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Abstract

Clustering genetic variants based on their associations with different traits can provide

insight into their underlying biological mechanisms. Existing clustering approaches typically

group variants based on the similarity of their association estimates for various traits. We

present a new procedure for clustering variants based on their proportional associations

with different traits, which is more reflective of the underlying mechanisms to which they

relate. The method is based on a mixture model approach for directional clustering and

includes a noise cluster that provides robustness to outliers. The procedure performs well

across a range of simulation scenarios. In an applied setting, clustering genetic variants

associated with body mass index generates groups reflective of distinct biological pathways.

Mendelian randomization analyses support that the clusters vary in their effect on coronary

heart disease, including one cluster that represents elevated body mass index with a favour-

able metabolic profile and reduced coronary heart disease risk. Analysis of the biological

pathways underlying this cluster identifies inflammation as potentially explaining differences

in the effects of increased body mass index on coronary heart disease.

Author summary

Genome-wide association studies have found many genetic variants that are correlated

with traits, particularly complex traits such as body mass index (BMI). However, genetic

association data cannot tell us how these variants influence the trait, or whether they influ-

ence the trait in the same way. Insight into these questions may be gained by analysing the

associations between the variants and other related traits. Variants with similar patterns of

associations across a set of traits may be thought to act via similar biological mechanisms.
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Here we present a new statistical method for grouping genetic variants according to their

associations with chosen traits, so that each group represents variants acting on these traits

in a distinct way. We apply the method to genetic variants associated with BMI and then

study the effects of each of the identified groups of variants on coronary heart disease. We

find a group of genetic variants associated with higher BMI and decreased risk of heart

disease, which is in contrast to the established overall harmful effect of BMI on heart

disease.

Introduction

In recent years, the number of genome-wide association studies (GWAS) has grown enor-

mously [1]. Such studies provide valuable information linking genetic variants across the

human genome to a wide range of traits. What often remain less understood are the underly-

ing mechanisms by which the associated genetic variants affect the traits. Insight into these

mechanisms may be gained by investigating the pattern of associations with other related

traits: genetic variants that share similar association patterns may be thought to act via similar

mechanisms [2]. For example, some genetic variants associated with type 2 diabetes are also

associated with obesity related traits such as body mass index (BMI), whereas others are

instead associated with traits such as triglycerides, suggesting that the variants influence type 2

diabetes risk via different biological mechanisms [3].

A number of techniques have been implemented to cluster genetic variants based on their

associations with traits that are believed to be relevant in informing biological pathways. The

traits often include separate risk factors or potential mediators of some disease outcome(s) of

interest. A common approach is to use hierarchical clustering, which groups observations

based on their distance from each other [4–7]. The number of clusters is then chosen heuristi-

cally. Other clustering approaches which have been applied to genetic variant-trait association

estimates include fuzzy c-means [6] and Bayesian nonnegative matrix factorization [3]. A

related approach which aims to determine distinct components of genetic variant-trait associa-

tions uses truncated singular value decomposition [8].

A key characteristic of previously implemented approaches is that they cluster based on the

Euclidean distance between vectors of the genetic variant-trait association estimates, defined

as the length of the line between the association estimates plotted as points on a graph. How-

ever, when trying to determine shared biological mechanisms, a more relevant clustering tar-

get is the proportional associations of each genetic variant with the set of traits. If two variants

influence a set of related traits via a common mechanism, the genetic associations may differ

considerably in magnitude due to one variant having a stronger effect than the other. How-

ever, their proportional associations across the traits will be similar for both variants. Equiva-

lent to looking at proportional associations is to consider the direction of the association

vector from the origin. That is, in order to distinguish between variants which act via different

mechanisms, it is the direction of the association vector rather than its location in space which

is of most importance. This is illustrated graphically in Fig 1. Relating similar directions of

genetic associations to shared biological mechanisms has been discussed by, for example,

Yaghootkar et al. [9], Winkler et al. [2] and Udler et al. [3]. We note that implicit in this defini-

tion of mechanism is the assumption that the relationships between the genetic associations

with one trait and the genetic associations with each of the other traits are linear.

In this paper we introduce a novel procedure for clustering genetic variants based on their

associations with a given set of traits to identify groups with common biological mechanisms.

PLOS GENETICS Noise-augmented directional clustering of genetic association data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009975 January 27, 2022 2 / 24

https://zenodo.org/record/1251813#.X8drUF7gquP

(BMI and WHR); http://www.nealelab.is/uk-

biobank/ (body fat percentage, SBP, triglycerides,

HDL and CRP); https://www.thessgac.org/data

(educational attainment); https://ora.ox.ac.uk/

objects/uuid:ff479f44-bf35-48b9-9e67-

e690a2937b22 (physical activity); https://data.bris.

ac.uk/data/dataset/10i96zb8gm0j81yz0q6ztei23d

(lifetime smoking score); http://diagram-

consortium.org/downloads.html (T2D); http://

www.phenoscanner.medschl.cam.ac.uk/ (CHD);

https://data.bris.ac.uk/data/dataset/

3g3i5smgghp0s2uvm1doflkx9x (cytokines and

growth factors). R code for performing the NAvMix

clustering algorithm, and for reproducing the

simulation results and applied analysis, can be

found at https://github.com/aj-grant/navmix.

Funding: AJG and SB are supported by a Sir Henry

Dale Fellowship jointly funded by the Wellcome

Trust and the Royal Society (grant number

204623/Z/16/Z). DG is supported by the British

Heart Foundation Research Centre of Excellence

(RE/18/4/34215) at Imperial College London and a

National Institute for Health Research Clinical

Lectureship (CL-2020-16-001) at St. George’s,

University of London. PDWK is supported by the

UK Medical Research Council (MC_UU_00002/13).

This research was funded by the NIHR Cambridge

Biomedical Research Centre (BRC-1215-20014).

The views expressed are those of the authors and

not necessarily those of the NHS, the NIHR or the

Department of Health and Social Care. For the

purpose of open access, the author has applied a

CC-BY public copyright licence to any Author

Accepted Manuscript version arising from this

submission. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests. DG is employed

part-time by Novo Nordisk. The other authors

declare no competing interests.

https://doi.org/10.1371/journal.pgen.1009975
https://zenodo.org/record/1251813#.X8drUF7gquP
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.thessgac.org/data
https://ora.ox.ac.uk/objects/uuid:ff479f44-bf35-48b9-9e67-e690a2937b22
https://ora.ox.ac.uk/objects/uuid:ff479f44-bf35-48b9-9e67-e690a2937b22
https://ora.ox.ac.uk/objects/uuid:ff479f44-bf35-48b9-9e67-e690a2937b22
https://data.bris.ac.uk/data/dataset/10i96zb8gm0j81yz0q6ztei23d
https://data.bris.ac.uk/data/dataset/10i96zb8gm0j81yz0q6ztei23d
http://diagram-consortium.org/downloads.html
http://diagram-consortium.org/downloads.html
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://data.bris.ac.uk/data/dataset/3g3i5smgghp0s2uvm1doflkx9x
https://data.bris.ac.uk/data/dataset/3g3i5smgghp0s2uvm1doflkx9x
https://github.com/aj-grant/navmix


We develop the NAvMix (Noise-Augmented von Mises–Fisher Mixture model) clustering

method, which extends a directional clustering approach to include a noise cluster as well as a

data-driven method for choosing the number of clusters. The method is shown in a simulation

study to perform well in identifying true clusters and to outperform alternative approaches

across a range of scenarios. We further apply the procedure to cluster genetic variants associ-

ated with body mass index (BMI). We study the downstream effects of the different compo-

nents of BMI on coronary heart disease (CHD) using Mendelian randomization, which uses

genetic variants as instrumental variables to study potential causal effects of a risk factor on an

outcome [10, 11]. We identify a BMI increasing cluster of variants associated with a favourable

cardiometabolic profile and lower CHD risk. Analysis of the biological pathways which under-

lie each group of variants suggests that a key difference of this cluster compared with the others

is its distinct effect on systemic inflammation. The clustering method demonstrated in this

work is thus able to identify distinct pathways underlying complex traits, in turn highlighting

specific mechanisms for therapeutic intervention.

Results

Overview of the proposed clustering approach

We use a mixture model approach to clustering, which supposes that each observation is a

realisation from one of a fixed number of probability distributions. Since we are interested in

clustering based on direction of association, we fit a mixture of von Mises–Fisher (vMF)

Fig 1. Illustrative figure showing the difference between clustering based on Euclidean distance compared with direction. Panel (a) plots 90 simulated points

representing genetic associations with two traits. Each point was generated from one of three bivariate normal distributions. Panel (b) plots the normalised genetic

associations, representing the proportional association of each genetic variant with respect to the two traits. All points sit on the unit circle. The green points represent

genetic variants which are positively associated with each trait by similar magnitudes. The orange points represent genetic variants which are positively associated with

trait 1 and negatively associated with trait 2, again by similar magnitudes. Methods based on Euclidean distance such as Gaussian mixture models and hierarchical

clustering would consider there to be three clusters, distinguishing between the light and dark green points, as shown in Panel (a). Directional clustering approaches

would consider there to be two clusters, grouping the green points in the same cluster. This is shown in Panel (b), where the points are clearly grouped in two separate

clusters.

https://doi.org/10.1371/journal.pgen.1009975.g001
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distributions, which is a distribution characterised by the mean direction of the observations

from the origin and a dispersion parameter. A mixture model of vMF distributions has previ-

ously been described by Banerjee et al. [12]. We augment this approach by including a noise

cluster, in recognition of the fact that not all observed vectors of genetic variant-trait associa-

tion estimates are expected to fit well within the set of specified distributions. The noise cluster

will contain outliers to the specified model, providing robustness to the identification of clus-

ters. Our method of clustering is thus to fit a Noise-Augmented von Mises–Fisher Mixture

model (NAvMix).

The NAvMix algorithm outputs a probability for each observation belonging to each cluster

based on the given data. Each observation can then be assigned according to which cluster it

has the highest probability of membership (referred to as hard clustering). The approach also

provides the ability for soft clustering, which is where an observation is assigned to any cluster

for which it has a probability of membership over a certain level, so that observations may

belong to more than one cluster. Although the algorithm requires a fixed number of clusters to

be specified, we repeat the procedure for varying numbers of clusters then chose the final num-

ber using the Bayesian Information Criterion (BIC). Full details of the procedure are given in

the Methods section.

Let β̂ j� be the vector of association estimates of genetic variant j with the set of traits

under consideration, and let Ŝ j be the covariance matrix of this vector. We assume that the

genetic variants are independent of each other (that is, no linkage disequilibrium). We also

note that the association estimates do not need to have been taken in the same sample, so

we can consider sets of associations between genetic variants and any trait for which corre-

sponding GWAS summary statistics are available. Although it is possible to input the raw

association estimates into the algorithm, we propose inputting the standardised association

estimates, given by Ŝ
� 1=2

j β̂ j� for the jth variant. The standardisation means that each element

of the input vector is independent and has the same standard error. It thus is able to

account for correlation between association estimates. Assuming all genetic associations

are estimated with the same sample size for a given trait, this will not distort the direction

vector. If there are significant differences between sample sizes used to estimate genetic

associations for the same trait, and associations with different traits are on similar scales,

the unstandardised association estimates may also be used, possibly as a sensitivity analysis.

The first step in the algorithm is to transform each input vector to have a magnitude of one.

This is done by dividing each vector by its Euclidean distance from the origin. We shall

refer to this as normalisation. The normalised vectors represent the proportional associa-

tion estimates.

The diagonal elements of the covariance matrices represent the variances of the genetic var-

iant-trait association estimates. The off-diagonal elements represent the covariances between

these estimates. If the genetic associations are estimated in separate samples for each trait,

these covariances will be theoretically equal to zero. If the association estimates are taken from

the same sample, the covariances will still be approximately zero if the traits are independent.

If the traits are correlated, an estimate of this correlation is required to estimate the full covari-

ance matrix in the one sample setting. This is easily computed using individual level data

(Methods). If published GWAS summary statistics are being used, this information will not

always be available. Nonetheless, the simulation study presented in the following section

shows the clustering approach still performs well in the case where traits are truly correlated

but the correlation estimates are set to zero.
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Simulation results

We performed a simulation study in order to evaluate the performance of the proposed

method and to compare it with alternative clustering approaches. We chose two methods for

comparison. The first was to fit Gaussian mixture models to the standardised association esti-

mates using the mclust algorithm in R [13]. The method was chosen for comparison because it

is a model-based approach that is able to estimate the number of clusters by fitting multiple

models and choosing between them using a principled model selection criterion. The second

approach used for comparison was to fit Gaussian mixture models using the proportional asso-

ciation estimates. This is a case of model misspecification, since the association estimates after

normalisation will not follow Gaussian distributions, even if the association estimates them-

selves do (see, for example, Fig 1). It thus demonstrates the result of applying a method for

clustering based on Euclidean distance to proportional associations. Note that other R pack-

ages which implement a form of directional clustering were not used for comparison because

they either do not allow for estimation of the number of clusters (for example, skmeans [14],

which uses the spherical k-means algorithm) or do not incorporate a noise cluster (for exam-

ple, movMF [15]), and so performance cannot easily be compared.

We simulated data for genetic variants across six scenarios, where the number of traits

(denoted by m) was either 2 or 9 and the number of clusters (K) was either 1, 2 or 4. In each

scenario, each of 80 genetic variants were associated with one of K latent factors, representing

the different clusters. Each trait was a function of these latent factors, 20 additional noise

genetic variants, and random variation of which a proportion, determined by the parameter γ,

came from a shared unmeasured confounding variable. The γ = 0 case represents uncorrelated

traits, however it also proxies the scenario where the traits may be correlated but measured in

separate, non-overlapping samples. Increasing values of γ therefore demonstrate the effect of

increased trait correlation and/or sample overlap. We applied NAvMix in two ways. In the

first, the off-diagonal entries of the covariance matrices were set to zero. In the second, the esti-

mated trait correlation from individual level data was incorporated into the procedure, so the

full estimated covariance matrices were used. In the primary simulation study presented here,

the genetic variant-trait associations were estimated in a single sample of 20 000 individuals.

S1 Text also presents the results of a simulation study where the sample sizes for each trait dif-

fered. Full details of the simulation parameters are given in the Methods section.

We evaluated the performance of each method using four measures: the adjusted Rand

index; the silhouette coefficient; the mean number of clusters estimated; and the mean number

of observations assigned to the noise cluster. The adjusted Rand index is a similarity measure

between the true and estimated cluster memberships, and shows how well each method allo-

cated the observations [16, 17]. The closer to 1, the closer the estimated cluster membership is

to the truth. The silhouette for an observation is based on its closeness to other observations

within its cluster and its separation from observations outside its cluster [18]. A higher value

indicates that the observation fits well within its allocated cluster. We define the distance

between two observations as the distance along the surface of the unit sphere after normalising,

and we define the silhouette coefficient as the mean silhouette of all observations, with a higher

silhouette coefficient indicating better formed clusters. Fig 2 shows boxplots of the adjusted

Rand index for each method and scenario. Boxplots of the silhouette coefficients are shown in

Fig A in S1 Text. Table 1 shows the mean number of clusters estimated and the mean size of

the noise cluster for each method and scenario.

NAvMix performed very well in terms of allocating the observations to the correct clus-

ters, with a median adjusted Rand index above the mclust approaches in nearly all scenarios.

It similarly outperformed with respect to the silhouette coefficient, and selected, on average,
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a number of clusters closer to the true number. The mclust algorithm tended to overestimate

the number of clusters, particularly when there were no truly distinct clusters (that is, in the

K = 1 scenarios). The exception was when the traits were highly correlated (with γ = 0.8),

where NAvMix tended to select too many clusters. However, incorporating the trait

Fig 2. Comparison of methods in the simulation study. Boxplots of the adjusted Rand index for each scenario using NAvMix, NAvMix

incorporating trait correlation estimates (cor), mclust, and mclust using proportional associations (pr).

https://doi.org/10.1371/journal.pgen.1009975.g002
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correlation estimates in NAvMix improved the performance in these cases. Note that when

K = 4, one of the clusters had only 10 genetic variants. Nonetheless, NAvMix still selected

close to 4 clusters, on average, and had higher median adjusted Rand indices and silhouette

coefficients than the mclust approaches. Other than in the scenarios with both a higher num-

ber of traits (m = 9) and high trait correlation (γ = 0.8), there was not a big difference in the

results between using NAvMix with and without trait correlation estimates. This suggests

that, unless there is substantial trait correlation or sample overlap, the procedure is robust to

missing these estimates. Incorporating trait correlation becomes more important as the num-

ber of traits increases and the number of true clusters decreases. Finally, mclust tended to

allocate fewer observations to the noise cluster than NAvMix, particularly in the lower

dimensional (m = 2) settings.

We repeated the analysis on the same simulated datasets but where the genetic variants

were filtered such that only those which associated with at least one trait at genome-wide sig-

nificance were included. This greatly improved the performance of NAvMix in the highly cor-

related trait scenarios (see Figs B and C and Table A in S1 Text). In the simulation scenarios

where the sample sizes differed, the results were similar to those of the primary simulation

study (see Figs D and E and Table B in S1 Text). In these scenarios, the various sample sizes

were up to five times different, suggesting that the procedure is robust to reasonably large dif-

ferences in sample sizes used for each trait.

Clustering BMI associated genetic variants

We applied our procedure to cluster BMI associated genetic variants identified by the GWAS

of Pulit et al. [19]. We considered genetic variants associated with BMI at a p-value < 5 × 10−8

and pruned at r2 < 0.001. The clustering was performed in relation to the genetic associations

Table 1. Mean number of clusters estimated and mean number of observations allocated to the noise cluster for each simulated scenario using NAvMix, NAvMix

incorporating trait correlation estimates (cor), mclust, and mclust using proportional associations (pr). The true number of variants in the noise cluster is 20.

γ Number of traits (m) Number of clusters (K) Number of clusters Number of noise variants

NAvMix NAvMix (cor) mclust mclust (pr) NAvMix NAvMix (cor) mclust mclust (pr)

0 2 1 1.00 1.01 1.19 7.09 19.88 19.93 18.17 8.93

2 2.00 2.00 2.07 8.08 17.63 17.66 16.79 6.61

4 3.66 3.67 3.45 8.35 14.09 13.95 13.53 6.55

9 1 1.42 1.29 3.41 1.52 23.83 24.77 19.69 25.98

2 2.04 2.03 4.99 2.09 26.17 26.46 19.88 28.34

4 4.17 4.11 4.19 4.09 24.93 25.68 19.34 28.39

0.4 2 1 1.00 1.00 1.20 6.93 20.18 20.41 18.11 9.55

2 2.00 2.00 2.06 8.07 17.63 17.62 16.75 6.75

4 3.66 3.61 3.47 8.32 13.10 15.71 13.81 6.54

9 1 1.56 1.14 3.30 1.73 24.00 26.86 19.41 26.03

2 2.08 2.03 4.33 2.21 26.59 27.40 19.15 28.71

4 4.18 4.02 2.88 4.09 25.65 27.39 18.37 28.93

0.8 2 1 1.01 1.01 1.22 6.52 21.20 22.27 18.18 10.95

2 2.00 2.00 2.04 8.01 17.91 17.86 16.50 6.68

4 3.79 3.33 3.38 8.13 12.12 22.60 12.70 7.80

9 1 1.97 1.13 1.11 2.17 23.85 27.04 19.28 25.40

2 3.49 2.04 1.98 4.22 24.52 27.01 18.42 25.67

4 4.44 4.00 2.34 5.60 26.90 27.12 18.68 28.07

https://doi.org/10.1371/journal.pgen.1009975.t001
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with nine traits: body fat percentage; systolic blood pressure (SBP); triglycerides; high-density

lipoprotein cholesterol (HDL); educational attainment; physical activity; lifetime smoking

score; waist-to-hip ratio (WHR); and type 2 diabetes. These are lifestyle or cardiometabolic

traits which have previously been shown to be related to BMI and which may offer insight into

the pathways to downstream effects of BMI such as CHD [20, 21]. The genetic association esti-

mates with these traits were all obtained from publicly available GWAS summary statistics

(Methods). We clustered the 539 genetic variants that were available across all datasets. The

full list of genetic variants and their allocated cluster, along with their probabilities of member-

ship for each cluster, is given in S1 Table.

Five clusters were identified, with 1 genetic variant allocated to the noise cluster. Fig 3

shows a heat map of the proportional genetic association estimates with each trait by cluster

and Fig 4 plots the means of each fitted vMF distribution, representing the proportional associ-

ations for an observation at the centre of each cluster. The largest four clusters, labelled Clus-

ters 1–4, contain genetic variants with very similar positive average proportional associations

with fat percentage, WHR and type 2 diabetes. Variants in Cluster 3 have close to zero average

association with SBP, whereas those in Clusters 1, 2, and 4 have positive average association

with SBP. Variants in Cluster 2 have close to zero average association with smoking, whereas

those in Clusters 1, 3 and 4 have positive average association with smoking. Variants in Cluster

4 have positive average association with HDL and negative average association with triglycer-

ides, in contrast with those in Clusters 1–3.

Cluster 5 contains 20 genetic variants. These variants, on average, are positively associated

with HDL and negatively associated with SBP, triglycerides, WHR and type 2 diabetes. These

variants also have close to zero average association with smoking, physical activity and educa-

tion, as well as weaker positive association with fat percentage compared with the other four

clusters.

Fig 3. Heat map showing the association estimates of the BMI associated genetic variants with each trait by cluster. The association estimates were

first standardised by dividing by their standard errors, then normalised so that the vectors of association estimates for each variant have magnitude one.

Thus, the values shown represent the proportional association estimates for each genetic variant on the set of traits. The value in parentheses

underneath each cluster label is the number of variants in the respective cluster.

https://doi.org/10.1371/journal.pgen.1009975.g003
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Mendelian randomization estimates of the effect of BMI on CHD

Mendelian randomization has previously suggested that BMI has a positive causal effect on

CHD risk using as instruments 94 genetic variants identified by Locket et al. [22][23]. We

applied two-sample Mendelian randomization [24] using as instruments the set of BMI associ-

ated genetic variants which were used for clustering, as well as separately using the sets of vari-

ants for each cluster in turn (Methods). As well as applying the inverse-variance weighted

(MR-IVW) method [25], we also performed as sensitivity analyses the MR-Median method

[26], the Contamination Mixture (MR-ConMix) method [27] and the MR-PRESSO method

[28]. Each of these methods provides a valid test for the causal null hypothesis under different

sets of assumptions (Methods).

Fig 5 shows scatterplots of the genetic association estimates with BMI against their associa-

tion estimates with CHD risk for each set of instruments considered, as well the results of the

Mendelian randomization analyses. When using the full set of genetic variants as instruments,

the results suggest a positive effect of increased BMI on CHD risk, with an estimated odds

ratio (OR) from MR-IVW of 1.50 (95% confidence interval of 1.40–1.62) per 1 standard devia-

tion increase in genetically predicted BMI. All sensitivity analyses gave similar estimates. This

is in line with the results of Larsson et al. [23]. A similar result was obtained using the largest

two clusters, with an estimated OR of 1.83 (1.68–2.00) using Cluster 1 and of 1.54 (1.38–1.72)

using Cluster 2. When using the Cluster 3 genetic variants as instruments, the estimate attenu-

ated toward the null, with an estimated OR of 1.22 (0.99–1.50). When using Cluster 4 genetic

variants as instruments, there was no evidence that increased BMI is associated with CHD

risk, with an estimated OR of 0.94 (0.69–1.29). When using Cluster 5 genetic variants as instru-

ments, the results suggest a decrease in CHD risk from increased BMI, with an estimated OR

of 0.34 (0.19–0.64). Note that the MR-Egger intercept test [29] did not show evidence of direc-

tional pleiotropy in any of these analyses (see Table C in S1 Text).

Fig 4. Parallel plot of the mean vector of the fitted von Mises–Fisher distribution for each cluster. The plotted points represent the standardised proportional

association with each trait for an observation at the centre of each cluster.

https://doi.org/10.1371/journal.pgen.1009975.g004
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Fig 5. Results from the Mendelian randomization analyses of the effect of BMI on CHD. Scatterplots are of the associations of each genetic

variant with BMI (standard deviation units) and the log odds ratio of CHD risk. The slopes of the dotted lines are the MR-IVW estimates for the

respective cluster. Forest plots show the estimates and 95% confidence intervals from Mendelian randomization, for all genetic variants and for

each cluster. Mendelian randomization estimates represent the change in odds ratio of CHD risk per 1 standard deviation increase in genetically

predicted BMI. The dotted lines indicate an odds ratio of 1.

https://doi.org/10.1371/journal.pgen.1009975.g005
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Exploring the biological pathways of clusters of BMI associated variants

We conducted gene set analysis on the BMI associated variants using the Functional Mapping

and Annotation Platform [30] in order to examine the biological pathways relating to each

cluster. The variants were mapped to genes based on positional and eQTL mappings, which

were in turn tested for enrichment in gene sets from various pathway databases (Methods). A

number of distinct patterns emerge: Cluster 1 variants are associated with pathways related to

cell division and differentiation; Cluster 3 variants with pathways related to cellular signalling;

Cluster 4 variants with pathways related to lipid metabolism; and Cluster 5 variants with path-

ways related to inflammation. Cluster 2 variants were not found to be significantly enriched

with any of the tested pathways. The full set of pathways associated with the mapped genes is

given in S2 Table.

The role of Cluster 5 variants in inflammation is of particular interest given its proposed

relation to favourable adiposity. In order to confirm the role of these variants in inflammation,

we conducted a Mendelian randomization analysis to examine the association of genetically

predicted BMI, using all variants and each cluster separately, with C-reactive protein (CRP), a

measure of systemic inflammation (Methods). The results from the MR-IVW method are

shown in Fig 6. When using all variants as instruments, MR-IVW estimated an increase in

CRP of 0.44 standard deviations (95% confidence interval of 0.38–0.50) per standard deviation

increase in genetically predicted BMI. The results when using Clusters 1–4 as instruments

were in line with this. However, there was no evidence that the component of BMI predicted

by Cluster 5 variants is associated with CRP (MR-IVW estimate of 0.01, 95% confidence inter-

val of -0.24–0.27). These findings were supported in sensitivity analyses (see Fig F in S1 Text).

To further explore the pathways by which the various clusters affect inflammation, we per-

formed separate Mendelian randomization analyses with the 41 cytokines and growth factors

studied by Ahola-Olli et al. [31] and Kalaoja et al. [32] as outcomes (see Table D in S1 Text for

the full list of cytokines and growth factors considered). Fig 7 shows the MR-IVW estimates

for each cluster and outcome. There was evidence of variation in the effects of BMI predicted

Fig 6. Results from the Mendelian randomization analyses of the effect of BMI on CRP. MR-IVW estimates and

95% confidence intervals of the association of genetically predicted BMI with CRP, for all genetic variants and for each

cluster. The estimates represent the change in CRP in standard deviation units per 1 standard deviation increase in

genetically predicted BMI. The dotted line indicates no association between genetically predicted levels of CRP and

BMI.

https://doi.org/10.1371/journal.pgen.1009975.g006
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by Cluster 5 variants on the cytokines compared with the effects of BMI predicted by the other

clusters. For a number of inflammatory traits, such as hepatocyte growth factor (HGF) and

TNF-related apoptosis inducing ligand (TRAIL), BMI predicted by Cluster 5 variants showed

a weaker association than the other clusters. In some cases, such as for monocyte chemotactic

protein-1 (MCP1), the MR-IVW estimates using Cluster 5 variants were in the opposite direc-

tion to the other clusters. These results were supported in sensitivity analyses (see S3 Table).

Discussion

In this paper we have presented a procedure for clustering genetic variants based on their asso-

ciations with a given set of traits using the NAvMix method. The method uses a directional

clustering algorithm to distinguish between genetic variants based on their proportional asso-

ciations with the traits. Since it is a model-based clustering approach, it has many advantages

over current methods that are employed for clustering genetic variants based on trait associa-

tions, such as a data-driven method for choosing the number of clusters and the ability to use

soft clustering. The inclusion of a noise cluster provides robustness to outliers, offering greater

confidence in the identified clusters. A simulation study showed the method performs well in

a range of settings, and that it outperformed alternative clustering approaches in assigning

observations based on proportional associations. Importantly, the method did not identify

false positive clusters in the simulation setting when no true clusters existed in the data, in con-

trast to the other methods considered.

The application to clustering BMI associated genetic variants identified five clusters, sug-

gesting that genetic predictors of BMI can be broken down into five separate mechanisms

based on their associations with the traits considered. Interestingly, variants in Clusters 1 and

2 were similar in their average associations across each of the traits considered with the excep-

tion of smoking, where Cluster 2 had close to zero association. One possible explanation for

this is that these variants differ according to some addictive behaviour related mechanism.

However, no such pathways were identified in the gene set analysis for Cluster 1. This suggests

that some other mechanism may be driving this change, although further analysis is required

to identify what this may be.

Mendelian randomization analyses provided evidence that the different pathways affecting

BMI have different downstream effects on CHD risk. When using as instruments the set of

genetic variants in Clusters 1 and 2, the Mendelian randomization estimate of BMI on CHD

risk was positive, in line with the established overall effect of increased BMI. When using as

instruments the set of variants in Cluster 3, the estimate was still positive but attenuated to the

null. The main difference between this cluster and Clusters 1 and 2 is that the variants do not,

on average, associate with increased SBP. Previous evidence suggests that increased SBP is a

Fig 7. Results from the Mendelian randomization analyses of the effect of BMI on cytokines and growth factors. MR-IVW estimates (expressed as

Z-scores, i.e. estimate divided by its standard error) for the association of genetically predicted BMI with 41 cytokines and growth factors. Values

denoted with � have a p-value less than 0.05/41.

https://doi.org/10.1371/journal.pgen.1009975.g007
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downstream consequence of increased BMI [33], and has also been shown to have a causal

effect on CHD [27]. Our results therefore support that the genetically predicted component of

BMI that does not associate with increased SBP has a lower positive effect on CHD risk. How-

ever, there is still evidence of a positive causal effect, suggesting there are other mechanisms by

which increased BMI may increase CHD risk [34].

When using as instruments the set of genetic variants in Cluster 4, which have average asso-

ciations with increased HDL and decreased triglycerides, Mendelian randomization suggested

there was no association with CHD risk. Furthermore, the Mendelian randomization estimate

of the component of BMI predicted by the variants in Cluster 5 was negative. That is, in Clus-

ter 5, we have identified genetic variants related to a BMI increasing pathway that is protective

of CHD. Orientating to the BMI-increasing alleles, these genetic variants are associated with a

favourable metabolic profile, namely increased HDL and decreased SBP, triglycerides, WHR

and type 2 diabetes liability.

By analysing the biological pathways underpinning the different clusters, we found evi-

dence supporting that the heterogeneity between the effects of the different components of

BMI on cardiovascular risk may be related to inflammation. Furthermore, our findings iden-

tify possible inflammatory pathways related to elevated BMI that represent therapeutic targets

for preventing CHD. Specifically, the estimated effects of Cluster 5 variants, in contrast to the

BMI increasing variants more generally, are consistent with lower levels of key inflammatory

cytokines implicated in CHD pathogenesis, including HGF [35], MCP1 [36] and TRAIL [37].

By ameliorating the increased inflammation attributable to elevated BMI, its detrimental

effects on CHD risk may also be mitigated.

A number of studies have previously sought to identify genetic variants associated with

metabolically favourable adiposity. Huang et al. [38] conducted pairwise significance tests

between adiposity traits and various other cardiometabolic traits to identify genetic variants

which, for at least one such pairing, associate with an increase in the adiposity trait and a

decrease in the cardiometabolic trait. A similar approach to identifying genetic variants associ-

ated with favourable adiposity has also been performed by Yaghootkar et al. [39]. Our

approach differs to these in that our clusters are formed without using genetic associations

with the risk factor or outcome of interest, in this case BMI and CHD, but rather in relation to

the chosen traits. Therefore, any difference between clusters in their associations with CHD

risk is a meaningful statistical test, rather than a difference driven by the clustering algorithm.

The proposed approach has some limitations. It uses as input the full covariance matrix of

the genetic variant-trait associations. If it assumed that the traits are uncorrelated or that the

genetic variant-trait associations are estimated in separate samples, then these matrices can be

easily constructed from the standard errors of the genetic association estimates which are typi-

cally available from published GWAS results. In practice, it is unlikely that the entire set of

traits will be uncorrelated, since they would typically be related at least via common association

with the primary trait of interest. We have shown how the full covariance matrices can be esti-

mated using estimates of the trait correlations, either from individual level data or from a refer-

ence dataset. Furthermore, the simulation study suggested that, unless the traits are highly

correlated with each other, the method is robust to ignoring the genetic variant-trait associa-

tion correlations. This also suggests that the approach is robust to some participant overlap in

the samples. If the traits are highly correlated, there is significant sample overlap, and individ-

ual level data are not available, there exist methods to estimate the correlation between genetic

associations using summary level data. One approach is to use the intercept term from cross-

trait LD score regression [40]. Another is to estimate the correlation between genetic associa-

tion estimates using only variants which are assumed to not be associated with the traits [41].
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Another limitation is that the results are dependent on the choice of traits used to cluster

on. Domain knowledge should be used to select a set of traits which are believed to be infor-

mative of potential mechanisms of the genetic variants under consideration. Future research

will look to extend the method to include feature selection [42], so that the inclusion of a

moderate to large number of traits, many of which may not distinguish between clusters, is

possible. It should be noted that adding highly correlated traits does not add much extra infor-

mation, and may impact the results if correlation estimates are not incorporated. Thus, if there

are a number of traits of interest which are highly correlated, it is better to choose just one of

them.

In the applied example, the genetic variants used for clustering were chosen according to

them being associated with a primary trait of interest, in this case BMI. This resulted in a

fairly large number of variants to cluster, in part because of the very large sample size of the

GWAS in which these associations were estimated. Other traits of interest may not have so

many independent variants associated with them at genome-wide significance. A low num-

ber of variants may make it more difficult to find true clusters if the cluster sizes are small.

Nonetheless, there are many traits for which, say, 100 or more variants have been found to

associate, and this will only grow as GWAS sample sizes increase. Furthermore, the simula-

tion results showed that our clustering approach is still generally able to detect relatively

small clusters, with clusters as small as 10 variants out of 100 in total in some settings. In the

case where there are only a very small number of variants associated with the primary trait of

interest, we would recommend lowering the threshold for inclusion below genome-wide sig-

nificance rather than include correlated variants. Genetic variants which are not independent

would be expected to associate similarly with the given traits, and so it would not be informa-

tive to include these.

In conclusion, we have presented a procedure for clustering genetic variants based on their

direction of association with relevant traits, in order to gain insight into their underlying bio-

logical mechanisms and pathways. We have demonstrated the utility of clustering genetic vari-

ants in this way by applying the method to BMI associated genetic variants and performing

Mendelian randomization analyses to infer the differential effects of distinct BMI increasing

pathways on CHD risk.

Methods

The von Mises–Fisher distribution

The m-dimensional von Mises–Fisher (vMF) distribution has probability density function

f ðx j μ; kÞ ¼ CmðkÞekμ
0x;

where kxk = kμk = 1 and Cm(κ) is a normalising constant given by

Cn xð Þ ¼
xn=2� 1

ð2pÞ
n=2In=2� 1ðxÞ

;

where Iν(x) is the modified Bessel function of the first kind and order ν [12, 43]. The mean

parameter μ is a unit vector which represents the direction from the origin in m-dimensional

space. The concentration parameter κ represents the spread of observations around the mean.

When κ = 0, the distribution is the uniform distribution on the (m − 1)-dimensional unit

sphere. As κ increases, the distribution becomes increasingly focused around the point on the

unit sphere given by μ.
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The noise-augmented von Mises–Fisher mixture model

Suppose we have m-dimensional observations {x1, . . ., xn} where kxjk = 1 for all j (if the obser-

vations are not normalised to have magnitude 1, then this normalisation is the first step in the

procedure). Here, xj represents the vector of proportional association estimates for genetic var-

iant j with the m traits. That is, if standardised genetic association estimates are being used, the

vector Ŝ
� 1=2

j β̂j� is normalised to have magnitude 1. Further suppose that each observation

either belongs to one of K clusters, each cluster containing observations from a vMF distribu-

tion, or else belongs to none of these clusters and is therefore considered noise. We can repre-

sent this with the K + 1 component vMF mixture model given by

pðxj j ΘÞ ¼
XKþ1

k¼1

pðxj; zj ¼ k j μk; kkÞ ¼
XKþ1

k¼1

pkf ðxj j μk; kkÞ

for the jth observation, where:

• Θ = {μ1, . . ., μK, κ1, . . ., κK, π1, . . ., πK+1};

• z = {z1, . . ., zn} denotes cluster membership (that is, zj = k if xj belongs to cluster k);

• πk is the mixing proportion of cluster k, with
PKþ1

k¼1
pk ¼ 1;

• f(xjμ, κ) is the density function of the m-dimensional vMF distribution;

• μK+1 is the unit vector which is fixed according to the global sample mean direction, given by

μKþ1 ¼

Pn
j¼1

xj
k
Pn

j¼1
xj k

;

• κK+1 is fixed at a number close to zero (for example 0.0001).

In this model, cluster K + 1 is referred to as the noise cluster. With κ close to zero, the distri-

bution function represents the uniform distribution on the (m − 1)-dimensional unit sphere,

and so observations which do not fit well to the other K clusters will tend to be assigned here.

Note that, since the noise cluster is uniformly distributed, the value of μK+1 is arbitrary, and we

choose the global sample mean for convenience. The use of a uniform distribution for a noise

cluster has been commonly used in Gaussian mixture models [44], and our model gives a

directional analogue of this approach. Alternative approaches to incorporating a noise compo-

nent to Gaussian mixture models have also been proposed [45–47]. Although beyond the

scope of the present work, different noise distributions for NAvMix could be explored by

changing the density of component K + 1.

The log-likelihood function is

lKðΘÞ ¼
Xn

j¼1

log
XKþ1

k¼1

pkf ðxj j μk; kkÞ

( )

:

In order to maximise the likelihood function to obtain estimates of the parameters Θ, we

would require knowledge of the latent variables z. Mixture models of this sort are thus fitted

using the EM algorithm [48].
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The EM algorithm. Suppose we have an estimate of Θ, denoted by Θ̂. Let

QðΘ j Θ̂Þ ¼ EzjX;Θ̂ lKðΘÞ. Then

QðΘ j Θ̂Þ ¼
Xn

j¼1

XKþ1

k¼1

gjk logfpkf ðxj j μk; kkÞg;

where

gjk ¼ Pr zj ¼ k j xj; Θ̂
� �

¼
pkf ðxj j μk; kkÞ
PKþ1

l¼1
f ðxj j μl; klÞ

; k ¼ 1; . . . ;K þ 1:

Computing the γjk for a given Θ̂ is the E step in the EM algorithm.

Given the γjk, we can estimate Θ by maximising QðΘ j Θ̂Þ. Following Banerjee et al. [12],

the parameter estimates are obtained from

μ̂k ¼

Pn
j¼1
gjkxj

k
Pn

j¼1
gjkxj k

; k ¼ 1; . . . ;K;

Im=2ðk̂kÞ

Im=2� 1ðk̂kÞ
¼
k
Pn

j¼1
gjkxj k

k
Pn

j¼1
gjk k

; k ¼ 1; . . . ;K ð1Þ

p̂k ¼
1

n

Xn

j¼1

gjk; k ¼ 1; . . . ;K þ 1:

This is the M step of the EM algorithm. Note that we do not update the noise cluster param-

eters, μK+1 and κK+1, but we do update the proportion of observations which are assigned to

the noise cluster, p̂Kþ1. Now, (1) does not give a closed form solution for computing k̂k. How-

ever, a number of methods for approximating these solutions have been proposed which allow

the concentration parameter estimates to be easily updated. Banerjee et al. [12] proposed the

approximation

k̂k ¼
�rkm � �r3

k

1 � �r2
k
;

where

�rk ¼
k
Pn

j¼1
gjkxj k

k
Pn

j¼1
gjk k

:

Hornik and Grün [15] summarise several other approximation methods and provide soft-

ware for implementing each of them. Note that, in practice, values of �r very close to 1 can

cause numerical problems (due to the fact that this relates to the case where the observations

are almost all at the same point, and the precision is thus close to infinity). To get around this,

we cap the value that k̂k can take at 500.

The EM algorithm can be started at either the E step, given an initial estimate of Θ, or at the

M step, given initial values of the γjk. The algorithm is iterated until the absolute value of the

difference between successive values of lKðΘ̂Þ is less than some predefined convergence thresh-

old. In our simulation study and applied example, we used 10−4 as the convergence threshold.

Initialisation of the algorithm. In order to initialise the algorithm, we must first set an

initial proportion of observations which belong in the noise cluster, which we will denote by
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0 < p̂
ð0Þ

Kþ1 < 1. We then perform the spherical k-means procedure [14], which clusters observa-

tions based on similarity of their direction from the origin, analogous to the k-means proce-

dure which clusters observations based on Euclidean distance. We take as initial values, for

i = 1, . . ., n,

gik ¼

(
1 � p̂

ð0Þ

Kþ1; if observation i is assigned to cluster k

0; otherwise
; k ¼ 1; . . . ;K

giðKþ1Þ ¼ p̂
ð0Þ

Kþ1:

We then begin the EM algorithm at the M step. Note that the spherical k-means procedure

relies on an initial random set of cluster means, and thus its results are sensitive to this rando-

misation. There is a possibility that certain initial values from the procedure will result in the

EM algorithm converging to a local, rather than global, maximum. We therefore run the algo-

rithm a number of times in practice, each time beginning with different initial values. We take

as final parameter estimates those which result in the EM algorithm converging to the greatest

maximum. In our simulation study and applied example, we ran the algorithm with 5 different

initialisations.

Choosing the number of clusters. In practice, we will not know the number of clusters to

fit to the data. The number of clusters can be determined using an information criterion, for

example BIC [44, 49]. For successive values of K, we perform the algorithm above and com-

pute

�mðKÞ ¼ � 2lKðŶÞ þ rmðKÞ log ðnÞ;

where rm(K) = (m + 2)K + m is the number of parameters estimated. We continue until ϕm(K)

increases for successive iterations. The final number of clusters is then taken to be arg minK

ϕm(K).

Assigning cluster membership. Output from the procedure for fitting the mixture model

is a set of probabilities for each observation belonging to each cluster (that is, the γik parame-

ters). The simplest approach for assigning cluster membership is to assign each observation to

the cluster for which it has the greatest probability of membership (that is, ẑ i ¼ arg maxk gik).
This is the approach used in both the simulation study and the applied example presented in

this paper.

Mixture model approaches to clustering allow for flexibility in the way that cluster member-

ship is assigned. For increased confidence in the clusters, a threshold could be set such that an

observation is only assigned to a cluster if the probability of membership is greater than a cer-

tain level. Those which do not meet the threshold for any cluster remain unassigned. Finally,

soft clustering is possible, whereby observations are assigned to any cluster for which its proba-

bility of membership is greater than a certain level. Under the soft clustering approach, an

observation may be assigned to more than one cluster.

Genetic variant-trait association covariance matrix

For variant j, the (k, l)th element of Ŝ j is given by

seðb̂ jkÞseðb̂ jlÞcorðb̂ jk; b̂ jlÞ;

where seðb̂ jkÞ is the standard error of b̂ jk. If the genetic variant-trait associations are estimated

in separate, non-overlapping, samples, then corðb̂ jk; b̂ jlÞ ¼ 0 and Ŝ j can be taken to be the
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diagonal matrix with kth diagonal entry equal to se2ðb̂ jkÞ. If the traits are estimated in the same

sample, then the off-diagonal entries of Ŝ j will be non-zero. Although the correlation between

b̂ jk and b̂ jl is not easily estimated, provided the jth genetic variant explains only a small propor-

tion of the variance in the kth and lth traits, then corðb̂ jk; b̂ jlÞ � corðXk;XlÞ, where Xk and Xl

are the kth and lth traits, respectively [50]. We can therefore compute the (k, l)th entry of Ŝ j,

i 6¼ j, by

seðb̂ jkÞseðb̂ jlÞccorðXk;XlÞ;

where ccorðXk;XlÞ is an estimate of the correlation between Xk and Xl. As a result of this, if the

traits are assumed to be independent, then the off-diagonal entries of Ŝ j can be approximated

by zeros, and the covariance matrix taken to be diagonal as in the separate samples case.

Simulation study

We simulated n = 100 independent genetic variants for N = 20000 individuals, denoted Gij for

individual i and genetic variant j, and m traits, denoted Xil for individual i and trait l, from the

following model

maf j � Uniformð0:01; 0:5Þ

Gij � Binomialð2;maf jÞ

Ui; εi1; . . . ; εim � Nð0; 1Þ; independently

Lik ¼
X

j2nðkÞ

bjkGij

Xil ¼
XK

k¼1

dklLik þ
X

j2nðKþ1Þ

ajGij þ gUi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
εil;

for i = 1, . . ., N and l = 1, . . ., m. The variables L1, . . ., LK are latent factors which represent K
different mechanisms by which the genetic variants act on the observed traits X1, . . ., Xm, with

n(k) indexing the variants which are associated with Lk. The variants indexed by n(K+1) are

those in the noise cluster. These variants act directly on the traits and do not associate with any

of the latent factors. The common variable Ui induces correlation between the traits, with the

amount of correlation determined by γ. The relationship between the genetic variants in the

kth cluster and the other variables are illustrated in the directed acyclic graph in Fig G in S1

Text. The number of traits was either m = 2 or 9 and we set γ = 0, 0.4 or 0.8. The first 80 vari-

ants were split into 1, 2 or 4 clusters, with the remaining 20 variants considered to be noise.

For the k = 2 scenarios, each cluster contained 40 variants. For the k = 4 scenarios, the cluster

sizes were 30, 20, 20 and 10.

We generated the βjk values such that most of the genetic variants were weakly associated

with the traits, while a relatively small number of them were associated more strongly. For

each k, and for each j 2 n(k), with probability 1 − ϕ, ϕ* Uniform(0.05, 0.2), βjk was generated

from the Uniform(0.03, 0.06) distribution (which results in a p-value, on average, below the

genome-wide significance level), and with probability ϕ from the N(0.1, 0.022) distribution.

For j =2 n(k), βjk was set to zero. The αj values were generated from the Uniform(−0.1, 0.1) dis-

tribution, j 2 n(K+1), and set to zero otherwise.
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When m = 2, δkl was set to the (k, l)th element of the matrices

1 1ð Þ;
1 1

1 � 1

 !

;

1 1

1 � 1

� 1 1

� 1 � 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

for the 1, 2 and 4 cluster scenarios, respectively. When m = 9, δkl was set to the (k, l)th element

of the matrices

1 1 1 1 1 1 1 1 1ð Þ;

1 1 1 0:5 0:5 0:5 0:5 0:5 0:5

1 � 1 � 1 0:5 0:5 0:5 0:5 � 0:5 � 0:5

 !

;

1 1 1 0:5 0:5 0:5 0:5 0:5 0:5

1 1 1 1 1 0 0 0 0

� 1 � 1 � 1 0:5 0:5 0:5 0:5 � 0:5 � 0:5

� 1 � 1 � 1 � 1 � 1 0 0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

for the 1, 2 and 4 cluster scenarios, respectively. These values determine the direction and rela-

tive magnitude of association between the genetic variants in each cluster with the traits. For

example, in the m = 2, K = 2 scenario, one cluster contains variants which are positively associ-

ated with both traits, whereas the other cluster contains variants that are positively associated

with trait 1 and negatively associated with trait 2. The parametrisation of the αj, βjk and δkl
parameters are such that the proportion of variance of each trait explained by the genetic vari-

ants was approximately 5–10%.

The estimated genetic variant-trait associations were computed using simple linear regres-

sion of each trait on each genetic variant in turn. The resulting datasets were clustered using

NAvMix with an initial proportion of genetic variants in the noise cluster of 0.05, and using

mclust with an initial noise cluster of of 5 randomly selected genetic variants.

A supplementary simulation study was also performed where the sample size differed for

each trait. Each sample size was randomly chosen to be between 10000 and 50000. The results

of this supplementary simulation study is presented in S1 Text.

Clustering BMI associated genetic variants

Genetic variant association estimates with BMI were taken from the GWAS of Pulit et al. [19].

Variants with p-value < 5 × 10−8 were pruned using the TwoSampleMR package in R [51]

with r2 = 0.001.

Genetic variant association estimates with body fat percentage, SBP, triglycerides and HDL

were taken from results from the Neale Lab which are based on the UK Biobank dataset

(http://www.nealelab.is/uk-biobank/). Genetic variant associations for educational attainment

were taken from the GWAS of Okbay et al. [52]; for physical activity, the GWAS of Doherty

et al. [53]; for lifetime smoking score, the GWAS of Wootton et al. [54]; for WHR the GWAS

of Pulit et al. [19]; and for type 2 diabetes, the GWAS of Mahajan et al. [6]. Note that for the

educational attainment dataset, one BMI associated genetic variant (rs10761785) was replaced
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with a proxy (rs2163188) with r2 = 0.9842 (identified using PhenoScanner [55, 56]). All studies

used were performed on samples of individuals of European ancestry or predominantly Euro-

pean ancestry. All genetic variant trait-association estimates were orientated with respect to

the alleles such that the associations with BMI were positive. Table E in S1 Text shows the sam-

ple sizes for each study as well as the number of the BMI associated genetic variants which

associate with each trait at the genome-wide significance level.

Clustering was performed using NAvMix with an initial proportion of genetic variants in

the noise cluster of 0.05, and 5 separate initialisations of the algorithm was used. The probabil-

ity of membership of each genetic variant to each cluster produced by the algorithm is shown

in S1 Table.

Mendelian randomization analyses

A genetic variant is a valid instrumental variable for a Mendelian randomization analysis if it

is: associated with the risk factor; independent of any confounders of the risk factor-outcome

relationship; and has no causal pathway to the outcome other than via the risk factor [57].

Under the two-sample framework, the genetic variant-risk factor and genetic variant-outcome

associations are estimated in separate samples [24]. Under the assumption that all variants in

the analysis are valid instruments, MR-IVW produces a statistically consistent estimator of the

causal effect and a test for the causal null hypothesis [25]. The three methods used for sensitiv-

ity analyses were chosen since they each produce a valid estimate of the causal effect of BMI on

CHD under different assumptions [58]: MR-Median (a majority of the genetic variants are

valid instrument); the Contamination Mixture method (a plurality of the genetic variants are

valid instruments); and the MR-PRESSO method (the InSIDE assumption is met). The inter-

cept test from the MR-Egger method was used to test for the presence of unmeasured direc-

tional pleiotropy. Analyses were carried out using the MendelianRandomization [59, 60] and

MRPRESSO [28] packages.

Genetic variant association estimates with CHD were taken from the CARDIoGRAM-

plusC4D dataset of Nikpay et al. [61] and accessed using PhenoScanner [55, 56]. Genetic vari-

ant associations with CRP were taken from results from the Neale Lab which are based on the

UK Biobank dataset (http://www.nealelab.is/uk-biobank/). Genetic variant association esti-

mates with the 41 cytokines and growth factors were taken from the data supporting Ahola-

Olli et al. [31] and Kalaoja et al. [32]. Table F in S1 Text gives a list of the BMI associated

genetic variants which were not available in each of the outcome datasets and were therefore

excluded from the relevant Mendelian randomization analyses.

Gene mapping and gene set analysis

The 539 BMI associated genetic variants were mapped to genes using the SNP2GENE function

in FUMA [30]. Summary statistics for each cluster of variants were uploaded separately, and

were identified as pre-defined lead SNPs. Both positional and eQTL mapping was performed.

For the eQTL mapping, tissue types were selected as all those from the following sources:

EQTL catalogue; PsychENCODE; van der Wijst et al. scRNA eQTLs; DICE; eQTLGen; Blood

eQTLs; MuTHER; xQTLServer; ComminMind Consortium; BRAINEAC; and GTEx v8. All

other default settings were used. Gene set analysis was performed using the GENE2FUNC

function. The results presented in S2 Table include all canonical pathways from MsigDB, as

well as gene ontology processes, which associate with the mapped genes using hypergeometric

tests (with multiple test correction applied per cluster).
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