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Energy exponents of avalanches and Hausdorff dimensions of collapse patterns
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A simple numerical model to simulate athermal avalanches is presented. The model is inspired by the “porous
collapse” process where the compression of porous materials generates collapse cascades, leading to power
law distributed avalanches. The energy (E ), amplitude (Amax), and size (S) exponents are derived by computer
simulation in two approximations. Time-dependent “jerk” spectra are calculated in a single avalanche model
where each avalanche is simulated separately from other avalanches. The average avalanche profile is parabolic,
the scaling between energy and amplitude follows E ∼ A2

max, and the energy exponent is ε = 1.33. Adding a
general noise term in a continuous event model generates infinite avalanche sequences which allow the evaluation
of waiting time distributions and pattern formation. We find the validity of the Omori law and the same exponents
as in the single avalanche model. We then add spatial correlations by stipulating the ratio G/N between growth
processes G (linked to a previous event location) and nucleation processes N (with new, randomly chosen
nucleation sites). We found, in good approximation, a power law correlation between the energy exponent ε

and the Hausdorff dimension HD of the resulting collapse pattern HD−1 ∼ ε−3. The evolving patterns depend
strongly on G/N with the distribution of collapse sites equally power law distributed. Its exponent εtopo would
be linked to the dynamical exponent ε if each collapse carried an energy equivalent to the size of the collapse.
A complex correlation between ε, εtopo, and HD emerges, depending strongly on the relative occupancy of the
collapse sites in the simulation box.
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I. INTRODUCTION

Systematic investigations of avalanche phenomena began
when geophysicists tried to understand the origin of the
Gutenberg-Richter law of earthquakes [1,2]. In particular, the
enigma of aftershocks after large quakes and, even more im-
portantly, the attempted discovery of preshocks, which could
serve as early warning signs of major earthquakes, led to
pioneering developments of mathematical models [3]. Mod-
els, such as trigger models and the epidemic type aftershock
sequence (ETAS) models [3], partially explained the dynam-
ics of earthquakes but, unfortunately, did not reach the main
goal of earthquake prediction [4]. These models, the stick-slip
model [5–7], the fiber bundle model [8–11], and simple Ising
models [12] form the backbone for our current understanding
of avalanche processes with several more detailed models
developed for specific purposes. Avalanches were also associ-
ated with Barkhausen noise in magnets and martensitic noise
in metals and alloys [13–15]. Notable contributions were
made on the pinning-depinning model [16–18] and in fields
such as sheared granular matter [19–22], imbibition [23,24],
and rainfall [25,26]. Many other specific fields are explored in
terms of avalanche research and further expansions of these
activities are expected in coming years.

Over the last decade, another field of application in mate-
rials sciences developed. Avalanches were already observed
in ceramics, dislocation movements, ferroelastic and ferro-
electric materials during switching and phase transitions,
and during the collapse of porous materials under stress.

These applications modified some of our perceptions of
avalanches [10,27,28]. While the universality of avalanche be-
havior is often greatly appreciated, it increasingly turned into
a curse in materials sciences and neuromorphic computing
[29]. If all avalanches were similar with restricted fixed-point
behavior, then all materials of large classes of materials will
behave dynamically identically [30,31]. The key question now
is what process or processes cause the avalanches and how
can they be influenced by changing materials properties. The
question is no longer whether avalanches exist. Often, not
much can be learned about the inner mechanics of ferroic
switching or the ways in which porous materials collapse
from experimentally analyzing avalanche movements. This
view turned out to be, at least partially, too negative. Several
observations already point to specific processes starting from
the evolution of energy exponents and the superposition of
avalanches, and process-dependent prefactors of scaling laws
[32,33].

One key observation of physical processes, such as the
porous collapse or the movement of ferroic domains, is that
they form specific dynamic patterns during the evolution of
the avalanche. The unique aspect is that geometrical patterns
can be observed, e.g., in optical microscopy, and their evo-
lution can be measured. It was found that the changes of
pattern are often fractal and that direct anticorrelations be-
tween the Hausdorff dimension of the pattern evolution and
the avalanche scaling of their energies or amplitudes were ob-
served [34]. So far, these observations are empirical and do not
distinguish between exponents of dynamical processes and
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topological configurations, but it is anticipated that with the
advent of more experiments with much higher time and space
resolution, the detailed characterization of the pattern forma-
tion process will advance further. To provide a framework
for such studies, we propose a simple and intuitive avalanche
model which allows us to simulate the pattern evolution very
easily. The model is motivated by the observation of the
porous collapse in the model material Vycor [35–38] where
avalanches are experimentally observed over seven decades
with virtually no experimental fingerprints of cutoff effects.
This porous material consists of SiO2 clusters which surround
cavities. The diameter of the cavities varies greatly and the
solid matrix is amorphous in diffraction experiments; i.e., it
forms a glass. The collapse mechanism is understood to be
related to the local collapse of a cavity which reduces the local
specific volume and triggers the collapse of other cavities
via the emitted strain waves [39]. The stochastic nature of
the distribution of cavities and their strain interactions gives
rise to the formation of avalanches. This behavior is then
compared with the domain movements of ferroelastic and
ferroelectric domains in BaTiO3 where the same avalanche
parameters were found. Indeed, it seems generally assumed
that the pinning-depinning universality class covers both the
porous collapse and the movement of ferroelectric domains
under an electric field although an atomistic picture of the
collapse mechanism (unlike the domain movement) is still
missing. However, we anticipate this model can be used in
analogy for other crackling systems such as crack propaga-
tion, sheared amorphous materials, collapsing sand piles, or
domain wall motion.

Avalanches in BaTiO3 have the advantage that the Haus-
dorff dimension of the emerging domain patterns can be
evaluated directly by optical observations [34]. Our model is
designed to answer the question: What pattern evolution is
expected during porous collapse and what correlations exist
between dynamic avalanche parameters (e.g., the exponents of
power law distributions), the collapse pattern, and the Haus-
dorff dimension.

II. COLLAPSE MODEL WITH A SINGLE
AVALANCHE EVENT

A temporal avalanche profile is defined by the num-
ber of collapsed sites per unit of time. Experimentally, the
avalanches are usually measured by acoustic emission or by
the time evolution of a certain magnitude such as the bire-
fringence or the spontaneous polarization [40–42]. In this
case, distinguishing between avalanches is not a trivial task.
This problem is commonly overcome by using a threshold for
observables like amplitudes and energies of the avalanches
to split and label individual events. However, some features
can be undistinguishable, for instance, the time overlap be-
tween two or more independent avalanches or the use of an
overestimated threshold could split a single avalanche. Our
first goal is to generate individual avalanche profiles. We
consider that the number of collapsed sites per unit of time
N(t) is a consequence of all previous collapses N (t−1). We
model this triggering by a factor f (t), which is described by
a probability distribution function. Thus, the expression for a

single avalanche profile N (t ) can be written as

N (t ) = f (t )N (t − 1). (1)

The initial condition is the collapse of a single, randomly
chosen site, N (0) = 1. The avalanche duration is determined
by the time span until N (t ) reaches zero N (t ) = 0, which
terminates the avalanche. We refer to this model as the “single
event model.” In order to obtain a sufficiently large number
of avalanches for a statistical analysis, the model is run many
times from a new random initial condition; each run lasts until
the avalanche stops when N (t ) reaches zero. In this model,
the number of sites involved in an avalanche is always small
compared with the total number of sites so that there is no
danger of unwanted finite-size effects of the model.

We explored the distribution of avalanche energies, am-
plitudes, and sizes by running numerical simulations using
Eq. (1) with several probability functions f (t) to generate sta-
tistically relevant datasets for single avalanches. We found that
a Gaussian probability function f (t) with a width w f = √

2
leads to avalanches with power law distributed avalanche en-
ergies (Fig. 1) with a power law exponent of ε = 1.33, which
is the same as in mean field theories [40]. We use the same
w f = √

2 for all simulations. However, the power law ex-
ponent can be modified by changing the width w f of the
distribution function f (t). Examples are given in the Sup-
plemental Material ([43], Fig. S1). Some typical avalanche
profiles N(t) are displayed in Fig. 1(a). We defined the
maximum amplitude of an avalanche profile as Amax =
max(|N (t )|), their size as S = ∫D

0 |N (t )|dt , and their en-
ergy as E = ∫D

0 N (t )2dt where D is the event duration. The
avalanche profiles are normalized by the maximum ampli-
tude for each avalanche in Fig. 1. The quantities E, Amax,
and S follow power law distributions with exponents ε =
1.33, τ ′ = 1.66, and τ = 1.66, respectively. These distri-
butions are analyzed by a logarithmic binning [Fig. 1(b)]
and with the maximum-likelihood algorithm [Fig. 1(c)] that
shows a well-defined maximum-likelihood exponent (MLE)
over more than six decades in energy. The correlations be-
tween these quantities are equally power law distributed
with exponents defined as E ∼ Ax

max, S ∼ Aγ
max, Amax ∼ Dχ

[Figs. 1(d)–1(f)]. The close adherence to the power law of
the first two correlations and the much greater data scat-
ter of the last correlation are very similar to experimental
observations [44–47]. The avalanche shape, obtained by aver-
aging profiles normalized by its duration for different duration
ranges, exhibits a slightly asymmetric parabola as expected
for avalanche systems [Fig. 1(g)] [48–50].

III. CONTINUOUS EVENTS MODEL

Several key features of the avalanche statistics, such as
the distributions of activities, interevent times, and main and
aftershock relations, cannot be explored by the single event
model because each avalanche is simulated individually with
a new initial condition when an avalanche terminates. In the
next step we construct an extended model, which allows us
to explore the appearance of events in time. We refer to
this model as the “continuous events model.” To generate
events as a function of time we add a “noise function” g(t)
to Eq. (1). The noise is represented by a random number with
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FIG. 1. Avalanche statistics from the single event model. (a) Example of 100 avalanche profiles, each generated by the single event model.
(b) Distribution of the energies E, amplitudes A, and sizes S for 1200 events showing exponents ε = 1.33 ± 0.05, τ ′ = 1.66 ± 0.10, and τ =
1.66 ± 0.10. (c) Maximum-likelihood exponent of the power laws for E, A, and S confirming the exponents. Scaling relations E(A) (d), S(A)
(e), and A(D) (f). Averaged avalanche profile with normalized duration of profiles for different duration ranges (from five to 17 time steps). The
plots are shifted upwards for better comparison. The avalanche shapes are fitted with the scaling function proposed in [49]. A larger dataset is
needed to compute the avalanche shape for larger durations.

a flat probability distribution between 0 and 1. It introduces
a random noise that can trigger a new avalanche even when
f (t )N (t − 1) = 0. The initial condition is now irrelevant, and
large datasets are obtained by computing N(t) as

N (t ) = f (t )N (t − 1) + g(t ). (2)

The physical scenario for this model is for collapse
avalanches in which thermal noise can initiate avalanches
even when the external driving forces, such as the sample
compression, are constant. Even more common is the effect of
long-term relaxations in the system. After avalanches have re-
leased many of the internal strains, the final state relaxes over
time periods which are long compared with the avalanche du-
rations. These relaxations generate local stress points, which
initiate subsequent avalanches, such as aftershocks [51].

The time evolution of the collapsed sites after 2 × 105

time steps is shown in Fig. 2(a). In order to split N(t) into
individual avalanche events, we have applied a threshold as is
commonly done in experimental studies. We used a threshold
condition that more than two collapsing sites are needed to
define an avalanche. When an avalanche terminates, the term

g(t) will always restart a new avalanche. With the parameters
chosen for g(t), the individual avalanche profiles are close
to the single event model. The probability distributions for
the totality of all avalanches in the continuous events model
exhibit power law behavior, with exponents τ = 1.67 and
ε = 1.33, that extends over ten decades [Fig. 2(b)]. The
maximum-likelihood analysis is shown in the Supplemental
Material (Fig. S2 [43]) confirming the found exponents. The
scaling relations E ∼ Ax

max, S ∼ Aγ
max, Amax ∼ Dχ are found

to be the same as in the single event model (Supplemental
Material, Fig. S2 [43]).

We can now evaluate time-dependent quantities such as the
interevent times (or waiting times) as the time interval be-
tween two avalanches. Experimentally, the rate of aftershocks
(ras) is quantified by the Omori law [52] which describes the
statistical behavior of aftershocks (ASs). The main shocks are
defined as shocks that belong to a certain energy range; then
an aftershock is a smaller signal that occurs after the previous
main shock. If an aftershock is larger than the main shock, the
AS sequence is terminated, and this large shock is counted as
a new main shock inside its appropriate energy range of main
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FIG. 2. Avalanche statistics from the continuous model. (a) Ns(t)
is the continuous avalanche sequence (the jerk spectrum) in blue.
The black curve shows the accumulated collapsed sites as a function
of time. (b) Power law distribution of the E, Amax, and S with the
exponents ε = 1.33 ± 0.05, τ ′ = 1.66 ± 0.10, and τ = 1.66 ± 0.10,
respectively. (c) The rate of aftershocks 〈ras〉 as a function of the time
lapse t−tms after the end of the main shock tms for a stochastic func-
tion g(t). No time correlations occur. (d) A typical Omori’s curve is
generated when g(t) activates avalanches after a delay time which is
randomly selected from a half-Gaussian distribution ∼exp(t/2000)2

with p = 0.82.

shocks. Omori’s law states that the number of ASs decays as
a power law after each main shock (MS) with a frequency
of r(t ) = K (t + c)−p. For purely stochastic g(t) there are no
time correlations and p = 0. Figure 2(c) shows the Omori plot
of the probability of an aftershock as a function of the time
interval between the end of the main shock and the onset of
the aftershock for various ranges of main shock energies Ems

[35,46,53]. We now introduce a simple time correlation by
stipulating that g(t) is zero during an avalanche and remains
zero after the end of the avalanche for a time span defined
by a random number chosen from the positive branch of a
Gaussian curve with a half width of 2000 time steps. The
decay of the Gaussian function ensures that aftershocks are
more likely to be close to the main shock and introduces an
Omori-Utsu law [Fig. 2(d)] with p = 0.82. We have assessed
Omori’s law for different Gaussian widths w f of f (t) which
give similar scaling independently from the power law expo-
nents (Supplemental Material, Fig. S3 [43]).

IV. SPATIAL DISTRIBUTION OF THE SINGLE
AND CONTINUOUS EVENTS MODEL

We now explore the topological characteristics of pattern
formation generated by the collapsed sites. Following the
percolation cluster methods [54–56], we consider a matrix
of pixels (∼one frame) where one pixel is the smallest unit
of collapse. Sites are denoted 0 when intact and 1 when
collapsed, and remains as 1 even after further hits. Initially (at
t = 0) all pixels are in the 0 state. The pattern is contained
within the simulation box of potential collapse sites. First,
we use the single event model where N(t) is the number

FIG. 3. Spatial distribution for the single event model. (a)
Scheme of the spatial distribution as a function of the G/N percent-
age. (b) The Hausdorff dimension HD scales as a function of the
energy exponent ε for different G/N percentage as HD−1 ∼ ε−3. The
error for ε and HD is ±0.05. (c) Examples of the largest event that
occurred for different G/N percentages. Images of the frame showing
all collapsed areas after a single event.

of collapses to be distributed. As overlap between collapses
occurs, we distinguish between attempted Na(t) and success-
ful collapses Ns(t). The attempted collapses Na(t) are again
triggered by the previous successful collapses Ns(t–1) as in the
previous models. The single event model, including overlap, is
written as

Na(t ) = f (t )Ns(t − 1). (3)

Each event starts with an empty frame and ends when
Na(t) = 0. To distribute Na(t) at each time step, we distinguish
between sites which represent either “growth” of a pattern,
namely, when the new collapsed site is attached to a pre-
viously collapsed site, or “nucleation” when this is not the
case. The split between Na(t) sites in nucleation N sites and
growth sites G uses the probability parameter G/N as shown
schematically in Fig. 3(a). The collapsed sites have no inher-
ent spreading. The growth (given by the G/N factor) stems
from the spatial arrangement of the new attempted collapses.
When G/N = 0, all Na(t) are distributed by “nucleation”
and are placed randomly in space, which includes places
around the previous collapse sites. In the other extreme case,
when G/N = 1, Na(t) is distributed only by “growth” and
the collapses are randomly distributed along the perimeters
of previously collapsed areas. As an intermediate example,
if G/N = 0.5, 50% of Na(t) will be distributed by growth
and 50% by nucleation. We have generated six datasets for
G/N = 0, 0.1, 0.5, 0.7, 0.9, and 1 and analyzed the power
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law exponent for all cases. In addition, the topological prop-
erties of the collapsed areas were analyzed by computing the
Hausdorff dimension, HD, which is the relation between the
areas and its perimeters of collapsed patches as P ∼ AHD/2.
We have found that while the power law exponent decreases
as a function of the distribution factor G/N, the Hausdorff
dimension decreases [Fig. 3(b)] following a power law rela-
tion HD−1 ∼ ε−3. This observation is a consequence of the
spatial distribution: For G/N = 1, the shape of the areas is
compact, and the overlap (or the finite-size effect) is large. On
the other hand, G/N = 0 generates complex areas with large
fractality and overlap which is much less probable, giving rise
to the same power law exponents obtained by the single event
model [Eq. (1)]. As a consequence of starting each avalanche
on an empty frame, the occupation of the collapsed sites after
each avalanche is small (<10%) so that the critical percolation
point is never reached.

We use the same procedure for the continuous events
model where the model is written in terms of attempted and
successful jerks:

Na(t ) = f (t )Ns(t − 1) + g(t ). (4)

In this model all collapse events take place in the same
frame giving rise to a fully collapsed frame after a sufficiently
long event time. We analyze the energy exponent as a function
of time by taking the total number of all previous collapses
produced after each time step. As previously, we distribute
the collapsed sites by the G/N probability. The events dataset
is statistically poor for the initial short times and improves for
longer times. For the case of G/N = 0, the energy exponent
of the jerks evolves towards ε = 1.67 for long runs with high
occupancies of the collapsed site. For G/N = 0.5 we find ε =
1.8 [Figs. 4(a) and 4(b)] for 80% collapsed sites.

After having explored the dynamical properties of the col-
lapse model, we now investigate the topological features of
the collapse patterns. The pattern evolution during avalanches
was observed in the optical microscope in [34,57–60]. The
most obvious parameter to characterize the evolving pattern
is to determine the Hausdorff dimension of the collapsed sites
as a function of time (or, equivalently, the fractal dimension).
The Hausdorff dimension was measured by tracking the areas
and perimeters of the collapsed areas at each time frame and
the scaling P ∼ AHD/2 [61] was used to determine HD in Fig. 4.
We then analyzed the distribution of the sizes of the collapsed
areas as a function of time during the pattern formation. The
total areas Atot for each time step are power law distributed
with an exponent τtopo. The size of an avalanche S is tradition-
ally associated with the transformed area Atot. In our model,
the size and the amplitude Amax are proportional to each
other so that one may be tempted to argue that the collapsed
areas are a direct measure for the maximum amplitude of
the avalanche so that it becomes important to understand the
correlation between the two exponents τtopo for Atot and τ ′ for
Amax. Similarly, we define a new parameter as a topological
equivalence of the “energy” of an avalanche as the square
of the areas (Etopo = A2

total). The simulations show that this
parameter is power law distributed with an exponent εtopo so
that this exponent can be compared with the dynamical jerk
energy exponent ε. The parameters describing the collapse
pattern, namely, τtopo and εtopo, are directly correlated with the

FIG. 4. Spatial pattern formation of the continuous model. Ns(t)
continuous avalanche profile (in blue) and its respective occupation
(in black) for G/N = 0, (a), 0.5 (b), and 0.7 (c). The lower panels
show the time evolution of the Hausdorff dimension HD ± 0.05 (in
blue), the dynamical εdyn ± 0.05, and the convergent εconv ± 0.05
(errors for occupation larger than 20%) power law exponent (black
and green dots) extracted from the continuous profile Ns(t) and the
power law exponent obtained from the area’s distribution εtopo (red
dots) for G/N = 0, (a), 0.5 (b), and 0.7 (c). (d) Images of the
collapsed areas at different occupations for G/N = 0, 0.5, and 0.7.

third topological descriptor, namely, the Hausdorff dimension
HD [Figs. 4(a)–4(c)].

The results shown in Fig. 4 show that the dominant
avalanche activity occurs at times before 2000 time steps. Af-
ter this time, the occupancy of the collapsed regions is around
60%. After this degree of collapse, the avalanches become
weak and cannot be followed on a reasonable computational
timescale for occupancies beyond 80%. For small occupan-
cies, we find that εtopo and HD are anticorrelated for all G/N
values. With increasing occupancy, the Hausdorff dimension
increases from unity to a maximum near 2. The maximum of
HD corresponds to a minimum of εtopo. In particular, when the
total collapsed sites occupy 50% of the available space, we
find a maximum of HD with HD = 1.95 and a minimum of the
topological energy exponent with εtopo = 1.33. The same ex-
ponent is expected from random-site (G/N � 1) percolation
in two dimensions at the critical point [56]. For larger values
of G/N it becomes difficult to define HD and εtopo because the
number of collapsed areas is small. In the extreme case for
G/N = 1 there is only one single collapsed area. Figure 4(d)
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FIG. 5. HD versus εtopo scaling for the continuous event model.
HD ± 0.05 is a function of the pattern formation exponent εtopo ±
0.05 for G/N = 0. The scaling depends on the occupation; below
50% follows HD−1 ∼ ε−3

topo and above 50%: HD−1 ∼ ε−2
topo. The ex-

ponents represent rough estimates in view of the large degree of
data scatter. Nevertheless, the systematic anticorrelation between the
Hausdorff dimension and the topological energy exponent is clearly
visible.

shows snapshots of the collapsed areas as a function of the
occupation and the G/N factor.

The dynamical energy exponents ε, extracted from shifting
time intervals by 300 time steps, deviate greatly from their
topological equivalents. In the case of G/N = 0 and for small
occupancies, the dynamical ε starts from the mean field value
1.33 and increases to values greater than 2 for occupancies
beyond 50%. The topological exponent εtopo starts from high
values and then decays at its minimum values near 1.33.
Despite these systematic differences, both exponents cover
a similar parameter space between 1.33 and 2.5. At higher
occupancies εtopo increases and becomes closer to the dynam-
ical jerk exponent ε. The scaling of εtopo with the Hausdorff
dimension is shown in Fig. 5 where a change of scaling is
observed at around 50% occupancy. For occupancies below
50%, we notice a similar scaling as in the single event model
when plotting HD as a function of ε for different values of
G/N [Fig. 3(b)]. We then calculate the energy exponent over
increasing datasets εconv, starting from the beginning in which
the dataset is statistically poor because few events occurred,
which explains the scatter for occupancies below 10%. The
measured εconv shows a minimum at 1.33 and converges for
higher occupancies towards 1.66 for G/N = 0 [Fig. 4(a)].
For higher values of G/N, the maximum of εconv increases

to values near 2 while the minimum increases to near 1.6 and
coincides with ε [Figs. 4(a)–4(c)]. In this scenario, if a large
εconv is measured in the full dataset it is related to a large G/N
factor.

The continuous event model is similar to the single event
model at the dilute limit (for low occupancies). In this regime,
the dynamic epsilon is constant as a function of the occupancy
and increases for larger G/N factors as a power law [as shown
in Fig. 3(b)].

V. CONCLUSIONS

The models introduced in this paper are extremely simple
and can be used to simulate avalanches on small computers
without the need for mainframe computations. They reveal
the main results of avalanches, as stimulated by the research
in porous collapse and ferroic domain displacements under
fields. These parameters are the exponents for energies, ampli-
tudes, sizes, and so on. The unique aspect is that they combine
the temporal correlations during avalanches and the resulting
spatial pattern formation. Both aspects are key experimental
quantities as measured by standard experimental techniques
such as acoustic emission spectroscopy for time sequences
of temporary jerks, and optical observations of the change
of domain structures under applied fields. These parameters
are naturally connected, and a first approach would be to
identify a transformed region with a certain jerk amplitude
or jerk energy. While this is approximately true it fails in
detail. The two exponents ε and εtopo are not identical and
their dependence on the occupancy of the collapsed regions
is different (Fig. 4). In the dilute limit, the dynamical ex-
ponent ε is hardly influenced by the geometrical constraints
(“growth”/“nucleation” G/N factor). The topological expo-
nent εtopo relates to the pattern formation process and includes
the effect of the fractal structure of the collapsed regions. This
fractality is also measured by the Hausdorff dimension and a
clear anticorrelation is observed: A maximum in the exponent
εtopo correlates with a minimum of the Hausdorff dimension.
A similar anticorrelation was experimentally observed during
ferroelectric switching in BaTiO3 [34].
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