov Chain
sampling (Salvatier et al. 2016), Matplotlib for plotting (Hunter
2007), and sankeyview and d3-sankey-diagram for creating the
Sankey diagrams (Lupton 2016; Lupton and Allwood 2017).

Results

The results of the Bayesian analysis are a set of samples cal-
culated using Markov Chain Monte Carlo simulations. These
can be visualized as Sankey diagrams showing the overall map of
flows including uncertainty, as histograms of individual model
parameters or flows, or as Sankey diagrams representing indi-
vidual possible samples.

Uncertainties in Flows
After the first stage, some flows are well defined, but consid-

erable uncertainty remains in other areas. Figure 6 (top) shows
a Sankey diagram representation of the results at this stage, with
shading to show the uncertainty in the flow values. It clearly
shows that while production of the semi-finished products, on
the right-hand side, is well defined, considerable uncertainty
remains about the upstream processes supplying these products.
Production of cast steel and iron is also rather uncertain, because
no data relating to these has been included yet.

In the second stage, additional data is added describing pro-
duction of cast iron and steel, external sources of scrap, and the
fraction of scrap used in casting, as well as the amount of pig
iron used in electric arc furnaces (EAF). The result is shown in
figure 6 (bottom). The uncertainty regarding the casting pro-
cesses remains high, as no data on this part of the map has been
supplied, but otherwise the flows are well defined. The next step
would be to add additional data relating to these processes, but
the results of this are not shown here.

Parameter Values
As more information is progressively added, more is learned

about the parameter values. Figure 7 shows histograms of a
model parameter that represents the share of pig iron (the prod-
uct of the blast furnace) that goes to the oxygen blown furnace
(OBF). After stage 2, the value is quite well known. Production
of ingots, also shown, remains more uncertain.

Individual Samples
Figure 6 shows the best-estimate Sankey diagram, found

from the mean value of the samples of the model parameters.
Although this can be useful as a summary, it cannot show cor-
relations; to get a full understanding of the possible alternative
maps it is useful to view individual samples, especially when the
variation is large (Tarantola 2005). An animation of possible
Sankey diagrams is available online.3

Discussion

This article has demonstrated that Bayesian inference is ef-
fective in allowing an incremental approach to MFA, making it
easier for analysis to get started even in the face of missing and
uncertain data, as well as providing a systematic method to track
uncertainty, prioritize collection of new data, and incorporate
new data as it becomes available.

In this article, it has been assumed that new data is already
available in the form of a probability distribution. Usually this
means providing an estimated standard deviation describing the
uncertainty, but arbitrary probability distributions could also be
directly specified. However, it is often unclear how the uncer-
tainty should be chosen, based on what is known about the data
source. Several methods have been proposed for data quality as-
sessment and uncertainty characterization in MFA which seek
to address this (Hedbrant and Sörme 2001; Laner et al. 2015;
Schwab et al. 2016, 2017), which are complementary to the
approach proposed here.

To start using this method, probability distributions must be
assigned to represent initial knowledge about the model, and
care should be taken in doing so to avoid unwanted biases. It
was shown that previously-used vague distributions for transfer
coefficients include a bias towards equal allocation fractions,
which is presumably unintended. The uniform Dirichlet distri-
bution is a good alternative distribution.

As the analysis is developed, in many cases new information
will lead to improved knowledge about the system, as demon-
strated in the case study. But not every piece of new information
will be helpful: some observations may be so uncertain they add
little to what is already known, while others may contradict
the current state of knowledge. In this case data reconciliation
occurs naturally within the Bayesian framework.

What Are the Disadvantages of This Approach?

A potential disadvantage of this approach is the computa-
tional cost of the Markov Chain Monte Carlo algorithms. The
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Figure 6 Sankey diagram showing uncertainty in flow values after stage 1 (top) and stage 2 (bottom) of the case study. The width of the
lines corresponds to the mean parameter values. The shading indicates the width of the 95% credible interval, with darker colors showing
more certain flows. The diagrams were produced from the posterior samples using sankeyview (Lupton and Allwood 2017). OBF =
oxygen blown furnace; OHF = open hearth furnace; EAF = electric arc furnace; CC = continuous casting; CRC = cold rolled coil; HRC =
hot rolled coil.
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Figure 7 Increasingly precise knowledge about model parameters. Left: share of pig iron (blast furnace output) used in oxygen blown
furnace (OBF). Initially the shares were completely unknown, with the mean share being 25% (out of 4 potential destinations). Stage 1
results favor a larger share for the OBF, while after stage 2, the share is known to be about 90% (coincident with Cullen et al.’s value, shown
by the vertical line). Right: ingot casting production. Although the data reduces the initial uncertainty, a large range of possible values remain.
The value found by Cullen and colleagues is within the region of high credibility.

case study results took approximately 30 minutes to calculate
on a 2 GHz Intel i5 laptop. Depending on the context, this may
already be reasonable, and as little effort has yet been put into
optimization, it seems likely that improvements can be made.
Better understanding of the model structure can lead to more
efficient sampling (Gelman et al. 2013), and some algorithms
can be parallelized to take advantage of multi-core processors
(Goodman and Weare 2010).

The quantity of data required to perform an analysis in this
way may seem to be greater than in other approaches, as prior
distributions must be defined for every model parameter. In fact
this is just a way of formalizing information which would be
known and maybe taken into account anyway. By using formal
prior distributions, the analysis is more transparent, as assump-
tions about model parameters are more clearly articulated.

Future Work

Although Sankey diagrams are widely used to represent the
results of material flow analyses, they are less commonly used
to represent uncertainty. Graedel and colleagues (2004) used
different dashed lines to represent confidence in their results,
and Džubur and colleagues (2017) used color to present the
“level of consistency” of different flows in a Sankey diagram. In
this article uncertainty has been visualized using color and ani-
mation. The possibilities for visualizing uncertain MFA results
should be explored further.

To keep the focus of this article on the Bayesian approach
to iterative MFA, the case study presented above is based on a
relatively simple, static MFA model. Beyond this, other types
of MFA model, such as dynamic stock-driven models (Müller
2006), may also be used within this overall approach. Dynamic

models introduce new considerations, such as how the uncertain
evolution of parameters over time should be treated, and there
is significant scope for further investigation of the application
of the Bayesian method to these and other MFA models.

Although this article has focused on identifying model pa-
rameters, Bayesian inference is also capable of doing model com-
parison. For example, Pauliuk and colleagues (2013) considered
three different assumptions about the steel system, as different
options in a sensitivity analysis. Rather than simply considering
the range of outcomes stemming from these different assump-
tions, Bayesian inference provides a framework to quantify the
probability of the different model assumptions, while intrin-
sically avoiding excessively complicated models which would
over-fit the data.
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Notes

1. The probability of X is written as P (X), while P (X|YZ) is the
conditional probability of X given that Y and Z are both true.

2. http://nbviewer.jupyter.org/github/ricklupton/bayesian-mfa-paper
3. https://doi.org/10.17863/CAM.8414
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Džubur, N., O. Sunanta, and D. Laner. 2017. A fuzzy set-
based approach to data reconciliation in material flow mod-
eling. Applied Mathematical Modelling 43: 464–480. https://doi.
org/10.1016/j.apm.2016.11.020.

Fischer-Kowalski, M., F. Krausmann, S. Giljum, S. Lutter, A.
Mayer, S. Bringezu, Y. Moriguchi, H. Schütz, H. Schandl,
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