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1 Introduction

The graph isomorphism problem (GI) is the problem of determining, given a pair of
graphs G and H , whether they are isomorphic. This problem has an unusual status in
complexity theory as it is neither known to be in P nor known to beNP-complete, one
of the few natural problems for which this is the case. Polynomial-time algorithms
are known for a variety of special classes of graphs. Many of these lead to natural
parameterizations ofGI by means of structural parameters of the graphs which can be
used to study the problem from the point of view of parameterized complexity. For
instance, it is known that GI is in XP parameterized by the genus of the graph [8,16],
by maximum degree [1,15] and by the size of the smallest excluded minor [18],
or more generally, the smallest excluded topological minor [10]. For each of these
parameters, it remains an open question whether the problem is FPT. On the other
hand, GI has been shown to be FPT when parameterized by eigenvalue multiplicity
[5], tree distance width [21], the maximum size of a simplical component [19,20] and
minimum feedback vertex set [12]. Bouland et al. [2] showed that the problem is FPT
when parameterized by the tree depth of a graph and extended this result to a parameter
they termed generalised tree depth. In a recent advance on this, Lokshtanov et al. [14]
have shown that graph isomorphism is also FPT parameterized by tree width.

Our main result extends the results of Bouland et al. and is incomparable with
that of Lokshtanov et al. We show that graph canonisation is FPT parameterized by
elimination distance to degree d, for any constant d. The structural graph parameter
we introduce is an instance of what Guo et al. [11] call distance to triviality and it may
be of interest in the context of other graph problems. It should be noted that graphs
with degree bounded by d (for d ≥ 3) have unbounded tree-width and the same is a
fortiori true of graphs with elimination distance k to degree d.

To put this parameter in context, consider the simplest notion of distance to triviality
for a graph G: the number k of vertices of G that must be deleted to obtain a graph
with no edges. This is, of course, just the size of a minimal vertex cover in G and is
a parameter that has been much studied (see for instance [7]). Indeed, it is also quite
straightforward to see that GI is FPT when parameterized by vertex cover number.
Consider two ways this observation might be strengthened. The first is to relax the
notion of what we consider to be “trivial”. For instance, as there is, for each d, a
polynomial time algorithm deciding GI among graphs with maximum degree d, we
may take this as our trivial base case. We then parameterize G by the number k of
vertices that must be deleted to obtain a subgraph of G with maximum degree d. This
yields the parameter deletion distance to bounded degree, which we consider in Sect. 3
below. Alternatively, we relax the notion of “distance” so that rather than considering
the sequential deletion of k vertices, we consider the recursive deletion of vertices in
a tree-like fashion. To be precise, say that a graph G has elimination distance k + 1
from triviality if, in each connected component of G we can delete a vertex so that
the resulting graph has distance k to triviality. If triviality is understood to mean the
empty graph, this just yields a definition of the tree depth of G. In our main result,
we combine these two approaches by parameterizing G by the elimination distance
to triviality, where a graph is trivial if it has maximum degree d. We show that, for
any fixed d, this gives a structural parameter on graphs for which graph canonisation
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is FPT. Along the way, in Sect. 4, we establish a number of characterisations of the
parameter that may be interesting in themselves. In particular, we define the notion
of an elimination order which is a partial order on the vertices indicating the order in
which they need to be eliminated to reduce the degree to d.

It is easy to see that in a graph G that has elimination distance k to degree d,
all vertices of sufficiently high degree have to be eliminated, but it may be the case
that in an optimal elimination order some low-degree vertices may also need to be
eliminated. A key idea in our proof is to show that G contains a canonically defined
set of vertices C (which we call its torso), including the high-degree vertices so that
if G has elimination distance k to degree d, then we can reduce the degree to d by
eliminating just vertices in C , and moreover this yields an elimination order whose
height is bounded by a function of k and d. This is established in Sect. 5. It should be
noted that the parameter termed generalised tree depth in [2] can be seen as a special
case of elimination distance to degree 2.

With this characterisation established, we are able to present the canonisation
algorithm in Sect. 6. The central technique used here is inspired by Lindell’s tree
canonisation algorithm [13]. We define an order � on isomorphism types of coloured
graphs equipped with an elimination order recursively on the height of this order, with
the base case being a canonical order on coloured graphs of bounded degree. We then
show that given a graph G, separated into its torso C and a low-degree part, we can
construct an elimination order forG (i.e. a tree-depth decomposition ofC) which is�-
minimal. We use the result of Bouland et al. [2] on canonisation of bounded tree-depth
graphs to bound the branching in the search and establish that canonisation is FPT.

2 Preliminaries

2.1 Parameterized Complexity

Parameterized complexity theory is a two-dimensional approach to the study of the
complexity of computational problems. A language (or problem) L is a set of strings
L ⊆ �∗ over a finite alphabet �. A parameterization is a computable function κ :
�∗ → N. We say that L is fixed-parameter tractablewith respect to κ if we can decide
whether an input x ∈ �∗ is in L in time O( f (κ(x)) · |x |c), where c is a constant and
f is some computable function. For a thorough discussion of the subject we refer to
the books by Downey and Fellows [4], Flum and Grohe [9] and Niedermeier [17]. We
follow notation and terminology from [9].

2.2 Graphs

A graph G is a set of vertices V (G) and a set of edges E(G) ⊆ V (G) × V (G). We
will usually assume that graphs are loop-free and undirected, i.e. that E is irreflexive
and symmetric. If E is not symmetric, we call G a directed graph. We mostly follow
the notation in Diestel [3].

If v ∈ G and S ⊆ V (G), we write EG(v, S) for the set of edges {vw | w ∈ S}
between v and S.
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The neighbourhood of a vertex v is NG(v) := {w ∈ V (G) | vw ∈ E(G)}. The
degree of a vertex v is the size of its neighbourhood degG(v) := |NG(v)|. For a set of
vertices S ⊆ V (G) its neighbourhood is defined to be NG(S) := ⋃

v∈S NG(v)\S. The
degree of a graph G is the maximum degree of its vertices �(G) := max{degG(v) |
v ∈ V (G)}. If it is clear from the context what the graph is, we may omit the subscript.

A subgraph H of G is a graph with vertices V (H) ⊆ V (G) and edges E(H) ⊆
(V (H) × V (H)) ∩ E(G). If A ⊆ V (G) is a set of vertices of G, we write G[A] for
the subgraph induced by A, i.e. V (G[A]) = A and E(G[A]) = E(G) ∩ (A × A). If
A is a subset of V (G), we write G\A for G[V (G)\A]. For a vertex v ∈ V (G), we
write G\v for G\{v}.

A vertex v is said to be reachable from a vertex w in G if v = w or if there is a
sequence of edges a1a2, . . . , as−1as ∈ E(V )with the ai pairwise distinct andw = a1
and v = as . We call the subgraph P of G with vertices V (P) = {a1, . . . , as} and
edges E(P) = {a1a2, . . . , as−1as} a path from w to v.

Let H be a subgraph of G and v,w ∈ V (G). A path through H from w to v is a
path P from w to v in G with all vertices, except possibly the endpoints, in V (H), i.e.
(V (P)\{v,w}) ⊆ V (H).

It is easy to see that for undirected graphs reachability defines an equivalence rela-
tion on the vertices of G. A subgraph of an undirected graph induced by a reachability
class is called a component.

Two graphs G, G ′ are isomorphic if there is a bijection ϕ : V (G) → V (G ′) such
that for all v,w ∈ V (G) we have that vw ∈ E(G) if, and only if, ϕ(v)ϕ(w) ∈ E(G ′).
We write G ∼= G ′ if G and G ′ are isomorphic. We write GI to denote the problem of
deciding, given G and G ′ whether G ∼= G ′.

A (k-)colouring of a graph G is a map c : V (G) → {1, . . . , k} for some k ∈ N.
We call a graph together with a colouring a coloured graph. Two coloured graphs
G,G ′ with respective colourings c : V (G) → {1, . . . , k}, c′ : V (G ′) → {1, . . . , k}
are isomorphic if there is a bijection ϕ : V (G) → V (G ′) such that:

• for all v,w ∈ V (G) we have that vw ∈ E(G) if and only if ϕ(v)ϕ(w) ∈ E(G ′);
• for all v ∈ V (G), we have that c(v) = c′(ϕ(v)).

Note that we require the colour classes to match exactly, and do not allow a per-
mutation of the colour classes.

LetC be a class of (coloured) graphs closed under isomorphism. A canonical form
for C is a function F : C → C such that

• for all G ∈ C, we have that F(G) ∼= G;
• for all G, H ∈ C, we have that G ∼= H if, and only if, F(G) = F(H).

A canonical form F for a class C gives rise to a natural pre-order on C, which we
denote �F whereby G �F H just in case F(G) is lexicographically smaller than
F(H). Then for any pair of graphs G and H inC, at least one ofG �F H or H �F G
must hold, and both hold if, and only if, G ∼= H .
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2.3 Orders

Recall that a partial order is a binary relation ≤ on a set S which is reflexive, anti-
symmetric and transitive. We say a set T ⊆ S is a chain if it is totally ordered by ≤.
If ≤ is a partial order on S, and for each element a ∈ S, the set {b ∈ S | b ≤ a} is a
chain, we say ≤ is a tree order. (Note that the covering relation of a tree order is not
necessarily a tree, but may be a forest.)

Definition 2.1 An elimination order ≤ is a tree order on the vertices of a graph G,
such that for each edge uv ∈ E(G) we have either u ≤ v or v ≤ u.

We say that an order has height k if the length of the longest chain in it is k.
We write td(G) for the tree-depth of G, which is defined as follows

td(G) :=

⎧
⎪⎨

⎪⎩

0, if V (G) = ∅;
1 + min{td(G\v) | v ∈ V (G)}, if G is connected;

max{td(H) | H a component of G}, otherwise.

Note that there is an elimination order ≤ of height k for a graph G if, and only if,
td(G) ≤ k.

2.4 Isomorphism on Bounded-Degree Graphs

Luks [15] shows that isomorphism of bounded-degree graphs is decidable in polyno-
mial time. It is well-known that this result extends, by an easy reduction, to coloured
graphs of bounded-degree. Though this reduction is folklore, for the sake of complete-
ness, we present it here explicitly.

Proposition 2.2 The isomorphism problem for coloured graphs of degree d can be
reduced to the isomorphism problem of graphs of degree d + 2 in polynomial time.

Proof Let G,G ′ be graphs and let c, c′ : V (G) → {1, . . . , k} be colourings of G,G ′
respectively for some k ∈ N.

We define H to be the graph whose vertices include V (G) and, additionally, for
each v ∈ V (G), c(v) + 1 new vertices uv

1, . . . , u
v
c(v)+1. The edges of H are the edges

E(G) plus additional edges so that the vertices v and uv
1, . . . , u

v
c(v)+1 form a simple

cycle of length c(v) + 2. We obtain H ′ in a similar way from G ′.
We claim that G ∼= G ′ if, and only if, H ∼= H ′. Clearly, if G ∼= G ′ and ϕ is an

isomorphism witnessing this, it can be extended to an isomorphism from H to H ′ by
mapping uv

i to uϕ(v)
i . For the converse, suppose H ∼= H ′ and let ϕ : H → H ′ be

an isomorphism. We use it to define an isomorphism ϕ′ from G to G ′. Note that, if
v ∈ V (G) is not an isolated vertex of G, then it has degree at least 3 in H . Since ϕ(v)

has the same degree, it is in V (G ′), and we let ϕ′(v) = ϕ(v). If v is an isolated vertex
of G, then its component in H is a simple cycle of length c(v) + 2. The image of this
component under ϕ is a simple cycle of H ′ which must contain exactly one vertex
v′ of V (G ′). We let ϕ′(v) = v′. It is easy to see that there is an edge between v1, v2
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in G if, and only if, there is an edge between ϕ′(v1) and ϕ′(v2) in G ′. To see that ϕ′
also preserves colours, note that ϕ must map the cycle containing uv

c(v) to the cycle

containing uϕ′(v)

c(ϕ′(v))
and therefore c(v) = c(ϕ′(v)).

Note that ifG andG ′ are graphs of degree d, then H, H ′ are graphs of degree d+2.

As Luks [15] proves that isomorphism of bounded degree graphs can be decided
in polynomial time, we have the following:

Theorem 2.3 We can test in polynomial time whether two (coloured) graphs with
maximal degree bounded by a constant are isomorphic.

Babai and Luks [1] give a polynomial time canonisation algorithm for bounded
degree graphs. Just as above we can reduce canonisation of coloured bounded degree
graphs to the bounded degree graph canonisation problem.

Theorem 2.4 Let C be a class of (coloured) bounded degree graphs closed under
isomorphism. Then there is a canonical form F forC that allows us to compute F(G)

in polynomial time.

3 Deletion Distance to Bounded Degree

We first study the notion of deletion distance to bounded degree and establish in this
section that graph isomorphism is FPT with this parameter. Though the result in this
section is subsumed by the more general one in Sect. 6 and also by a result of Kratsch
and Schweitzer [12], it provides a useful warm-up and a tighter bound, exponential
in the parameter. In the present warm-up we only give an algorithm for the graph
isomorphism problem, though the result easily holds for canonisation as well (and
this follows from the more general result in Sect. 6). The notion of deletion distance
to bounded degree is a particular instance of the general notion of distance to triviality
introduced by Guo et al. [11]. In the context of graph isomorphism, we have chosen
triviality to mean graphs of degree at most d.

Definition 3.1 A graph G has deletion distance k to degree d if there are k vertices
v1, . . . , vk ∈ V (G) such thatG\{v1, . . . , vk} has degree d.We call the set {v1, . . . , vk}
a d-deletion set.

Remark To say that G has deletion distance 0 from degree d is just to say that G has
maximum degree d. Also note that if d = 0, then a d-deletion set is just a vertex cover
and the minimum deletion distance the vertex cover number of G.

We show that isomorphism is fixed-parameter tractable on such graphs parameter-
ized by k with fixed degree d; in particular we give a procedure that computes in linear
time a setU of vertices of size polynomial in k so that any deletion set must be found
in U if one exists. This then allows for exhaustive search over all potential isomor-
phisms. We callU a bounding set for the deletion set. The construction is reminiscent
of a kernelization result in [6] for the problem of determining whether a graph has
deletion distance k to degree d, though that does not yield a bounding set containing
all deletion sets.
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Theorem 3.2 For any graph G and integers d, k > 0, we can identify in linear time a
subgraph G ′ of G, a set of vertices U ⊆ V (G ′)with |U | = O(k(k+d)2) and a k′ ≤ k
such that: G has deletion distance k to degree d if and only if G ′ has deletion distance
k′ to d and, moreover, if G ′ has deletion distance at most k′, then any minimum size
d-deletion set for G ′ is contained in U.

Proof Let A := {v ∈ V (G) | deg(v) > k + d}. Now, if R is a minimum size d-
deletion set for G and G has deletion distance at most k to degree d, then |R| ≤ k and
the vertices in V (G\R) have degree at most k + d in G. So A ⊆ R. This means that
if |A| > k, then G must have deletion distance greater than k to degree d and in that
case we let G ′ := G, k′ := k and U = ∅.

Otherwise let G ′ := G\A and k′ := k − |A|. We have shown that every d-deletion
set of size at most k must contain A. Thus G has deletion distance k to degree d if,
and only if, G ′ has deletion distance k′ to degree d.

Let S := {v ∈ V (G ′) | degG ′(v) > d} and U := S ∪ NG ′(S). Let R′ ⊆ V (G ′) be
a minimum size d-deletion set for G ′. We show that R′ ⊆ U . Let v /∈ U . Then by the
definition ofU we know that degG ′(v) ≤ d and all of the neighbours of v have degree
at most d in G ′. So if v ∈ R′, then G\(R′ \ {v}) also has maximal degree d, which
contradicts the assumption that R′ is of minimum size. Thus v /∈ R′.

Note that the vertices in G ′\(R′ ∪ N (R′)) have the same degree in G ′ as in G and
thus all have degree at most d. So S ⊆ R′ ∪ N (R′) and thus |U | ≤ k′ + k′(k + d) +
k′(k + d)2 = O(k(k + d)2).

Finally, the sets A and U defined as above can be found in linear time, and G ′, k′
can be computed from A in linear time.

Remark It may be noted that the set U is canonical in the sense that if there is an
isomorphism from G to a graph H , this must take U to the corresponding set in H .
But, this is not essential to our argument below. What is important is that U contains
all possible deletion sets for G. In particular, if U = ∅ and k′ > 0, then there are no
d-deletion sets of size at most k′.

Next we see how the bounding setU can be used to determine whether two graphs
with deletion distance k to degree d are isomorphic by reducing the problem to iso-
morphism of coloured graphs of degree at most d.

Suppose we are given two graphs G and H with d-deletion sets S = {v1, . . . , vk}
and T = {w1, . . . , wk} respectively. Further suppose that the map vi �→ wi is an
isomorphism on the induced subgraphs G[S] and H [T ]. We can then test if this
map can be extended to an isomorphism from G to H using Theorem 2.4. To be
precise, we define the coloured graphs G ′ and H ′ which are obtained from G\S
and H\T respectively, by colouring vertices. A vertex u ∈ V (G ′) gets the colour
{i | vi ∈ NG(u)}, i.e. the set of indices of its neighbours in S. Vertices in H ′ are
similarly coloured by the sets of indices of their neighbours in T . It is clear thatG ′ and
H ′ are isomorphic if, and only if, there is an isomorphism betweenG and H , extending
the fixed map between S and T . The coloured graphs G ′ and H ′ have degree bounded
by d, so Theorem 2.4 gives us a polynomial-time isomorphism test on these graphs.

Now, given a pair of graphs G and H which have deletion distance k to degree
d, let A and B be the sets of vertices of degree greater than k + d in the two graphs
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respectively. Also, let U and V be the two bounding sets in the graphs obtained from
Theorem 3.2. Thus, any d-deletion set in G contains A and is contained in A∪U and
similarly, any d-deletion set for H contains B and is contained in B ∪ V . Therefore
to test G and H for isomorphism, it suffices to consider all k-element subsets S of
A ∪ U containing A and all k-element subsets T of B ∪ V containing B, and if they
are d-deletion sets for G and H , check for all k! maps between them whether the map
can be extended to an isomorphism from G to H . As d is constant this takes time

O∗
(

(k3
k

)2 · k!
)

, which is O∗ (
27k log k

)
.

4 Elimination Distance to Bounded Degree

In this section we introduce a new structural parameter for graphs. We generalise
the idea of deletion distance to triviality by recursively allowing deletions from each
component of the graph. This generalises the idea of elimination height or tree-depth,
and is equivalent to it when the notion of triviality is the empty graph. In the context
of graph isomorphism and canonisation we again define triviality to mean bounded
degree, so we look at the elimination distance to bounded degree.

Definition 4.1 The elimination distance to degree d of a graphG is defined as follows:

edd (G) :=

⎧
⎪⎨

⎪⎩

0, if �(G) ≤ d;
1 + min{edd (G\v) | v ∈ V (G)}, if�(G) > d and G is connected;

max{edd (H) | H a connected component of G}, otherwise.

We first introduce other equivalent characterisations of this parameter. If G is a
graph that has elimination distance k to degree d, then we can associate a certain
tree order ≤ with it as defined below. The idea is that if G is a connected graph we
can choose a vertex v so that deleting it strictly reduces the elimination distance to
degree d. We make v ≤ u for all vertices u and vertices in distinct components of
G\v are made incomparable with respect to ≤. We proceed in this fashion until we
have components with degree at most d and all vertices in these are incomparable (and
indeed ≤-maximal). If C is such a degree d component, then the vertices of G\C that
are neighbours of vertices in C must be linearly ordered by ≤ and they all precede
the vertices of C in the order ≤. Thus, if we associate with every vertex v, the set Sv

of neighbours of v that are ≤-incomparable with v we can note the following: Sv has
at most d elements for any v; if Sv is not empty, then v must be ≤-maximal; and if
u ∈ Sv then u and v must have the same ≤-predecessors. This can be taken as the
defining property of an elimination order to degree d, as below.

Definition 4.2 A tree order ≤ on V (G) is an elimination order to degree d for G if
for each v ∈ V (G) the set

Sv := {u ∈ V (G) | uv ∈ E(G) and u � v and v � u}

satisfies either:
• Sv = ∅; or
• v is≤-maximal, |Sv| ≤ d, and for allu ∈ Sv , we have {w | w < u} = {w | w < v}.
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Remark Note that if Sv = ∅ for all v ∈ V (G), then an elimination order to degree d
is just an elimination order, in the sense of Definition 2.1.

Proposition 4.3 A graph G has edd(G) ≤ k if, and only if, there is an elimination
order to degree d of height k for G.

Proof Suppose first that edd(G) ≤ k. We proceed by induction on k. If k = 0, then
G has no vertex of degree larger than d and we define the elimination order ≤ to be
the identity relation on V (G). Then every v ∈ V (G) is maximal, we have |Sv| ≤ d,
and for all u ∈ Sv we have {w | w < u} = ∅ = {w | w < v}.

Suppose k > 0 and the statement is true for smaller values. IfG is not connected, we
apply the following argument to each component. So in the following we assume that
G is connected. Thus, there is a vertex a ∈ V (G) such that the componentsC1, . . . ,Cr

of G\a all have edd(Ci ) ≤ k − 1. So by the induction hypothesis each Ci has a tree
order ≤i to degree d of height at most k − 1 with the properties in Definition 4.2. For
each v ∈ V (Ci ) define

Siv := {u ∈ V (Ci ) | uv ∈ E(G) and u �i v and v �i u}.

Let

≤ := {(a, w) | w ∈ V (G)} ∪
⋃

i

≤i .

Then ≤ is clearly a tree order for G. Note that Sa = ∅. Let v ∈ V (G)\a be a vertex
different from a, say v ∈ V (Ci ). Note Siv = Sv . If Sv �= ∅, then v is ≤i -maximal, and
thus also ≤-maximal. Moreover, |Siv| = |Sv| ≤ d. Lastly for any u ∈ Sv:

{w | w < u} = {a} ∪ {w | w <i u} = {a} ∪ {w | w <i v} = {w | w < v}.

Conversely assume there is an elimination order ≤ to degree d of height k for G.
We again proceed by induction on k. If k = 0, then ≤ is empty and all vertices v in
G are ≤-maximal. Thus, Sv contains all neighbours of v and therefore v has at most
d neighbours. In other words, �(G) ≤ d as required.

Now, suppose k > 0. If v is an ≤-minimal element then for any u for which there
is a path from v to u, we must have v ≤ u. Thus, if G is connected, there is a unique
≤-minimal element v. Note that ≤ restricted to a component C of G\v has height
k − 1 and thus by the induction hypothesis we have that edd(C) ≤ k − 1. If G is not
connected, this argument can be applied to each component of G.

We can split a graph with an elimination order to degree d in two parts: one of low
degree, and onewith an elimination order defined on it. So ifG is a graph that has elim-
ination distance k to degree d, we can associate an elimination order ≤ for a subgraph
H of G of height k with G, so that each component of G\V (H) has degree at most d
and is connected to H along just one branch (this is defined more formally below).

Proposition 4.4 Let G be a graph and ≤ an elimination order to degree d for G of
height k. If A is the set of vertices in V (G) that are not ≤-maximal, then:
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1. ≤ restricted to A is an elimination order of height k − 1 of G[A]; and
2. G\A has degree at most d;
3. if C is the vertex set of a component of G\A, and u, v ∈ A are ≤-incomparable,

then either E(u,C) = ∅ or E(v,C) = ∅.
Proof As any v ∈ A is non-maximal, by Definition 4.2, Sv = ∅. Hence if there is an
edge between u, v ∈ A, either u < v or v < u, and (1) follows.

Since G\A contains the ≤-maximal elements, they are all incomparable. By defi-
nition of an elimination order to degree d, this means that each vertex in G\A has at
most d neighbours in G\A, so this graph has degree at most d, establishing (2).

To show (3), let C be the vertex set of a component of G\A and let u, v ∈ A
be such that E(u,C) �= ∅ and E(v,C) �= ∅. Then there are a, b ∈ C such that
au, bv ∈ E(G). By Definition 4.2, u < a and v < b. Moreover, there is a path from
a to b through C and as all vertices along this path are ≤-maximal, if (a′, b′) is an
edge in the path, it must be that {w | w < a′} = {w | w < b′}. By transitivity,
{w | w < a} = {w | w < b}, and so u < b and v < a. Since ≤ is a tree-order, the set
{w | w < a} is linearly ordered and we conclude that u and v are comparable.

We also have a converse to the above in the following sense.

Proposition 4.5 Suppose G is a graph with A ⊆ V (G) a set of vertices and ≤A an
elimination order of G[A] of height k, such that:

1. G\A has degree at most d;
2. if C is the vertex set of a component of G\A, and u, v ∈ A are incomparable, then

either E(u,C) = ∅ or E(v,C) = ∅.
Then, ≤A can be extended to an elimination order to degree d for G of height k + 1.

Proof Let

≤ :=≤A ∪ {(v, v) | v ∈ (V (G)\A)}
∪ {(u, v) | u∈ A, v∈C,C a component ofG\A, E(w,C) �= ∅ for some u≤w}.

Then it is easily seen that ≤ is a tree order on G. Indeed, ≤A is, by assumption, a tree
order on A and for any v ∈ V (G)\A, assumption 2 guarantees that {w | w ≤ v} is
linearly ordered.

Let v ∈ V (G) and let Sv be as in Definition 4.2. Suppose Sv �= ∅. Then v ∈
(V (G)\A) and has degree at most d in G\A. By the construction v is ≤-maximal.
Let u ∈ Sv . Then there is a component C of G\A that contains both u and v and thus
{w | w < u} = {w | w < v}.
Remark In the following, given a graph G and an elimination order ≤ to degree d we
call the subgraph of V (G) induced by the non-maximal elements of the order ≤ the
non-maximal subgraph of G under ≤.

In the proof of Proposition 4.5 above, a suitable tree order on a subset A of V (G)

is extended to an elimination order to degree d of G by making all vertices not in A
maximal in the order. This is a form of construction we use repeatedly below.
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The alternative characterisations of elimination order to degree d established above
are very useful. In the next sections, we use them to construct a canonical elimination
order to degree d of G, based on an elimination order of a graph we call the torso
of G, which consists of the high-degree vertices of G, along with some additional
edges.

5 Separation into High and Low Degree Parts

The aim of this section is to show that if a graphG has elimination distance k to degree
d, then there is an elimination order to degree d whose height is still bounded by a
function of d and k and in which the set of non-maximal elements is canonical. To be
precise, we identify a graph which we call the d-degree torso of G, which contains all
the vertices of G of degree more than d and has additional edges to represent paths
between these vertices that go through the rest ofG.We show that this torso necessarily
has tree-depth bounded by a function of k and d and an elimination order witnessing
this can be extended to an elimination order to degree d of G. The result is established
through a series of lemmas. A pattern of construction that is repeatedly used here is
that we define a certain set A of vertices of G and construct an elimination order of
G[A]. It is then shown that extending the order by making all vertices in V (G)\A
maximal yields an elimination order to degree d of G. Necessarily, in this extended
order, all the non-maximal elements are in A.

We first do this for graphs of degree bounded by k+d. To be precise, the following
lemma establishes that if G has elimination distance k to degree d and moreover the
degree of G is at most k + d, then we can construct an alternative elimination order
to degree d on G in which all the vertices of degree greater than d are included in the
non-maximal subgraph and the height of the new elimination order to degree d is still
bounded by a function of k and d.

Lemma 5.1 Let G be a graph with maximal degree �(G) ≤ k + d. Let ≤ be an
elimination order to degree d of height k of G with non-maximal subgraph H, and
let A = V (H) ∪ {v ∈ V (G) | degG(v) > d}. Then G has an elimination order � to
degree d of height at most k(k+d+1) for which A is the set of non-maximal elements.

Proof Let G, H, A and ≤ be as in the statement of the lemma. We will adapt ≤ to an
elimination order � of G[A].

For eachw ∈ A\V (H) letCw be the component of G\V (H) that containsw. Note
that N (Cw) �= ∅, because deg(w) > d, so at least one vertex in H must be adjacent to
w. By Definition 4.2, the vertices in N (Cw) are linearly ordered by ≤. We write b(w)

to denote the unique ≤-maximal element of N (Cw) for each w ∈ A\V (H). For each
b ∈ V (H), let Wb := {w ∈ A\V (H) | b(w) = b}, and let �b be an arbitrary linear
order on Wb.

For any u, v ∈ V (G), define u � v if one of the following holds:

• u = v;
• u, v ∈ H and u ≤ v;
• u ∈ H , v ∈ G\A and u ≤ v;
• u ∈ H , v ∈ A\V (H) and u ≤ b(v);
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• u ∈ A\V (H), v ∈ G\A and b(u) ≤ v;
• u, v ∈ A\V (H), b(u) = b(v) and u �b v.

It follows from the construction that � restricted to A is an elimination order of
G[A], and that � is an elimination order to degree d of G.

For each b ∈ V (H), the set {v ∈ H | v ≤ b} has at most k elements, by the
assumption on the height of the order ≤. Since G has maximum degree k + d and
Wb ⊆ N ({v ∈ H | v ≤ b}), we have that Wb has at most k(k + d) vertices. Since the
height of any � chain is at most the height of a ≤-chain plus |Wb|, we conclude that
the height of � is at most k(k + d + 1).

The lemma above allows us to re-arrange the elimination order so that it includes all
vertices of large degree. In contrast, the next lemma gives us a means to re-arrange the
elimination order so that all vertices of small degree are made maximal in the order.
This is again achieved while keeping the height of the elimination order bounded by
a function of k and d.

Lemma 5.2 Let G be a graph. Let ≤ be an elimination order to degree d of G of
height k with non-maximal subgraph H, such that H contains all vertices of degree
greater than d, and let A = {v ∈ V (H) | degG(v) > d}. Then, there is an elimination
order to degree d of G of height at most k((k + 1)d)2

k + 1 for which A is the set of
non-maximal elements.

Proof Let G, H, A and ≤ be as in the statement of the lemma. We assume that G
is connected—if not, we can apply the argument to each component of G. We con-
struct an elimination order � of G[A] from ≤, making sure that it has height at most
k((k + 1)d)2

k
, and satisfying the conditions of Proposition 4.5. This then extends to

an elimination order to degree d of G by making all vertices not in A maximal, as in
that Proposition.

Let J := H\A. For v ∈ V (J ), let Kv be the set of vertices w ∈ A such that:

1. v ≤ w;
2. there is a path from v to w through G\A; and
3. for any u with u < v, there is no path from u to w through G\A.
Note that because ≤ is a tree order and due to the third condition, the sets Kv are
pairwise disjoint. Let K := A\(⋃v∈V (J ) Kv) be the set of vertices in A that are not
contained in Kv for any v.

For each v ∈ V (J ), let �v be an arbitrary linear order on Kv . The idea behind the
construction below is that we replace v in the elimination order by Kv , ordered by�v .
Formally, for any u, w ∈ V (G), define u � w if one of the following holds:

• u = w;
• u ∈ Kv , w ∈ G\A and v ≤ w;
• u ∈ K , w ∈ G\A and u ≤ w;
• u, w ∈ Kv and u �v w;
• u ∈ Kv , w ∈ Kv′ and v < v′;
• u ∈ K , w ∈ Kv and u ≤ v;
• u ∈ Kv , w ∈ K and v ≤ w;

123



Algorithmica

• u, w ∈ K and u ≤ w.

We first show that� is an elimination order forG[A]. The construction ensures� is
a tree order. Let u, w ∈ A. We show that if u ≤ w, then either u � w orw � u. We go
through all possible cases: If u = w, we have u � w. If there is some v ∈ V (J ) such
that u, w ∈ Kv , then u � w or w � u. Suppose u ∈ Kv , w ∈ Kv′ for v, v′ ∈ V (J ).
By definition of Kv , v ≤ u and similarly v′ ≤ w. Since we also have u ≤ w, by the
tree order property either v ≤ v′ or v′ ≤ v and thus u � w or w � u. If u ∈ K and
w ∈ Kv , then both u, v ≤ w, so either u ≤ v or v ≤ u, and thus either u � w or
w � u. The case where u ∈ Kv , w ∈ K is symmetric. Finally, if both u, w ∈ K , then
u � w. Thus if uw ∈ E(G), we have u ≤ w or w ≤ u and therefore u � w or w � u.
Hence � is an elimination order for G[A].

Let Z be a component of G\A. By assumption H contains all vertices of degree
greater than d, and hence A also contains all those vertices. Thus Z has maximum
degree d.

Suppose u, v ∈ A are two vertices that are connected to Z , i.e. EG(u, V (Z)) �=
∅ �= EG(v, V (Z)). We show that either u � v or v � u. Note that there is a path
P through Z ⊆ G\A from u to v, i.e. all vertices in P , except for the endpoints, lie
outside of A. If P contains no vertices from J , then the connected component Z ′ of
G\V (H) containing P\{u, v} satisfies EG(u, V (Z ′)) �= ∅ �= EG(v, V (Z ′)) and thus
u ≤ v or v ≤ u, and therefore by the above u � v or v � u.

Otherwise, P contains vertices from J . Let w be a ≤-minimal vertex in V (P) ∩
V (J ). Then there is a path outside of A from w to u, and also to v (both part of P).
Moreover, if neither u ≤ v nor v ≤ u, then w ≤ u and w ≤ v. Thus u and v are in
Kw (or in Kw′ for some w′ < w), and therefore u � v or v � u.

It remains to show that the size of Kv is bounded by k((k+1)d)2
k
for all v ∈ V (J ).

Let G ′ be the graph obtained from G by adding an edge between two vertices s, t ∈
V (J ) whenever there is a path through G\V (H) between s and t . This increases the
degree of vertices in V (J ) by at most kd, because each of these vertices is connected
to at most d components of G\V (H) and each of these is connected to at most k
vertices in H . Now there is a path between two vertices s, t ∈ J in G outside of A
if and only if there is a path between s and t in G ′[V (J )]. Moreover, ≤ is also an
elimination order for G ′[V (J )]. So, as G ′[V (J )] has tree-depth at most k it does not
contain a path of length more than 2k . Since each vertex on the path has degree at most
(k + 1)d, we can reach at most ((k + 1)d)2

k
vertices in A on paths only containing

vertices outside of A. Thus |Kv| ≤ ((k + 1)d)2
k
and the height of � is bounded by

k|Kv| ≤ k((k + 1)d)2
k
.

Next we introduce the notion of d-degree torso and prove that it captures the prop-
erties that we require of an elimination tree to degree d.

Definition 5.3 Let G be a graph, let d > 0 and let H be the subgraph of G induced
by the vertices of degree larger than d. The d-degree torso of G is the graph obtained
from H by adding an edge between two vertices u, v ∈ H if there is a path through
G\V (H) from u to v in G.
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Lemma 5.4 Let G be a graph and let C be the d-degree torso of G. Let H = G[V (C)]
and let≤ be an elimination order for H. Then≤ is an elimination order for C of height
h if, and only if, ≤ can be extended to an elimination order to degree d for G of height
h + 1.

Proof Let G,C, H and ≤ be as above.
Suppose ≤ is an elimination order for C . Since C is a supergraph of H , this means

that ≤ is an elimination order for H . Let Z be a component of G\V (H). Since C
contains all vertices of degree greater than d, Z has maximal degree d. If E(Z , u) �= ∅
and E(Z , v) �= ∅ for two vertices u, v ∈ H , then there is a path through Z ⊆ G\V (H)

connecting u and v, so by the definition of the d-degree torso uv ∈ E(C) and thus
u, v are ≤-comparable. We can extend ≤ to a tree order ≤′ on V (G) where all the
vertices from V (G)\V (H) are maximal.

Conversely assume that ≤ can be extended to an elimination order to degree d for
G. Let uv ∈ E(C). If uv ∈ E(H), then u and v must be ≤-comparable. Otherwise
uv /∈ E(H), so there is a path through G\V (H) from u to v in G, i.e. both u and v

are connected to a component Z of G\V (H) and thus comparable. Therefore ≤ is an
elimination order for C .

The next lemma establishes an upper bound on the tree-depth of the torso of a graph
when the maximum degree is bounded.

Lemma 5.5 Let G be a graph with elimination distance k to degree d and maximum
degree �(G) ≤ k + d. Let C be the d-degree torso of G and let ≤ be a minimum
height elimination order for C. Then ≤ has height at most k(k + d + 1)((k(k + d +
1) + 1)d)2

k(k+d+1)
.

Proof Let � be a minimum height elimination order to degree d of G. Since G has
elimination distance to degree d at most k, the height of � is at most k. Let H be the
non-maximal subgraph of G under � and define

A = V (H) ∪ {v ∈ V (G) | degG(v) > d}.

ByLemma5.1, the graphG[A] has an elimination order� of height atmost k(k+d+1)
that can be extended to an elimination order to degree d for G.

Let A′ = {v ∈ A | degG(v) > d}. By Lemma 5.2, the graph A′ has an elimination

order ≤ of height at most k(k + d + 1)((k(k + d + 1) + 1)d)2
k(k+d+1)

that can be
extended to an elimination order to degree d for G.

Lastly note that A′ = V (C), so that by Lemma 5.4, ≤ is an elimination order for
C .

We are now ready to prove the main result:

Theorem 5.6 Let G be a graph that has elimination distance k to degree d. Let ≤ be
a minimum height elimination order of the d-degree torso G. Then ≤ can be extended
to an elimination order to degree d of G of height at most

k((k + 1)(k + d))2
k + k(1 + k + d)(k(1 + k + 2d))2

k(1+k+d) + 1.
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Proof We show that the d-degree torso ofG has an elimination order of height at most
k((k + 1)(k + d))2

k + k(1+ k + d)(k(1+ k + 2d))2
k(1+k+d)

. The theorem then follows
by Lemma 5.4.

Let C be the (k + d)-degree torso of G. We first show that the tree-depth of C is
bounded by k((k + 1)(k + d))2

k
. To see this, let � be an elimination order to degree

d of G of minimum height with non-maximal subgraph H . Note that H contains all
vertices of degree greater than k + d, because vertices in G\V (H) are adjacent to at
most k vertices in H .

Let A = {v ∈ V (H) | degG(v) > k + d}. By Lemma 5.2, the graph G[A] has an
elimination order � of depth at most h := k((k +1)(k +d))2

k
that can be extended to

an elimination order to degree k + d of G of height h + 1. Note that A = V (C), so by
Lemma 5.4, the order� is an elimination order forC . Let�′ denote its extension toG.

Let Z be a component ofG\A and letCZ be the d-degree torso of Z . By Lemma 5.5,
there is an elimination order �Z for CZ of height at most k(k + d + 1)((k(k + d +
1) + 1)d)2

k(k+d+1)
. Let vZ be the �-maximal element in C such that there is a w ∈ CZ

with vZ �′ w. Define

≤′:= � ∪
⋃

Z

�Z ∪
⋃

Z

{(v,w) | v �′ vZ , w ∈ CZ }.

Observe that C ∪ ⋃
Z CZ has as a subgraph the d-degree torso of G. Thus ≤′ is an

elimination order for the d-degree torso of G. The height of ≤′ is bounded by

td(C) + max{td(CZ )}Z ≤ k((k + 1)(k + d))2
k

+ k(1 + k + d)(k(1 + k + 2d))2
k(1+k+d)

.

��

6 Canonisation Parameterized by Elimination Distance to Bounded
Degree

In this section we show that graph canonisation, and thus graph isomorphism, is FPT
parameterized by elimination distance to bounded degree. The algorithm is based on
Lindell’s algorithm [13] that decides isomorphism of trees by establishing an ordering
on them. We extend a version of this algorithm used by Bouland et al. [2] to decide
isomorphism on graphs of bounded tree-depth.

The central idea is to define a pre-order � on graphs (G,≤) equipped with an
elimination order to degree d, with the property that (G,≤) � (G ′,≤′) and (G ′,≤) �
(G,≤′) if, and only if, (G,≤) is isomorphic to (G ′,≤′). We then exhibit an algorithm
that constructs, given a graph G, the elimination order to degree d on G that makes
(G,≤) �-minimal. This serves as a canonical representative of G. Before defining �
formally, we need some additional terminology.

Definition 6.1 Let G be a graph and let ≤ be a tree order for G. The level of a vertex
v ∈ V (G) is the length of the chain {w ∈ V (G) | w ≤ v}. We denote the level of v

by level<(v).
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Definition 6.2 Let G be a graph. We denote the number of connected components of
G by #G.

The definition of� is by induction on the height of the order≤. Inductively, we need
to consider coloured graphs and so formally, �k is a pre-order on triples (G, χ,≤)

where χ : V (G) → X is a colouring of G and ≤ is an elimination order to degree d
of G. We always assume that the set of colours X is an initial segment of the natural
numbers and so, in particular, linearly ordered.

Definition 6.3 For a graph G, with a colouring χ : V (G) → X and a vertex v ∈
V (G), we write χv for the colouring of G\v given by χv : V (G\v) → X × {0, 1}
where χv(u) = (χ(u), 1) if (u, v) ∈ E(G) and χv(u) = (χ(u), 0) if (u, v) /∈ E(G).

By Theorem 2.4 we can find a canonical form of each coloured graph Z of degree
at most d in polynomial time, and thus a pre-order�0 such that for every pair of Z , Z ′
of such graphs, either Z �0 Z ′ or Z ′ �0 Z and Z ∼= Z ′ if, and only if, both Z �0 Z ′
and Z ′ �0 Z .

In the following definition we extend this to a pre-order � on coloured graphs with
an elimination order to degree d by induction on the height of the order.

Definition 6.4 Let G,G ′ be graphs with colourings χ and χ ′ and respective elimi-
nation orders ≤,≤′ to degree d. We say that (G, χ,≤) � (G ′, χ ′,≤′) if one of the
following holds:

1. height(≤) < height(≤′);
2. height(≤) = height(≤′) = 0 and (G, χ) �0 (G ′, χ ′);
3. height(≤) = height(≤′) > 0 and #G < #G ′;
4. height(≤) = height(≤′) > 0, #G = #G ′ = 1 and χ(v) < χ ′(v′) where v, v′ are

minimal elements of G,G ′ with respect to ≤,≤′ respectively;
5. height(≤) = height(≤′) > 0, #G = #G ′ = 1 and

(G\v, χv,≤) � (G ′\v′, χ ′
v′ ,≤′),

where v, v′ are minimal elements of G,G ′ with respect to ≤,≤′ respectively;
6. height(≤) = height(≤′) > 0, s = #G = #G ′ > 1, and there is an enumeration

G1, . . . ,Gs of the components of G and G ′
1, . . . ,G

′
s of the components of G ′

such that
(a) whenever i ≤ j , (Gi , χ,≤) � (G j , χ,≤) and (G ′

i , χ
′,≤′) � (G ′

j , χ
′,≤′);

and
(b) if for any i , (Gi , χ,≤) �� (G ′

i , χ
′,≤′), then there is a j < i such that

(G ′
j , χ

′,≤′) �� (G j , χ,≤).

To see that this inductive definition is well-founded, note that the recursive use of �
is on graphs either equipped with an elimination order to degree d of strictly smaller
height [clause (5)] orwith strictly fewer components [clause (6)]. The next twoproposi-
tions are aimed at showing that this definition establishes a linear pre-order on coloured
graphs with an elimination order that classifies them up to isomorphism
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Proposition 6.5 For any pair (G, χ,≤), (G ′, χ ′,≤′) of coloured graphswith an elim-
ination order to degree d, at least one of (G, χ,≤) � (G ′, χ ′,≤′) or (G ′, χ ′,≤′) �
(G, χ,≤) holds.

Proof The proof is by induction on the height k of ≤ and for a fixed k, by induction
on the number of components. If k = 0, then either height(≤′) > 0 and (G, χ,≤) �
(G ′, χ ′,≤′) by clause (1) of the definition, or height(≤′) = 0 and at least one of
(G, χ,≤) � (G ′, χ ′,≤′) or (G ′, χ ′,≤′) � (G, χ,≤)must hold by clause (2) and the
definition of �0.

Now suppose k > 0. If one of the first four conditions of Definition 6.4 is satisfied,
we are done. So suppose they fail and suppose #G = #G ′ = 1. Then, if v and v′ are
the minimal elements of G,G ′ with respect to ≤,≤′, the height of these orders on
G\v and G ′\v′ is strictly less than k. By induction hypothesis, either (G\v, χv,≤) �
(G ′\v′, χ ′

v′ ,≤′) or (G ′\v′, χv′ ,≤′) � (G\v, χv,≤), so the claim follows.
Finally, suppose height(≤) = height(≤′) > 0 and s = #G = #G ′ > 1 and we

argue that in all such cases, clause (6) ensures the result. By the induction hypothesis
and the previous case, for any pair of componentsGi andG j ofG, one of (Gi , χ,≤) �
(G j , χ,≤) or (G j , χ,≤) � (Gi , χ,≤)must hold and similarly for the components of
G ′. Thus, the components of each can be ordered so that whenever i ≤ j , (Gi , χ,≤) �
(G j , χ,≤) and (G ′

i , χ
′,≤′) � (G ′

j , χ
′,≤′). Also, by the induction hypothesis, we

have for each i , either (Gi , χ,≤) � (G ′
i , χ

′,≤′) or (G ′
i , χ

′,≤′) � (Gi , χ,≤). If the
first case holds for all i , then (G, χ,≤) � (G ′, χ ′,≤′). If the second case holds for all
i , then (G ′, χ ′,≤′) � (G, χ,≤). If neither holds for all i , consider the least i such that
either (Gi , χ,≤) �� (G ′

i , χ
′,≤′) or (G ′

i , χ
′,≤′) �� (Gi , χ,≤). In the former case,

we have (G ′, χ ′,≤′) � (G, χ,≤) and in the latter (Gi , χ,≤) � (G ′
i , χ

′,≤′). In all
cases, the proposition is established.

This proposition implies that it is always possible to enumerate the components
G1, . . . ,Gs of G in�-order. The next proposition shows that this order is, essentially,
unique.

Proposition 6.6 Let G,G ′ be graphs with colourings χ and χ ′ and let ≤,≤′ be
elimination orders to degree d on G,G ′ respectively.

Then both (G, χ,≤) � (G ′, χ ′,≤′) and (G ′, χ ′,≤′) � (G, χ,≤) if, and only if,
(G, χ,≤) ∼= (G ′, χ,≤′).

Proof Suppose (G, χ,≤) ∼= (G ′, χ,≤′) and suppose, without loss of generality that
(G, χ,≤) � (G ′, χ ′,≤′). We aim to show that also (G ′, χ ′,≤′) � (G, χ,≤), and we
do this by induction on the height k of ≤ and for a fixed k, by cases on the number
of components. If k = 0 then since (G, χ) ∼= (G ′, χ ′), the conclusion follows from
the definition of �0 and clause (2) of Definition 6.4. If k > 0 and #G = 1 then
the induction hypothesis and the fact that (G\v, χv,≤) ∼= (G ′\v′, χ ′

v′ ,≤′) together
imply that (G\v, χv,≤) � (G ′\v′, χ ′

v′ ,≤′) and (G ′\v′, χ ′
v′ ,≤′) � (G\v, χv,≤), so

the proposition holds by clause (4) of Definition 6.4. Finally, suppose that k > 0
and #G > 1 and let G1, . . . ,Gs enumerate the components of G in � order. By
the isomorphism between (G, χ,≤) and (G ′, χ ′,≤′) and the induction hypothesis,
it follows that for the corresponding enumeration G ′

1, . . . ,G
′
s of components of G ′
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in � order, we have that (Gi , χ,≤) ∼= (G ′
i , χ,≤′) for each i . Then by clause (6) of

Definition 6.4, both (G, χ,≤) � (G ′, χ ′,≤′) and (G ′, χ ′,≤′) � (G, χ,≤) hold.
For the other direction, suppose (G, χ,≤) � (G ′, χ ′,≤′) and (G ′, χ ′,≤′) �

(G, χ,≤) If height(≤) < height(≤′), then (G ′, χ ′,≤′) �� (G, χ,≤), so assume that
height(≤) = height(≤′) = k and we proceed by induction on k. If k = 0, we have by
clause (2) that (G, χ) �0 (G ′, χ ′) and (G ′, χ ′) �0 (G, χ) which, by definition of �0
means that (G, χ) ∼= (G ′, χ), and the two orders are both trivial.

Suppose then that k > 0 and assume first that G and G ′ are both connected. Then
bothG,G ′ haveminimal elements v, v′ with respect to≤,≤′. By the induction hypoth-
esis we have (G\v, χv≤) ∼= (G ′\v′, χv′ ,≤′), so let σ : V (G\v) → V (G ′\v′) be an
isomorphism witnessing this. Extend this to σ̂ : V (G) → V (G ′) by setting σ̂ (v) = v′
and we claim that this is an isomorphism between (G, χ,≤) and (G ′, χ ′,≤′). It is
clear that σ̂ takes the order ≤ to ≤′ since v and v′ are minimal for these respective
orders. Also, σ̂ preserves colours since the colourings χv and χv′ refine the colourings
χ and χ ′ respectively and by clause (4) we have χ(v) = χ ′(v′). Finally, we need to
verify that σ̂ preserves the edge relation. Since σ preserves all edges, we only need to
verify that uv ∈ E(G) if, and only if, σ̂ (u)v′ ∈ E(G ′). But, this follows from the fact
that χv(u) = χ ′

v′(σ (u)).
Now, if G and G ′ have different number of connected components, then we cannot

have both (G, χ,≤) � (G ′, χ ′,≤′) and (G ′, χ ′,≤′) � (G, χ,≤). So, we are left
with the case where #G = #G ′ = s > 1. Let G1 � · · · � Gs be the connected
components of G and let G ′

1 � · · · � G ′
s be the connected components of G ′. Then

by definition of � we have that both (Gi , χ,≤) � (G ′
i , χ

′,≤′) and (G ′
i , χ

′,≤′) �
(Gi , χ,≤) for each i ≤ s. By the argument for connected graphs above, we have
(Gi , χ,≤) ∼= (G ′

i , χ
′,≤′) for each i and we are done.

Algorithm 1 Recursive construction of minimal elimination order to degree d.
Input: A graph G, a subgraph C ⊆ G, and �, d ∈ N.
Output: A �-minimal elimination order to degree d of G, where all the sub-maximal vertices are from C .
1: procedure FindMinimalOrder(G, C , �, d)
2: if #G > 1 then
3: return

⋃
i FindMinimalOrder(Gi ,C[Gi ∩C], �, d), where theGi are the connected components

of G.
4: else if �(G) ≤ d then
5: return ∅.
6: else
7: find the set of potential roots R of a minimal elimination order on C .
8: for w ∈ R do
9: colour(u) := colour(u) ∪ {�} for all neighbours u of w

10: <w := FindMinimalOrder(G\w,C \ w, � + 1, d)
11: <w :=<w ∪{(w, u) | u ∈ V (G)\{w}}.
12: return <w that makes (G,<w) �-minimal.

In order to define an algorithm for constructing a minimal elimination order to
degree d, we need one further ingredient. For a graph G of tree-depth k, we say that
a vertex v is a potential root of a minimal elimination order on G if td(G\v) < k.
We know from Bouland et al. [2] that there is a computable function f such that the
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number of potential roots in any graph of tree-depth k is at most f (k). Moreover, the
set of all such vertices can be found by an algorithm running in time f (k)n3 where n is
the number of vertices inG. This now allows us to define Algorithm 1which computes
a minimal elimination order to degree d. The algorithm is started with the graph G,
its d-degree torso C , the level � initially set to 0 and the degree d. It then recursively
chooses a potential root and returns the order that is minimal with respect to �.

With this, we are able to establish our main result.

Theorem 6.7 Graph Canonisation is FPT parameterized by elimination distance to
bounded degree.

Proof Suppose we are given a graph G with |V (G)| = n. We first compute the
d-degree torso C of G in O(n4) time. Using Algorithm 1 we compute a �-minimal
elimination order< to degree d onG. By the analysis fromBouland et al. [2, Theorem
11], this takes time O(h(k)n3log(n)) for some computable function h. Note for the
base case that we can compute the canonical representation of a component Z with
�(Z) ≤ d by Theorem 2.4 in polynomial time (where the degree of the polynomial
depends on d).

Note that the order � also induces a natural order on the vertices of G and we can
thus enumerate the vertices of G in a canonical way in linear time.

Corollary 6.8 Graph Isomorphism is FPT parameterized by elimination distance to
bounded degree.

7 Conclusion

We introduce a new way of parameterizing graphs by their distance to triviality, i.e. by
elimination distance. In the particular case of graph canonisation, and thus also graph
isomorphism, taking triviality to mean graphs of bounded degree, we show that the
problem is FPT.

A natural question that arises is what happens when we take other classes of graphs
for which graph isomorphism is known to be tractable as our “trivial” classes. For
instance, what can we say about GI when parameterized by elimination distance to
planar graphs? Unfortunately techniques such as those deployed in the present paper
are unlikely to work in this case. Our techniques rely on identifying a canonical sub-
graph which defines an elimination tree into the trivial class. In the case of planar
graphs, consider graphs which are subdivisions of K5, each of which is deletion dis-
tance 1 away from planarity. However the deletion of any vertex yields a planar graph
and it is therefore not possible to identify a canonical such vertex.

More generally, the notion of elimination distance to triviality seems to offer
promise for defining tractable parameterizations for many graph problems other than
isomorphism. This is a direction that bears further investigation.

It is easy to see that if a class of graphsC is characterised by a finite set of excluded
minors, that the class Ĉ of graphs with bounded elimination distance to C is charac-
terised by a finite set of excluded minors as well. An interesting question is whether

123



Algorithmica

we can, given the set of excluded minors for C, compute the excluded minors for Ĉ
as well?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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