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Early nutrition and ageing: can we intervene?
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Abstract Ageing, a complex process that results in

progressive decline in intrinsic physiological function

leading to an increase in mortality rate, has been

shown to be affected by early life nutrition. Accumu-

lating data from animal and epidemiological studies

indicate that exposure to a suboptimal nutritional

environment during fetal life can have long-term

effects on adult health. In this paper, we discuss the

impact of early life nutrition on the development of

age-associated diseases and life span. Special empha-

sis is given to studies that have investigated the

molecular mechanisms underlying these effects.

These include permanent structural and cellular

changes including epigenetics modifications, oxida-

tive stress, DNA damage and telomere shortening.

Potential strategies targeting these mechanisms, in

order to prevent or alleviate the detrimental effects of

suboptimal early nutrition on lifespan and age-related

diseases, are also discussed. Although recent reports

have already identified effective therapeutic

interventions, such as antioxidant supplementation,

further understanding of the extent and nature of how

early nutrition influences the ageing process will

enable the development of novel and more effective

approaches to improve health and extend human

lifespan in the future.
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Ageing

According to the last WHO report (WHO 2015), the

proportion of elderly people is increasing globally. The

increase is not only observed in developed countries but

also in countries still undergoing development such as

China, India and Brazil. Projections for 2050 indicate

that 30% or more of the population in many places in

Europe, America and Asia will be over 60 years old.

From a biological point of view, ageing is a complex

process associated with the accumulation of damage at

molecular, cellular and tissue levels; therefore the

drastic increase in the number of elderly people will

also bring an increased risk of many diseases in the

population. Most people over 65 years show an expo-

nential increase in the risk of developing two or more

age-associated diseases such as cancer, cardiovascular

disease, neuro-degeneration and type 2 diabetes. This

not only has an impact on the individual and their

family, but also health care systems (WHO 2015).
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It is important to highlight that ageing happens

based on a combination of factors, and the conse-

quences of its progression varies between individuals.

The considerable increase in human life expectancy in

recent history makes it clear that, although genetic

factors are thought to be responsible for about one-

third of the variation in life expectancy, the influence

of the environment and behaviour strongly affects the

development of age-associated disease and our

lifespan.

One of the biggest challenges nowadays is to ensure

that, with the increase in lifespan, there is also a

parallel increase in health-span. It is therefore impor-

tant to find a way to delay ageing progression and thus,

reduce the prevalence of associated diseases. It is thus

becoming crucial for researchers to focus on factors

that could make a difference to how healthily we age.

Diet, genes and drugs are generally the most studied

topics in the literature addressing factors that influence

health and longevity. There has been great interest in

elucidating molecular mechanisms underlying the

effects of diet on lifespan, as these could give insight

into possibilities for new treatments. Dietary regimens

enforcing caloric restriction, in which calorie intake is

reduced but not to the extent of malnutrition, are one of

the oldest and most reproducible means of increasing

lifespan and reducing age-associated disease risk

(MacDonald and Ramsey 2010). The association

between caloric restriction and lifespan has been

demonstrated in a variety of different organisms

including rodents, worms, yeast and flies (Barrows

and Kokkonen 1982; Weindruch et al. 1986; Most

et al. 2016). One of the first studies showing clear

evidence that caloric restriction could increase long-

evity and protect against the development of age-

associated diseases dates back to the 1930s (McCay

et al. 1935). Since then, interest in this area has grown

with the results of many studies in animals demon-

strating the benefits of a reduction in caloric intake to

extend lifespan, with preservation of a ‘‘youthful’’

phenotype due to the reduced incidence of age-

associated diseases. For instance, in 2009, an elegant

study of nonhuman primates showed adult-onset

moderate caloric restriction could delay the develop-

ment of age-related diseases and extend lifespan

(Colman et al. 2009). These results were later contra-

dicted by another study in nonhuman primates (Mat-

tison et al. 2012), demonstrating that the effects of

caloric restriction on health and ageing are

confounded by other environmental and genetic

factors. However, although complex owing to the

differences in study design, more recently when the

findings of these two studies were analysed together it

was concluded that caloric restriction initiated in

adulthood is indeed beneficial for health and possibly

longevity (Mattison et al. 2017).

It is not clear if caloric restriction also extends life

span in human subjects. However, it has been docu-

mented that dietary restriction prevents type 2 diabetes

and hypertension, and reduces risk factors for the

development of cancer and cardiovascular disease

(Heilbronn and Ravussin 2003; Longo and Fontana

2010). In general, nutrition appears to exert a

substantial influence on lifespan and the development

of age-associated diseases. Although current diet is

known to be an important determinant of health, recent

studies have suggested that diet during critical periods

of development, such as fetal and early neonatal life,

may also be important in determination of health span

and lifespan (Tarry-Adkins and Ozanne 2014).

Fetal origins hypothesis

Professor David Barker, a British physician and

epidemiologist, proposed almost three decades ago

the ‘Fetal Origins’ hypothesis, now commonly

referred to as the developmental origins of health

and disease hypothesis. The hypothesis suggested that

exposure to a suboptimal nutritional environment

during fetal life can have long term effects on adult

health, contributing to the development of age-asso-

ciated diseases (Barker 1992). Some of the earliest

evidence in support of this hypothesis came from the

study of men living in Hertfordshire, UK, for whom

birth weights and current health data were available.

This demonstrated that men with the lowest weights at

birth and at 1 year of age had the highest death rates

from coronary heart disease (Barker et al. 1989). As

part of the fetal origins hypothesis, Barker, along with

his colleague Nick Hales, went on to demonstrate that

there are also associations between poor fetal growth

and the subsequent development of type 2 diabetes and

metabolic syndrome in adulthood (Hales et al. 1991;

Barker et al. 1993). The researchers proposed that

these relationships arose because of the response of the

growing fetus to exposure to under-nutrition in utero.

This response included prioritising development of
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vital organs such as the brain, at the expense of the

growth of other organs such as the endocrine pancreas.

Changes to organ development and programmed

changes in cellular metabolism (in a manner geared

towards efficient nutrient storage) would have long

term consequences in how the organism is able to store

and utilise nutrients. These changes were proposed to

be beneficial for short- term survival if the fetus was

born into conditions of continued under-nutrition, but

become detrimental in conditions of adequate- or

over- nutrition post-natally. Many studies were pub-

lished confirming this concept that became known as

the thrifty phenotype hypothesis (Phillips 1994; Mer-

icq et al. 2005; Hales and Barker 1992; Norris et al.

2012; Duque-Guimarães and Ozanne 2013).

The Dutch Hunger Winter study is one of the most

important examples from a human context that

supports the idea of programming by early nutrition.

During the Second World War there was a period of

time when food supplies were cut off to the western

part of the Netherlands, resulting in rationing of food

to as little as 400–800 calories/day to the population,

including pregnant women. The nutritional limitation

imposed on the women during pregnancy, followed by

a rapid increase in prosperity in the post-war period,

had long-lasting consequences for the adult health of

the offspring who were in utero during the famine,

including increased risk of glucose intolerance and

cardiovascular disease (Ravelli et al. 1998; Roseboom

et al. 2000, 2001). Further evidence in support of the

fetal origins hypothesis was obtained from a study of

monozygotic (identical) twins showing that when

there was discordance for type 2 diabetes in adulthood

among twins, the diabetic twin had a lower birth

weight than their non-diabetic co-twin (Poulsen et al.

1997).

Experimental studies have also provided strong

evidence that early-life nutrition is an important factor

in determining the long-term health of an individual.

This type of study is important, as it also provides a

better understanding of the underlying mechanisms.

For instance, we showed some years ago, using

adipose tissue and skeletal muscle biopsies from

humans of known birth weight, that low birth weight is

associated with reduced levels of insulin signaling

proteins in both tissues (Ozanne et al. 2005, 2006).

Although the first studies in relation to the fetal

origins of disease mainly focused on the consequences

of nutritional deprivation during pregnancy, the

impact of a hyper-caloric diet and increased maternal

body weight during pregnancy has recently gained a

lot of attention due to the rapid increase in obesity

among women of child-bearing age. It is now known

that the consequences of maternal obesity during

pregnancy are very similar to those observed as a

consequence of maternal under-nutrition during preg-

nancy. These include increased risk of developing age-

associated diseases such as obesity, cardiovascular

disease and type 2 diabetes in adulthood (Li et al.

2011; Poston 2012; Alfaradhi et al. 2014; Blackmore

et al. 2014; Alfaradhi et al. 2016).

Can early nutrition impact on lifespan?

Many research groups have used experimental models

to investigate the effects of various sub- optimal

nutrition states during early life on later life disease

risk. These include maternal protein restriction (Lan-

gley-Evans 1999; Petry et al. 2001), maternal iron

restriction (Lewis et al. 2001), maternal uterine

ligation (Simmons et al. 2001), maternal caloric

restriction and maternal obesity (Samuellson et al.

2008). These differing models have all shown effects

in the offspring in terms of development of metabolic

disturbances and age-associated diseases such as type

2 diabetes and hypertension. There are therefore clear

effects of early nutrition on health span. However, the

data on potential effects on lifespan is much more

limited. We have been one of the few research groups

to address this issue. Using a mouse model, we

investigated the effects of maternal protein restriction

during either pregnancy or lactation on lifespan, and

also addressed how effects were modulated by a post-

weaning obesogenic diet. We demonstrated that

exposure to a low protein diet during fetal life reduced

life span, and that longevity was further reduced when

animals were weaned onto an obesogenic diet. In

contrast, maternal protein restriction during lactation

slowed the growth of neonates and increased their

lifespan. In addition these offspring were resistant to

diet-induced obesity and therefore were protected

from the detrimental effects of an obesogenic diet on

lifespan (Ozanne and Hales 2004, 2005). These data

demonstrate that the timing of the nutritional interfer-

ence is crucial, and highlight the possibility that an

understanding of the mechanisms underlying these

programming effects on life span will help develop
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interventions during critical periods of development

that could reduce the incidence of age-associated

diseases and improve longevity. Although human data

on this matter is rare, Abeelen and colleagues have

reported, based on data from the Dutch Famine Birth

cohort, that under-nutrition during fetal life in humans

may also impact on lifespan (Van Abeelen et al. 2012).

The precise molecular mechanisms underlying the

long-term effects of nutritional changes during early

life on the longevity and development of age-related

diseases are still not clear. However, animal studies

have provided valuable insights into how an unfavor-

able prenatal environment triggers programming

effects in the offspring. These include permanent

structural changes to organs, alterations in gene

expression (possibly via alterations in epigenetic

modifications) and oxidative stress that can lead to

an accelerated cellular ageing.

There is much evidence demonstrating that early

nutrition can lead to permanent changes in the

structure of tissues, resulting in an ageing phenotype

and development of age-associated diseases. For

instance, it is widely recognized that suboptimal early

nutrition leads to increased risk of type 2 diabetes

(Duque-Guimarães and Ozanne 2013), and one pos-

sible mechanism underlying this could be through

effects on the structure and consequently function of

the endocrine pancreas. In a model of maternal protein

restriction during gestation, it has been shown that the

offspring had smaller pancreatic islets, impaired B cell

proliferation and insulin release as well as a reduction

in islet vascularization and increased age-associated

development of islet fibrosis (Snoeck et al. 1990;

Tarry-Adkins et al. 2010). There is also literature

demonstrating that suboptimal nutrition in early life

can lead to lower nephron number and size and cardiac

remodeling, both of which would influence cardio-

vascular health (Merlet-Benichou et al. 1994; Woods

et al. 2001; Blackmore et al. 2014).

Epigenetic mechanisms have received a lot of

attention in the developmental programming field as a

likely mediator of permanent changes in gene expres-

sion. DNAmethylation, histone modification and non-

coding RNAs are the main described epigenetic

mechanisms, and cause changes in gene expression

without changing the DNA sequence (Bird 2007;

Margueron and Reinberg 2010). It has been demon-

strated that in utero exposure to a low protein diet can

lead to changes in DNA methylation and histone

modifications that affects the expression of important

transcription factors such as HNF4a, PPARa and

CEBPb (Sandovici et al. 2011; Slater-Jefferies et al.

2011; Zheng et al. 2011). More recently, Dobson and

colleagues showed that high sugar diets in early life

program fly and worm lifespan through regulation of

the FOXO transcriptional factor (Dobson et al. 2017).

Similarly, maternal diet-induced obesity leads to

changes in mRNA translation through alterations in

microRNA expression (Fernandez-Twinn et al. 2014).

In addition, Heo and colleagues demonstrated that

early developmental exposure to either maternal

under-nutrition or a maternal western diet leads to

transcriptional dysregulation of important metabolic

pathways and alters the methylation profile in off-

spring in a manner very similar to that usually

associated with ageing (Heo et al. 2016).

There is evidence to suggest that some of the

mechanisms that are generally associated with cellular

ageing/senescence may be involved in mediating the

detrimental effects of suboptimal early nutrition on

longevity. One potential process is through alterations

in telomere length. Telomeres are hexameric repeat

sequences at the ends of chromosomes that protect

genetic material from degradation and are considered

to be important markers of senescence. They shorten

as a consequence of cell division in most somatic cells,

but also as a consequence of oxidative stress. Cellular

ageing is associated with telomere shortening, which

may cause irreversible replicative senescence and

therefore apoptosis (Harley et al. 1990; Bernadotte

et al. 2016; Fairlie et al. 2016).

Experiments in our laboratory have shown that

offspring from a maternal protein restriction model, in

which rats are exposed to a low-protein diet in utero

and then suckled by normally fed dams to induce

catch-up growth, demonstrate reduced life span. These

animals also display an accelerated cellular ageing

phenotype with increased levels of oxidative stress,

senescence markers and accelerated telomere short-

ening in a range of tissues including pancreatic islets

and heart (Tarry-Adkins et al. 2009, 2013). There are

no current reports from animal models of the potential

effects of maternal obesity on offspring telomere

length. However, there is evidence that maternal

obesity is associated with mitochondrial dysfunction

and increased oxidative stress in the offspring, which

are consistent with an accelerated ageing phenotype

(Alfaradhi et al. 2014; Bayol et al. 2010). Recently,
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Martens and colleagues have reported in humans a

strong negative association between pre-maternal

BMI and telomere length in newborns (Martens

et al. 2016). Although it is not clear if this association

is causative, it consistent with a potential role of

accelerated cellular ageing in individuals exposed to

sub-optimal early life nutrition.

Many of the above models have discussed the

effects of maternal nutrition during pregnancy on age-

related disease outcomes in the offspring, However,

there is also emerging evidence that paternal nutri-

tional state at the time of conception can program

offspring health (Ng et al. 2010, 2014; McPherson

et al. 2015). These effects are thought to be mediated

by transmission of genetic material such as small non-

coding RNAs in sperm (Fullston et al. 2016; Grand-

jean et al. 2015). There is evidence that these paternal

effects can be reversed by exercise and/or weight loss

in both humans and animal models (Donkin et al.

2016; McPherson et al. 2015).

Intervention strategies

The concept that nutrition during critical early periods

of development programs offspring predisposition to a

wide variety of age-associated diseases is now gener-

ally accepted. However, a better understanding of the

best intervention strategies to revert the detrimental

consequences of nutritional programming on offspring

health requires further attention. This will be greatly

aided by studies of experimental interventions in animal

models in the setting of early nutrition and longevity, in

which the intervention and other environmental and

genetic variables can be tightly controlled.

It has been demonstrated that ageing is associated

with complex epigenetic changes at the transcriptional

and translational levels. An increase in cellular

oxidative stress may be one of the main factors that

induces these changes, since disturbances in the

normal redox state of cells is a major phenotype of

the ageing process and some of the main epigenetic

modifying enzymes are redox-sensitive (Benayoun

et al. 2015). An imbalance in the generation of reactive

oxygen species and the antioxidant capacity of the

organism is also a known consequence of a suboptimal

early nutritional environment (Thompson and Al-

Hasan 2012). Therefore, reducing cellular oxidative

stress is one approach that has been adopted in an

attempt to prevent the detrimental effects of develop-

mental programming. Several groups have shown

potential reversibility or delay in the programmed

accelerated ageing process using nutritional supple-

mentation (Sen and Simmons 2010) or other types of

interventions in the pregnant mother such as exercise

(Vega et al. 2015) and pharmacological approaches

(Cambonie et al. 2007).

The animal studies described above focus on

interventions during pregnancy, which would target

fetal development in utero. However, in terms of

translatable intervention studies that can be used in

humans, intervention to the offspring themselves after

birth may be more useful as this can be targeted to

individuals who have experienced sub- optimal early

life nutrition. This is particularly important as some

markers of in utero fetal nutrition, such as birth weight,

are by definition not apparent until after birth. Data

from our laboratory, using the maternal low protein rat

model, has demonstrated that post weaning supple-

mentation of the offspring diet with coenzyme Q10,

(an important endogenous antioxidant and a key

component of the electron transport chain) at least in

part reverses many of the consequences of nutritional

programming, including effects on cardiac, hepato-

cyte and adipocyte ageing, inflammation, telomere

shortening, DNA damage, cellular senescence and

apoptosis, and insulin resistance (Tarry-Adkins et al.

2013, 2014, 2015, and 2016).

Conclusion

It is widely recognized that early life nutrition can

exert long-term effects in adulthood, including the risk

of developing many age-associated diseases as well as

impacting on lifespan. This idea is overwhelmingly

supported by a large amount of evidence from

different nutritional conditions, including under- and

over- nutrition during fetal life, in both animal models

and human cohorts. Whilst nutritional programming is

a multi-factorial process and occurs as a consequence

of both under- and over- nutrition, the variety of

models with a common end-point might suggest some

common mechanisms. Certainly there appears to be a

role for an accelerated cellular ageing process,

involving oxidative stress and permanent structural

alterations associated with epigenetic changes. Poten-

tial strategies targeting these mechanisms, in order to
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prevent or alleviate the harmful effects of suboptimal

early nutrition on lifespan and age-related diseases,

include antioxidant supplementation and exercise.

However, further understanding of the extent and

nature of how early nutrition influences the ageing

process could enable the development of novel and

more effective approaches to intervene in the future.
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