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Abstract: Förster Resonance Energy Transfer (FRET) imaging is an essential analytical 
method in biomedical research. The limited photon-budget experimentally available, 
however, imposes compromises between spatiotemporal and biochemical resolutions, 
photodamage and phototoxicity. The study of photon-statistics in biochemical imaging is thus 
important in guiding the efficient design of instrumentation and assays. Here, we show a 
comparative analysis of photon-statistics in FRET imaging demonstrating how the precision 
of FRET imaging varies vastly with imaging parameters. Therefore, we provide analytical 
and numerical tools for assay optimization. Fluorescence lifetime imaging microscopy 
(FLIM) is a very robust technique with excellent photon-efficiencies. However, we show that 
also intensity-based FRET imaging can reaches high precision by utilizing information from 
both donor and acceptor fluorophores. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Förster resonance energy transfer (FRET) is the non-radiative transfer of energy from a donor 
fluorophore to an acceptor chromophore [1, 2]. The probability for a molecule to transfer 
energy via FRET (E, FRET efficiency) is typically sensitive to distances within the  
nanometers range [3]. Therefore, for its high sensitivity at the nanometer scale, FRET has 
many applications in biophysics and biomedical sciences (reviewed in [4-7]). FRET results in 
the reduction of the quantum yield and the fluorescence lifetime of the donor fluorophore. In 
the instances where the acceptor is fluorescent, FRET also causes acceptor sensitized 
emission [1]. The quantification of the intensities emitted by a donor and an acceptor 
fluorophore are often referred as sensitized emission FRET or seFRET. Fluorescence lifetime 
imaging microscopy (FLIM) [8-10] is one of the methodologies that enables researcher to 
quantitate FRET; among the various implementations of FLIM [1, 7, 11], time-correlated 
single-photon counting (TCSPC) is regarded as the gold-standard for its high precision and 
accuracy [12, 13].  

Fig. 1 illustrates concepts that are useful to understand FRET detection by comparing the 
flow of information from light source, fluorophores to detectors with an analogy to the flow 
of a liquid. Excitation light pumps the exited state of a fluorophore (Fig. 1a) which then 
decays to its ground state emitting light, as if it was water (green shaded) dripping from a hole 
at the bottom of a bucket into another container (the detector).  FRET provides a second de-
excitation pathway that permits energy to flow to an acceptor that will dissipate its energy by 
emitting red-shifted photons. Measurements of donor (IDD) and acceptor (IDA) intensities 
excited at a wavelength optimized for donor excitation provide a quantification of FRET. In 
practice, excitation light directly pumps the excited state of an acceptor fluorophore (Fig. 1a; 
direct excitation, DE), and spectral emission overlap between fluorophores causes light from 
the donor to ‘spill-over’ into the acceptor channel (Fig. 1a; spectral bleed-through, SBT). 
Cross-talks thus render ratiometric FRET sensitive to the relative concentration of donor and 
acceptor fluorophores. Rather than measuring the relative intensities of a FRET pair, FLIM 
quantifies FRET by measuring the average time that donor molecules spend in the excited 
state (Fig. 1b), thus avoiding the need to correct for cross-talks. Intensity-based techniques, 
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however, require corrections that are provided by multi-colour (referred to as three -channel 
or -cube, corrected or precision FRET [14-18]) or hyperspectral imaging  [19-22]. 

 

 

Fig. 1. Quantification of FRET by FLIM and seFRET. Excitation light pumps a population of 
excited fluorophores, here represented as blue (donor) or yellow (acceptor) buckets. In an ideal 
system, the light source (blue tap) excites only the pool of donor fluorophores directly (a). 
Excitation energy then is either transferred non-radiatively to the acceptor or emitted as 
photons and collected by detectors, here represented by the bottom blue (IDD) and yellow (IDA) 
plates. The ratio of IDA and IDD can be used to estimate FRET. In practice, direct excitation of 
the acceptor (DE) and spectral bleed-through from donor to acceptor (SBT) contaminate the 
FRET signal. FLIM (b) avoids cross-talks between donor and acceptor by estimating the 
presence of FRET by the time a fluorophore spends in its excited state. Quantitative 
implementations of seFRET requires the estimation of cross-talks using a third image (IAA in c) 
from which correction factors (AER in d, and DER in e) can be estimated. These parameters 
are used to subtract spill-over contributions from the FRET-sensitized acceptor emission (f, 
cFRET). FRET efficiency (E) can be then estimated by normalizing cFRET to the donor 
(dFRET) or acceptor emission (aFRET) that would have been measured with E=0 or E=1, 
respectively.  

Quantitative seFRET requires at least the acquisition of the acceptor fluorescence excited at a 
wavelength optimized for the excitation of the acceptor (IAA, Fig. 1c). The acceptor excitation 
ratio AER = [IDA/IAA]A – obtained by exciting a sample containing only the acceptor 
fluorophores (Fig. 1d) – enables the estimation of direct excitation. Similarly, the donor 
emission ratio DER = [IDA/IDD]D - measured with a sample containing only the donor 
fluorophore - is used to estimate the donor spectral bleed-through (Fig. 1e). The corrected 
FRET signal (cFRET) can be then evaluated for each pixel as: cFRET = IDA-DER IDD-AER IAA 

(Fig. 1f and  [14, 15]). FRET efficiency is estimated by relating cFRET to the intensity that 
would have been emitted by the donor dFRET = η cFRET / (IDD+ η cFRET) or acceptor 
aFRET = ε cFRET / IAA either if FRET did not occur or if E=100%, respectively (Fig. 1f). ε 
and η are the ratio of the donor/acceptor excitation light intensities and detection efficiencies, 
respectively, parameters that are measured with a reference sample of known FRET 
efficiency (see Appendix 2). dFRET and aFRET are good estimators for the apparent FRET 
efficiency [14], i.e., E multiplied by the fraction of interacting donors (fD) or acceptors (fA), 
respectively. Protocols for the estimation of seFRET are described in [14, 15, 23] and 
comparison between different nomenclatures are shown in Tables 3-5.  

Biological applications of FRET and FLIM are constrained by the limited photon-budget 
available, i.e. the number of detectable photons within a reasonable exposure time limited by 
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photodamage and phototoxicity, or by the spatiotemporal and biochemical resolutions 
required to characterize dynamic biological processes. The role of photon-statistics in FRET 
imaging has been characterized, more extensively for FLIM applications [8, 10, 24-31] and, 
to our knowledge, at a lesser extent for intensity-based techniques [32, 33]. Here, we study 
the role of photon-statistics in seFRET and provide a theoretical comparison of the physical 
limits in precision between seFRET and TCSPC. Interestingly, seFRET performs very well 
from a theoretical perspective, resulting in high precision because of the efficient utilization 
of information from both donor and acceptor signals, suggesting strategies to enhance the 
biochemical resolving power in FRET microscopy.  

2. Results 

A. Fisher information matrix and seFRET 

How many photons are necessary to estimate FRET? The answer to this question depends 
on the precision we want to achieve. In addition to other sources of errors not considered in 
this work, fluorescence detection always exhibits at least Poissonian noise [25, 32, 34]. Fisher 
information theory permits us to estimate the Cramer-Rao lower bound (σ , CRLB), i.e. the 
smallest achievable statistical error in the estimate of a random variable. Given ND detected 
photons, we can often write 0.5

DNσ σ −=   where σ depends on imaging parameters but not on 

ND. Therefore, σ represents the photon-efficiency of a method. To compute σ , we first 
developed the analytical description of the Fisher information for a three-filter seFRET that is 
used for live cell imaging [14, 15, 17, 35] following the method described in the seminal 
work of Watkins et al. originally for single-molecule FRET (Appendix 1 and ref. [32]). In 
single-molecule detection, IAA can be disregarded, but its measurement has significant 
implications for seFRET. The step-by-step analytical derivation of our analytical framework 
is described in Appendix 2. Briefly, we evaluated the Fisher information matrix J and the 
element (J-1)11 of its inverse that gives CRLB [32, 36] for the variance of dFRET (i=D) and 
aFRET (i=A):  

 ( ) ( )2 1 1 2 2 2

11iE iFRET P B SBT EJ Nσ σ σ σ− −= = + +    (1) 
2 2 2 2

iE B SBT Eσ σ σ σ= + +     describes the contribution of background, spectral bleed-though and 

FRET efficiency to the standard deviation of the FRET estimators (see Eqs. 32-34 for dFRET 
and Eqs. 35-37 for aFRET in Appendix 2 for analytical descriptions).  

Table 1. Examples of photon-budget required to attain a standard deviation of 5% in FRET efficiency. 

case 
study 

TCSPC dFRET aFRET 

E fD σ  ND
a E σ b ND E σ b ND E 

50 50 1.4 1,150(1,500) 50 0.53/3.5 110/5,000 25 1.5/9.4 900/35,000 50 

20 20 2.1 1,800(1,900) 20 0.21/2 20/1,600 4 1.5/10.5 900/42,000 20 

75 98 0.5 100(370) 75 0.6/2.6 150/2,700 74 1.6/9.3 1,000/35,000 75 

75 36 10 40,000(51,000) 75 0.52/2.7 110/2,900 27 2.2/10 1,900/41,500 75 

20 98 0.43 75(90) 20 0.56/6.7 190/18,000 20 0.7/8.6 200/30,000 20 

aNumber of photons required for donor imaging by FLIM (available photon-budget including SE); bvalues of σ in 
the absence of cross-talks (as in Fig. 3) / values in the presence of cross-talks (as in Fig. 4, confocal system)  

 
Therefore, 

iEσ is a representation of how statistical errors for the FRET estimators scale 

relative to NP. In the next sections, we describe 
iEσ -curves as a function of FRET efficiency 

and experimental conditions. Fig. 2a provides guidance to interpret Figs. 2-5. For example, 
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we can estimate that at E=0, σ =0.3 and with NP=1,000 photons we would then expect to 
measure E~0.00±0.01 ( 1/2

PNσ σ −=  ). Conversely, σ -values can also permit us to estimate the 

number of photons ( 2 2
DN σ σ −=  , see Eq. 38) needed to attain a predefined statistical error. For 

instance, if we set σ = 0.05, from the curve shown in Fig. 2a we infer that a budget of 3,600 
photons is necessary ( 2 2

DN σ σ −=  ) to estimate E~0.50±0.05 (see  Table 1 for a few case 

studies). 

 

Fig. 2. Photon-economy in FRET estimation by TCSPC. The σ values were obtained 

numerically. The mock curve in (a) exemplifies how the σ values can be used. Divided by 

NP
0.5, σ returns the expected standard deviation on the FRET estimate. When squared and 

divided by the maximum variance that might be targeted in an experiment, σ provide an 
estimate of the minimum number of photons that should be collected (ND). Numerical 
estimations of the standard deviations of FRET estimates measured with FLIM, for an ideal 
system (b) with Dirac-like IRF for τ0=1ns (blue), 3ns (black lines and yellow area) and 10ns 
(magenta) or with a finite IRF of 38ps fwhm (c). Curves of the same color show f=10%, 50% 
and ~90% from top to bottom. (d) Simulations for τ0=3ns, with an uncorrelated background 
that must be estimated, with values of 0 (magenta), 100 (black curves and yellow area) and 
1,000 photons (blue). 

B. Cramer-Rao lower bound for TCSPC  

To provide a reference for the theoretical efficiency of seFRET, we studied the expected 
statistical error for the estimation of FRET by TCSPC, the gold-standard in FLIM detection 
[7]. For the estimation of FRET, we consider a double-exponential model with a known 
unquenched fluorescence lifetime (τ0) and total photon counts (NP), and with unknown 
fractional contribution (f) and FRET-dependent lifetime (τ0(1-E)) to be fitted. We could not 
calculate the analytical solutions for this model. Therefore, we studied the problem 
numerically (see Methods) by adapting code originally developed by Bouchet et al. [36]. The 
Cramer-Rao lower bound for the standard deviation of the FRET estimate is shown in Fig. 
2b-d. In fig. 2b we assumed an ideal Dirac-like instrument response function (IRF), for τ0=1, 
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3 and 10 ns. For each of these values, we varied f from 10% (higher curves), 50% (middle 
curves) and ~90% (lower curves) maintaining the number of photons emitted by non-
interacting donors at 1,000 and varying the number of photons emitted by the interacting 
donor from 100, 500 to 10,000. As expected, for larger values of τ0 and f, the normalized 
standard deviation is lower. Fig. 2c shows the same analysis but with a finite IRF of ~38ps 
full-width at half-maximum (fwhm) as defined in [36]. The IRF has a significant impact only 
for high FRET efficiencies values when the fluorescence lifetime estimates are in the order of 
magnitude of the IRF. In Fig. 2d, we kept τ0 constant (3ns) but varied the contribution of 
uncorrelated background from 0 (fig. 1c, bottom curves) to 100 (middle) and 1,000 (top) 
photons. The signal-to-background ratio (SBR) is 1, 5 and 100 (100 photons) and 0.1, 0.5 and 
1 (1,000 photons) for f=10, 50, 90%, respectively. The statistical error in FRET estimates are 
comparatively robust to the presence of background. We remark that although here we report 
the number of photons used for the numerical simulations, σ does not depend on the specific 
photon counts we simulated but only on their fractional contribution to a FRET-dependent 
signal (e.g., f or SBR).  

C. Photon-economy of seFRET in the absence of cross-talks 

First we consider the case where only intrinsic noise is present with η and ε set to one to aid 
the interpretation of the results. Fig. 3 shows numerical simulations (see Methods for details) 
carried out with one-hundred donor-acceptor pairs participating (E from 0% to 99%) in the 
presence and absence of donor and acceptor molecules that do not undergo energy transfer 
(fD=10-100%, fA=10-100%). Fig. 3a-b shows that dFRET and aFRET are unbiased estimators 
for fDE and fAE, respectively. Fig. 3c-d shows that the signal-to-noise ratio (SNR) in dFRET 
is always equal or better than aFRET. In these ideal conditions, dFRET is infinitely precise 
both with no or 100% energy transfer as the absence of signal from either the donor or 
acceptor channels unequivocally inform about the occurrence of these cases. The SNR values 
for dFRET and aFRET depend on the relative number of acceptors and donors in the sample; 
however, the estimators are quite robust in the absence of spurious signals. Indeed, seFRET 
explores a relatively narrow SNR area when varying the values of fD and fA (Fig. 3c-d, grey 
area). In comparison, the SNR for an ideal TCSPC (fig. 2b and fig. 3c-d, yellow area) 
explores a much wider range at varying contribution of donors interacting with acceptor 
fluorophores.  
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breakthroughs in FLIM-enabling technologies [41-47] and data analysis [48-50] are reducing 
the barrier to adoption for FLIM; as the choice between FLIM and seFRET might slowly drift 
away from technical constraints, we aimed to develop a comparative analysis of their limits 
from an information theory perspective. Our work provides guidance for the choice and 
further optimization of these methodologies. The analytical and numerical tools we developed 
can be used to compute reference values for different seFRET configurations and TCSPC. As 
the role of photon-statistics in the various implementations of FLIM (TCSPC, time-gating and 
frequency-domain) has been studied in-depth [10, 12, 13, 25, 51-54] we focused on TCSPC 
as a representative standard to compare seFRET to. Figs. 2-5 and the case studies shown in 
Table 1 provide an assessment of performances for seFRET and TCSPC in ideal conditions 
and illustrative cases representative of specific fluorophores employed.  

Interestingly, seFRET can outperform TCSPC in the ideal conditions of negligible 
spectral crosstalk. Here, TCSPC can attain higher SNR only when a majority of donor 
fluorophores are engaged in FRET or otherwise the dFRET estimator performs significantly 
better. A better photon-efficiency of the dFRET estimator stems from the capability of 
dFRET to utilize information from photons emitted from both donor and acceptor molecules. 
However, the higher precision of dFRET is vastly reduced in the presence of realistic levels 
of spectral crosstalk or background. We did not consider the additional statistical and 
systematic errors that the reference measurements required by seFRET causes and other 
sources of noise manifesting in detectors that do not operate in single-photon counting. 
Therefore, despite the excellent performance of seFRET compared to TCSPC, the latter might 
generally outperform seFRET in reproducibility, accuracy and precision in practical 
implementations. It is important to note that the appropriate optimization of imaging 
parameters for seFRET can make seFRET rather competitive also for its high precision, 
something that might be often underestimated. For instance, the use of long-Stokes shift 
acceptor fluorophores for seFRET, not usually implemented to the best of our knowledge, 
might result in vast improvements in the SNR of this intensity-based technique. We also note 
that we compared seFRET to TCSPC as an established gold-standard in FRET detection. 
Although the analysis we provided is representative of the limits on precision imposed by 
photon-statistics for lifetime determination and thus FRET/FLIM, there are also many other 
implementations of FLIM that can be successfully used for FRET estimation [1, 7, 24]. At 
high count-rates, for instance, TCSPC deteriorates its precision and accuracy because of 
photon-losses and distortions of the experimental decays caused by pulse pile-up and detector 
dead-time [12, 55, 56]. These losses were not accounted in this framework. Time-gating or 
frequency-domain FLIM, which photon-efficiency has been well characterized previously can 
provide high photon-budgets and fast acquisition [10, 12, 29, 51, 52].  

We note, however, that there are instances where FLIM might lose its competitive edge 
relative to the simpler seFRET technique from a photon-efficiency perspective. Ultimately, 
one of the most substantial differences between FLIM and seFRET is that FLIM is typically 
used for the detection of donor fluorescence, permitting researchers to streamline the use of 
the visible spectrum or to optimize Foster distances with dark acceptors [57, 58], avoiding 
crosstalk and issues related to chromatic aberrations. On the contrary, seFRET uses the 
complete photon-budget emitted by the FRET pair. For instance, the frequent cases where 
FRET-based biosensors do not exhibit sufficient dynamic range in FLIM but work when 
imaged by seFRET, might be caused by conditions in which typical FLIM applications, not 
detecting acceptor fluorescence, provide poor SNR values (e.g., high FRET efficiencies or 
low fractional contributions of specific reporter states). The use of dark chromophores as 
acceptor molecules  is a strategy to increase sensitivity of sensors [57-59] or to clear-up the 
visible spectrum for multiplexed detection of biochemical reactions [59, 60]. However, we 
can speculate that, in those cases where the benefits of a dark chromophore might be 
irrelevant, the combination of seFRET and TCSPC (e.g., in dual-colour or hyperspectral 
FLIM [34, 45, 61, 62]) will provide significant improvements in the precision of FRET 
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estimation. A higher precision leads directly to an improvement in the capability to resolve 
smaller biochemical differences in living cells. From a theoretical standpoint, this 
improvement in biochemical resolving power can be understood from the general analysis of 
Fisher information in multi-dimensional or multi-parametric detection systems (see for 
example the photon partitioning theorem in [34, 63]). From a practical point of view, dual-
colour fast high-resolution FLIM might be increasingly accessible thanks to the ongoing 
revolution in time-resolved detection technologies and could provide yet unexplored ideal 
performances.   

4. Methods 

Analytical solutions were obtained manually, but their consistency was evaluated with the use 
of Mathematica (Wolfram). Numerical simulations were generated with Matlab (Mathworks) 
with bespoke code available at the GitHub repository 
github.com/alesposito/FisherInformation. The Cramer-Rao lower bound for TCSPC was 
obtained with parameters sweeps adapting code from [36]. We utilized their methods to 
compute the standard deviation, normalized to the total (donor) photon counts, of the shorter 
fluorescence lifetime estimate. This estimate is the fluorescence lifetime quenched via FRET 
and evaluated from a double-exponential fit with constant background and known IRF. Fig. 
2b was generated using 1,000 photons emitted by non-interacting donor molecules (i.e., 
fluorophores not participating in FRET) with τ0=1, 3 or 10ns. Both τ0 and NP were used as 
fixed parameters. The number of photons emitted by donors interacting with acceptor 
fluorophores (i.e., FRET-competent molecule) was varied from 100, 500 to 10,000. E was 
varied from 0 to 100% in 128 steps on a power series. We used TCSPC as a gold-standard 
reference and, therefore, we utilized parameters of high-end systems with a laser repetition 
rate of 80MHz and 256 time-bins. Fig. 1b was generated in the same way, but using the 
experimental IRF provided in ref. [36]. For Fig. 1c, we simulated only τ0=3ns. All other 
parameters the same as in Fig. 1b, we varied the number of photons in an uncorrelated 
background (as a fit parameter) for Fig. 1c, including 0, 100 and 1,000 photons. All the 
results are shown as normalized by the total photon count emitted by the donor. We validated 
error propagation in the unmixing equations with numerical simulations. First, we synthesized 
noiseless images using the same mathematical framework; subsequently, we added 
Poissonian noise and unmixed the images to determine how noise propagates to the FRET 
estimates aFRET and dFRET. Results are presented as normalized to the total photon counts 
as the shapes of the curves presented do not depend on this value (not shown). Results 
reported in this work were obtained with Dell Precision workstation equipped with an Intel 
Xeon CPU E5-1620v3 and 64GB of RAM and Matlab 2018a.  
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Appendix 1. Fisher information  

The Fisher information matrix defines the information content of parameter estimators 
accordingly to stochastic models of the experiments. The Fisher information matrix for 
fluorescence lifetime sensing has been derived analytically and studied previously [25-27]. 
The Fisher information matrix for sensitized emission FRET was described, to our 
knowledge, only for the case of single-molecule detection [32]. The information content of an 
experiment can be described by the likelihood function (L): 

  ( ) ( )( ) ( ) ( )( )1
1

!
1

1
i

i

m N F iU F i U
N

i

L F iU F i U e
 − − − 

=

 = − − ∏   (2) 

Here, we broadly adhere to the formalism described in ref. [26] revised with some 
nomenclature introduced in ref. [32]. The likelihood function is the product of the probability 
to detect Ni (i=1, …, m) photons in m independent channels, photons that are Poisson 
distributed with a rate defined by the model function F:     

 ( ) ( )
0

, ,
u

F u q f q dυ υ= 
   

  (3) 

where f(u,q) is the expected average signal as a function of channel parameters u and 
experimental parameters that should be estimated q. For instance, for time-resolved detection, 
u will equal t and integration will be carried out over time bins. U is the bandwidth of the 
channel (e.g., spectral bandwidth, time-gate width). f can be factorized into parameters such 
as the excitation rate (kex), the integration time of the signal T, and two functions that depend 
on the experimental parameters (ζ(q)) and on the detection system (S(u)): 

  ( ) ( ) ( ), exf u q k TS u qζ→ =   
  (4) 

With distributions found in spectroscopy, the elements jij of the Fisher information matrix can 
be computed as the negative of the expectation of the second derivative of f: 

  
( )2 ,

ij
i j u

lnf u q
j E

q q

 ∂
= −  

∂ ∂   

 
  (5) 

When the signal is described by the Poisson statistics  [32], Eq. 5 further simplifies to: 
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In the next sections, we will describe the algebraic manipulations of seFRET formalism 
required to obtain the separation of variables shown in Eq. 4 that will permit the estimation of 
Eq. 6. The Fisher information matrix is essential when studying the noise performance of an 
estimator as the Cramer-Rao theorem states that the lower bounds of the variance of the 
unbiased estimators of q are defined by the inverse of the Fisher information matrix. 

Appendix 2. Fisher information matrix and seFRET  

The fluorescence emission as a function of wavelength (λ) for the case of seFRET can be 
described as the sum of photons emitted by the donor fluorophore, photons emitted by 
sensitized acceptors (SE) and photons emitted by acceptors upon direct excitation (DE) with 
the donor excitation light source: 

  ( ) ( ) ( ) ( ) ( ){ }, , , , 1D A DA ex D D DA DA SE A DEf E n n n k T S n n E n S E n Sλ λ λ λ= + − + +    (7) 

SD, SSE and SDE include spectral characteristics of the fluorophores and detection system, e.g., 
quantum yields, molar extinction coefficients, spectral overlaps; nD, nA and nDA are the 
number of non-interacting donor, non-interacting acceptor and interacting donor-acceptor 
molecules in the sample, respectively. seFRET detected by the three-filter method is carried 
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out with two acquisition channels for donor- and sensitized- emission that will effectively 
carry information on energy transfer and a reference acquisition channel with direct excitation 
of the acceptor. The main difference between single molecule seFRET and seFRET imaging 
is the requirement in the latter to reference the measured FRET signal to the concentration of 
the acceptor molecules. To compute the Fisher information matrix, we shall integrate Eq. 7: 

( ) ( ) ( ) ( ) ( ){ }0 0 0
1ex D DA D DA SE A DEF k T n n E S d n E S d n S d

λ λ λ
λ λ λ λ λ λ λ= + − + +        (8) 

From Eq. S7, we can estimate the fluorescence intensity collected within a detection channel 
optimized for donor emission fluorescence of spectral window [λd1, λd2]:  

 ( ) ( ) ( )2 1 1DD
d d ex DD D DAI F F k TS n n Eλ λ= − = + −     (9) 

The cross-talk between the donor channel and acceptor emission is assumed to be negligible: 

  ( ) ( ) ( )2 2 2

1 1 1

; 0; 0;
d d d

d d d
D DD SE DES d S S d S d

λ λ λ

λ λ λ
λ λ λ λ λ λ= = =     (10) 

It is convenient also to model an unspecific background signal (BDD) and to introduce fA and 
fD, the fractions of interacting donor or acceptors: 

  ( ){ } [ ]{ }1 1DD
ex DD D DA DD ex DD D D DDI k T S n n E B k T S N f E B= + − + = − +    (11) 

Where ND is the total number of donor fluorophores. In a similar way, the intensity collected 
in the donor channel can be described as a function of fA and the total number of acceptor 
fluorophores (NA). In summary: 

  
( ) ( )
( ) [ ]

1DD
D ex DD D D DD

DD
A ex DD D DD A A DD

I f E k T S N f E B

I f E k T S N S N f E B

= − +  
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  (12) 

Similarly, we can evaluate the intensity collected in the sensitized emission channel by 
integration of Eq. 8 over the spectral range [λa1, λa2]: 

  ( ) ( ){ }1DA
ex D DA DD DA A DA AA DAI k T n n E S DER n E n n AER S Bε= + − + + + +        (13) 

where BDA is an unspecific background and 

  ( ) ( ) ( )2 2 2

1 1 1

; ;
a a a

a a a
D DD SE AA DE AAS d S DER S d S S d S AER

λ λ λ

λ λ λ
λ λ λ λ λ λ ε= = =     (14) 

ε is a proportionality factor between the intensity of the excitation light used for donor and 
acceptor excitation. DER=[IDA/IDD]only-donor is the donor emission ratio, a control measurement 
for the donor spectral bleed-through into the acceptor channel using a donor-only control 
sample performed by measuring the proportion of signal in the acceptor channel relative to 
the donor channel, and estimating the ratio between the intensities detected in the acceptor. 
AER=[IDA/IAA]only-acceptor is the acceptor excitation ratio, a control measurement aimed to 
estimate the direct excitation of acceptors by measuring the proportion of intensities in the 
acceptor channel with a donor-only sample with excitation light optimal for donor and 
acceptor excitation, respectively. Eq. 13 can be rewritten using the definitions of fD, fA, ND and 
NA as: 

  
( ) ( ){ }
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DA

D ex D AA DD D AA A DD D DA

DA

A ex A AA DD A AA A DD D DA

I f E k T N S S DER f E S N AER S N DER B
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ε

ε
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 (15) 

The intensity value measured in the acceptor reference channel (IAA) does not depend on 
energy transfer or the number of donor molecules and can be simply described as: 

  ( )AA
ex AA A AAI k T S N Bε= +   (16) 
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We can simplify the description of the Fisher information matrix using the following set of 
substitutions, ED=fDE, EA=fAE, CD=SDDNDD, CA=SAANAA, η=SDD/SAA, NP=kexT. In this work, 
the number of detected photons is considered equal to the number of absorbed photons (i.e. 
assuming no losses from the optics or fluorophores) without any loss of generality. ED and EA 
are the apparent FRET efficiencies measured in seFRET by the donor (dFRET) and acceptor 
(aFRET) normalized estimators; CD and CA are the relative concentrations of donor and 
acceptor in arbitrary units; η is the ratio of the relative brightness of the donor and the 
acceptor fluorophores. Substituting the set of definition shown in Eq. 12, 15 and 16, we thus 
obtain: 
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Following the formalism introduced in [32], we rewrite Eq. 17 with the parametrization: 
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The Fisher information matrix can be now estimated by computing a set of derivatives of the 
functions ζs and substituting in Eq. 6: 
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Each element of the Fisher information matrix can be then computed accordingly to Eq. S5: 
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33 P A AAJ N C B
−= +   (30) 

Here, we show explicitly only the evaluation of the Fisher information matrix related to 
dFRET but similar steps can be used also for aFRET. The Cramer-Rao bound for the variance 
of ED is the first element of the inverse matrix with elements described in Eq. 25-30. 
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The variance in the FRET efficiency estimate is equal to the sum of a background variance 
(σB

2), a variance which depends on the spectral bleed through (σSBT
2) and a variance which 

does not depends on background contributions (σE
2) as shown in Eq. 1. We can write simpler 

analytical solutions for each component:  
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 ( ) ( ) ( )[ ]2 11 1E D D D DdFRET E E E Cσ η η −= − − +   (34) 

Similarly, we can evaluate the analytical descriptions for the noise of the estimator aFRET: 
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 ( ) ( )2 1 11E A AaFRET E A Cσ ε − −= +   (37) 

 
A comparison between different nomenclatures used in the literature is shown in Tables 3-5. 
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 AER DER α β 

In this work AER DER ηDER (AERε)-1   

In Hoppe et al. α β ξβγ-1   γ-1 

Table 3. Conversion of nomenclature from Elder et al. [14]  

 
 

 AER DER η Ε 

In Elder et al. AER DER α/DER β/AER 

In Hoppe et al. α β ξγ-1 (αγ)-1   

Table 4. Conversion of nomenclature from this work 

 
 

 Α β ξ Γ 

In this work AER DER η(AERε)-1   AERε 

In Elder et al. AER DER α(DERβ)-1 β-1 

Table 5. Conversion of nomenclature from Hoppe et al. [15] 
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