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The many weak instruments problem and
Mendelian randomization
Neil M. Davies,a,b*† Stephanie von Hinke Kessler Scholder,c
Helmut Farbmacher,d Stephen Burgess,e Frank Windmeijera,c

and George Davey Smitha,b

Instrumental variable estimates of causal effects can be biased when using many instruments that are only weakly
associated with the exposure. We describe several techniques to reduce this bias and estimate corrected stan-
dard errors. We present our findings using a simulation study and an empirical application. For the latter, we
estimate the effect of height on lung function, using genetic variants as instruments for height. Our simulation
study demonstrates that, using many weak individual variants, two-stage least squares (2SLS) is biased, whereas
the limited information maximum likelihood (LIML) and the continuously updating estimator (CUE) are unbi-
ased and have accurate rejection frequencies when standard errors are corrected for the presence of many weak
instruments. Our illustrative empirical example uses data on 3631 children from England. We used 180 genetic
variants as instruments and compared conventional ordinary least squares estimates with results for the 2SLS,
LIML, and CUE instrumental variable estimators using the individual height variants. We further compare
these with instrumental variable estimates using an unweighted or weighted allele score as single instruments.
In conclusion, the allele scores and CUE gave consistent estimates of the causal effect. In our empirical example,
estimates using the allele score were more efficient. CUE with corrected standard errors, however, provides a
useful additional statistical tool in applications with many weak instruments. The CUE may be preferred over an
allele score if the population weights for the allele score are unknown or when the causal effects of multiple risk
factors are estimated jointly. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

Mendelian randomization uses genetic variants as instrumental variables to investigate the effects of
modifiable risk factors for disease such as weight, blood pressure, cholesterol, alcohol, and tobacco con-
sumption on different outcomes of interest [1–9]. An instrument is a variable external to the model of
interest that is robustly associated with the modifiable risk factor, but is not associated with the outcome
variable, other than through its effect on the risk factor. One challenge in using genetic instrumental vari-
ables is that many genetic variants are only modestly associated with the risk factor of interest, which
limits the power and precision of a study. One approach commonly used in econometric studies to increase
the power and precision is to include multiple instruments for the exposure of interest. However, studies
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using multiple instruments that are only modestly associated with the risk factor of interest can suffer
from many weak instruments bias [10].

A weak instrumental variable is one that explains only a small proportion of the variation in the expo-
sure. Studies using a single weak instrument will have low power to reject the null hypothesis. In addition,
any minor violation in the ‘exclusion restriction’ (i.e. the assumption that the instrument is unrelated to
any confounders and does not directly affect the outcome of interest) can cause large biases [11].

Studies using many instruments that are each only weakly associated with the exposure can suffer
from a further distinct bias: a many weak instruments bias. This implies that, even if a set of multiple
instruments is valid, (i.e. they are not associated with confounding factors, have no direct effect on the
outcome, and are at least weakly associated with the exposure) the two-stage least squares estimator can
still be biased towards the conventional regression estimate [10, 12]. This is a concern in applications
using multiple genetic variants as instruments, because each variant is typically weakly associated with
the exposure of interest [13–16]. We demonstrate that, in agreement with previous theoretical and simu-
lation results [17–19], weak instrument robust methods such as combining the variants into a single allele
score, using the limited information maximum likelihood (LIML) estimator, or the continuously updating
estimator (CUE) do not suffer from the many weak instruments bias. Whilst there are a number of tech-
niques for using multiple variants, such as meta-analysis and structural mean models [20,21], the aim of
this paper is to illustrate the use of CUE and LIML compared with 2SLS and allele scores. In addition,
we show that the usual asymptotic standard errors for LIML and CUE are downward biased with many
weak instruments. We therefore calculate corrected standard errors [18, 22] and show that these can be
used for correct inference. Finally, we illustrate these issues in the context of an empirical application,
evaluating the effect of height on lung function.

The original example of the many weak instruments problem occurred in the work of Angrist and
Krueger [23] who investigated the effects of length of schooling on wages and used quarter of birth as
an instrument for time spent in school. In their basic specification, they used three variables indicating
quarter of birth as instruments for length of schooling. However, these instruments explained relatively
little of the variation in their exposure (partial R2 = 0.00012). In order to increase the precision of their
estimates, the authors included the interaction of length of schooling and year of birth, which resulted in
180 instruments. This increased the partial R2 to 0.00043 and reduced the standard errors on the effect of
schooling by over half. However, Bound et al. [10] and Hansen et al. [17] showed that, whilst the results
were more precise, the point estimates from the instrumental variable regression were biased towards the
ordinary least squares (OLS) estimates.

2. Methodology

In this section, we describe the different instrumental variables estimators applied here using the general-
ized method of moments (GMM) framework. OLS, two-stage least squares, and the CUE are all special
cases of GMM. Consider a structural model with one continuous outcome, l continuous exposures, and
k instrumental variables

yi = x′i𝛽 + ui, (1)

for individual observations i = 1,… , n, with n as the sample size, and where outcome yi is a scalar, xi is a
l× 1 vector of the exposures, and ui is a scalar indicating the error term. 𝛽 is a l× 1 vector of parameters.
Unobserved confounding implies that ui is correlated with the exposure xi and hence the OLS estimator
is inconsistent. An estimator is inconsistent if it is a biased estimator of the causal effect even in large
samples, whereas an estimator is consistent if it is an unbiased estimator of the causal effect in large
samples: in other words, it is asymptotically unbiased. The J × 1 vector of instruments zi, with J ⩾ l,
satisfy the population moment conditions

E
[
gi(𝛽)

]
= E

[
zi

(
yi − x′i𝛽

)]
= 0. (2)

This results in one equation (moment condition) for each instrument, and the objective of the estimator
is to find the value of 𝛽 that minimizes a criterion function Q(𝛽). The general form of a GMM criterion
function is given by

𝛽 = arg min
𝛽

Q(𝛽);Q(𝛽) = ḡ(𝛽)′Wḡ(𝛽),

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 454–468

455



N. M. DAVIES ET AL.

where ḡ(𝛽) = n−1 ∑n
i=1 gi(𝛽) = n−1 ∑n

i=1 zi

(
yi − x′i𝛽

)
is the sample analog of the population moment

conditions (2) and where W is a weight matrix giving potentially differential weight to each moment
condition, which affects the efficiency of the GMM estimator. This weight matrix affects the proper-
ties of the estimator only if the model is overidentified; that is, when there are more instruments than
exposures; J > l. Note that the OLS estimator is equivalent to a GMM estimator with zi set equal to xi

2.1. Two-stage least squares

A widely used weighting matrix is Wz =
(
n−1 ∑n

i=1 ziz
′
i

)−1
, which, combined with the moment conditions

earlier (2), results in the two-stage least squares estimator

𝛽2SLS = arg min𝛽 Q̇(𝛽); Q̇(𝛽) = ḡ(𝛽)
′
Wzḡ(𝛽). (3)

Setting the first derivative of Q̇(𝛽) to zero and rearranging terms give the well-known formula for the
two-stage least squares estimator

𝛽2SLS = (D′WzD)−1DWzs, (4)

where D = n−1 ∑n
i=1 zix

′
i and s = n−1 ∑n

i=1 ziyi. The two-stage least squares estimator is efficient, given
moment conditions (2), when the variance of ui is homoskedastic; that is, E

[
ui|zi

]
= 𝜎2

u . When the
conditional variance of ui is heteroskedastic, that is, a function of the instruments E

[
ui|zi

]
= 𝜎2

(
zi

)
,

two-stage least squares is no longer efficient, but the two-step GMM estimator, as described later, is.

2.2. Two-step generalized method of moments (GMM)

Hansen described the two-step GMM estimator [24]. The two-step estimator uses a preliminary consistent
estimate of 𝛽, denoted �̇� (e.g. �̇� = 𝛽2SLS), to compute the efficient weight matrix

W̃
(
�̇�
)
=
(

n−1
∑n

i=1
gi

(
�̇�
)

gi

(
�̇�
)′)−1

,

where gi

(
�̇�
)

= zi

(
yi − x′i �̇�

)
. In the second step, the weight matrix is substituted into the objective

function to obtain the two-step GMM estimator 𝛽,

𝛽 = arg min𝛽 Q̈(𝛽); Q̈(𝛽) = ḡ(𝛽)
′
W̃

(
�̇�
)

ḡ(𝛽). (5)

2.3. The continuously updating estimator (CUE)

The CUE proposed by Hansen et al. simultaneously minimizes over 𝛽 in the moment conditions and the
weighting matrix [25]. The CUE 𝛽C is defined as

𝛽C = arg min
𝛽

Q̂(𝛽); Q̂(𝛽) = ḡ(𝛽)′W̃(𝛽)ḡ(𝛽), (6)

where W̃(𝛽) =
(
n−1 ∑n

i=1 gi(𝛽)gi(𝛽)′
)−1

. Note that the weight matrix now depends on 𝛽. Imposing
conditional homoskedasticity, the CUE objective function simplifies to

Q̂(𝛽) =
ḡ(𝛽)

′
Wzḡ(𝛽)

(𝜎(𝛽))2
, (7)

where (𝜎(𝛽))2 = n−1 ∑n
i=1(yi − x′i𝛽)

2. The estimator that minimizes this function is the same as the LIML
estimator, and therefore, the CUE is identical to LIML when imposing conditional homoskedasticity.
CUE has the same limiting distribution as the two-step GMM estimator under standard asymptotics with
a fixed number of instruments and is hence efficient under conditional heteroskedasticity.
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2.4. The bias with many weak instruments

Theoretical and simulation studies such as Newey and Windmeijer and Burgess and Thompson have
demonstrated that LIML and CUE are less biased than two-stage least squares (2SLS) when using many
weak instruments [17–19]. Under conventional, strong instrument, asymptotics, the bias of the 2SLS
estimator when there are more than three instruments can be approximated by [10, 26–28]

E
[
𝛽2SLS − 𝛽

]
≈

𝜎uv

𝜎2
v

(
J − 2
𝜇2

)
, (8)

where the concentration parameter, 𝜇2 = 𝜋
′
Z
′
Z𝜋

𝜎2
v

, is the amount of the variation in the exposure that is

jointly explained by the instruments, 𝜎2
v is the variance of the error term in the first stage equation for

x, xi = z
′

i𝜋 + vi, and 𝜎uv is the covariance of the error terms ui and vi. In the sample, the concentration
parameter evaluated at the OLS estimates for 𝜋 and 𝜎2

v and divided by J is equal to the F-statistic for
testing the null hypothesis that 𝜋 = 0. Thus, the 2SLS bias shown in Equation (8) is inversely proportional
to the concentration parameter and proportional to the number of instruments and covariance term. If a
researcher adds an extra instrument, which increases J, the bias will only fall if it explains a sufficient
additional amount of the variance in the exposure (i.e. it decreases the

(
J−2
𝜇2

)
term). If the additional

instrument only explains a small proportion of the variation in the exposure, the 2SLS bias will increase.
This means that, when using 2SLS, researchers need to consider not only the strength of the association
between each instrument and the exposure but also the number of instruments included.

The analogous bias approximation for LIML is given by [27, 28]

E
[
𝛽LIML − 𝛽

]
≈ −

𝜎uv

𝜎2
v

1
𝜇2

. (9)

The bias of LIML is inversely proportional to the concentration parameter and negatively proportional
to the covariance term but does not depend on the number of instruments. This latter feature is also valid
for the CUE [29, 30]. In other words, additional instruments can be added when using LIML/CUE as
long as they increase the concentration parameter.

Limited information maximum likelihood and CUE are consistent and asymptotically normally dis-
tributed under many weak instrument asymptotics, where the number of instruments is allowed to grow
with the number of observations [18, 31]. 2SLS and two-step GMM are inconsistent estimators of the
causal effect under these asymptotics. For both LIML and CUE, the usual asymptotic standard errors are
too small when there are many weak instruments. Bekker [31] and Newey and Windmeijer [18] provide
corrected standard errors for the LIML estimator and CUE respectively resulting in reliable inference
when there are many weak instruments. We will base our inference later on these corrected standard
errors. See Baum et al., for a more detailed review [32]. Hausman et al. [33] further show that LIML
can be biased with many weak instruments when the errors ui are conditionally heteroskedastic. As CUE
remains efficient under these conditions, we argue that CUE is preferable to LIML for most applications.

3. Simulation study

We use a simulation study to illustrate the many weak instrument bias and the performance of the cor-
rected standard errors for the LIML and CUE in Mendelian randomization. The data generating process
has been described in detail previously [19]. In short, there is a single continuous exposure x, a continuous
outcome y, and J instruments

{
zj

}
=
{

z1,… , zJ

}
that are discrete with values k = {0, 1, 2}, mimicking

the allele frequencies of genetic markers. We simulated data for three examples using different numbers
of genetic variants as instrumental variables. Specifically, we set J = 9, 25, and 100 variants.

The data are generated from

xi = 𝜋z

J∑
j=1

zij + vi, (10)

yi = 𝛽xi + ui, (11)
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vi = wi + exi,

ui = wi + eyi,

wi, exi, eyi ∼ N(0, 1). (12)

We set 𝜋z = 0.1 for 9 variants, 𝜋z = 0.06 for 25 variants, and 𝜋z = 0.03 for 100 variants with a
minor allele frequency of 0.3 for each variant. The exposure xi has no causal effect on yi (i.e. 𝛽 = 0).
There is, however, a positive correlation between ui and vi because of the presence of the unobserved
confounder wi in the models for both the risk factor and the outcome. We used this data generating process
to simulate 10,000 datasets with 3000 observations each and report median bias and rejection proportions
of Wald tests for the null hypothesis H0: 𝛽 = 0. To avoid local optima, we estimated the CUE by taking
the minimum of Q̂(𝛽) obtained from five different starting values. Specifically, we used {−2,−1, 0, 1, 2}
times the two-step GMM estimates as starting values.

Using the bias shown in Equations (8) and (9), we can estimate the theoretical bias.‡ As the instruments
are independently and identically distributed with variance

𝜎2
z =

2∑
k=0

Pr(z = k)k2 −

(
2∑

k=0

Pr(z = k)k

)2

= 0.42, (13)

and 𝜎2
v = 2, the concentration parameter simplifies to

𝜇2 =
nJ𝜋2

z 𝜎
2

z

𝜎2
v

= 0.21nJ𝜋2
z . (14)

According to Stock et al. [34], the expectation of the F-statistic minus one approximately equals the
concentration parameter divided by the number of instruments or E (F) ≅ 𝜇2∕J + 1. Thus, solely based
on the parameters of the data generating process, we know the concentration parameter, the approxi-
mate expectation of the F-statistic, and the approximate bias of 2SLS and LIML estimators. We report
these theoretical results together with the corresponding results from the simulation study in Table I.
Furthermore, we report the rejection frequencies of the Wald tests for 2SLS, LIML, CUE, and the allele
score instrumental variable estimators, calculated on the basis of the asymptotic and the corrected stan-
dard errors. The 2SLS estimator, LIML estimator, and CUE use the full set of instruments, not imposing
any restrictions on the parameter vector 𝜋. The allele score is constructed as the unweighted sum of the
instruments, which in this case is the sum of the risk alleles (10).

Table I presents medians and interquartile ranges (IQR) of the estimators. As the LIML estimator
and CUE have occasionally very large outliers, this affects the mean and variance of these estima-
tors, but not the median and IQR. The results show that, as expected, 2SLS suffers from the many
weak instruments bias, whereas LIML and CUE are approximately unbiased in all simulations. The
allele score instrumental variable estimator is also unbiased. Keeping the number of instruments fixed,
all estimators have the same limiting distribution when the sample size increases. However, in the
generated samples, only the allele score instrumental variable estimator displays a finite sample behav-
ior close to the asymptotic distribution. Both LIML and CUE show larger finite sample dispersions
than the allele score instrumental variable estimator as the number of instruments increases. The usual
asymptotic standard error for LIML underestimates its true variability in this design, in line with pre-
vious work [18, 19]. We also find this for the uncorrected asymptotic standard errors of the CUE. In
contrast, the Wald tests based on the Bekker standard errors for LIML and the Newey–Windmeijer
standard errors for the CUE show rejection frequencies close to the nominal size of 0.05 in all three
simulations. Thus, the corrected standard errors make valid inference possible in situations with many
weak instruments.

‡ We calculate the bias for the 2SLS estimator from the improved formula as given by Bun and Windmeijer [26]. The results
are very similar to those of (8).
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Table I. Simulation results comparing the properties of two-stage least
squares, LIML, CUE, and allele score instrumental variable estimators when
using 9, 25, and 100 variants as instrumental variables.

Theoretical results Empirical results
k Estimator Bias Median IQR RF

9 2SLS 0.057 0.065 0.158 0.101
LIML −0.009 0.002 0.186 0.057
Corrected LIML 0.047
CUE 0.002 0.187 0.079
Corrected CUE 0.045
Allele score IV 0.001 0.178 0.047

25 2SLS 0.147 0.150 0.139 0.321
LIML −0.009 0.001 0.204 0.079
Corrected LIML 0.049
CUE 0.002 0.207 0.159
Corrected CUE 0.046
Allele score IV 0.000 0.181 0.044

100 2SLS 0.318 0.318 0.095 0.988
LIML −0.009 0.002 0.277 0.173
Corrected LIML 0.046
CUE 0.001 0.297 0.481
Corrected CUE 0.045
Allele score IV 0.000 0.176 0.042

Note that 𝜇2 = 56.70 in all designs. E[F] ≈ 7.30, 3.27, 1.57 for k = 9, 25, 100,
respectively. The means of the empirical F-statistics are 7.40, 3.32, and 1.58. The
rejection frequency is the proportion of replications for which the true parameter
(𝛽 = 0) lies outside the 95% confidence intervals. Median, median estimate, 𝛽 = 0;
n = 3000; 10,000 replications. 2SLS rejection frequencies assume a homoskedastic
error term. Rejection frequencies for H0 ∶ 𝛽 = 0 using Wald tests.
LIML, limited information maximum likelihood; CUE, continuously updat-
ing estimator; 2SLS, two-stage least square; IQR, interquartile range; RF,
rejection frequency.

4. Empirical example: height and lung function

We illustrate the many weak instrument bias and its different estimators in an empirical application, inves-
tigating the relationship between height and lung function. We chose this example, because we know that
there is a mechanical relationship between the two variables, with lung volume increasing with height.
Therefore, we can use this example to illustrate how height variants can estimate the causal effect of height
independent of a confounding factor – gender. Gender confounds the raw association of lung function and
height because boys are both taller and have higher lung function. We used data from Avon Longitudi-
nal Study of Parents and Children (ALSPAC), a cohort study of 15,247 pregnancies delivered between 1
April 1991 and 31 December 1992 in the South West of England, which has been described in detail else-
where [35, 36]. Our sample includes all 3631 individuals with genome-wide data, information on height
and lung spirometry (forced vital capacity) when aged between 14 and 17 years. Ethical approval for the
study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Com-
mittees. The study website contains details of all the data that are available through a fully searchable data
dictionary [37].

4.1. Outcome – lung function

Lung function was measured using forced vital capacity derived from a lung spirometry test. This measure
has been described in detail elsewhere [38,39]. We standardized this measure to mean zero and standard
deviation one.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 454–468
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Figure 1. Plot of the association of 180 genetic variants and height in ALSPAC and Lango et al. [42].

4.2. Exposure – height

Individuals’ height was measured in millimeters using the Harpenden stadiometer, when the individuals
were aged 15 and a half [40]. We standardized height to mean zero and standard deviation one.

4.3. Covariates

We derived the following covariates: age at measurement (in months); birth weight; number of younger
and older siblings; log weekly household income adjusted for inflation, household size, and composition;
parents’ education; and social class and employment status. Individuals whose fathers were in the military
were coded as social class 3. The derivation of these covariates has been described elsewhere [41].

4.4. Instruments

In a genome-wide study of 183,727 people, Lango et al. reported 180 independent genetic variants asso-
ciated with height [42]. Because the ALSPAC cohort was not used in Lango et al., our results will not
suffer from bias due to selecting variants based on their observed association within our data [19]. We use
the same 180 variants listed in Table S1, which shows their effect on height as reported by Lango et al.,
as well as in our ALSPAC sample. In addition, Figure 1 plots the association of the coefficients estimated
in our data and the coefficients reported by Lango et al. The protocols for cleaning the genome-wide data
have been described in detail elsewhere [43, 44].

We used the 180 height variants as 180 individual instruments. Each variant was coded 0, 1, or 2
depending on the combination of height-increasing alleles the individual had. To further explore alterna-
tive definitions, we also consider two additional versions of the instrument. First, a simple count of the
number of height-increasing alleles

z1i =
∑180

j=1
Gij , (15)

where Gij indicates the jth genetic variant. Second, a weighted allele score, where the weights, �̂�j, denote
the strength of the association of the alleles of variant j and height, as reported by Lango et al.

z2i =
∑180

j=1
�̂�jGij

. (16)

To simplify the interpretation of the results, we normalized the unweighted and weighted allele scores
to have mean zero and standard deviation one.

4.5. Descriptive statistics

We tested whether the height, the height variants, and the allele scores were associated with the covariates
using robust linear regression. Furthermore, we used linear regression to estimate the associations of
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153 pairwise correlations of the 18 nongenetic covariates, and the 3240 pairwise associations of the 180
genetic variants and the 18 nongenetic covariates. We compared the number of significant associations
(at 𝛼 = 0.05, 0.01, and 0.001) that occurred to the number that would be expected if all the variables were
uncorrelated. Finally, we tested the strength of the association of the instruments and height using linear
regression and report the F-statistics for this association. We further report R-squared values as measures
of the proportion of the variance in height explained by each definition of the instruments.

We compared the different instrumental variable methods for estimating the effect of the height on
lung function with conventional unadjusted OLS regression of lung function on height and the same
association adjusted for all the covariates mentioned earlier. We used the user-written ice command
in Stata to impute missing values of the covariates for the adjusted OLS analysis [45, 46]. We do not
adjust any of the instrumental variable results for covariates. We report five versions of instrumental
variable estimation results using all individual variants as instruments: (i) 2SLS, (ii) LIML, (iii) LIML
with corrected standard errors, (iv) CUE, and (v) CUE with corrected standard errors. We further present
results for (vi) 2SLS using an unweighted allele score as a single instrument and (vii) 2SLS using a
weighted allele score as a single instrument.

For each estimation method, we report – where possible – the weak identification F-statistic, Hausman
endogeneity test, and the Sargan or Hansen J-test of overidentifying restrictions [24, 47–51]. The Haus-
man test evaluates whether there is any evidence that the instrumental variable estimate differs from the
OLS estimate. The Sargan and Hansen J-tests of overidentification evaluate whether there is any evidence
of difference between the instrumental variable results based on each variant. The Sargan test assumes
conditional homoskedasticity, whereas the Hansen J-test is robust to conditional heteroskedasticity
[24, 52]. Hence, the Sargan test can be more powerful but misleading when conditional heteroskedastic-
ity is present. We ran all analyses using Stata 13.0. The instrumental variable results were estimated with
the user-written commands ivreg2 [53, 54]. We report the corrected standard errors for both CUE and
LIML using the user-written commands nwind and bekker [18, 22, 31].

To illustrate how the many weak instrument bias affects the results in the analysis that includes the
individual variants, we sorted the height variants in order of effect size and repeated the analysis adding
one variant at a time, starting with the variant with the biggest effect and ending with the weakest variant.
We report the estimates and standard errors for each of the regressions using 2SLS and the CUE and also
report F-statistics for the hypothesis that the concentration parameter equals zero (𝜇2 = 0).

5. Results

After cleaning and imputation, there were 8365 individuals with genome-wide data. We excluded data
from 4734 individuals, who had missing measures of either height or lung function at age 15 years, which
resulted in a final analysis sample of 3631. The characteristics of the individuals are described in Table II.
Table III shows that the individuals’ actual height at age 15 years was strongly associated with 9 of the
17 covariates (p < 0.05). Taller individuals were more likely to be from a higher-income household, have
more educated parents and grandparents, have been breast-fed, and have an older mother. In contrast,
there was little evidence of associations between the allele scores and the covariates (Table IV). Assuming
no associations between the nongenetic covariates (153 possible pairwise correlations), we would expect
to detect eight associations at the 5% significance level, two at the 1% significance level, and less than
one at the 0.01% significance level. We detected 82 (54%), 70 (46%), and 54 (35%) associations at the
5%, 1%, and 0.01% significance level, respectively. For the 3240 genetic pairwise associations with the
nongenetic covariates, we would expect to detect 162, 32, and less than one association at the 5%, 1%,
and 0.01% significance level, respectively. We detected 166, 35, and no associations, respectively. This
is consistent with the previous studies [8, 55].

The associations between the individual genetic variants and height were similar to the weights
reported by Lango et al. (R2 = 0.478) (Table S1 and Figure 1). Table V shows that there is a strong
association between individuals’ height and the allele scores. The F-statistics for the unweighted and
weighted allele scores were 164 and 190, respectively, suggesting that the results based on these instru-
ments are unlikely to suffer from weak instrument bias [12]. A one-standard-deviation increase in the
unweighted allele score was associated with a 0.21 (95% confidence interval (CI): 0.18, 0.24) standard
deviation increase in height at 15. A one-standard-deviation increase in the weighted allele score was
associated with a 0.22 (95% CI: 0.19, 0.25) standard deviation increase in height at 15. The unweighted
and weighted allele scores explained 4.3% and 4.9% of the variation in height, respectively.
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Table II. Baseline characteristics of included ALSPAC participants.

Standard
Mean deviation N

Height at age 15 years (in cm) 169.35 8.42 3631
Male 0.48 0.50 3631
Age in months at Teen Focus 3 Clinic 185.31 3.58 3631

Birth weight (g) 3444 525 3435
No. of older siblings in household 1.02 0.99 3319
No. of younger siblings in household 0.92 0.95 3319
Ln(income) 5.74 0.46 3141
Mother’s education 3.39 1.18 3391
Father’s education 3.39 1.37 3320
Mothers’ mother’s education 2.35 1.33 2627
Mothers’ father’s education 2.57 1.46 2471
Child not ever raised by natural father 0.11 0.32 3314
Father’s social class at birth 2.78 1.27 3146
Mother works part time 0.43 0.50 3113
Mother works full time 0.09 0.28 3113
Partner works full time 0.93 0.25 1608

Mother drank during pregnancy 0.57 0.50 3419
Mother smoked during pregnancy 0.15 0.36 3418
Ever breast-fed 0.86 0.34 3226
Mother’s age 29.82 4.51 3495
Participant had tried tobacco at age 8 years 0.02 0.15 3133

Table III. Association of height at age 15 years with baseline characteristics.

Actual height

N Coef p-value

Age in months at Teen Focus 3 Clinic 3631 0.14 0.02
Male 3631 0.29 <0.001

Older siblings in household 3321 0.00 0.98
Younger siblings in household 3321 0.02 0.30
Ln(income) 3141 0.02 0.03
Mother’s education 3391 0.06 0.002
Father’s education 3320 0.08 0.001
Mothers’ mother’s education 2627 0.06 0.02
Mothers’ father’s education 2471 0.06 0.05
Child not ever raised by natural father 3314 0.00 0.62
Father’s social class at birth 3146 −0.04 0.07
Mother works part time 3113 0.00 0.72
Mother works full time 3113 0.01 0.07
Partner works full time 1608 0.00 0.57

Mother drank during pregnancy 3419 0.00 0.85
Mother smoked during pregnancy 3418 −0.01 0.08
Ever breast-fed 3226 0.02 <0.001
Mother’s age 3495 0.27 <0.001
Participant had tried tobacco at age 8 years 3133 0.01 0.03

Coef, coefficient from a robust ordinary least squares regression of covariate on
normalized height.462
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Table IV. Association of variants and allele scores with covariates.

Unweighted allele Weighted allele
score score

Coef p-value Coef p-value

(1) (2) (3) (4)
Male 0.01 0.41 0.01 0.33
Birth weight (g) 31.47 <0.001 34.43 <0.001
Older siblings in household 0.01 0.60 0.01 0.45
Younger siblings in household −0.02 0.19 −0.02 0.25
Ln(income) 0.00 0.62 −0.01 0.37
Mother’s education 0.00 0.94 0.00 0.99
Father’s education 0.00 0.94 0.00 0.84
Mothers’ mother’s education 0.02 0.50 0.02 0.42
Mothers’ father’s education 0.02 0.50 0.03 0.29
Child not ever raised by natural father 0.00 0.51 0.01 0.36
Father’s social class at birth 0.00 0.83 0.00 0.99
Mother works part time 0.01 0.15 0.01 0.24
Mother works full time 0.00 0.66 0.00 0.50
Partner works full time −0.01 0.21 −0.01 0.08

Mother drank during pregnancy −0.01 0.52 −0.01 0.25
Mother smoked during pregnancy −0.01 0.35 −0.01 0.18
Ever breast-fed 0.00 0.58 0.00 0.71
Mother’s age −0.09 0.21 −0.09 0.23
Participant had tried tobacco at age 8 years 0.00 0.58 0.00 0.32

Table V. Association of allele scores and normalized height at age 15 years (N = 3631).

Unweighted score Weighted score
mean difference mean difference

(95% confidence interval) p-value (95% confidenceinterval) p-value

Allele score 0.21 (0.18, 0.24) <0.001 0.22 (0.19,0.25) <0.001
R2 0.043 0.049
F-statistic 164 190

Table VI. The relationship between height and lung function (N = 3631).

Robust Sargan/Hansen Hausman
Mean difference standard J-test endogeneity

Method (95% confidence intervals) error p-value F-statistic p-value tests p-value

Ordinary least squares 0.67 (0.65, 0.70) 0.013 <0.001
Adjusted OLS 0.53 (0.50, 0.56) 0.015 <0.001
Two-stage least squares 0.60 (0.52, 0.68) 0.040 <0.001 2.03 0.02 4.08 0.04
LIML 0.47 (0.34, 0.60) 0.067 <0.001 2.03 0.01∗ 3.70 0.05
LIML corrected 0.47 (0.25, 0.68) 0.109 <0.001
CUE 0.43 (0.35, 0.50) 0.039 <0.001 2.03 0.05
CUE corrected 0.43 (0.21, 0.64) 0.110 <0.001
Unweighted allele score 0.44 (0.32, 0.56) 0.062 <0.001 164.18 16.80 <0.001
Weighted allele score 0.42 (0.31, 0.53) 0.057 <0.001 190.15 22.71 <0.001

Robust confidence intervals. Adjusted OLS adjusts for covariates described in Table II.
OLS, ordinary least squares; LIML, limited information maximum likelihood; CUE, continuously updating estimator.
∗We used the Sargan test for LIML and the Hansen J-test for the other estimators. The Hausman test assumes
homoskedasticity; therefore, we do not include it for CUE.

Using conventional OLS regression, we found that a one-standard-deviation increase in height was
associated with a 0.67 (95% CI: 0.65, 0.70) standard deviation increase in lung function (Table VI and
Figure 2). After we adjusted for the observed covariates, this association was attenuated to 0.53 (95%
CI: 0.50, 0.56). The 2SLS estimates using the individual alleles of all variants suggested that a one-
standard-deviation increase in height caused a 0.60 (95% CI: 0.52,0.68) standard deviation increase in
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uses the two strongest variants and so on.

lung function (Table VI and Figure 2). The 2SLS estimates are relatively close to the OLS estimates. The
LIML estimate suggested that a one-standard-deviation increase in height caused a 0.47 (95% CI: 0.34,
0.60) standard deviation increase in lung function, similar to the CUE estimate. The corrected standard
error for the CUE is virtually identical to the Bekker standard error for LIML. The Sargan/Hansen tests for
the 2SLS, LIML, and CUE results suggested some evidence of differences between the estimates based on
each variant.

The instrumental variable results using an unweighted allele score were close to the LIML and CUE
results, but the latter’s uncorrected standard errors were 8.3% smaller and 36.2% smaller, respectively.
The weighted allele score results were almost identical to the unweighted allele score, but the standard
error was reduced by an additional of 7.9%. The standard errors of the weighted allele score estimates
are 48% smaller than those from the corrected CUE or the corrected LIML analyses. As shown by the
Hausman test, the allele score specifications found strong evidence of differences between the OLS and
instrumental variable estimates.

As we have shown earlier, the 2SLS estimate using all variants as instruments is relatively close to the
OLS estimate. This is likely to be because 2SLS is biased towards OLS when using many weak instru-
ments [10]. We illustrate the consequences of the many weak instrument bias in 2SLS further in Figure 3

464
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and Figure S1. When we use fewer than 15 variants, the 2SLS and CUE estimates are similar. However,
as we move along the x-axis and add more variants, the 2SLS estimates trend upwards, becoming more
biased towards the OLS estimate, whilst the CUE remains relatively stable.

6. Discussion

When using many weak instruments in Mendelian randomization studies, researchers should consider
the fact that the routinely used 2SLS estimator is biased. So far, two methods have been proposed in the
epidemiology and econometric literature to account for this problem. First, constructing a weighted or
unweighted allele score and using 2SLS with only one instrument. Second, using the full set of instru-
ments together with an estimation method that is robust to using many weak instruments. In the latter
case, only LIML has been discussed in the literature [13]. However, the conventional standard errors for
LIML are incorrect with many weak instruments, leading to inaccurate inference for testing hypotheses.
We have developed a Stata routine to calculate corrected standard errors for LIML to account for the
many weak instruments problem and show that these adequately reflect the decrease in precision of the
LIML estimator for these cases.

The LIML has recently been shown to be biased with many weak instruments when the errors are con-
ditionally heteroskedastic [33]. The CUE is consistent under these conditions, and therefore, the CUE
would be the estimator of choice in most empirical applications; for example, when estimating risk dif-
ferences for binary outcomes. However, its standard errors also need to be adjusted when using many
weak instruments. We have developed a Stata routine also for the CUE to adjust the standard errors and,
again, show that these adequately reflect the decrease in precision when using many weak instruments.

Using a single allele score as instrument can be a useful and appropriate way to get around the many
weak instruments problem. In contrast, the CUE will be useful in situations when there is no clear way
to aggregate a set of instruments. For example, consider a researcher who is interested in the relative
contributions of body mass index (BMI), fat mass and lean mass to asthma [56]. Whilst 32 genetic variants
have been shown to associate with BMI, there have been no genome-wide association studies specifically
for fat and lean body mass. Granell et al. [56] used the same weighted allele score as an instrument for
lean and fat mass as the one derived from a meta-analysis for the gene–BMI relationship. As the weights
are unlikely to be the same for lean and fat mass, efficiency may be enhanced by using the CUE and the
32 BMI variants to accurately test whether BMI, lean or fat mass affects asthma.

The CUE may be particularly useful in cases where there are multiple risk factors of interest and many
variants, as it may be difficult then to construct different allele scores for each of the risk factors. Indeed,
in the example earlier, one could use the CUE to estimate the causal effects of lean and fat mass jointly.
Outside the world of Mendelian randomization, recent pharmaco-epidemiological studies have found
that including multiple physicians’ previous prescriptions as instruments for their prescribing behavior
increases the precision of estimates [57–59]. These results may be improved upon by using the CUE.

In this proof of principle study, we showed how to apply these methods using the illustrative example
of the effect of height on lung function. We found that the height variants and allele scores were associated
with height and that the genetic variants were no more associated with the observed covariates than would
be expected by chance. Our results suggest that, compared with the causal effects identified by the genetic
variants, the observational association may suffer from a slight upward bias. We demonstrated that the
2SLS estimates suffered from many weak instruments bias when we used all the individual variants. In
contrast, the results using LIML, CUE, and the weighted or unweighted allele scores instrumental variable
estimators were mutually in concordance, and all suggested a weaker underlying causal relationship
between height and lung function. As with the simulated results, in the empirical example, the corrected
standard errors for LIML were almost identical to the corrected CUE standard errors but considerably
larger than those for the weighted allele score instrumental variable estimates. This is likely to reflect the
relative efficiency of these approaches in many applied examples. Nevertheless, by holding the number of
instruments constant, as the sample size increases, the difference in efficiency between these approaches
will reduce.

In conclusion, when using many weak instruments, 2SLS estimates can be biased. We demonstrated
that, under homoskedasticity, the allele score instrumental variable estimators, CUE, and LIML with
corrected standard errors provide accurate inferences. If homoskedasticity holds, the LIML is likely to be
slightly more efficient than the CUE. In small samples, both estimators are likely to be less efficient than
the allele score. However, if there is conditional heteroskedasticity, LIML can be inconsistent when using
many weak instruments and researchers should use the CUE instead. However, both methods are likely
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to be less efficient than using allele scores when there are many instruments and modest sample sizes.
Using multiple variants as instruments can increase precision of the results over using single variants, but
researchers must report corrected standard errors.
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