
ar
X

iv
:1

60
3.

09
59

7v
6

 [c
s.

P
L]

 5
 A

ug
 2

01
6

Flow- and Context-Sensitive Points-to Analysis using Gene ralized
Points-to Graphs

Pritam M. Gharat and Uday P. Khedker, Indian Institute of Technology Bombay
Alan Mycroft, University of Cambridge

Computing precise (fully flow-sensitive and context-sensitive) and exhaustive (as against demand driven)

points-to information is known to be computationally expensive. Therefore many practical tools approximate
the points-to information trading precision for efficiency. This often has adverse impact on computationally
intensive analyses such as model checking. Past explorations in top-down approaches of fully flow- and
context-sensitive points-to analysis (FCPA) have not scaled. We explore the alternative of bottom-up in-
terprocedural approach which constructs summary flow functions for procedures to represent the effect of
their calls. This approach has been effectively used for many analyses. However, this approach seems com-
putationally expensive for FCPA which requires modelling unknown locations accessed indirectly through
pointers. Such accesses are commonly handled by using placeholders to explicate unknown locations or by
using multiple call-specific summary flow functions.

We generalize the concept of points-to relations by using the counts of indirection levels leaving the un-
known locations implicit. This allows us to create summary flow functions in the form of generalized points-to

graphs (GPGs) without the need of placeholders. By design, GPGs represent both memory (in terms of
classical points-to facts) and memory transformers (in terms of generalized points-to facts). We perform
FCPA by progressively reducing generalized points-to facts to classical points-to facts. GPGs distinguish
between may and must pointer updates thereby facilitating strong updates within calling contexts.

The size of GPG for a procedure is linearly bounded by the number of variables and is independent of the
number of statements in the procedure. Empirical measurements on SPEC benchmarks show that GPGs
are indeed compact in spite of large procedure sizes. This allows us to scale FCPA to 158 kLoC using GPGs
(compared to 35 kLoC reported by liveness-based FCPA). At a practical level, GPGs hold a promise of
efficiency and scalability for FCPA without compromising precision. At a more general level, GPGs provide
a convenient abstraction of memory in presence of pointers. Static analyses that are influenced by pointers
may be able to use GPGs by combining them with their original abstractions.

CCS Concepts:•Theory of computation → Program analysis; •Software and its engineering → Imperative languages;
Compilers; Software verification and validation;

1. INTRODUCTION

Points-to analysis discovers information about indirect accesses in a program and its precision influ-
ences the precision and scalability of other program analyses significantly. Computationally inten-
sive analyses such as model checking are ineffective on programs containing pointers partly because
of imprecision of points-to analyses [1; 2; 3; 8; 13; 14].

We focus on exhaustive as against demand-driven [6; 11; 30] points-to analysis. A demand-driven
points-to analysis computes points-to information that isrelevant to a query raised by a client anal-
ysis; for a different query, the analysis needs to be repeated. An exhaustive analysis, on the other
hand, computes all points-to information which can be queried later by a client analysis; multi-
ple queries do not require points-to analysis to be repeated. For precision of points-to information,
we are interested in full flow- and context-sensitive points-to analysis. A flow-sensitive analysis
respects the control flow and computes separate data flow information at each program point. It pro-
vides more precise results but could be inefficient at the interprocedural level. A context-sensitive
analysis distinguishes between different calling contexts of procedures and restricts the analysis to
interprocedurally valid control flow paths (i.e. control flow paths from program entry to program
exit in which every return from a procedure is matched with a call to the procedure such that all
call-return matchings are properly nested). A fully context-sensitive analysis does not approximate
calling contexts by limiting the call chain lengths even in presence of recursion. Both flow- and
context-sensitivity bring in precision and we aim to achieve it without compromising on efficiency.

http://arxiv.org/abs/1603.09597v6

2 P. Gharat et al.

int a, b, c, d;

01 g()
02 {
03 c = a*b;
04 f(); /* call 1 */
05 a = c*d;
06 f(); /* call 2 */
07 }

08 f()
09 {
10 a = b*c;
11 }

(a.1) Context independent representation of context-
sensitive summary flow function of proceduref

f(X) = X · 011 + 010

(a.2) Context dependent representation of context-
sensitive summary flow function of proceduref

f = {100 7→ 010, 011 7→ 011}

(b) Context-insensitive data flow information as a
procedure summary of proceduref

f = 010

Fig. 1. Illustrating different kinds of procedure summaries for available expressions analysis. The set{a∗b, b∗c, c∗d} is
represented by the bit vector 111.

The top-down approach to context-sensitive analysis propagates the information from callers to
callees [36] effectively traversing the call graph top down. In the process, it analyzes a procedure
each time a new data flow value reaches a procedure from some call. Several popular approaches
fall in this category: call strings method [29], its value-based variants [16; 24] and the tabulation
based functional method [26; 29]. By contrast, the bottom-up approaches [7; 10; 19; 27; 29; 31;
32; 33; 34; 35; 36] avoid analyzing a procedure multiple times by constructing itssummary flow
functionwhich is used to incorporate the effect of calls to the procedure. Effectively, this approach
traverses the call graph bottom up.

It is prudent to distinguish between three kinds of summaries of a procedure that can be created
for minimizing the number of times a procedure is re-analyzed:

(a.1) a bottom-up parameterized summary flow function whichis context independent (context
dependence is captured in the parameters),

(a.2) a top down enumeration of summary flow function in the form of input-output pairs for the
input values reaching a procedure, and

(b) a bottom-up parameterless (and hence context-insensitive) summary information.

EXAMPLE 1.1. Figure 1 illustrates the three different kinds of summaries for available expressions
analysis. Proceduref kills the availability of expressiona∗b, generates the availability ofb∗c, and
is transparent to the availability ofc∗d.

• Summary (a.1) is a parameterized flow function, summary (a.2) is an enumerated flow function,
whereas summary (b) is a data flow value (i.e. it is a summary information as against a summary
flow function) representing the effect of all calls of proceduref .

• Summaries (a.1) and (a.2) are context-sensitive (because they compute distinct values for differ-
ent calling contexts off) whereas summary (b) is context-insensitive (because it represents the
same value regardless of the calling context off).

• Summaries (a.1) and (b) are context independent (because they can be constructed without re-
quiring any information from the calling contexts off) whereas summary (a.2) is context depen-
dent (because it requires information from the calling contexts off).

✷

Note that context independence (in (a.1) above), achieves context-sensitivity through parameter-
ization and should not be confused with context-insensitivity (in (b) above).

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 3

int **x, **y;
int *z, *a, *b;
int d, e, u, v, w;
void f();
void g();

01 void f()
02 { x = &a;
03 z = &w;
04 g();
05 *x = z;
06 }

07 void g()
08 { a = &e;
09 if (...) {
10 *x = z;
11 z = &u;
12 } else {
13 y = &b;
14 z = &v;
15 }
16 x = &b;
17 *y = &d;
18 }

Fig. 2. A motivating example which is used as a running example through the paper. Proceduresg andf are used for
illustrating intraprocedural and interprocedural GPG construction respectively. All variables are global.

We focus on summaries of the first kind (a.1) because we would like to avoid re-analysis and seek
context-sensitivity. We formulate our analysis on a language modelled on C.

Our Key Idea, Approach, and an Outline of the Paper

Section 2 describes our motivation and contributions by contextualizing our work in the perspective
of the past work on bottom-up summary flow functions for points-to analysis. As explained in Sec-
tion 3, we essentially generalize the concept of points-to relations by using the counts of indirection
levels leaving the indirectly accessed unknown locations implicit. This allows us to create summary
flow functions in the form ofgeneralized points-to graphs(GPGs) whose size is linearly bounded
by the number of variables. By design, GPGs can represent both memory (in terms of classical
points-to facts) and memory transformers (in terms of generalized points-to facts).

EXAMPLE 1.2. Consider procedureg of Figure 2 whose GPG is shown in Figure 4(c). The edges
in GPGs track indirection levels: indirection level 1 in thelabel “1,0” indicates that the source is

assigned the address (indicated by indirection level 0) of the target. Edgea
1,0
−−→e is created for

line 8. The indirection level 2 in edgex
2,1
−−→z for line 10 indicates that the pointees ofx are being

defined; sincez is read, its indirection level is 1. The combined effect of lines 13 (edgey
1,0
−−→b) and

17 (edgey
2,0
−−→d) results in the edgeb

1,0
−−→d. However edgey

2,0
−−→d is also retained because there is

no information about the pointees ofy along the other path reaching line 17.✷

The generalized points-to facts are composed to create new generalized points-to facts with
smaller indirection levels (Section 4) whenever possible thereby converting them progressively to
classical points-to facts. This is performed in two phases:construction of GPGs, and use of GPGs to
compute points-to information. GPGs are constructed flow-sensitively by processing pointer assign-
ments along the control flow of a procedure and collecting generalized points-to facts. (Section 5).

Function calls are handled context-sensitively by incorporating the effect of the GPG of a callee
into the GPG of the caller (Section 6). Loops and recursion are handled using a fixed point com-
putation. GPGs also distinguish betweenmay andmust pointer updates thereby facilitating strong
updates.

Section 7 shows how GPGs are used for computing classical points-to facts. Section 8 defines
formal semantics of GPGs and provides a proof of soundness ofthe proposed points-to analysis
using GPGs. Section 9 describes the handling of advanced features of the language such as function
pointers, structures, unions, heap, arrays and pointer arithmetic. Section 10 presents the empirical
measurements. Section 11 describes the related work. Section 12 concludes the paper.

4 P. Gharat et al.

Pointer Statement Flow Functionf ∈ F = {ad, cp, st, ld }, Placeholders
f : 2PTG 7→ 2PTG in X

Address x = &y adxy(X) = X − {(x, l1) | l1 ∈ L} ∪
{(x, y)}

∅

Copy x = y cpxy(X) = X − {(x, l1) | l1 ∈ L} ∪
{(x, φ1) | (y, φ1) ∈ X}

φ1

Store ∗x = y stxy(X) = X − {(φ1, l1) | (x, φ1) ∈ X, l1 ∈ L} ∪
{(φ1, φ2) | {(x, φ1), (y, φ2)} ⊆ X}

φ1, φ2

Load x = ∗y ldxy(X) = X − {(x, l1) | (x, l1) ∈ L} ∪
{(x, φ2) | {(y, φ1), (φ1, φ2)} ⊆ X}

φ1, φ2

Fig. 3. Points-to analysis flow functions for basic pointer assignments.

The core ideas of this work were presented in [25]. Apart fromproviding better explanations of
the ideas, this paper covers the following additional aspects of this work:

• Many more details of edge composition such as(a) descriptions ofST andTT compositions
(Section 4),(b) derivations of usefulness criteria depending upon the typeof compositions (Sec-
tion 4.2), and(c) comparison of edge composition with matrix multiplication(Section 4.4) and
dynamic transitive closure (Section 5.1.4).

• Soundness proofs for points-to analysis using GPGs by defining the concepts of a concrete mem-
ory (created along a single control flow path reaching a program point) and an abstract memory
(created along all control flow paths reaching a program point) (Section 8).

• Handling of advanced features such as function pointers, structures, unions, heap memory, ar-
rays, pointer arithmetic, etc. (Section 9).

2. MOTIVATION AND CONTRIBUTIONS

This section highlights the issues in constructing bottom-up summary flow functions for points-
to analysis. We also provide a brief overview of the past approaches along with their limitations
and describe our contributions by showing how our representation of summary flow functions for
points-to analysis overcomes these limitations.

2.1. Issues in Constructing Summary Flow Functions for Poin ts-to Analysis

Construction of bottom-up parameterized summary flow functions requires

• composingstatement-level flow functions to summarize the effect of a sequence of statements
appearing in a control flow path, and

• mergingthe composed flow functions to represent multiple control flow paths reaching a join
point in the control flow graph.

An important requirement of such a summary flow function is that it should be compact and that
its size should be independent of the size of the procedure itrepresents. This seems hard because
the flow functions need to handle indirectly accessed unknown pointees. When these pointees are
defined in caller procedures, their information is not available in a bottom-up construction; infor-
mation reaching a procedure from its callees is available during bottom-up construction but not the
information reaching from its callers. The presence of function pointers passed as parameters pose
an additional challenge for bottom-up construction for a similar reason.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 5

xdy

b

φ1 φ2

z

u

v
a

e

/////

/////

(a)x andy aremay aliased

xdy

b

φ1 φ2

φ3

z

u

v
a

e

/////

/////

(b) x andy are not aliased

xdy

b

z

u

v
a

e1,0

1,0
1,0

1,0

1,0

2,1

2,0
1,0

(c) GPG

Fig. 4. PTFs/GPG for procedureg of Figure 2 for points-to analysis using placeholdersφi. Edges deleted due to flow-
sensitivity are struck off. Our proposed representation GPG with no explicit placeholders.

2.2. Modelling Access of Unknown Pointees

The main difficulty in reducing meets (i.e. merges) and compositions of points-to analysis flow
functions is modelling the accesses of pointees when they are not known. For the statement se-
quencex = ∗y; z = ∗x if the pointee information ofy is not available, it is difficult to describe the
effect of these statements on points-to relations symbolically. A common solution for this is to use
placeholders1 for indirect accesses. We explain the use of placeholders below and argue that they
prohibit compact representation of summary flow functions because

• the resulting representation of flow functions is not closedunder composition, and
• for flow-sensitive points-to analysis, a separate placeholder may be required for different occur-

rences of the same variable in different statements.

Let L andP ⊆ L denote the sets of locations and pointers in a program. Then,the points-to in-
formation is subset ofPTG = P × L. For a given statement, a flow function for points-to analysis
computes points-to information after the statement by incorporating its effect on the points-to in-
formation that holds before the statement. It has the formf : 2PTG → 2PTG. Figure 3 enumerates
the space of flow functions for basic pointer assignments.2 The flow functions are named in terms
of the variables appearing in the assignment statement and are parameterized on the input points-to
informationX which may depend on the calling context. This is described interms of placeholders
in X denoted byφ1 andφ2 which are placeholders for the information inX . It is easy to see that
the function spaceF = {ad, cp, st, ld } is not closed under composition.

EXAMPLE 2.1. Let f represent the composition of flow functions for the statement sequence
x = ∗y; z = ∗x. Then

f(X) = ldzx(ldxy(X)) = (X − ({(x, l1) | (x, l1) ∈ L} ∪ {(z, l1) | (z, l1) ∈ L}))
∪ {(x, φ2) | {(y, φ1), (φ1, φ2)} ⊆ X}
∪ {(z, φ3) | {(y, φ1), (φ1, φ2), (φ2, φ3)} ⊆ X}

This has three placeholders and cannot be reduced to any of the four flow functions in the set.✷

EXAMPLE 2.2. Consider the code snippet on the right for constructinga flow-sensitive summary
s1 : x = ∗y;
s2 : ∗z = q;
s3 : p = ∗y;

flow function. Assume that we useφ1 as the placeholder to denote the pointees
of y andφ2 as the placeholder to denote the pointees of pointees ofy. We cannot
guarantee that the pointees ofy or pointees of pointees ofy remains same ins1
ands3 because statements2 could have a side effect of changing either one of them depending upon
the aliases present in the calling context. Under the C model, only one of the first two combinations
of aliases is possible. Assuming thatφ3 is the placeholder forq,

1Placeholders are referred to as external variables in [19] and as extended parameters in [33]. They are parameters of the
summary flow function (and not of the procedure for which the summary flow function is constructed).
2Other pointer assignments involving structures and heap are handled as described in Section 9.2.

6 P. Gharat et al.

• When∗z is aliased toy before statements1, y is redefined and hence, the placeholder for pointees
of y in s3 will now beφ3 otherwise it will beφ1.

• Whenz is aliased toy before statements1, pointees ofy i.e., φ1 is redefined and hence, the
placeholder for pointees of pointees ofy in s3 will be represented byφ3 otherwise it will beφ2.

• Whenz andy are not related, neithery nor pointees ofy are redefined and hence, the place-
holders for pointees ofy and pointees of pointees ofy for statements3 will be same as that of
statements1.

Thus the decision to reuse the placeholder for a flow-sensitive summary flow function depends on
the aliases present in the calling contexts. It is importantto observe that the combination of aliasing
patterns involving other variables are ignored. Only the aliases that are likely to affect the accesses
because of a redefinition need to be considered when summary flow functions are constructed.

This difficulty can be overcome by avoiding the kill due tos2 and usingφ1 for pointees ofy and
φ2 for pointees of pointees ofy in boths1 ands3. If z is aliased toy or ∗z is aliased toy before
statements1 then bothx andp will point to bothφ2 andφ3 which is imprecise. Effectively, the
summary flow function becomes flow-insensitive affecting the precision of the analysis.

Thus, introducing placeholders for the unknown pointees isnot sufficient but the knowledge of
aliases in the calling context is also equally important forintroducing the placeholders.✷

2.3. An Overview of Past Approaches

In this section, we explain two approaches that construct the summary flow functions for points-
to analysis. Other related investigations have been reviewed in Section 11; the description in this
section serves as a background to our contributions.

• Using aliasing patterns to construct a collection of partial transfer functions (PTFs).
This approach is “context-based” as the information about the aliases present in the calling con-
texts is used for summary flow function construction. A different summary flow function is
constructed for every combination of aliases found in the calling contexts using the placeholders
for representing the unknown pointees. This requires creation of multiple versions of a summary
flow function which is represented by a collection ofpartial transfer functions(PTFs). A PTF
is constructed for the aliases that could occur for a given list of parameters and global variables
accessed in a procedure [33; 36].

EXAMPLE 2.3. For procedureg of the program in Figure 2, three placeholdersφ1, φ2, andφ3

have been used in the PTFs shown in Figures 4(a) and (b). The possibility thatx andy may or
may not be aliased gives rise to two PTFs.✷

The main limitation of this approach is that the number of PTFs could increase combinatorially
with the number of dereferences of globals and parameters.

EXAMPLE 2.4. For four dereferences, we may need 15 PTFs. Consider four pointersa, b, c, d.
Either none of them is aliased (1 possibility); only two of them are aliased:(a, b), (a, c), (a, d),
(b, c), (b, d), or (c, d) (6 possibilities); only three of them are aliased:(a, b, c), (a, b, d), (a, c, d),
or (b, c, d) (total 4 possibilities); all four of them are aliased:(a, b, c, d) (1 possibility); groups of
aliases of two each:{(a, b), (c, d)}, {(a, c), (b, d)}, or {(a, d), (b, c)} (3 possibilities). Thus the
total number of PTFs is1 + 6 + 4 + 1 + 3 = 15. ✷

PTFs that do not correspond to actual aliasing patterns occurring in a program are irrelevant.
They can be excluded by a preprocessing to discover the combination of aliases present in a
program so that PTF construction can be restricted to the discovered combinations [33; 36]. The
number of PTFs could still be large.
Although this approach does not introduce any imprecision,our measurements show that the
number of aliasing patterns occurring in practical programs is very large which limits the useful-
ness of this approach.

• Single summary flow function without using aliasing patterns.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 7

This approach does not make any assumption about aliases in the calling context and constructs
a single summary flow function for a procedure. Hence, it is “context independent”. Owing to
the absence of alias information in the calling contexts, this approach uses a new placeholderφ4

for pointee ofy and alsoφ5 for pointee of pointee ofy in s3 in Example 2.2. Thus, different
placeholders for different accesses of the same variable are required thereby increasing the num-
ber of placeholders and hence the size of summary flow function. In a degenerate case, the size
of summary flow function may be proportional to the number of statements represented by the
summary flow function. This is undesirable because it may be better not to create summary flow
functions and retain the original statements whose flow functions are applied one after the other.
Separate placeholders for different occurrences of a variable can be avoided if points-to infor-
mation is not killed by the summary flow functions [19; 31; 32]. Another alternative is to use
flow-insensitive summary flow functions [7]. However, both these cases introduces imprecision.

2.4. Our Contributions

A fundamental problem with placeholders is that they explicate unknown locations by naming them,

resulting in either a large number of placeholders (e.g., a GPG edge·
i,j
−→· would requirei+ j − 1

placeholders) or multiple summary flow functions for different aliasing patterns that exist in the
calling contexts. We overcome this difficulty by representing the summary flow function of a pro-
cedure in the form of a graph calledGeneralized Points-to Graph(GPG) and use it for flow-and
context-sensitive points-to analysis.

GPGs leave pointees whose information is not available during summary construction, implicit.
Our representation is characterized by the following:

• We do not need placeholders (unlike [19; 31; 32; 33; 36]. Thisis possible because we encode
indirection levels as edge labels by replacing a sequence ofindirection operators “∗” by a num-
ber.3

• We do not require any assumptions/information about aliasing patterns in the calling contexts
(unlike [33; 36]) and construct a single summary flow function per procedure (unlike [33; 36])
without introducing the imprecision introduced by [19; 31;32].

• The size of our summary flow function for a procedure does not depend on the number of
statements in the procedure and is bounded by the number of global variables, formal parameters
of the procedure, and its return value variable (unlike [19;31; 32].

• Updates can be performed in the calling contexts (unlike [7;19; 31; 32]).

This facilitates the scalability of fully flow- and context-sensitive exhaustive points-to analysis. We
construct context independent summary flow functions and context-sensitivity is achieved through
parameterization in terms of indirection levels.

2.5. Our Language and Scope

We have described our formulations for a language modelled on C and have organized the paper
based on the features included in the language. For simplicity of exposition, we divide the language
features into three levels. Our description of our analysisbegins with Level 1 and is progressively
extended to the Level 3.

3This is somewhat similar to choosing a decimal representation for integers over Peaono’s representation or replacing a
unary language by a binary or n-nary language [12].

8 P. Gharat et al.

Feature Level Sections1 2 3
Pointers to scalars X 3, 4, 5
Function Calls and Recursion X 6
Function Pointers X 9
Pointers to Structures, Unions, and Heap X 9
Pointer Arithmetic, Pointers to Arrays, Address Escaping Locals X 9

For the first three features, the information flows from top tobottom in the call graph (i.e., from
callers to callees) and hence are naturally handled by the top-down approaches of interprocedural
analysis. However, a special attention is required for representing this information in the bottom-
up approaches. In case of recursion, the presence of cycle inthe call graph requires a fixed point
computation regardless of the approach used.

Levels 1 and 2 handle the core features of the language whereas Level 3 handles the advanced
features.4 A preliminary version of this paper restricted to Levels 1 and 2 appeared as [25].

3. GENERALIZED POINTS-TO GRAPHS (GPGS)

This section defines generalized points-to graph (GPG) which represents memory manipulations
without needing placeholders for unknown locations. We define the basic concepts assuming scalars
and pointers in the stack and static memory; see Section 9 forextensions to handle structures, heap,
function pointers, etc.

3.1. Memory and Memory Transformer

We assume a control flow graph representation containing 3-address code statements. Program
pointst, u, v represent the points just before the execution of statements. The successors and pre-
decessors of a program point are denoted bysucc andpred; succ∗ pred∗ denote their reflexive
transitive closures. Acontrol flow pathis a finite sequence of (possibly repeating) program points
q0, q1, . . . , qm such thatqi+1 ∈ succ(qi).

Recall thatL and P ⊆ L denote the sets of locations and pointers respectively (Section 2.2).
Every location has a content and an address. Thememoryat a program point is a relation
M ⊆ P × (L ∪ {?}) where “?” denotes an undefined location. We viewM as a graph withL ∪ {?}
as the set of nodes. An edgex → y in M indicates thatx ∈ P contains the address ofy ∈ L.
The memory associated with a program pointu is denoted byMu ; sinceu could appear in multi-
ple control flow paths and could also repeat in a given controlflow path,Mu denotes the memory
associated with all occurrences ofu.

Definition 1: Memory Transformer ∆

∆(u, v) := B(u, v) ⊓
l

t ∈ succ∗(u)
v ∈ succ(t)

δ(t , v) ◦∆(u, t)

B(u, v) :=

∆id v = u

δ(u, v) v ∈ succ(u)

∅ otherwise

The pointees of a set of pointersX ⊆ P in M are computed by the relation application
M X = {y | (x, y) ∈ M,x ∈ X}. Let M i denote a composition of degreei. Then,M i{x} dis-
covers theith pointees ofx which involvesi transitive reads fromx : first i − 1 addresses are read
followed by the content of the last address. For composability ofM , we extend its domain toL ∪ {?}
by inclusion map. By definition,M0{x} = {x}.

4Since our language is modelled after C, statements such asx = ∗x are prohibited by typing rules, and cycles in points-to
graph exist only in the presence of structures.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 9

Pointer Memory graph afterPointers Pointees GPG Pointers Effect onM after
asgn. the assignment defined edge over-written the assignment

x = &y x y M0{x} M0{y} x
1,0
−−→y M0{x} M1{x} = M0{y}

x = y x y M0{x} M1{y} x
1,1
−−→y M0{x} M1{x} = M1{y}

x = ∗y x y M0{x} M2{y} x
1,2
−−→y M0{x} M1{x} = M2{y}

∗x = y x y M1{x} M1{y} x
2,1
−−→y

M1{x}
or none

M2{x} ⊇ M1{y}

Fig. 5. GPG edges for basic pointer assignments in C. Figure 18 shows GPG edges for structures and heap. In the memory
graph, a double circle indicates a shared location, a thick arrow shows the newly created edge in the memory and unnamed
nodes may represent multiple pointees.

For adjacent program pointsu andv , Mv is computed fromMu by incorporating the effect of the
statement betweenu andv , Mv = (δ(u, v)) (Mu) whereδ(u, v) is astatement-level flow function
representing amemory transformer. Forv ∈ succ∗(u), the effect of the statements appearing in all
control flow paths fromu to v is computed byMv = (∆(u, v)) (Mu) where the memory trans-
former∆(u,v) is asummary flow functionmapping the memory atu to the memory atv . Definition
1 provides an equation to compute∆ without specifying a representation for it.

Since control flow paths may contain cycles,∆ is the maximum fixed point of the equation where
(a) the composition of∆s is denoted by◦ such that(g ◦f) (·) = g (f (·)), (b)∆s are merged using
⊓, (c) B captures the base case, and(d) ∆id is the identity flow function. Henceforth, we use the
term memory transformer for a summary flow function∆. The rest of the paper proposes GPG as a
compact representation for∆. Section 3.2 defines GPG and Section 3.3 defines its lattice.

3.2. Generalized Points-to Graphs for Representing Memory Transformers

The classical memory transformers explicate the unknown locations using placeholders. This is
a low level abstraction close to the memory, defined in terms of classical points-to facts: Given
locationsx, y ∈ L, a classical points-to factx−→y in memoryM asserts thatx holds the address of
y. We propose a higher level abstraction of the memory withoutexplicating the unknown locations.

Definition 2: Generalized Points-to Graph (GPG). Given locationsx, y ∈ L, ageneralized points-

to fact x
i,j
−→y in a given memoryM asserts that every location reached byi − 1 derefer-

ences fromx can hold the address of every location reached byj dereferences fromy. Thus,
M i{x} ⊇ M j{y}. A generalized points-to graph(GPG) is a set of edges representing general-

ized points-to facts. For a GPG edgex
i,j
−→y, the pair(i, j) represents indirection levels and is

called theindlev of the edge (i is theindlev of x, andj is theindlev of y).

Figure 5 illustrates the generalized points-to facts corresponding to the basic pointer assignments
in C. Observe that a classical points-to factx−→y is a special case of the generalized points-to fact

x
i,j
−→y with i = 1 andj = 0; the casei = 0 does not arise.
The generalized points-to facts are more expressive than the classical points-to facts because they

can be composed to create new facts as shown by the example below. Section 4 explains the process
of composing the generalized points-to facts throughedge compositionalong with the conditions
when the facts can and ought to be composed.

EXAMPLE 3.1. Statementss1 and s2 to the right are represented by GPG edgesx
1,0
−−→y and

s1 : x = &y;
s2 : z = x;

z
1,1
−−→x respectively. We can compose the two edges by creating a new edge

z
1,0
−−→y indicating thatz points-toy. Effectively, this converts the generalized

points-to fact fors2 into a classical points-to fact.✷

10 P. Gharat et al.

Basic Concept: A generalized points-to fact represented bya GPG edgee ≡ x
i,j
−→y Sec. 3.2

Edge compositione1 ◦ e2
◦ : E × E → E

Sec. 4

Edge reductione ◦∆
◦ : E ×∆ → 2E

Sec. 5.1

GPG update∆ [X]
[] : ∆× 2E → ∆

Sec. 5.2

GPG composition∆1 ◦∆2

◦ : ∆×∆ → ∆
Sec. 6

Construction of GPG∆

Edge applicationJeKM
J K : E ×M → M

Sec. 7

GPG applicationJ∆KM
J K : ∆×M → M

Sec. 7

Computing points-to
information using GPG∆

Fig. 6. A hierarchy of operations for points-to analysis using GPGs. Each operation is defined in terms of the layers below
it. E denotes the set of GPG edges. By abuse of notation, we useM and∆ also as types to indicate the signatures of the
operations. The operators “◦” and “J K” are overloaded and can be disambiguated using the types of the operands.

Edges in a set are unordered. However, we want a GPG to represent a flow-sensitive memory
transformer which requires the edges to be ordered. We impose this ordering externally which allows
us to view the set of GPG edges as a sequence. A reverse post order traversal over the control flow
graph of a procedure dictates this sequence. It is required only at the interprocedural level when
the effect of a callee is incorporated in its caller. Since a sequence is totally ordered but control
flow is partially ordered, the GPG operations (Section 6) internally relax the total order to ensure
that the edges appearing on different control flow paths do not affect each other. While the visual
presentation of GPGs as graphs is intuitively appealing, itloses the edge-ordering; we annotate
edges with their ordering explicitly when it matters.

A GPG is a uniform representation for a memory transformer aswell as (an abstraction of) mem-
ory. This is analogous to a matrix which can be seen both as a transformer (for a linear translation
in space) and also as an absolute value. A points-to analysisusing GPGs begins with generalized

points-to facts·
i,j
−→· representing memory transformers which are composed to create new general-

ized points-to facts with smallerindlevs thereby progressively reducing them to classical points-to

facts·
1,0
−−→· representing memory.

3.3. The Lattice of GPGs

Definition 3 describes the meet semi-lattice of GPGs. For reasons described later in Section 6, we
need to introduce an artificial⊤ element denoted∆⊤ in the lattice. It is used as the initial value
in the data flow equations for computing GPGs (Definition 5 which instantiates Definition 1 for
GPGs).

Definition 3: Lattice of GPGs

∆ ∈ {∆⊤} ∪ {(N , E) | N ⊆ N, E ⊆ E}
where

N := L ∪ {?}

E :=
{

x
i,j
−→y | x ∈ P, y ∈ N,

0 < i ≤ |N |, 0 ≤ j ≤ |N |
}

∆1 ⊑ ∆2 ⇔ (∆2=∆⊤) ∨ (N1 ⊇ N2 ∧ E1 ⊇ E2)

∆1 ⊓∆2 :=

∆1 ∆2 = ∆⊤

∆2 ∆1 = ∆⊤

(N1 ∪ N2, E1 ∪ E2) otherwise

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 11

Statement GPG
sequence Before composition After composition

x = &y
z = x

z x y
1, 1

n

1, 0

p

z x y
1, 1 1, 0

(1, 1−1+0)

x = &y
∗x = z

z x y
2, 1

n

1, 0

p

z x y
2, 1 1, 0

(2−1+0, 1)

Regardless of the direction of
an edge,i in indlev “ i, j”
represents its source whilej
represents its target.
Balancing theindlevs ofx
(the pivot of composition) in
p andn allows us to joiny
andz to create a reduced
edger = n ◦ p shown by
dashed arrows.

Fig. 7. Examples of edge compositions for points-to analysis.

The sequencing of edges is maintained externally and is explicated where required. This allows
us to treat a GPG (other than∆⊤) as a pair of a set of nodes and a set of edges. The partial order
is a point-wise superset relation applied to the pairs. Similarly, the meet operation is a point-wise
union of the pairs. It is easy to see that the lattice is finite because the number of locationsL is
finite (being restricted to static and stack slots). When we extend GPGs to handle heap memory
(Section 9.2), explicit summarization is required to ensure finiteness. The finiteness of the lattice
and the monotonicity of GPG operations guarantee the convergence of GPG computations on a
fixed point; starting from∆⊤, we compute the maximum fixed point.

For convenience, we treat a GPG as a set of edges leaving the set of nodes implicit; the GPG
nodes can always be inferred from the GPG edges.

3.4. A Hierarchy of GPG Operations

Figure 6 lists the GPG operations based on the concept of the generalized points-to facts. They are
presented in two separate columns according to the two phases of our analysis and each layer is
defined in terms of the layers below it. The operations are defined in the sections listed against them
in Figure 6.

Constructing GPGs. An edge compositione1◦ e2 computes a new edgee3 equivalent toe1
using the points-to information ine2 such that theindlev of e3 is smaller than that ofe1. An
edge reductione1 ◦∆ computes a set of edgesX by composinge1 with the edges in∆. A GPG
update∆1 [X] incorporates the effect of the set of edgesX in ∆1 to compute a new GPG∆2. A
GPG composition∆1 ◦∆2 composes a callee’s GPG∆2 with GPG∆1 at a call point to compute
a new GPG∆3.
Using GPGs for computing points-to information. An edge applicationJeKM computes a
new memoryM ′ by incorporating the effect of the GPG edgee in memoryM . A GPG applica-
tion J∆KM applies the GPG∆ to M and computes a new memoryM ′ using edge application
iteratively.

These operations allow us to build the theme of a GPG being a uniform representation for both mem-
ory and memory transformers. This uniformity of representation leads to the following similarity
in operations:(a) an edge application to a memory (JeKM) is similar to an edge reduction in GPG
(e ◦∆), and(b) GPG application to a memory (J∆KM) is similar to GPG composition (∆1 ◦∆2).

4. EDGE COMPOSITION

This section defines edge composition as a fundamental operation which is used in Section 5 for
constructing GPGs. We begin by introducing edge composition and then explore the concept in its
full glory by describing the types of compositions and characterizing the properties of compositions
such asusefulness, relevance, andconclusiveness. Some of these considerations are governed by
the goal of including the resulting edges in a GPG∆; the discussion on inclusion of edges in GPG
∆ is relegated to Section 5.2.

12 P. Gharat et al.

PossibleSS Compositions PossibleTS Compositions
Statement
sequence

Memory
graph

GPG
edges

Statement
sequence

Memory
graph

GPG
edges

S c
n < S c

p T c
n < S c

p

Ex. ss1
∗ x = &y
x = &z

x

y
ℓp

z
ℓn

p: x
2,0
−−→y

n: x
1,0
−−→z

(irrelevant)

Ex. ts1
∗ x = &y
z = x

x ℓn
y

ℓp

z

p: x
2,0
−−→y

n: z
1,1
−−→x

(notuseful)

S c
n > S c

p (Additionally T c
p ≤ S c

p) T c
n > S c

p (Additionally T c
p ≤ S c

p)

Ex. ss2
x = &z

∗x = &y
x z

ℓp
y

ℓn
p: x

1,0
−−→z

n: x
2,0
−−→y

r : z
1,0
−−→y

Ex. ts2
x = &y
z = ∗x

x

ℓp
y

ℓn

z

p: x
1,0
−−→y

n: z
1,2
−−→x

r : z
1,1
−−→y

S c
n = S c

p T c
n = S c

p (Additionally T c
p ≤ S c

p)

Ex. ss3
∗ x = &y
∗x = &z

x

y
ℓp

z
ℓn

p: x
2,0
−−→y

n: x
2,0
−−→z

(irrelevant)

Ex. ts3
x = &y
z = x

x ℓp
ℓnyz

p: x
1,0
−−→y

n: z
1,1
−−→x

r : z
1,0
−−→y

Fig. 8. Illustrating all exhaustive possibilities ofSS andTS compositions (the pivot isx). Dashed edges are killed. Un-
marked compositions arerelevant anduseful (Section 4.2); since the statements are consecutive, they are alsoconclusive
(Section 4.3) and hencedesirable.

Let a statement-level flow functionδ be represented by an edgen (“new” edge) and consider an
existing edgep ∈ ∆ (“processed” edge). Edgesn andp can be composed (denotedn ◦ p) provided
they have a common node called thepivot of composition. The goal is toreduce(i.e., simplify)
n by using the points-to information fromp. This is achieved by using the pivot as a bridge to
join the remaining two nodes resulting in a reduced edger . This requires theindlevs of the pivot

in both edges to be made the same. For example, given edgesn ≡ z
i,j
−→x andp ≡ x

k,l
−−→y with a

pivot x, if j > k, then the differencej − k can be added to theindlev s of nodes inp, to viewp as

x
j,(l+j−k)
−−−−−−→y. This balances theindlev s ofx in the two edges allowing us to create a reduced edge

r ≡ z
i,(l+j−k)
−−−−−−→y. Although this computes the transitive effect of edges, in general, it cannot be

modelled using multiplication of matrices representing graphs as explained in Section 4.4.

EXAMPLE 4.1. In the first example in Figure 7, theindlev s of pivotx in bothp andn is the same

allowing us to joinz andy through an edgez
1,0
−−→y. In the second example, the difference (2−1) in

the indlev s ofx can be added to theindlev s of nodes inp viewing it asx
2,1
−−→y. This allows us to

join y andz creating the edgey
1,1
−−→z. ✷

Let an edgen be represented by the triple(Sn,(S c
n ,T

c
n),Tn) whereSn andTn are the source and the

target ofn and(S c
n ,T

c
n) is theindlev. Similarly,p is represented by

(

Sp,
(

S c
p ,T

c
p

)

,Tp
)

and the reduced
edger = n ◦ p by (Sr ,(S c

r ,T
c
r),Tr); (S c

r ,T
c
r) is obtained by balancing theindlev of the pivot inp

andn. The pivot of a composition, denotedP, may be the source or the target ofn andp. Thus, a
compositionn ◦ p can be of the following four types:SS, TS, ST , andTT composition.

• TS composition. In this case,Tn = Sp i.e., the pivot is the target ofn and the source ofp. Node
Sn becomes the source andTp becomes the target of the reduced edger .

• SS composition. In this case,Sn = Sp i.e., the pivot is the source of bothn andp. NodeTp
becomes the source andTn becomes the target of the reduced edger .

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 13

PossibleST Compositions PossibleTT Compositions
Statement
sequence

Memory
graph

HRG
edges

Statement
sequence

Memory
graph

HRG
edges

S c
n < T c

p T c
n < T c

p

Ex. st1
y = ∗x
x = &z

x
ℓp

z
ℓn

y
p: y

1,2
−−→x

n: x
1,0
−−→z

(irrelevant)

Ex. tt1
y = ∗x
z = x

x

ℓn

ℓp

z

y p: y
1,2
−−→x

n: z
1,1
−−→x

(notuseful)

S c
n > T c

p (Additionally S c
p ≤ T c

p) T c
n > T c

p (Additionally S c
p ≤ T c

p)

Ex. st2
y = x

∗x = &z
x

ℓp
y

z
ℓn

p: y
1,1
−−→x

n: x
2,0
−−→z

r : y
2,0
−−→z

Ex. tt2
y = x
z = ∗x

x

ℓp

ℓnz

y p: y
1,1
−−→x

n: z
1,2
−−→x

r : z
1,2
−−→y

S c
n = T c

p T c
n = T c

p (Additionally S c
p ≤ T c

p)

Ex. st3
y = ∗x

∗x = &z
x

ℓp

z
ℓn

y
p: y

1,2
−−→x

n: x
2,0
−−→z

(irrelevant)

Ex. tt3
y = x
z = x

x ℓn
ℓp

z

y p: y
1,1
−−→x

n: z
1,1
−−→x

r : z
1,1
−−→y

Fig. 9. Illustrating all exhaustive possibilities ofST andTT compositions (the pivot isx). See Figure 8 for illustrations of
SS andTS compositions. In each case, the pivot of the composition isx.

• ST composition. In this case,Sn = Tp i.e., the pivot is the source ofn and the target ofp. Node
Sp becomes the source andTn becomes the target of the reduced edger .

• TT composition. In this case,Tn = Tp i.e., the pivot is the target of bothn andp. NodeSn becomes
the source andSp becomes the target of the reduced edger .

Consider an edge compositionr = n ◦ p, p ∈ ∆. For constructing a new∆, we wish to include
r rather thann: Including both of them is sound but may lead to imprecision;including onlyn is
also sound but may lead to inefficiency because it forsakes summarization. An edge composition is
desirable if and only if it is relevant, useful, andconclusive. We define these properties below and
explain them in the rest of the section.

(a) A compositionn ◦ p is relevant only if it preserves flow-sensitivity.
(b) A compositionn ◦ p is useful only if the indlev of the resulting edge does not exceed theindlev

of n.
(c) A compositionn ◦ p is conclusive only if the information supplied byp used for reducingn is

not likely to be invalidated by the intervening statements.

When the edge composition isdesirable, we includer in ∆ being constructed, otherwise we include
n. In order to explain thedesirable compositions, we use the following notation: Letℓp denote a
(P c
p)

th pointee of pivotP accessed byp andℓn denote a(P c
n)

th pointee ofP accessed byn. P is
never used as a subscript. Thus ap appearing in a subscript (e.g. inℓp) refers to an edgep.

4.1. Relevant Edge Composition.

An edge composition isrelevant if it preserves flow-sensitivity. This requires the indirection levels
in n to be reduced by using the points-to information inp (wherep appears beforen along a control
flow path) but not vice-versa. The presence of a points-to path in memory (which is the transitive
closure of the points-to edges) betweenℓp andℓn (denoted byℓp ։ ℓn or ℓn ։ ℓp) indicates thatp
can be used to resolve the indirection levels inn.

14 P. Gharat et al.

EXAMPLE 4.2. ForS c
n < S c

p in Figure 8 (Ex.ss1), edgep updates the pointee ofx and edgen
redefinesx. As shown in the memory graph, there is no path betweenℓp andℓn and hencey and
z are unrelated rendering this compositionirrelevant. Similarly, edge composition isirrelevant for
S c
n = S c

p (Ex. ss3), S c
n < T c

p (Ex. st1), andS c
n = S c

p (Ex. st3).
For S c

n > S c
p (Ex. ss2), ℓp ։ ℓn holds in the memory graph and hence this composition is

relevant. For Ex. ts1, ℓn ։ ℓp holds; for ts2, ℓp ։ ℓn holds; for ts3 both paths hold. Hence, all
three compositions arerelevant. ✷

Owing to flow-sensitivity, edge composition is not commutative although it is associative.

LEMMA 4.1. Edge composition is associative.

(e1 ◦ e2) ◦ e3 = e1 ◦ (e2 ◦ e3)

PROOF. Edge composition computesindlev s using arithmetic expressions involving binary plus
(+) and binary minus (−). They can be made to associate by replacing binary minus (−) with binary
plus (+) and unary minus (−), eg.a+ b+ (−c) instead ofa+ b− c.

4.2. Useful Edge Composition.

Theusefulness of edge composition characterizes progress in conversion of the generalized points-
to facts to the classical points-to facts. This requires theindlev (S c

r , T c
r) of the reduced edger to

satisfy the following constraint:

S
c
r ≤ S

c
n ∧ T

c
r ≤ T

c
n (1)

Intuitively, this ensures that theindlev of the new source and the new target does not exceed the
correspondingindlev in the original edgen.

EXAMPLE 4.3. Consider Ex.ts1 of Figure 8, in whichT c
n < S c

p , andℓn ։ ℓp holds in the memory
graph. Although this composition isrelevant, it is not useful because theindlev of r exceeds the

indlev of n. For this example, aTS composition will create an edgez
2,0
−−→y whoseindlev is higher

than that ofn (z
1,1
−−→x). Similarly, an edge composition is notuseful whenT c

n < T c
p (Ex. tt1). ✷

Thus, we needℓp ։ ℓn, and notℓn ։ ℓp, to hold in the memory graph for auseful edge compo-
sition. We can relate this with theusefulness criteria (Inequality 1). The presence of a pathℓp ։ ℓn
ensures that theindlev of edger does not exceed that ofn.

From Figure 8, we conclude that an edge composition isrelevant anduseful only if there exists
a pathℓp ։ ℓn rather thanℓn ։ ℓp. Intuitively, such a path guarantees that the updates made
by n do not invalidate the generalized points-to fact represented byp. Hence, the two generalized
points-to facts can be composed by using the pivot as a bridgeto create a new generalized points-to
fact represented byr .

Deriving the Composition Specific Conditions for Usefulness of Edge Compositions. Constraint 1
can be further refined for a composition based on its type. We show the derivation of theusefulness
criterion by examining the cases forrelevant edge compositions. For simplicity, we consider only
TS composition. There are three cases to be considered:T c

n > T c
p , T c

n < T c
p andT c

n = T c
p . We have

already seen that the caseT c
n < S c

p is irrelevant in that it results in an imprecision in points-to in-
formation and hence we ignore this case. We derive a constraint for the caseT c

n > S c
p . The indlev

(S c
r , T c

r) of the reduced edger for the caseT c
n > S c

p , by balancing theindlev of the pivotTn/Sp in
edgesn andp, is given as

(S
c
r , T

c
r) = (S

c
n , T

c
p + T

c
n − S

c
p)

By imposing theusefulness constraint (Inequality 1) we get:

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 15

01 void f()
02 { y = &a;
03 q = &p;
04 g();
05 }
06 void g()

07 { *y = &c;
08 a = &b;
09 x = *y;
10 p = &t;
11 *q = &s;
12 r = p;
13 }

r

p

t

x

y

c

q s

a b

11

1,0

1,0
2,0

1,0

1,2

2,0

1,0

Fig. 10. Excluding inconclusive compositions (reduced edges shown by dashes are excluded).

(T c
n > S c

p) ∧ (S c
r ≤ S c

n) ∧ (T c
r ≤ T c

n)

⇒ (T c
n > S c

p) ∧ (S c
n ≤ S c

n) ∧ (T c
p + T c

n − S c
p ≤ T c

n)

⇒ (T c
n > S c

p) ∧ (T c
p ≤ S c

p)

⇒ T c
p ≤ S c

p < T c
n

We can also derive ausefulness constraint for the caseT c
n = S c

p . The final condition for auseful
TS composition combined for both the cases is:

T
c
p ≤ S

c
p ≤ T

c
n (TS composition) (2)

Similarly, we can derive the criterion for other compositions by examining therelevant anduseful
cases for them which turn out to be:

T
c
p ≤ S

c
p < S

c
n (SS composition) (3)

S
c
p ≤ T

c
p < S

c
n (ST composition) (4)

S
c
p ≤ T

c
p ≤ T

c
n (TT composition) (5)

EXAMPLE 4.4. Consider aTS composition wheren is z
1,1
−−→x andp is x

2,1
−−→y violating the con-

straintS c
p < T c

n (Inequality 2) because2 6≤1. Edgen needs pointees ofx whereasp provides infor-

mation in terms of the pointees of pointees ofx. Similarly, aTS composition ofz
1,2
−−→x asn and

x
1,2
−−→y asp violates the constraintT c

p ≤ S c
p (Inequality 2). In this case,n needs pointees of pointees

of x whereasp provides information in terms of pointees of pointees of pointees ofy. ✷

In both these cases, theindlev of r exceeds theindlev of n and hence we do not perform such
compositions. Similarly, we can reason about theusefulness constraint (Inequalities 3−5) for other
types of compositions.

4.3. Conclusive Edge Composition.

Recall thatr = n ◦ p is relevant anduseful if we expect a pathℓp ։ ℓn in the memory. This compo-
sition isconclusive when locationℓp remains accessible from the pivotP in p whenn is composed
with p. Locationℓp may become inaccessible fromP because of a combined effect of the statements
in a calling context and the statements in the procedure being processed. Hence, the composition is
undesirable and may lead to unsoundness ifr is included in∆ instead ofn.

EXAMPLE 4.5. Line 07 of procedureg in Figure 10 indirectly definesa (becausey points toa
as defined on line 02 of proceduref) whereas line 08 directly definesa overwriting the value
assigned on line 07. Thus,x points tob and notc after line 09. However, during GPG construction of

procedureg, the relationship betweeny anda is not known. Thus, the composition ofn ≡ x
1,2
−−→y

with p ≡ y
2,0
−−→c results inr ≡ x

1,0
−−→c. In this case,ℓp is c, however it is not reachable fromy

16 P. Gharat et al.

anymore as the pointee ofy (which isa) is redefined by line 08. Worse still, we do not havey
2,0
−−→b

and hence edgex
1,0
−−→b cannot be created leading to unsoundness.

Similarly, line 10 definesp directly whereas line 11 definesp indirectly (becauseq points top

as defined on line 03 of proceduref). The composition ofn ≡ r
1,1
−−→p with p ≡ p

1,0
−−→t results in

r ≡ r
1,0
−−→ t. In this case,ℓp is t, however it is not reachable fromp anymore as the pointee ofp is

redefined indirectly by line 11. Thus we miss out the edger
1,0
−−→s leading to unsoundness.✷

Since the calling context is not available during GPG construction, we are forced to retain edge
n in the GPG, thereby missing an opportunity of reducing theindlev of n. Hence we propose the
following condition forconclusiveness:

(a) The statements ofp andn should be consecutive on every control flow path.
(b) If the statements ofp andn are not consecutive on some control flow path, we require that

(i) the intervening statements should not have an indirect assignment (e.g.,∗x = . . .), and
(ii) the pointee of pivotP in edgep has been found i.e.P c

p = 1.

EXAMPLE 4.6. For the program in Figure 10, consider the composition of n ≡ x
1,2
−−→y with

p ≡ y
2,0
−−→c. Since the pointee ofy (which is a) is redefined by line 08 violating the condition

P
c
p = 1, this composition is not conclusive and we addn ≡ x

1,2
−−→y instead ofr ≡ x

1,0
−−→c. Simi-

larly, for the composition ofn ≡ r
1,1
−−→p with p ≡ p

1,0
−−→t, the pointee ofp is redefined indirectly

by line 11 violating the condition thatp andn should not have an intervening indirect assignment.

Thus this composition is inconclusive and we addn ≡ r
1,1
−−→p instead ofr ≡ r

1,0
−−→ t. ✷

This avoids a greedy reduction ofn when the available information isinconclusive.

4.4. Can Edge Composition be Modelled as Matrix Multiplicat ion?

Edge compositionn ◦ p computes transitive effects of edgesn andp. This is somewhat similar to
the reachability computed in a graph: If there are edgesx → y andy → z representing the facts
that y is reachable fromx andz is reachable fromy, then it follows thatz is reachable fromx
and an edgex → z can be created. If the graph is represented by an adjacency matrix A in which
the element(x, y) represents reachability ofy from x, matrix multiplicationA×A can be used to
compute the transitive effect.

It is difficult to model edge composition in this manner because of the following reasons:

• Edge labels are pairs of numbers representing indirection levels. Hence we will need to device
an appropriate operator and the usual multiplication wouldnot work.

• Edge composition has some additional constraints over reachability because of desirability; un-
desirable compositions are not performed. These restrictions are difficult to model in matrix
multiplication.

• Transitive reachability considers only the edges of the kind x → y andy → z; i.e. the pivot
should be the target of the first edge and the source of the second edge. Edge composition con-
siders pivot as both source as well as target in both the edgesand hence considers all four com-

positions (SS, TT , TS, andST). For example, we composex
1,0
−−→z andx

2,0
−−→y in anSS compo-

sition to create a new edgez
1,0
−−→y. Transitive reachability computed using matrix multiplication

can consider onlyTS composition.

Thus, matrix multiplication does not model edge composition naturally.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 17

5. CONSTRUCTING GPGS AT THE INTRAPROCEDURAL LEVEL

In this section we define edge reduction, and GPG update for computing a new GPG by incorpo-
rating the effect of an edge in the existing GPG. GPG composition is described in Section 6 which
shows how procedure calls are handled.

5.1. Edge Reduction n ◦∆

In this section, we motivate the need for edge reduction and discuss the issues arising out of cascaded
compositions across different types of compositions. Then, we define edge reduction which in turn
is used for constructing∆.

5.1.1. The Need of Edge Reduction. Given an edgen and a GPG∆, edge reduction, denoted
n ◦∆, reduces theindlev of n progressively by using the edges from∆ through a series of edge

compositions. For example, an edgex
1,2
−−→y requires twoTS compositions: first one for identifying

the pointees ofy and second one for identifying the pointees of pointees ofy. Similarly, for an edge

x
2,1
−−→y, SS andTS edge compositions are required for identifying the pointees ofx which are being

defined and the pointees ofy whose addresses are being assigned. Thus, the result of edgereduction
is the fixed point computation of the cascaded edge compositions.

5.1.2. Restrictions on Cascaded Edge Compositions. An indiscriminate series of edge composi-
tions may cause a reduced edger = n ◦ p to be composed again withp. In some cases, this may
restore the original edgen i.e., (n ◦ p) ◦ p = n, nullifying the effect of the earlier composition. To
see why this happens, assume that the first composition eliminates the pivotx which is replaced by
y in the reduced edge. The second composition may eliminate the nodey as the pivot re-introducing
nodex. This is illustrated as follows:

EXAMPLE 5.1. Consider the examplest2 in Figure 9. AnST composition betweenp ≡ y
1,1
−−→x

andn ≡ x
2,0
−−→z eliminates the pivotx and replaces it withy in the reduced edger ≡ y

2,0
−−→z. This

reduced edge can now be treated as edgen to further compose withp ≡ y
1,1
−−→x usingy as the pivot

resulting in a new reduced edgex
2,0
−−→z in which x has been re-introduced, thereby restoring the

original edge.✷
This nullification may happen with anST composition followed by anSS composition or vice-

versa. Similarly, aTT composition and aTS composition nullify the effect of each other. Since,
edge reduction uses a fixed point computation, the computation may oscillate between the original
and the reduced edges causing non-termination. In order to ensure termination, we restrict the com-
binations of edge compositions to the following four possibilities: SS + TS, SS + TT , ST + TS,
and ST + TT . For our implementation, we have chosen the first combination i.e, SS + TS. We
formalize the operation of edge reduction for this combination in the rest of this section.

5.1.3. Edge Reduction using SS and TS Edge Compositions. Edge reductionn ◦∆ uses the
edges in∆ to compute a set of edges whoseindlev s do not exceed that ofn (Definition 4).

The results ofSS andTS compositions are denoted bySS n∆ andTS n∆ which computerelevant
anduseful edge compositions; theinconclusive edge compositions are filtered out independently.
The edge ordering is not required at the intraprocedural level; a reverse post order traversal over the
control flow graph suffices.

A single-level composition (slc) combinesSS n∆ with TS n∆. When bothTS andSS compositions
are possible (first case inslc), the join operator⊲⊳ combines their effects by creating new edges
by joining the sources fromSS n∆ with the targets fromTS n∆. If neither ofTS andSS compositions
are possible (second case inslc), edgen is considered as the reduced edge. If only one of them
is possible, its result becomes the result ofslc (third case). Since the reduced edges computed by
slc may compose with other edges in∆, we extendslc to multi-level composition (mlc) which
recursively composes edges inX with edges in∆ through functionslces which extendsslc to a set
of edges.

18 P. Gharat et al.

Definition 4: Edge reduction in ∆

n ◦∆ := mlc ({n}, ∆)
where

mlc (X,∆) :=

{

X slces (X,∆)=X

mlc (slces (X,∆) , ∆) Otherwise

slces (X,∆) :=
⋃

e∈X

slc (e,∆)

slc (n, ∆) :=

SS n∆ ⊲⊳ TS n∆ SS n∆ 6= ∅, TS n∆ 6= ∅

{n} SS n∆ = TS n∆ = ∅

SS n∆ ∪ TS n∆ Otherwise

SS n∆ :=
{

n◦p | p ∈ ∆,Sn = Sp, T c
p ≤ S c

p < S c
n

}

TS n∆ :=
{

n◦p | p ∈ ∆, Tn = Sp, T c
p ≤ S c

p ≤ T c
n

}

X ⊲⊳ Y :=
{(

Sn,
(

S c
n ,T

c
p

)

,Tp
)

| n ∈ X, p ∈ Y
}

EXAMPLE 5.2. When n represents a statementx = ∗y, we need multi-level compo-
sitions: The first-level composition identifies pointees ofy while the second-level
composition identifies the pointees of pointees ofy. This is facilitated by function

s1 : y = &a;
s2 : a = &b;
s3 : x = ∗y;

mlc. Consider the code snippet on the right.∆ = {y
1,0
−−→a, a

1,0
−−→b} for n ≡

x
1,2
−−→y (statements3). This involves two consecutiveTS compositions. The first

composition involvesy
1,0
−−→a asp resulting inTS n∆ = {x

1,1
−−→a} andSS n∆ = ∅.

This satisfies the third case ofslc. Then,slces is called withX = {x
1,1
−−→a}. The secondTS

composition betweenx
1,1
−−→a (as a newn) anda

1,0
−−→b (asp) results in a reduced edgex

1,0
−−→b.

slces is called again withX = {x
1,0
−−→b} which returnsX , satisfying the base condition ofmlc. ✷

EXAMPLE 5.3. Single-level compositions are combined using⊲⊳ when n represents∗x = y.

s1 : x = &a;
s2 : y = &b;
s3 : ∗x = y;

For the code snippet on the right,SS n∆ returns{a
1,1
−−→y} and TS n∆ returns

{x
2,0
−−→b} whenn is x

2,1
−−→y (for statements3). The join operator⊲⊳ combines

the effect ofTS andSS compositions by combining the sources fromSS n∆ and

the targets fromTS n∆ resulting in a reduced edger ≡ a
1,0
−−→b. ✷

5.1.4. A Comparison with Dynamic Transitive Closure. It is tempting to compare edge reduction
n ◦∆ with dynamic transitive closure [4; 5]: edge composition computes a new edge that captures
the transitive effect and this is done repeatedly bymlc. However, the analogy stops at this abstract
level. Apart from the reasons mentioned in Section 4.4, the following differences make it difficult
to model edge reduction in terms of dynamic transitive closure.

• Edge reduction does not compute unrestricted transitive effects. Dynamic transitive closure com-
putes unrestricted transitive effects.

• We do not perform closure. Either the final set computed bymlc is retained in∆ or n is retained
in ∆. Dynamic transitive closure implies retaining all edges including the edges computed in the
intermediate steps.

5.2. Constructing GPGs ∆(u, v)

For simplicity, we consider∆ only as a collection of edges, leaving the nodes implicit. Further, the
edge ordering does not matter at the intraprocedural level and hence we treat∆ as a set of edges.
The construction of∆ assigns sequence numbers in the order of inclusion of edges;these sequence
numbers are maintained externally and are used during GPG composition (Section 6).

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 19

x a b c
x a b c

1,0
2,0

3,0
x′ s

N, 0

(a) Memory view (b) GPG view (c) Aggregate edge

Fig. 11. Aggregate edge for handling strong and weak updates. For this example,s = {a, b, c, . . .}.

By default, the GPGs record themay information but a simple extension in the form ofboundary
definitions(described in the later part of this section) allows them to record themust information.
This supports distinguishing between strong and weak updates and yet allows a simple set union to
combine the information.

Definition 5: Construction of ∆
Assumption : n is δ(t, v) and∆ is a set of edges

∆(u, v) := B(u, v) ∪
⋃

t ∈ succ+(u)
v ∈ succ(t)

(∆(u, t)) [n ◦∆(u, t)]

B(u, v) :=

{

n v ∈ succ(u)

∅ otherwise
where

∆ [X] := (∆− conskill(X,∆)) ∪ (X)

conskill(X,∆) :=
{

e1 | e1 ∈match(e,∆), e ∈ X, |def(X)|=1
}

match(e,∆) := {e1 | e1 ∈ ∆, Se = Se1 , S c
e = S c

e1
}

def(X) :=
{

(Se, S c
e) | e ∈ X

}

Definition 5 is an adaptation of Definition 1 for GPGs. Since∆ is viewed as a set of edges,
the identity function∆id is ∅, meet operation is∪, and∆(u, v) is the least fixed point of the
equation in Definition 5. The composition of a statement-level flow function (n) with a summary
flow function (∆(u, t)) is performed by GPG update which includes all edges computed by edge
reductionn◦∆(u, t); the edges to be removed are under-approximated when a strong update cannot
be performed (described in the rest of the section). When a strong update is performed, we exclude
those edges of∆ whose source andindlev match that of the shared source of the reduced edges
(identified bymatch(e,∆)). For a weak update,conskill(X,∆) = ∅ andX contains reduced edges.
For aninconclusive edge composition,conskill(X,∆) = ∅ andX = {n}.

Computing Edge Order for GPG Edges to Facilitate Flow-Sensitivity. GPGs represent flow-
sensitive memory transformers when their edges are viewed as a sequence matching the control
flow order of statements represented by the GPGs. Hence we impose an ordering on GPG edges and
maintain it externally explicating it whenever required. This allows us to treat GPGs as set of edges
by default in all computations and bring in the ordering onlywhen required.

The ordering of GPG edges for a procedure is governed by a reverse post order traversal over the
control flow graph of the procedure. It is required only when the effect of a callee is incorporated in
its caller because the control flow of the callee is not available. Since a sequence is totally ordered
but control flow is partially ordered, the GPG operations (Section 6) internally relax the total order
to ensure that the edges appearing on different control flow paths do not affect each other.

Let E, Stmt, and order denote the the set of edges in a GPG, set of statements, and a set
of positive integers representing order numbers. Then, theedge order is maintained as a map
Stmt → 2E → order. A particular statement may cause inclusion of multiple edges in a GPG and
all edges resulting from the same (non-call) statement should be assigned the same order number.
We also maintain reverse maporder → 2E for convenience.

20 P. Gharat et al.

Source of the reduced edges inX = n ◦ ∆

Single
(

|def(X)=1|
)

Multiple
(

|def(X) > 1|
)

Some path does not
have a definition

Every path has
a definition

Strong Update(Matching
edges can be removed)

Weak Update(No edge
can be removed)

Fig. 12. Criteria for strong and weak updates in∆. Our formulations eliminate the dashed edge simplifying strong updates.

5.3. Extending ∆ to Support Strong Updates.

Conventionally, points-to information is killed based on the following criteria: An assignment
x = . . . removes all points-to factsx−→· whereas an assignment∗x = . . . removes all points-to
factsy−→· wherex must-points-toy; the latter represents astrong update. Whenx may-points-toy,
no points-to facts can be removed representing aweak update.

Observe that the use of points-to information for strong updates is inherently captured by edge
reduction. In particular, the use of edge reduction allows us to model the edge removal for both
x = . . . and∗x = . . . statements uniformly as follows: the reduced edges should define the same
pointer (or the same pointee of a given pointer) along every control flow path reaching the statement
represented byn. This is captured by the requirement|def(X)| = 1 in conskill in Definition 5 where
def(X) extracts the source nodes and their indirection levels of the edges inX .

When|def(X)| > 1, the reduced edges define multiple pointers (or different pointees of the same
pointer) leading to a weak update resulting in no removal of edges from∆. When|def(X)| = 1,
all reduced edges define the same pointer (or the same pointeeof a given pointer). However, this
is necessary but not sufficient for a strong update because the pointer may not be defined along
all the paths—there may be a path which does not contribute todef(X). We refer to such paths as
definition-free paths for that particular pointer (or some pointee of a pointer). The possibility of such
a path makes it difficult to distinguish between strong and weak updates as illustrated in Figure 12.

Since a pointerx or its transitive pointees may be defined along some but not all control flow
paths fromu to v , we eliminate the possibility of definition-free paths fromu to v by introducing
boundary definitionsof the following two kinds atu: (a) a pointer assignmentx = x′ wherex′ is
a symbolic representation of the initial value ofx at u (called theupwards exposed[15] version
of x), and(b) a set of assignments representing the relation betweenx′ and its transitive pointees.

These boundary definitions are represented by special GPG edges—the first, by acopy edgex
1,1
−−→x′

and the others, by anaggregateedgex′ N,0
−−→s whereN is the set of all possibleindlev s ands is the

summary node representing all possible pointees. As illustrated in Figure 11,x′ N,0
−−→s is a collection

of GPG edges (Figure 11(b)) representing the relation between x with it transitive pointees atu
(Figure 11(a)).

A reduced edgex
1,j
−−→y along any path fromu tov removes the copy edgex

1,1
−−→x′ indicating that

x is redefined. A reduced edgex
i,j
−→y, i>1 modifies the aggregate edgex′ N,0

−−→s to x′ (N−{i}),0
−−−−−−→s

indicating that(i−1)th pointees ofx are redefined.
The inclusion of aggregate and copy edges guarantees that|def(X)| = 1 only when the source is

defined along every path thereby eliminating the dashed pathin Figure 12. This leads to a necessary

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 21

a′ a

z′ z

v

u

e

s x′ x

y′
b′ b

y d

/////
1,1

/////
1,1

/////
1,1

1,1

1,1

N,0

N,0

N,0

N,0

N,0

g1
1,0

g61,0

g7
2,0 g8

1,0

g5
1,0g3

1,0g2
2,1

g4
1,0

a

e

x

w

v z

ub

d

y

y′

f10 1,0
−
−
−
−

1,0
f11

1,0f12

1,0f3

1,0f5

1,0
f7

1,0f2
−
−
−
−

1,0
f6

1,0
f8

f1 1,0
−
−
−
−

1,0
f4

2,0
f9

Regardless of the
direction of the arrow,
i in indlev “ i, j”
represents its source
while j represents its
target. Edges deleted
by updates are struck
off. Subscriptk in
edge namesgk, fk
indicates the order of
edge inclusion.

Copy and aggregate
edges have not been
shown for∆ for f .

(a)∆ for g (b)∆ for f

Fig. 13. ∆ for proceduresf andg of Figure 2.

and sufficient condition for strong updates. Note that the copy and aggregate edges improve the
precision of analysis by enabling strong updates and are notrequired for its soundness.

EXAMPLE 5.4. Consider the construction of∆g as illustrated in Figure 13(c). Edgeg1 created for

line 8 of the program, kills edgea
1,1
−−→a′ because|def({g1})| = 1. For line 10, since the pointees of

x andz are not available ing, edgeg2 is created fromx′ to z′; this involves composition ofx
2,1
−−→z

with the edgesx
1,1
−−→x′ andz

1,1
−−→z′. Edgesg3, g4, g5 andg6 correspond to lines 11, 13, 14, and 16

respectively.

Edgez
1,1
−−→z′ is killed along both paths (lines 11 and 14) and hence is struck off in ∆g, indi-

catingz is must-defined. On the other hand,y
1,1
−−→y′ is killed only along one of the two paths and

hence is retained by the control flow merge just before line 16. Similarly x′ 2,0
−−→s in the aggregate

edgex′ N,0
−−→s is retained indicating that pointee ofx is not defined along all paths. Edgeg6 kills

x
1,1
−−→x′. Line 17 creates edgesg7 andg8; this is a weak update becausey has multiple pointees

(|def({g7, g8})| 6= 1). Henceb
1,1
−−→b′ is not removed. Similarly,y′

2,0
−−→s in the aggregate edge

y′
N,0
−−→s is not removed.✷

6. CONSTRUCTING GPGS AT THE INTERPROCEDURAL LEVEL

We have discussed the construction of intraprocedural GPGsin Section 5. We now extend GPG
construction to Level 2 of our language which includes handling function calls and recursion.

6.1. Handling Function Calls

Definition 6 shows the construction of GPGs at the interprocedural level by handling procedure
calls. Consider a proceduref containing a call tog between two consecutive program pointsu and
v . LetStartg andEndg denote the start and the end points ofg.∆ representing the control flow paths
from Startf to u (i.e., just before the call tog) is∆(Startf , u); we denote it by∆f for brevity.∆ for
the body of procedureg is ∆(Startg,Endg); we denote it by∆g. Then∆ (Startf ,v) using∆f and
∆g is computed as follows:

• Edges for actual-to-formal-parameter mapping are added to∆f .
• ∆f and∆g are composed denoted∆f ◦∆g.

22 P. Gharat et al.

• An edge is created between the return variable ofg and the receiver variable of the call inf and
is added to∆f .

The composition of a callee’s GPG with the caller’s GPG can beviewed as incorporating the
effect of inlining the callee in the body of the caller. This intuition suggests the following steps for
the composition of GPGs: we select an edgee from ∆g and perform an update∆f [e ◦ ∆f]. We
then update the resulting∆ with the next edge from∆g. This is repeated until all edges of∆g are
exhausted. The update of∆f with an edgee from∆g involves the following:

• Substituting the callee’s upwards exposed variablex′ occurring in∆g by the caller’s original
variablex in ∆f ,

• Including the reduced edgese ◦∆f , and
• Performing a strong or weak update.

Definition 6: ∆ for a call g() in procedure f

/∗ let∆f denote∆(Startf , u) and∆g denote∆(Startg,Endg) ∗/

∆(Startf , v) := ∆g ◦∆f

∆g ◦∆f := ∆f [∆g]

where /∗ let∆g be {e1, e2, . . . ek} ∗/

∆f [∆g] := ∆f [e1, ∆g] [e2, ∆g] . . . [ek, ∆g]

∆f [e,∆g] := (∆f − callkill(e,∆f , ∆g)) ∪ (e ◦∆f)

callkill(e,∆f , ∆g) :=
{

e2 | e2 ∈match(e1, ∆f), e1∈e ◦∆f , callsup(e,∆f , ∆g)
}

callsup(e,∆f , ∆g) := (|def(e ◦∆f)| = 1) ∧ mustdef (e,∆g)

mustdef (x
i,j
−→y,∆) ⇔

(

x
i,k
−−→z ∈ ∆ ⇒ k = j ∧ z = y

)
∧

((

i > 1 ∧ x′ i,0
−−→s /∈ ∆

)

∨
(

i = 1 ∧ x
1,1
−−→x′ /∈ ∆

))

A strong update for summary flow function composition∆f ◦∆g i.e., when a call is processed,

is identified by functioncallsup (Definition 6). Observe that a copy edgex
1,1
−−→x′ ∈ ∆ implies that

x has not been defined along some path. Similarly, an aggregateedgex′ N,0
−−→s ∈ ∆ implies that

some(i − 1)th pointees ofx, i>1 have not been defined along some path. We use these to define

mustdef (x
i,j
−→y,∆) which asserts that the(i− 1)th pointees ofx, i>1 are defined along every

control flow path. We combine it withdef(x
i,j
−→y ◦ ∆) to definecallsup for identifying strong

updates to be performed for a call. Note that we needmustdef only at the interprocedural level
and not at the intraprocedural level. This is because, when we use∆g to incorporate its effect in
∆f , performing a strong update requires knowing whether the source of an edge in∆g has been
defined along every control flow path ing. However, we do not have the control flow information of
g when we to incorporate its effect in∆f . When a strong update is performed, we delete all edges
in ∆f that matche ◦∆f . These edges are discovered by taking a union ofmatch(e1, ∆f), for all
e1 ∈ (e ◦∆f).

The total order imposed by the sequence of GPG edges is interpreted as a partial order as fol-
lows: If an edge to be added involves an upwards exposed variablex′, it should be composed with
an original edge5 in ∆f rather than a reduced edge included in∆f created bye1 ◦∆f for some
e1 ∈ ∆g. Further, it is possible that an edgee2 may kill an edgee1 that was added to∆f because it
coexisted withe2 in ∆g. However, this should be prohibited because their coexistence in∆g indi-

5By an original edge in∆f , we mean an edge included in∆f before processing the call tog. This edge could well be an
edge because of a call inf processed before processing the current call.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 23

01 void f()
02 {
03 if (. . .) {
04 y = &a;
05 }
06 else {
07 y = &b;
08 f();
09 }
10 }

n1 Startf n1

n2 y = &a n2

n3 y = &b n3

n4 f(); n4

n5 Endf n5

y a

(a)∆f with initial
value∆⊤

1,0
y a

b

(b)∆f with initial
value∆id

1,0

1,0

Fig. 14. A recursive example demonstrating the need for∆⊤.

cates that they aremay edges. This is ensured by checking the presence of multiple edges with the
same source in∆g. For example, edgef7 of Figure 13(d) does not killf5 as they coexist in∆g.

EXAMPLE 6.1. Consider the construction of∆f as illustrated in Figure 13(d). Edgesf1 andf2
correspond to lines 2 and 3. The call on line 4 causes the composition of∆f = {f1, f2} with ∆g

selecting edges in the orderg1, g2, . . . , g8. The edges from∆g with their correspondingnames in∆f

(denoted name-in-g/name-in-f) are:g1/f3, g3/f5, g4/f6, g5/f7, g6/f8, g7/f9, andg8/f10. Edgef4
is created bySS andTS compositions ofg2 with f1 andf2. Althoughx has a single pointee (along
edgef1), the resulting update is a weak update because the source ofg2 is may-defined indicated by

the presence ofx′ 2,0
−−→s in the aggregate edgex′ N,0

−−→s.
Edgesg3/f5 andg5/f7 together killf2. Note that the inclusion off7 does not killf5 because they

both are from∆g. Finally, the edge for line 5 (x
2,1
−−→z) undergoes anSS composition (withf8) and

TS compositions (withf5 andf7). This creates edgesf11 andf12. Sincex
2,1
−−→z is accompanied by

the aggregate edgex′ N−{2},0
−−−−−→s indicating that the pointee ofx is must-defined, andx has a single

pointee (edgef8), this is a strong update killing edgef10. Observe that all edges in∆f represent
classical points-to facts exceptf9. We need the pointees ofy from the callers off to reducef9. ✷

6.2. Handling Recursion

The summary flow function∆ of a procedure is complete only when it incorporates the effect of all
its callees. Hence∆ of callee procedures are constructed first to incorporate its effect in their callers
resulting in a postorder traversal over the call graph. However, in case of recursion,∆ of a callee
procedure may not have been constructed yet because of the presence of a cycle in the call graph.
This requires us to begin with an approximate version of∆ which is then refined to incorporate
the effect of recursive calls. When the callee’s∆ is computed, its call statements will have to be
reprocessed needing a fixed point computation. This is handled in the usual manner [15; 29] by
over-approximating initial∆ that computes⊤ for may points-to analysis (which is∅). Using any
other function would be sound but imprecise. Such a GPG, denoted∆⊤, kills all points-to relations
and generates none. Clearly,∆⊤ is not expressible as a GPG and is not a natural⊤ element of the
meet semi-lattice [15] of GPGs. It has the following properties related to the meet and composition:

— Meet Operation. Since we wish to retain the the meet operation⊓ as∪, we extend∪ to define
∆ ∪∆⊤ = ∆ for any GPG∆. This property is also satisfied by a GPG∆ = ∅ denoted∆id,
however, it is an identify flow function and not a function computing⊤ because it does not kill
points-to information.

— Composition. Since∆⊤ is a constant function returning⊤ value of the lattice ofmay points-to
analysis, it follows that∀∆, ∆⊤ ◦∆ = ∆⊤. Similarly,

∀X, ∀∆, ∆ ◦∆⊤ (X) = ∆ (∆⊤(X)) = ∆ (⊤) = ∅ [∆]

24 P. Gharat et al.

01 void f()
02 {
03 x = &a;
04 z = &b;
05 p = &c;
06 g();
07 }

08 void g()
09 {
10 y = z;
11 *x = z;
12 }

13 void h()
14 {
15 x = &u;
16 z = &v;
17 q = &w;
18 g();
19 }

x a

z b

p c

1,0

1,0

1,0

z z′

sy

x x′

s2,1

1,1

1,1

1,1

N, 0

N, 0

x u

z v

q w

1,0

1,0

1,0

GPG at line 05 GPG at line 11 GPG at line 17

Fig. 15. An example demonstrating the bypassing performed.

which implies that∆ ◦∆⊤ = ∆. This is because⊤ for may points-to analysis is∅ and empty
memory updated with∆ returns∆. Although,∆ ◦∆⊤ = ∆, it is only an intermediate function
because the fixed point computation induced by recursion will eventually replace∆⊤ by an
appropriate summary flow function.

EXAMPLE 6.2. Consider the example of Figure 14 to understand the difference between using∆id

and∆⊤ as the initial value. If we use the initial∆ for proceduref at n4 as∆id, a GPG with no

edges, then the∆ at theOut of n4 has a GPG with one edgey
1,0
−−→b. Thus, the summary flow

function of proceduref (∆f) computed atn5 after the meet is as shown in Figure 14(b). After
reprocessing the call atn4, we still get the same GPG. However, if we consider∆⊤ as the initial
value for proceduref , the GPG atOut of n4 is an empty GPG as∆⊤ kills all points-to relations
and generates none. Thus,∆f atn5 is as shown in Figure 14(a) which remains the same even after
re-processing. The resulting summary flow function is more precise than the summary flow function

computed using∆id as the initial value because it excludesy
1,0
−−→b from the GPG of proceduref .

It is easy to see that after a call tof ends,y cannot point tob; it must point toa. ✷

7. COMPUTING POINTS-TO INFORMATION USING GPGS

Recall that the points-to information is represented by a memoryM . We define two operations to
compute a new memoryM ′ using a GPG or a GPG edge from a given memoryM .

• An edge applicationJeKM computes memoryM ′ by incorporating the effect of GPG

edge e ≡ x
i,j
−→y in memoryM . This involves inclusion of edges described by the set

{

w
1,0
−−→z | w ∈ M i−1{x}, z ∈ M j{y}

}

in M ′ and removal of edges by distinguishing be-

tween a strong and a weak update. The edges to be removed are characterized much along the
lines ofcallkill (Definition 6).

• A GPG applicationJ∆KM applies the GPG∆ to M and computes the resulting memoryM ′

using edge application iteratively.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 25

We now describe the computation of points-to information using these two operations. LetPTv
denote the points-to information at program pointv in proceduref . Then,PTv can be computed by
(a) computingboundary informationof f (denotedBIf) associated with the program pointStartf ,
and(b) computing the points-to information atv from BIf by incorporating the effect of all paths
from Startf to v .

BIf is computed as the union of the points-to information reachingf from all of its call points.
For the main function,BI is computed from static initializations. In the presence ofrecursion, a
fixed point computation is required for computingBI.

EXAMPLE 7.1. For the program in Figure 15, theBI of procedureg (denotedBIg) is the points-
to information reachingg from its callersf andh and hence a union of GPG at theOut of line
numbers 05 and 17. Let∆10 represent the GPG that includes the effect of line 10. Then the points-
to information after line number 10 is (∆10 ◦BIg) as discussed in Section 6. Similarly, the points-to
information at line number 11 can be computed by (∆11 ◦ BIg). ✷

If v is Startf , thenPTv = BIf . For other program points,PTv can be computed fromBIf in the
following ways; both of them compute identicalPTv .

(a) Using statement-level flow function (Stmt-ff):Let stmt(u, v) denote the statement betweenu
andv . If it is a non-call statement, let its flow functionδ(u, v) be represented by the GPG edge
n. ThenPTv is computed as the least fixed point of the following data flow equations where
Inu,v denotes the points-to information reaching program pointu from its predecessorv.

Inu,v =
{

J∆(Startq,Endq)KPTu stmt(u, v) = call q
JnKPTu otherwise

PTu =
⋃

u ∈ pred(v)

Inu,v

(b) Using GPGs:PTv is computed using GPG applicationJ∆(Startf , v)KBIf . This approach of
PTv computation is oblivious to intraprocedural control flow and does not involve fixed point
computation for loops because∆(Startf , v) incorporates the effect of loops.

Our measurements show that theStmt-ff approach takes much less time than using GPGs for
PTv computation. This may appear surprising because theStmt-ff approach requires an additional
fixed point computation for handling loops which is not required in case of GPGs. However, using
GPGs for all statements including the non-call statements requires more time because the GPG at
v represents a cumulative effect of the statement-level flow functions fromStartf to v . Hence the
GPGs tend to become larger with the length of a control flow path. Thus computingPTv using
GPGs for multiple consecutive statements involves redundant computations.

EXAMPLE 7.2. In our example in Figure 15,∆10 has only one edgey
1,1
−−→z′ (ignoring the aggregate

and copy edges) whereas∆11 consists of two edgesy
1,1
−−→z′ andx′ 1,2

−−→z′ incorporating the effect
of all control flow paths from start of procedureg to line number 11 which also includes the effect
of line number 10.

As an alternative, we can compute points-to information using statement level flow functions
using the points-to information computed for theIn of the statement (instead ofBI) thereby avoiding

redundant computations. Thus at line number 10, we havey
1,1
−−→z and at line number 11 we have

only x
2,1
−−→z. For a call statement, we can use the GPG representing the summary flow function

of the callee instead of propagating the values through the body of the callee. This reduces the
computation of points-to information to an intraprocedural analysis.✷

26 P. Gharat et al.

Bypassing of BI

Our measurements show that using the entireBI of a procedure may be expensive because many
points-to pairs reaching a call may not be accessed by the callee procedure. Thus the efficiency of
computing points-to information can be enhanced significantly by filtering out the points-to infor-
mation which is irrelevant to a procedure but merely passes through it unchanged. This concept of
bypassinghas been successfully used for data flow values of scalars [22; 23]. GPGs support this
naturally for pointers with the help of upwards exposed versions of variables. An upwards exposed
version of a variable in a GPG indicates that there is a use of the variable in the procedure requiring
pointee information from the callers. Thus, the points-to information of such a variable is relevant
and should be a part ofBI. For variables that do not have their corresponding upwardsexposed
versions in a GPG, their points-to information is irrelevant and can be discarded from theBI of the
procedure, effectively bypassing the calls to the procedure.

EXAMPLE 7.3. In our example of Figure 15, the GPG at theOut of line number 11 (which repre-
sents the summary flow function of procedureg) contains upwards exposed versions of variablesx
andz indicating that some pointees ofx andz from the calling context are accessed in the procedure
g. Since theindlev of x′ is 2 which is the source of one of the GPG edge, its pointee is being defined
by g. Thus, pointee ofx needs to be propagated to the procedureg. Similarly, theindlev of z′ is 1
which is the target of an GPG edge specifying that pointee ofz is being assigned to some pointer
in procedureg. Thus, pointees ofx andz are accessed in procedureg but are defined in the calling
context and hence should be part of theBI of procedureg. Note that points-to information ofp or
q is neither accessed nor defined by procedureg and hence can be bypassed. Thus,BIg is not the

union of GPGs at theOut of line numbers 05 and 17. It excludes edges such asp
1,0
−−→c andq

1,0
−−→w

as they are irrelevant to procedureg and hence are bypassed.✷

8. SEMANTICS AND SOUNDNESS OF GPGS

We prove the soundness of points-to analysis using GPGs by establishing the semantics of GPGs in
terms of their effect on memory and then showing that GPGs compute a conservative approximation
of the memory. For this purpose, we make a distinction between aconcrete memoryat a program
point computed along a single control flow path and anabstract memorycomputed along all control
flow paths reaching the program point. The soundness of the abstract memory computed using GPGs
is shown by arguing that it is an over-approximation of concrete memories.

The memory that we have used so far is an abstract memory. Thissection defines concrete mem-
ory and also the semantics of both concrete and abstract memories.

8.1. Notations for Concrete and Abstract Memory

We have already defined acontrol flow pathπ as a sequence of (possibly repeating) program points
q0, q1, . . . , qm. When we talk about a particular control flow pathπ, we usepsucc andppred to
denote successors and predecessors of a program point alongπ. Thus,qi+1 = psucc(π, qi) and
qi = ppred(π, qi+1); psucc∗, ppred∗ denote their reflexive transitive closures. In presence of cycles,
program points could repeat; however, we do not explicate their distinct occurrences for notational
convenience; the context is sufficient to make the distinction.

The concrete memoryat a program point along a control flow pathπ is an association be-
tween pointers and the locations whose addresses they hold and is represented by a func-
tion M : P → (L ∪ {?}). For static analysis, when the effects of multiple control flow paths
reaching a program point are incorporated in the memory, theresulting memory is a relation
M ⊆ P × (L ∪ {?}) as we have already seen in Section 3.1. We call it anabstract memorybe-
cause it is an over-approximation of the union of concrete memories along all paths reaching the
program point.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 27

When concrete and abstract memories need to be distinguished, we denote them byM andM ,
respectively.Mu, π denotes the concrete memory associated with a particular occurrence ofu in a
givenπ whereasMu denotes the memory associated with all occurrences ofu in all possibleπs.

Definition 7 provides an equation to construct a concrete summary flow function∆(π, u, v) by
composing the flow functionsδ of the statements appearing on a control flow pathπ from u to v .

Definition 7: Memory Transformer ∆

∆(π, u, v) := B(π, u, v) ⊓ δ(t , v) ◦∆(π, u, t)

B(π, u, v) :=

∆id v = u

δ(u, v) v ∈ psucc(u)

∅ otherwise

The summary flow function∆(π, u, v) is used to computeMv , π as follows:

Mv , π =
[

∆(u, v)
]

(Mu, π)

8.1.1. Difference between M and M : An Overview. The operations listed in Figure 6 were defined
for abstract memory. An overview of how they differ for the two memories is as follows:

• Edge compositionn ◦ p. This is same for both memories.
• Edge reduction. For a concrete GPG∆, the reductionn ◦ ∆ creates a single edge whereas for

an abstract GPG∆, the reductionn ◦ ∆ could create multiple edges because∆(u, v) needs to
cover all paths fromu to v unlike ∆(π, u, v) which covers only a single control flow pathπ
from u to v .

• GPG application. A concrete memoryM is a function and the updateJeKM reorients the out
edge of the source ofe. An abstract memoryM is a relation and the source ofe may have
multiple edges. This may require under-approximating deletion.

• GPG update. Like GPG application,∆ update is exact whereas∆ update may have to be ap-
proximated.

∆(u, v) should be an over-approximation of∆(π, u, v) for every pathπ from u to v . Hence, the
inclusion of pointees of a pointer is over-approximated while their removal is under-approximated;
the latter requires distinguishing between strong and weakupdates.

8.2. Computing Points-to GPGs ∆(π, u, v) for a Single Control Flow Path

This section formalizes the concept of GPG for points-to analysis over concrete memoryM created
by a program along a single execution path.

In the base case, the program pointsu andv are consecutive and∆(π, u, v) is δ(t , v). When
they are farther apart onπ, consider a program pointt ∈ psucc+(π, u) ∩ ppred(π, v). We define
∆(π, u, v) recursively by extending∆(π, u, t) to incorporate the effect ofδ(t, v) for computing
the concrete memoryM at program pointv fromM atu (Definition 8).

Extending∆(π, u, t) (denoted∆ for simplicity) to incorporate the effect ofδ(t, v) (denoted by
the edgen) involves two steps:

• Reducingn by composing it with edges in∆. This operation is denoted byn ◦ ∆ (i.e. reduce
indlev of n using points-to information in∆). This is explained in Definition 4 which is applicable
to both∆ and∆ uniformly.

• Updating∆ with the reduced edge. This operation is denoted by∆
[

n ◦∆
]

.

The first step is same for both∆ and∆. However, the second step differs and is formulated in
Definition 8 for∆. Unlike Definition 5, the GPG update for∆ is defined in terms of an update using
a single edge. Hence, we define∆[X] = ∆[r] whereX = {r}. This allows us to define GPG update

28 P. Gharat et al.

a

e z

u

x

y b

d

2,0e5

1,0e1 1,0e3

1,0e4

2,0e2

a

e z

v

x

y b

d

1,0e1 1,0e3

1,0e4
1,0
e2

1,0
e5

(a)π = 8-9-10-11-16-17 (b) π = 8-9-13-14-16-17

Fig. 16. ∆ for the two control flow paths in procedureg of Figure 2. The control flow paths are described in terms of line
numbers. Forindlev mn, regardless of the direction of the edge,m is for the source whilen is for the target. The numbers
in the subscripts of edge names (e.g.,ei) indicate the order of their inclusion.

generically in terms of a set of edgesX . Given a reduced edger , the update∆[r], reorients the out
edge of the source whoseindlev matches that inr ; if no such edge exists in∆, r is added to it. For

this purpose, we view∆ as a mappingL × I → L × I and an edgex
i,j
−→y as a pair(x, i) 7→ (y, j)

in ∆ whereI is the set of integers. Then, the update∆
[

x
i,k
−−→z

]

changes the mapping of(x, i) in

∆ to (z, k).

Definition 8: Construction of ∆ /∗ n is δ(t, v) ∗/

∆(π, u, v) :=

{

δ(u, v) v ∈ psucc(π, u)
(

∆(π, u, t)
) [

n ◦∆(π, u, t)
]

t ∈ psucc+(π, u) ∩ ppred(π, v)
where

∆ [X] := ∆ [r] /∗ let X be {r} ∗/

∆ [e] := ∆ [(x, i) 7→ (y, j)] /∗ let e ≡ x
i,j
−→y ∗/

EXAMPLE 8.1. Figure 16 shows the summary flow function along two pathsin procedureg of our
motivating example in Figure 2. The edges are numbered in theorder of their inclusion.✷

8.3. The Semantics of the Application of GPG to Concrete and A bstract Memory

We first define the semantics of∆ toM and then extend it to the application of∆ toM .

8.3.1. The Semantics of the Application of ∆ to M . The initial value of the memory at the start
of a control flow pathπ is M 0 = {(x, ?) | x ∈ L}. SinceM 0 is a total function, anyM computed
by updating it is also a total function. Hence,M is defined for all variables at all program points.
LetM {a} = {b} implying thata points-tob in M . Suppose that, as a consequence of execution of
a statement,a ceases to point tob and instead points toc. The memory resulting from this change is
denoted byM [a 7→ c].

Definition 9 provides the semantics of the application of∆(π, u, v) to Mu, π to computeMv , π

for the control flow pathπ from u to v .

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 29

Definition 9: Semantics of ∆

Mv , π := J∆(π, u, v)KM
where /∗ let ∆ be {e1, e2, . . . ek} ∗/

J∆ KM :=
(

JekK . . .
(

Je2K
(

Je1KM
))

. . .
)

:= JekK . . . Je2KJe1KM
eval(x

i,j
−→y,M) := w

1,0
−−→z wherew = M

i−1
{x}, z = M

j
{y}

JeKM :=M [eval(e,M)]

The applicationof a GPGedgee ≡ x
i,j
−→y to memoryM denotedJeKM , creates a points-to

edge by discovering the locations reached fromx andy through a series of indirections and updates
M by reorienting the existing edges. We define edge application as a two step process:

• Edge evaluationdenotedeval(e,M) returns a points-to edge by discovering the locations

reached indirectly fromx and y wheree ≡ x
i,j
−→y. This operation is similar to edge reduc-

tion (Section 5.1) with minor differences such as, the edgesused for reduction are from memory
M where each edge represents a classical points-to fact and not a generalized points-to fact. The
reduced edger also represents a points-to fact.

• Memory updatedenotedM [e] re-orients the existing edges. It is similar to the GPG update∆ [e].

Suppose the evaluationeval(x
i,j
−→y,M) creates an edgew

1,0
−−→z where w = M

i−1
{x} and

z = M
j
{y}, then the memory updateM

[

x
i,j
−→y

]

results inM [w 7→ z]. Although the two no-

tationsM
[

x
i,j
−→y

]

andM [w 7→ z] look similar, the arrow→ in the first indicates that it is a GPG

edge whereas the arrow7→ in the second indicates that a mapping is being changed. Effectively we

changeMv , π such thatMv , π

i
{x} = Mv , π

j
{y}.

EXAMPLE 8.2. For our motivating example, letM before the call to g be
{(a, ?), (b, ?), (x, a), (y, ?), (z, w)}. The resulting memory after applying∆ of Figure 16(a)
is {(a, w), (b, ?), (x, b), (y, ?), (z, u)}. When we apply ∆ of Figure 16(b) representing
the other control flow path to the sameM before the call tog, the resultingM is
{(a, e), (b, d), (x, b), (y, b), (z, v)}. ✷

8.3.2. The Semantics of the Application of ∆ to M . Definition 10 provides the semantics of
∆(u, v) by showing howMv is computed fromMu .

Definition 10: Semantics of ∆

Mv := J∆(u, v)KMu
where /∗ let ∆ be {e1, e2, . . . ek} ∗/

J∆KM := (Jek, ∆K . . . (Je2, ∆K(Je1, ∆KM)) . . .)

eval(x
i,j
−→y,M) :=

{

w
1,0
−−→z | w ∈ M i−1{x}, z ∈ M j{y}

}

Je,∆KM := eval(e,M) ∪ (M − memkill(e,M,∆))

memkill(e,M,∆) :=
{

e2 | e2 ∈match(e1,M), e1∈ eval(e,M),memsup(e,M,∆)
}

memsup(e,M,∆) ⇔ singledef (e, M) ∧ mustdef (e,∆)

singledef (x
i,j
−→y, M) ⇔ M i−1{x} = {z} ∧ z 6=?

30 P. Gharat et al.

We assume that the pair(x, ?) is included inM for all variables at the start of the program.

M{a} represents the set of pointees ofa. Theapplicationof a GPG edgee ≡ x
i,j
−→y to memory

M denotedJe,∆KM , first evaluates the edgee and then updates the memoryM as follows:

• Edge evaluationreturns a set of edges that are included to compute memoryMv . These are
points-to edges obtained by discovering the locations reached fromx andy through a series of
indirections.

• Memory updateAn update ofM with e is a strong update whene defines a single pointer and its
source ismust defined in∆ (i.e., it is defined along all paths fromu to v).

Unlike edge application toM (Definition 9), edge application toM requires two arguments (Def-
inition 10). The second argument∆ is required to identify that the source of the edgee is must
defined which is not required for computingM becauseM considers only one control flow pathπ
at a time.

The predicatesingledef (x
i,j
−→y, M) asserts that an edgex

i,j
−→y in ∆ defines a single pointer.

Contrast this withdef(X) in Definition 5 which collects the pointers being defined. Observe that

singledef (x
i,j
−→y, M) trivially holds fori = 1. We discover that the source of a GPG edge ismust

defined with the provision of edgesx
1,1
−−→x′ andx′ N,0

−−→s (Section 5.3).singledef (x
i,j
−→y, M)

andmustdef (x
i,j
−→y,∆) are combined to definememsup(e,M,∆) which asserts that an edgee in

∆ can perform strong update ofM .
When a strong update is performed usingmemsup(e,M,∆), we delete all edges inM that match

e which is a reduced form of edgen. These edges are discovered bymatch(e,M). The edges to be
removed (memkill) are characterized much along the lines ofcallkill (Section 6) with a couple of
minor differences:

• The edgee1 now is a result of an evaluation ofe in M rather than reductione ◦ ∆f , and
• matching edgese2 are fromM instead of from∆f .

8.4. Soundness of GPGs

We first show the soundness of∆(π, u, v) for a pathπ from u to v in terms of memoryMv , π

computed from memoryMu, π. Then we show the soundness of∆(u, v) by arguing that it is an
over-approximation of∆(π, u, v) for every pathπ from u to v .

Definition 11: Soundness of ∆ and ∆

Soundness of Concrete Summary Flow Function ∆

eval(n, JpKMu, π) := eval(n ◦ p,Mu, π)

eval(n, J∆ KMu, π) := eval(n ◦∆,Mu, π)

Mv , π = J∆(π, u, v)KMu, π

Soundness of Abstract Summary Flow Function ∆

kill(π, n,Mu, π) :=
{

e1 | e1 ∈ match(e,Mu, π), e ∈ J n KMu, π

}

memkill (n,Mu , ∆(u, v)) ⊆
⋂

π∈Paths(u,v)
kill(π, n,Mu, π)

n ◦∆(u, v) ⊇
⋃

π∈Paths(u,v)
n ◦∆(π, u, v)

J∆(u, v)KMu ⊇
⋃

π∈Paths(u,v)
J∆(π, u, v)KMu, π

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 31

Definition 11 articulates the formal proof obligations for showing soundness. We assume that we
performTS andSS compositions only. Further, theconclusiveness of edge compositions is checked
independently prohibitinginconclusive edge compositions.

8.4.1. Soundness of GPGs for Concrete Memory. We argue below that∆(π, u, v) is sound be-
cause the effect of the reduced edge is identical to the effect of the original edge onMu, π; hence the
evaluation of an edgen in the resulting memory computed after application ofp to Mu, π, is same
as the evaluation of the reduced edgen ◦ p in Mu, π.

LEMMA 8.1. Consider a memoryM
′

resulting from application of a GPG edgep to M . The
evaluation of an edgen in M

′
is identical to the evaluation of the reduced edger in M where

r = n ◦ p.

eval(n, JpKMu, π) = eval(n ◦ p,Mu, π) (8.1.a)

PROOF. The lemma trivially follows whenn andp do not compose because they have indepen-
dent effects onMu, π provided the order of execution is followed.

ConsiderTS composition forn ◦ p. Let edgen ≡ x
i,j
−→y and edgep ≡ y

k,l
−−→z. From Sec-

tion 4.2,n ◦ p = x
i,(l+j−k)
−−−−−−→z for a useful edge composition.

• For the RHS of (8.1.a), the evaluation ofn ◦ p in Mu, π results inJ n ◦ p KMu, π = s1
1,0
−−→t1

wheres1 = Mu, π
i−1

{x} andt1 = Mu, π
l+j−k

{z}. Thus edges1
1,0
−−→ t1 imposes the constraint

Mu, π
i
{x} = Mu, π

l+j−k
{z} (8.1.b)

• For the LHS of (8.1.a), the evaluation of edgep updates Mu, π as follows

Mu, π [p] = Mu, π[s2 7→ t2] where the pointer s2 = Mu, π
k−1

{y} and the pointee

t2 = Mu, π
l
{z}. M

′
is defined in terms ofMu, π by the following constraint resulting

from the inclusion of the edges2
1,0
−−→t2.

Mu, π
k
{y} = Mu, π

l
{z} (8.1.c)

The evaluation ofn in the updated memoryM
′
= JpKMu, π results ineval(n,M

′
) = s3

1,0
−−→t3

wheres3 =
(

M
′)i−1

{x} andt3 =
(

M
′)j

{y}. Edges3
1,0
−−→t3 imposes the following constraint

onM
′
.

(

M
′)i

{x} =
(

M
′)j

{y}

In order to map this constraint toMu, π, we need to combine it with constraint (8.1.c), replace

M
′
byMu, π and solve them together.

Mu, π

i
{x} = Mu, π

j
{y} ∧ Mu, π

k
{y} = Mu, π

l
{z}

⇒ Mu, π

i
{x} = Mu, π

j
{y} ∧ Mu, π

k+(j−k)
{y} = Mu, π

l+(j−k)
{z}

⇒ Mu, π

i
{x} = Mu, π

l+j−k
{z} (8.1.d)

Constraint (8.1.d) is identical to constraint (8.1.b). Since the effect on the memory is identical, the
two evaluations are identical.

The equivalence of evaluations forSS composition betweenn andp can be proved in a similar
manner.

32 P. Gharat et al.

LEMMA 8.2. Consider a memoryM
′
resulting from application of a GPG∆ to M . The eval-

uation of an edgen in M
′
is identical to the evaluation of the reduced edgesn ◦∆ in M .

eval(n,
q
∆

y
Mu, π) = eval(n ◦∆,Mu, π)

PROOF. Let ∆m denote∆(π, u, v), where the subpath ofπ from u to v containsm pointer
assignment statements. We prove the lemma by induction onm. From Definition 8,

∆m = ∆m−1

[

em ◦∆m−1

]

(8.2.a)

= ∆m−1 [e] wheree = em ◦∆m−1 (8.2.b)

For basism = 1, ∆1 contains a single edge and∆0 = ∅. Hence the basis holds from Lemma 8.1.
For the inductive hypothesis, assume

eval(n,
q
∆m

y
Mu, π) = eval(n ◦∆m,Mu, π) (8.2.c)

To prove,

eval(n,
q
∆m+1

y
Mu, π) = eval(n ◦∆m+1,Mu, π)

Form+ 1, the RHS of (8.2.c) becomes

eval(n ◦∆m+1,Mu, π)

⇒ eval
(

n ◦
(

∆m[em+1 ◦∆m]
)

,Mu, π
)

(using (8.2.a) for∆m+1)

⇒ eval
(

n ◦
(

∆m[e]
)

,Mu, π
)

(let em+1 ◦∆m = e) (8.2.d)

⇒ eval
(

n,
q
∆m[e]

y
Mu, π

)

(from (8.2.d) and (8.2.c)) (8.2.e)

⇒ eval(n,
q
∆m+1

y
Mu, π) (from (8.2.e) and (8.2.b))

Hence the lemma.

THEOREM 8.3. (Soundness of∆). Let a control flow pathπ fromu to v containk statements.
Then,Mv , π =

q
∆(π, u, v)

y
Mu, π

PROOF. From Lemma 8.2, the effect of the reduced forme ◦∆ of an edgee on memoryMu, π
is identical to the effect ofe on the resulting memory obtained after GPG application of∆ toMu, π.
This holds for every edge in∆ and the theorem follows from induction on the number of statements
covered by∆.

8.4.2. Soundness of GPGs for Abstract Memory. We argue below that∆(u, v) is sound because it
under-approximates the removal of GPG edges and over-approximates the inclusion of GPG edges
compared to∆(π, u, v) for anyπ from u to v .

In order to relateMu, π andMu (i.e., concrete and abstract memory), we rewrite the update
operation for concrete memory (Definition 9) which reorients the edges without explicitly defining
the edges being removed. We explicate the edges being removed by rewriting the equation as:

JnKMu, π =
(

Mu, π − kill(π, n,Mu, π)
)

∪ eval(n,Mu, π) (6)

kill(π, n,Mu, π) =
{

e1
∣

∣ e1 ∈ match(e,Mu, π), e ∈ eval(n,Mu, π)
}

(7)

Let Paths(u, v) denote the set of all control flow paths fromu to v .

LEMMA 8.4. Abstract summary flow function under-approximates the removal of information.

memkill (n,Mu , ∆(u, v)) ⊆
⋂

π∈Paths(u,v)

kill(π, n,Mu, π) (8.4.a)

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 33

01 void f()
02 {
03 fp = p;
04 x = &a;
05 g(fp);
06 fp = q;
07 z = &b;
08 g(fp);
09 z = &c;
10 g(fp);
11 }
12 void g(fp)
13 {
14 fp();
15 }

16 void p()
17 {
18 y = x;
19 }
20 void q()
21 {
22 y = z;
23 }

Fig. 17. An example demonstrating the top-down traversal of call graph for handling function pointers.

PROOF. Observe thatmemkill (Definition 10) is more conservative thankill (Equation 7) because
it additionally requires thatn should cause a strong update. From Definition 10, for causinga strong
update,n must be defined along every path and the removable edges must define the same source
along every path. Hence 8.4.a follows.

LEMMA 8.5. Abstract summary flow function over-approximates the inclusion of information.

PROOF. Since the rules of composition are same for both∆ and∆, it follows from Definition 4
that,

n ◦∆(u, v) ⊇
⋃

π∈Paths(u,v)

n ◦∆(π, u, v)

THEOREM 8.6. (Soundness of∆). Abstract summary flow function∆(u, v) is a sound approx-
imation of all concrete summary flow functions∆(π, u, v).

J∆(u, v)KMu ⊇
⋃

π∈Paths(u,v)

q
∆(π, u, v)

y
Mu, π

PROOF. It follows because killing of points-to information is under-approximated (Lemma 8.4)
and generation of points-to information is over-approximated (Lemma 8.5).

9. HANDLING ADVANCED FEATURES FOR POINTS-TO ANALYSIS USING GPGS

So far we have created the concept of GPGs for (possibly transitive) pointers to scalars allocated on
stack or in the static area. This section extends the concepts to data structures created using C style
structor unionand possibly allocated on heap too, apart from stack and static area.

We also show how to handle arrays, pointer arithmetic, and interprocedural analysis in the pres-
ence of function pointers.

9.1. Handling Function Pointers

In the presence of indirect calls (eg. a call through a function pointer in C), the callee procedure is not
known at compile time. In our case, construction of the GPG ofa procedure requires incorporating

34 P. Gharat et al.

Pointer assignment GPG edge Alternative GPG edge

x = new. . . x
[∗],[∗]
−−−→h0 —

x = y.n x
[∗],[∗]
−−−→y.n x

[∗],[n]
−−−−→y

x.n = y x.n
[∗],[∗]
−−−→y x

[n],[∗]
−−−−→y

x = y → n x
[∗],[∗,n]
−−−−−→y —

x → n = y x
[∗,n],[∗]
−−−−−→y —

Fig. 18. GPG edges with indirection lists (indlist) for basic pointer assignments in C for structures and heap.hi is the heap
location at the allocation sitei. ∗ is the dereference operator.

the effect of the GPGs of all its callees. In the presence of indirect calls, we would not know the
callees whose GPGs should be used at an indirect call site.

If the function pointers are defined locally, their effect can be handled easily because the pointees
of function pointers would be available during GPG construction. Consider the function pointers
that are passed as parameters or global function pointers that are defined in the callers. A top-down
interprocedural points-to analysis would be able to handlesuch function pointers naturally because
the information flows from callers to callees and hence the pointees of function pointers would be
known at the call sites. However, a bottom-up interprocedural analysis such as ours, works in two
phases and the information flows from

• the callees to callers when GPGs are constructed, and from
• the callers to callees when GPGs are used for computing the points-to information.

By default, the function pointer values are available only in the second phase whereas they are
actually required in the first phase.

A bottom-up approach requires that the summary of a callee procedure should be constructed
before its calls in caller procedures are processed. If a proceduref calls procedureg, this require-
ment can be satisfied by beginning to construct the GPG off before that ofg; when a call tog is
encountered, the GPG construction off can be suspended andg can be processed completely by
constructing its GPG before resuming the GPG construction of f . Thus, we can traverse the call
graph top-down andyetconstruct bottom-up context independent summary flow functions. We start
the GPG construction with themain procedure and suspend the construction of its GPG∆main when
a call is encountered and then analyze the callee first. Afterthe completion of construction of GPG
of the callee, then the construction of∆main is resumed. Thus, the construction of GPG of callees is
completed before the construction of GPG of their caller. Inthe process, we collect the pointees of
function pointers along the way during the top-down traversal. These values (i.e., only the function
pointer values) from the calling contexts are used to build the GPGs.

Observe that a GPG so constructed is context independent forthe rest of the pointers but is
customized for a specific value of a function pointer that is passed as a parameter or is defined
globally. In other words, a procedure with an indirect call should have different GPGs for distinct
values of function pointer for context-sensitivity. This is important because the call chains starting
at a call through a function pointer in that procedure could be different.

EXAMPLE 9.1. In the example of Figure 17, we first analyze proceduref as we traverse the call
graph top-down and suspend the construction of its GPG at thecall site at line number 05 to analyze
its callee which is procedureg. We construct a customized GPG for procedureg with fp = p.
The pointee information ofx is not used for GPG construction ofg. In procedureg, there is a call
through function pointer whose value isp as extracted from the calling context, we now suspend the
GPG construction ofg and the GPG ofp is constructed first and its effect is incorporated ing with

∆ = {y
1,1
−−→x}. We then resume with the GPG construction of proceduref by incorporating the

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 35

struct node *x, *y;
struct node z;

01 struct node{
02 {
03 struct node *m, *n;
04 };

05 void f()
06 {
07 x = malloc(...);
08 y = x;
09 w = y->n;
10 g();
11 }

12 void g()
13 {
14 while(...) {
15 y = x->m;
16 x = y->n;
17 }
18 z.m = x;
19 }

Fig. 19. An example for modelling structures and heap.

effect of procedureg at line number 05 which results in a reduced edgey
1,0
−−→a by performing the

required edge compositions.
At the call site at line number 07, procedureg is analyzed again with a different value offpand this

time procedureq is the callee which is analyzed and whose effect is incorporated to construct GPG

for procedureg with ∆ = {y
1,1
−−→z} for fp = q. Note that procedureg has two GPGs constructed

for different values of function pointerfp so far encountered. However, procedurep andq has only
one GPG as they do not have any calls through function pointers. At line number 07,y now points

to b asz points tob (because∆g = {y
1,1
−−→z} for fp = q).

The third call tog at line number 10 does not require re-analysis of procedureg as GPG is already

constructed because value offp is not changed. So GPG of procedureg ∆g = {y
1,1
−−→z} for fp = q

is reused at line number 10. The pointee ofy however is nowc as the pointee ofz has changed.✷

9.2. Handling Structures, Unions, and Heap Data

In this section, we describe the construction of GPGs for pointers to structures, unions, and heap
allocated data. We use allocation site based abstraction for heap in which all locations allocated at
a particular allocation site are over-approximated and aretreated alike. This approximation allows
us to handle the unbounded nature of heap as if it were bounded. However, since the allocation
site might not be available during GPG construction phase (because it could occur in the callers),
the heap accesses within a loop may remain unbounded and we need a summarization technique to
bound them. This section first introduces the concept of indirection lists (indlist) for handling struc-
tures and heap accesses which is then followed by an explanation of the summarization technique
we have used.

Figure 18 illustrates the GPG edges corresponding to the basic pointer assignments in C for

structures and heap. Theindlev “ i, j” of an edgex
i,j
−→y representsi dereferences ofx andj deref-

erences ofy. We can also view theindlev “ i, j” as lists (also referred to as indirection list orindlist)
containing the dereference operator (∗) of lengthi andj. This representation naturally allows han-
dling structures and heap field-sensitively by using indirection lists containing field dereferences.
With this view, we can represent the two statements at line numbers 08 and 09 in the example of
Figure 19 by GPG edges in the following two ways:

36 P. Gharat et al.

• Field-Sensitively.y
[∗],[∗]
−−−→x andw

[∗],[∗,n]
−−−−−→y; field-sensitivity is achieved by enumerating the

field dereferences.
• Field-Insensitively.y

1,1
−−→x andw

1,2
−−→y; no distinction made between any field dereference.6

The dereference in the pointer expressiony → n on line 09 is represented by anindlist [∗, n] as-
sociated with the pointer variabley. On the other hand, the accessz.m on line 18 can be mapped
to location by adding the offset ofm to the virtual address ofz at compile time. Hence, it can be
treated as a separate variable which is represented by a nodez.m with an indlist [∗] in the GPG.
We can also representz.m with a nodez and anindlist [m]. For our implementation, we chose the
former representation forz.m. For structures and heap, we ensure field-sensitivity by maintaining
indlist in terms of field names. Unions are handled similarly to structures.

Recall that an edge compositionn ◦ p involves balancing theindlev of the pivot inn andp. With
indlist replacingindlev, the operations remain similar in spirit although now they become operations
on lists rather than operations on numbers. To motivate the operations onindlist, let us recall the
operations onindlev as illustrated in the following example.
EXAMPLE 9.2. Consider the example in Figure 19. Edge compositionn ◦ p requires balancing
indlev s of the pivot (Section 4) which involves computing the difference between theindlev of the
pivot in n andp. This difference is then added to theindlev of the non-pivot node inn or p. Recall
that an edge composition is useful (Section 4.2) only when the indlev of the pivot inn is greater than

or equal to theindlev of the pivot inp. Thus, in our example withp ≡ y
1,1
−−→x andn ≡ w

1,2
−−→y

with y as pivot, an edge composition is useful becauseindlev of y in n (which is 2) is greater than
indlev of y in p (which is 1). The difference (2-1) is added to theindlev of x (which is 1) resulting

in an reduced edger ≡ w
1,(2−1+1)
−−−−−−→x. ✷

Analogously we can define similar operations forindlist. An edge composition is useful if the
indlist of the pivot in edgep is a prefix of theindlist of the pivot in edgen. In our example, the
indlist of y in p (which is [∗]) is a prefix of the indlist ofy in n (which is [∗, n]) and hence the edge
composition is useful. The addition of the difference in theindlevs of the pivot to theindlev of one
of the other two nodes is replaced by an append operation denoted by #.

The operation of computing the difference in theindlev of the pivot is replaced by the remainder
operationremainder : indlist × indlist → indlist which takes twoindlist s as its arguments where first
is a prefix of the second and returns the suffix of the secondindlist that remains after removing the
first indlist from it. Givenil2 = il1 # il3, remainder(il1, il2) = il3. Note thatil3 is ǫ whenil1 = il2.
Furtherremainder(il1, il2) is not computed whenil1 is not a prefix ofil2.
EXAMPLE 9.3. In our example,remainder([∗], [∗, n]) returns[n] and thisindlist is appended to the
indlist of nodex (which is [∗]) resulting in a newindlist [∗] # [n] = [∗, n] and a reduced edge

w
[∗],[∗,n]
−−−−−→x. ✷
Under the allocation site based abstraction for heap, line number 07 of proceduref can be viewed

as a GPG edgex
1,0
−−→heap07 where heap07 is the heap location created at this allocation site. We

expect the heap to be bounded by this abstraction but the allocation site may not be available during
the GPG construction as is the case in our example where heap is accessed through pointersx and
y in a loop in procedureg whereas allocation site is available in proceduref at line 07.
EXAMPLE 9.4. The fixed point computation for the loop in procedureg will never terminate as the
length of the indirection list keeps on increasing. In the first iteration of the loop, at its exit, the

edge composition results into a reduced edgex
[∗],[∗,m,n]
−−−−−−→y. In the next iteration, the reduced edge

is nowx
[∗],[∗,m,n,m,n]
−−−−−−−−−→y indicating the access pattern of heap. This continues as thelength of the

indirection list keeps on increasing leading to a non-terminating sequence of computations. Heap

6This does not matter for the first edge but matters for the second edge.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 37

access where the allocation site is locally available does not face this problem of non-termination.
✷

This indicates the need of a summarization technique. We bound the indirection lists byk-limiting
technique which limits the length of indirection lists uptok dereferences. All dereferences beyond
k are treated as an unbounded number of field insensitive dereferences.

Note that an explicit summarization is required only for heap locations and not for stack locations
because theindlist s can grow without bound only for heap locations.

9.3. Using SSA Form for Compact GPGs

Although the Static Single Assignment (SSA) form is not a language feature, it is ubiquitous in any
real IR of practical programs. In this section we show how we have used the SSA productively to
make our analysis more efficient and construct compact GPGs.

SSA form makes use-def chains explicit in the IR because every use has exactly one definition
reaching it and every definition dominates all its uses. Thusfor every local non-address taken vari-
able, we traverse the SSA chains transitively until we reacha statement whose right hand side has
an address taken variable, a global variable, or a formal parameter. In the process, all definitions
involving SSA variables on the left hand side are skipped.

EXAMPLE 9.5. Consider the code snippet in its SSA form on the right. The GPG edgex 1
1,0
−−→a

s1 : x 1 = &a;
s2 : y = x 1;

corresponding to statements1 is not added to the GPG. Statements2 defines a
global pointery which is assigned the pointee ofx 1 (use ofx 1). The explicit
use of use-def chain helps to identify the pointee ofx 1 even though there is no corresponding edge

in the GPG. SSA resolution leads to an edgey
1,0
−−→a which is the desired result, also indicating the

fact that SSA resolution is similar to edge composition.✷

The use of SSA has the following two advantages:

• The GPG size is small because local variables are eliminated.
• No special filtering required for eliminating local variables from the summary flow function of a

procedure. These local variables are not in the scope of the callers and hence should be eliminated
before a summary flow function is used at its call sites.

Both of them aid efficiency.

9.4. Handling Arrays, Pointer Arithmetic, and Address Esca ping Locals

An array is treated as a single variable in the following sense: Accessing a particular element is seen
as accessing every possible element and updates are treatedas weak updates. This applies to both
the situations: when arrays of pointers are manipulated, aswell as when arrays are accessed through
pointers. Since there is no kill, arrays are maintained flow-insensitively by our analysis.

For pointer arithmetic, we approximate the pointer being defined to point to every possible loca-
tion. All address taken local variables in a procedure are treated as global variables because they can
the escape the scope of the procedure. However, these variables are not strongly updated because
they could represent multiple locations.

38
P.G

haratetal.

Program kLoC
of Time for GPG based approach (in seconds) Avg. # of pointees per pointer Avg. # of pointees

pointer GPG computing points-to info GPG GCC LFCPA per dereference

stmts Constr. GPG
NoByp

GPG
Byp

Stmt-ff
NoByp

Stmt-ff
Byp

G/NoByp
(per stmt)

G/Byp
(per stmt)

L+Arr
(per proc)

G+L+Arr
(per proc)

G+L+Arr
(per stmt)GPG GCC LFCPA

A B C D E F G H I J K L M N O

lbm 0.9 370 0.10 0.22 0.21 0.26 0.28 1.31 1.42 2.21 17.74 0.05 1.09 2.25 1.50
mcf 1.6 480 75.29 33.73 30.05 1.25 0.91 18.73 6.10 10.48 34.74 1.22 4.25 2.57 0.62
libquantum 2.6 340 6.47 10.23 1.95 8.21 1.85 139.50 22.50 1.11 4.49 3.34 1.50 2.93 0.83
bzip2 5.7 1650 3.17 11.11 8.71 4.73 3.30 43.39 8.38 1.89 31.46 0.94 1.72 2.94 0.33
milc 9.5 2540 7.36 6.08 5.89 4.29 5.61 21.15 16.32 4.52 14.06 31.73 1.18 2.58 1.61
sjeng 10.5 700 9.36 39.66 25.75 14.75 7.56 445.22 64.81 3.07 2.68 - 0.98 2.71 -
hmmer 20.6 6790 38.23 51.73 14.86 31.32 13.50 43.49 5.85 6.05 59.35 1.56 1.04 3.62 0.91
h264ref 36.1 17770 208.47 1262.07 199.34 457.26 74.62 219.71 9.24 16.29 98.84 - 0.98 3.97 -
gobmk 158.0 212830 652.78 3652.991624.461582.621373.88 11.98 1.73 6.34 4.08 - 0.65 3.71 -

Program
of
call
sites

of
procs.

Proc. count for
different buckets of

of calls

of procs. requiring different
no. of PTFs based on the
no. of aliasing patterns

of procs. for different
sizes of GPG in terms
of the number of edges

of procs. for
different % of context

ind. info.
of

inconclusive
compositions(reuse of GPGs) Actually observed Predicted (for non-empty GPGs)

2-5 5-10 10-20 20+ 2-5 6-10 11-15 15+ 2-5 15+ 0 1-2 3-4 5-8 9-50 50+ <20 20-40 40-6060+
P Q R S T U V W

lbm 30 19 5 0 0 0 8 0 0 0 13 0 13 4 2 0 0 0 3 0 0 3 0
mcf 29 23 11 0 0 0 0 0 0 0 4 0 10 5 2 3 2 1 5 1 1 6 1
libquantum 277 80 24 11 4 3 7 3 1 0 14 4 42 10 7 12 9 0 20 12 1 5 0
bzip2 288 89 35 7 2 1 22 0 0 0 28 2 62 13 4 5 5 0 26 0 0 1 1
milc 782 190 60 15 9 1 37 8 0 1 35 25 157 11 19 2 7 0 6 10 9 14 3
sjeng 726 133 46 20 5 6 14 3 1 3 10 14 99 20 6 3 5 0 3 4 10 17 0
hmmer 1328 275 93 33 22 11 62 5 3 4 88 32 167 56 20 15 15 2 54 20 11 23 4
h264ref 2393 566 171 60 22 16 85 17 5 3 102 46 419 76 23 15 30 3 54 13 27 53 8
gobmk 9379 2697317 110 99 134 206 30 9 10 210 121 1374 93 8 1083 97 42 41 1192 39 51 0

Fig. 20. Time, precision, size, and effectiveness measurements for GPG Based Points-to Analysis. Byp (Bypassing), NoByp (No Bypassing),Stmt-ff (Statement-level flow
functions), G (Global pointers), L (Local pointers), Arr (Array pointers).

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 39

10. IMPLEMENTATION AND MEASUREMENTS

We have implemented GPG based points-to analysis in GCC 4.7.2 using the LTO framework and
have carried out measurements on SPEC CPU2006 benchmarks ona machine with 16 GB RAM
with 8 64-bit Intel i7-4770 CPUs running at 3.40GHz. Figure 20 provides the empirical data.

Our method eliminates local variables using the SSA form andGPGs are computed only for
global variables. Eventually, the points-to information for local variables is computed from that of
global variables and parameters. Heap memory is approximated by maintaining indirection lists of
field dereferences of length 2 (see Section 9.2). Unlike the conventional approaches [33; 35; 36], our
summary flow functions do not depend on aliasing at the call points. The actually observed num-
ber of aliasing patterns (columnS in Figure 20) suggests that it is undesirable to indiscriminately
construct multiple PTFs for a procedure.

ColumnsA, B, P , andQ in Figure 20 present the details of the benchmarks. ColumnC provides
the time required for the first phase of our analysis i.e., computing GPGs. The computation of
points-to information at each program point has four variants (using GPGs orStmt-ffwith or without
bypassing). Their time measurements are provided in columnsD, E, F , andG. Our data indicates
that the most efficient method for computing points-to information is to use statement-level flow
functions and bypassing (columnG).

Our analysis computes points-to information flow-sensitively for globals. The following points-
to information is stored flow-insensitively: locals (because they are in the SSA form) and arrays
(because their updates are conservative). Hence, we have separate columns for globals (columnsH
andI) and locals+arrays (columnJ) for GPGs. GCC-PTA computes points-to information flow-
insensitively (columnK) whereas LFCPA computes it flow-sensitively (columnL).

The second table provides measurements about the effectiveness of summary flow functions
in terms of (a) compactness of GPGs,(b) percentage of context independent information, and
(c) reusability. ColumnU shows that GPGs for a large number of procedures have 0 edges because
they do not manipulate global pointers. Besides, in six out of nine benchmarks, most procedures
with non-empty GPGs have a significantly high percentage of context independent information
(columnV). Thus a top-down approach may involve redundant computations on multiple visits to
a procedure whereas a bottom-up approach may not need much work for incorporating the effect of
a callee’s GPG into that of its callers. Further, many procedures are called multiple times indicating
a high reuse of GPGs (columnR).

Interestingly, computing points-to information using summary flow functions seems to take much
more time than constructing summary flow functions. As discussed in Section 7, computing points-
to information at every program point within a procedure using theBI of the procedure and the
summary flow function (∆) is expensive because of the cumulative effect of the∆. The time mea-
surements (columnsF andG) confirm the observation that the application of statement-level flow
functions is much more efficient than the application of GPGsfor computing points-to information
at every program point. These measurements also highlight the gain in efficiency achieved because
of the bypassing technique [22; 23]. Bypassing technique helps to reduce the size of theBI of a
procedure by propagating only the relevant information.

The effectiveness of bypassing is evident from the time measurements (columnsE andG) as well
as a reduction in the average number of points-to pairs (column I). We have applied the bypassing
technique only to the flow-sensitive points-to information.

We have compared our analysis with GCC-PTA and LFCPA [17]. The number of points-to pairs
per function for GCC-PTA (columnK) is large because it is partially flow-sensitive (because ofthe
SSA form) and context-insensitive. The number of points-topairs per statements is much smaller for
LFCPA (columnL) because it is liveness-based. However LFCPA which in our opinion represents
the state of the art in fully flow- and context-sensitive exhaustive points-to analysis, does not seem to
scale beyond 35 kLoC. We have computed the average number of pointees of dereferenced variables
which is maximum for GCC-PTA (columnN) and minimum for LFCPA (columnO) because it is
liveness driven. The points-to information computed by these methods is incomparable because they

40 P. Gharat et al.

employ radically dissimilar features of points-to information such as flow- and context-sensitivity,
liveness, and bypassing.

11. RELATED WORK

In this section, we briefly review the literature related to flow- and context-sensitive analyses. As de-
scribed earlier in Section 1, a context-sensitive interprocedural analysis may visit the procedures in
a program by traversing its call graph top-down or bottom-up. A top-down approach propagates the
information from callers to callees [36]. In the process, itanalyzes a procedure each time a new data
flow value reaches a procedure from some call. Since the information is propagated from callers
to callees, all information that may be required for analyzing a procedure is readily available. A
bottom-up approach, on the other hand, avoids analyzing procedures multiple times by constructing
summary flow functionswhich are used in the calling contexts to incorporate the effect of procedure
calls. Since the callers’ information is not available, analyzing a procedure requires a convenient
encoding of accesses of variables which are defined in the caller procedures. The effectiveness of a
bottom-up approach crucially depends on the choice of representation of procedure summaries. For
some analyses, the choice of representation is not obvious.In the absence of pointers, procedure
summaries for bit-vector frameworks can be easily represented byGen andKill sets whose compu-
tation does not require any information from the calling context [15]. In the presence of pointers,
the representation needs to model unknown locations indirectly accessed through pointers that may
have been defined in the callers.

Section 2 introduced two broad categories of constructing summary flow functions for points-to
analysis. Some methods using placeholders require aliasing information in the calling contexts and
construct multiple summary flow functions per procedure [33; 36]. Other methods do not make any
assumptions about the calling contexts [18; 19; 28; 31; 32] but they construct larger summary flow
functions causing inefficiency in fixed point computation atthe intraprocedural level thereby pro-
hibiting flow-sensitivity for scalability. Also, these methods cannot perform strong updates thereby
losing precision.

Among the general frameworks for constructing procedure summaries, the formalism proposed
by Sharir and Pnueli [29] is limited to finite lattices of dataflow values. It was implemented using
graph reachability in [20; 26; 27]. A general technique for constructing procedure summaries [9] has
been applied to unary uninterpreted functions and linear arithmetic. However, the program model
does not include pointers.

Symbolic procedure summaries [33; 35] involve computing preconditions and corresponding
postconditions (in terms of aliases). A calling context is matched against a precondition and the
corresponding postcondition gives the result. However, the number of calling contexts in a program
could be unbounded hence constructing summaries for all calling contexts could lose scalability.
This method requires statement-level transformers to be closed under composition; a requirement
which is not satisfied by points-to analysis (as mentioned inSection 2). We overcome this problem
using generalized points-to facts. Saturn [10] also creates summaries that are sound but may not be
precise across applications because they depend on contextinformation.

Some approaches use customized summaries and combine the top-down and bottom-up analyses
to construct summaries for only those calling contexts thatoccur in a given program [36]. This
choice is controlled by the number of times a procedure is called. If this number exceeds a fixed
threshold, a summary is constructed using the information of the calling contexts that have been
recorded for that procedure. A new calling context may lead to generating a new precondition and
hence a new summary.

GPGs handle function pointers efficiently and precisely by traversing the call graph top-down
and yet construct bottom-up summary flow functions (see Section 9.1). The conventional ap-
proaches [19; 31; 32] perform type analysis for identifyingthe callee procedures for indirect calls
through function pointers. All functions matching the typeof a given function pointer are con-
servatively considered as potential callees thereby over-approximating the call graph significantly.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 41

The PTF approach [33] suspends the summary construction when it encounters an indirect call and
traverse the call graph bottom-up until all pointees of the function pointer are discovered.

Although GPGs use allocation-site based heap abstraction,they additionally needk-limiting sum-
marization as explained in Section 9.2. The approaches [19;31; 32; 33] use allocation-site based
heap abstraction. Since they use as many placeholders as required explicating each location in a
pointee chain, they do not requirek-limiting summarization.

On the use of graphs for representing summary flow functions

Observe that all approaches that we have seen so far use graphs to represent summary flow func-
tions of a procedure. The interprocedural analysis via graph reachability [26] also represents a flow
function using a graph. LetD denote the set of data flow values. Then a flow function2D → 2D

is modelled as a set of functionsD → D and is represented using a graph containing2 · |D| nodes
and at most(|D|+ 1)2 edges. Each edge maps a value inD to a value inD; this is very convenient
because the function composition simply reduces to traversing a path created by adjacent edges,
therefore the term reachability. Also, the meet operation on data flow values now reduces to the
meet on the edges of the graph.

A graph representation is appropriate for a summary flow function only if each edge in the graph
has its independent effect irrespective of the other edges in the graph. Graph reachability ensures
this by requiring the flow functions to be distributive: If a function2D → 2D distributes over a
meet operator⊓ then it can be modelled as a set of unary functionsD → D. However, graph
reachability can also model some non-distributive flow functions. Consider a flow function for a
statementy = x%4 for constant propagation framework. This function does notdistribute over⊓
defined for the usual constant propagation lattice [15] becausef(10 ⊓ 6) = f(⊥) = ⊥ whereas
f(10) ⊓ f(6) = 2 ⊓ 2 = 2. However, this function can be represented by an edge in a graph fromx
to y. Thus distributivity is a sufficient requirement for graph reachability but is not necessary. The
necessary condition for graph reachability is that a flow function should be representable in terms
of a collection of unary flow functions.

Representing a pointer assignment∗x = y requires modelling the pointees ofx as well asy.
With the classical points-to relations, this function doesnot remain a unary function. Similarly, a
statementx = ∗y requires modelling the pointees of pointees ofy and this function too does not
remain a unary function with classical points-to relations. It is for this reason that the state of the
art uses placeholders to represent unknown locations, suchas pointees ofx andy in this case. Use
of place holders allows modelling the functions for statements ∗x = y or x = ∗y in terms of a
collection of unary flow functions facilitating the use of graphs in which edge can have its own well
defined independent effect. GPGs usesindlev with the edges to represent pointer indirections and
hence, model the effect of pointer assignments in terms of unary flow functions.

Graph reachability fails to represent indirect accesses through pointers.

12. CONCLUSIONS AND FUTURE WORK

Constructing bounded summary flow functions for flow- and context-sensitive points-to analysis
seems hard because it requires modelling unknown locationsaccessed indirectly through pointers—
a callee procedure’s summary flow function is created without looking at the statements in the caller
procedures. Conventionally, they have been modelled usingplaceholders. However, a fundamental
problem with the placeholders is that they explicate the unknown locations by naming them. This
results in either(a) a large number of placeholders, or(b) multiple summary flow functions for
different aliasing patterns in the calling contexts. We propose the concept of generalized points-
to graph (GPG) whose edges track indirection levels and represent generalized points-to facts. A
simple arithmetic on indirection levels allows composing generalized points-to facts to create new
generalized points-to facts with smaller indirection levels; this reduces them progressively to classi-
cal points-to facts. Since unknown locations are left implicit, no information about aliasing patterns
in the calling contexts is required allowing us to constructa single GPG per procedure. GPGs are

42 P. Gharat et al.

linearly bounded by the number of variables, are flow-sensitive, and are able to perform strong
updates within calling contexts. Further, GPGs inherentlysupport bypassing of irrelevant points-to
information thereby aiding scalability significantly.

Our measurements on SPEC benchmarks show that GPGs are smallenough to scale fully flow-
and context-sensitive exhaustive points-to analysis to programs as large as 158 kLoC (as compared
to 35 kLoC of LFCPA [17]). We expect to scale the method to still larger programs by(a) using
memoisation, and(b) constructing and applying GPGs incrementally thereby eliminating redundan-
cies within fixed point computations.

Observe that a GPG edgex
i,j
−→y in M also asserts an alias relation betweenM i{x} andM j{y}

and hence GPGs generalize both points-to and alias relations.
The concept of GPG provides a useful abstraction of memory involving pointers. The way matri-

ces represent values as well as transformations, GPGs represent memory as well as memory trans-
formers defined in terms of loading, storing, and copying memory addresses. Any analysis that is
influenced by these operations may be able to use GPGs by combining them with the original
abstractions of the analysis. We plan to explore this direction in the future.

In presence of pointers, current analyses use externally supplied points-to information. Even if
this information is computed context-sensitively, its useby other analyses is context-insensitive
because at the end of the points-to analysis, the points-to information is conflated across all contexts
at a given program point. GPGs on the other hand, allows otheranalyses to use points-to information
that is valid for each context separately by performing joint analyses. Observe that joint context-
sensitive analyses may be more precise than two separately context-sensitive cascaded analyses. We
also plan to explore this direction of work in future.

Acknowledgments.

The paper has benefited from the feedback of many people; in particular, Supratik Chakraborty
and Sriram Srinivasan gave excellent suggestions for improving the accessibility of the paper. Our
ideas have also benefited from discussions with Amitabha Sanyal, Supratim Biswas, and Venkatesh
Chopella. The seeds of GPGs were explored in a very differentform in the Master’s thesis of Shub-
hangi Agrawal in 2010.

REFERENCES

Thomas Ball and Sriram K. Rajamani. The slam project: Debugging system software via static analysis. InProceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’02, pages 1–3, New
York, NY, USA, 2002. ACM.

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software verification: Concretizing the conver-
gence of model checking and program analysis. InProceedings of the 19th International Conference on Computer
Aided Verification, CAV’07, pages 504–518, Berlin, Heidelberg, 2007. Springer-Verlag.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool forchecking ANSI-C programs. InIn Tools and Algorithms for
the Construction and Analysis of Systems, pages 168–176. Springer, 2004.

Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic graph algorithms. In Mikhail J. Atallahand
Marina Blanton, editors,Algorithms and Theory of Computation Handbook, pages 9.1–9.14. Chapman & Hall/CRC,
2010.

Camil Demetrescu and Giuseppe F. Italiano. Mantaining dynamic matrices for fully dynamic transitive closure.Algorithmica,
51(4):387–427, May 2008.

Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, completeand scalable path-sensitive analysis. InProceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08, New York, NY, USA,
2008. ACM.

Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. Bottom-up context-sensitive pointer analysis for Java. InProgramming
Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015,
Proceedings, 2015.

Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. Joiningdataflow with predicates. InProceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACMSIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 227–236, New York, NY, USA, 2005. ACM.

Flow- and Context-Sensitive Points-to Analysis using Generalized Points-to Graphs 43

S. Gulwani and A. Tiwari. Computing procedure summaries forinterprocedural analysis. In R. De Nicola, editor,European
Symp. on Programming, ESOP 2007, volume 4421 ofLNCS, 2007.

Brian Hackett and Alex Aiken. How is aliasing used in systemssoftware? InProceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, SIGSOFT ’06/FSE-14, New York, NY, USA, 2006.
ACM.

Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. InProceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, PLDI ’01, New York, NY, USA, 2001. ACM.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages, and computation,
2nd edition.SIGACT News, 32(1), March 2001.

Franjo Ivančić, Ilya Shlyakhter, Aarti Gupta, Malay K Ganai, Vineet Kahlon, Chao Wang, and Zijiang Yang. Model checking
C programs using F-Soft. InIEEE International Conference on Computer Design, pages 297–308. IEEE, 2005.

Ranjit Jhala and Rupak Majumdar. Software model checking.ACM Comput. Surv., 41(4):21:1–21:54, October 2009.
U. P. Khedker, A. Sanyal, and B. Sathe.Data Flow Analysis: Theory and Practice. Taylor & Francis (CRC Press, Inc.), Boca

Raton, FL, USA, 2009.
Uday P. Khedker and Bageshri Karkare. Efficiency, precision, simplicity, and generality in interprocedural data flow analysis:

resurrecting the classical call strings method. InProceedings of the Joint European Conferences on Theory andPractice
of Software 17th international conference on Compiler construction, CC’08/ETAPS’08, 2008.

Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat. Liveness-based pointer analysis. InProceedings of the 19th
International Static Analysis Symposium, SAS’12, Berlin, Heidelberg, 2012. Springer-Verlag.

Lian Li, Cristina Cifuentes, and Nathan Keynes. Precise andscalable context-sensitive pointer analysis via value flowgraph.
In Proceedings of the 2013 International Symposium on Memory Management, ISMM ’13, New York, NY, USA, 2013.
ACM.

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani.Modular heap analysis for higher-order programs. InPro-
ceedings of the 19th International Conference on Static Analysis, SAS’12, Berlin, Heidelberg, 2012. Springer-Verlag.

Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical extensions to the ifds algorithm. InProceedings
of the 19th Joint European Conference on Theory and Practiceof Software, International Conference on Compiler
Construction, CC’10/ETAPS’10, Berlin, Heidelberg, 2010. Springer-Verlag.

Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. Bottom-up and top-down context-sensitive summary-based
pointer analysis. InStatic Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004, Pro-
ceedings, 2004.

Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design and implementation of sparse global
analyses for c-like languages. InACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012, 2012.

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Selective context-sensitivity guided by im-
pact pre-analysis. InACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014, 2014.

Rohan Padhye and Uday P. Khedker. Interprocedural data flow analysis in SOOT using value contexts. InProceedings of the
2Nd ACM SIGPLAN International Workshop on State Of the Art inJava Program Analysis, SOAP ’13, New York, NY,
USA, 2013. ACM.

Uday P. Khedker Pritam M. Gharat and Alan Mycroft. Flow and context sensitive points-to analysis using generalized points-
to graphs. InProceedings of the 23rd Static Analysis Symposium, SAS’16, Berlin, Heidelberg, 2016. Springer-Verlag.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis via graph reachability. InPro-
ceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’95, New
York, NY, USA, 1995. ACM.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow analysis with applications to constant
propagation. InSelected Papers from the 6th International Joint Conference on Theory and Practice of Software Devel-
opment, TAPSOFT ’95, Amsterdam, The Netherlands, The Netherlands, 1996. Elsevier Science Publishers B. V.

Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-to analysis. InProceedings of the
Tenth International Symposium on Code Generation and Optimization, CGO ’12, New York, NY, USA, 2012. ACM.

A. Sharir M., Pnueli. Two approaches to interprocedural data flow analysis.S.S., Jones, N.D. (eds.) Program Flow Analysis:
Theory and Applications, (ch. 7), 1981.

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bod´ık. Demand-driven points-to analysis for Java. InProceedings
of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’05, New York, NY, USA, 2005. ACM.

Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for Java programs. InProceedings of the 6th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI’05, Berlin, Heidelberg, 2005.
Springer-Verlag.

44 P. Gharat et al.

John Whaley and Martin Rinard. Compositional pointer and escape analysis for Java programs. InProceedings of the 14th
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’99,
New York, NY, USA, 1999. ACM.

R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’95, 1995.

Dacong Yan, Guoqing Xu, and Atanas Rountev. Rethinking SOOTfor summary-based whole-program analysis. InProceed-
ings of the ACM SIGPLAN International Workshop on State of the Art in Java Program Analysis, SOAP ’12, New York,
NY, USA, 2012. ACM.

Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure summaries. InProceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’08, New York,
NY, USA, 2008. ACM.

Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. Hybrid top-down and bottom-up interprocedural analysis. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, New York, NY, USA, 2014. ACM.

	1 Introduction
	2 Motivation and Contributions
	2.1 Issues in Constructing Summary Flow Functions for Points-to Analysis
	2.2 Modelling Access of Unknown Pointees
	2.3 An Overview of Past Approaches
	2.4 Our Contributions
	2.5 Our Language and Scope

	3 Generalized Points-to Graphs (GPGs)
	3.1 Memory and Memory Transformer
	3.2 Generalized Points-to Graphs for Representing Memory Transformers
	3.3 The Lattice of GPGs
	3.4 A Hierarchy of GPG Operations

	4 Edge Composition
	4.1 Relevant Edge Composition.
	4.2 Useful Edge Composition.
	4.3 Conclusive Edge Composition.
	4.4 Can Edge Composition be Modelled as Matrix Multiplication?

	5 Constructing GPGs at the Intraprocedural Level
	5.1 Edge Reduction n
	5.1.1 The Need of Edge Reduction
	5.1.2 Restrictions on Cascaded Edge Compositions
	5.1.3 Edge Reduction using SS and TS Edge Compositions
	5.1.4 A Comparison with Dynamic Transitive Closure

	5.2 Constructing GPGs (u,v)
	5.3 Extending to Support Strong Updates.

	6 Constructing GPGs at the Interprocedural Level
	6.1 Handling Function Calls
	6.2 Handling Recursion

	7 Computing Points-to Information using GPGs
	8 Semantics and Soundness of GPGs
	8.1 Notations for Concrete and Abstract Memory
	8.1.1 Difference between 2.5mu-2.5mu0em.7emM-1.5mu2.5mu and M: An Overview

	8.2 Computing Points-to GPGs (,u,v) for a Single Control Flow Path
	8.3 The Semantics of the Application of GPG to Concrete and Abstract Memory
	8.3.1 The Semantics of the Application of to 2.5mu-2.5mu0em.7emM-1.5mu2.5mu
	8.3.2 The Semantics of the Application of to M

	8.4 Soundness of GPGs
	8.4.1 Soundness of GPGs for Concrete Memory
	8.4.2 Soundness of GPGs for Abstract Memory

	9 Handling Advanced Features for Points-to Analysis using GPGs
	9.1 Handling Function Pointers
	9.2 Handling Structures, Unions, and Heap Data
	9.3 Using SSA Form for Compact GPGs
	9.4 Handling Arrays, Pointer Arithmetic, and Address Escaping Locals

	10 Implementation and Measurements
	11 Related Work
	12 Conclusions and Future Work

