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Shrub recruitment, a key component of vegetation dynamics
beyond forests, is a highly sensitive indicator of climate and envi-
ronmental change. Warming-induced tipping points in Arctic and
alpine treeless ecosystems are, however, little understood. Here,
we compare two long-term recruitment datasets of 2,770 shrubs
from coastal East Greenland and from the Tibetan Plateau against
atmospheric circulation patterns between 1871 and 2010 Common
Era. Increasing rates of shrub recruitment since 1871 reached criti-
cal tipping points in the 1930s and 1960s on the Tibetan Plateau
and in East Greenland, respectively. A recent decline in shrub
recruitment in both datasets was likely related to warmer and
drier climates, with a stronger May to July El Nino Southern Oscil-
lation over the Tibetan Plateau and a stronger June to July Atlantic
Multidecadal Oscillation over Greenland. Exceeding the thermal
optimum of shrub recruitment, the recent warming trend may
cause soil moisture deficit. Our findings suggest that changes in
atmospheric circulation explain regional climate dynamics and
associated response patterns in Arctic and alpine shrub communi-
ties, knowledge that should be considered to protect vulnerable
high-elevation and high-latitude ecosystems from the cascading
effects of anthropogenic warming.
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n hosting the world’s coldest distribution limits of shrubs, the

Arctic and the Tibetan Plateau share some similar ecosystems
(1, 2). In addition, their climate is strongly influenced by large-
scale atmospheric circulations, such as those captured by the Arc-
tic Oscillation (AO), Atlantic Multidecadal Oscillation (AMO),
and El Nino Southern Oscillation (ENSO) (3-5). As shrub vege-
tation depends on climate, it is highly responsive to changes in
atmospheric circulation (6). During the 20th century, shrub
encroachment into Arctic and alpine grasslands has contributed
to changes in carbon storage, biodiversity, and feedbacks to
regional climate (7). Nevertheless, the long-term interplay
between shrub expansion and atmospheric circulation in these
cold biomes has remained poorly characterized and quantified.

The temporal dynamics of shrub expansion can be indirectly
explored by assessing shrub recruitment, which is one of the most
sensitive indicators of climate warming (7). Despite the accelerated
warming and greening trends in high latitudes and altitudes, recent
reductions in shrub recruitment have been observed in coastal
East Greenland and on the Tibetan Plateau (8, 9). It appears pos-
sible that these trends have been caused by climate change-
induced shifts in hydrothermal conditions beyond the regional
optimum for major shrub species. Here, we hypothesize that
changes in atmospheric circulation patterns may significantly affect
shrub recruitment in Greenland and on the Tibetan Plateau.

Results

Recruitment of high Arctic shrub species peaked in about 1961
to 1970 in coastal east Greenland near Ittoqqortoormiit (Fig. 1
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A-E), whereas the recruitment peak of alpine juniper shrub
occurred three decades earlier on the Tibetan Plateau (1931 to
1940). Shrub recruitment declined subsequently in both study
regions (Fig. 1E and SI Appendix).

Shrub recruitment was highly correlated with atmospheric cir-
culation indices (Fig. 1F). Specifically, shrub recruitment in
Greenland was strongly related to variability of the AO and
AMO. AO from June to July was significantly and positively
related with recruitment from 1871 to 1970, whereas during
recent decades (1962 to 2010), the AMO from June to July
showed a significant negative correlation with recruitment (r =
0.395 in 1871 to 1970; r = —0.934 in 1962 to 2010; P < 0.001 in
both cases and considering detrended series). June to July AMO
drove the regional mean temperature of those months, with
warmer conditions being associated with a higher AMO index
(Fig. 24 and Dataset S1). However, decreased precipitation was
also associated with high AMO values. Consequently, tempera-
ture and precipitation had negative and positive effects on shrub
recruitment, respectively. May to July Nino 4 had negative associ-
ations with shrub recruitment on the Tibetan Plateau (Fig. 1F) (r
= —0.808 in 1871 to 1940, P < 0.05; r = —0.73 in 1941 to 2010, P
= 0.06 for detrended series). Increased mean temperature in
May to November and lower June to October precipitation were
also related to Nino 4 since the 1930s (Fig. 24 and Dataset S1).
In addition, recruitment was significantly and negatively corre-
lated with decadal mean May to November temperature in 1941
to 2010. A positive correlation was found between recruitment
and monsoon season precipitation.

Moving correlation analyses showed that the sign of the
temperature sensitivity of recruitment shifted from positive to
negative after passing recruitment tipping points in both loca-
tions (Fig. 2B).

Discussion

There is growing concern that Arctic and alpine ecosystems may
reach tipping points under accelerating climate change (10-12).
Our study now adds strong evidence that climate-induced tipping
points during the past decades have already reversed the formerly
increasing trend in shrub recruitment across these cold biomes.
Moreover, our results importantly provide a long-term context for
the quantification of shrub recruitment variations in relation to
changes in climatic circulation patterns.
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Fig. 1. Study sites, temporal courses of shrub
recruitment, and their relationships with atmo-
spheric circulation patterns. The study sites (A) and
views of study shrublands in Greenland arctic tun-
dra (B, Rhododendron lapponicum and other spe-
cies; photo taken by U.B.), and on the Tibetan Pla-
teau (C, Juniperus pingii var. wilsonii). Image
credit: X.L. (D) Monthly climate in both regions.
Annual mean temperature (AT) and total precipita-
tion (AP) are also shown. (E) Annual shrub recruit-
ment data in Greenland and decadal shrub recruit-
ment on the Tibetan Plateau. (F) Linear
relationships calculated between the atmospheric
circulation indices and shrub recruitment.

regeneration and expansion in the Arctic and the Tibetan Pla-
teau. For example, shrub recruitment peaked in different time
periods (Fig. 1E), suggesting a high degree of heterogeneity of
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Fig. 2. Linear regressions between shrub
recruitment series and climate, and 60-y
moving window Pearson correlations. (A)
Linear regressions calculated between the
atmospheric circulation indices and local
climate variables during the periods with
recruitment decline. Linear regressions
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were calculated between the local climate
variables and shrub recruitment in each
study region. The analysis period is 1962
to 2010 for Greenland. For the Tibetan
Plateau, the time spans of temperature
and precipitation data used for the analy-
ses are 1932 to 2010 and 1951 to 2010,
respectively. (B) Moving window Pearson
correlations  calculated between the
decadal recruitment series and tempera-
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ture, and precipitation and snow accumu-
lation data in Greenland and the Tibetan
Plateau sites. The horizontal dashed lines
indicate the significance level at P = 0.05.
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shrub encroachment in these distant treeless areas. We hypoth-
esize that the accelerated greening trends prior to peak recruit-
ment were associated with climate warming in both arctic and
alpine regions (13).

The declines of shrub recruitment likely resulted from
drought stress associated with changes in large-scale atmo-
spheric circulation patterns. In Greenland and on the Tibetan
Plateau, high AMO and Nino 4 were associated with a warmer
and drier climate (Fig. 24 and Dataset S1), leading to unfavor-
able recruitment conditions with low soil moisture. Despite the
long-standing notion that warming has accelerated greening
across those cold regions, some studies have demonstrated that
tundra vegetation exhibited strong, locally contingent responses
to climate (14). In particular, shrub recruitment is strongly lim-
ited by the available soil moisture (14). Future warming may
thus further impair shrub recruitment or increase mortality
rates by intensifying soil drying. Similar to our results, shrub
growth at more than one-third of the Pan-Arctic sites has
already indicated warming-induced drought stress, showing an
early warning signal of a state shift in shrub communities (15).

This study highlights the tight links between large-scale
atmospheric circulations and shrub recruitment in the Arctic
and on the Tibetan Plateau. Atmospheric circulation patterns
could thus be used to forecast spatiotemporal shifts in shrub
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recruitment, and thereby assist in projecting future vegetation
shifts in cold biomes. Our data also indicated that the optimal
climate for shrub recruitment has already been passed in two
remote and ecologically important cold regions.

Materials and Methods

Shrub recruitment series were established from two datasets, including 2,770
individuals in Ittoqgortoormiit and on the Tibetan Plateau (8, 9). The climate
data mainly used were obtained from the Climate Explorer (http:/climexp.
knmi.nl/) and National Oceanic and Atmospheric Administration websites
(https:/psl.noaa.gov/gcos_wgsp/Timeseries/). Linear regressions and moving
Pearson correlation analyses were applied to assess the relationships between
shrub recruitment series and climate. See S/ Appendix for further details.
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