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 15 

Abstract 16 

Single cell transcriptomics has recently emerged as a powerful tool to analyse cellular heterogeneity, 17 

discover new cell types and infer putative differentiation routes. The technique has been rapidly 18 

embraced by the haematopoiesis research community and like other technologies before, single cell 19 

molecular profiling is widely expected to make important contributions to our understanding of the 20 

haematopoietic hierarchy. Much of this new interpretation relies on inference of the ‘transcriptomic 21 

landscape’ as a representation of existing cellular states and associated transitions between them. 22 

Here we review how this model allows, under certain assumptions, charting of ‘time-resolved’ 23 

differentiation trajectories with unparalleled resolution and how the landscape of multipotent cells 24 

may be rather devoid of discrete structures, challenging our preconceptions about stem and 25 

progenitor cell types and their organisation. Finally, we highlight how promising technological 26 

advances may convert static differentiation landscapes into a dynamic cell flux model and thus 27 

provide a more holistic understanding of normal haematopoiesis and blood disorders. 28 

 29 

Introduction 30 

Haematopoiesis research spanning over 150 years has been significantly driven by technological 31 

breakthroughs. Microscopy-based observations in the 19th century established that blood is 32 

composed of two bone marrow-derived cell lineages: myeloid and lymphoid, perhaps sharing a 33 

common ‘stem cell’ origin1. It wasn’t until the 1950s when bone marrow transplantation rescue of 34 

lethally irradiated mice2–4 confirmed this hypothesis. Subsequently, in vitro haematopoietic colony 35 

assays provided functional evidence for intermediate stages between haematopoietic stem cells 36 

(HSCs) and terminally differentiated cells5 – ranging from multipotent to unipotent progenitor cells. 37 

These findings arose from the shadow cast by the destructive effects of radiation on the blood 38 
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system following the first use of nuclear weapons in the 1940’s6, with the first successful human 39 

bone marrow transplant reported already in 19597,8. This approach remains the only curative 40 

therapy for a number of haematopoietic malignancies to this date9. While these practical 41 

applications were developed early on, our biological understanding of haematopoiesis has lagged 42 

behind until isolation of specific cell populations became possible.  43 

 44 

A critical advance came from the related field of immunology, allowing the sorting of individual 45 

cells10 and generation of monoclonal antibodies to detect surface markers11. At this stage, a key 46 

achievement of the haematopoietic community had begun to take form – with the establishment of 47 

the differentiation ‘tree’. By the end of the 20th century, the haematopoietic tree was rooted in the 48 

long-term HSCs (LT-HSCs), followed by short-term HSCs (ST-HSCs) and multipotent progenitors 49 

(MPPs) - partitioned according to their ability to repopulate blood in transplantation assays over 50 

diminishing periods of time12–16. These cells were proposed to differentiate through a set of 51 

bifurcations that produced distinct progenitor cell populations with decreasing lineage potential and 52 

self-renewal activity (Figure 1A). In the past two decades, this model has been subjected to constant 53 

extensions and refinements, largely due to new evidence highlighting cellular heterogeneity 54 

obtained from single cell assays. At the same time, cell barcoding approaches mediated clonal 55 

tracking of native haematopoiesis17–19 and stressed the importance of gaining insight into the 56 

unperturbed tissue state. The resulting evolution of the haematopoietic tree has been discussed in 57 

detail elsewhere6,15,20,21. 58 

 59 

We are currently witnessing another “single cell revolution”, in which vast transcriptomic datasets 60 

are transforming our understanding of haematopoiesis. As a result, the idea of cellular transitions 61 

between discrete progenitor states as they differentiate has become difficult to accommodate20. 62 

Instead, multiple studies propose the idea of continuous differentiation landscapes with little or no 63 
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discrete differentiation stages and smooth transitions across the cell states. In this context cells 64 

within a heterogeneous pool of haematopoietic stem and progenitor cells (HSPCs) differentiate 65 

along a multitude of potential trajectories that contain poorly-defined ‘branchpoints’ which 66 

determine a particular cell’s fate. In this review we aim to highlight recent biological insights gained 67 

into the nature of these landscapes using single-cell RNA sequencing and downstream 68 

computational tools.  69 

 70 

  71 
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scRNA-Seq – opportunities and limitations 72 

While single cell quantification of gene expression for small numbers of genes was already achieved 73 

in the early 1990’s22, it is thanks to breakthroughs in parallelisation in the past few years that single 74 

cell transcriptomics is now chasing its conceptual predecessors flow and mass cytometry in terms of 75 

throughput23. However unlike flow/mass cytometry measurements, which are typically restricted to 76 

at most a few dozen pre-defined markers, scRNA-Seq can measure expression of up to 104 genes 77 

simultaneously in each single cell, thus offering unprecedented detail for the definition of cellular 78 

states. Two key parameters of any scRNA-Seq experiment are (i) the number of cells assayed, which 79 

determines the probability of being able to capture rare cell populations, and (ii) detection 80 

sensitivity, which dictates the number of genes available for cell-cell comparisons. These two criteria 81 

are leveraged into two classes of scRNA-Seq platforms. High-throughput methods (e.g. droplet-82 

based like Drop-Seq, InDrops, 10X genomics)24–26 provide in excess of 104 cells per experiment but 83 

detect “only” 1,000-3,000 expressed genes per cell. By contrast, low-throughput methods (e.g. 84 

plate-based like Smart-Seq2, CelSeq2, mcSCRB-Seq, RamDA-Seq)27–30 are typically used to profile up 85 

to ~103 cells but detect >5,000 genes per cell. The details of specific methods and their technical 86 

considerations have been extensively reviewed23,31,32. 87 

 88 

For organ systems with a fast turn-over such as haematopoiesis, scRNA-Seq offers a snapshot of cells 89 

and their expression states at a particular time-point. While missing temporal information, much 90 

excitement has been generated by the idea that the distribution of single cell expression profiles in 91 

the high-dimensional space can be considered as a transcriptional landscape, which encodes 92 

information on cellular transitions enabling ordering of cells along ‘pseudo-time’ from immature 93 

progenitors towards the various haematopoietic lineages33,34. The inference of such putative 94 

differentiation trajectories requires certain assumptions and imposes some limitations: (i) 95 

differentiation is a continuous process – detection of ‘jumps’ between cell states is difficult, (ii) cells 96 
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differentiate asynchronously – cells are captured at multiple points along their differentiation routes, 97 

(iii) cells differentiate using defined (non-random) trajectories, (iv) cells move in one direction – this 98 

requires additional knowledge to determine start and finish, (v) cell state information is complete. 99 

The last point is clearly problematic because we cannot see hidden variables like epigenetics or cell 100 

location with current scRNA-Seq protocols. Furthermore, some analytic methods require stricter 101 

assumptions, such as a ‘tree-like’ structure of the data, where cells undergo a series of bifurcations 102 

during their differentiation, or absence of oscillations between cell states (e.g. cell cycle), which may 103 

disregard potentially relevant biological information. For a detailed discussion of these assumptions 104 

we refer readers to Weinreb et al.35. 105 

 106 

The past six years have seen an explosion of scRNA-Seq studies within the haematopoiesis field, 107 

starting from profiling of previously well-defined haematopoietic populations36–39, then shifting 108 

towards less biased selection of cells26,40–43, and finally arriving at whole tissue studies surveying >105 109 

cells. We have summarised some of the most useful resources in Table 1. The current culmination 110 

comes from a large collaborative effort – the Human Cell Atlas42, which aims to create reference 111 

maps for cells across >50 tissues in the human body. This includes a recently released dataset with 112 

>500,000 human bone marrow and cord blood cells, providing the most complete scRNA-Seq map 113 

yet of the human haematopoietic compartments44. We present a general view of this dataset in 114 

Figure 1B. Of note, we have excluded Natural Killer and T lymphocytes from the analysis, which 115 

account for ≈50% of cells and appear disconnected from the HSPC cluster. This separation is 116 

expected for the T cells, which differentiate in the thymus but may also indicate that NK progenitors 117 

are rare or even absent in the BMMC fraction. As these large-scale datasets await their full 118 

exploitation, we will focus on the main insights into haematopoietic differentiation delivered by 119 

scRNA-Seq so far.  120 

 121 
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scRNA-Seq reshapes the bottom and middle-tiers of the haematopoietic tree 122 

scRNA-Seq has quickly proved to be a powerful tool for distinguishing discrete cell states. As studies 123 

concerning lymphoid lineages have been reviewed previously45, we will discuss a couple of examples 124 

from the myeloid lineage. Single cell profiling allowed discovery of several dendritic cell (DC) 125 

subtypes, which respond differently to LPS (Lipopolysaccharides)46. A recent study laid out a new 126 

taxonomy for human DCs and monocytes in peripheral blood47 with a new DC population 127 

responsible for T-cell activation previously misclassified as plasmacytoid DC, and a new conventional 128 

DC progenitor population (CD100Hi, CD34Int), functionally distinct from the CD34Hi HSCs. Yanez et al.48 129 

showed that Ly6Chi monocytes can be divided into: ‘neutrophil-like’ and monocyte-derived dendritic 130 

cell precursors arising through alternative differentiation routes in agreement with another report49.  131 

 132 

Recent studies have also challenged our understanding of the oligopotent progenitor compartments. 133 

Profiling of the (Lineage-, Sca1-, c-Kit+) population containing the CMP/GMP/MEP populations (Figure 134 

1A) revealed an unanticipated heterogeneity, with at least 18 distinct subtypes36 with various 135 

degrees of lineage priming (i.e. expression of lineage specific genes) reflecting their progressive 136 

commitment. Importantly the key surface markers FcgR and CD34, typically used to distinguish the 137 

CMP/GMP/MEP populations, turned out to be poor predictors of cell identity and lineage bias. 138 

Consistently, Olsson et al.39 showed that only a small proportion of cells sorted from conventional 139 

myeloid progenitor populations displayed gene expression profiles consistent with multi-lineage 140 

progenitor activity. This study also elegantly demonstrates how the wealth of information provided 141 

by scRNA-Seq can be exploited to infer gene regulatory information, refine cell isolation strategies 142 

and enrich for specific bipotent progenitors, by focusing on the counteracting regulators Gfi1 and 143 

Irf8. 144 

 145 
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These findings are in line with the accumulating evidence from single cell colony assays36,39,50–53, 146 

single cell transplantations36,54,55 and cellular barcoding19,56 experiments performed both in human 147 

and mouse, which collectively suggest that most cell fate decisions are taken earlier than expected 148 

from the classical haematopoietic tree model. This is also consistent with the original observations 149 

that many cells within progenitor gates (e.g. CMPs or LMPPs) are already lineage restricted50,57. The 150 

emerging picture therefore is that unipotent cells dominate the middle-tier of haematopoietic 151 

progenitors, albeit with a small contribution of bi/oligopotent progenitors. Whether these rare cell 152 

populations are true functional intermediates or perhaps outlier cells ‘spilling over’ from less mature 153 

compartments remains to be seen. 154 

 155 

Revisiting the HSC and MPP cell compartments by scRNA-Seq 156 

The upper tier of the haematopoietic tree classically contained three multipotent subpopulations 157 

with decreasing repopulation potentials: LT-HSCs, ST-HSC (also known as MPP1) and MPPs, all three 158 

capable of generating both myeloid and lymphoid cells12,54,58. Before the advent of scRNA-Seq, 159 

immunophenotyping showed that MPPs have at least 4 subpopulations (MPP1-4) with distinct cell 160 

cycle characteristics12, molecular features37,59–62 and functional biases58,61,62. Subsequent molecular 161 

analysis at the single cell level, first by sc-qPCR62 and later by scRNA-Seq19,37,63 showed that the 162 

HSC/MPP compartment may be characterised by a continuous landscape. Furthermore 163 

transcriptional priming towards erythroid/megakaryocytic (MPP2), myeloid (MPP3) or lymphoid 164 

lineages (MPP4), suggested that many key fate decisions have already been initiated by earlier 165 

upstream progenitors (MPP1). Rodriguez-Fraticelli et al.19 confirmed these findings in vivo by 166 

employing high-throughput scRNA-Seq and lineage barcoding to quantify the degree of lineage 167 

priming and lineage contributions of each of the MPP subpopulations. Importantly, the 168 

compartment structure adapts to changing conditions, as the MPP subpopulations shift towards 169 

more myeloid bias with increased animal age37 or following external stress62. 170 
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 171 

The ‘true’ LT-HSC state characterised by the most durable self-renewal has been pursued for 172 

decades12,54,58,64–68. Comparison of various HSC isolation strategies38 allowed the definition of 173 

‘Molecular Overlap’ (MolO) and ‘Surface Marker Overlap’ (SuMO) scores, which describe gene 174 

expression patterns correlating with stem cell self-renewal capacity. A major component of the 175 

MolO score are genes negatively regulating the cell cycle, consistent with the long-standing idea that 176 

dormancy marks stem cells with the highest self-renewal12. The transition along the dormancy axis 177 

also appears to be gradual, with the dormant end of the spectrum characterised by deep quiescence 178 

(=slow return to the cell cycle), low biosynthetic activity and high retinoic acid signalling69, as well as 179 

quiescence and low respiration being conserved amongst the most immature human HSPCs70. 180 

 181 

The other aspect of HSC heterogeneity is lineage output bias, which may manifest in lineage priming. 182 

While Kowalczyk et. al.37 found no evidence for transcriptional lineage priming in HSCs regardless of 183 

age, Grover et al. identified a subset of HSCs expressing megakaryocytic genes including the Vwf 184 

marker71 in old mice. The reason for this disparity is not clear, but may be due to cell isolation 185 

techniques, animal breeding and ageing or the bioinformatic tools used. Nevertheless, the presence 186 

of megakaryocyte-biased HSCs has been confirmed through transplantation experiments19,71–73 and 187 

tracking of native haematopoiesis19, indicating that committing to a megakaryocytic fate may be one 188 

of the earliest fate decisions. Interestingly, these megakaryocyte-biased HSCs can still behave as 189 

multi-potent stem cells following transplantation highlighting that cell potential does not necessary 190 

reflect cell behavior under native conditions. HSC skewing towards myeloid and lymphoid lineages 191 

evident from transplantation experiments67,74,75 remains unexplained within the transcriptional 192 

landscape, however data currently only available as preprint76 suggest that a myeloid-biased HSC 193 

subpopulation becomes detectable in aged mice following inflammation consistent with previous 194 

functional data77,78.  195 
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 196 

How to navigate the haematopoietic differentiation landscape  197 

As the HSPC landscape appears to be at least in part continuous, traditional immunophenotyping 198 

approaches aiming to dissect distinct populations would now seem, at least to some extent, 199 

counterintuitive. Instead, broad and unbiased approaches tracking possible routes through the 200 

landscape are required.  Recently there has been a surge of analytical methods for differentiation 201 

trajectory inference. They commonly rely on measuring the ‘distance’ between cells in a high 202 

dimensional gene expression space, under the assumption that cells with small distance between 203 

them are related, for example representing stages of the same differentiation trajectory. The aim is 204 

to find a measure of distance that reflects the structure of the data, rather than just relying on a 205 

shortest possible path (Figure 2A). To perform this task, most methods use dimensionality reduction 206 

techniques to learn the data structure79–82 and simplify computation of cell-cell distances (Figure 2A). 207 

However, excessive dimensionality reduction will inevitably oversimplify the data (Figure 2B). Hence 208 

there is a clear distinction between ‘learned data’ - 10-100 dimensional representation with minimal 209 

information loss, and ‘visualisable data’ – 2-3 dimensions interpretable by humans but at the 210 

expense of potentially discarding important biological information (Figure 2C). This means that 211 

whilst ‘learned data’ is used for trajectory inference, it is not advisable to interpret complex 212 

differentiation pathways simply from a 2D representation of a dataset (tSNE, UMAP etc.).  213 

 214 

Early methods for trajectory inference focused on the idea of ‘pseudotime’, where the calculated 215 

distances are used to order cells along a putative trajectory according to their distance from a 216 

predefined starting point33,34,83–87. This ordering allows recovery of the pseudo-dynamic gene 217 

expression along a trajectory. However, the need to assign cells to unidirectional trajectories 218 

restricts its applicability. Attempts to improve upon this by implementing methods that can discover 219 

putative ‘branchpoints’ in a dataset may provide a solution to this, but their ability to produce 220 
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bifurcations consistent with functional data in an unsupervised manner has been limited87–89. 221 

Alternative methods are aiming to identify the likely connection between clustered cells (StemID90, 222 

PAGA91) or stepwise cell classification working back towards the stem cells (FateID92). Population 223 

balance analysis takes a physically-motivated approach35, attempting to constrain the problem of 224 

trajectory inference into a set of differential equations describing the flux of cells through the 225 

transcriptional landscape. These methods and others like them93 successfully recapitulate 226 

trajectories through the unipotent haematopoietic states, but can also elucidate routes of 227 

differentiation amongst the heterogeneous HSPCs, as highlighted in the following section. 228 

 229 

An evolving view of the HSPC hierarchy 230 

An early analysis of the multipotent stem/progenitor compartment examined 1,600 cells spanning 231 

10 classically defined HSPC populations63. While the surface marker information served as reference 232 

points for this and future studies, scRNA-Seq analysis identified three broad trajectories in the 233 

differentiation landscape: lymphoid, erythroid and granulocytic/monocytic together with their gene 234 

expression signature. A more complete view was provided by high-throughput scRNA-Seq platforms, 235 

which allowed dense cell sampling of large populations (typically >4,000 cells), overcoming the 236 

restriction of narrow sorting gates. Consequently, trajectories towards: megakaryocytes, 237 

erythrocytes, monocytes/dendritic cells, lymphoid cells, neutrophils, and rare populations of 238 

basophils, mast cells and eosinophils are now beginning to be defined40,41. The emerging cellular 239 

hierarchy is largely consistent with the one inferred from recent in situ barcoding studies18,19, with 240 

the exception of the erythroid lineage. This branch appears to be coupled with the megakaryocytic 241 

fate in scRNA-Seq experiments41,91 while barcoding data indicate closer linkage with 242 

Monocytic/Granulocytic lineages instead. Further experiments focusing on native haematopoiesis 243 

will be required to resolve this issue. 244 

 245 
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The identified trajectories in scRNA-Seq data contain a wealth of information. Using gene expression 246 

correlations it is possible to extract putative regulators of fate decision and drivers or inhibitors of 247 

differentiation pathways, which will greatly facilitate future studies41,63. In depth analysis of a single 248 

trajectory can also help explain dynamics of differentiation. Tusi et al. delineated stages of early 249 

erythroid differentiation within the transcriptional landscape including traditionally defined CFU-E, 250 

BFU-E populations and described cell cycle remodelling at putative cell amplification stages during 251 

differentiation. This provided a platform to analyse the effects of EPO stimulation on the progenitor 252 

population structure and their cell cycle profiles. Global analysis of the progenitor landscape 253 

revealed a surprising pattern of multiple types of mature cells arising via more than one trajectory. 254 

Analysis of c-Kit+ cells for example suggested that monocytes have two origins, one coupled with the 255 

DC branch and one with the neutrophil branch41. Similarly, megakaryocytes are predicted to arise 256 

directly from Mk-biased HSCs as well as through a multipotent progenitor intermediate19. Finally, the 257 

yet unpublished PAGA analysis of Lin- c-Kit+ population suggests that basophils can originate from 258 

the neutrophil/monocyte branch or from the Ery/Mk branch91 with the latter supported by recent 259 

computational results41. Although the complexity of megakaryocyte and monocyte trajectories is 260 

supported by experimental data19,48,71, firmly establishing the existence of alternative basophil 261 

trajectories would still benefit from further experimental validation. 262 

 263 

While mice proved to be an excellent model system, there is accumulating evidence suggesting that 264 

human progenitors may be organised differently. A 2016 study used clonal assays and xenograft 265 

transplants to show that in human adult bone marrow, unlike the foetal liver, previously described 266 

oligopotent progenitors (MPPs, CMPs, multi-lymphoid progenitors) are predominantly unipotent and 267 

arise directly from the multi-potent stem cell compartment55. Subsequently, a detailed scRNA-Seq 268 

study analysed the most immature HSPC compartments (Lin-, CD34+, CD38-, and Lin-, CD34+, CD38+) 269 

and revealed that while the unipotent progenitor populations described above indeed form discrete 270 
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subpopulations, the stem cell compartment appears to form a rather continuous structure70. From 271 

lack of obvious priming in the immature populations (with exception of a minor lymphoid/myeloid vs 272 

Mk/Ery bias), the authors concluded that HSCs exist in a fluid “cloud” state, which gives rise directly 273 

to committed progenitors without much cell hierarchy in between. Furthermore even the least 274 

primed populations can give rise to single lineages in vitro, indicating that true multipotent cells 275 

constitute only a small fraction of the conventional stem cell population. These findings are at odds 276 

with evidence of the HSPC hierarchy from the murine system, where the upper tiers, while difficult 277 

to resolve molecularly, have functionally multipotent output.  278 

Although differences between the human and mouse haematopoietic landscapes are bound to exist, 279 

drawing conclusions about the underlying reasons remains very challenging, because the current 280 

scRNA-Seq data analyses produce a rather ‘flat’ HSPC landscape with limited ability to resolve 281 

distinct cellular states19,37,38,41,63. Some aspects of population structure may be drowned in the noise 282 

caused by processes such as cell cycle or metabolism. Furthermore, current scRNA-Seq data 283 

represent an incomplete view of cellular states, due to the failure to detect lowly expressed genes, 284 

and the absence of entire domains of information, such as protein levels or epigenetic status. 285 

Importantly, the current mouse and human datasets have been analysed using different 286 

bioinformatic methods and careful cross-analysis is required before drawing any strong conclusions.  287 

 288 

Outlook: extending the paradigm 289 

In light of the accumulated scRNA-Seq data, the concept of clearly demarcated stem and progenitor 290 

cell types becomes questionable. Barring the caveat of hidden variables (proteins, epigenetics, cell 291 

location etc.), the landscape encompassing the most primitive HSPCs appears mostly continuous and 292 

flat. It is difficult to argue for a reason why the progenitor hierarchy needs to be discrete, other than 293 

simplicity or aesthetics. Indeed, even the very surface markers used for progenitor isolation 294 

commonly exhibit continuous, rather than discrete, levels. The notion of progenitor types has been 295 
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historically dictated by technical limitations: ability to observe cells using only a small number of 296 

markers and limited number of parallel functional assays. By contrast, in a transcriptomic landscape 297 

each cell is positioned using information from several thousand genes.  298 

 299 

Of note, a continuous and flat shape does not imply lack of embedded features or information. On 300 

the contrary, it is evident that positions/territories within this space are functionally relevant and are 301 

associated with key functional qualities, such as durability of self-renewal38,69 or cell output19,36,41,94, 302 

measured using a variety of techniques including cell barcoding19, HSC transplantation assays36,38,69 303 

or in vitro clonal assays41. Because of this continuous nature however, a typical flow cytometry 304 

gating approach provides an arbitrary section through the progenitor landscape providing a mixture 305 

of cells, covering a range of functional outputs (Figure 3A). While undoubtedly useful, isolation of 306 

specific populations offers a fundamentally restricted insight into the organisation and dynamics of 307 

stem and progenitor cells. 308 

  309 

Transcriptomic data offer a more complex and likely more faithful representation, without the need 310 

for subjective categories. Moreover, if necessary for experimental purposes, discretisation is assisted 311 

by rich expression information. While scRNA-Seq data is static, it encodes information on cell states 312 

as they exist in vivo, and at deep coverage has the potential to capture molecular states 313 

representative of cellular transitions. This means that for each location within the landscape 314 

(=cellular state) it may become possible to infer transition directions and probabilities associated 315 

with them under native conditions. Quantitative description of this cell flux through the 316 

multidimensional space will constitute a major advance (Figure 3B). We highlight four directions, 317 

which will facilitate this process and combined will advance our understanding of haematopoiesis. 318 

 319 
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Towards complete cell state information. The single cell landscape constitutes an essential 320 

framework but is currently limited to a subset of mRNA information and lacks potential 321 

heterogeneity hidden at protein, epigenetic or tissue location level. Further development of scRNA-322 

Seq technology will offer denser sampling95, increased coverage/accuracy of transcriptional 323 

profiling30 and combined with new techniques enable simultaneous detection of proteins (CITE-Seq 324 

or REAP-Seq)96,97 or chromatin status98–101. Imaging based transcriptomics is also being developed to 325 

complement the data with spatial information102,103. Altogether, this near-complete information will 326 

provide precise locations of cells in a multi-dimensional feature space and tie together information 327 

at molecular, cellular and tissue levels. 328 

Advanced analytic tools. As increasingly complex datasets accumulate, the analysis becomes more 329 

challenging. This includes trajectory inference, identification of branching points and extraction of 330 

gene regulatory information. Quantitative description of cell fluxes through the progenitor space is 331 

still in its infancy but newly developed numerical frameworks already attempt to approximate cell 332 

transitions from snapshot data (see section “How to navigate the haematopoietic differentiation 333 

landscape”)35,91,104. Nonetheless parallel experimental information remains critical to provide 334 

directionality and real-time information for cell differentiation processes. 335 

 336 

Real-time cell flux through the progenitor space.  Rather than discretising the HSPCs by 337 

immunophenotyping, a more promising approach would be to link cell positions within the 338 

landscape with experimentally derived cell output (Figure 3B), under both native and transplantation 339 

conditions. Thus, each position would encode information on cellular flow in particular directions, 340 

quantifying differentiation and self-renewal. New technologies allowing simultaneous in vivo/in vitro 341 

barcoding and single cell transcriptional profiling (where a barcode can be assigned to cells within 342 

the scRNA-Seq data) are emerging, either using transposon tagging105 or CRISPR scarring106,107. This 343 

should enable integration of real-time cell ancestry information with transcriptomic landscapes, and 344 
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potentially allow for the identification of transcriptomic signals generated only transiently during 345 

real-time differentiation. For finer time scales and insight into cell cycle related effects, pulse-chase 346 

experiments may become important108. 347 

 348 

Molecular mechanisms driving cell transitions. To manipulate haematopoiesis we need to 349 

understand the underlying molecular mechanisms. Correlations inferred from expression data 350 

provide ample hypotheses for regulatory mechanisms but experimental testing is essential. Gene 351 

regulatory networks and chromatin state can now be efficiently interrogated with recently 352 

developed techniques combining CRISPR screening with scRNA-Seq109–114. Targeting multiple genes 353 

and observing the effects globally will help us understand how RNA, proteins, epigenetics and 354 

extrinsic signals establish the shape of differentiation landscape and drive cellular fluxes.  355 

 356 

Altogether, these approaches will provide a reference framework with computational modelling 357 

capacity, a promising starting point for understanding abnormal haematopoiesis. Even at this early 358 

stage, single cell transcriptomics provides valuable insight. As exemplified in Dahlin et al.40 global 359 

analysis of the progenitor compartment revealed that c-Kit defective signalling reshapes the top of 360 

the haematopoietic hierarchy and blocks the mast cell fate at an early stage in mice. Combining 361 

scRNA-Seq with detection of mutations in single cells opens the possibility to analyse samples 362 

directly from leukaemia patients. Giustachini et al.115 applied this approach to identify cell 363 

subpopulations persisting prolonged chemotherapy and related to blast crisis in CML patients. A 364 

global comparison of single cell landscapes between leukemic and wild-type states will reveal new 365 

cellular states or changes in the cellular fluxes associated with e.g. changes in self renewal or 366 

enhanced/reduced differentiation in particular lineages (Figure 3C). Combining our knowledge on 367 

cell flux with regulatory mechanisms will enable a more informed development of future therapies. 368 
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Thus we expect that scRNA-Seq analysis will soon shed new light on leukaemia pathogenesis and 369 

become closely relevant to the clinical setting. 370 
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Table 1. A selection of scRNA-Seq datasets and resources relevant to haematopoiesis. Dedicated 383 

online resources are hyperlinked. Raw and processed data can be obtained from the EBI Single Cell 384 
Expression Atlas or Gene Expression Omnibus databases. 385 

Ref. 
Cell 

number 
Cell populations Platform Summary 

Online 

Resource? 

HSCs 

Grover et al. 

2016
71

 
>130 

BM: LT-HSC (LSK, 

CD150
+
 CD48

–
) 

C1 + 

SMARTer 

Profiling of young and old mice reveals 

expansion of platelet-biased HSCs 
No 

Kowalczyk et 

al. 2015
37

 
>1100 

BM: LT-HSC (LSK, 

CD150
+
, CD48

-
), ST-HSC 

(LSK, CD150
-
, CD48

-
), 

MPP (LSK, CD150
-
, 

CD48
+
) 

SMART-Seq 

Analysis of most immature stem and 

progenitor populations from old and young 

mice 

Yes 

Wilson et al. 

2015
38

 
>90 

BM: LT-HSC (LSK, CD34
-
, 

Flt3
-
, CD48

-
, CD150

-
) 

SMART-

Seq2 

Analysis of the LT-HSCs reveals 

subpopulations with highest repopulation 

potential. Surface marker data allows 

immunophenotyping. 

No 

Cabezas-

Wallscheid et 

al. 2017
69

 

>310 

BM: LT-HSC(LSK, CD34
-
, 

CD48
-
, CD150

+
, CD135

-
), 

LRC/non-LRC 

C1 + 

SMARTer 

Comparison of active and dormant HSC 

populations 
No 

Narrow gate datasets (HSPCs) 

Paul et al. 

2015
36

 
>2700 BM: Lin

-
, Kit

+
, Sca1

-
 cells MARS-Seq 

Dissection of heterogeneity and lineage bias 

within CMP, MEP, GMP. Surface marker data 

allows immunophenotyping. 

No 

Nestorowa et 

al. 2016
63

 
>1600 

BM: HSPCs including: 

LT-HSC, LMPP, MPP, 

MEP, CMP, GMP 

SMART-

Seq2 

Reconstruction of three differentiation 

trajectories (erythroid, granulocytic-

monocytic, lymphoid). Surface marker data 

allows immunophenotyping. 

Yes 

Herman, 

Sagar and 

Grun 2018
92

 

>2800 

BM: LSK, LMPP, CLP  

+ unipotent progenitors 

(i.e. B, DC, NK, Neu and 

Ery) 

CEL-Seq2 
Highlights trajectories towards B, 

Neutrophil/monocyte, DC and erythrocytes 
Yes 

Olsson et al. 

2016
39

 
>380 

BM: LSK, CMP, GMP, 

(Lin
-
 Kit

+
, CD34

+
) 

C1 + 

SMARTer 

Dissection of heterogeneity and lineage bias 

in the intermediate progenitors 
Yes 

Rodriguez-

Fraticelli et al. 

2018
19

 

>4900 
BM: LT-HSC, ST-HSC, 

MPP2, MPP3, MPP4 
inDrops 

Highlights lineage priming in the multipotent 

progenitor compartment and direct HSC-

megakaryocyte differentiation trajectory 

Yes 

Velten et al. 

2017
70

 
>1400 BM: HSPCs (CD34

+
, Lin

-
) Quartz-Seq 

Transcriptomics/functional data suggest 

'cloud-HSC' state in human followed by 

unipotent progenitors. Surface marker data 

allows immunophenotyping. 

Yes 

Broad gate datasets (HSPCs + differentiated cells) 

Villani et al. 

2017
47

 
>2300 

PB: A range of DC and 

monocyte populations 

SMART-

Seq2 

Analysis proposes a new taxonomy for 

human DCs and monocytes 
Yes 

Han et al. 

2018
43

 

>400,000  

BM: 

>38,000 

51 mouse tissues, 

including total BM and 

c-Kit
+
 fraction 

Microwell-

Seq 

Large scale overview of the bone marrow 

and its progenitor compartment, includes 

also polymorphonuclear cells 

Yes 
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Tusi et al. 

2018
41

 
>7300 BM: c-Kit

+
 inDrops 

Highlights Basophil, Megakaryocyte and 

Erythrocyte differentiation branches and 

effects of EPO stimulation 

Yes 

Dahlin et al. 

2018
40

 
>58000 BM: LSK, LK 10X 

Multiple differentiation trajectories and 

identification of basophil/mast cells 

progenitors, comparison with c-Kit defective 

haematopoietic system 

Yes 

Zheng et al. 

2017
26

 
>180,000 

PBMC (WT) + BMMC 

(AML patients + 

controls) 

10X 
Overview of the PBMCs (WT patients) and 

BMMCs before and after transplantation 
No 

Peterson et al. 

2017
97

 
>15,400 

PBMC: CD3
+
 T cells, 

CD11b
+
 myeloid cells, 

CD19
+
 B cells 

10X + REAP-

Seq 

Simultaneous analysis of the whole 

transcriptome and protein levels for 45 

surface markers 

No 

Regev et al. 

2017
42,44

 
>270,000 BMMC 10X 

The largest dataset of human bone marrow 

yet 
Yes 

(10X 

Genomics) 
>8300 PBMC 10x PBMCs from a from a healthy human donor No 

Gierahn et al. 

2017
116

 
>3600 PBMC Seq-Well 

Resolves major cell types and highlights 

heterogeneity in the monocyte population 
No 

Stoeckius et 

al. 2017
96

 
>8000 CBMCs 

10X + CITE-

Seq 

Simultaneous analysis of the whole 

transcriptome and protein levels for 13 

surface markers 

No 

Zheng et al. 

2018
117

 
>21300 CB: CD34

+
 Drop-Seq 

Analysis reconstructs trajectories towards 

four distinct cell fates in the most immature 

compartment 

Yes 

Regev et al. 

2017
42

 
>270,000 CBMCs 10X The largest dataset of human cord blood yet No 

Tabula Muris 

Consortium
118

 
>8,000 

BM: unfractionated + 

LSK, B cells, T/NK cells, 

granulocyte and 

monocyte fractions 

SMART-

Seq2 + 10X 

>100,000 cells profiled from 20 mouse 

organs 
Yes 

Gene perturbations and diseases 

Dixit et al. 

2016
109

 
~70,000 BM: dendritic cells 10X 

CRISPR perturbations provide insight into 

regulators of dendritic cells 
Yes 

Jaitin et al. 

2016
112

 
>10,000 

BM: myeloid cells 

(CD11c+) cells and 

HSPCs (LSK) 

MARS-Seq 
CRISPR perturbations provide insight into 

regulators of myeloid cells in vitro and in vivo 
No 

Giustacchini 

et al. 2017
115

 
>2,000 

BM: Lin
-
, CD34

+
, CD38

-
 

HSPCs 

SMART-

Seq2 

Simultaneous analysis of leukemic and 

normal cells from patients with chronic 

myeloid leukaemia. Modification to SMART-

Seq2 protocol allows mutations detection 

No 

Zhao et al. 

2017
119

 
>970 BM: CD34

+
 

C1 + 

SMARTer 

Use of scRNA-Seq to detect aneuploidy in 

patients 
No 

Mouse/Human 386 

BM - bone marrow, PB - peripheral blood, BMMC - bone marrow mononuclear cells, PBMC - bone marrow mononuclear 387 
cells, Lin - lineage markers cocktail, CB - cord blood, CBMC - Cord blood mononuclear cells, LSK - (Lin

-
, Kit

+
, Sca1

+
), LK - (Lin

-
, 388 

Kit
+
), LRC - label-retaining cells, EPLM - Early progenitor with lymphoid and myeloid potential 389 

 390 



 20

References 391 

1. Boisset JC, Robin C. On the origin of hematopoietic stem cells: Progress and controversy. 392 

Stem Cell Res. 2012;8(1):1–13.  393 

2. Jacobson L, Simmons EL, Marks EK, Eldredge JH. Recovery from Radiation Injury. Science. 394 

1951;113:510–511.  395 

3. Lorenz E, Uphoff D, Reid T, Shelton E. Modification of Irradiation Injury in Mice and Guinea 396 

Pigs by Bone Marrow Injections. JNCI. 1951;12(1):197–201.  397 

4. Urso P, Congdon C. The Effect of the Amount of Isologous Bone Marrow Injected on the 398 

Recovery of Hematopoietic Organs, Survival and Body Weight after Lethal Irradiation Injury in 399 

Mice. Blood. 1957;12(3):251–260.  400 

5. Iscove N, Till J, McCulloch E. The Proliferative States of Mouse Granulopoietic Progenitor 401 

Cells. Exp. Biol. Med. 1970;134(1):33–36.  402 

6. Eaves C. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 403 

2015;125(17):2605–2614.  404 

7. Thomas ED, Lochte HL, Cannon JH, Sahler OD, Ferrebee JW. Supralethal whole body 405 

irradiation and isologous marrow transplantation in man. J. Clin. Invest. 1959;38(10):1709–406 

1716.  407 

8. Thomas E. A history of haematopoietic cell transplantation. Br. J. Haematol. 408 

1999;105(3):330–339.  409 

9. Passweg JR, Baldomero H, Bader P, et al. Hematopoietic stem cell transplantation in Europe 410 

2014: More than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–792.  411 

10. Julius MH, Masuda T, Herzenberg LA. Demonstration That Antigen-Binding Cells Are 412 

Precursors of Antibody-Producing Cells After Purification with a Fluorescence-Activated Cell 413 



 21

Sorter. Proc. Natl. Acad. Sci. 1972;69(7):1934–1938.  414 

11. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined 415 

specificity. Nature. 1975;256(5517):495–497.  416 

12. Wilson A, Laurenti E, Oser G, et al. Hematopoietic Stem Cells Reversibly Switch from 417 

Dormancy to Self-Renewal during Homeostasis and Repair. Cell. 2008;135(6):1118–1129.  418 

13. Orkin SH, Zon LI. Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. Cell. 419 

2008;132(4):631–644.  420 

14. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: A human perspective. Cell Stem Cell. 421 

2012;10(2):120–136.  422 

15. Nimmo RA, May GE, Enver T. Primed and ready: Understanding lineage commitment through 423 

single cell analysis. Trends Cell Biol. 2015;25(8):459–467.  424 

16. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is 425 

deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–673.  426 

17. Sun J, Ramos A, Chapman B, et al. Clonal dynamics of native haematopoiesis. Nature. 427 

2014;514(7522):322–327.  428 

18. Pei W, Feyerabend TB, Rössler J, et al. Polylox barcoding reveals haematopoietic stem cell 429 

fates realized in vivo. Nature. 2017;548(7668):456–460.  430 

19. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, et al. Clonal analysis of lineage fate in native 431 

haematopoiesis. Nature. 2018;553(7687):212–216.  432 

20. Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation 433 

landscapes. Nature. 2018;553(7689):418–426.  434 

21. Ema H, Morita Y, Suda T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp. 435 

Hematol. 2014;42(2):74–82.  436 



 22

22. Hu M, Krause D, Sharkies S, et al. Multilineage gene expression preceded commitment in the 437 

hemopoietic system. Genes Dev. 1997;11:774–785.  438 

23. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the 439 

past decade. Nat. Protoc. 2018;13(4):599–604.  440 

24. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of 441 

individual cells using nanoliter droplets. Cell. 2015;161(5):1202–1214.  442 

25. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics 443 

applied to embryonic stem cells. Cell. 2015;161(5):1187–1201.  444 

26. Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of 445 

single cells. Nat. Commun. 2017;8(14049):doi:10.1038/ncomms14049.  446 

27. Picelli S, Faridani OR, Björklund ÅK, et al. Full-length RNA-seq from single cells using Smart-447 

seq2. Nat. Protoc. 2014;9(1):171–181.  448 

28. Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: Sensitive highly-multiplexed single-449 

cell RNA-Seq. Genome Biol. 2016;17(1):1–7.  450 

29. Bagnoli JW, Ziegenhain C, Janjic A, et al. Sensitive and powerful single-cell RNA sequencing 451 

using mcSCRB-seq. Nat. Commun. 2018;9(2937):doi:10.1038/s41467-018-05347-6.  452 

30. Hayashi T, Ozaki H, Sasagawa Y, et al. Single-cell full-length total RNA sequencing uncovers 453 

dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 454 

2018;9(619):doi:10.1038/s41467-018-02866-0.  455 

31. Svensson V, Natarajan KN, Ly LH, et al. Power analysis of single-cell rnA-sequencing 456 

experiments. Nat. Methods. 2017;14(4):381–387.  457 

32. Ziegenhain C, Vieth B, Parekh S, et al. Comparative Analysis of Single-Cell RNA Sequencing 458 

Methods. Mol. Cell. 2017;65(4):631–643.e4.  459 



 23

33. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions 460 

are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014;32(4):381–461 

386.  462 

34. Bendall SC, Davis KL, Amir EAD, et al. Single-cell trajectory detection uncovers progression 463 

and regulatory coordination in human b cell development. Cell. 2014;157(3):714–725.  464 

35. Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic 465 

inference from single-cell snapshots. Proc. Natl. Acad. Sci. 2018;115(10):2467–2476.  466 

36. Paul F, Arkin Y, Giladi A, et al. Transcriptional Heterogeneity and Lineage Commitment in 467 

Myeloid Progenitors. Cell. 2015;163(7):1663–1677.  468 

37. Kowalczyk MS, Tirosh I, Heckl D, et al. Single-cell RNA-seq reveals changes in cell cycle and 469 

differentiation programs upon aging of hematopoietic stem cells. Genome Res. 470 

2015;25(12):1860–1872.  471 

38. Wilson NK, Kent DG, Buettner F, et al. Combined Single-Cell Functional and Gene Expression 472 

Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell. 2015;16(6):712–473 

724.  474 

39. Olsson A, Venkatasubramanian M, Chaudhri VK, et al. Single-cell analysis of mixed-lineage 475 

states leading to a binary cell fate choice. Nature. 2016;537(7622):698–702.  476 

40. Dahlin JS, Hamey FK, Pijuan-Sala B, et al. A single-cell hematopoietic landscape resolves 8 477 

lineage trajectories and defects in Kit mutant mice. Blood. 2018;131(21):e1–e11.  478 

41. Tusi BK, Wolock SL, Weinreb C, et al. Population snapshots predict early haematopoietic and 479 

erythroid hierarchies. Nature. 2018;555(7694):54–60.  480 

42. Regev A, Teichmann S, Lander S, et al. The Human Cell Atlas. Elife. 2017;6:1–30.  481 

43. Han X, Wang R, Zhou Y, et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell. 482 



 24

2018;172(5):1091–1107.e17.  483 

44. Hay S, Ferchen K, Chetal K, Grimes HL, Salomonis N. Human Cell Atlas bone marrow single-cell 484 

interactive web portal. Exp. Hematol. 2018;In Press:  485 

45. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. 486 

Rev. Immunol. 2018;18(1):35–45.  487 

46. Jaitin D, Kenigsberg E, Keren-Shaul H, et al. Massively Parallel Single-Cell RNA-Seq for Marker-488 

Free Decomposition of Tissues into Cell Types. Science. 2014;343(February):776–779.  489 

47. Villani A-C, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood 490 

dendritic cells, monocytes, and progenitors. Science. 2017;356(6335):eaah4573.  491 

48. Yáñez A, Coetzee SG, Olsson A, et al. Granulocyte-Monocyte Progenitors and Monocyte-492 

Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes. Immunity. 493 

2017;47(5):890–902.e4.  494 

49. Menezes S, Melandri D, Anselmi G, et al. The Heterogeneity of Ly6Chi Monocytes Controls 495 

Their Differentiation into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells. 496 

Immunity. 2016;45(6):1205–1218.  497 

50. Adolfsson J, Månsson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells 498 

lacking erythro-megakaryocytic potential: A revised road map for adult blood lineage 499 

commitment. Cell. 2005;121(2):295–306.  500 

51. Görgens A, Radtke S, Möllmann M, et al. Revision of the Human Hematopoietic Tree: 501 

Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages. Cell Rep. 502 

2013;3(5):1539–1552.  503 

52. Pronk CJH, Rossi DJ, Månsson R, et al. Elucidation of the Phenotypic, Functional, and 504 

Molecular Topography of a Myeloerythroid Progenitor Cell Hierarchy. Cell Stem Cell. 505 



 25

2007;1(4):428–442.  506 

53. Alberti-Servera L, von Muenchow L, Tsapogas P, et al. Single-cell RNA sequencing reveals 507 

developmental heterogeneity among early lymphoid progenitors. EMBO J. 2017;36(24):3619–508 

3633.  509 

54. Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing lineage-510 

restricted progenitors generated directly from hematopoietic stem cells. Cell. 511 

2013;154(5):1112–1126.  512 

55. Notta F, Zandi S, Takayama N, et al. Distinct routes of lineage development reshape the 513 

human blood hierarchy across ontogeny. Science. 2016;351(6269):aab2116.  514 

56. Naik SH, Perié L, Swart E, et al. Diverse and heritable lineage imprinting of early 515 

haematopoietic progenitors. Nature. 2013;496(7444):229–232.  516 

57. Akashi K, Traver D, Miyamoto T. A clonogenic common myeloid progenitor that gives rise to 517 

all myeloid lineages. Nature. 2000;404(March):193–197.  518 

58. Oguro H, Ding L, Morrison SJ. SLAM family markers resolve functionally distinct 519 

subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 520 

2013;13(1):102–116.  521 

59. Bock C, Beerman I, Lien WH, et al. DNA Methylation Dynamics during In Vivo Differentiation 522 

of Blood and Skin Stem Cells. Mol. Cell. 2012;47(4):633–647.  523 

60. Gazit R, Garrison BS, Rao TN, et al. Transcriptome analysis identifies regulators of 524 

hematopoietic stem and progenitor cells. Stem Cell Reports. 2013;1(3):266–280.  525 

61. Cabezas-Wallscheid N, Klimmeck D, Hansson J, et al. Identification of regulatory networks in 526 

HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA 527 

methylome analysis. Cell Stem Cell. 2014;15(4):507–522.  528 



 26

62. Pietras EM, Reynaud D, Kang YA, et al. Functionally Distinct Subsets of Lineage-Biased 529 

Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. 530 

Cell Stem Cell. 2015;17(1):35–46.  531 

63. Nestorowa S, Hamey FK, Pijuan Sala B, et al. A single-cell resolution map of mouse 532 

hematopoietic stem and progenitor cell differentiation. Blood. 2016;128(8):e20–e31.  533 

64. Kiel MJ, Yilmaz ÖH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem 534 

and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–535 

1121.  536 

65. Kent DG, Copley MR, Benz C, et al. Prospective isolation and molecular characterization of 537 

hematopoietic stem cells with durable self-renewal potential. Blood. 2009;113(25):6342–538 

6350.  539 

66. Muller-Sieburg CE, Sieburg HB. The GOD of hematopoietic stem cells: a clonal diversity model 540 

of the stem cell compartment. Cell Cycle. 2006;5(4):394–398.  541 

67. Dykstra B, Kent D, Bowie M, et al. Long-Term Propagation of Distinct Hematopoietic 542 

Differentiation Programs In Vivo. Cell Stem Cell. 2007;1(2):218–229.  543 

68. Upadhaya S, Reizis B, Sawai CM. New genetic tools for the in vivo study of hematopoietic 544 

stem cell function. Exp. Hematol. 2018;61:26–35.  545 

69. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, et al. Vitamin A-Retinoic Acid Signaling 546 

Regulates Hematopoietic Stem Cell Dormancy. Cell. 2017;169(5):807–823.e19.  547 

70. Velten L, Haas SF, Raffel S, et al. Human haematopoietic stem cell lineage commitment is a 548 

continuous process. Nat. Cell Biol. 2017;19(4):271–281.  549 

71. Grover A, Sanjuan-Pla A, Thongjuea S, et al. Single-cell RNA sequencing reveals molecular and 550 

functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 551 



 27

2016;7(11075):doi:10.1038/ncomms11075.  552 

72. Sanjuan-Pla A, Macaulay IC, Jensen CT, et al. Platelet-biased stem cells reside at the apex of 553 

the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232–236.  554 

73. Carrelha J, Meng Y, Kettyle LM, et al. Hierarchically related lineage-restricted fates of 555 

multipotent haematopoietic stem cells. Nature. 2018;554(7690):106–111.  556 

74. Muller CE, Cho RH, Thoman M, Adkins B, Sieburg HB. Deterministic regulation of 557 

hematopoietic stem cell self-renewal and differentiation. Blood. 2002;100(4):1302–1309.  558 

75. Benz C, Copley MR, Kent DG, et al. Hematopoietic stem cell subtypes expand differentially 559 

during development and display distinct lymphopoietic programs. Cell Stem Cell. 560 

2012;10(3):273–283.  561 

76. Mann M, Mehta A, Boer C De, et al. Heterogeneous Responses of Hematopoietic Stem Cells 562 

to Inflammatory. bioRxiv. 2017;doi:10.1101/163402.  563 

77. Pietras EM, Mirantes-Barbeito C, Fong S, et al. Chronic interleukin-1 exposure drives 564 

haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-565 

renewal. Nat. Cell Biol. 2016;18(6):607–618.  566 

78. Pang WW, Price E a, Sahoo D, et al. Human bone marrow hematopoietic stem cells are 567 

increased in frequency and myeloid-biased with age. Proc. Natl. Acad. Sci. 568 

2011;108(50):20012–20017.  569 

79. Van Der Maaten LJP, Hinton GE. Visualizing high-dimensional data using t-sne. J. Mach. Learn. 570 

Res. 2008;9:2579–2605.  571 

80. Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of 572 

differentiation data. Bioinformatics. 2015;31(18):2989–2998.  573 

81. Weinreb C, Wolock S, Klein AM. SPRING: A kinetic interface for visualizing high dimensional 574 



 28

single-cell expression data. Bioinformatics. 2018;34(7):1246–1248.  575 

82. McInnes L, Healy J. UMAP: Uniform Manifold Approximation and Projection for Dimension 576 

Reduction. arxiv. 2018;doi:1802.03426v1.  577 

83. Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene regulatory dynamics from 578 

high-dimensional single-cell snapshot data. Bioinformatics. 2015;31(12):i89–i96.  579 

84. Marco E, Karp RL, Guo G, et al. Bifurcation analysis of single-cell gene expression data reveals 580 

epigenetic landscape. Proc. Natl. Acad. Sci. 2014;111(52):5643–5650.  581 

85. Setty M, Tadmor MD, Reich-zeliger S, et al. Articles Wishbone identifies bifurcating 582 

developmental trajectories from single-cell data. Nat. Biotechnol. 2016;34(6):614–637.  583 

86. Shin J, Berg DA, Christian KM, et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular 584 

Cascades underlying Adult Neurogenesis Resource Single-Cell RNA-Seq with Waterfall Reveals 585 

Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. 2015;17(3):360–372.  586 

87. Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly 587 

reconstructs lineage branching. Nat. Methods. 2016;13(10):845–848.  588 

88. Welch JD, Hartemink AJ, Prins JF. SLICER: Inferring branched, nonlinear cellular trajectories 589 

from single cell RNA-seq data. Genome Biol. 2016;17(1):1–15.  590 

89. Giecold G, Marco E, Garcia SP, Trippa L, Yuan GC. Robust lineage reconstruction from high-591 

dimensional single-cell data. Nucleic Acids Res. 2016;44(14):1–7.  592 

90. Grün D, Muraro MJ, Boisset JC, et al. De Novo Prediction of Stem Cell Identity using Single-593 

Cell Transcriptome Data. Cell Stem Cell. 2016;19(2):266–277.  594 

91. Wolf FA, Hamey F, Plass M, et al. Graph abstraction reconciles clustering with trajectory 595 

inference through a topology preserving map of single cells. bioRxiv. 596 

2017;doi:10.1101/208819.  597 



 29

92. Herman JS, Sagar, Grün D. FateID infers cell fate bias in multipotent progenitors from single-598 

cell RNA-seq data. Nat. Methods. 2018;15(5):379–386.  599 

93. Lummertz E, Rowe RG, Lundin V, et al. Reconstruction of complex single-cell trajectories using 600 

CellRouter. Nat. Commun. 2018;9(892):doi:10.1038/s41467-018-03214-y.  601 

94. Tusi BK, Socolovsky M. High-throughput single-cell fate potential assay of murine 602 

hematopoietic progenitors in vitro. Exp. Hematol. 2018;60:21–29.e3.  603 

95. Rosenberg A, Roco C, Muscat R, et al. Single-cell profiling of the developing mouse brain and 604 

spinal cord wit split-pool barcoding. Science. 2018;doi: 10.1126/science.aam8999.  605 

96. Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome 606 

measurement in single cells. Nat. Methods. 2017;14(9):865–868.  607 

97. Peterson VM, Zhang KX, Kumar N, et al. Multiplexed quantification of proteins and transcripts 608 

in single cells. Nat. Biotechnol. 2017;35(10):936–939.  609 

98. Buenrostro JD, Corces MR, Lareau CA, et al. Integrated Single-Cell Analysis Maps the 610 

Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell. 611 

2018;173(6):1535–1548.e16.  612 

99. Lay F, Kelly T, Jones P. Nucleosome Occupancy and Methylome Sequencing (NOMe-seq). 613 

Methods Mol. Biol. 2018;3rd editio:267–284.  614 

100. Cusanovich DA, Daza R, Adey A, et al. Multiplex single-cell profiling of chromatin accessibility 615 

by combinatorial cellular indexing. Science. 2015;348(6237):910–914.  616 

101. Clark SJ, Argelaguet R, Kapourani CA, et al. ScNMT-seq enables joint profiling of chromatin 617 

accessibility DNA methylation and transcription in single cells. Nat. Commun. 618 

2018;9(781):10.1038/s41467-018-03149-4.  619 

102. Crosetto N, Bienko M, Van Oudenaarden A. Spatially resolved transcriptomics and beyond. 620 



 30

Nat. Rev. Genet. 2015;16(1):57–66.  621 

103. Wang X, Allen WE, Wright MA, et al. Three-dimensional intact-tissue sequencing of single-cell 622 

transcriptional states. Science. 2018;361(6400):10.1126/science.aat5691.  623 

104. Schiebinger G, Shu J, Tabaka M, et al. Reconstruction of developmental landscapes by 624 

optimal-transport analysis of single-cell gene expression sheds light on cellular 625 

reprogramming. bioRxiv. 2017;doi:10.1101/191056.  626 

105. Wagner DE, Weinreb C, Collins ZM, et al. Single-cell mapping of gene expression landscapes 627 

and lineage in the zebrafish embryo. Science. 2018;360(6392):981–987.  628 

106. Raj B, Wagner DE, McKenna A, et al. Simultaneous single-cell profiling of lineages and cell 629 

types in the vertebrate brain. Nat. Biotechnol. 2018;36(5):442–450.  630 

107. Spanjaard B, Hu B, Mitic N, et al. Simultaneous lineage tracing and cell-type identification 631 

using CrIsPr-Cas9-induced genetic scars. Nat. Biotechnol. 2018;36(5):469–473.  632 

108. Akinduro O, Weber TS, Ang H, et al. Proliferation dynamics of acute myeloid leukaemia and 633 

haematopoietic progenitors competing for bone marrow space. Nat. Commun. 634 

2018;9(519):doi:10.1038/s41467-017-02376-5.  635 

109. Dixit A, Parnas O, Li B, et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-636 

Cell RNA Profiling of Pooled Genetic Screens. Cell. 2016;167(7):1853–1866.e17.  637 

110. Adamson B, Norman TM, Jost M, et al. A Multiplexed Single-Cell CRISPR Screening Platform 638 

Enables Systematic Dissection of the Unfolded Protein Response. Cell. 2016;167(7):1867–639 

1882.e21.  640 

111. Datlinger P, Rendeiro AF, Schmidl C, et al. Pooled CRISPR screening with single-cell 641 

transcriptome readout. Nat. Methods. 2017;14(3):297–301.  642 

112. Jaitin DA, Weiner A, Yofe I, et al. Dissecting Immune Circuits by Linking CRISPR-Pooled 643 



 31

Screens with Single-Cell RNA-Seq. Cell. 2016;167(7):1883–1896.e15.  644 

113. Giladi A, Paul F, Herzog Y, et al. Single-cell characterization of haematopoietic progenitors and 645 

their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 2018;20:836–646 

846.  647 

114. Xie S, Duan J, Li B, Zhou P, Hon GC. Multiplexed Engineering and Analysis of Combinatorial 648 

Enhancer Activity in Single Cells. Mol. Cell. 2017;66(2):285–299.e5.  649 

115. Giustacchini A, Thongjuea S, Barkas N, et al. Single-cell transcriptomics uncovers distinct 650 

molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 2017;23(6):692–651 

702.  652 

116. Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well: Portable, low-cost rna sequencing 653 

of single cells at high throughput. Nat. Methods. 2017;14(4):395–398.  654 

117. Zheng S, Papalexi E, Butler A, Stephenson W, Satija R. Molecular transitions in early 655 

progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 2018;14(3):e8041.  656 

118. The Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a 657 

Tabula Muris. Nature. 2018;562:367–372.  658 

119. Zhao X, Gao S, Wu Z, et al. Single-cell RNA-seq reveals a distinct transcriptome signature of 659 

aneuploid hematopoietic cells. Blood. 2017;130(25):2762–2773.  660 

 661 

 662 

  663 



 32

FIGURE LEGENDS 664 

Figure 1. Comparison of a haematopoietic tree diagram with a single-cell transcriptomic 665 

landscape. (A) Schematic showing one of the classic views of the haematopoietic cell hierarchy. 666 

Dashed boxes show three compartments encompassing cells of different potency: multipotent cells 667 

on top, bi/oligopotent cells in the middle and terminally differentiated (unipotent) cells at the 668 

bottom. (B) A dimensionality reduction projection (UMAP algorithm) of single cell transcriptomes 669 

from the bone marrow mononuclear cell fraction. Arrows indicate main directions of differentiation, 670 

inferred from analysis of typical marker genes. Grey indicates ‘unassigned’ cells, which identity 671 

based on markers is unclear (dataset downloaded from HCA data portal and processed by I.K). LT-672 

HSC, long-term haematopoietic stem cell; ST-HSC, short-term haematopoietic stem cell; MPP, 673 

multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CMP, common myeloid 674 

progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-monocyte progenitor; CLP, 675 

common lymphoid progenitor; HSPC, haematopoietic stem and progenitor cell; Mk, megakaryocyte.  676 

 677 

Figure 2. Distances and data dimensionality. (A) A set of single cells expressing 3 genes arranged 678 

along a curved shape has been simulated. There are two measures of distance between the blue and 679 

red cells: Whilst D1 represents the shortest possible distance between the two cells, D2 is the 680 

distance between the cells through the structure of the data (‘manifold’). The two arms of the 681 

curved shape may represent continuous transition processes (e.g. cell differentiation) thus distance 682 

D2 is the important distance measure. A dimensionality reduction technique (here tSNE) should 683 

capture such features. (B) Excessive reduction in dimensionality causes important information to be 684 

lost. In this case, a 2D representation of the data incorrectly suggests that the green cell is further 685 

from the yellow cell than the orange cell, because information has been lost about axis 2. (C) To infer 686 

cellular trajectories from scRNA-seq data, dimensionality reduction is used to ‘learn’ the structure of 687 

the data (‘learned data’), which captures the important distances between cells in a suitable number 688 
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of dimensions, typically 10-100. Trajectory inference can then be attempted from this learned data.  689 

For visualisation, the dimensionality of the data needs to be reduced to either 2 or 3, but this will 690 

inevitably lose some of the important biological information rendering data unsuitable for trajectory 691 

inference.  692 

 693 

Figure 3. From transcriptomic landscapes to tissue function. The three diagrams depict 2D 694 

landscapes with single cells as points, where a pool of progenitors gives rise to two differentiated 695 

populations X and Y. (A) A classical approach to identify a specific bipotent progenitor population, an 696 

immunophenotypic gate drawn based on expression of a surface marker (green) sections through 697 

the landscape and yields a heterogeneous population of cells upon functional analysis. (B) Normal 698 

haematopoiesis; dynamic information about cellular fluxes (arrows) indicates directions of 699 

differentiation throughout the landscape and degree of self-renewal. (C) An example of how cell flux 700 

analysis reveals mechanisms of a disease. In this case the stem cell pool is exhausted (low self-701 

renewal) compromising production of Y cells, while there is an increased production of X cells due to 702 

acquired increased self-renewal of progenitors X. 703 

 704 
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