
Supplementary Information 
Unzipping of black phosphorus to form zigzag-phosphorene nanobelts 

 

Liu et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

Supplementary Information 
Unzipping of black phosphorus to form zigzag-phosphorene nanobelts 

 

Zhifang Liu1,6, Yilin Sun2,6, Huaqiang Cao1✉, Dan Xie2✉, Wei Li3, Jiaou Wang4 & Anthony K. Cheetham5✉  

 

1Department of Chemistry, Tsinghua University, Beijing 100084, China. 

2Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084. 

3Center of Rare Earth and Inorganic Functional Materials, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China. 

4Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. 

5Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K. 

6These authors contributed equally: Z. L. and Y. S.  

✉
Corresponding authors (e-mail: hqcao@mail.tsinghua.edu.cn, xiedan@tsinghua.edu.cn & akc30@cam.ac.uk) 

 

 

 

 

 

 

 



3 
 

 

Supplementary Figure 1. Controllable morphology and thickness of phosphorene. a-b TEM images of phosphorene nanosheets. c 

TEM images of a narrow phosphorene nanobelt with a width of 30 nm. d-e TEM images of phosphorene quantum dots. f An example 

Raman spectrum of phosphorene quantum dots compared to bulk black phosphorus (BP), phosphorene nanosheets and z-PNBs. The 

results showed three Raman peaks of phosphorene quantum dots at 364.0, 440.3, 468.5 cm-1, respectively. And the intensity ratio of 

𝐴𝑔
1  and Si peak is ~0.2, corresponding to about trilayer phosphoreneS1. g Oxygen concentration at different current densities during the 

exfoliation process. h Chronopotentiometry curves during the exfoliation process at different current densities from ~0.1 to 0.5 A cm-2. 

The resistance increased with longer exfoliation time, leading to the larger bandgap. It is noted that the origin sharp decrease is due to 

the increased surface areaS2. Inset: The enlarged 75 times chronopotentiometry curve of ~0.1 A cm-2. i Ultraviolet absorption spectrum 

of z-PNBs solution. Inset: Relative (Ahν)2-hν curve of i. The optical bandgap could be calculated to be 2.16 eV, higher than that of bulk 
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BP. j-k Comparison of length prepared with different pristine BP chunks. j Shorter BP chunk (~1 cm) as pristine materials, leading to 

z-PNBs with average length of 10-15 μm. k Longer BP chunk (> 1.2 cm) as pristine materials, leading to z-PNBs with length up to 40 

μm. l A typical AFM image of the z-PNB with thickness of ~109 nm prepared through shorter exfoliation time. Note: the scrolls are 

caused by strain from the bending/twisting of the nanobelts on TEM grid, while the fragments are attributed to ultrasonic treatment after 

electrochemical exfoliation. 

 

Supplementary Figure 2. TEM characterizations of a series of z-PNBs. a TEM, HRTEM images of z-PNBs and their SAED patterns, 

showing the nanobelts were unzipped along the zigzag direction. b Thickness dependence of the electron diffraction patterns. The intensity 

ratio between the (101) and (200) reflections is listed. c HRTEM image of the edge of z-PNB. It is noted that the edge was absolutely 

amorphous, indicating that the edge was oxidized. d TEM image of a z-PNB without sonication after electrochemical exfoliation. Some 

branch-like cracks could be observed along one direction. e Phosphorene prepared by ultrasonic treatment in the same liquid solution as 

the reaction system of Fig. 1 in the text or Method without electrochemical exfoliation. f TEM images of 73 z-PNBs with different aspect 

ratios.  
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Supplementary Figure 3. AFM image of 56 z-PNBs. The white dots are the fragments generated by ultrasonic treatment after 

electrochemical exfoliation. 
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Supplementary Figure 4. XPS survey spectrum, O 1s XPS spectra, EDS mapping of z-PNBs and corresponding element content 

table. a XPS survey spectrum of z-PNBs. b High-resolution XPS spectra of the O 1s signal for electrochemically exfoliated z-PNBs, 

indicating that the content of P-OH (74.26 at.%) P=O (14.04 at.%) and P-O-P (11.70 at.%). c EDS mapping of z-PNBs. d-e Corresponding 

element content table. It was noted that additional carbon and copper came from the TEM grid.  

 

 

Supplementary Table 1. P 2p spilt results and fitting results of peak area. 

Type Binding Energy/eV Fitting area Ratio 

2p3/2 129.7 64356.41 60.07 at.% 

2p1/2 130.5 32178.21 30.03 at.% 

P-OH 133.2 7904.63 7.38 at.% 

PxOy(including 

P=O, P-O-P) 

134.0 2699.30 2.52 at.% 

Fitting peak areas 107138.60 
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Background area 105976.60 

Error 1.10 % 

 

 

Supplementary Table 2. O 1s spilt results and fitting results of peak area. 

Type Binding Energy/eV Fitting area  Ratio 

P-OH 533.0 60583.82 74.26 at.% 

P=O 530.7 11452.89 14.04 at.% 

P-O-P 531.7 9543.55 11.70 at.% 

Fitting peak areas 81580.26 

Background area 80413.85 

Error  1.45 % 

 

 

 

 

Supplementary Table 3. XPS peaks with different Lorentzian/Gaussian ratio and relative ∑𝝌2. Thus, we select 10% Lorentzian-90% 

Gaussian to fitting the curves. 

Lorentzian (%) Gaussian (%) ∑𝝌2 (P 2p) ∑𝝌2 (O 1s) 

0 100 33.60  24.62  

10 90 17.86  5.48  

20 80 28.14  7.65  

30 70 58.25  14.25  

40 60 101.82  23.34  

50 50 155.41  37.73  

60 40 215.53  52.97  

70 30 278.28  69.49  

80 20 340.11  93.89  

90 10 398.05  112.94  

100 0 449.86  131.38  
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Supplementary Figure 5. Raman mapping and polarize Raman spectra of z-PNB. a Optical image of an individual z-PNB on the 300 

nm SiO2/Si substrate. b Raman mapping of a with Ag
1 intensity. c Polarization-resolved Raman scattering spectra of z-PNB in Fig. 1j with 

different angles. 
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Supplementary Figure 6. Supercell size of typical configurations. a Before unzipping BP structure, a vacuum of 17.8 Å (b = 20 Å) 

was added in the direction (b axis) normal to the monolayer to avoid spurious interactions between periodic replicas periodic replicas, 

which could minimize images interactions for the all configurations. b After unzipping BP structure, a vacuum of 17.8 Å (b = 20 Å) was 

added in the direction (b axis) normal to the monolayer, with another direction (c axis) at least 12 Å vacuum after optimization separating 

the nanobelts to avoid interactions. The black, red, and pink spheres represent phosphorus, oxygen, and hydrogen atoms, respectively. The 

dotted lines represent hydrogen bond. 

 

 

 

 

 

Supplementary Figure 7. Atomic structures and energy of single O atom adsorbed on phosphorene after optimization. a Dangling 

O atom. b Interstitial bridge O atom. c Diagonal bridge O atom. d Horizontal bridge O atom. The horizontal O bridge atom is calculated 

to be not a local minima point, O atom will move to the adjacent top site automatically after geometry optimization. 
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Supplementary Figure 8. Atomic structures and energy of State O-X after optimization. State O: Pristine phosphorene. Step I: The 

first O2 is chemically adsorbed on a P atom to form an epoxy bond. Step II: If the O2 breaks, forming a P=O dangling bond and a P-O-P 
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bond: a O atom is inserted in the P-P long bond. b O atom is inserted in the P-P short bond. Considering that the dissociation of O2 is just 

in the form of interstitial O: c A long P-O-P bond + a short P-O-P bond. d Two short P-O-P bonds. It is noted that the preset configurations 

of c and d are not minima points, which will lead to the relaxation of atoms after geometry optimization. Step III: first, supposed that the 

first O2 combines with the P atom, one O atom is between the P1 and P2, and the other O atom forms a P=O dangling bond with P1. The 

distance between P1 and P2 is d2, the distance between P2 and P3 is d1, d1 = 2.224 Å, d2 = 2.244 Å. The second O2 is adsorbed on the 

adjacent side of the first O2 in seven ways: a One O atom is between P4 and P5, the other one forms a P=O dangling bond with P4; b One 

O atom is between P4 and P5, the other one forms a P=O dangling bond with P5; c One O atom is between P3 and P4, the other one forms 

a P=O dangling bond with P3; d One O atom is between P3 and P4, the other one forms a P=O dangling bond with P4; e One O atom is 

between P2 and P3, the other one forms a P=O dangling bond with P3; f, One O atom is between P2 and P3, The other one forms a P=O 

dangling bond with P2; g One O atom is between P1 and P6, The other one forms a P=O dangling bond with P6. Structures of f and g have 

relaxation after optimization, because pristine structure is not the minima point of potential energy surface. Step IV, Phosphorene is 

unzipped without H2O. H2O is not considered through this way. Step V: a with the hydrolysis of P-O-P bond, hydrogen bond between 

H2O and P=O dangling bond, the phosphorene breaks along the zigzag direction. b With the hydrolysis of P-O-P bond, the phosphorene 

breaks along the zigzag direction. c With the hydrolysis of P=O dangling bond, phosphorene breaks along zigzag direction. d With the 

hydrolysis of P=O dangling bond and P-O-P bond, phosphorene breaks along zigzag direction. e With the hydrogen bond formed between 

H2O and P=O dangling bond, P-O-P bond breaks, thus phosphorene breaks along zigzag direction. f With the hydrogen bond formed 

between H2O and P=O dangling bond, the P-P bond breaks, and the phosphorene breaks along zigzag direction. The structure in e and f 

relaxes after optimization, because the present structure is not the minima point of potential energy surface. It is noted that the vacuum 

between edges of periodic structures in a, b, c, d is fixed to more than 12 Å to minimize their interactions after optimization. Step VI: 

Chemical adsorption of O2 through bridge way. Step VII: O2 dissociation to form two P=O dangling bonds. Step VIII: Hydrogen bond 

is formed between H2O and P=O dangling bond. Step IX: P-P bond breaks with hydrogen bond. Step X: Phosphorene breaks without 

H2O and O2. The vacuum between edges of periodic structures are fixed to more than 12 Å to minimize their interactions after optimization.  
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Supplementary Figure 9. Electronic structure of bulk BP and z-PNBs. a Energy versus k dispersion measured by in-situ ARPES for 

clean BP surface, oxygen-intercalated bulk BP with an oxygen dose of 10-3 Pa for 15 and 30 minutes. b Energy distribution curves recorded 

in a, showing a tiny variation of 20 meV. c Energy versus k dispersion measured by ARPES for clean BP surface, oxygen-intercalated BP 

with an oxygen dose of 10-3 Pa for >30 minutes. d UPS spectra evolution at the low kinetic energy region (secondary electron cut off), Φ 

represents the work function. 
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Supplementary Figure 10. Electronic properties of z-PNBs. a Typical Ids-Vg curve of typical n-type electronic behavior with Al (20 

nm) and Au (30 nm) as contact metal. The electron mobility (87 cm2 V-1 s-1) was among the highest values for n-type BP-based devices 

S3,S4, however, the ON/OFF ratio of n-type devices in this work were mostly less than 10 due to the incomplete hole carrier suppression S3. 

b Comparison of z-PNB electronic properties we fabricated with other nanoribbon-based devices according to Refs. S5-S12. Besides, the 

ION/IOFF of our work was also comparable with that of graphene nanoribbon-based devices ranging from 2 to 105, where the hole mobility 

of these devices has not been discussedS13-S15. c The Photographs of the electrical measurement B1500A. Each part was also noted in the 

image by yellow lines. 
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