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The Impact of Heterogeneity and 
Awareness in Modeling Epidemic 
Spreading on Multiplex Networks
Marialisa Scatà1, Alessandro Di Stefano1, Pietro Liò2 & Aurelio La Corte1

In the real world, dynamic processes involving human beings are not disjoint. To capture the real 
complexity of such dynamics, we propose a novel model of the coevolution of epidemic and awareness 
spreading processes on a multiplex network, also introducing a preventive isolation strategy. Our 
aim is to evaluate and quantify the joint impact of heterogeneity and awareness, under different 
socioeconomic conditions. Considering, as case study, an emerging public health threat, Zika virus, 
we introduce a data-driven analysis by exploiting multiple sources and different types of data, ranging 
from Big Five personality traits to Google Trends, related to different world countries where there is an 
ongoing epidemic outbreak. Our findings demonstrate how the proposed model allows delaying the 
epidemic outbreak and increasing the resilience of nodes, especially under critical economic conditions. 
Simulation results, using data-driven approach on Zika virus, which has a growing scientific research 
interest, are coherent with the proposed analytic model.

In hundreds years of history, a huge literature have been proposed to study epidemic spreading and dynamics1–7, 
involving several research fields and assuming a key role in the field of network science8–15. Among all the possi-
ble dynamic scenarios explored16, multiplex networks provide the best suited underlying network structure for 
the study of dynamical processes taking place within the same set of nodes, such as the spreading of infectious 
diseases on multiplex networks17–21. Furthermore, recently, the interplay between disease and awareness dynam-
ics22–25 has gained a lot of interest, studying how individuals, aware of the potential spread of a certain disease, 
are able to take preventive measures protecting themselves. In most of these studies, it is explored the interesting 
interplay between awareness and epidemics when both phenomena compete using different layers of propaga-
tion23,26–30. Although a lot of works have exploited the framework of multiplex networks and studied the dynamics 
of the two spreading processes, awareness and disease, none of them has explored the realistic coevolution of the 
two processes in all the layers of a multiplex network. Some authors have underlined the key role of network het-
erogeneity in comparison with homogeneous cases31. Investigating the real-world scenario of an emerging disease 
raises the challenge of quantifying the impact of awareness on the complex dynamics of the epidemic outbreak. 
Human reactions and their resilience against a virus is the outcome of the individual interplay of multiple tiles of 
a mosaic, which embodies personality traits, relationships, knowledge and well-being. To capture also the high 
complexity of social interactions, we explore the dynamics on a multiplex network, adding an extra dimension of 
analysis and a more natural description for such systems32–34. Moreover, even more realistically, the coevolution 
of epidemic and awareness spreading on a multiplex network is linked with how different socioeconomic condi-
tions, together with the awareness of the single nodes, affect the human susceptibility35. Awareness and the eco-
nomic healthy of nodes can drive the system dynamics, altering the individual approach towards infection. The 
introduction of a preventive isolation strategy is a way to keep under control properly chosen nodes belonging 
to specific social categories, which are more sensitive and susceptible with regards to the infection and could be 
less aware and economically disadvantaged other than being, at the same time, also central in their communities. 
The isolation strategy can be interpreted as a temporary “social herd immunity”, lowering the infection rate of 
the isolated nodes and the population as well, driving them towards a deep awareness. This can help the network 
and health management authorities to improve consciousness about disease, providing a better understanding 
of what values can be realized by this kind of investigation36. The key difference between our isolation strategy 
and that one proposed in ref. 18 is that we isolate nodes in a preventive way, not as a result of infection. For all 
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these reasons, as discussed in ref. 36, in our opinion one of the actual challenges of the network theory is targeted 
at focusing on the realization of human rights and the detection of more sensitive categories in epidemic terms, 
protecting both the nodes and the community as a whole. Our work aims to propose a novel model of epidemic 
spreading, introducing an heterogeneous susceptibility of the single nodes of the network and the concept of 
preventive isolation of nodes. To this aim, we consider the epidemic spreading model coevolving with the aware-
ness spreading in all the layers of the same multiplex network, analyzing the joint effect on the resulting complex 
dynamics, where each node participates to both the processes simultaneously. To the best of our knowledge, for 
the first time we face the even more intriguing and novel issue which consists of studying the spreading of the two 
processes without separating and constraining each of the spreading processes to only one of the layers. In other 
words, we decide not to disjoint the two processes in single layers, but rather to explore the complex dynamics 
of their coevolution in order to define a scenario as realistic as possible and more coherent with the real nature 
of multiplex networks33,37,38. The study of the two dynamics on a multiplex network allows us highlighting the 
psychological dynamics of awareness, which is marked by cognitive limitation39,40 and then a re-ranking of news 
based on the emerging matters. Keeping a watchful eye on the news is in contrast with the natural memory leaks 
or fading of attention by human brain towards invisible enemies, such as viruses. For this reason, in our model, 
we consider the fading due to this decay of attention. We explore how phase transitions and epidemic threshold 
changes according to network structure and heterogeneous infection rate, which in turn depends on the nodes’ 
awareness in the multiplex network. This is a sort of interdependence between epidemic and awareness dynam-
ics under different socioeconomic conditions. Furthermore, we adopt a data-driven approach, comparing the 
resulting dynamics in a realistic context, which includes heterogeneous real data, taken from different sources. In 
particular, we deal with statistic estimators and markers of social and economic critical issues. These estimators 
allow us evaluating how the various characteristics of the node, also in terms of social categories, can affect the 
awareness and hence the epidemic dynamics. We compare analytic and simulation results using data observed 
in a particular temporal window30, to evaluate the coherence of our model fitted with data. The data are referred 
to Zika virus41, an emerging viral disease representing a present public health threat. It can be seen in several 
countries and it is currently raised as an international concern which is attracting the interest of interdiscipli-
nary research42. As authors underline43, a major concern associated with Zika virus is the observed incidence of 
microcephaly in fetuses born to mothers infected with Zika. Given this evidence regarding Zika virus in pregnant 
women, this means that there is a strong and biologically coded attention by women on the fetuses and then 
the infants conditions. Such attention is high in men as well following the biological well-known questions of 
kin-directed altruism and reciprocal altruism. In our model, this is reflected in the fading rate, which will be 
naturally low in case of Zika virus infection since, in this case, awareness has a strong memory effect on pregnant 
women reducing their cognitive limitation39,40 as they have a large attention period (at least equal to pregnancy 
period). The analysis in terms of awareness is facilitated by the available evidence regarding the spectrum of Zika 
virus, producing a strong and widespread impact on dynamics44. The interest towards Zika is also due to the pres-
ence of two infection dynamics, from mosquitoes to humans and by sexual transmission. Our interest is to better 
understand to which extent the study of the coevolution of epidemic and awareness spreading on a multiplex 
network can change, even if only slightly, the spreading dynamic, delaying the virus outbreak and providing a 
temporal window where specific and strategic interventions can be scheduled.

Results
Discussing the applicability of SIR on realistic epidemiological models. Our model is a SIR-like 
model, thought as a “composed” SIR, that is an extension of the classic “Susceptible-Infected-Recovered” (SIR) 
epidemic model1,10,45, where we provide the hypothesis of heterogeneous susceptibility and a strategy of preven-
tive isolation, which consists of preventively isolating a set of properly chosen nodes, based on the coevolution of 
the two processes on network, and structural properties of the multiplex network. To apply this model to Zika or 
other mosquito-borne pathogens46,47,48, rather than using the Ross-Macdonald models49, we need to face and rec-
oncile the limiting assumptions of the SIR, e.g. the distinct lag between human and mosquito infection. Despite 
this discrepancy between assumptions of the SIR model and the reality of many pathogen systems, as observed 
in ref. 41, our model fits mathematically with the nature of pathogen in epidemic terms. The applicability of 
the proposed SIR-like model is related with the Zika virus transmission since it can be transmitted in different 
ways50. Among them, since one of our targets is to explore the large scale transmission of Zika virus, the human-
to-mosquito-to-human cycle transmission is the unique type of transmission we are interested in, which justifies 
the choice of a SIR-like as an abstract diffusion model41. We chose to consider the compartment “Recovered” as a 
state linked to comorbidities and in particular to Guillain-Barrè syndrome (GBS)51. Among the various comor-
bidites with Zika virus (e.g. microcephaly), the GBS is the most relevant in considering the choice of SIR-like 
model with a “recovered” state. The phenotipic effects range from a few days to six months, but on average these 
effect last about one week. Therefore, under the hypothesis of a six-months recovery period, individuals can be 
assumed phenotipically healthy in this time span. There is a non-zero probability to be reinfected but, being GBS 
very rare, we can reasonably assume that there is not a significative likelihood of reinfection in the specified time 
span. Considering the socioeconomic clustering population based, in each cluster we can apply a different SIR 
model. Events and social phenomena, such as Rio Olympics or Carnival in Brazil, are synchronization factors 
which break the symmetries and shuffle both travelers and native populations, transforming and randomizing 
SIR models of each cluster into a globally synchronized SIR52. Moreover, these events may produce a resonance 
effect causing another peak of infection shifted in time and space, due to subsequent sexual contacts and spread 
of behaviors among social contacts53. As assessed in ref. 54, “..we are not going to know the full impact of this 
epidemic for several more months until we see whether additional waves of microcephaly cases are born”.
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Model. We start from the key assumption that each entity or node in the multiplex network has a different 
awareness, due to the action of both endogenous (Big Five personality traits, socioeconomic factors data) and 
exogenous factors (disease data, Google Trends data) and, as a consequence, each node will be heterogeneous 
susceptible to the disease spreading. The endogenous factors by definition are those linked directly to node’s 
internal characteristics. On the other hand, the exogenous factors are those corresponding to features that have 
external sources to the node, and depend on the network and the kind of disease. In particular, in our model, we 
assume that the transition probability from the susceptible state to the infected state represents the probability 
of being infected, given the spread of an epidemic disease on multiplex network. We consider two coevolving 
processes on multiplex network (see Fig. 1). The first is the process of epidemic spreading, indicated by ShipIR, 
which is a variant of the SIR model of epidemic diseases1,2, where Sh indicates the heterogeneous susceptible state, 
ip is the preventive isolation state, thus a given node is either heterogeneous susceptible to the disease, state Sh, 
or preventive isolated, ip. Then, a node can become infected, I, and recover (R) from infection. The preventive 
isolation represents a strategy to delay or avoid the transition into the infected state, then choosing properly the 
isolation period, it allows reducing the infection rate or avoid the transition to infected if the network has already 
recovered. The selection of the nodes to be preventively isolated depends on structural parameters, the awareness 
of the nodes and the socioeconomic factors. The second spreading process is also a SIR-like model, which is an 
extension of the UAU model22, indicated by “Unaware - Aware - Faded” (UAF), where the state U represents the 
unaware condition of nodes in the network, while A is the aware state so that nodes start to raise their attention 
on epidemic spreading, realizing the risk associated with epidemics. The Faded state (F) represents a condition 
where nodes, once become aware of epidemics, tends to fade their attention with time, until it completely van-
ishes. If a node reaches this state, unless already recovered from disease, it will result more susceptible to infec-
tion, because it does not exploit and update its acquired awareness. Our epidemic model, indicated by ShipIR, 
“Heterogeneous Susceptible - (Preventive Isolation) - Infected - Recovered”, is expressed diagrammatically, in 
terms of reaction-diffusion process1, as follows:
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The epidemic model is based on the assumption of heterogeneous susceptibility, Sh, that is each node has a 
different susceptibility to a disease propagating on the network due to the various socioeconomic factors and 
awareness. This means that we have different values of β̂i, which measures the probability that a node is infected 
on the multiplex, given that a Zika and other mosquito-borne viruses is propagating with a certain infection rate 
β characterizing the disease, and at least one of its neighbors has already being infected. This hypothesis allows to 

Figure 1. Schematic example of the coevolution of epidemic and awareness spreading on a multiplex 
Network. The multiplex network is made of N =  5 nodes embedded within M =  2 layers, each one containing 4 
links. Nodes are indicated by a letter corresponding to their states (S =  susceptible, I =  Infected, R =  Recovered, 
U =  Unaware, A =  Aware, F =  Faded, ip =  Preventive isolated) in the epidemic and awareness spreading 
process. The dashed lines represent inter-layer connections, while the continuous lines represent the intra-layer 
connections. In (a) we show the classical view of the two spreading processes, separating and constraining 
each of the spreading processes to only one of the layers. In (b) we illustrate our model in which we analyze the 
coevolution of both processes through the multiplex.
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assert that if there is at least one neighbor infected, it means that the node, most likely, is located in an environ-
ment with a high risk of transport of the infection. This concept of infection is consistent with the assumptions 
deriving from the nature of Zika virus55. Moreover, the diagrammatic representation of our model sheds light on 
its duplex nature linked to include or not the preventive isolation strategy. In fact, if we do not consider preventive 
isolation, each node, with differently susceptible, will become infected with an infection rate on the multiplex, 
defined as follows:
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It encloses in its definition the rate of awareness, λi, and the entropy of the multiplex degree32, that represents 
a parameter to describe the distribution of the degree of node i among the various layers. Therefore, ψi will 
depend not only on the different rates characterizing each of spreading processes, but also on the node degree and 
its distribution on the multiplex. In the definition of entropy of the multiplex degree32, oi and ki are the overlap-
ping degree and degree centrality of the node i in the layer Lx. We introduce an extension of the definition of the 
infection rate, indicated by β ξ

^( )i
i
, where ξi is a socioeconomic factor, calculated for each node as a global measure 

of resilience of the node in the multiplex according to socioeconomic factors impacting the epidemic and aware-
ness dynamics. In particular, this parameter affects the awareness λi of the nodes in the network and, conse-
quently, the infection rate of the nodes, as follows:
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Some indicators and measures have been introduced to evaluate the resilience of a community, and identify 
the critical dimension of a system. Among socioeconomic factors which influence the resilience, such as social 
capital, education, language, governance, financial structures, culture, and workforce, in our model we consider 
some of them, and we aim to understand their role and impact on awareness and epidemic dynamics. The process 
of awareness spreading, UAF, is modeled as follows:

→ →
λ δ

U A F (5)i

where λi represents the rate of awareness of the node i in the multiplex as we assume, without loss of generality, 
that nodes, through the various layer of the multiplex, keep the same features and awareness. We assume that the 
theoretic distribution of λi derives from endogenous and exogenous factors that, in the data-driven modeling (see 
details in Methods), will be extracted from real data. The parameter δ represents the fading rate of attention on 
current epidemics. It is important to underline how it does not correspond to the loss of awareness56, but only to 
a temporary decay of attention or interest towards epidemics.

Preventive isolation, Centrality and Awareness. The preventive isolation strategy consists of isolating 
in advance a set of nodes chosen according to their centrality and awareness values. Nodes are isolated with a 
probability wi, so that each node has a certain probability of being isolated from the network. Following the dia-
grammatic representation of the model, if wi is not null, it temporally excludes a first transition to the status 
Infected, but does not rule out a future infection in function of the timings of the two spreading processes. We 
assume that: tw <  tr then β δβ

⁎̂ ^
i i , where tw is the preventive isolation period, tr is the recovery period, after 

which every nodes recovers from infection. It means that, given the nature of the virus taken into account in the 
data-driven modeling, i.e. the Zika virus, the isolation period is less, but not negligible, compared to recovery 
period. This condition represents a link between the two dynamics of the two spreading processes co-evolving in 
the multiplex network. To define and identify the set of nodes to be preventively isolated, we introduce a social 
network approach, considering a scale-free network for each layer of the multiplex network57, and taking into 
account centrality and awareness measures in a multiplex structure37. In our model, centrality is calculated using 
the eigenvector-like centrality measure, which allows to include the concept of influence in our analysis. We con-
sider a multiplex network , formed by M layers and, differently from ref. 23, in both layers the two spreading 
processes coevolve. All nodes represent the same entities in both layers, but the connectivity patterns are different 
in each of them. For simplicity, in our work, we consider a multiplex network with M =  2 layers and a population 
of N =  1000 nodes. For each layer Lx, with 1 ≤  x ≤  M, we introduce the adjacency matrix, denoted by 
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where ωL Lx y is defined as the strength of the inter-layer interaction between two generic layers Lx and Ly and rep-
resent the elements of the inter-layer matrix C L Lx y. Note that we consider a symmetric interaction measure 
between two distinct layers (M =  2), that is ω ω=L L L L1 2 2 1, and hence: ω ω= = = =I I C C CL L L L L L L L1 2 2 1 1 2 2 1. The 
introduction of the strength of inter-layer interaction demonstrates how in our definition of eigenvector-like 
centrality we assume that each layer has a different centrality measure. We consider the situation where the influ-
ence among layers is heterogeneous. Given a multiplex network  and an influence matrix =W w( )L L1 2 , we 
define the global heterogeneous eigenvector-like centrality of 34,37. To identify the set of nodes to whom apply-
ing the preventive isolation strategy, we need also an awareness measure in the multiplex structure. To this aim, 
we define a vector of awareness, whose elements are the rates of awareness of each node, weighted by the socioec-
onomic factor ξi, as follows:

ξ λ ξ λ ξ λΛ = [ ] (7)
T

N N1 1 2 2

where Λ = Λ = ΛL L1 2 , since the awareness is identical for a node in both the layers of the multiplex network, that 
is the awareness is invariant among layers and for all the interactions among layers. For each layer Lx, we define 
the matrix Z Lx, as the Hadamard product between the awareness matrix Λ  and the adjacency matrix of the layer, 
ALx, as follows:
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Note that Zx
L degenerates in the adjacency matrix ALx if there is no heterogeneity among nodes. In this case, λi 

would be all equal to 1 (homogeneous awareness) with any difference among nodes. To get an overall measure 
which includes both the concepts of centrality and awareness in the multiplex structure, we need to evaluate the 
global heterogeneous eigenvector-like centrality and awareness of the multiplex , defined as a positive and 
normalized eigenvector ∈⊗o NM (if it exists) of the matrix:
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where Z⊗ is the Khatri–Rao product of the influence matrix W and ZT37. For each node, we define an overall 
measure of its centrality and awareness, denoted by θi, in the multiplex network . Θ  is a column vector of size 
N, which includes all the measures θi. It allows to quantify the overall weight, in terms of centrality and awareness, 
of each node in the multiplex , as follows:
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Based on this overall measure of centrality and awareness, we will select a set of nodes to be preventively iso-
lated, associating a different probability of isolation to nodes on each layer of the multiplex.

Simulation Results. Simulations have been conducted choosing a multiplex network with M =  2 layers, 
where each layer is modeled as a scale-free network57 with N =  1000 nodes. From Fig. 2, we can observe how the 
heterogeneous distribution of the infection rate characterizes our model, depending on the awareness and the 
structural parameters of the multiplex network, considering the features of each node regarding the epidemic 
spreading. Each node owns a distinct consciousness and then reacts in a different way to the disease, producing a 
different susceptibility. We also show the set of nodes chosen to be preventively isolated according to their isola-
tion probabilities, where the highest values are assigned to those nodes having a key role and influence on the 
multiplex structure but, at the same time, a low awareness about infection. Given that isolation is a temporary 
separation of the node from the network, when a node is isolated from one layer, it will be also isolated in all the 
multiplex network. In each plot of Fig. 3, curves correspond to the different values of the socioeconomic factors, 
and show how the number of infected nodes depends on the economic healthy of the nodes. Following the 
assumptions of our model, the best case is the last one as expected, where we have a high recovery rate and a low 
fading rate, meaning that nodes recover with a high probability and their attention on disease fades slowly over 
time. In this case, we do not notice substantial shifts among curves and, as expected from our model, awareness 
has a stronger impact on the coevolution dynamics than the socioeconomic factors. The worse case corresponds 
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to the top-left plot, where there is a low recovery and fading rate. The underlying reason is that in a real-world 
scenario, nodes have a high level of attention on the disease propagation, even because only a few nodes have 
already recovered from disease. The latter case is even worse than the plot obtained with a high fading rate and 
low recovery rate, since the increasing of faded nodes could also be linked to a major number of nodes in the 
recovered state which have already lowered their attention on disease (see details in Model). In Fig. 4, the infec-
tion rate derives from heterogeneous susceptibility introduced in our model (see equation 4). The awareness is 
distributed among nodes in the whole multiplex network, meaning that each nodes keeps the same awareness rate 
in both layers. Both in isolation and without isolation, the heterogeneity allows to delay the epidemic outbreak in 
comparison with the homogeneous case (where nodes are assumed with the same susceptibility), as highlighted 
by the epidemic thresholds in both cases. The remarkable difference is due to the dependence of the heterogene-
ous susceptibility on the awareness of nodes, able to strengthen the resilience of each nodes towards infection. In 
other words, a node, aware of disease propagating in the network, can take some prevention measures, lowering 
its susceptibility. Furthermore, the figure highlights the effect of socioeconomic factors on the epidemic thresh-
old: ranging from highest to lowest values of ξi, both with and without isolation, we observe how the two epidemic 
thresholds are more and more close to each other. This is due to the joint and striking role of heterogeneity and 
awareness in delaying the epidemic outbreak, which has a minor impact on nodes with critical economic condi-
tions. The more is the economic unhealthy of the nodes, the more it becomes crucial increasing the nodes’ aware-
ness. In the case of preventive isolation strategy, the epidemic thresholds are shifted and the distribution of 
densities of infected nodes, in relation with the values of β ξ

^( )i
i
 and λi, results bounded. The phase diagrams 

obtained by applying the preventive isolation strategy represent idealistic configurations, in fact preventively 
isolating and quarantining nodes in the considered temporal window tw, the epidemic outbreak will be not 
reached as expected choosing the ‘best’ nodes to be isolated. Considering a long-time span dynamics, where 
awareness could decrease in a dramatic way, this isolation strategy does not avoid a possible outbreak. Since it 
may result wasteful, it should be more convenient to isolate only a fraction of these nodes, while keeping under 
control the others.

In Fig. 5 we exhibit the data-driven approach results referred to countries, chosen according to the data on 
Zika virus (see details in Methods). Each country constitutes a node i in the multiplex network and the overall 

Figure 2. Heterogeneous susceptibility and preventive isolation on multiplex network. We show the 
heterogeneous distribution of the susceptibility and awareness on the two layers of the multiplex network. In the 
top-left and in the bottom-left panels, we show the distributions on layer L1 and L2 respectively, where the color, 
ranging from ‘white’ (lowest values) to ‘red’ (highest values), corresponds to the nodes’ infection rate of our 
model, β ξ

^( )i
i
. The nodes’ size represents the awareness λi of each node i in the multiplex. In the top-right and 

bottom-right panels, we illustrate the preventive isolation strategy and the identification of the set of nodes, 
green-colored, to be isolated from each layer of the multiplex, according to our model.
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population N is equal to 56. Plot (a) is obtained observing infection rate (IR), awareness rate (AW) and socioeco-
nomic factors (SEF) data. We can observe how nodes mostly have low IR and AW rates because less or almost not 
involved in the Zika outbreak risk yet. The situation is totally different in Brazil, which has high values of IR and 
AW. In (b), we maintain data-driven AW and SEF as inputs of our model and, starting from these values, we eval-
uate the ‘expected infection rate’, indicated by EIR, as outcome based on our model (see details in Model). There 
is an evidence that Brazil has a EIR lower than in (a), since we now consider the awareness’ weight of the country 
on Zika virus in evaluating EIR. Hence, similarly, the other countries have a higher EIR than in (a), because less 
aware of Zika virus and then, on average, more susceptible against it. SEF acts in conjunction with awareness, but 
the latter has a stronger impact on EIR and thus it encloses a real social value, to be spread properly in countries 
having economic critical issues. The data-driven trend showed in (b) is in line with the theoretical plot illustrated 
in Fig. 4. In (c) and (d), it is interesting to see how, although in Europe there are still a few cases of infection in 
comparison with Americas, it shows a high EIR due to its low interest and awareness on Zika virus. Moreover, 
the figure suggests how awareness should be kept at an high level since extraordinary events, such as the Rio 
Olympics, may trigger or accelerate unexpected dynamics even in countries which have never been involved 
in infection. This figure shows the trend, while the cumulative statistics with the single values of the estimators 
for each state, is reported in Supplementary Information (see Supplementary Table S1). In Fig. 6, we exploit an 
heatmap to show clearly the sharp contrast between IR and EIR values, in line with our model, better highlighting 
the singularities of some countries.

Methods
Dynamic Microscopic Markov Chain Approach. To analyze the coevolving dynamics of both epidemic 
and awareness spreading on top of the multiplex network, we exploit the Dynamic Microscopic Markov Chain 
Approach (MMCA). At the initial stage, a state probability is assigned to each node describing its initial state. As 
a result of the coevolution of the two dynamical processes, it is worth noting that each individual in this multiplex 
network can only be in one of the three kinds of states: susceptible and unaware (SU), infected and aware (AI), 
and susceptible and aware (SA). In Fig. 7, the MMCA method is illustrated using a probability tree, which depicts 
at each time step, the possible states and their transition in our model. It is important to note that there are some 
states, represented in the diagrammatic models of the two spreading processes (see (1) and (5)), which are not 
reachable or do not exist. For example, the state ipU does not exist since, if a node has been isolated, it cannot be 
in the Unaware state (U) in fact, after being isolated preventively from the network, it knows that it could be a 
potential spreader of the disease. Similarly, the state IU (Infected Unaware) cannot exist, since an infected node 
will be surely aware of the epidemics. For the same reasons, the state RU (Recovered Unaware) does not exist as it 
has already recovered from an infection that it knows, then it will be surely aware of it. In other words, following 
the dynamics of our model, a node, which is has been infected or isolated or recovered, surely knows about epi-
demics and hence it cannot be unaware of the epidemic spreading in the network. Moreover, we observe that its 

Figure 3. Density of infected nodes over time. We illustrate the temporal evolution of the density of infected 
nodes ρI according to our model, considering the variation of both recovery and fading rates, (μ, δ), and the 
socioeconomic factor ξi. ‘Red’, ‘blue’ and ‘green’ lines correspond to the lowest, medium and highest levels of ξi, 
respectively.
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awareness can derive from any of the two layers in the multiplex network. In the transition tree, roots represent 
the possible state at the initial state (time step t), while leaves of each transition constitute all the possible states at 
next time step t +  1. The transition arrows are labeled with the corresponding probabilities vary in function of the 
time step and depend on the actual state of the node. For simplicity’s sake, the time dependency is not illustrated 
in the transition tree. Since at initial time step t each node i can only be in one of the three states, we denote the 
probabilities of the three states as p t( )i

SU , p t( )i
SA , p t( )i

IA  respectively. Furthermore, we define: qi(t), probability for 
node i not being infected at time step t; ⁎q t( )i , probability for node i not being infected at time step t after its pre-
ventive isolation; and finally ri(t), probability for unaware node i staying unaware at time step t. These probabili-
ties are defined as follows:

∏

∏

∏

β β

β β

λ λ
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^ ^
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where aij are the elements of the adjacency matrix of each layer of the multiplex network. The following MMCA 
equations represent the probability of each node of being in one of the states at time step t +  1:

Figure 4. Phase diagrams - λi, β ξ
^( )i

i
, ρI. Plots in the various panels show the density of infected nodes ρI 

(ranging from ‘red’ to ‘blue’) in function of awareness λi and infection rate β ξ
^( )i

i
, and we shed light on the 

comparison between the epidemic threshold in the homogeneous susceptibility case (‘green’) and the epidemic 
threshold derived from our model (‘orange’). In the top panels, (a) and (b), we illustrate the phase diagrams 
without preventive isolation strategy in the two cases of high and low values of ξi, respectively. In the bottom 
panels, (d) and (e), we show the corresponding phase diagrams with preventive isolation strategy for the same 
values of ξi, respectively. Plots are obtained using MMCA method and MC simulations.
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Figure 5. Data-driven analysis in the plane λi - β ξ
^( )i

i
. In (a) and (b), we show the trend of β ξ

^( )i
i
 (IR) (a) and 

EIR (b) according to λi (AW), resulting from data-driven approach and our model, respectively. The color, 
ranging from ‘red’ to ‘blue’ indicates the socioeconomic factor ξi (SEF). In (a), IR, AW and SEF are derived 
directly from data, while in (b) we evaluate EIR according to our model in function of AW and SEF data-driven 
measures. In (c) and (d), we shed light on the difference between South and Central American countries (‘blue’) 
and Europe and Rest of the World (‘orange’).

Figure 6. Heatmap of data-driven analysis. In the heatmap, with colors ranging in the blue scale, where AW 
and SEF are derived from data, we show the infection rate (EIR) evaluated following our model in comparison 
with the infection rate (IR) derived directly from data, observing the different values among the various 
countries.
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To calculate the epidemic threshold, we need to investigate the steady state solution of the system constituted 
by the previous equations. When time t →  + ∞ , there exists an epidemic threshold βC for the two coevolving 
dynamical processes, which means that the epidemic can outbreak only if β ≥  βC. In the steady state, the proba-
bilities of states fulfill the conditions:

+ = + = + =
→∞ →∞ →∞

p t p p t p p t plim ( 1) ; lim ( 1) ; lim ( 1) (13)t i
SU

i
SU

t i
SA

i
SA

t i
IA

i
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The epidemic threshold is given by the order parameter ρi which corresponds to the density of infected nodes 
in the system, and it is given by:

∑ ∑ρ = =
= =N

p
N

p1 1
(14)

I

i

N

i
I

i

N

i
IA

1 1

Thus, starting from equation +p t( 1)i
IA  (see equation (12), at steady state:

µ δ µ µ= − − − + − − + −⁎p q wq q p p[(1 )(1 )(1 ) (1 )(1 )] (1 ) (15)i
IA

i i i i
SA

i
IA

Since around the epidemic threshold βC, the infected probability is close to zero ε= p( 1)i
IA

i , the probabil-
ities of being infected, qi(t) and ⁎q t( )i , can be approximated as follows:

Figure 7. Probability tree for the transitions of states in the model. The states include the possible initial 
states - SA, SU and IA - and the arrows indicate the transition probabilities from one state to all the possible 
subsequent states.
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Furthermore, close to the epidemic onset we have: w 0, thus the probability of not being infected after iso-
lation is much greater than the same probability without isolation: 



⁎q qi i. Around the epidemic threshold, 
starting from the assumptions of our model, the fading rate approximately equal to zero: δ  0. Therefore, insert-
ing these approximations into equation (15) and omitting higher order items, equation (15) is reduced to the 
following form:
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Introducing the expressions of qi and σi, we find:
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From equation (19), by analyzing the probability εp ( )i
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i , we can get:
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since the first term in the right hand side of the equation (20) is negligible than the second one, given that β̂i, close 
to the epidemic threshold, is very small. Thus, the previous equation will be:
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where tji are the elements of the identity matrix. By defining the matrix H, whose elements are given by:
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the equation (22) has nontrivial solutions if and only if µ
βj

 is the eigenvalue of matrix H. Consequently, the epi-

demic threshold β̂c  is the one which satisfies = Λµ

β
H( )max

j

, where Λ max (H) is the largest eigenvalue of the matrix 

H, and we get:
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Data-Driven Analysis. Information about awareness, disease and socioeconomic factors can be obtained in 
several ways and also exploiting online tools. In our model, we take into account N =  56 states across South America, 
Europe and Oceania, representing the nodes in the multiplex network and all the collected data are referred to this 
set of nodes. We observe data in a temporal window from April 2015 to June 2016, chosen according to the most 
relevant temporal dynamics of the Zika virus. Data regarding awareness are collected from heterogeneous data sets, 
each representing one of the aspects included in the model. Therefore, we consider data from the Big Five person-
ality traits58, where the personality traits are reported across major regions of the world, and we choose the entries 
corresponding to our set of nodes. To evaluate the time evolution of awareness and set up a measure related to the 
interest on Zika virus, we look at Google Trends, keeping track the total search-volume of the term ‘Zika’ and seman-
tic associated terms for each of the regions of the world included in our model. To extend our measure of awareness 
taken from data, we consider the online informal sources and real-time emerging public health threats of Zika virus 
outbreak59. Awareness is an aggregated measure of these sources. The measure of infection rate is obtained from 
the data set “World Zika virus Outbreak 2016” of the data repository Knoema60, considering both suspected and 
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infected cases. The socioeconomic factors data are referred to the GDP (Gross Domestic Product) values from data 
set “Global GDP 2016”60, as a measure of the well-being and economic healthy of the considered countries.

Discussion
Our study has proposed a novel model to explore and quantify the coevolution of epidemic and awareness spread-
ing on a multiplex network, with the introduction of a preventive isolation strategy and adding a data-driven 
evaluation from multiple sources and types of data of a real emerging Zika virus on a population of nodes, repre-
senting countries involved in the epidemic outbreak. Our idea has been to include realistic multiple social critical 
aspects in the epidemic spreading on multiplex network. As observed in ref. 61, there is a direct relationship 
between the economic crisis and the epidemic growth rate since more and more people fail to get treatment, to 
buy drugs, or take the right prevention measures. All these issues, together with the nodes features, both psy-
chological and social, influence the dynamics of the two spreading processes on the multiplex network. One of 
the main targets has been to analyze and weigh all these aspects, quantifying and reasoning about the strong and 
nontrivial impact on the resulting epidemic dynamics. Findings have highlighted the striking role of heteroge-
neity and awareness in the epidemic spreading dynamics under different socioeconomic conditions as expected. 
Awareness, even if it is not able to totally control the epidemic spreading, acts on susceptibility, increasing the 
resilience of nodes and delaying the epidemic outbreak. This has been even more crucial under critical economic 
conditions. The delay in the epidemic outbreak encourages a better understanding of epidemic from health man-
agement organization, giving them the opportunity to apply some countermeasures to control and evaluate the 
comorbidity risk with other diseases43. In future, we aim at performing a preventive isolation strategy as a result 
of comorbidity factors, detected at a certain time step in function of the epidemic outbreak. Once ascertained, this 
comorbidity risk62 should be a control parameter, tuning and timing the isolation strategy according to a comor-
bidity risk temporal window. Moreover, considering the dynamics of infection characterizing Zika virus, due also 
to sexual contacts, we also target to explore the possible analogies between Zika and HIV infection. Furthermore, 
we aim to deepen the intangible impact of the economic complexity in evaluating the competitiveness of various 
countries63 and their impact on the epidemic spread.
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