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Abstract

Cancer cells undergo a multifaceted rewiring of cellular metabolism to support their
biosynthetic needs. Although the major determinants of this metabolic transforma-
tion have been elucidated, their broad biological implications and clinical relevance
are unclear. In this study, I systematically analysed the expression of metabolic
genes across 20 different cancer types and investigated their impact on clinical out-
come. I found that cancers undergo a tissue-specific metabolic rewiring, which
converges towards a common metabolic landscape. Of note, downregulation of mi-
tochondrial genes is associated with the worst clinical outcome across all cancer types
and correlates with the expression of epithelial-to-mesenchymal transition (EMT)
gene signature, a feature of invasive and metastatic cancers. Consistently, suppres-
sion of mitochondrial genes is identified as key metabolic signature of metastatic
melanoma and renal cancer, and metastatic cell lines. This comprehensive anal-
ysis reveals unexpected facets of cancer metabolism, with important implications
for cancer patients stratification, prognosis, and therapy. I then investigated how
mitochondrial dysfunction could affect cell behaviour. I capitalised on a recently
developed in vitro cell model with increasing levels of m.8993T>G mutation het-
eroplasmy. I found that impaired utilisation of reduced nicotinamide adenine dinu-
cleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive
carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling
supported by malate dehydrogenase 1 (MDH1). This metabolic coupling is facili-
tated by the formation of a multienzymatic complex between MDH1 and GAPDH.
Importantly, such metabolic coupling between glutamine metabolism and cytosolic
NADH recycling is able to support increased glycolytic flux, an important hallmark
of cells with dysfunctional mitochondria, as well as cancer cells. Finally, increased
glycolysis in cells with mitochondrial dysfunction is associated with enhanced cell
migration, in an MDH1-dependent fashion. These results describe a novel link be-
tween glycolysis and mitochondrial dysfunction, and uncover potential targets for
cells that rely on aerobic glycolysis for proliferation and migration, such as cancer
cells.
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CHAPTER 1

Introduction

1.1 Cancer metabolism: a historical preamble

C ancer is a highly complex disease that defies univocal definition. As for many
other fields of research, cancer research followed different directions throughout

history. Scientific discoveries and technological advances guided cancer research
towards different fields and scientists have been trying to define cancer according
to the existing leading paradigma. In this chapter I will introduce the two main
historical eras of cancer research, the biochemical and genetic eras.

1.1.1 Cancer as a metabolic disease: the biochemical era

At the dawn of medical research the diagnosis and investigation of medical conditions
were performed by combining information from external, phenotypical traits that
were readily accessible from the patient. Among these, biofluids, such as urine and
blood, were inspected for abnormalities. Indeed, in 1506 Ullrich Pilner published a
guide where colour, smell, and taste of people’s urine was used to distinguish different
medical conditions (Nicholson and Lindon 2008). Applying a similar methodology
in the 19th century Johannes Müller started noticing different traces in the urine of
cancer patients (Müller 1838).

Following these initial observations, scientists expanded our understanding
of cancer biochemistry until the beginning of the 20th century, when metabolic traits
of cancer begun to play a role in the treatment of cancer patients. August von
Wasserman was the pioneer of this new approach. He hypothesised that cancer
cell proliferation could be supported by abnormal cell respiration and set out to
treat, quite successfully, several animal models with selenium-eosin, a chemical once
thought to inhibit mitochondrial metabolism (Wassermann et al. 1911). Although
the initial success of Wasserman’s animal experimentation, together with the first
cancer patient cured with selenite by Lanciere and Thiroloix (Brigelius-Flohé and
Sies 2015), further trials in human patients showed high toxicity for selenium and
this approach was discontinued.

A more systematic investigation of the metabolism of cancer cells was per-
formed only a few years later by the pioneering mind of the German biochemist Otto
Heinrich Warburg. Warburg bestowed his scientific efforts towards the investigation
of cell metabolism in several animal models, such as sea urchins, by developing
novel experimental techniques, such as the use of thin tissue slices for ex vivo ex-
periments, as well as by devising an improved manometer for the measurement of
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O2 consumption and CO2 production (Koppenol et al. 2011). The combination of
all these scientific advancements resulted in the seminal work that imprinted War-
burg’s name in the history of cancer. Warburg compared the metabolism of tissue
slices from normal rat liver and rat liver carcinoma and observed, in the presence
of glucose and oxygen, an increased production of lactic acid by liver carcinoma
(Warburg 1924). This discovery led him to hypothesise that cancer cells undergo
aerobic glycolysis, a metabolic process whereby glucose is fermented to lactate even
in the presence of high levels of oxygen, as opposed to normal cells that prefer to
extract energy from glucose via respiration, and undergo glycolysis mainly under
anaerobic conditions. Soon after Warburg’s discovery, Cori and Cori analysed the
blood effusate of a Rous sarcoma tumour implanted on a chicken’s wing and com-
pared it to the blood passing through the contralateral normal wing. They observed
that glucose levels were depleted and lactate was increased in the blood effusate of
the tumour, thus confirming Warburg’s discovery in an in vivo setting (Cori and
Cori 1925).

Almost concurrently to Warburg’s work, Sidney Farber, an American pathol-
ogist at Harvard Medical School set out to revolutionise the way we treat cancer
patients. Farber spent great effort in understanding and treating children with acute
lymphoblastic leukemia (ALL) and he observed that interfering with metabolism of
nucleotides could limit lymphoblastic growth (Farber, Cutler, et al. 1947). Together
with Y. Subbarow he developed the first chemotherapeutic agent, aminopterin, an
antagonist of folic acid able to disrupt nucleotide biosynthesis and begun the first
clinical trial for aminopterin on children with ALL. With this first study Farber
increased the disease-free overall survival of childood ALL from 0% to 80% (Farber,
Diamond, et al. 1948), a truly impressive achievement. Farber is regarded to be the
father of modern chemotherapy and approaches that disrupt nucleotide biosynthesis
are, 70 years later, amongst current front-line treatments for several forms of cancer.

The historical moment experienced by Warburg and Farber was extremely
exciting for biochemistry. In 1929 adenosine triphosphate (ATP) was discovered and
Hans Krebs unveiled the existence of the citric acid cycle (CAC) in 1937, while the
formulation of the glycolytic pathway occurred soon after in 1940 (Koppenol et al.
2011). Despite the blooming of biochemistry and the strong connection between
cell metabolism and cancer, another biochemical discovery was about to change the
direction of cancer research.

1.1.2 Cancer as a result of mutations: the genetic era

Studies on the aetiology of cancer begun with the pioneering work of Peyton Rous,
who discovered that a form of chicken sarcoma could be transferred to different
chickens by a filterable agent (Rous 1910; Rous 1911). Years later such agent was
unveiled to be a retrovirus (Rous sarcoma virus or RSV) (Vogt 2012) and this
fostered the notion that cancer could be caused by viruses disrupting normal cells’
physiology.

The discovery of DNA as the molecule carrying genetic, transferable, ma-
terial in 1946 and 1952 (Avery et al. 1944; Hershey and Chase 1952), followed by
the discovery of the structure of DNA by Watson and Crick (Watson and Crick
1953), inspired the scientific community to investigate the role of the “molecule of
life” in cellular processes and human diseases. In addition, these discoveries fostered
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technological advances that helped geneticists to further DNA research. One such
advancement was performed by Bishop and Varmus during their investigation on
the origin of the viral SRC gene, the gene delivered by the Rous sarcoma virus and
responsible for chicken sarcoma. Bishop and Varmus devised a radio-labelled molec-
ular probe that could show the presence of the oncogene SRC in different cells and,
strikingly, they found that the probe could signal not only in cells infected with
RSV, but also in normal cells from different avian species (Stehelin et al. 1976).
This seminal discovery prompted the notion that cancer-causing genes are present
within normal cells as proto-oncogenes, where they conduct important functions for
cellular physiology and, if mutated, they can trigger cancer transformation (Parker
et al. 1984; Iba et al. 1984).

The discovery of the first proto-oncogene inspired a wealth of research to-
wards finding new cellular genes that could drive cancer transformation. The list
of proto-oncogenes started to grow steadily, including MYC (Duesberg et al. 1977),
RAS (Shih et al. 1979), ERBB (Bister and Duesberg 1979; Lai et al. 1979), JUN
(Maki et al. 1987), and PI3K (Chang et al. 1997) and begun to include also tumour
suppressor genes like RB (Knudson 1971) and TP53 (Linzer and Levine 1979; Lane
and Crawford 1979).

Mutations in oncogenes or tumour suppressor genes can be found in every
human cancer sample and it is now an established cancer dogma that the combina-
tion of multiple genetic mutations is necessary for cancer to fully develop (Vogelstein
and Kinzler 1993). Following the extensive discovery of several cancer-causing genes,
scientists begun to investigate the functional consequences of those mutations, trying
to understand the mechanisms by which mutated cancer genes could induce trans-
formation. As a result of such global research efforts, cancer mutations have now
been associated with abnormalities in virtually all cellular functions. Recently, the
discoveries made by Warburg and his legacy have been ascribed among the effects
that mutated oncogenes and tumour suppressor genes exert during transformation.
After half a century, the metabolic and genetic fields of cancer research are now
merging and this synergistic combination is currently offering a deeper understand-
ing of cancer biology, as well as novel therapeutic strategies to treat cancer patients.

1.2 A unifying view of cancer: mutations drive metabolic
rewiring

The first association between a common genetic event in cancer and its functional
metabolic outcome occurred at the end of the 1990s. Studying the role of c-Myc-
mediated regulation of transcription, the group of Chi Van Dang at John Hopkins
University in Baltimore reported that lactate dehydrogenase (LDH)-A, the gene cod-
ing for the enzyme responsible for the last, and rate-limiting, step of glycolysis, could
be transactivated by c-Myc (Shim et al. 1997). The authors showed that activation
of LDH-A by c-Myc was associated with metabolic rewiring, resulting in increased
lactate production, thus providing the first genetic explanation for Warburg’s aer-
obic glycolysis. Most importantly, they showed that inhibition of LDH-A could
inhibit c-Myc-mediated transformation of cancer cells grown in a three-dimensional
matrix (Shim et al. 1997). This result proved, for the first time, that the metabolic
rewiring induced by an activated oncogene was necessary for transformation and set
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the stage for new avenues of cancer therapies aimed at disrupting cancer-specific
metabolic traits.

The discovery of c-Myc as a potent activator of cell anabolism in cancer
cells inspired the investigation of other links between mutated cancer genes and cell
metabolism. Soon after Chi Van Dang’s findings, activation of the phosphoinosi-
tide 3-kinase (PI3K)/Akt (or protein kinase B) axis, one of the most commonly
deregulated pathways in cancer (Shaw and Cantley 2006), was found to regulate cell
metabolism. Together with operating a strong activation of the glycolytic pathway
(Kohn et al. 1996; Deprez et al. 1997; Gottlob et al. 2001; Rathmell et al. 2003),
PI3K/Akt supports cell proliferation via the activation of lipid synthesis (Berwick
et al. 2002). More recently, also phosphate and tensin homologue (PTEN), a neg-
ative regulator of the PI3K/Akt signalling frequently mutated in human cancers
(Hollander et al. 2011), has been shown to limit anabolic growth via negative regu-
lation of glycolysis and increasing oxidative metabolism (Garcia-Cao et al. 2012). In
the early 2000s the most commonly altered human tumour suppressor, TP53, was
found to operate a multilevel inhibition of glycolysis (Schwartzenberg-Bar-Yoseph
et al. 2004; Contractor and Harris 2012; Boidot et al. 2011), as well as a profound
activation of mitochondrial metabolism (Matoba et al. 2006; Stambolsky et al. 2006;
Zhang, Lin, et al. 2011; Hu, Zhang, et al. 2010; Suzuki et al. 2010), thus adding to
the list of genetic events impinging on cancer cells metabolism.

In the last two decades virtually all cancer-associated genetic mutations have
been described to activate metabolic programs that support tumourigenesis (Cantor
and Sabatini 2012; Boroughs and DeBerardinis 2015; Ward and Thompson 2012).
After almost a century, Warburg’s hypothesis is now supported by wide genetic
evidence. Not only Warburg’s hypothesis of aerobic glycolysis was confirmed by a
plethora of studies, but also the concept of cancer metabolic rewiring expanded to
a larger scale, comprising the concomitant regulation of several metabolic pathways
supporting anabolism. Yet, despite several studies showing that such metabolic
changes are required for the survival of cancer cells, the role of metabolism in tu-
mourigenesis has been for long time perceived as collateral or epiphenomenal.

1.3 Mutated metabolic enzymes drive cancer formation

The discovery that housekeeping metabolic enzymes, if mutated, could drive tumour
development shook the field. In the early 2000s the germline mutation of the mito-
chondrial enzyme succinate dehydrogenase (SDH) was found to cause the onset of
hereditary pheochromocytoma and paraganglioma (Baysal et al. 2000). Two years
later another component of the CAC, fumarate hydratase (FH), was associated with
hereditary leiomyomatosis and renal cell cancer syndrome (Tomlinson et al. 2002).
Mutations of the genes encoding for SDH or FH lead to partial or total loss of en-
zymatic activity, indicating that SDH and FH act as bona fide tumour suppressors.

The group of Gottlieb provided mechanistic explanation on the role of SDH
mutations in supporting cell proliferation. SDH inactivation leads to accumulation
of its substrate, succinate, which in turn can product-inhibit αKG-dependent prolyl
hydroxylases domain (PHD) proteins (Selak et al. 2005). Given the role of PHDs in
the degradation of hypoxia inducible factors (HIFs), inhibition of PHDs by succinate
indirectly leads to HIFs stabilisation and induction of a pseudo-hypoxic state, which
ultimately leads to the activation of anabolic programs including glycolysis (Gottlieb
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Figure 1.1: Molecular mechanisms of carcinogenesis induced by mutation of the
metabolic enzymes succinate dehydrogenase (SDH), fumarate hydratase (FH) and
isocitrate dehydrogenase (IDH). Accumulation of the oncometabolites succinate, fu-
marate and 2-hydroxyglutarate (2HG) can result in analogous effects via the inhibition of
αKG-dependent enzymes, such as prolyl hydroxylases (PHD), leading to HIF stabilisation,
or histone and DNA demethylases, leading to hypermethylation and epigenetic changes.
In addition, accumulation of fumarate upon mutation of FH can induce protein succination
and affects protein activity, as well as results in the formation of the metabolite succinic-
GSH, thus affecting redox stress.

and Tomlinson 2005) (Figure 1.1).
Inactivation of FH causes accumulation of fumarate, with subsequent in-

hibition of PHDs and HIFs stabilisation, therefore leading to pseudo-hypoxia and
metabolic reprogramming (Isaacs et al. 2005; Frezza, Zheng, Tennant, et al. 2011).
Despite similarities between SDH and FH inactivation, accumulation of intracellular
fumarate triggered by FH loss has been shown to affect the function of several pro-
teins. Fumarate has mild electrophillic characteristics and can spontaneously bind
to thiol groups of proteins or other molecules. For instance, by binding to Kelch-like
ECH-associated protein 1 (KEAP1), fumarate can inhibit the interaction between
KEAP1 and nuclear factor erythroid 2-related factor (NRF2), thus eliciting a po-
tent antioxidant response (Adam et al. 2011; Ooi et al. 2011). Fumarate has also
been shown to bind and inhibit the activity of the CAC enzyme aconitase (Ternette
et al. 2013), thus further impinging on the activity of the CAC and inhibiting mi-
tochondrial metabolism. Finally, fumarate can covalently bind the reduced form of
the antioxidant metabolite glutathione, thus scavenging its reducing moiety and in-
creasing reactive oxygen species (ROS) levels in the cell (Sullivan, Martinez-Garcia,
et al. 2013; Zheng, Cardaci, et al. 2015) (Figure 1.1).

Finally, the role of succinate and fumarate accumulation has been shown to
go beyond dysregulation of cell metabolism. Accumulation of these metabolites can
inhibit the activity of the αKG-dependent dioxygenases responsible for histone and
DNA demethylation, inidicating the ability of small molecules to induce epigenetic
changes. Importantly, metabolite-induced epigenetic modifications can have global
genomic effects and have been shown to affect the expression of genes involved in
tumourigenesis (Letouzé et al. 2013; Xiao et al. 2012; Sciacovelli, Gonçalves, et al.
2016) (Figure 1.1).

More recently the mutation of another enzyme of the CAC, isocitrate dehy-
drogenase 1 and 2 (IDH1-2) was observed in gliomas, leukemia and chondrosarcomas
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(Parsons et al. 2008; Mardis et al. 2009; Amary et al. 2011). In contrast with mu-
tations in SDH and FH that act as tumour suppressors, mutation of IDHs leads to
the acquisition of a neomorphic activity, thus regarding IDHs as bona fide proto-
oncogene. Instead of converting isocitrate to αKG, mutated IDH produces high
levels of the R enantiomer of 2-hydroxyglutarate (2HG) (Dang et al. 2009). Similar
to succinate and fumarate, the oncogenic effect of accumulated 2HG has been shown
to relate to inhibition of αKG-dependent histone and DNA demethylases (Chowd-
hury et al. 2011; Lu, Ward, et al. 2012; Figueroa et al. 2010; Turcan et al. 2012).
Interestingly, the epigenetic effect of accumulated 2HG has been associated with a
block of cell differentiation and target inhibition of mutant IDH is able to induce dif-
ferentiation and inhibit formation of leukemia and glioblastoma (Wang et al. 2013;
Rohle et al. 2013) (Figure 1.1).

Together, these findings ultimately regarded altered metabolism as a cen-
tral process during tumour transformation. Importantly, these studies shed light
on the role of accumulated metabolites in affecting cellular functions beyond the
reign of metabolism. Following these discoveries scientists gave birth to the term
oncometabolite, referring to the independent ability of accumulated metabolites to
trigger signals for oncogenic growth.

1.4 Hallmarks of altered metabolism in cancer

In the last two decades numerous research efforts have gathered extensive evidence
on the molecular underpinnings of cancer metabolism. A new understanding of
the field has recently appeared, whereby the vast heterogeneity of cancer-associated
genetic alterations converge at the functional level by altering common metabolic
pathways to support cancer cell proliferation and survival. In this section, I will
describe the metabolic pathways that have been found, in the last two decades,
to be commonly targeted by cancer mutations, and that can support anabolism in
different cancer settings.

1.4.1 Deregulated uptake of nutrients

To satisfy the high anabolic demands of uncontrolled cell proliferation, cancer cells
devise several strategies to gain unrestrained access to energetic sources. Among
most abundant energy sources in the human body, glucose and glutamine play a
prominent role in supporting anabolic growth in physiological conditions (Pearce
and Pearce 2013). Mutations of oncogenes and tumour suppressor genes result in
the activation of mechanisms that allow cancer cells to snatch extracellular glucose
and glutamine ad libitum.

While normal cells couple nutrient uptake with signalling from growth fac-
tors, cancer cells show a reduced dependence on growth factor signalling (Thompson
2011). Indeed, a vast number of mutations found in human cancers target compo-
nents of growth factor signalling cascades, such as PI3K/Akt and PTEN, or their
downstream effectors, such as mammalian target of rapamycin (mTOR) and Myc.
One of the reasons of this high convergence is that PI3K/Akt signalling cascade reg-
ulates the mRNA expression of the glucose transporter 1 (GLUT1) and its delivery
to the plasma membrane (Barthel et al. 1999; Wieman et al. 2007). In fact, glucose
uptake strictly correlates with the levels of activation of PI3K/Akt activity and is
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restrained by inhibitors of this signalling cascade (Benz et al. 2011; Lheureux et al.
2013).

Increased expression of GLUT1 and glucose uptake appear to be a meta-
bolic bottleneck operated by several genetic mutations to unleash proliferation of
cancer cells. The seminal work of Yun and colleagues has been enlightening in this
regard. The authors found that cancer cells harboring Kirsten rat sarcoma (KRAS)
or v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations display in-
creased levels of GLUT1 expression and activity (Yun et al. 2009). Moreover, they
investigated the environmental conditions that play a role in the selection of cancer
genetic mutations and observed that growing cells in low concentrations of glucose
selected for high membrane expression of GLUT1 and increased glycolysis (Yun et
al. 2009). Intriguingly, only 4% of the surviving cells had acquired KRAS or BRAF
mutations during this process of selection, suggesting that other genetic alterations
occurred in order to support GLUT1 expression and cell survival. Together with
the previous finding that exogenous expression of GLUT1 can support prolifera-
tion of cells in growth factors-free conditions (Rathmell et al. 2003), this evidence
supports the role of increased glucose uptake as a metabolic requirement of cancer
transformation. Indeed, the uptake of the glucose analogue 18F-fluorodeoxyglucose
(18F-FDG) is currently measured via positron emission tomography (PET)-based
imaging for the diagnosis and staging of tumours, as well as for monitoring patient
response to treatment (Almuhaideb et al. 2011).

Similar to glucose, glutamine uptake is increased in actively proliferating
cells both in physiological conditions and in cancer. Oncogenic activation of c-Myc
has been shown to upregulate the expression of glutamine transporters ASCT2 and
SN2 and to activate several enzymes for the intracellular utilisation of glutamine
(Eberhardy and Farnham 2001; Gao et al. 2009; Mannava et al. 2008). On the
contrary, the tumour suppressor Rb inhibits glutamine uptake and metabolism by
limiting the expression of ASCT2 and glutaminase 1 (GLS1) (Reynolds et al. 2014).
These studies suggest that uptake of glutamine is tightly regulated by both mu-
tated oncogenes or tumour suppressors and is an important feature of cancer cells
proliferation. In line with this evidence, cells harboring several other cancer-driving
mutations, such as KRAS (Son et al. 2013), display high susceptibility to glutamine
deprivation compared to their normal counterparts.

Perhaps one of the reasons for the convergence of oncogenic signalling on
increased glutamine uptake is the role of glutamine in the uptake of essential amino
acids. Essential amino acids cannot be synthesised by the cell and have to be ac-
quired from the extracellular space. Notably, export of glutamine is coupled to
the simultaneous influx of the essential amino acid leucine by the antiporter LAT1
(Nicklin et al. 2009). This evidence links glutamine uptake to the uptake of other
substrates of the LAT1 transporter, including isoleucine, valine, methionine, tyro-
sine, tryptophan, and phenylalanine (Yanagida et al. 2001).

1.4.2 Rewiring of glucose metabolism

Deregulation of nutrient uptake by cancer cells is coupled with alternative ways
of nutrient distribution and utilisation in the cell. The glycolytic pathway is fed
by extracellular glucose and it is a central player in satisfying the energetic and
biosynthetic demands of actively proliferating cells.
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Terminally differentiated cells have restricted access to extracellular glu-
cose and tend to maximise the amount of energy that can be extracted from each
molecule of glucose by full oxidation in the mitochondria (Vander Heiden et al.
2009). This process is initiated in the cytosol, by oxidising one molecule of glucose
into two molecules of pyruvate through the glycolytic pathway, thus producing 2
net molecules of ATP. Subsequent conversion of pyruvate to acetyl-CoA in the mi-
tochondria feeds the CAC and allows for extraction of reducing equivalents from
glucose carbons to produce reduced nicotinamide adenine dinucleotide (NADH) and
reduced flavin adenine dinucleotide (FADH2). These latter co-factors are harnessed
by the mitochondrial respiratory chain (RC) to achieve a final total yield of 36
molecules of ATP from one molecule of glucose.

In contrast to this model of efficiency, cancer cells maximise the cytosolic
fermentation of pyruvate into lactate and reduce oxidation of glucose in the mi-
tochondria, thus diminishing ATP yield from each molecule of glucose. Despite
this rewiring of metabolism seeming counter-intuitive for a cell with high energetic
demands, what tips the balance towards glycolysis in the equation of cancer meta-
bolism is the spectrum of biosynthetic molecules that are associated with the cy-
tosolic metabolism of glucose. In fact, important molecules for nucleotide and amino
acid synthesis, as well as reducing equivalents and co-factors, can be produced from
glycolytic intermediates that spin from glycolysis and feed other biosynthetic path-
ways.

Pentose phosphate pathway. Upon entry into the cell, glucose is phosphory-
lated to glucose 6-phosphate by the enzyme hexokinase (HK), thus avoiding glucose
to exit the cell. Glucose 6-phosphate can then be destined towards glycolysis via
phosphoglucose isomerase (PGI) or can be shunted to the pentose phosphate path-
way (PPP) by glucose 6-phosphate dehydrogenase (G6PD). Shunting of glucose
into the PPP is associated with the production of ribose 5-phosphate (non-oxidative
arm), the backbone sugar for RNA and DNA nucleotide synthesis, as well as with
the production of the reducing molecule reduced nicotinamide adenine dinucleotide
phosphate (NADPH) (oxidative arm) (Figure 1.2). Several mutated oncogenes
and tumour suppressors have been shown to regulate this pathway in cancer cells
(Patra and Hay 2014). For instance, KRAS is able to increase production of ribose
5-phosphate by increasing the activity of the non-oxidative arm of the PPP (Ying
et al. 2012), while TP53 can directly bind to the first and rate-limiting enzyme
G6PD, negatively regulating the entry of glucose carbons into the PPP (Jiang, Du,
et al. 2011). The contribution of this pathway to cancer growth is highlighted by
the finding that inhibition of distinct PPP enzymes can inhibit KRAS-driven tu-
mourigenesis in vivo (Ying et al. 2012), suggesting that targeting of the PPP could
be exploited for cancer therapy.

Hexosamine pathway. The product of PGI, fructose 6-phosphate, can leave
glycolysis and take part into the hexosamine biosynthesis pathway. The first enzy-
matic step is the nitrogen transfer from glutamine to fructose 6-phosphate by fruc-
tose 6-phospate aminotransferase 1 (GFPT1), generating glucosamine 6-phosphate.
Subsequent steps lead to the production of N -acetyl glucosamine (Figure 1.2), the
substrate of N- and O-linked glycosylation, enabling full protein maturation (Itko-
nen et al. 2013). Together with providing an explanation for the combined increase
in the uptake of glucose and glutamine in cancer (Wellen et al. 2010), activation of
the hexosamine pathway in cancer cells could explain the important role of glyco-
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Figure 1.2: Biosynthetic pathways associated with glycolytic intermediates.
Glucose-derived metabolites can be destined to several pathways for the synthesis of
anabolic intermediates, such as nucleotides and phospholipids, as well as for providing
molecules for antioxidant response or protein glycosylation. Aberrant uptake of glucose
and activation of glycolysis can support anabolism by fueling biosynthesic pathways that
stem from glycolytic intermediates.

sylation in cancer development (Pinho and Reis 2015), metastasis (Oliveira-Ferrer
et al. 2017) and response to chemotherapy (Baudot et al. 2016).

Phospholipid synthesis. One of the two products of the glycolytic enzyme
aldolase is dihydroxyacetone phosphate (DHAP), which can be converted to glycerol
3-phosphate by glycerol 3-phosphate dehydrogenase (GPD). Glycerol 3-phosphate
is a precursor in the biosynthesis of phospholipids, fundamental components of cell
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membranes (Figure 1.2). Moreover, glycerol 3-phosphate is a component of the
glycerol phosphate shunt, an alternative pathway for the maintenance of mitochon-
drial membrane potential and target of the potent anticancer drug metformin (Madi-
raju et al. 2014).

Serine and glycine biosynthesis. The product of phosphoglycerate kinase
(PGK), 3-phosphoglycerate (3PG) is the metabolic precursor of one of the most
important shunts of glycolysis. Metabolism of 3PG not only gives rise to the amino
acid serine, but also to amino acid glycine and reducing equivalent NADPH, as
well as provides folate species for nucleotide biosynthesis and DNA methylation
(Yang and Vousden 2016) (Figure 1.2). Notably, the first and rate-limiting step
of this pathway, 3-phosphoglycerate dehydrogenase (PHGDH), has been found fre-
quently amplified in breast cancer and melanoma, and inhibition of PHGDH has
been shown to be detrimental for cancer cells (Possemato et al. 2011; Locasale et al.
2011). Serine-derived folates synthesis arises from the mitochondrial metabolism of
serine by the enzymes serine hydroxylmethyltransferase 2 (SHMT2) and methylene
tetrahydrofolate dehydrogenase 2 (MTHFD2). SHMT2 has been shown to protect
from oxidative stress that occur during hypoxia (Ye et al. 2014) and MTHFD2 has
been found among the top three most commonly amplified metabolic enzymes in
cancer (Nilsson et al. 2014). Notably, overexpression of SHMT2 can rescue prolif-
eration of cancer cells upon suppression of oncogenic c-Myc (Nikiforov et al. 2002),
indicating the importance of serine biosynthesis for cancer growth. Together with
the long-established role of folates in anti-cancer therapy (Farber, Diamond, et al.
1948), these findings indicate that serine biosynthesis pathway is a commonly altered
metabolic pathway during cancer transformation.

Pyruvate metabolism. Pyruvate metabolism is a key point of convergence for
several mutated oncogenes and tumour suppressors. Activation of the Warburg ef-
fect, or aerobic glycolysis, is achieved via the aberrant increase of pyruvate reduction
to lactate via LDH. Activation of anabolic programs by several mutated oncogenes
leads to enhanced expression and activity of LDH (Sciacovelli, Gaude, et al. 2014).
The coupling of pyruvate reduction with NADH oxidation further enhances gly-
colytic flux by providing the cofactor oxidised nicotinamide adenine dinucleotide
(NAD+) for the rate-limiting enzyme glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Figure 1.2). Moreover, pyruvate conversion to lactate limits entry of
pyruvate in the mitochondria, allowing the maintenance of low ATP levels and stim-
ulating activation of glycolysis by low-energy sensors such as AMP-activated protein
kinase (AMPK) (Cantó and Auwerx 2010). The paramount importance of conver-
gent activation of LDH in several types of cancer is highlighted by the development
of various therapeutic strategies aimed at disrupting LDH activity to inhibit cancer
cells growth (Tennant et al. 2010; Martinez-Outschoorn et al. 2016).

1.4.3 Activation of nucleotide metabolism

Together with the activation of biosynthetic pathways that generate metabolic pre-
cursors for nucleotide synthesis, oncogenic signalling can directly activate enzymes
involved in the production of nucleotides. For instance c-Myc can activate the first
enzymatic steps of both purine and pyrimidine biosynthesis pathways, phosphoribo-
syl pyrophosphate synthetase 2 (PRPS2), carbamoyl phosphate synthetase (CAD)
and inosine monophosphate dehydrogenase 2 (IMPDH2) (Cunningham et al. 2014;
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Eberhardy and Farnham 2001; Mannava et al. 2008). Importantly, when expres-
sion of c-Myc is inhibited, proliferation of cancer cells can be rescued by ectopic
expression of Myc’s metabolic effectors such as the nucleotide biosynthesis enzymes
IMPDH2 and PRPS2 (Mannava et al. 2008). Mutant p53 alleles have been shown
to increase the expression of several enzymes for nucleotide biosynthesis, including
IMPDH-1 and -2, GMP synthetase (GMPS), and nucleoside salvage enzymes de-
oxycytidine kinase (DCK) and thymidine kinase (TK1) (Kollareddy et al. 2015).
Furthermore, phosphorylation of S6K by mTORC1, as well as MAPK activity can
induce the enzyme CAD, suggesting that pyrimidine biosynthesis might be a con-
vergent point for multiple oncogenic signals.

Activation of nucleotide synthesis is not only achieved by cancer cells through
the direct activation of biosynthetic enzymes, but also via increased uptake of nutri-
ents that provide building blocks for the construction of nucleotides’ backbone. The
pathway leading to the glucose-derived nucleotide precursor ribose 5-phosphate has
been described above. In addition to glucose, glutamine is the fundamental source
for reduced nitrogen needed in the biosynthesis of nucleotides. Synthesis of uracil
and thymine require one molecule of glutamine, while for adenosine and cytosine
two molecules of glutamine are needed. Moreover, metabolism of glutamine via the
CAC supports the generation of the non-essential amino acid aspartate, a funda-
mental building block in the production of pyrimidine and purine nucleotides. It
is not surprising that mutation of several oncogenes and tumour suppressor genes
lead to enhanced glutamine uptake (Eberhardy and Farnham 2001; Gao et al. 2009;
Mannava et al. 2008; Reynolds et al. 2014; Son et al. 2013).

Importantly, nucleotides deficiency has been suggested as a prelude to cancer
transformation. Investigating the role of genome instability in the early phases of
cancer development, Bester and colleagues observed that ectopic expression of the
oncogenes HPV-16 E6/E7 or cyclin E oncogenes caused depletion of nucleotides and
DNA damage (Bester et al. 2011). These effects were rescued by exogenous addition
of nucleosides or by over-expression of c-Myc, which led to increased nucleotide
synthesis. This finding suggested that aberrant activation of nucleotides biosynthesis
observed in several types of cancer might be a fundamental compensatory mechanism
to overcome cell death in the initial phases of tumourigenesis (Bester et al. 2011).

Finally, consumption of glycine was found to correlate with cancer cell pro-
liferation in a large metabolic screening comprising 60 cancer cell lines (Jain et al.
2012). This association was explained by the role of glycine in providing carbons
for nucleotide biosynthesis, thus indicating that a wide spectrum of oncogenic mu-
tations converge on the activation of nucleotide biosynthesis to support cancer cell
proliferation. In line with this evidence, a recent in silico investigation based on 23
different cancer types found that purine and pyrimidine biosynthesis are the most
commonly altered metabolic pathways in human cancers (Hu, Locasale, et al. 2013),
further indicating the importance of these biosynthetic pathways in tumourigenesis.

1.4.4 Induction of de novo lipid synthesis

Cell proliferation is supported by the production of cellular membranes. The main
components of biological membrane are lipids and de novo lipid synthesis is a promi-
nent pathway providing various species of membrane precursors in proliferating
cells (Menendez and Lupu 2007). Biosynthesis of lipids begins with the cytosolic
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carboxylation of acetyl-CoA operated by acetyl-CoA carboxylase (ACC), generat-
ing malonyl-CoA which is further assembled into long fatty acid chains by fatty
acid synthase (FASN). Synthesis of cytosolic acetyl-CoA is operated by ATP-citrate
lyase (ACLY) which produces oxaloacetate and acetyl-CoA from the mitochondrial
metabolite citrate (Figure 1.3). Several enzymes for lipogenesis are activated by a
wide spectrum of mutated oncogenes and tumour suppressor genes, including muta-
tions targeting the PI3K/Akt axis (Berwick et al. 2002; Bauer et al. 2005), BRCA1
(Chajès et al. 2006), and MYC (Priolo et al. 2014; Morrish et al. 2010; Edmunds
et al. 2014) and are inhibited by wild type p53 (Yahagi et al. 2003). Importantly,
cancer proliferation appears to be dependent on activated lipid synthesis, as genetic
or pharmacological inhibition of ACLY can inhibit the growth of cancer cells in vitro
(Hatzivassiliou et al. 2005).

Finally, acetate has been shown to support de novo lipid synthesis in some
cancers, including glioblastoma and brain metastases (Mashimo et al. 2014). Once
internalised, acetate can be converted into acetyl-CoA by acetyl-CoA synthetase 2
(ACSS2), an enzyme that has been found amplified in breast cancer (Schug et al.
2015). These findings not only demonstrate the importance of lipid synthesis - cancer
cells find alternative carbon sources to feed into lipids - but also that dependence
of cancer cells on extracellular acetate could be harnessed for anti-cancer therapies
(Comerford et al. 2014).

1.5 Tissue environment dictates metabolic phenotype

It is now established that distinct oncogenic lesions lead to the regulation of different
sets of metabolic enzymes and that cancer metabolic reprogramming functionally
converges to the activation of anabolic programs for cell proliferation. In addition
to the genetic regulation of metabolism, the site of tumour lesions has been recently
shown to affect metabolic phenotype. Yuneva and colleagues investigated the role
of different tissues in determining metabolic changes in c-Myc-transformed cancer
cells (Yuneva et al. 2012). They systematically analysed the metabolic flux following
c-Myc activation in the mouse liver, as opposed to the lung, and observed that,
despite similar activating effects on glycolytic enzymes, glutamine metabolism was
different in the two tissues analysed. While c-Myc led to the activation of GLS1 in
the liver and subsequent induction of glutamine catabolism, the effect of c-Myc in
lung tumours resulted in activation of glutamine synthetase (Glul), thus leading to
accumulation of glutamine (Yuneva et al. 2012).

More recently this concept has been confirmed and expanded by the group
of Matthew Vander Heiden. They compared the metabolic phenotype arising from
two genetic lesions, mutant KRAS and loss of p53, in the pancreas and in the lung
(Mayers et al. 2016). The combination of these genetic events causes pancreatic
adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC) in humans, re-
spectively. They found that, while NSCLC cells consumed high amounts of branched
chain amino acids (BCAAs) for protein synthesis, PDAC cells displayed low BCAAs
consumption. This effect was due to the activation of the enzymes for BCAAs meta-
bolism BCAT1 and 2 specifically in the lung, but not in the pancreas (Mayers et al.
2016). Importantly, suppression of BCAT1 and 2 could inhibit the growth of lung
tumours in mice, while it had no major effects on pancreatic tumours.

Together with affecting the metabolic phenotype of primary tumours, tissue

12 Chapter 1



Mitochondrial metabolism in cancer transformation and progression

Figure 1.3: Map of altered metabolism in cancer. Altered metabolic reactions commonly
found in cancer cells. The map highlights that glucose and glutamine metabolism can
support induction of nucleotide and lipid biosynthesis to support proliferation of cancer
cells. Adapted from Cheong et al. 2012.

environment can also regulate metabolism of cancer metastases. A recent study
observed that liver metastases originated from primary mouse breast cancer had
different metabolic state compared to bone and lung metastases originating from
the same primary tumour (Dupuy et al. 2015). Liver metastatic cells displayed
HIF1α-mediated activation of glycolytic metabolism. Such an effect was mediated
by blocking pyruvate entry in the mitochondria via induction of pyruvate dehy-
drogenase kinase 1 (PDK1 ). In contrast with this metabolic state, bone and lung
metastatic cells displayed increased consumption of glutamine and accumulation of
CAC intermediates, indicating enhanced oxidative metabolism in the mitochondria
(Dupuy et al. 2015). This study prompted the notion that different metabolic states
give cancer cells the ability to metastasise to different tissues (Döppler and Storz
2015) and suggested that metabolism could drive formation of cancer metastases
throughout the body.

Together, this evidence suggests that the site of tumour formation or cancer
metastasis can profoundly affect the phenotype and growth abilities of cancer cells.
Tissue-specific factors such as nutrient availability, hypoxia and cell-to-cell commu-
nication are likely to play an important role in the determination of the resulting
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metabolic phenotype of cancer cells (Anastasiou 2017).

1.6 Reprogramming of mitochondrial metabolism in can-
cer

The mitochondrion has been the symbiotic companion of eukaryotic cells for two
billion years (Wallace 2007). This partnership is thought to have begun with the
endocytosis of a protobacterium by a eukaryotic ancestor and coincided with the
increase of oxygen levels in the earth’s atmosphere. Mitochondria could offer the
ability to couple detoxification from molecular oxygen with energy production and
the endosymbiosis profoundly changed not only the bioenergetics of the eukaryotic
ancestor, but also its genetic organisation. Mitochondria transferred part of their
genome into the nucleus and provided sufficient energy for the large expansion of the
nuclear genome experienced by eukaryotic cells during evolution (Lane and Martin
2010). In addition, mitochondria are responsible for the survival of the cell by
regulating programmed cell death (Koonin and Aravind 2002) and can communicate
with the nucleus by signalling through ROS or by regulating the intracellular levels
of calcium (Rizzuto et al. 2012) and small molecules (Frezza 2014).

Mitochondria are the major site of oxygen consumption in the cell and they
are responsible for the optimised production of energy and biosynthetic molecules.
They are composed of a double lipid bilayer, likely the remnant of its endocytic
origin, where the internal membrane is convoluted into membranous folds named
cristae and the external membrane is a highly permeable lipid layer that creates an
intermembrane space between the two mitochondrial membranes.

Each mitochondrion contains multiple copies of the mitochondrial DNA
(mtDNA), a circularly structured genome encoding for 13 mitochondrial proteins.
Among these there are the proteins of the mitochondrial respiratory chain (RC),
which is responsible for coupling the creation of a proton-based electrochemical
gradient in the intermembrane space with the production of ATP, while reducing
molecular oxygen to water. As opposed to nuclear DNA, which is present with
two copies within the cell, mtDNA is present in tens to thousands of copies. For
this reason, mutations of the mitochondrial genome can affect a number of copies
of mtDNA, while co-existing with other copies of normal mtDNA. Thus, mtDNA
mutations can be found in different proportions among different cells, generating het-
erogenous mixtures of normal and mutated mtDNA, a phenomenon also known as
heteroplasmy. Varying degrees of mtDNA heteroplasmy can give rise to a spectrum
of defects, ranging from mild to severe bioenergetic dysfunction that can eventually
lead to cell death (Wallace and Fan 2010).

1.6.1 mtDNA mutations in cancer

Mutations of the mitochondrial genome have been found in a wide array of can-
cer types, including colon, breast, lung, prostate, liver, pancreas, kidney, thyroid,
brain, gastric carcinoma and ovarian cancer (Chatterjee et al. 2006) and they are
associated with a spectrum of bioenergetic defects. In line with this evidence, when
comparing the abundance of mtDNA between normal and cancer samples, Reznik
and colleagues found that mtDNA is widely depleted in several types of human
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cancer (Reznik, Miller, et al. 2016). These findings suggest that some extent of
mitochondrial dysfunction might be selected for during tumour development and
that mutations of mtDNA, together with loss of mitochondria, could provide cancer
with a proliferative advantage. Despite positive selection of mtDNA mutations in
cancer has been debated (Ju et al. 2014), a recent comprehensive study found similar
mutational signatures in ∼40 different types of cancer, with gene truncating muta-
tions being enriched in kidney, colorectal and thyroid cancers (Yuan et al. 2017).
Interestingly, the authors also found that transfer of mitochondrial genes into the
nucleus of cancer cells induced disruption of critical genes for cancer development,
such as ErbB2. This finding suggests that instability of mtDNA could have impor-
tant effects on cancer development beyond the modulation of cellular bioenergetics
(Wallace 2012). Finally, a recent study found that mitochondrial single nucleotide
variants (mtSNVs) accumulate in mutational hot-spots in the mtDNA of patients
with prostate cancer (Hopkins et al. 2017), suggesting positive selection of specific
mutations in the mitochondrial genome. Notably, mtSNVs were associated with
copy number alterations of the nuclear oncogene MYC and specific mtSNVs were
linked to patient survival (Hopkins et al. 2017), indicating that mtDNA mutations
can affect cancer aggressiveness and have important clinical implications.

Mutations of Complex I. Complex I (CI) is a NADH:ubiquinone oxidore-
ductase that catalyses the transfer of two electrons from NADH to ubiquinone via
flavin mononucleotides, producing NAD+ and four protons, which are pumped in
the intermembrane space (Salway 2016). CI is the first site of the electron transport
chain and active site of ROS production. Mutations in mitochondrial genes encod-
ing for CI have been linked to the development of colon, thyroid, pancreas, breast,
bladder, and prostate cancer as well as of head and neck tumors and medulloblas-
toma (Chatterjee et al. 2006) (Figure 1.4). Furthermore, mutations of CI have
been linked to increased ROS-dependent metastatic potential in Lewis lung carci-
noma and breast cancer cells (Ishikawa et al. 2008; He et al. 2013). The extent of CI
dysfunction caused by the mtDNA mutation is critical for promoting or inhibiting
cancer proliferation. Profound CI dysfunction leads to diminished growth of cancer
cells both in vitro and in vivo (Iommarini et al. 2013), but some extent of CI activity
is required to support glycolytic rates associated with anabolism (Calabrese et al.
2013), indicating that modulation of CI activity is critical for cancer cells’ growth.

Mutations of Complex III. Complex III (CIII) is also known as coenzyme
Q:cytochrome c oxidoreductase, or cytochrome bc1, and catalyses the electron trans-
fer from reduced ubiquinone to cytochrome c. The electron transfer is coupled with
the pumping of four protons into the intermembrane space. Mutations affecting
mtDNA genes encoding for CIII have been found in several cancers, including col-
orectal, ovarian, thyroid, breast and bladder cancers (Polyak et al. 1998; Liu, Shi,
et al. 2001; Máximo et al. 2002; Owens et al. 2011; Fliss et al. 2000) (Figure 1.4).
Investigation of the effects of CIII dysfunction on cell metabolism and cancer cell
proliferation has been investigated by the expression of a truncated form of a CIII
subunit (Dasgupta et al. 2008). This CIII mutation was associated with increased
lactate and ROS production, together with enhanced proliferative ability and inva-
sion in vitro and in vivo (Dasgupta et al. 2008).

Mutations of Complex IV. Complex IV (CIV) or cytochrome c oxidase is the
final complex of the electron transport chain. Electrons received from cytochrome
c are used by CIV to reduce molecular oxygen into water and pump four protons
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Figure 1.4: Representation of the mitochondrial respiratory chain complexes and
associated cancer types. Adapted from Gaude and Frezza 2014.

in the intermembrane space. Mutations of the mtDNA-encoded CIV subunit 1
(COX1) have been associated with CIV dysfunction and various cancer types, in-
cluding ovarian and prostate cancer (Permuth-Wey et al. 2011; Petros et al. 2005)
(Figure 1.4). Nevertheless, some subunits of CIV are encoded by the nuclear DNA,
and the role of mutations affecting the nuclear genes in supporting tumourigenesis
is not trivial. For instance, increased expression of nuclear CIV subunits is associ-
ated with enhanced respiration and ROS production in Bcl2-transformed leukemia
cells (Chen and Pervaiz 2010) and expression of the oncogene KRAS is associated
with increased CIV activity in A549 lung adenocarcinoma cells (Telang et al. 2012).
These results indicate that regulation of CIV function can support cancer prolifera-
tion and that combination of different oncogenic signals converge on increasing CIV
activity. A possible explanation for this latter effect could be offered by CIV being
a site of ROS production (Kadenbach et al. 2013), which are known to contribute
to the proliferation of some cancer cells (Reczek and Chandel 2017). Alternatively,
increased activity of CIV might support cancer cell growth by enhancing mitochon-
drial metabolism and its associated biosynthetic pathways.

Mutations of Complex V. Complex V (CV) or ATP synthase, is the final
enzyme of oxidative phosphorylation. CV exploits the electrochemical potential
gradient across the inner mitochondrial membrane to generate ATP from ADP and
inorganic phosphate. Mutations of mtDNA encoding for CV subunits have been
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found in thyroid (Máximo et al. 2002), pancreatic (Jones et al. 2001), prostate
(Petros et al. 2005) and breast (Tan, Bai, et al. 2002) cancer (Figure 1.4). The
mechanisms linked between CV mutations and cancer have been investigated by Shi-
dara and colleagues (Shidara et al. 2005). By expressing two mutants of the mtDNA
gene encoding for subunit 6 of CV (MT-ATP6 ), they observed increased in vitro
cell proliferation, as well as enhanced tumourigenesis in in vivo xenografts (Shidara
et al. 2005). Importantly, mutant cells were associated with decreased apoptosis and
increased ROS production. This suggests that dysfunction of CV can not only inter-
fere with mechanisms of programmed cell death, but also can inhibit the function of
the whole electron transport chain. This observation is in line with the finding that
different mutants of MT-ATP6 display marked reduction of oxygen consumption and
increased lactate secretion (Pallotti et al. 2004). Importantly, point mutations of
another gene encoding for CV, MT-ATP8, have been recently associated to human
prostate cancer aggressiveness and MT-ATP8 mutational status was associated to
cancer patient survival (Hopkins et al. 2017). On the other hand, when a profound
dysfunction of the respiratory chain is induced by depletion of mtDNA, intact ATP
synthase is required for cell survival (Chen, Birsoy, et al. 2014; Martnez-Reyes et al.
2016). In this context CV is able to reverse its activity, consuming glycolytic ATP
and pumping protons in the intermembrane space, in order to maintain mitochon-
drial membrane potential and ensure cell survival. Together, these findings indicate
the high flexibility of CV in compensating for bioenergetic defects and suggest CV
as a central player in mitochondrial metabolism.

1.6.2 Complete mitochondrial dysfunction is detrimental to tumouri-
genesis

The initial observation made by Warburg led him to hypothesise that activation of
aerobic glycolysis was a consequence of irreversible damage to cellular respiration
(Warburg 1956). Even though this phenomenon is partially observed in several types
of cancer (Wallace 2012), it is now well established that complete mitochondrial
dysfunction is detrimental for the survival of cancer cells. In fact, complete ablation
of mtDNA by treatment with ethydium bromide (ρ0 cells) (Desjardins et al. 1985)
inhibits growth rate, proliferation in soft agar and tumour growth in nude mice
(Magda et al. 2008; Morais et al. 1994; Cavalli et al. 1997; Weinberg et al. 2010).
Moreover, breast cancer cell lines (Tan, Baty, et al. 2015) or melanoma cells (Dong
et al. 2017) devoid of mtDNA require the acquisition of intact mitochondria from
the host in order to form tumours in vivo. In both scenarios acquisition of healthy
mitochondria was associated with rescue of respiratory abilities (Tan, Baty, et al.
2015; Dong et al. 2017) and dissemination of primary tumour cells to form metastases
was dependent on the degree of mitochondrial function (Tan, Baty, et al. 2015). This
evidence suggests that the role of mitochondrial (dys)function in tumourigenesis is
far from trivial and that a combination of mitochondrial defects and metabolic
reprogramming is likely to be required to allow proliferation of cancer cells.

1.6.3 Reprogramming of the CAC cycle by cancer cells

First described by Hans Krebs in 1937 (Krebs and Johnson 1937), the CAC is a
series of enzymatic reactions that begins by generating citrate via condensation of
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the acetyl group from acetyl-CoA with oxaloacetate, and proceeds through decar-
boxylating and oxidising reactions, ultimately leading to the generation of a new
molecule of oxaloacetate. While this process is mainly thought to provide precur-
sors for ATP generation in the mitochondria, the CAC provides intermediates for
the biosynthesis of lipids, non-essential amino acids and iron-sulfur-containing com-
pounds (Owen et al. 2002). The full cycle leads to the production of two molecules
of CO2, one molecule of ATP/GTP and, fundamental for connecting the CAC with
oxidative phosphorylation, three molecules of NADH.

Despite the CAC is generally represented via a closed, circular topogra-
phy, nutrients and products can join or leave the cycle at many different sites.
Together with glucose, that mainly provides carbons in the form of acetyl-CoA,
other anaplerotic substrates can contribute to the flux of the CAC, such as glu-
tamine, which feeds into αKG, and fatty acids, which serve as carbon sources for
acetyl-CoA and succinyl-CoA. Similarly, carbons can depart from the CAC via cat-
aplerotic mechanisms, such as the export of citrate for lipid synthesis or αKG for
generation of glutamate, as well as the use of succinyl-CoA for heme biosynthesis
and oxaloacetate for the generation of aspartate (Owen et al. 2002). Such dynamic
organisation shows the flexibility of this metabolic pathway which can be adapted
for the production of specific precursor molecules. Distinct oncogenic events pref-
erentially activate segments of the CAC and exploit different reactions to meet the
biosynthetic needs of cell proliferation.

As mentioned above, mutations of the CAC enzymes isocitrate dehydroge-
nase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) confer a neomorphic activity
which, instead of converting isocitrate in αKG, reduce αKG into the R-enantiomer
of 2HG, which accumulates up to millimolar levels in cancer cells (Dang et al. 2009;
Ward, Patel, et al. 2010. Oncogenic mutations of IDHs have been found in various
human cancers, including colon cancer (Sjöblom et al. 2006), glioblastoma Parsons
et al. 2008), glioma Yan et al. 2009), acute myeloid leukemia (Mardis et al. 2009),
prostate cancer (Kang et al. 2009), B-acute lymphoblastic leukemia (Kang et al.
2009), osteosarcoma (Liu, Kato, et al. 2013), and intrahepatic cholangiocarcinoma
(Borger et al. 2014). Accumulation of 2HG is considered a major contributor to
the oncogenic activity of mutated IDHs. The tumourigenic activity of 2HG has
been attributed to its inhibitory effect on various αKG-dependent dioxygenases, in-
cluding the hypoxia-inducible factors (HIFs) prolyl hydroxylases (PHDs), histone
demethylases, and the ten-eleven translocation (TET) family of DNA demethylases
(Chowdhury et al. 2011; Xu et al. 2011). The first evidence that 2HG acted upon
DNA methylation arose in 2010 when a large-scale DNA methylation analysis of
human leukemia found that the expression of mutated IDH, by increasing 2HG lev-
els, led to DNA hyper-methylation, a broad epigenetic change associated with poor
hematopoietic differentiation. Of note, such a peculiar change in DNA methylation
was dependent on the inhibition of TET2 caused by 2HG (Figueroa et al. 2010). A
similar epigenetic fingerprint has also been observed in a subset of breast tumors
where 2HG was found to accumulate to millimolar levels. Interestingly, however,
in these tumors, the accumulation of 2HG was not caused by overt IDH mutations
but, rather, by a particular metabolic rewiring instigated by Myc overexpression
(Terunuma et al. 2014). These results suggest that 2HG has an important role in
tumorigenesis and that it can accumulate in cancer cells not only upon IDH muta-
tions but also as a consequence of metabolic derangements, including hypoxia (Wise
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et al. 2011). More recent results revealed that, besides inhibiting DNA demethy-
lases, 2HG accumulation also causes profound changes in histone methylation (Lu,
Ward, et al. 2012), indicating that this metabolite has multiple and well-defined
epigenetic roles.

Similarly to mutant IDHs, most of the oncogenic activity of another mutated
enzyme of the CAC, SDH, has been attributed to a metabolite, succinate, which ac-
cumulates in SDH-deficient cells. The oncogenic role of succinate was initially linked
to the inhibition of PHDs and the subsequent stabilization of HIF (Selak et al. 2005).
More recently, succinate was found to be a prototypical epigenetic hacker (Yang and
Pollard 2013), capable of inhibiting both DNA (Xiao et al. 2012; Killian et al. 2013)
and histone demethylases (Cervera et al. 2009), leading to epigenetic changes that
overlap with those observed in mutant IDH cancers (Letouzé et al. 2013). Beyond
the epigenetic effects exerted by succinate as an oncometabolite, loss of enzymatic
activity due to mutation of SDH leads to interruption of the carbon flow through
the CAC. Together with accumulation of succinate, interruption of CAC also leads
to depletion of downstream metabolites, such as malate and oxaloacetate, two im-
portant intermediaries in the malate-aspartate shuttle, leading to depletion of the
non-essential amino acid aspartate (Cardaci et al. 2015), whose role in supporting
proliferation of cancer cells has recently emerged (Sullivan, Gui, et al. 2015; Birsoy
et al. 2015). In order to replenish oxaloacetate levels and support aspartate biosyn-
thesis, SDH-deficient cells activate flux through pyruvate carboxylase, an alternative
anaplerotic reaction which can generate oxaloacetate directly through carboxylation
of pyruvate (Cardaci et al. 2015). In this scenario, rewiring of the CAC is funda-
mental to supply carbons for aspartate biosynthesis and support proliferation of
SDH-deficient cancer cells.

As discussed above, FH deficiency leads to a disruption of the carbon flux
through the cycle and accumulation of its substrate fumarate, which subsequently
induces accumulation of the CAC intermediates succinate and succinyl-CoA (Frezza,
Zheng, Folger, et al. 2011). To overcome this defect, FH-deficient cells activate a
detoxifying strategy whereby glutamine carbons enter the CAC and support cata-
plerosis of succinyl-CoA towards the heme biosynthetic pathway. Such adaptation
of the normal flow of the CAC is important for the generation of NADH to maintain
mitochondrial function and leads to secretion of bilirubin. Importantly, inhibition
of the heme biosynthetic pathway leads to mitochondrial dysfunction and death of
FH-deficient cells (Frezza, Zheng, Folger, et al. 2011), indicating the importance of
such rewiring for survival of FH-deficient cancer cells.

In addition, other oncogenic events can affect the activity of CAC reactions.
Most oncogenes activate a metabolic switch towards aerobic glycolysis and reduc-
tion of pyruvate through LDH limits pyruvate entry into the CAC. Inhibition of
pyruvate dehydrogenase (PDH), the entry step of pyruvate in the CAC, is achieved
by activation of its negative regulator pyruvate dehydrogenase kinase (PDK). This
regulatory mechanism is operated by oncogeninc activation of Myc, β-catenin/TCF
or HIF (Pate et al. 2014; Kim et al. 2006; Papandreou et al. 2006) and leads to
reduced glucose carbons feeding into the CAC.

Despite this, entry of pyruvate into the CAC is increased in other oncogenic
settings. For instance, acquisition of homozygous copies of mutant KRAS in mouse
lung tumours facilitates the generation of the first CAC intermediate citrate, but cit-
rate carbons subsequently depart from the CAC to generate glutamate and support
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glutathione biosynthesis (Kerr et al. 2016). Mutations of KRAS in a pancreatic can-
cer setting elicit a different rewiring of the CAC. A recent study showed that KRAS
induced dependency on extracellular glutamine, and this glutamine was metabolised
through the CAC in order to produce aspartate (Son et al. 2013). Aspartate was
then transported into the cytosol, and converted into pyruvate and NADPH by a
series of reactions involving glutamate-oxaloacetate transaminase 1 (GOT1), malate
dehydrogenase 1 (MDH1) and malic enzyme 1 (ME1), thus supporting cytosolic re-
dox balance and ROS scavenging (Son et al. 2013). Suppression of the enzymes
GOT1, MDH1 or ME1 led to impaired tumour formation in nude mice, indicating
that this KRAS-mediated metabolic reprogramming was instrumental for cancer
growth.

This evidence suggests that, even though flux through the CAC can be
impaired or suboptimal in cancer cells, ad hoc rewiring of specific anaplerotic and
cataplerotic reactions can support the biosynthetic needs of anabolism under the
proliferative conditions imposed by distinct cancer-initiating events.

1.7 Metabolic alterations induced by mitochondrial dys-
function

The evidence reported above indicates that different oncogenic events harness the
ability of mitochondria to provide biosynthetic precursors by altering the normal
function of mitochondrial metabolism. Mutations of components of the mitochon-
drial RC or of the CAC, as well as activation of other oncogenic programs can lead
to various degrees of mitochondrial dysfunction. Given the role of mitochondria as
the central metabolic hub of the cell, regulation of mitochondrial function can have
profound effects on several other metabolic pathways.

Effects on glycolysis. Flow of glucose carbons through the glycolytic path-
way in the cytosol is associated with production of ATP and NADH. While ATP
can be readily used in the cytosol, NADH is shuttled into the mitochondria to sup-
port oxidative phosphorylation (Blacker and Duchen 2016). Importantly, NADH
consumption by the mitochondrial RC not only supports mitochondrial homeostasis
and ATP production, but it is also fundamental for maintaining glycolytic flux. In
fact, the rate-limiting glycolytic enzyme GAPDH is dependent on the conversion of
NADH into NAD+, and NAD+ availability is thought to be a major regulator of
glycolysis (Stanley et al. 1997). Regulation of the cytosolic NAD+/NADH ratio is
achieved via two mechanisms, the first entailing conversion of pyruvate into lactate
via LDH with concomitant recycling of NADH into NAD+, while the second being
the malate-aspartate shuttle (MAS). The MAS is a six-step enzymatic mechanism
that involves passing a hydrogen atom from NADH to oxaloacetate via the enzyme
malate dehydrogenase 1 (MDH1) thus forming malate. Shuttling of malate into
the mitochondria, followed by oxidation to oxaloacetate by malate dehydrogenase 2
(MDH2), ensures supply of NADH to the mitochondrial RC.

Decreased demand for mitochondrial NADH induced by defects of respira-
tion inhibits flux through the MAS (Lu, Zhou, et al. 2008) and is associated with
imbalance of cellular NAD+/NADH ratio (Fendt et al. 2013). In order to maintain
flux through glycolysis, additional recycling of NADH via LDH is required, and this
is known to support energy production during hypoxia or anaerobic exercise (Spriet
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et al. 2000), as well as being the molecular determinant of the Warburg effect. Mu-
tations of mtDNA affecting respiratory complexes, or mutations of CAC enzymes
have been shown to cause impairment of mitochondrial respiration and increase
lactate secretion. The switch towards Warburg’s aerobic glycolysis, initiated by
NAD+/NADH imbalance, can lead to the activation of glycolysis and accumulation
of glycolytic intermediates. This metabolic state can subsequently lead to increased
flux through the biosynthetic pathways associated with high glycolysis (see above)
and support anabolism.

Glutamine metabolism. Mitochondrial dysfunction can affect the meta-
bolism of another important energy source, glutamine. Metallo and colleagues re-
cently showed that diversion of glucose carbons away from the CAC in cells exposed
to hypoxia is associated with increased conversion of glutamine to αKG. Moreover,
instead of undergoing oxidation via αKG dehydrogenase (KGDH), αKG was reduced
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Figure 1.5: The malate-aspartate shuttle transports reducing equivalents between
cytosolic and mitochondrial compartments. Cytosolic NADH diffuses to the mitochon-
drial intermembrane space and donates two reducing equivalents to oxaloacetate (OAA)
via malate dehydrogenase 1 (MDH1), producing malate and NAD+. NAD+ can be used by
the glycolytic, rate-limiting enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
Malate is transported into the mitochondrial matrix by the malate-α-ketoglutarate antiporter
(MAA), with concomitant exchange of α-ketoglutarate (α-KG). Mitochondrial malate is then
oxidised by MDH2 to OAA with reduction of NAD+ to NADH. In this way, cytosolic reduc-
ing equivalents are transported, via NADH, into the mitochondria, and can be used by
respiratory complex I (CI). In the mitochondria, the amino group from glutamate is then
transferred to OAA by glutamate-oxaloacetate transaminase (GOT)-2, generating α-KG
and aspartate. In this way, regeneration of α-KG allows the transport of a new molecule
of malate into the mitochondrial matrix, while transport of aspartate to the cytosol via
glutamate-aspartate antiporter (GAA) ensures glutamate availability for a further reaction
via GOT2. Finally, aspartate is transaminated by GOT1 in the intermembrane space, re-
generating OAA and allowing for a new cycle to begin.
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to citrate by reversal of IDH1 in the cytosol (Metallo et al. 2012). This glutamine-
supported reductive carboxylation of αKG was able to provide carbons for de novo
lipogenesis through production of acetyl-CoA from citrate, identifying a role for oxy-
gen availability in redirecting carbon utilisation and meeting anabolic needs under
stress conditions (Metallo et al. 2012). In line with this evidence, the group of Ralph
DeBerardinis showed that mutations of complex I or complex III of the mitochon-
drial RC disrupt oxidative metabolism of glutamine and induce glutamine reductive
carboxylation (Mullen et al. 2012). Notably, this metabolic rewiring was observed
also in patient-derived cancer cells with mutations of the CAC enzyme FH or upon
pharmacological inhibition of the RC, where reductive carboxylation was the main
carbon source for lipid synthesis (Mullen et al. 2012). A recent study also showed
that pharmacological inhibition of the mitochondrial RC inhibits pyruvate entry into
the mitochondria and leads to decreased levels of citrate (Fendt et al. 2013). In this
scenario, reductive carboxylation of glutamine is induced in order to re-establish the
citrate:αKG levels and support cancer cells proliferation. Intriguingly, induction of
reductive carboxylation is associated with production of the oncometabolite 2HG,
even in the presence of wild type IDH2 (Wise et al. 2011; Smolková et al. 2015).
This evidence suggests that reversal of IDHs could support tumour growth not only
by providing precursors for lipid synthesis, but also by reinforcing aerobic glycolysis
via 2HG-mediated HIF stabilisation (Zhao et al. 2009), as well as via 2HG-mediated
epigenetic effects (Chowdhury et al. 2011).

Nucleotide biosynthesis. Together with supplying substrates for nucleotide
biosynthesis, mitochondrial function is intimately linked with pyrimidine biosynthe-
sis via the enzyme dihydroorotate dehydrogenase (DHODH). An integral compo-
nent of the mitochondrial RC, DHODH couples the conversion of dihydroorotate
to orotate with the reduction of ubiquinone to ubiquinol (Ahn and Metallo 2015).
Importantly, oxidation of ubiquinol by a functional RC is fundamental for DHODH
activity and cell lines with mitochondrial defects require supplementation of the
pyrimidine precursor uridine in order to be cultured in vitro (Ditta et al. 1976; King
and Attardi 1989).

Together with dependence on uridine, mitochondrial dysfunction can lead
to auxotrophy also for aspartate, another precursor in the pyrimidine biosynthesis
pathway. In an attempt to understand the dependence of cells with dysfunctional
mitochondria on the extracellular supply of pyruvate, the group of Vander Heiden
discovered that pyruvate is utilised to support the production of aspartate, an im-
portant precursor of pyrimidine and purine synthesis (Sullivan, Gui, et al. 2015).
The authors showed that generation of NAD+ via pyruvate-mediated flux through
LDH was used to support MDH1 activity and generation of oxaloacetate in the
cytosol. Subsequent production of aspartate via transamination of oxaloacetate by
glutamate-oxaloacetate transaminase 1 (GOT1) was then able to support nucleotide
synthesis. In support of this study, the group of Sabatini showed that chemical in-
hibition of the mitochondrial RC induced essentiality for GOT1, identifying the
production of aspartate as one of the main functions of the RC in proliferating
cells (Birsoy et al. 2015). Importantly, in the absence of extracellular pyruvate,
supplementation of aspartate rescued the growth of mitochondria-defective cells by
supporting nucleotide synthesis (Sullivan, Gui, et al. 2015; Birsoy et al. 2015).

This evidence indicates that mitochondrial function can have profound ef-
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fects on several metabolic pathways inside the cell. Regulation of mitochondrial
activity by cancer cells allows parallel modulation of biosynthetic pathways con-
nected to mitochondrial function, and offers important mechanisms of metabolic
flexibility to meet anabolic needs of cancer proliferation.

1.8 Association between metabolism and cancer progres-
sion

Following the establishment of an initial tumour mass, cancer cells constantly face
new challenges and cancer is far from being a static entity. Environmental cues,
such as nutrient availability or treatment with anti-cancer therapies, force cancer
cells to adapt their metabolism for survival. Indeed, metabolic changes have been
identified at different disease stages of prostate (Pertega-Gomes et al. 2015; Torrano
et al. 2016), breast (Denkert et al. 2012), renal (Hakimi et al. 2016) and lung (Kerr
et al. 2016) cancers.

The metabolic flexibility displayed by cancer cells allow them to thrive in
different conditions. Detachment from the initial tumour mass and survival in circu-
lation are among most critical challenges faced by cancer cells. To overcome anoikis,
the process of cell death induced by matrix detachment, and survive in the blood
stream, cancer cells undergo metabolic changes (Schafer et al. 2009). Metastatic
cells from mouse melanoma activate antioxidant pathways in order to survive in
suspension (Jeon et al. 2012) and matrix-detached cells exploit cytosolic reductive
carboxylation in order to feed NADPH-producing mitochondrial reactions of the
CAC (Jiang, Shestov, et al. 2016). Moreover, melanoma cells that are intravenously
injected into nude mice face high levels of oxidative stress and form only minor
metastases (Piskounova et al. 2015). In this scenario, inhibition of antioxidant
NADPH-producing enzymes can ablate metastatic potential entirely (Piskounova
et al. 2015), suggesting that metabolic pathways counteracting oxidative stress are
crucial for metastatic cells. Together with other studies showing that activation of
antioxidant pathways, such as heme biosynthesis (Dey et al. 2015) and superoxide
dismutase (Kamarajugadda et al. 2013), can support tumour metastasis, this ev-
idence indicates that rewiring of cell metabolism is triggered in metastatic cancer
cells to survive in the blood-stream and colonise distant tissues.

In addition to antioxidant mechanisms, mitochondrial metabolism plays
an important role in cancer metastasis. Mutations of the CAC enzymes SDH in
pheochromocytoma and paraganglioma, as well as of FH in renal cancer, are linked
to the activation of epithelial-to-mesenchymal transition (EMT) (Loriot et al. 2012;
Sciacovelli, Gonçalves, et al. 2016), a gene signature associated with invasion and
metastasis (Tsai and Yang 2013) and resistance to anti-cancer therapies (Zheng,
Carstens, et al. 2015). Moreover, downregulation of the master regulator of mi-
tochondrial biogenesis nuclear coactivator PPARγ coactivator-1α (PGC1α) is ob-
served in human samples of metastatic prostate cancer, and deletion of PGC1α in
the mouse prostate triggers cancer progression and metastasis (Torrano et al. 2016).
In line with this evidence, partial inhibition of the mitochondrial RC was shown to
enhance migratory abilities of cancer cells in vitro and to promote lung metastases
in vivo (Porporato et al. 2014). Finally, mtDNA mutations targeting the activity
of complex I were recently shown to induce breast cancer metastasis in vivo, and
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rescue of complex I was sufficient to abolish metastatic properties (Santidrian et al.
2013).

The evidence mentioned above indicates a role for mitochondrial defects
in supporting cancer metastasis. Nonetheless, other studies have shown that intact
mitochondrial metabolism might be preferred for cancer cells to achieve colonisation
of distant tissues. For instance, increased transcriptional activation of oxidative
phosphorylation (OXPHOS) genes has been detected in circulating tumour cells
after implantation of breast cancer cells in mice (LeBleu et al. 2014).

Since cancer metastasis is one of the principal causes of cancer deaths across
different cancer types (Tsai and Yang 2013), regulation of mitochondrial metabolism
in cancer cells might have important implications for survival of cancer patients. In
line with this hypothesis, a recent study conducted on several types of human cancer
found that depletion of mtDNA correlated with poor prognosis of cancer patients
(Reznik, Miller, et al. 2016).

Another important determinant of survival for cancer patients is the resis-
tance of cancer cells to anti-cancer therapies. In this regard, metabolic adaptation
has been shown to play an important role. Survival of cancer cells upon treatment
with the chemotherapeutic drug cisplatin is achieved via the activation of antiox-
idant mechanisms, entailing the production of NADPH by PPP (Catanzaro et al.
2015). Pharmacological inhibition of the PPP enzyme G6PD was shown to abrogate
resistance to cisplatin (Catanzaro et al. 2015), suggesting that combination therapies
targeting metabolic enzymes might limit therapy resistance and increase the success
of chemotherapy. A study conducted by Viale and colleagues supports this hypoth-
esis. The authors investigated the mechanisms related to oncogene addiction by
inducing expression of oncogenic KRAS in mouse pancreas and by allowing tumours
to form in vivo. Subsequent ablation of oncogenic KRAS revealed that surviving
cancer cells were dependent on OXPHOS metabolism, and treatment with mito-
chondrial inhibitors could block tumour recurrence (Viale et al. 2014). Similarly,
inhibition of oncogenic BRAF in melanoma cells induces activation of a PGC1α
transcriptional program that allows cell survival via the activation of antioxidant
mechanisms (Vazquez et al. 2013; Haq et al. 2013). This evidence indicates that
metabolic adaptation is an important mechanism operated by different cancer types
when challenged by treatment with cancer therapies. Inhibition of the metabolic
strategies adopted by cancer cells upon treatment might help in designing more
successful combination therapies.

1.9 Analytical techniques for the investigation of meta-
bolism

1.9.1 Enzymatic assays

Investigation of metabolism entails the assessment of enzymatic (metabolic) reac-
tion(s) by measuring the production or consumption of specific metabolites or small
molecules. Traditionally, measurements of metabolites have been possible through
the design and application of enzymatic assays, whereby an external, purified en-
zyme is introduced into the system under investigation (cell suspension, biological
fluid, etc) and assessment of its enzymatic activity can indicate the presence and
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abundance of a specific metabolite. Different enzymes will preferentially react with
different metabolites, and application of an array of metabolic enzymes will provide
information on the levels of different metabolic species in the system under investi-
gation. An example of enzymatic assay is the measurement of the metabolite lactate
via the activity of lactate dehydrogenases. In the presence of lactate and NAD+, the
enzymes will produce pyruvate and NADH. Production rates of NADH over time
indicate enzymatic activity and are used to interpolate initial lactate concentrations.
Although enzymatic assays have been widely used to assess specific metabolic reac-
tions or the levels of specific metabolites, they allow the investigation of one or few
metabolites at a time, thus providing a narrow view of metabolism.

1.9.2 Metabolomics techniques

"Omics" techniques have emerged that allow measurement of several metabolites si-
multaneously, thus providing more comprehensive information on metabolism com-
pared to enzymatic assays. Due to their ability to provide a holistic view of meta-
bolism, these techniques are regarded as metabolomics techniques and they include,
among others, nuclear magnetic resonance (NMR) spectroscopy, gas chromatography-
mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-
MS).

NMR spectroscopy exploits the magnetic properties of certain atomic nuclei
and can identify different small molecules based on their different atomic compo-
sition. When exposed to high magnetic fields, different atoms respond differently
based on intrinsic magnetic properties and based on other surrounding atoms. Due
to these properties, different molecules will respond differently when subjected to a
magnetic field. NMR can uniquely identify and simultaneously quantify a range of
metabolites in the micromolar range of concentration. NMR is largely automated
and is non destructive, thus reducing sample preparation and manipulation to the
minimum and allowing for further analysis of biological samples. The main dis-
advantage of NMR, compared to MS-based techniques, is its low sensitivity and
reduced range of metabolites that can be measured.

MS-based techniques can identify different molecules based on their mass:
different atomic compositions lead to different molecular weights. When measured
with sufficient accuracy molecular mass can uniquely identify different molecules.
Together with identification through molecular mass, MS-based techniques are usu-
ally preceded by other separation techniques, such as gas or liquid chromatography,
that separate molecules based on chemico-physical properties (such as polarity and
hydrophilicity). These techniques allow different molecules to reach the mass spec-
trometer at different times (retention time) and the combination of both retention
time and measured mass lead to the identification of a wide range metabolites.

GC-MS requires a derivatisation reaction to generate volatile compounds
that are subsequently separated through gas chromatography and analysed by a
mass spectrometer. The derivatisation process is the main limitation of this tech-
nique due to the fact that only a subset of metabolites will derivatise and due to
potential artifacts arising from the derivatisation reaction. Despite these limitations
GC-MS has been widely applied for untargeted metabolomics screenings because of
the wide range of metabolites that can be simultaneously detected and quantified
(Tsugawa et al. 2011). An advantage of the derivatisation reaction is the possibility
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to analyse very low molecular weight molecules (below 50 Da) that would otherwise
be under the limit of detection for other MS-based techniques (Meiser et al. 2016).

With LC-MS there is no need to derivatise compounds prior to analysis,
thus allowing reliable measurement of labile and nonvolatile polar and non-polar
compounds in their native form. Combination of different liquid chromatographic
techniques allow separation of different metabolic species and can provide a pow-
erful tool to expand the array of molecules that can be identified and quantified
in a biological sample. Due to its reproducibility and minimal sample preparation
procedure LC-MS has been successfully applied in a high number of untargeted and
targeted metabolomics studies (Zhang, Sun, et al. 2012).

Finally, each technique has associated advantages and disadvantages, and no
single analytical method is ideal for analysing the several thousands of metabolites in
a biological system. Combination of different techniques is likely to offer the ability
of measuring a wide range of metabolites with different polarity, functional groups
and molecular weight, thus allowing a comprehensive profile of the metabolome.

1.9.3 Isotope tracing

Measurement of metabolites in a biological sample can give information on steady-
state levels of metabolites that derive from homeostatic metabolic reactions, but it
neither provides information on the specific reactions that generated those metabo-
lites, nor it allows comparison of the rate of specific metabolic reactions. Due to
recent advancement in analytical techniques, isotope tracing has become a widely
used technique to assess the activity of specific metabolic reactions or selective acti-
vation of metabolic pathways. Isotope tracing is performed through the introduction
of an external compound that can be metabolised by the biological system under
investigation (e.g. cell culture) and that is composed of isotope atoms different from
the ones normally present in nature. An example of isotope tracer is a form of
glucose composed of 13C instead of the naturally-occurring 12C. When metabolised
by the cells, 13C-glucose will give rise to 13C-labelled metabolites, allowing for the
identification of specific metabolites that can be obtained via glucose metabolism.
Moreover, interpretation of the labelling patterns obtained by isotope tracing can
provide information on the activation of specific metabolic reactions. For instance, in
the case of 13C-glucose been provided to mammalian cells, detection of citrate bear-
ing 2 labelled carbons (citrate m+2) will indicate metabolism of pyruvate through
pyruvate dehydrogenase, whereas detection of citrate m+3 will signify metabolism
of pyruvate through the pyruvate carboxylase reaction (Cardaci et al. 2015). Design
of different tracing strategies by using different labelled compounds can provide in-
formation on specific metabolic reactions inside the cell and has proven a very useful
technique to investigate metabolism (Metallo et al. 2012; Lewis et al. 2014).
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Aims of the study

D evelopment and progression of cancer depend upon changes of cell meta-
bolism. Mutation of different oncogenes and tumour suppressor genes elicits

specific metabolic changes aimed at supporting the bioenergetic and biosynthetic
needs of cancer proliferation and survival. Cancer cells are dependent on the in-
duced metabolic changes and identifying the key regulators of cancer metabolic
rewiring is important for the design of efficacious anti-cancer therapies. Despite the
general landscape of cancer metabolic transformation has recently emerged (Hu, Lo-
casale, et al. 2013; Pavlova and Thompson 2016), the association between metabolic
rewiring and survival of cancer patients is not well understood.

My study will be aimed at:

1) Exploring the metabolic landscape of human cancers, as opposed to the
metabolic phenotype of normal human tissues. This investigation will be performed
with the use of bioinformatic tools and will add onto previously known metabolic
alterations by including a larger number of patient samples and by improving current
methodology.

2) Investigating the association between metabolic changes and survival of
cancer patients. This part will combine gene expression data with overall survival of
cancer patients and will aim at identifying metabolic pathways that are commonly
linked with poor patient prognosis.

3) Investigating the molecular determinants of important metabolic path-
ways arising from aim (2). This part of the study will require an appropriate in
vitro system for understanding the link between altered metabolic pathways and
other cellular functions potentially linked with cancer aggressiveness.

27



CHAPTER 2

Materials and methods

2.1 Selection of normal and cancer samples for bioinfor-
matic analysis

Samples from 20 different solid cancer types were downloaded from the cancer
genome atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/dataAccess-
Matrix.htm). For each cancer type, mRNA expression data of cancer and normal
samples were downloaded. More in detail, level 3 (open access) Read Counts of
genes obtained from the platform RNAseqV2 were considered. Although TCGA
regards as "normal sample" both samples originated from blood and solid tissues
adjacent to tumour site, I included in my analysis only normal samples originated
from solid normal adjacent tissue.

2.2 Differential gene expression and pathway enrichment
analysis

2.2.1 Data download

Raw counts of RNAseq data were obtained from TCGA database for each cancer
dataset considered and analysed with the R package DESeq2 (version 1.6.3), which
assesses differential gene expression by use of negative binomial generalized linear
model (Love et al. 2014). Default parameters of DESeq2 function were used based on
the package vignette (https://bioconductor.org/packages/release/bioc/vignettes/-
DESeq2/inst/doc/DESeq2.html). The outcome of the DESeq analysis (i.e. Wald
test statistics of cancer tissue vs normal tissue) was used as an estimate of differential
gene expression in the subsequent pathway enrichment analysis.

2.2.2 Manual curation of metabolic gene signature

Every gene was associated to one or more metabolic pathways, according to the
genome scale metabolic model Recon1 (Duarte et al. 2007). This metabolic gene
signature was use as the starting point for compiling a more comprehensive and
curated association of metabolic genes to corresponding pathways. To this aim, I
manually integrated information from several online databases, including the Human
Metabolome Database (HMDB, http://www.hmdb.ca), the Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.genome.jp/kegg/pathway.html#metabolism)
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Figure 2.1: Analysis pipeline for differential gene expression and metabolic GSEA
between cancer and normal samples.

and the Online Mendelian Inheritance in Man (OMIM, https://www.omim.org) and
expanded the information included in Recon1 gene signature in order to comprehend
missing genes or function, as well as to include correct association of genes to meta-
bolic pathways. Full details of the metabolic gene signature can be found in Gaude
and Frezza 2016.

2.2.3 Differential expression analysis

Differential gene expression was corrected for promiscuity across metabolic path-
ways by dividing the Wald t-value statistics obtained from DESeq2 analysis by the
number of associated pathways (promiscuity). To assess the effect of promiscuity
correction the median t-value, per each gene, across all cancers was calculated and
plotted against promiscuity (see Chapter 3). Corrected t-values were then used as
input for gene set enrichment analysis (GSEA). GSEA was performed by applying
the manually curated metabolic gene signature to promiscuity-corrected t-values ac-
cording to the algorithm developed by Subramanian et al (Subramanian et al. 2005)
by using the R package piano (version 1.6.2) (Väremo et al. 2013). This analysis re-
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sulted in metabolic pathways enriched (upregulated) and enriched (downregulated)
in cancer vs normal samples, for each cancer type. In order to obtain a group of
metabolic pathways that are commonly altered in different cancer types, I combined
together all metabolic pathways found enriched in all cancer types and selected the
pathways that resulted enriched (up- or down-regulated) in at least 25% of cancer
types.

I then validated this list of commonly altered metabolic pathways by per-
forming the same analysis on an independent dataset comprising 67 human breast
cancer samples and 65 normal tissue controls, obtained from Terunuma et al (Terunuma
et al. 2014). Differential gene expression analysis of breast cancer vs normal samples
was performed by applying Shapiro Wilks test for normality followed by two-sided
Students t-test and promiscuity-corrected t-values were used to perform metabolic
GSEA as described above. The same approach was adopted for validation of meta-
bolic adaptation in metastatic 786-O cell lines, compared to parental (Vanharanta
et al. 2013; GEO accession code: GSE32299). Metastatic and parental groups were
composed of 4 and 3 samples, respectively. These and all subsequent analyses were
performed in R software, version 3.1.3 (2015.03.09) Smooth Sidewalk.

2.3 Correlation analyses

All correlations were calculated using Spearman's method. Final correlation p-values
were adjusted for multiple testing using Benjamini-Hochberg correction method.
Gene expression data and growth rate values of NCI-60 cancer cell lines were down-
loaded via CellMiner (http://discover.nci.nih.gov/cellminer/). Correlation between
expression of purine biosynthesis and growth rate of NCI-60 cancer cell lines was
calculated by comparing mean expression of genes involved in purine biosynthesis
pathway and growth rate in each cancer cell line. Correlation between Phosphoribo-
sylaminoimidazole carboxylase phosphoribosylaminoimidazole succinocarboxamide
synthetase (PAICS ) and growth rate was calculated by comparing expression of
PAICS and growth rate values in each cancer cell line. Gene expression data and
metabolite abundance of breast cancer and normal samples were obtained from
(Terunuma et al. 2014). Correlation between expression of metabolic pathways and
metabolite abundance was calculated by comparing mean expression of genes and
abundance of metabolites involved in each pathway. Correlation between oxidative
phosphorylation (OXPHOS) and epithelial-to-mesenchymal transition (EMT) levels
was determined, for each cancer type, between median expression levels of OXPHOS
and EMT genes for High and Low survival patients (see below), respectively. EMT
gene signature was obtained from the Hallmark Epithelial Mesenchymal Transition
gene set (M5930), publicly available at http://www.broadinstitute.org/gsea/
msigdb.

2.4 Survival analysis

To investigate the link between alteration of metabolic pathways and survival of can-
cer patients, I took advantage of the survival data included in the TCGA database,
from which I calculated the overall survival (OS) by using the R package "survival"
(https://cran.r-project.org/web/packages/survival/index.html).
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Figure 2.2: Example of classification of cancer patients into high and low survival
groups. Overall survival (OS) times of bladder urothelial carcinoma (BLCA) patients.
Green points correspond to patients that have been censored alive, while red points are
patients who died during the study. The dashed red line indicates the 75th percentile of
all patients OS times. The green dashed square represents patients included in the high
survival group, while blue dashed square denotes patients included in the low survival
group.

Based on the calculated OS data for each patient, in each cancer type, I
divided patients into "high survival" and "low survival" groups. To avoid potential
biases, such as low censoring time or study drop-outs, in order for a patient to be
included into the high survival group, he/she had to be censored "alive" for a certain
amount of time (see below). This method avoids inclusion into the high survival
group of patients that have been censored for only few months or patients that have
dropped out of the study and the study lost their track. Moreover, this method
allows to include patients that have survived, after diagnosis of cancer, for a certain
amount of time (i.e. high survival patients).

I then included patients into the low survival group if they died during the
study. In order to avoid overlaps between high and low survival groups (e.g. a patient
might have died after being part of the study for a long time, see (Figure 2.2)),
I only included in the low survival group patients that have died within a certain
amount of time (Figure 2.2). The time threshold between high and low survival
groups was determined empirically, by comparing the group sizes of high and low
survival groups and by choosing the threshold that was resulting into similar group
sizes, across all cancer types. This ad hoc parameter was implemented in order to
avoid either group sizes to be highly different, or some groups to be not represented
due to low number of patients in a particular cancer type. Following this method I
chose a time threshold corresponding to the 75th percentile of all patients OS times.
Due to different OS times in different cancer types, the time threshold is different
for different cancer studies.

For example, in the bladder urothelial carcinoma (BLCA) dataset the 75th
percentile observation time corresponds to 1.62 years. I included in the high survival
group only patients that have been censored alive for 1.62 years or more, while the
low survival group was composed of patients that have died within the first 1.62
years of the follow-up study. This resulted in a high survival group formed of 61
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patients and low survival group formed of 61 patients as well. I excluded from gene
expression analysis of low vs high survival patients those cancer types that displayed
n < 5 in one of the two groups (CHOL, PCPG, PRAD, READ, THCA).

Differential gene expression analysis coupled with GSEA of low survival
versus high survival patients was performed as described above. GSEA of hall-
marks cellular functions was performed on cancer types that showed downregu-
lation of OXPHOS in low vs high survival patients. Gene sets were obtained
from the HALLMARKS collection of the MSigDB database, publicly available at
http://www.broadinstitute.org/gsea/msigdb.

2.5 Tissue-independent metabolic clustering of cancer sam-
ples

In order to perform clustering of cancer samples based on expression of metabolic
pathways independently of the tissue of origin, all cancer samples were assembled
into a data matrix. RNAseq Raw Counts of metabolic genes of each sample were
normalised with variance stabilizing transformation (VSN) (Huber et al. 2002), dis-
tributed into metabolic pathways according to the metabolic signature described
above and mean expression of genes in each metabolic pathway was calculated. For
example, the citric acid cycle (CAC) pathway is composed of 58 genes, therefore
to calculate mean expression of the CAC pathway I averaged the normalised gene
expression values of all 58 genes. Optimal number of clusters was determined via
Gap statistic, a technique that compares the change in within-cluster dispersion
with what would be expected under a reference null distribution (Tibshirani et al.
2001). Gap statistic was performed with the function "clusGap" from the R pack-
age "cluster" (https://cran.r-project.org/web/packages/cluster/index.html). Mean
expression levels of metabolic pathways for all cancer samples were then subjected
to partitioning around medoids (PAM) clustering, a clustering technique that de-
fines, for a pre-defined number of clusters, a medoid as the object in the cluster with
minimal dissimilarity to all other objects in the cluster (Barbakh et al. 2009). PAM
clustering was performed with k number of clusters obtained via Gap statistics.

2.6 Analysis of tissue-specific metabolic rewiring

Samples from all normal tissues and all cancer tissues were grouped and VSN trans-
formation (Huber et al. 2002) was applied independently on RNAseq raw counts of
metabolic genes belonging to the normal tissues data set and on the cancers data
set. For each metabolic gene we calculated the mean expression across patients, in
each normal tissue or cancer:

P =
p1 + ...+ pn

n
(2.1)

where n is the number of samples in each normal or cancer data set and
P defines the mean of all patients, for each metabolic gene. The ratio between
expression of each metabolic gene in a tissue and the average expression across all
tissues (normal or cancer) was calculated:
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ri,t =
Pi,t

Qi

(2.2)

where Pi,t is the result of equation 2.1 i.e. the average expression of the
ith metabolic gene in the tth tissue (normal or cancer); and Qi is the average Pi

expression across all tissues (normal or cancer). Hence, ri,t defines the fold change,
for each gene, between normal (or cancer) tissue and the average of all normal (or
cancer) tissues. To find out tissue-specific activation or suppression of metabolic
pathways, pathway mean was calculated as follows:

Sp =
r1i,t + ...+ rji,t

j
(2.3)

where j is the number of genes in each pathway p and Sp denotes the mean
r fold change in the pathway p, thus obtaining a fold change of each metabolic
pathway in each tissue, compared to average tissue. Given Cp and Np as the Sp

values for cancer tissues and normal tissues, respectively, the correlation between
metabolic competence in normal and cancer tissues can be calculated from:

Gp = cor(Np, Cp) (2.4)

where G denotes the correlation between normal and cancer samples and p
denotes each pathway.

Metabolic diversity between normal and cancer tissues was quantified by
calculating the standard deviation of the Np and Cp distributions, for each normal
and cancer tissue, respectively.

In order to obtain tissue-specific functions, I calculated the average expres-
sion levels for each gene, among all normal tissues. I then performed differential gene
expression and promiscuity-corrected GSEA comparing each normal tissue against
the average expression of all normal tissues. Tissue-specific cancer metabolic adap-
tation was determined by comparing the metabolic pathways that were enriched
in cancer vs normal and the metabolic functions specific of that particular tissue.
Tissue-dependent and -independent metabolic adaptation of cancer were obtained
by extracting metabolic pathways that, if up- or down-regulated in normal are up-
and down-regulated in cancer, and viceversa. To investigate whether tissue-specific
functions are associated with tissue-specific essentiality, I downloaded data from the
Achilles 2.4 study, a shRNA screening performed on 216 cancer cell lines, derived
from different tissues (Cowley et al. 2014). shRNAs targeting metabolic genes (based
on previously described metabolic gene signature) were extracted from the list of all
shRNAs. Association between gene essentiality and tissue of origin was obtained by
using ANOVA and p-values were adjusted using Benjamini-Hochberg method and
FDR = 5%. To determine tissue-independent pathway essentiality I obtained, for
each cell line, a list of essential metabolic genes by extracting the top 5% essential
genes, based on Analytic Technique for Assessment of RNAi by Similarity (ATARiS)
gene-level score (Cowley et al. 2014; Shao et al. 2013). I then combined cell lines
into tissues of origin, thus obtaining a list of essential genes for each tissue. To assess
pathway essentiality across different tissues, I measured the occurrence of each es-
sential gene across tissues and calculated the average occurrence per pathway, thus
obtaining the mean number of tissues were metabolic genes, in each pathway, are
essential.
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2.7 Cell culture

2.7.1 Subpassaging

Cells were cultured in Dulbeccos modified Eagles medium (DMEM, Life Technology
cat. no. 41966-029) containing 25 mM glucose and 4 mM glutamine, with added
10% v/v fetal bovine serum (FBS) and grown in a humidified incubator at 37°C and
5% CO2. After subpassaging cells were allowed to grow for two to three days until
90-95% confluent before next subpassaging.

2.7.2 Cell growth assays

For cell proliferation assays 2*104 cells were seeded in 24-well plates and allowed
to attach for at least 16 hours. Medium was then changed to normal DMEM or
DMEM with added nutrients or drugs. Cell growth in galactose was performed by
culturing cells in glucose-free and pyruvate-free DMEM (Life Technology cat. no.
11966-025), with added 10% v/v FBS, 25 mM D-galactose (Sigma, G0750) and 1
mM sodium pyruvate (Sigma, P2256). To assess cell proliferation in the presence
of aminooxiacetate (AOA) and aspartate normal DMEM was supplemented with
varying concentrations of AOA (Sigma-Aldrich, C13408) and 4 mM L-aspartic acid
(Sigma-Aldrich, A9256). Cell growth was assessed with an IncuCyteő FLR (Essen
Bioscience) and assay was stopped when all cell conditions reached full confluency
or confluency started to decrease consistently.

2.8 Oxygen consumption and extracellular acidification
rate measurements

To assess oxygen consumption rate (OCR) and extracellular acidification rate ex-
tracellular acidification rate (ECAR) 6*104 cells were seeded the night before exper-
iment in XFe24 Cell Culture microplate in 100 µL normal DMEM. The next day
cells were washed twice in phosphate buffer saline (PBS) and medium was replaced
with 675 µL of bicarbonate-free DMEM (Sigma-Aldrich, D5030) supplemented with
25 mM glucose, 1 mM pyruvate, 4 mM glutamine, 40 µM phenol red and 1% v/v
FBS. To eliminate residues of carbonic acid from medium, cells were incubated for
at least 30 minutes at 37°C with atmospheric CO2 in a non-humidified incubator.
OCR and ECAR were assayed in a Seahorse XF-24 extracellular flux analyser by
the addition via ports AC of 1 µM oligomycin (port A), 1 µM carbonyl cyanide-
p-trifluoromethoxyphenylhydrazone (FCCP, port B), 1 µM rotenone and 1 µM an-
timycin A (port C). Two or three measurement cycles of 2-min mix, 2-min wait, and
4-min measure were carried out at basal condition and after each injection. At the
end of the experiment, each well was washed twice with 1 mL of PBS and proteins
were extracted with 100 µL of radioimmune precipitation assay (RIPA) lysis medium
(150 mM NaCl, 50 mM Tris, 1 mM EGTA, 1 mM EDTA, 1% (v/v) Triton X-100,
0.5% (w/v) sodium deoxycholate, 0.1% (v/v) SDS, pH 7.4) at room temperature.
Plates were incubated at -80°C for 30 min and allowed to thaw at room temperature.
Protein concentration in each well was measured by a BCA assay according to the
manufacturer’s instructions (Thermo). OCR and ECAR values were normalised on
total µg of proteins in each well.
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2.8.1 Assessment of activity of individual respiratory complexes

Activity of individual respiratory complexes was assessed by following a modified
version of the method proposed by Salabei and colleagues (Salabei et al. 2014).
Cells were seeded in XFe24 Cell Culture microplate as mentioned above. On the
day of experiment each well was washed twice with 500 µL of mannitol and sucrose
(MAS) buffer (70 mM sucrose, 220 mM mannitol, 10 mM KH2PO4, 5 mM MgCl2,
2 mM HEPES, 1 mM EGTA, 4 mg/mL fatty acid-free bovine serum albumin, pH
7.2), replaced with 675 µL of MAS buffer with added 20 µg/mL digitonin (Sigma-
Aldrich, cat. no. D141) and plate was immediately inserted into the Seahorse XF-24
analyser. Activity of complex I and II was assayed on the same plate by adding in
port A-D 5 mM glutamate and 2.5 mM malate (port A), 1 µM rotenone (port B),
10 mM succinate (port C) and 1 µM antimicyn A (port D). Activity of complex III
was assayed by addition via port A-B of 500 µM duroquinol (port A) and 1 µM
Antimycin A (port B). Activity of complex IV was assessed by adding in port A-B
500 µM tetramethyl-p-phenylenediamine (TMPD) and 2 mM ascorbate (port A)
and 20 mM sodium azide (port B). All drug solutions were prepared in MAS buffer.
Two or three measurement cycles of 2-min mix, 2-min wait, and 3-min measure were
carried out at basal condition and after each injection. Protein concentrations in
each well were determined as detailed above. OCR measurements were normalised
on total µg of proteins in each well.

2.8.2 Estimation of intracellular ATP turnover

Estimation of ATP production and consumption from oxidative phosphorylation
and glycolysis was obtained as described by Mookerjee et al (Mookerjee et al. 2017).
Briefly, 4*104 cells were seeded in XFe24 Cell Culture microplate in 100 µL normal
DMEM. The next day cells were washed twice with, and medium was replaced by,
675 µL Krebs-Ringer phosphate HEPES (KRPH) medium (2 mM HEPES, 136 mM
NaCl, 2 mM NaH2PO4, 3.7 mM KCl, 1 mM MgCl2, 1.5 mM CaCl2, 0.1% (w/v)
fatty-acid-free bovine serum albumin, pH 7.4 at 37°C) and incubated for 30 minutes
at 37°C with atmospheric CO2. OCR and ECAR were assayed in a Seahorse XF-24
extracellular flux analyser by the addition via ports AD of 10 mM glucose (port A), 1
µM oligomycin (port B), 1 µM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
(FCCP, port C), 1 µM rotenone and 1 µM antimycin A (port D). To assess ATP
consumption by cytoskeleton dynamics injections were: (A) 10 mM glucose, (B) 1
µM nocodazole (Sigma-Aldrich cat. no. M1404), (C) 1 µM oligomycin and (D) 1
µM rotenone and 1 µM antimycin A. Two or three measurement cycles of 1-min
mix, 1-min wait, and 3-min measure were carried out at basal condition and after
each injection. At the end of the experiment, protein concentration was quantified
as described above. Calculations of JATP were performed as described in (Mookerjee
et al. 2017).

2.9 Western blotting

For analysis of protein expression proteins were extracted in RIPA buffer (see above)
at room temperature. 20-50 µg of protein was heated at 70°C for 10 min in
the presence of sample buffer 1Œ (Bolt loading buffer 1Œ (Life Technologies cat.
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no. B0007) supplemented with 4% β-mercaptoethanol (Sigma-Aldrich cat. no.
M6250)). Samples were then loaded onto Bolt gel 412% Bis-Tris (Invitrogen cat. no.
NW04122BOX) and run using MES 1Œ buffer (Life Technologies cat. no. B0002)
at 200 V constant for 30-40 min. Dry transfer of the gels was carried out using
IBLOT2 system (Life Technologies). Membranes were then incubated in blocking
buffer (5% milk in TBS 1Œ + 0.01% Tween 20) for 30 minutes at room tempera-
ture. Primary antibodies in blocking buffer were incubated overnight at 4°C or 2
hours at room temperature. Secondary antibodies (conjugated with 680 or 800nm
fluorophores from Li-Cor) were diluted 1:2000 in blocking buffer and incubated for
1h at room temperature. Images were acquired using a Li-Cor Odyssey CLx system
linked with Image Studio 5.2 software (Li-Cor). Primary antibodies were: mouse
anti-human GAPDH (Abcam cat. no. ab8245), mouse anti-human Mitochondria
OXPHOS cocktail (Origene cat. no. MS601-360), rabbit anti-human LDH (Abcam
cat. no. ab47010), rabbit anti-human MDH1 (Abcam cat. no. ab180152), rabbit
anti-human Calnexin (Abcam cat. no. ab22595), rabbit anti-NDI-1 (Cambridge
Research Biochemicals), mouse anti-human TOMM20 (Abcam cat. no. ab56783).

2.10 Immunoprecipitation assay

For immunoprecipitation assay cells were seeded in 15 cm dishes and allowed to
grow until 95% confluent. Cells were then washed twice with PBS on ice, 500 µL
of lysis buffer (140 mM NaCl, 5mM EDTA, 1% Triton X-100, 20 mM Tris pH 7.4)
was added and cells were scraped and collected. Extracted samples were incubated
overnight at -20°C, centrifuged at 16000 × g for 2 minutes at 4°C and supernatant
was collected. For each immunoprecipitation reaction, 35 µg of mouse anti-human
GAPDH (Abcam cat. no. ab8245) or mouse anti-human MDH1 (Abcam cat. no.
ab76616) were coupled to 1.5 mg Dynabeads M-270 Epoxy beads (Life Technologies,
cat. no. 14311D) following manufacturers instructions. Antibody-coupled beads
were incubated with 3 mg of protein lysate per condition (total volume 1 mL) on
a spinning wheel for 30 minutes at 4°C. After incubation, samples were placed on
a magnet rack and beads were washed three times with lysis buffer. Elution was
performed by two cycles of beads resuspension in 20 µL of sample buffer 1Œ (see
above) followed by incubation at 70°C for 10 minutes. Immunoprecipitation and
co-immunoprecipitation were assayed via western blotting.

2.11 Immunofluorescence assay

2*104 cells were seeded in 8-well µ-Slide chambers (Ibidi Labware cat. no. 80821).
The next day cells were washed twice with PBS, fixed with 4% formaldehyde for 10
min at room temperature and washed twice with tris-buffered saline (TBS, 50 mM
Tris, 150 mM NaCl, pH 7.6). Cells were then permeabilised with 2% BSA, 0.1%
Triton-X-100 in TBST (TBS + 0.1% Tween 20) for 10 min at room temperature,
washed three times with TBS and blocked with 1% BSA, 10% goat serum (Abcam)
in TBST for 30 min at room temperature. Cells were washed three times with
TBS and incubated overnight at 4°C with a solution containing mouse anti-human
GAPDH (Abcam cat. no. ab8245) and rabbit anti-human MDH1 (Abcam cat. no.
ab180152) at a 1:100 dilution. After incubation with primary antibodies, cells were
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washed three times with TBS (5 min each wash) and stained with goat anti-mouse
IgG coupled with Alexa Fluor 488 (Thermo-Fisher Scientific cat. no. A11001) and
goat anti-rabbit IgG coupled with Alexa Fluor 568 (Thermo-Fisher Scientific cat. no.
A11011) for 2 hours at room temperature in the dark. Cells were washed three times
with TBS, DNA was stained with a solution of 1 µg/mL of diamidino 2-phenylindole
(DAPI) or with a solution of DAPI supplemented with 1 µM Alexa FluorTM Phal-
loidin 488 (Thermo Fisher cat. no. A12379) for ten minutes at room temperature
and cells were washed three times with TBS before image acquisition. Images were
acquired on Leica confocal microscope TCS SP5 with 63Œ objective. Each channel
was acquired separately to avoid bleed through and laser intensity, magnification,
and microscope settings were maintained equal for all conditions. Co-localisation of
GAPDH and MDH1 or Actin and MDH1 was quantified by assessing the overlap
coefficient between channels with the use of Volocity software v6.3 (PerkinElmer).

2.12 Proteomics

Cells were seeded in 15 cm dishes and allowed to grow until 95% confluent. Cells
were then washed twice with PBS on ice and 500 µL of extraction buffer (20 mM
HEPES, 8 M urea, protease inhibitors cocktail 1X (Sigma-Aldrich cat. no. P8340)
and phosphatase inhibitors cocktail (Sigma-Aldrich cat. no. P2850 and P5726), pH
8) were added. Protein concentration was quantified as described above and 400 µg
of proteins were submitted to further processing. Samples from three independent
experiments were collected. Protein samples were then processed and analysis via
mass spectrometry by the proteomics facility at the Laboratory of Molecular Biology
(LMB), Cambridge, UK.

2.13 Quantification of m.8993 heteroplasmy

Heteroplasmy at position m.8993 was measured using a previously described PCR
RFLP assay, exploiting the creation of a unique SmaI/XmaI site in the mutated
molecule (Gammage, Gaude, et al. 2016). Inclusion of [32P]-dCTP in a final cycle of
PCR prevents false detection of wild-type mitochondrial DNA (mtDNA) due to het-
eroduplex formation. These measurements were performed by Dr Payam Gammage
at the University of Cambridge, MRC Mitochondrial Biology Unit, Cambridge, UK.

2.14 Fluorescence associated cell sorting (FACS)

To assess mitochondrial mass 2.5*105 cells were seeded in 6-well plates and allowed
to reach 90-95% confluency. On the day of experiment cells were incubated with
normal DMEM containing 50 nM MitoTracker Green FM (Thermo Fisher Scientific,
cat. no. M7514) for 30 minutes. Cells were detached with 0.25% trypsin and
washed three times with PBS. Washed cells were then analysed by FACS using a
LSRII (BD) flow cytometer by monitoring the fluorescence emission at 530 nm 15
nm upon excitation with a 488 nm laser. FACS data were analysed with FlowJo
software (Treestar).
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2.15 NADH measurements

To measure whole cell oxidised nicotinamide adenine dinucleotide (NAD+)/reduced
nicotinamide adenine dinucleotide (NADH) I applied an adapted version of the
method proposed by Frezza et al (Frezza, Zheng, Tennant, et al. 2011). 6*104
cells were seeded in a 96-well plate the day before experiment and an enzymatic
cycling reaction was performed. On the day of experiment cells were washed twice
with PBS and 100 µL of EB-DTAB buffer (1% w/v dodecyltrimethylammonium
bromide (DTAB), 20 mM sodium bicarbonate, 100 mM sodium carbonate, 10 mM
nicotinamide, 0.05% v/v Triton X100, pH 10.3) was added into each well, cell lysis
was facilitated by pipetting and 50 µL of lysed cells were transferred into a new
empty well. 25 µL of 0.4 N HCl were added to the last well (acid-treated sample)
and plate was incubated at 60°C for 15 min. Plate was then equilibrated at room
temperature for 10 min and 25 µL of 0.5 M Trizma base were added to the acid-
treated wells. 50 µL of HCl/Trizma solution (0.4 N HCl : 0.5 M Trizma base 1:1
v/v) were added to the untreated wells (base-treated samples). 5 µL of each acid-
treated and base-treated samples were transferred to a new 96-well plate and 195
µL of cycling solution (CS) were added. CS was composed of 84% v/v of reaction
cocktail (120 mM bicine, 3.7% EtOH, 5 mM EDTA, pH 7.8), 3% v/v of 5 mg/mL
alcohol dehydrogenase (ADH, Sigma-Aldrich cat. no. A3263) in doubly distilled
H2O (ddH2O), 8.5% v/v 20 mM Phenazine Thiosulfate (PES, Sigma-Aldrich cat.
no. P4544), 4.5% v/v 10 mM 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium
Bromide (MTT, Sigma-Aldrich cat. no. M2128). Plate was incubated at room
temperature for 30 min and MTT absorbance was read at 570 nm with a Tecan
200 Pro microplate reader. Blank samples composed of EB-DTAB buffer only were
prepared and subtracted to all other samples. Standard curves with NAD+ and
NADH in the range of 0.05-5 µM were prepared for quantification. To assess mi-
tochondrial NADH the day before experiment 5*105 cells were seeded on a 15 mm
coverslip and incubated overnight in standard medium. The next day medium was
washed and replaced with 500 µL of phenol red-free DMEM (Sigma-Aldrich cat.
no. D5030) supplemented with 25 mM glucose, 1 mM pyruvate, 2 mM glutamax
(Thermo Fisher Scientific cat. no. 35050061), 10 mM HEPES, pH 7.4. Each cover-
slip was then placed in a metal ring and fitted on a heated stage at 37°C. NAD(P)H
fluorescence intensity time series were performed on an inverted LSM 510 laser scan-
ning confocal microscope (Carl Zeiss) with 351 nm illumination from an argon ion
laser (Coherent Enterprise UV). NAD(P)H fluorescence was detected using a 351
nm long-pass dichroic and 460 ± 25 nm band-pass emission filter with a Œ 40, 1.3
NA quartz oil immersion objective. Images (12-bit 512 Œ 512) were obtained with
a pixel dwell time of 1.6 µs. To reduce noise, the image recorded at each time point
was an average of two consecutive scans. Time series measurements were obtained
by acquiring one image every minute following this pattern: 1) basal conditions (5
minutes); 2) dropwise addition of 100 µL of 6 mM cyanide was added (1 mM final
concentration, 4 min); 3) replacement of medium with 800 µL of fresh medium (5
min); 4) dropwise addition of 200 µL of 5 µM FCCP (1 µM final concentration,
4 min). Three coverslips per condition were assayed in each experiment and three
independent experiments were carried out. Images were analysed with Image J 1.49.
Same value (1280) of thresholding was used to detect objects in each image for each
condition, watershed processing was applied and intensity was analysed by detecting
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particles larger than 20 pixels.

2.16 Metabolomics analysis

For steady-state metabolomics or metabolite tracing experiments 1.2*105 cells were
seeded in 12-well plates. After 24 hours cells were washed twice with PBS and
medium was changed with normal DMEM or medium containing metabolite trac-
ers. For glucose tracing experiments 25 mM U-13C-glucose (Cambridge Isotope
Laboratories Inc., cat. no. CLM-1396-MPT-PK) or 4-2H-glucose (Cambridge Iso-
tope Laboratories Inc., cat. no. DLM-9294-PK) was added to glucose-free and
pyruvate-free DMEM (Life Technology cat. no. 11966-025), together with 10% v/v
FBS and 1 mM sodium pyruvate. For glutamine tracing experiments 4 mM U-13C-
glutamine (Cambridge Isotope Laboratories Inc., cat. no. CLM-1822-SP-PK) or 1-
13C-glutamine (Cambridge Isotope Laboratories Inc., cat. no. CLM-3612-PK) was
added to glutamine-free DMEM (Life Technology cat. no. 21969-0.35), together
with 10% v/v FBS. For aspartate labelling experiments 4 mM U-13C-aspartate
(Cambridge Isotope Laboratories Inc., cat. no. CLM-1801-H) was added to normal
DMEM with 10% v/v FBS. After incubation with normal medium or medium con-
taining metabolite tracers, one well from each condition was used to estimate cell
number. To extract extracellular metabolites, 50 µL of medium were collected from
each well, centrifuged at 10000 × g for 1 min and metabolites were extracted by
adding 750 µL of metabolite extraction buffer (MEB, 50% v/v methanol, 30% v/v
acetonitrile, 20% v/v ddH2O). To extract intracellular metabolites, cell plates were
placed on ice, washed twice with ice-cold PBS and 1 mL of MEB / 106 cells was
added to each well and cells were scraped. One cycle of freeze-thawing at -80°C was
performed to further lyse the cells. Both extracellular and intracellular fractions
were then incubated in a thermomixer (Eppendorf) at max speed for 15 min at 4°C.
Proteins were then pelleted by centrifuging samples at 16000 × g for 10 minutes
at 4°C and supernatants were transferred into glass vials and stored at -80°C until
further analysis. Liquid chromatographymass spectrometry (LCMS) analysis was
performed by Dr Sofia da Costa on a QExactive Orbitrap mass spectrometer co-
upled to a Dionex UltiMate 3000 Rapid Separation LC system (Thermo). The LC
system was fitted with a SeQuant ZIC-pHILIC (150 mm Œ 2.1 mm, 5 µm) with
the corresponding guard column (20 mm Œ 2.1 mm, 5 µm) both from Merck. The
mobile phase was composed of 20 mM ammonium carbonate and 0.1% ammonium
hydroxide in water (solvent A), and acetonitrile (solvent B). The flow rate was set
at 200 µL/min with a previously described gradient (Mackay et al. 2015). The mass
spectrometer was operated in full MS and polarity switching mode scanning a range
of 50-750 m/z. Samples were randomised, in order to avoid machine drift, and were
blinded to the operator. The acquired spectra were analysed using XCalibur Qual
Browser and XCalibur Quan Browser software (Thermo Scientific) by referencing to
an internal library of compounds. Calibration curves were generated using synthetic
standards of the indicated metabolites.
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2.17 Metabolic modelling

Modelling of metabolic rewiring following mitochondrial dysfunction was performed
with flux balance analysis (FBA) (Orth et al. 2010), under the assumption of mass
conservation. To investigate metabolic rewiring, I constrained a recently published
metabolic reconstruction of central carbon metabolism (Zieliski et al. 2016) with
experimental data obtained from consumption and release (CORE) of extracellular
metabolites and oxygen consumption driven by individual complexes. CORE data
were obtained by seeding cells in two 12-well plates (total 6 wells per cell line), as
described above, and allowing cells to attach until next day. Once cells attached,
medium was changed to normal DMEM (see above) and one well was used for
quantification of protein abundance (time point 0). Cells were allowed to grow for
24 hours, after which extracellular medium was harvested and submitted to LC-MS
metabolomic analysis (see above). One well was used for quantification of protein
abundance (time point 1). Change in protein abundance from time point 0 to time
point 1 was used as a predictor of biomass generation during the experiment. Levels
of extracellular metabolites were quantified via LC-MS by comparing with external
standards that were run in parallel, together with media samples. Consumption
and release of metabolites were obtained by subtracting the quantified metabolite
levels of reference media samples (DMEM medium incubated for 24 hours without
cells) from media samples of each cell line. Finally, CORE data were obtained
by calculating the ratio between total moles of metabolite produced or consumed
from the extracellular medium and the biomass generated during the 24 hours of
experiment (moles/min/µg protein).

I maximised adenosine triphosphate (ATP) yield as objective function and
calculated the flux difference between N7 and N80 models by subtracting the pre-
dicted flux of each reaction for N7 from N80 model. Top 10% altered reactions were
considered. To assess contribution of each reaction to ATP production, I individually
blocked (upper bound = 0, lower bound = 0) each reaction in N80 and N7 models
and calculated the difference in ATP yield against the complete model. Contribution
of reductive carboxylation to metabolic rewiring was predicted by blocking isocitrate
dehydrogenase 1 (IDH1) reaction in N80 model and calculating the flux difference
of each reaction against the complete N80 model. Top 10% altered reactions were
considered. Simulations were performed with Matlab R2016A (Mathworks) with
the COBRA toolbox 2.0 and by using GLPK 4.48 as solver.

2.18 Lentiviral vectors generation and transduction

The viral supernatant for cell transduction was obtained from the filtered growth
media of the packaging cells HEK293T transfected with with 3 µg psPAX, 1 µg
pVSVG, 4 µg of shRNA constructs and 24 µl Lipofectamine 2000 (Life Technol-
ogy). 1 × 106 cells were then plated on a 6 cm dish and infected with the viral
supernatant in the presence of 4 µg/ml polybrene. After 2 days, the medium was
replaced with selection medium containing 2 µg/ml puromycin. The expression
of the shRNA constructs was induced by incubating cells with 2 µg/ml doxycy-
cline. The shRNA sequence were purchased from Thermo Scientific and are as
follows: shNTC #RHS4743; shIDH1 #1: TTTCGTATGGTGCCATTTG; shIDH1
#2: TTGACGCCAACATTATGCT; shIDH2 #1: TCTTGGTGCTCATGTACAG;
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shIDH2 #2: TTCTTGTCGAAGTCGGTCT; shMDH1 #1: CAATTTGAGCTT-
TAGCTCG; shMDH1 #2: TATTCTTGATTACAACAGG. For NDI-1 expression,
3*106 HEK293T cells were plated in 10 cm dishes, allowed to attach overnight, and
transfected with 5 µg psPAX, 5 µg pMD2G and 2 µg of pWPI control or NDI-1
plasmids (Cannino et al. 2012). Viral supernatant was used as described above for
infecting N80 cells.

2.19 Cell migration

6*106 cells were seeded in a 96-well plate and cultured overnight in standard con-
ditions. A 700-800 µm wound was obtained in each well with a 96 pins IncuCyteő
WoundMaker (Essen Bioscience). After applying the wound, cells were washed with
PBS twice and medium was replaced with 100 µL DMEM. Images were acquired
with an IncuCyte FLR (Essen Bioscience) every 2 hours for at least 10 consecutive
hours. Wound widths at time point 0 hours and 6 hours were extracted and used to
calculate migration speed. 8-16 wells per condition were used as technical replicates
in each experiment, and at least 4 independent experiments were acquired.

2.20 qPCR

mRNA was extracted using RNeasy Kit (Qiagen) following manufacturers instruc-
tions. 1 µg of mRNA was retrotranscribed into cDNA using High Capacity RNA-
to-cDNA Kit (Applied Biosystems, Life Technologies, Paisley, UK). For the qPCR
reactions 0.5 µM primers were used. 1 µl of Fast Sybr green gene expression mas-
ter mix; 1 µl of each primers and 4 µl of 1:10 dilution of cDNA in a final vol-
ume of 20 µl were used. Real-time PCR was performed in the Step One Real-
Time PCR System (Life Technologies Corporation Carlsbad, California) using the
fast Sybr green program and expression levels of the indicated genes were cal-
culated using the ∆∆Ct method by the appropriate function of the software us-
ing actin as calibrator. Primer sequences are as follows: IDH1: Fwd: GTGT-
GCAAAATCTTCAATTGACTT; RV: GGTGACATACCTGGTACATAACTTTG;
IDH2: Fwd: GGAGCCCGAGGTCAAAATAC; RV: TGGCAGTTCATCAAGGA-
GAA; Actin: QuantiTect primer QT00095431 (Qiagen), sequence not disclosed.

2.21 Statistical analysis

Statistical analysis was performed with Graphpad Prism 5.0a. At least 3 indepen-
dent experiments were used for each test. Statistical analysis of metabolomics data
was performed with the R package muma v1.4 (Gaude, Chignola, et al. 2013) on R
software 3.3.2.
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CHAPTER 3

Results.
The metabolic landscape of cancer
transformation and progression

C ancer has been defined as a genetic disease whereby the evolution from be-
nign to malignant lesions occurs via a series of mutations over time (Vogelstein,

Papadopoulos, et al. 2013). The process of transformation is accompanied by pro-
found alterations of cellular metabolism that fulfill the energy requirements of cancer
cell growth and proliferation (Hanahan and Weinberg 2011). A recent systematic
analysis of expression of metabolic genes across several cancer types showed that,
together with increased glycolysis, other metabolic pathways, including nucleotides
and protein synthesis, are activated in cancer (Hu, Locasale, et al. 2013). Although
these metabolic features of cancer are now exploited for diagnostic and therapeutic
purposes, their broader clinical implications are still under intense investigation. In
this chapter I will investigate the landscape of metabolic alterations experienced
by different cancer types. I will focus on both metabolic alterations peculiar of
each cancer type (tissue-specific) and alterations that are commonly undertaken by
different cancer types (convergent). Finally, in order to assess the clinical impli-
cations of altered metabolism in cancer, I will assess the link between metabolic
alterations and survival of cancer patients. This analysis led me to the discovery of
novel and clinically relevant aspects of the metabolic transformation of cancer, with
important implications for patient stratification, prognosis, and therapy. Complete
datasets and raw results of this chapter can be found in Gaude and Frezza 2016.

3.1 The metabolic landscape of cancer

3.1.1 Data set and analysis pipeline

In order to investigate the metabolic landscape of cancer, I analysed the expression
of metabolic genes across 20 different types of solid cancers from the cancer genome
atlas (TCGA), encompassing a total of 8161 cancer and normal samples (Table
3.1).
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Figure 3.1: Proportion of promiscuous genes among metabolic pathways. Genes
belonging to each metabolic pathway have been divided based on their promiscuity, i.e.
the number of pathways they are associated with. Pathways that are mainly composed of
specific genes display few dots, while pathways composed of mainly promiscuous genes
are divided into several dots. Blue shading indicates the proportion of specific and promis-
cuous genes in each pathway.
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Figure 3.2: Effect of promiscuity correction on gene significance. a) Non corrected
(left) and promiscuity-corrected (right) median t-values of cancer vs normal for metabolic
genes across all cancer types. (b-c) Median t-value of cancer vs normal for Histidine
Metabolism before (b) and after (c) promiscuity correction. Specific genes (blue dots)
and promiscuous genes (red shading) are highlighted in order to compare the effect of
promiscuity correction on differential gene expression.
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mRNA sequencing (RNAseq) data from each cancer data set were analysed
using a negative binomial generalized linear model (Love et al. 2014), comparing
the expression of metabolic genes in cancer tissues against tissues of origin. I then
applied gene set enrichment analysis (GSEA)(Subramanian et al. 2005) against a
manually-curated metabolic gene signature. To identify metabolic alterations com-
mon to different cancers, I selected metabolic pathways that were enriched (up- or
down-regulated) in 5/20 (25%) cancers, compared to normal tissues. The thresh-
old of 25% of cancers was based on a conservative variation of the 20/20 method
proposed by Vogelstein (Vogelstein, Papadopoulos, et al. 2013).

3.1.2 Promiscuity of the metabolic network

While composing metabolic gene signatures I noticed that several genes (∼20%)
were associated with multiple metabolic pathways (Figure 3.1), in line with an in-
terconnected topography of the metabolic network. The association of a gene across
multiple metabolic pathways, or promiscuity, could be a confounding factor when
linking the differential expression of a gene to a specific function. Of note, distribu-
tion of genes across gene signatures has been recently reported to be an accountable
factor in gene set enrichment analyses and correction for overlapping genes could
improve the performance of GSEA (Tarca et al. 2012). I observed that, in some
cases, enrichment of metabolic pathways was driven by promiscuous genes only,
even without significant contribution from pathway-specific genes. For instance, the
pathway Histidine Metabolism was significantly enriched in several cancers, but such
enrichment was driven entirely by promiscuous, rather than specific, genes (Figure
3.2b). To account for this factor, I applied an ad hoc correction for gene promis-
cuity in metabolic pathways by penalising the score of genes proportionally to their
promiscuity across the metabolic network (see Materials and Methods for a full ex-
planation). Briefly, for each gene, t-values obtained from differential gene expression
analysis were divided by the number of pathways that gene is associated with. This
correction successfully decreased the significance of promiscuous genes, while hav-
ing no effect on specific genes (Figure 3.2a). Accordingly, Histidine Metabolism
pathway, as well as other pathways whose enrichment was predominantly driven by
promiscuous genes, did not score an enrichment upon application of the correction
(Figure 3.2c).

3.1.3 Nucleotide synthesis and mitochondrial metabolism are con-
vergent features of cancer transformation

Differential gene expression between cancer and normal tissues, after correction for
promiscuity, was subjected to GSEA and significantly enriched metabolic pathways
for each cancer type were obtained (Figure 3.3).

Besides glycolysis, a well-established metabolic feature of cancer (Pavlova
and Thompson 2016), purine biosynthesis and DNA synthesis were the most fre-
quently up-regulated pathways across different cancers (14/20, 70% and 10/20, 50%,
respectively). Phosphoribosylaminoimidazole carboxylase phosphoribosylaminoimi-
dazole succinocarboxamide synthetase (PAICS ) was the most frequently up-regulated
gene (71%) within the purine biosynthesis pathway (Figure 3.4).
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Figure 3.3: Altered metabolic pathways in cancers compared to normal tissues.
Heatmap representation and hierarchical clustering of enriched up-regulated (gold) and
enriched down-regulated (blue) metabolic pathways in cancers compared to normal tis-
sues. For abbreviations of cancers and normal tissues see Table 3.1.
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To validate the relevance of these pathways for proliferation of cancer cells, I
assessed the correlation of purine biosynthesis pathway and PAICS expression with
the growth rate of the NCI-60 panel of cancer cell lines (Figure 3.5a-b). Both
purine biosynthesis and PAICS expression showed significant positive correlation
with proliferation rate of cancer cell lines, confirming the relevance of this pathway
in an independent dataset.

Another shared metabolic feature of cancers that emerged from this anal-
ysis is the dysregulation of genes encoding for mitochondrial metabolism (Figure
3.4). Overall, 65% of cancers exhibited down-regulation of at least one mitochon-
drial pathway, while the remaining 35% showed its over-expression. In particular,
down-regulation of citric acid cycle (CAC) and mitochondrial fatty acids oxidation
(mFAO) genes was observed in 40% and 30% of cancer types, respectively. oxidative
phosphorylation (OXPHOS) was found up-regulated in 35% and down-regulated in
25% of cancers (Figure 3.4). Of note, this result is in accordance with recent ev-
idence showing heterogenous regulation of OXPHOS across different cancer types
(Hu, Locasale, et al. 2013).
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Figure 3.4: Convergent metabolic alterations in cancer tissues compared to normal.
Gene expression effect plot of metabolic pathways enriched in more than 25% of cancers.
Circles indicate metabolic pathways and dots in each circle represent individual metabolic
genes. Gold and blue lines indicate up-regulated and down-regulated genes in cancers
compared to normal tissues, respectively. Pie charts represent the most frequently up-
or down-regulated genes in the corresponding pathway; percentage values indicate fre-
quency of up- or down-regulation.
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To validate these findings I took advantage of a recently published study
where gene expression and metabolite abundance were measured in a cohort of
breast cancer patients (Terunuma et al. 2014). First, I wanted to assess whether
expression of metabolic genes correlated to expected changes in metabolite concen-
tration. Expression levels of glycolytic genes positively correlated with accumulation
of lactate, and expression of Purine biosynthesis and DNA synthesis correlated with
abundance of nucleotides (Figure 3.5c-e). Moreover, gene expression of mFAO
negatively correlated with palmitate levels (Figure 3.5f). I then applied meta-
bolic GSEA on these cancer samples. Among metabolic pathways enriched between
breast cancer and normal samples, purine biosynthesis and DNA synthesis were
up-regulated, whilst CAC, mFAO and cyclic nucleotides metabolism were down-
regulated (Figure 3.5g), thus confirming my findings with an independent and
cross-platform data set.
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3.1.4 Metabolic traits reminiscent of tissue of origin
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Figure 3.7: Association between tissue
of origin and metabolic transformation of
cancer. a) Scatter plot representation of cor-
relation coefficient (Spearman, x axis) and
correlation p-value (-log10, y axis) of meta-
bolic pathways in normal tissue compared to
cancer. Horizontal dashed line indicates FDR
of 5% (-log10). b) Scatter plot representation
of the variance of metabolic pathways among
normal (x-axis) and cancer (y-axis) tissues.

Hierarchical clustering of enriched meta-
bolic pathways (Figure 3.3) indicates
that cancers arising from the same tis-
sue might exhibit similar metabolic fea-
tures. This observation suggested that
cancer cells retain metabolic features of
their tissues of origin. To further in-
vestigate the extent of such metabolic
"imprinting", I applied unsupervised hi-
erarchical clustering to all cancer sam-
ples. Optimal number of clusters was
obtained via bootstrapping (see Meth-
ods). Interestingly, I observed a high
degree of overlap between the obtained
clusters and tissues of origin of each can-
cer (Figure 3.6), thus indicating that
tissue-specific metabolic features are in-
trinsically maintained in cancer cells.

To corroborate this observation,
I performed correlation analysis be-
tween the metabolic signatures of dis-
tinct cancers and corresponding normal
tissue (Figure 3.7a). Most correlations
were positive and significant (57/96,
Spearman ρ, Benjamini-Hochberg ad-
justed p-value ≤ 0.05), confirming that
the metabolic landscape of cancer is
reminiscent of its tissue of origin. In-
terestingly, I also observed few signif-
icant negative correlations (4/96), in-
cluding highly expressed pathways in
normal tissues that were down-regulated
in cancer. Moreover, the overall loss of
tissue-specific metabolic functions and
the convergence to a common metabolic landscape across cancers was confirmed
by the finding that the variance of metabolic pathways among cancers was lower
than the variance among normal tissues (Figure 3.7b).

To further investigate tissue-specific metabolic rewiring of cancer I first iden-
tified metabolic pathways that are enriched in each normal tissue, compared to av-
erage, thus obtaining normal tissue-specific metabolic features (see Materials and
Methods for more detail). To determine the extent of tissue-specific metabolic re-
wiring in cancers I assessed whether metabolic pathways that characterise a normal
tissue are altered in the corresponding cancer tissue. Whilst most tissue-specific
metabolic functions were not altered in cancer (Figure 3.8), 38% of the meta-
bolic pathways that were highly expressed in normal tissue were down-regulated in
cancer. Also, 22% of pathways that were down-regulated in normal tissues were
up-regulated in cancer (Figure 3.8). For instance, while normal breast tissue has
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a low expression of Fructose and Mannose metabolism, breast cancer samples show
an up-regulation of this pathway. Viceversa, Glycogen synthesis is up-regulated in
normal breast, while it is down-regulated in breast cancer (Figure 3.8).

Finally, I wanted to investigate whether the observed metabolic rewiring of
cancer generates tissue-specific metabolic liabilities, i.e. whether cancer cells arising
from the same tissue are dependent on similar metabolic pathways for their growth
or survival. To this aim I took advantage of a recently published RNA interference
screening (Achilles 2.4) of a large panel of genomically characterised cancer cell
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lines (Cowley et al. 2014). In line with a tissue-specific metabolic reprogramming
of cancer, tissue of origin predicted gene essentiality of 59% of metabolic genes
(349/595, ANOVA adjusted p-value ≤ 0.05), suggesting that proliferation of cancer
cells is dependent on tissue-defined metabolic determinants.

3.2 OXPHOS is linked to patient survival and metastasis

3.2.1 Classification of cancer patients based on overall survival

I then wanted to investigate whether the observed metabolic alterations correlated
with the clinical outcome of cancer patients. To this aim, I took advantage of survival
data collected by TCGA. In order to investigate metabolic alterations linked to
patient survival, patients from each cancer type were divided into a High Survival
and Low Survival group. For each cancer type, I included in the High Survival
group patients that have been censored alive for longer than the 75th percentile of
the total duration of the follow-up study. On the other hand, the Low Survival group
included patients that have died within the 75th percentile of the total follow-up
study duration (Figure 2.2). This method of classification avoids overlap between
High and Low survival groups and potential biases that could arise from short follow-
up recordings and drop-outs. Of note, this conservative classification affected group
size of High and Low survival patients for each cancer type, resulting in some groups
being poorly represented. Therefore, I excluded from gene expression analysis those
cancer types where the High or Low survival group were smaller than 5 patients.
Cancer types excluded were CHOL, PCPG, PRAD, READ, THCA.

3.2.2 OXPHOS is down-regulated in cancer patients with poor sur-
vival

Then, I performed differential gene expression analysis in Low and High survival
patients and applied promiscuity-corrected metabolic GSEA. I found that several
metabolic pathways were significantly altered in the Low Survival compared to the
High Survival group (Figure 3.9a). Overall, poor survival was associated with
inhibition of at least one mitochondrial pathway in 10/15 cancers (67%). OXPHOS
was the most affected pathway in Low vs High survival patients and was found down-
regulated in the low survival group of 9 out of 15 (60%) cancer types (Figure 3.9b).
Of note, the most frequently down-regulated genes in this group were subunits of
Complex I and IV of the respiratory chain.

To investigate the possible relation between mitochondrial metabolism and
poor clinical outcome, I performed GSEA on Low and High Survival patients, taking
advantage of a large collection of cancer-associated gene signatures from the Broad
Institute. Among cancers that exhibited down-regulation of OXPHOS, the most up-
regulated cellular function was epithelial-to-mesenchymal transition (EMT) (Figure
3.9c), a gene signature associated with cancer aggressiveness and poor prognosis
(Tsai and Yang 2013). Notably, OXPHOS showed significant (FDR = 0.05) negative
correlation with EMT in 19/20 cancer types (Figure 3.9d).
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3.2.3 OXPHOS is associated with cancer metastasis

Given the role of EMT in cancer metastasis (Tsai and Yang 2013), I hypothesized
an association between down-regulation of OXPHOS, induction of EMT, and the
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metastatic potential of cancer, which is directly linked to patient prognosis. To val-
idate this hypothesis, I took advantage of the Skin Cutaneous Melanoma data set
provided by TCGA, composed of 367 metastatic and 103 primary cancer samples.
I performed differential metabolic gene expression and GSEA on metastatic vs pri-
mary cancer samples. Of note, EMT was strongly up-regulated in metastatic vs pri-
mary cancer samples (Figure 3.10a). Furthermore, OXPHOS was the most signifi-
cantly down-regulated metabolic pathway in metastatic vs primary cancers (Figure
3.10b). In line with the findings on Low vs High survival patients, Cyclic Nu-
cleotides metabolism and Purine biosynthesis were both up-regulated in metastatic
vs primary cancers (Figure 3.10b).

To further validate the link between reduced expression of mitochondrial
genes and metastasis, I compared the metabolic gene expression profile of metastatic
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and parental 786-O kidney cancer cell lines generated by Vanharanta et al (Van-
haranta et al. 2013). Briefly, this panel of cell lines were generated by intravenous
injection of parental 786-O cells into nude mice and performed subsequent isola-
tion of cells that spontaneously formed metastases in the lungs. The comparison
of metastatic and parental 786-O cells allows for the investigation of gene signa-
tures associated with metastasis. In line with my findings in cancer patients, EMT
was strongly up-regulated in metastatic vs parental cells (Figure 3.10c) and OX-
PHOS was the most down-regulated metabolic pathway in metastatic cells compared
to parental (Figure 3.10d). Moreover, cyclic nucleotides metabolism, one of the
pathways found up-regulated in metastatic vs primary melanoma, was also found
up-regulated in 786-O metastatic vs parental cell lines (Figure 3.10d).
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3.3 Discussion

Dysregulation of cellular metabolism is an established feature of cancer. Yet, the
contribution of this metabolic reprogramming to cancer biology and to the clini-
cal outcome of patients is still under investigation. Taking advantage of a large
collection of cancer samples from the cancer genome atlas (TCGA) consortium, I
systematically investigated the mRNA expression of metabolic genes in 20 different
cancer types and assessed the link between altered gene expression and survival of
cancer patients. This analysis revealed that different cancer types exhibit similar
metabolic features, which are reminiscent of their tissue of origin, and that specific
metabolic features correlate with metastatic potential and patient prognosis.

Previous studies have highlighted important features of altered metabolism
between tumor and normal tissues in a pan-cancer perspective. For instance, Hu
and colleagues performed an extensive analysis of metabolic gene expression changes
in cancer compared to normal tissues, observing common patterns of metabolic
adaptation among different cancer types (Hu, Locasale, et al. 2013; Reznik and
Sander 2015; Gross et al. 2015). In accordance with this study, I found that distinct
cancers display up-regulated expression of glycolysis and nucleotide metabolism, and
down-regulation of mitochondrial fatty acids oxidation (mFAO), whereas oxidative
phosphorylation (OXPHOS) presented heterogeneous regulation. Subtle differences
between the study by Hu et al (Hu, Locasale, et al. 2013) and my findings, including
expression changes of citric acid cycle (CAC) genes, can be explained by differences
in the curation of metabolic pathways, which I obtained by integrating multiple
databases. Interestingly, the observation that expression of mFAO is diminished
across several cancer types is in line with the results from a recent pan-cancer analysis
where signals from mRNA, miRNA and DNA methylation levels were integrated to
find common expression changes in cancer (Gross et al. 2015). Together with these
findings, my results showed diminished expression of CAC enzymes in cancer, and
succinate dehydrogenase (SDH)D ranked among the most frequently down-regulated
mitochondrial genes, in line with its role as mitochondrial tumor suppressor (Selak
et al. 2005). This finding is in line with a previous study indicating the loss of co-
expression of genes of the mitochondrial respiratory chain in kidney cancer (Reznik
and Sander 2015), and with the decrease of mitochondrial DNA (mtDNA) in tumor
samples from TCGA database (Reznik, Miller, et al. 2016). Together with the
observation that direct inhibition of mitochondrial metabolism is responsible for p53
genetic inactivation and increased tumorigenic potential (Bartesaghi et al. 2015), my
results support the notion that down-regulation of several mitochondrial pathways
is a common feature of the metabolic rewiring occurring in different cancer types.

Although these data seem to support a role for mitochondrial dysfunction
in cancer initiation and progression, mitochondria are far from being an accessory
organelle in cancer cells. Cells completely devoid of mtDNA (ρ0) have lower ability
to form tumors in mice (Morais et al. 1994) and ρ0 cells need to acquire mtDNA from
host cells to recover mitochondrial function and achieve growth in vivo (Tan, Baty,
et al. 2015). Indeed, mitochondria are important for the generation of several precur-
sor molecules, such as aspartate, citrate and succinyl-CoA for supporting nucleotide,
lipid and heme biosynthesis, respectively. Moreover, mitochondrial metabolism is
flexible and can engage in both oxidative and reductive metabolism to support the
generation of cytosolic citrate even in the presence of mitochondrial dysfunction
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triggered by genetic or environmental cues. For instance, reductive citrate has been
shown to support lipid synthesis under hypoxia (Metallo et al. 2012), in the pres-
ence of CAC truncation (Mullen et al. 2012), or in the presence of respiratory chain
inhibitors (Fendt et al. 2013). Together with this evidence, my results suggest that
partial, rather than complete, loss of mitochondrial function supports the growth of
cancer cells. Suboptimal mitochondrial function would induce a metabolic switch
towards aerobic glycolysis, which is known to support anabolic programs in fast
growing cells (Vander Heiden et al. 2009), while maintaining the ability to carry
out important mitochondrial functions required for metabolism and signaling. Im-
portantly, recent work demonstrated that partial mitochondrial dysfunction induces
migration, invasion and metastasis, while complete loss of mitochondrial function
leads to inhibition of the metastatic phenotype (Porporato et al. 2014).

My study established for the first time a link between metabolic alteration
and survival of cancer patients. By comparing low and high survival patients from 15
different cancer types I observed that down-regulation of OXPHOS gene expression
is almost invariably associated with poor clinical outcome. This result suggests that,
despite activation of OXPHOS could have different effects during cancer initiation
depending on the tissue of origin, suppression of OXPHOS genes is a common fea-
ture of cancer progression and could have important implications for patient survival.
Low OXPHOS was strongly associated with induction of epithelial-to-mesenchymal
transition (EMT), a process linked to cancer invasion and metastasis, one of the
most common causes of cancer deaths. Consistently, OXPHOS was amongst most
down-regulated pathways in distant melanoma metastases, compared to primary
cancer. These results support at much broader scale the finding that partial mito-
chondrial dysfunction increases metastatic potential of cancer cells (Porporato et al.
2014). At the same time, these results partially disagree with recent work from the
Kalluri's laboratory, where LeBleu and colleagues investigated the metabolic phe-
notype of circulating tumour cells and metastasis from various breast cancer models
(LeBleu et al. 2014). In accordance with my findings, they found that metastatic
cells exhibited low expression of OXPHOS genes, compared to the primary tissue
and circulating cancer cells. However, they found that invasive ductal breast can-
cers are characterized by high expression of the master regulator of mitochondrial
biogenesis nuclear coactivator PPARγ coactivator-1α (PGC1α), which also corre-
lated with metastasis. Of note, I could not find significant changes in the expression
of PGC1α between metastatic and primary melanoma tumors (BH p-value=0.37)
suggesting that the findings of LeBleu might not represent a common feature of
cancer but, likely, apply to a specific subset of breast cancers. In line with the
interpretation of possible tissue-specific roles of PGC1α, a recent study found that
PGC1α down-regulation is linked with prostate cancer progression and metastasis,
and its genetic reactivation suppresses the formation of prostate cancer metastases
(Torrano et al. 2016).

Beyond conclusions that can be drawn from the results presented in this
chapter, it is important to highlight that the analytical approach applied herein
is not devoid of limitations. First, establishing a link between mRNA levels of
metabolic enzymes and cellular function can be a daunting task, not only because
of the lack of correlation between transcript abundance and protein concentration
(Zhang, Wang, et al. 2014), but also because of lack of large-scale information about
downstream regulation of protein activity (e.g. acetylation, phosphorylation, etc).
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Moreover, regulation of metabolic pathways can be very intricate and often occurs
at nodal points in the pathway, rather than at the level of every gene; therefore,
mean expression of metabolic pathways is only a partial estimate of their activity.
Second, the association between down-regulation of OXPHOS and metastatic be-
havior via induction of an EMT signature is based on correlation. This hypothesis
is in line with previous studies (Porporato et al. 2014), and I further confirmed
such link in two independent data sets of metastatic melanoma and metastatic cell
lines. Nevertheless, more experimental work is required to corroborate the molecular
underpinnings linking mitochondrial function to metastasis.

Finally, my results have multiple implications. First, they suggest that,
during the process of cancer transformation, cancer cells explore different molecular
paths that entirely depend on the tissue of origin. Second, they indicate that, despite
the overwhelming genetic complexity that underlines transformation, cancer cells
contrive common metabolic strategies to support their proliferation. Importantly,
these convergent pathways of transformation are achieved despite the vast genetic
heterogeneity of cancer cells and appear to be independent of genetic mutations at
the level of specific oncogenes or tumour suppressor genes. Therefore, I hypothesise
that the metabolic reprogramming of cancer is degenerated, i.e. different oncogenes
and tumor suppressor genes lead to similar metabolic signatures to support prolifer-
ation. It is therefore tempting to speculate that evolution of cancer might be driven
by phenotypic traits, and that oncogenes and tumor suppressors might be selected
for their efficiency in regulating these metabolic changes. In line with this hypothe-
sis, a recent study found that metabolic and cancer-causing genes undergo co-altered
somatic copy number variation (Sharma et al. 2016), indicating that alteration of
cancer-associated genes is often linked with metabolic rewiring. These findings may
catalyse a better understanding of the role of dysregulated metabolism in cancer
and provide novel means to stratify patients based on their metabolic features.
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CHAPTER 4

Results.
Metabolic determinants of
mitochondrial dysfunction

O ne of the main findings presented in the previous chapter is that inhibition of
mitochondrial function is a common feature of metabolic rewiring in different

cancer settings and is associated with patient survival. Given the importance of
mitochondrial metabolism in cancer, I wanted to investigate further the effect of
altered mitochondrial function on cellular metabolism. To this aim I decided to
exploit an in vitro system of mitochondrial dysfunction.

A consistent obstacle to clarifying the link between mitochondrial function
and cell metabolism has been the difficulty of disentangling the direct consequences
of dysregulated mitochondrial metabolism from secondary and indirect effects. Cy-
toplasmic hybrids (cybrids) have been used to investigate the effects of mitochon-
drial function on cell physiology (King and Attardi 1989). Cytoplasts with wild
type or mutated mitochondrial DNA (mtDNA) are fused with the nucleus from
a donor cell to evaluate the effect of a specific mtDNA mutation. However, cy-
brid generation is notoriously prone to artefacts. For instance, ethidium bromide
used to eliminate mtDNA of the host cells also induces mutations in the nuclear
genome. Moreover, the selection of individual clones often leads to unrepresen-
tative clone-specific phenotypes, with the marked interclonal heterogeneity being
attributable to simple founder effects (King and Attardi 1989; Martnez-Reyes et al.
2016). To overcome these issues, the selective digestion of mutated mtDNA with
mitochondrially-targeted zinc-finger nucleases (mtZFNs) has been recently used to
generate isogenic cell lines (from parental 143B human osteosarcoma cell line) with
different levels of heteroplasmy of the mtDNA mutation m8993T>G (Gammage,
Rorbach, et al. 2014). This mutation affects ATP6, a key subunit of ATP synthase,
leading to neuropathy ataxia and retinitis pigmentosa (NARP) syndrome and fatal
childhood maternally inherited Leigh’s syndrome (MILS). Importantly, these cells
exhibit distinct and stable metabolic phenotype (Gammage, Gaude, et al. 2016).
The precise and selective regulation of mitochondrial function offered by the NARP
model might yield novel insight into the effects of mitochondrial (dys)function on
cell metabolism, as well as other cellular functions.

In this chapter I will present the results obtained by employing this new
model of progressive mitochondrial dysfunction to investigate how mitochondrial
function impacts upon cell metabolism. I will show that reduced turnover of mi-

60



Mitochondrial metabolism in cancer transformation and progression

a

c

bCtrl
WT

Ctrl
N99 N7 N45 N80

Wild type

m.8993T>G

% WT2254891

d

100 101 102 103 104

MTG

0

100

200

300

400

C
ou

nt
 [l

iv
e 

ce
lls

]

N7
N45
N80

Unstained

0

20

40

60

80

100

N7
N45
N80

C
el

l g
ro

w
th

0 10 20 30 40 50
Time (hours)

Cell growth

0

20

40

60

N7 N45 N80

Calnexin (76KDa)

TOMM20 (15KDa)15

80
KDa M N7 N45 N80

e

M
TG

 in
te

ns
ity

(n
or

m
al

is
ed

 o
n 

un
st

ai
ne

d 
co

nt
ro

l)

0

10

20

30

*

*

4 5 6 7 8

O
C

R
(p

m
ol

es
/p

ro
te

in
(µ

g)
/m

in
)

ECAR
(mpH/protein(µg)/min)

N7
N45
N80

AT
P

-c
ou

pl
ed

 re
sp

ira
tio

n

0

2

4

6

8 ***

N7
N45 N80 N7

N45 N80

C
el

l g
ro

w
th

-0.1

0.0

0.1

0.2

0.3

0.4

0.5 ***

f g h

Figure 4.1: Increasing levels of m8993T>G mutation are associated with changes in
mitochondrial function. a) Restriction fragment length polymorphism (RFLP) analysis
of last cycle hot PCR products (mtDNA nt positions 8339-9334) amplified from total DNA
samples of 143B cells harbouring indicated levels of m.8993T>G, obtained by sequential
treatment with mtZFNs. Wild-type cells and 99% m.8993T>G cybrids were used as con-
trols. (b) Cell growth of N7, N45 and N80 cells in standard conditions measured using
Incucyte. c) Western blot analysis of the mitochondrial membrane marker TOMM20. Cal-
nexin was used as loading control. d) Representative fluorescence distributions of cells
with or without Mitotracker Green (MTG) staining from FACS analysis and (e) mean MTG
intensity after subtraction of intensity from unstained control. Data are mean ± s.e.m.
from three independent cultures. f) Basal extracellular acidification rate (ECAR) and oxy-
gen consumption rate (OCR) in N7, N45 and N80 cells. g) ATP-coupled respiration in N7,
N45 and N80 cells as calculated by subtracting oxygen consumption rate (OCR) values af-
ter treatment with 1 µM oligomycin from basal OCR (after correction for non-mitochondrial
respiration). h) Proliferation of N7, N45 and N80 cells in the presence of D-galactose as
unique sugar supply. Cell growth was determined by calculating the slope of respective
proliferation curves. All data are mean ± s.e.m. from 3 independent cultures. *, *** indicate
one-way ANOVA p-value ≤ 0.05 and 0.001, respectively.
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Figure 4.2: m8993T>G mutation induces global defects of the mitochondrial res-
piratory chain. a) Heatmap representation of protein expression of mitochondrial res-
piratory complexes in N7, N45 and N80 cells as analysed by proteomics analysis (see
Materials and Methods). Data represent values from three independent experiments and
log2 fold change values against mean of all cell lines are colour-coded as indicated. (b-
d) Respiration of digitonin-permeabilised N7, N45 and N80 cells in the presence of (b)
glutamate-malate (complex I) and succinate (complex II), (c) duroquinol (Complex III) and
(d) TMPD-Ascorbate (Complex IV). Data are mean ± s.e.m. from 3 independent cultures.
*, ** indicate one-way ANOVA p-value ≤ 0.05 and 0.01, respectively.

tochondrial reduced nicotinamide adenine dinucleotide (NADH) due to mitochon-
drial dysfunction induces redox state imbalance and triggers cytosolic reductive glu-
tamine metabolism. By supporting the generation of cytosolic malate, reductive
carboxylation allows metabolic channelling of NADH between malate dehydroge-
nase 1 (MDH1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which
become physically associated in cells with dysfunctional mitochondria. Finally, I
found that mitochondrial dysfunction is associated with increased migratory ca-
pacity and that increased MDH1 activity directly supports this increased motility.
These results propose a link between reductive carboxylation and the glycolytic
switch, a hallmark of mitochondrial dysfunction and cancer metabolism. These
findings lend insight towards understanding the metabolic rewiring that accompa-
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nies mitochondrial dysfunction and that contributes to increased cell proliferation
and motility during carcinogenesis.

4.1 m8993T>G heteroplasmy affects mitochondrial func-
tion and cellular metabolism

To investigate the effects of primary mitochondrial dysfunction on cellular meta-
bolism I used a panel of isogenic cell lines with stable low (N7), medium (N45),
or high (N80) levels of m8993T>G heteroplasmy (Gammage, Gaude, et al. 2016)
(Figure 4.1a). These cells exhibited comparable growth rate in basal conditions
(Figure 4.1b). I then characterised the mitochondrial phenotype of the neuropa-
thy ataxia and retinitis pigmentosa (NARP) model. Mitochondrial mass of these
cells was comparable, as shown by protein expression of the mitochondrial mem-
brane transporter TOMM20 (Figure 4.1c) and by staining with the mitochondria-
specific, membrane potential-independent, dye Mitotracker Green (Figure 4.1d-e).
Despite this, I observed a decrease in basal and ATP-coupled oxygen consumption
rate (OCR) and increase of extracellular acidification rate (ECAR) (Figure 4.1f-g)
in N80 compared to N45 and N7 cells, consistent with a gradual decline of mito-
chondrial function. In line with the presence of mitochondrial dysfunction, I demon-
strated that N80 cells fail to grow in galactose (Figure 4.1h), a substrate whose
slower catabolism depends on intact mitochondrial function (Marroquin et al. 2007).

Correspondingly, whilst the m8993T>G mutation affects complex V, the
entire respiratory chain (RC) was influenced by this mutation. Indeed, a proteomic
analysis revealed that, together with low levels of ATP6 and other subunits of ATP
synthase, the abundance of most of RC components (Figure 4.2a) was decreased in
N80 compared to N45 and N7 cells, with subunits of Complex I showing lowest levels
of expression compared to other respiratory complexes. To confirm these findings at
the functional level I measured the activity of individual respiratory complexes in

−0.6 −0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

�

�

�
�

�

�

�

�

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

Cumulative Proportion of Variance Explained = 78.5%
PC 1  ( 58.7 ) %

PC
 2

  (
 1

9.
8 

)%

Glutamine

Citrate

Leucine GSH

Phenylalanine

Malate

Aspartate

N-acetylaspartate

Methionine
Taurine

Valine

Proline

Creatinine

Arginine
GlutamateLactate

ɑ-Ketoglutarate

Choline Creatine

N7
N45
N80

Figure 4.3: m8993T>G mutation affects cellular metabolism. PCA score plot (left) and
loading plot (right) of metabolite levels as measured by LC-MS in N7, N45 and N80 cells.
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permeabilised cells. By combining complex-specific substrates and inhibitors, this
technique allows to assess the consumption of oxygen driven by individual complexes
during ADP-dependent respiration (Salabei et al. 2014). In line with decreased
protein expression of respiratory complexes, as well as with decreased OCR (Figure
4.1f-g), the activity of all individual RC complexes was decreased in correlation with
the level of heteroplasmy (Figure 4.2b-d). Although the activity of all complexes
was significantly altered in NARP cell lines, complex IV showed the most significant
alteration. This result could be due to the architecture of the respiratory chain,
with complex IV being the site of oxygen consumption and potentially acting as a
bottleneck for the respiratory chain. Together, these data indicate that increasing
levels of m8993T>G heteroplasmy correspond to defects across all complexes of the
respiratory chain and lead to increasing levels of mitochondrial dysfunction.

Finally, I wanted to investigate whether m8993T>G heteroplasmy can af-
fect cellular metabolism. To this aim I performed LC-MS-based metabolomics of
intracellular metabolites in N7, N45 and N80 cells, followed by statistical analysis
with PCA. The PCA score plot (Figure 4.3left) represents biological replicates of
each cell line and groups sample points together based on multivariate similarities
(i.e. points close to each other are more similar compared to points far apart). In-
terestingly, the PCA score plot showed a clear separation between cell lines, with
N80 cells forming a clear cluster along the principal component 1, while N45 and
N7 being clustered apart by principal component 2 (Figure 4.3left). This result
indicates that metabolite levels of N80 cells are most different, compared to N7 and
N45 cells. The PCA loading plot (Figure 4.3right) shows the importance of each
metabolite in determining the separation observed in the score plot. Metabolites far
from the centre of the plot, i.e. having high loading values for principal components
1 and 2, are the most different among cell lines. Interestingly, intermediates of the
citric acid cycle (CAC), such as citrate and malate, as well as metabolites associ-
ated with mitochondrial function, such as aspartate (Birsoy et al. 2015; Sullivan,
Gui, et al. 2015) co-clustered with N7 and N45 cells, while the glycolytic metabolite
lactate co-clustered with N80 cells (Figure 4.3). Glutamine and glutamate show
opposite trends, suggesting that conversion of glutamine into glutamate might be
altered in the NARP model. This evidence suggests that mitochondrial dysfunction
associated with m8993T>G can affect several metabolic pathways.

4.2 Constraint-directed metabolic modelling predicts as-
sociation between cytosolic reductive carboxylation
and glycolysis

To systematically investigate the metabolic changes associated with mitochondrial
dysfunction in the m8993T>G mutation model, I took advantage of a recently pub-
lished in silico metabolic model of mitochondrial and central carbon metabolism
(Zieliski et al. 2016). Metabolic models provide detailed reconstructions of inter-
connected metabolic reactions and allow prediction of intracellular fluxes, under the
assumption of steady state (Orth et al. 2010). Importantly, experimental measure-
ments of e.g. extracellular nutrients availability or enzyme activity, can be imple-
mented to refine the model and tailor its predictions on the experimental system
under investigation.
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I refined this model by including consumption and release rates of metabo-
lites as measured by LC-MS metabolomics and by constraining RC activity with RC
complex-dependent measurements of OCR (Figure 4.2b-d). I then computed the
intracellular metabolic fluxes and compared the predicted enzymatic activities in
N7 and N80 models. Besides the expected changes in RC activity, oxygen exchange,
and ATP production, the model predicted an increase in several glycolytic reactions
and decreased activity of multiple enzymes of the CAC and MAS in N80 model,
compared to N7 (Figure 4.4). Interestingly, the model predicted the activation of
cytosolic reductive carboxylation of glutamine in N80 cells, while this pathway was
inactive in N7 cells (Figure 4.4).

To test the predictions of the model, I cultured cells in the presence of
uniformly labelled (U)-13C-glucose (Figure 4.5a) and (U)-13C-glutamine (Figure
4.6a) and assessed by LC-MS the labelling profile of downstream metabolites. I ob-
served increased levels of the glycolytic metabolites 13C-phosphoenolpyruvate (PEP)
and 13C-lactate (Figure 4.5b) and decreased levels of 13C-labelled CAC interme-
diates, such as 2-oxoglutarate, fumarate, and malate, in N80 cells (Figure 4.5c)
upon incubation with (U)-13C-glucose. Consistent with an increased dependency on
glycolysis, N80 cells were more sensitive to inhibition of GAPDH by heptelidic acid,
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compared to N7 (Figure 4.5d), as measured by inhibitory concentration 50 (IC50).

The incubation of cells with (U)-13C-glutamine revealed changes in glu-
tamine oxidation in N80, compared to N45 and N7 cells (Figure 4.6a-b). In
particular, I observed a decrease in m+4 isotopologues in citrate and aconitate,
consistent with reduced oxidation of glutamine via the TCA cycle (Figure 4.6b).
I also observed a substantial increase in aconitate and citrate m+5, and in malate
and fumarate m+3 in N80 cells compared to N7 and N45 (Figure 4.6c), indica-
tive of reductive carboxylation of glutamine proportional to level of heteroplasmy.
To assess whether induction of reductive carboxylation in N80 cells occurs in the
cytosolic or mitochondrial compartment, I silenced either IDH1 or IDH2 in N80
cells (Figure 4.6d), the key enzymes of cytosolic and mitochondrial reductive car-
boxylation, respectively. I then followed incorporation of (U)-13C-glutamine carbons
into downstream metabolites using LC-MS. Accumulation of aconitate and citrate
m+5 were significantly reduced when IDH1 was suppressed, while downregulation
of IDH2 had only minor effects (Figure 4.6e). Together, these data confirm the
predictions of the metabolic model and indicate that mitochondrial dysfunction in-
duces a glycolytic switch and triggers reductive carboxylation of glutamine in the
cytosolic compartment.
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4.3 Reductive carboxylation is regulated by NAD+ /NADH
ratio

I then wanted to investigate the possible determinants of cytosolic reductive carboxy-
lation triggered by mitochondrial dysfunction. Reductive carboxylation has been
associated with altered levels of NAD+/NADH ratio (Fendt et al. 2013), though it
is not clear whether these changes are sufficient to drive reductive carboxylation. To
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Figure 4.6: Mitochondrial dysfunction is associated with increased cytosolic reduc-
tive carboxylation of glutamine. a) Schematic representation of metabolite labelling
pattern from (U)-13C-glutamine. b) Labelling patterns of aconitate and citrate m+0 and
m+4 intermediate originating from oxidation of (U)-13C-glutamine in the mitochondria. c)
Proportion of total pool of metabolites originating from reductive carboxylation of (U)-13C-
glutamine; aconitate m+5, citrate m+5, malate m+3 and fumarate m+3 are shown. d)
mRNA expression of IDH1 and IDH2 genes upon selective knock down of IDH1 and IDH2
with two independent shRNA constructs. Actin mRNA expression was used as endoge-
nous control and data were normalised on shNTC control. Data are mean ± s.d. from one
representative experiment. e) Relative metabolite levels (normalised on shNTC control)
from reductive carboxylation of U-13C-Glutamine in N80 cells infected with shRNA con-
structs targeting IDH1 or IDH2. Data are mean ± s.e.m. from three independent cultures.
(b-c) *** indicate one-way ANOVA p-value ≤ 0.001. (e) *, **, *** indicate Dunnetts p-value
≤ 0.05, 0.01 and 0.001, respectively. n.s. = not significant.
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investigate whether mitochondrial function affects NAD+/NADH ratio in N7, N45
and N80 cell lines, I measured NAD+/NADH levels using an enzymatic assay, which
measures total cellular NAD+/NADH levels. Total NAD+/NADH was decreased in
N80, compared to N7 and N45 cells (Figure 4.7a), suggesting that mitochondrial
dysfunction is associated with NADH redox imbalance.

To assess the levels of mitochondrial NAD+/NADH more directly, I mea-
sured NAD(P)H autofluorescence using confocal microscopy. This imaging technique
allows to assess NADH levels in live cells, therefore avoiding cell lysis and gaining
information of compartmentalised NADH pools. Moreover, the combination of live
cell imaging together with treatment with specific mitochondrial inhibitors, allows
to investigate the specific consumption of NADH by the RC. Briefly, NAD(P)H aut-
ofluorescence levels are acquired in basal conditions, after which cells are treated
with the complex IV-specific inhibitor cyanide (CN). This blocks flux through the
RC and induces accumulation of NADH due to reduced consumption by complex
I. Accumulation of NADH upon CN depends on the extent to which complex I
is coupled to the respiratory chain and on the ability of the CAC to provide new
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Figure 4.7: NAD+/NADH imbalance in cells with mitochondrial dysfunction. a) Total
levels of NAD+/NADH in N7, N45 and N80 cells, as measured by enzymatic assay. b) Lev-
els of mitochondrial NADH as measured by NAD(P)H autofluorescence. c) Fluorescence
intensity after excitation at 350 nm extracted from image time series analysis of N7, N45
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Representative images of N7, N45 and N80 cells excited at 350 nm.
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NADH molecules. Slower flux through the RC and/or through the CAC will result
in lower NADH accumulation. Media is then changed to allow for CN wash out and
requilibration (Figure 4.7c), after which cells are treated with carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP). FCCP uncouples electron transport and
oxygen consumption from ATP production and induces maximal respiration, thus
leading to depletion of mitochondrial NADH pools. Cells with dysfunctional CAC
will experience profound NADH depletion due to inability of the CAC to supply
NADH. This experiment showed that basal levels of mitochondrial NADH are in-
creased in N80 cells, compared to N7 and N45 (Figure 4.7b-d), suggesting that
reduced consumption of NADH by the RC can lead to accumulation of NADH in
the mitochondrial compartment. These results indicate that impairment of respira-
tory activity in N80 cells alters NADH oxidation in the mitochondria, leading to a
decreased total cellular NAD+/NADH ratio.

To further assess the link between NAD+/NADH balance and reductive car-
boxylation in these cell lines, I rescued mitochondrial NADH oxidoreductase activ-
ity by expressing yeast-derived NADH dehydrogenase internal (NDI-1) in N80 cells
(Figure 4.8a-b), where respiratory complex I activity is compromised. NDI-1 con-
stitutes an alternative NADH oxidoreductase that transfers electrons from NADH to
ubiquinone, delivering electrons to downstream complexes and therefore can be used
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to bypass electron transport in complex I (Seo et al. 1998; Bai et al. 2001). Since
N80 cells display complex I deficiency and activation of reductive carboxylation,
rescue of NADH oxidoreductase activity via NDI-1 expression in these cells allow to
assess the link between mitochondrial NADH levels and reductive carboxylation.

In line with increased electron transport through the respiratory chain, ex-
pression of NDI-1 improved basal and maximal respiration of N80 cells, compared to
N80 cells expressing an empty vector (Figure 4.8c). To assess whether the increase
in respiration was due to NDI-1 expression, I treated NDI-1-expressing cells with
the complex I-specific inhibitor rotenone, which does not inhibit NDI-1. Rotenone
severely impaired respiration of control N80 cells, while had only minor effects on
NDI-1-expressing cells (Figure 4.8c). Moreover, inhibition with the complex III-
specific inhibitor antimycin A abolished respiration of both cell lines, indicating
that the increase of respiration was, indeed, specifically caused by NDI-1 expression
(Figure 4.8c). Importantly, not only NDI-1 resulted in increased respiration of
N80 cells, but also was able to rescue the NAD+/NADH ratio (Figure 4.8d), thus
indicating that NDI-1 can successfully rescue mitochondrial NADH oxidoreductase
activity.

Finally, in order to assess whether NDI-1 affected glutamine reductive meta-
bolism, I performed 1-13C-glutamine labelling, which selectively tracks reductive car-
boxylation (Metallo et al. 2012). Briefly, metabolism of 1-13C-glutamine through ox-
idative reactions of the CAC will lead to loss of the labelled carbon via oxidation and
decarboxylation of α-ketoglutarate (αKG) to succinyl-CoA by alpha-ketoglutarate
dehydrogenase (AKGDH). Instead, reductive carboxylation of αKG to isocitrate
by IDH1 or IDH2 will produce labelled isocitrate and the labelled carbon will be
retained into downstream metabolites (Metallo et al. 2012).

Supplementation with 1-13C-glutamine resulted in lower levels citrate m+1
and malate m+1 in NDI-1-expressing N80 cells, compared to control, indicating that
NDI-1 expression can diminish the activation of reductive carboxylation (Figure
4.8e). In further support of a causative link between mitochondrial dysfunction,
changes in NAD+/NADH ratio, and cytosolic reductive carboxylation, the complex
I-specific inhibitor rotenone led to increased reductive carboxylation (Figure 4.8f).
Together, these data indicate that impairment of cellular NAD+/NADH ratio by
mitochondrial NADH turnover can affect the levels of cytosolic glutamine reductive
carboxylation.

4.4 Reductive carboxylation is coupled with glycolysis
via malate dehydrogenase 1 (MDH1)

I then assessed the functional relevance of cytosolic reductive carboxylation in the
metabolic reprogramming of N7, N45 and N80 cells. To this end, I first simulated
the complete knock out of IDH1 in silico, followed by computation of the changes
in ATP production associated to knock out of individual enzymes. Briefly, ATP
production upon knock out of individual enzymes is calculated and compared to
ATP production under normal conditions (wild type). The difference of ATP yield
is used as a readout of the contribution of a given enzyme to ATP production.

The in silico depletion of IDH1 suggested a significant impact on reactions
belonging to glycolysis and MAS (Figure 4.9a). Indeed, among the top reactions

70 Chapter 4



Mitochondrial metabolism in cancer transformation and progression

affected by blocking reductive carboxylation were major glycolytic enzymes, such as
GAPDH and pyruvate kinase (PK), as well as glutamate-oxaloacetate transaminase
1 (GOT1) and MDH1, two components of MAS (Figure 4.9a). Interestingly, I
found that the in silico deletion of IDH1 led to a 10% reduction of ATP yield in
N80 (Figure 4.9b) but had no effects on ATP production in N7. Moreover, among
components of MAS, I observed a striking increase in the contribution of MDH1 to
ATP production in N80 compared with N7 model (Figure 4.9b). These results
suggest that cytosolic reductive carboxylation and MDH1 are linked to glycolysis
and subsequent ATP generation. In support of this hypothesis, lactate production
decreased when IDH1, but not IDH2, was silenced in N80 cells (Figure 4.9c). These
results are in line with the recent observation that MDH1 can support glycolysis via
recycling of cytosolic NADH in proliferating cells (Hanse et al. 2017).

I then wanted to investigate whether the synthesis of cytosolic malate via
MDH1 could support glycolysis in cells with mitochondrial dysfunction. To this
aim, I first assessed the functional consequences of the suppression of MDH1 in
N80 cells (Figure 4.10a). Production of malate m+1 and fumarate m+1 from 1-
13C-glutamine was markedly reduced in MDH1-depleted N80 cells, compared to non-
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targeting control (Figure 4.10b). These results indicate that silencing of MDH1 has
functional consequences in N80 cells, as well as confirm the prediction that reductive
carboxylation can generate cytosolic malate via MDH1. Importantly, silencing of
MDH1 led to a decrease of NAD+/NADH ratio (Figure 4.10c), suggesting that
MDH1 activity plays a role in NADH redox balance.

To directly assess the coupling between glycolytic NADH and MDH1 I per-
formed a hydrogen tracing experiment with 4-2H-glucose, which allows measurement
of the transfer of hydrogen atoms from GAPDH-derived NADH to cytosolic metabo-
lites (Figure 4.10d) (Lewis et al., 2014). I found that malate m+1 was markedly
increased in N80 cells, compared to N45 and N7 (Figure 4.10e), confirming the
functional coupling between GAPDH and MDH1 (Figure 4.10f), as well as the
directionality of MDH1. To assess whether coupling of MDH1 and GAPDH is a
consequence of mitochondrial dysfunction, I treated N7 cells with rotenone and
measured the levels of malate m+1 upon incubation with 4-2H-glucose. I found
that treatment with rotenone led to increased levels of malate m+1 in N7 cells,
demonstrating that the coupling of MDH1 and GAPDH can be induced by phar-
macological suppression of mitochondrial function. To further the role of MDH1
in regulating NADH redox and supporting proliferation of cells with mitochondrial
dysfunction, I inhibited LDH, one of the major regulators of NADH balance in the
cytosol, with oxamate in shMDH1 N80 cells (Figure 4.10i). As shown by measure-
ments of NADH redox state (Figure 4.10i) and cell proliferation (Figure 4.10j),
silencing of MDH1 sensitised cells to LDH inhibition (Figure 4.10i-j), suggesting
that MDH1 might play an important role in supporting NAD+/NADH ratio and
growth of cells with mitochondrial dysfunction.

The data shown above indicate that a cross-talk between reductive carboxy-

Figure 4.10: (Previous page) Mitochondrial dysfunction is associated with in-
creased metabolic channelling between GAPDH and MDH1. a) Representative west-
ern blot analysis of MDH1 expression upon infection of N80 cells with non-targeting control
(shNTC) or shRNA constructs targeting MDH1 (shMDH1 #1 and #2). b) Levels of metabo-
lites from 1-13C-glutamine in shMDH1 N80 cells. Data are normalised on non-targeting
shRNA control (shNTC). c) Total levels of NAD+/NADH in shNTC and shMDH N80 cells
in basal conditions. d) Schematic representation of labelling pattern originating from 4-
2H-glucose. Deuterium atoms are represented as green filled circles. e-f) Proportion of
total pool of malate m+1 originating from 4-2H-glucose in N7, N45 and N80 cells (e) and
shMDH1 N80 cells (f). g) Schematic representation of inhibition of LDH, GAPDH and OX-
PHOS by oxamate, heptelidic acid and rotenone, respectively. h) Proportion of total pool
for malate m+1 in N7 cells treated with vehicle control or 0.5 ţM rotenone and incubated
with 1-13C-glutamine. i) Total levels of NAD+/NADH in shNTC and shMDH1 N80 cells
after treatment with the LDH inhibitor Oxamate (20 mM). Data is normalised on vehicle
control (no oxamate) and on shNTC control. j) Cell growth of shMDH cells upon treatment
with 20 mM of LDH inhibitor Oxamate. Data are normalised on shNTC control. k) Nor-
malised intensity of GA3P upon treatment of N7, N45 and N80 cells with vehicle control
or 0.5 µM heptelidic acid. l) Proportion of total pool for citrate and malate m+1 originat-
ing from 1-13C-glutamine in N80 cells upon treatment with 0.5 µM of the GAPDH inhibitor
heptelidic acid. (b-c, f, h-l) * and *** indicate two-sided t-test p-value ≤ 0.05 and 0.001,
respectively. (e) * indicates one-way ANOVA p-value ≤ 0.05.
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lation, MDH1 activity, and glycolysis occurs in cells with mitochondrial dysfunction.
To further corroborate this cross-talk, I inhibited GAPDH activity with the specific
inhibitor heptelidic acid (Figure 4.10g) and assessed the activation of reductive car-
boxylation. Of note, treatment with heptelidic acid led to significant accumulation
of GA3P (Figure 4.10k). Moreover, I observed diminished levels of citrate m+1
and malate m+1 (Figure 4.10l) upon incubation of N80 cells with 1-13C-glutamine.
Together with data shown above, this evidence confirms that a cross-talk between
reductive carboxylation and glycolysis occurs at the level of MDH1 and GAPDH
and suggest that the metabolic channelling between these two enzymes is important
for the mutual regulation of these two metabolic pathways.

The hydrogen tracing experiments with 4-2H-glucose (Figure 4.10d-f) in-
dicate that metabolite channelling between GAPDH and MDH1 exists. Of note,
substrate channeling is known to be facilitated by interaction of individual enzymes
into multi-enzymatic complexes (You et al. 2012). I wanted to investigate whether
NADH channelling between GAPDH and MDH1 could be supported by physical
interaction of these two enzymes. To this aim, I performed co-immunoprecipitation
assay and I found that GAPDH interacts with MDH1 (Figure 4.11a). Strikingly,
I observed that N80 cells display a higher interaction between GAPDH and MDH1,
compared to N45 and N7 (Figure 4.11a). Importantly, increased interaction be-
tween GAPDH and MDH1 in N80 cells was not due to higher protein expression
of MDH1 in N80 cells (Figure 4.11b). In addition, I observed that a complex of
GAPDH and LDH is formed in N7, N45 and N80 cells (Figure 4.11c) thus confirm-
ing previous evidence of interaction between these two enzymes (Svedrui and Spivey
2006). Finally, immunofluorescence assay showed increased co-localisation between
GAPDH and MDH1 in N80 cells, compared to N45 and N7, thus confirming an
increased interaction between the two enzymes in the presence of mitochondrial
dysfunction (Figure 4.11d).

Together, these data support the hypothesis that GAPDH and MDH1 form
a multi-enzymatic complex that may facilitate NADH recycling from reductive car-
boxylation to glycolysis in cells with mitochondrial dysfunction.

4.5 Aspartate supports flux via MDH1 and generates ma-
late

My results indicate that mitochondrial dysfunction reduces the ability of mitochon-
dria to consume NADH and that cytosolic reductive carboxylation provides carbons
to recycle NADH via MDH1. In this scenario, the cytosolic component of the MAS,
including GOT1, would function as an additional source of oxaloacetate for MDH1
(Figure 4.12a). To investigate the directionality of the MAS, cells were cultured
in the presence of (U)-13C-aspartate. Strikingly, I found that aspartate is converted
to m+4 malate and fumarate, displaying the highest proportion of labelling in N80,
compared to N45 and N7 cells (Figure 4.12b). Yet, I could not detect labelled succi-
nate and the labelling of citrate from aspartate did not correlate with mitochondrial
function (Figure 4.12c), indicating that utilisation of aspartate is predominantly
cytosolic. In support of this hypothesis, defects of cellular respiration in N80 cells
were not rescued by exogenous aspartate (Figure 4.12d), indicating that aspar-
tate does not contribute to CAC in the mitochondria. Treatment with rotenone led
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to increase m+4 labelling of malate and fumarate (Figure 4.12b) from (U)-13C-
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Figure 4.11: A complex between GAPDH and MDH1 is formed in cells with mito-
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immunoprecipitation assay on lysates obtained from N7, N45 and N80 cells. The inter-
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aspartate, thus suggesting that contribution of aspartate to these metabolite pools
is linked with mitochondrial function. The synthesis of cytosolic malate from aspar-
tate requires transamination to oxaloacetate (OAA), followed by reduction of OAA
to malate via MDH1. I reasoned that N80 cells might be dependent on aspartate
transamination. Consistent with this hypothesis, aspartate supplementation could
rescue proliferation of N80 cells grown in galactose, while only minor effects were
observed in N7 and N45 cells (Figure 4.12e). Moreover, treatment with aminoox-
iacetate (AOA), an inhibitor of transaminases, prevented the beneficial effects of
aspartate for N80 cells grown in galactose (Figure 4.12f).

These results indicate that transamination of aspartate supports flux through
MDH1 and synthesis of cytosolic malate to support proliferation of cells with mito-
chondrial dysfunction.
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Figure 4.12: Aspartate transamination supports flux through MDH1 and generation
of malate. a) Schematic representation of malate-aspartate shuttle (MAS) and labelling
patterns originating from U-13C-aspartate. b-c) Proportion of total pool of malate and fu-
marate m+4 (b) and citrate m+4 (c) in N7, N45 and N80 cells grown in the presence
of U-13C-aspartate upon treatment with vehicle control or 0.5 µM rotenone. d) Oxygen
consumption rate (OCR) of N7, N45 and N80 cells in basal conditions or upon supple-
mentation with 5 mM aspartate. e-f) Cell growth of N7, N45 and N80 cells grown in 25
mM galactose and supplemented with 5 mM aspartate (e) upon treatment with 2 mM of
aminooxyacetate (f). Data are mean ± s.e.m. from at least three independent cultures.
(b-e) *, ** and *** indicate two-sided t-test p-value ≤ 0.05, 0.01 and 0.001, respectively. (f)
*** indicates one-way ANOVA p-value ≤ 0.001.
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4.6 MDH1 regulates cell migration

Finally, I investigated the functional outcome of the metabolic rewiring prompted
by dysfunctional mitochondria. Recently, it was shown that production of ATP by
glycolysis, rather than by mitochondrial OXPHOS, supports cell migration (Yizhak

a

N7
N45 N80

0.0

0.5

1.0

JATP glycolysis
JATP oxphos

Pr
op

or
tio

n 
of

 to
ta

l A
TP

c

f g h

b

0 1 2 3 4

GO_POSITIVE_REGULATION_
OF_ACTIN_NUCLEATION

GO_CELL_PROJECTION_ORGANIZATION

GO_REGULATION_OF_ACTIN_
NUCLEATION

GO_LAMELLIPODIUM_ORGANIZATION

GO_POSITIVE_REGULATION_OF_
CYTOSKELETON_ORGANIZATION

GO_POSITIVE_REGULATION_OF_
ACTIN_FILAMENT_POLYMERIZATION

GO_ACTIN_NUCLEATION

GO_ARP2_3_COMPLEX_
MEDIATED_ACTIN_NUCLEATION

-log10 p-value

FDR = 0.05
N80 vs N7

N7
N45 N80

0.8

0.9

1.0

1.1

1.2

R
el

at
iv

e 
sp

ee
d

(m
ea

n 
ce

nt
er

ed
)

***
Cell migration Wound healing

d

N7

N45

N80

e

*

N7
N45 N80

0.0

0.5

1.0

1.5

J AT
P 

co
ns

um
pt

io
n

(m
ea

n 
ce

nt
er

ed
)

Cytoskeleton
dynamics

sh
NTC

sh
MDH1 #

1

sh
MDH1 #

2

***
***

0.6

0.8

1.0

1.2

R
el

at
iv

e 
sp

ee
d

(m
ea

n 
ce

nt
er

ed
)

Cell migration Wound healing

shNTC

shMDH1
#1

shMDH1
#2

Cytoskeleton
dynamics

sh
NTC

sh
MDH1 #

1

sh
MDH1 #

2
0.0

0.5

1.0

J AT
P 

co
ns

um
pt

io
n

(m
ea

n 
ce

nt
er

ed
)

*

Figure 4.13: Mitochondrial dysfunction is linked with cell migration. a) Proportion
of total ATP originating from glycolysis and oxidative phosphorylation in N7, N45 and N80
cells, as calculated from OCR and ECAR measurements. b) Enrichment p-values (-log10)
of gene ontology (GO) biological processes involved in cell migration and cytoskeleton
remodelling. Red dashed line indicates false discovery rate (FDR) = 0.05. c, f) Migration
speed of N7, N45 and N80 cells (c) or shMDH1 cells (f) as measured by wound healing
assay. d, g) Representative images of wound-healing assay 6 hours after application of
wound in N7, N45 and N80 (d) and shMDH1 (g) cells. e, h) Values of JATP consumption
due to cytoskeleton remodelling based on calculations from OCR and ECAR data upon
treatment with 1 ţM nocodazole in N7, N45 and N80 cells (e) or shMDH1 cells (h). All Data
are mean ± s.e.m. from three to four independent cultures. * and *** indicate p-value ≤
0.05 and 0.001, respectively, from ANOVA (c, e) or Dunnetts test (f, h).
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et al. 2014). I measured the contribution of glycolysis and OXPHOS to ATP pro-
duction in N7, N45 and N80 cells via quantification of intracellular metabolic flux
(Mookerjee et al. 2017) and found that N80 cells displayed an increased reliance
on the glycolytic pathway for the ATP production (Figure 4.13a). Therefore, I
hypothesised that switching to glycolytic ATP production might be associated with
increased cell motility in this cell model. A proteomics analysis of N7 and N80
cells followed by Gene Ontology (GO) enrichment analysis revealed that processes
involved in cell migration and cytoskeleton remodelling were significantly altered
between N7 and N80 cells (Figure 4.13b). I therefore assessed cell migration in
N7, N45 and N80 cells by performing wound-healing assay in vitro. I found that
migratory capacity increased proportionally with the levels of mitochondrial dys-
function, with N80 cells displaying highest migration speed (Figure 4.13c-d). In
line with this result, higher amounts of ATP were used for cytoskeletal remodelling
in N80, compared to N7 and N45 (Figure 4.13e).

Finally, I assessed the role of MDH1 in supporting this process. I found
that the migratory abilities of N80 were markedly reduced upon silencing of MDH1,
compared to non-targeting control (Figure 4.13f-g), and shMDH1 cells showed
reduced utilisation of ATP for cytoskeleton dynamics (Figure 4.13h). In addition, I
observed that co-localisation of MDH1 with actin followed the trend of mitochondrial
dysfunction in N7, N45 and N80 cells (Figure 4.13i-j).

Together, these results indicate that mitochondrial dysfunction is associated
with increased migration and that, by sustaining glycolytic ATP generation, MDH1
plays an important role in supporting cell migration.
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images of N7, N45 and N80 cells stained with DAPI (DNA, blue), phalloidin (actin, green)
or antibody against MDH1 (red). White arrows indicate areas of co-localisation between
MDH1 and actin in N80 cells. b) Quantification of co-localisation between MDH1 and
Phalloidin (actin). Data were obtained from 20-30 cells per condition. *** indicates ANOVA
p-value ≤ 0.001.
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4.7 Discussion

In this chapter I exploited a panel of isogenic cell lines that harbour a varying
degree of heteroplasmy for a mitochondrial DNA (mtDNA) mutation that affects
ATP synthase. I applied this unique cell model to investigate the link between mi-
tochondrial dysfunction and glycolysis. This model is greatly improved in respect
to possible gross chromosomal alterations occurring during the long-term selection
of cybrid clones (King and Attardi 1989; Martnez-Reyes et al. 2016). Using in
silico metabolic modeling, I predicted and experimentally validated that increas-
ing levels of heteroplasmy result in an overall impairment of the respiratory chain
and in a decreased utilisation of mitochondrial reduced nicotinamide adenine dinu-
cleotide (NADH). This respiratory chain defect indirectly affects several pathways
involved in the generation of mitochondrial reducing equivalents, such as the citric
acid cycle (CAC) and malate-aspartate shuttle (MAS). Indeed, reduced oxidation of
NADH by the mitochondrial respiratory chain (RC) would result in a depletion of
oxidised nicotinamide adenine dinucleotide (NAD+) from the mitochondrial matrix
and this could affect the activity the CAC and MAS enzyme malate dehydrogenase 2
(MDH2). Importantly, reduced activity of MDH2 would limit the availability of ox-
aloacetate, a rate-limiting metabolite that supports generation of citrate, and would
likely result in slow CAC flux. In addition, reduced flux through MDH2 would result
in a block of the MAS, therefore limiting the entry of NADH into mitochondria and
forcing cytosolic enzymes, such as lactate dehydrogenase (LDH), to maintain NAD
redox balance. This is a very well known scenario under hypoxia, where disrup-
tion of MAS, NAD redox imbalance and activation of LDH have been extensively
reported (Lu, Zhou, et al. 2008; Chouchani et al. 2014).

Among most striking metabolic adaptation that I observed upon mitochon-
drial dysfunction is the activation of cytosolic reductive carboxylation of glutamine.
Increased reductive carboxylation was also accompanied by decreased oxidation of
glutamine in the mitochondria. Although the determinants of this effect have not
been investigated it is possible that this phenomenon is due, at least in part, to di-
minished availability of NAD+ for mitochondria-specific glutamate dehydrogenase.
The inhibition of glutamate oxidation in the mitochondria would then favour the
transamination of glutamate by glutamate-oxaloacetate transaminase 1 (GOT1) in
the cytosol and lead to reductive carboxylation.

Reductive carboxylation supports proliferation of cancer cells with mito-
chondrial dysfunction (Mullen et al. 2012) and cells grown under hypoxia use reduc-
tive carboxylation for de novo lipid synthesis (Metallo et al. 2012). Yet, its biochemi-
cal determinants remain unclear. In this work, I found that reductive carboxylation
is driven by changes in NADH/NAD+ levels and that it supports metabolic flux
through the NADH-consuming malate dehydrogenase 1 (MDH1). Together these
data indicate, for the first time, that reductive carboxylation, beyond being used for
biosynthetic pathways, is directly involved in the regeneration of cytosolic NAD+

to maintain redox balance and glycolytic flux. In this scenario, cytosolic reduc-
tive carboxylation operates as substitute for MAS, tightly coupling the oxidation
of glutamine with glycolysis, likely enabling glycolytic flux for ATP synthesis and
biomass generation. My findings indicate that MDH1 is an important enzyme when
high glycolytic capacity is needed to support anabolic demands or to compensate
for NAD redox imbalance upon mitochondrial dysfunction. These results are in line
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with a recent study that demonstrated that MDH1 can recycle glycolytic NADH and
support proliferation of cancer cells and activated lymphocytes (Hanse et al. 2017),
two settings characterised by diminished mitochondrial function and high reliance
on glycolysis (Vander Heiden et al. 2009; Pearce, Poffenberger, et al. 2013).

I also showed evidence that MDH1 physically interacts with the key gly-
colytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enhancing the
recycling of glycolytic NADH. Interaction of glycolytic enzymes into a single mul-
tienzymatic complex has been previously observed (Menard et al. 2014). Impor-
tantly, multienzymatic complexes can offer several advantages, including higher sol-
vation and substrate channelling. Formation of a multienzymatic complex between
GAPDH and LDH has already been reported (Svedrui and Spivey 2006) and NADH
channelling between these two enzymes is known to be rate-limiting for glycolytic
flux. My data suggest that a multienzymatic complex between GAPDH, LDH, and
MDH1 can be formed and this can be regulated by changes in the metabolic state
of the cell induced by mitochondrial dysfunction. Indeed, the extent of interaction
and of NADH channelling between MDH1 and GAPDH depends on mitochondrial
function and is not due to transcriptional or translational regulation, as protein
levels of MDH1 are comparable between N7, N45 and N80 cells. This observation
suggests that the interaction between MDH1 and GAPDH might be dictated by
mitochondria-driven changes in cytosolic chemical environment, such as the avail-
ability of NAD+. More work is required to establish the biophysical basis of the
formation of this multienzymatic complex.

Recently published work has highlighted the link between mitochondrial
dysfunction and acquisition of cell migratory abilities, whereby pharmacological in-
hibition of the respiratory chain (Porporato et al. 2014), genetic impairment of the
TCA cycle (Loriot et al. 2012; Sciacovelli, Gonçalves, et al. 2016), or loss of tran-
scriptional regulation for mitochondrial biogenesis (Torrano et al. 2016) can lead to
acquisition of migratory properties and induce metastasis of cancer cells. In addi-
tion, these results support the findings reported in the previous chapter whereby
downregulation of genes encoding for mitochondrial enzymes is associated with the
induction of epithelial-to-mesenchymal transition (EMT), a genetic signature sup-
porting migration and metastasis (Gaude and Frezza 2016). Yet, the sustaining
mechanisms remain unclear. My results show that mitochondrial dysfunction is as-
sociated with increased production of ATP from glycolysis and increased migratory
capacity. These results are in line with the observation that increased glycolytic vs
oxidative generation of ATP increases cell migration (Yizhak et al. 2014). Of note,
silencing of MDH1, which supports glycolysis upon mitochondrial impairment, can
reduce cell migration. My findings are also in line with the recent evidence that
glycolytic enzymes can sustain cell motility by localising with components of the
cytoskeleton and providing local generation of ATP (De Bock et al. 2013).

Together, my results suggest that, in the presence of mitochondrial dys-
function, enhanced ATP yield from glycolysis, due to interaction and metabolic
channelling between MDH1 and GAPDH, may increase local availability of ATP for
cytoskeleton remodeling. Finally, these results demonstrate, for the first time, that
MDH1 is an important mechanism to support cell migration.

In conclusion, my study is the first to provide a biochemical explanation for
the emergence of cytosolic reductive carboxylation in the presence of mitochondrial
dysfunction. This work might help to elucidate metabolic vulnerabilities of cells
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that rely on aerobic glycolysis for their proliferation and migration, such as activated
lymphocytes and metastatic cancer cells.
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T his study identifies for the first time the association of mitochondrial dysfunc-
tion with patient prognosis across several different types of cancer. Poor patient

prognosis is associated with the induction of a migratory and invasive phenotype, a
major determinant of cancer metastasis. The molecular underpinnings of this asso-
ciation entail the induction of a glycolytic state known to support anabolic growth
(Vander Heiden et al. 2009). My findings expand the general understanding of
glycolysis as a promoter of anabolism and link such metabolic state to increased mi-
gration. Importantly, the interaction of the enzymes MDH1 and GAPDH is reported
for the first time, and is found to support cell migratory abilities.

These results raise critical questions regarding cancer development and pro-
gression. Selection of a metabolic state where mitochondrial function is depressed
may occur at different stages of cancer transformation. Signalling from mutated
oncogenes and tumour suppressors may partially inhibit mitochondrial function to
increase the production of anabolic intermediates through glycolysis, while main-
taining minimal flux through the CAC and OXPHOS. Notably, selection of hetero-
plasmic mtDNA mutations might result in bioenergetic defects and lead to a similar
anabolic state. Furthermore, upon cell proliferation and tumour expansion, limited
availability of nutrients and oxygen might induce hypoxic signalling and further re-
duce mitochondrial function of inner areas in a tumour mass. Cancer cells that
successfully activate a glycolytic program might concomitantly be endorsed with
increased migratory abilities, thus facilitating access to oxygen and nutrients and
increasing cell survival. In this scenario, induction of cell migration by chance could
become a necessity (Monod 1971) and invasion to different tissues might constitute
a bottleneck for the survival of cancer cells that successfully abandoned the primary
tumour mass.

The finding that a novel multienzymatic complex is formed between MDH1
and GAPDH might have important implications for cancer therapy. Inhibition of
this interaction via silencing of MDH1 could reduce proliferation and migration of
cells with mitochondrial dysfunction. Inhibition of protein-protein interaction that
are specifically engaged in cancer cells is a therapeutic strategy that recently showed
increased success in limiting proliferation of cancer cells (Shangary and Wang 2009;
Taylor et al. 2009). Despite metabolic channeling between MDH1 and GAPDH has
recently been shown to occur also in activated lymphocytes (Hanse et al. 2017),
the interaction between these two enzymes might be selective for cancer cells. In
light of this, development of a chemical inhibitor aimed at blocking the interaction
between MDH1 and GAPDH might constitute a novel therapeutic strategy to inhibit
migration of cancer cells.

It is important to mention that my study is not devoid of limitations and
more experiments are required to improve our understanding of the mechansims as-
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sociated with mitochondrial dysfunction. For instance, I observed that the level of
interaction between GAPDH and MDH1 correlates with the degree of mitochondrial
dysfunction. Though, the mechanisms linking altered mitochondrial function to in-
teraction of the two enzymes have not been addressed by my study and more conclu-
sive data on the association between mitochondrial dysfunction and GAPDH-MDH1
interaction is needed. A possible explanation of the cross-talk between mitochondria
and interaction of metabolic enzymes could come from the ability of mitochondria
to alter the levels of intracellular metabolites, potentially inducing a chemical en-
vironment that facilitates enzyme interaction. For instance, reduced availability of
NAD+ could induce conformational changes of NAD+-dependent GAPDH, expos-
ing protein residues for the interaction with other enzymes. Further investigation
of such molecular underpinnings might help to clarify the link between mitochon-
drial dysfunction and selective interaction of metabolic enzymes. Furthermore, the
finding that mitochondrial dysfunction induces cell migration has not been linked
to increased metastatic ability of cancer cells. The role of mitochondrial function
in supporting cancer cell metastasis could be validated in an in vivo experimental
setting. For instance, intravenous injection of N7, N45 and N80 cells in nude mice
might shed light on the ability of cells with mitochondrial dysfunction to colonise
tissues and form metastases.

In conclusion, my study identifies an association between mitochondrial dys-
function and survival of cancer patients and helps describing the link between mito-
chondrial metabolism and cell migration. Despite further investigation is needed to
understand the relevance of these findings for cancer metastasis, my study identifies
a metabolic liability of cells with mitochondrial dysfunction that could be harnessed
for cancer therapy.

83



Acknowledgements

I am extremely thankful, foremost, to Doctor Christian Frezza for giving me the
great opportunity to further my career as a PhD student in his laboratory. As
my scientific supervisor, he was able to diffuse his authority through a very unique
mixture of expertise, humility and respect. The brightness of his mind and his
constant curiosity have been, and will be, highly inspiring for me. Christian has
also been an invaluable mentor and friend. Extremely understanding, he patiently
guided me through the several obstacles I encountered during this journey, and
helped me finding my way amongst scientific concerns and career decisions. His
level of care and preoccupation went well beyond the academic duties of a PhD
supervisor, supporting me during important life decisions and stimulating me with
countless cultural and life-style inputs. In these years Christian has become a model
of leadership that I wish to follow in my future career.

I am very thankful to Doctor Marco Sciacovelli for the extensive support during
my PhD. Marco has been extremely helpful through all these years by carefully
instructing me on numerous laboratory techniques, and by always sparing his time
with generosity for the wide range of questions and doubts an inexperienced re-
searcher can have. In addition, he has been a great lab companion, with his positive
attitude and sense of humour helping to transform frustrating moments into fun
memories. I have been very lucky to share this experience with a researcher of his
caliber and with such a good friend, and I wish him a bright future in science.

My warmest thanks are for Doctor Katherine Bird for supporting me outside the lab
in the journey through my PhD. She has been able to combine a genuine interest
for my scientific findings together with an infinite patience for all the concerns,
complaints, and changes of direction that I experienced in the past three years as a
PhD student, and as a man. Her positive attitude and unconditioned caring made
me enjoy even the most frustrating moments of my PhD, partly because I understood
that life cannot be too bad if you have someone like Katy next to you.

I want to thank Doctor Sophia da Costa for the extreme patience with the countless
samples that I collected and persistently submitted to her for mass spec metabo-
lomics. Her precision and professional attitude have been instrumental for the ac-
curacy and reproducibility of many of my findings.

I am very thankful to all the people that helped me collecting the data for this the-
sis. I am very thankful to Christina Schmidt for her help with immuno-precipitation
assays. The period she spent under my supervision resulted in a key finding for my
PhD thesis. Her passion and dedication to her summer project have been outstand-

84



ing and I am sure she will have a bright career in science or wherever else life will
lead her.

I also thank Dr Payam Gammage and Dr Michal Minczuk for providing the
NARP cell lines, as well as for their help with quantification of heteroplasmy and
data interpretation. Dr Thomas Blacker and Dr Gyorgy Szabadkai taught me how
to perform UV microscopy and obtain NADH autofluorescence measurements. I
thank Dr John O’Neill for performing proteomics analysis of the NARP cell lines
and Aurelien Dugourd and Julio Saez Rodriguez for analysing proteomics data.

85





Bibliography

Adam, Julie et al. (2011). “Renal cyst formation in Fh1-deficient mice is independent
of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2
signaling”. In: Cancer Cell 20.4, pp. 524–537.

Ahn, Christopher S and Christian M Metallo (2015). “Mitochondria as biosynthetic
factories for cancer proliferation”. In: Cancer & Metabolism 3.1, p. 1.

Almuhaideb, Ahmad, Nikolaos Papathanasiou, and Jamshed Bomanji (2011). “18F-
FDG PET/CT imaging in oncology”. In: Annals of Saudi Medicine 31.1, p. 3.

Amary, M Fernanda et al. (2011). “IDH1 and IDH2 mutations are frequent events in
central chondrosarcoma and central and periosteal chondromas but not in other
mesenchymal tumours”. In: The Journal of Pathology 224.3, pp. 334–343.

Anastasiou, Dimitrios (2017). “Tumour microenvironment factors shaping the cancer
metabolism landscape”. In: British Journal of Cancer 116.3, p. 277.

Avery, Oswald T, Colin M MacLeod, and Maclyn McCarty (1944). “Studies on
the chemical nature of the substance inducing transformation of Pneumococcal
types”. In: Journal of Experimental Medicine 79.2, pp. 137–158.

Bai, Yidong et al. (2001). “Lack of Complex I Activity in Human Cells Carrying a
Mutation in MtDNA-encoded ND4 Subunit Is Corrected by theSaccharomyces
cerevisiae NADH-Quinone Oxidoreductase (NDI1) Gene”. In: Journal of Biolog-
ical Chemistry 276.42, pp. 38808–38813.

Barbakh, Wesam Ashour, Ying Wu, and Colin Fyfe (2009). “Review of clustering
algorithms”. In: Non-Standard Parameter Adaptation for Exploratory Data Anal-
ysis. Springer, pp. 7–28.

Bartesaghi, Stefano et al. (2015). “Inhibition of oxidative metabolism leads to p53
genetic inactivation and transformation in neural stem cells”. In: Proceedings
of the National Academy of Sciences of the United States of America 112.4,
pp. 1059–1064.

Barthel, Andreas et al. (1999). “Regulation of GLUT1 gene transcription by the ser-
ine/threonine kinase Akt1”. In: Journal of Biological Chemistry 274.29, pp. 20281–
20286.

Baudot, Alice D et al. (2016). “p53 directly regulates the glycosidase FUCA1 to
promote chemotherapy-induced cell death”. In: Cell Cycle 15.17, pp. 2299–2308.

Bauer, Daniel E et al. (2005). “ATP citrate lyase is an important component of cell
growth and transformation”. In: Oncogene 24.41, p. 6314.

Baysal, Bora E et al. (2000). “Mutations in SDHD, a mitochondrial complex II gene,
in hereditary paraganglioma”. In: Science 287.5454, pp. 848–851.

Benz, Matthias R et al. (2011). “18F-FDG PET/CT for monitoring treatment re-
sponses to the epidermal growth factor receptor inhibitor erlotinib”. In: Journal
of Nuclear Medicine 52.11, pp. 1684–1689.

86



Bibliography

Berwick, Daniel C et al. (2002). “The identification of ATP-citrate lyase as a pro-
tein kinase B (Akt) substrate in primary adipocytes”. In: Journal of Biological
Chemistry 277.37, pp. 33895–33900.

Bester, Assaf C et al. (2011). “Nucleotide deficiency promotes genomic instability in
early stages of cancer development”. In: Cell 145.3, pp. 435–446.

Birsoy, Kvanç et al. (2015). “An essential role of the mitochondrial electron transport
chain in cell proliferation is to enable aspartate synthesis”. In: Cell 162.3, pp. 540–
551.

Bister, Klaus and Peter H Duesberg (1979). “Structure and specific sequences of
avian erythroblastosis virus RNA: evidence for multiple classes of transforming
genes among avian tumor viruses”. In: Proceedings of the National Academy of
Sciences of the United States of America 76.10, pp. 5023–5027.

Blacker, Thomas S and Michael R Duchen (2016). “Investigating mitochondrial re-
dox state using NADH and NADPH autofluorescence”. In: Free Radical Biology
and Medicine 100, pp. 53–65.

Boidot, Romain et al. (2011). “Regulation of monocarboxylate transporter MCT1
expression by p53 mediates inward and outward lactate fluxes in tumors.” In:
Cancer Research, canres–2474.

Borger, Darrell R et al. (2014). “Circulating oncometabolite 2-hydroxyglutarate is a
potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant
intrahepatic cholangiocarcinoma”. In: Clinical Cancer Research 20.7, pp. 1884–
1890.

Boroughs, Lindsey K and Ralph J DeBerardinis (2015). “Metabolic pathways pro-
moting cancer cell survival and growth”. In: Nature Cell Biology 17.4, p. 351.

Brigelius-Flohé, Regina and Helmut Sies (2015). Diversity of selenium functions in
health and disease. Vol. 38. CRC Press.

Calabrese, Claudia et al. (2013). “Respiratory complex I is essential to induce a
Warburg profile in mitochondria-defective tumor cells”. In: Cancer & Metabolism
1.1, p. 11.

Cannino, Giuseppe et al. (2012). “Glucose modulates respiratory complex I activ-
ity in response to acute mitochondrial dysfunction”. In: Journal of Biological
Chemistry 287.46, pp. 38729–38740.

Cantó, Carles and Johan Auwerx (2010). “AMP-activated protein kinase and its
downstream transcriptional pathways”. In: Cellular and Molecular Life Sciences
67.20, pp. 3407–3423.

Cantor, Jason R and David M Sabatini (2012). “Cancer cell metabolism: one hall-
mark, many faces”. In: Cancer Discovery 2.10, pp. 881–898.

Cardaci, Simone et al. (2015). “Pyruvate carboxylation enables growth of SDH-
deficient cells by supporting aspartate biosynthesis”. In: Nature Cell Biology
17.10, pp. 1317–1326.

Catanzaro, Daniela et al. (2015). “Inhibition of glucose-6-phosphate dehydrogenase
sensitizes cisplatin-resistant cells to death”. In: Oncotarget 6.30, p. 30102.

Cavalli, Luciane R, Marileila Varella-Garcia, Bertrand C Liang, et al. (1997). “Di-
minished tumorigenic phenotype after depletion of mitochondrial DNA”. In: Cell
Growth and Differentiation 8, pp. 1189–1198.

Cervera, Ana M et al. (2009). “Inhibition of succinate dehydrogenase dysregulates
histone modification in mammalian cells”. In: Molecular Cancer 8.1, p. 89.

87



Mitochondrial metabolism in cancer transformation and progression

Chajès, Véronique et al. (2006). “Acetyl-CoA carboxylase α is essential to breast
cancer cell survival”. In: Cancer Research 66.10, pp. 5287–5294.

Chang, Hwai Wen et al. (1997). “Transformation of chicken cells by the gene encoding
the catalytic subunit of PI 3-kinase”. In: Science 276.5320, pp. 1848–1850.

Chatterjee, A, E Mambo, and D Sidransky (2006). “Mitochondrial DNA mutations
in human cancer”. In: Oncogene 25.34, p. 4663.

Chen, Walter W, Kvanç Birsoy, et al. (2014). “Inhibition of ATPIF1 ameliorates
severe mitochondrial respiratory chain dysfunction in mammalian cells”. In: Cell
Reports 7.1, pp. 27–34.

Chen, ZX and S Pervaiz (2010). “Involvement of cytochrome c oxidase subunits Va
and Vb in the regulation of cancer cell metabolism by Bcl-2”. In: Cell Death and
Differentiation 17.3, p. 408.

Cheong, Heesun et al. (2012). “Therapeutic targets in cancer cell metabolism and
autophagy”. In: Nature Biotechnology 30.7, pp. 671–678.

Chouchani, Edward T et al. (2014). “Ischaemic accumulation of succinate controls
reperfusion injury through mitochondrial ROS”. In: Nature 515.7527, p. 431.

Chowdhury, Rasheduzzaman et al. (2011). “The oncometabolite 2-hydroxyglutarate
inhibits histone lysine demethylases”. In: EMBO Reports 12.5, pp. 463–469.

Comerford, Sarah A et al. (2014). “Acetate dependence of tumors”. In: Cell 159.7,
pp. 1591–1602.

Contractor, Tanupriya and Chris R Harris (2012). “p53 negatively regulates tran-
scription of the pyruvate dehydrogenase kinase Pdk2”. In: Cancer Research 72.2,
pp. 560–567.

Cori, Carl F and Gerty T Cori (1925). “The carbohydrate metabolism of tumors II.
Changes in the sugar, lactic acid, and CO2-Combining Power of Blood Passing
through a tumor”. In: Journal of Biological Chemistry 65.2, pp. 397–405.

Cowley, Glenn S et al. (2014). “Parallel genome-scale loss of function screens in 216
cancer cell lines for the identification of context-specific genetic dependencies”.
In: Scientific Data 1, p. 140035.

Cunningham, John T et al. (2014). “Protein and nucleotide biosynthesis are co-
upled by a single rate-limiting enzyme, PRPS2, to drive cancer”. In: Cell 157.5,
pp. 1088–1103.

Dang, Lenny et al. (2009). “Cancer-associated IDH1 mutations produce 2-hydroxyglutarate”.
In: Nature 462.7274, p. 739.

Dasgupta, Santanu et al. (2008). “Mitochondrial cytochrome B gene mutation pro-
motes tumor growth in bladder cancer”. In: Cancer Research 68.3, pp. 700–706.

De Bock, Katrien et al. (2013). “Role of PFKFB3-driven glycolysis in vessel sprout-
ing”. In: Cell 154.3, pp. 651–663.

Denkert, Carsten et al. (2012). “Metabolomics of human breast cancer: new ap-
proaches for tumor typing and biomarker discovery”. In: Genome Medicine 4.4,
p. 37.

Deprez, Johan et al. (1997). “Phosphorylation and activation of heart 6-phosphofructo-
2-kinase by protein kinase B and other protein kinases of the insulin signaling
cascades”. In: Journal of Biological Chemistry 272.28, pp. 17269–17275.

Desjardins, P, E Frost, and R Morais (1985). “Ethidium bromide-induced loss of
mitochondrial DNA from primary chicken embryo fibroblasts.” In: Molecular and
Cellular Biology 5.5, pp. 1163–1169.

Edoardo Gaude 88



Bibliography

Dey, Souvik et al. (2015). “ATF4-dependent induction of heme oxygenase 1 prevents
anoikis and promotes metastasis”. In: The Journal of Clinical Investigation 125.7,
p. 2592.

Ditta, G et al. (1976). “The selection of Chinese hamster cells deficient in oxidative
energy metabolism”. In: Somatic Cell and Molecular Genetics 2.4, pp. 331–344.

Dong, Lan-Feng et al. (2017). “Horizontal transfer of whole mitochondria restores
tumorigenic potential in mitochondrial DNA-deficient cancer cells”. In: ELife 6,
e22187.

Döppler, Heike and Peter Storz (2015). “Differences in metabolic programming define
the site of breast cancer cell metastasis”. In: Cell Metabolism 22.4, pp. 536–537.

Duarte, Natalie C et al. (2007). “Global reconstruction of the human metabolic
network based on genomic and bibliomic data”. In: Proceedings of the National
Academy of Sciences of the United States of America 104.6, pp. 1777–1782.

Duesberg, Peter H, Klaus Bister, and Peter K Vogt (1977). “The RNA of avian acute
leukemia virus MC29.” In: Proceedings of the National Academy of Sciences of
the United States of America 74.10, pp. 4320–4324.

Dupuy, Fanny et al. (2015). “PDK1-dependent metabolic reprogramming dictates
metastatic potential in breast cancer”. In: Cell Metabolism 22.4, pp. 577–589.

Eberhardy, Scott R and Peggy J Farnham (2001). “c-Myc mediates activation of
the cad promoter via a post-RNA polymerase II recruitment mechanism”. In:
Journal of Biological Chemistry 276.51, pp. 48562–48571.

Edmunds, Lia R et al. (2014). “c-Myc programs fatty acid metabolism and dictates
acetyl-CoA abundance and fate”. In: Journal of Biological Chemistry 289.36,
pp. 25382–25392.

Farber, S, LK Diamond, et al. (1948). “Temporary remissions in acute leukemia in
children produced by folk acid antagonist, 4-aminopteroylglutamic acid (amino-
pterin)”. In: New England Journal of Medicine, pp. 787–93.

Farber, Sidney, Elliott C Cutler, et al. (1947). “The action of pteroylglutamic con-
jugates on man.” In: Science 106, pp. 619–621.

Fendt, Sarah-Maria et al. (2013). “Reductive glutamine metabolism is a function
of the α-ketoglutarate to citrate ratio in cells”. In: Nature Communications 4,
p. 2236.

Figueroa, Maria E et al. (2010). “Leukemic IDH1 and IDH2 mutations result in a
hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic
differentiation”. In: Cancer Cell 18.6, pp. 553–567.

Fliss, Makiko S et al. (2000). “Facile detection of mitochondrial DNA mutations in
tumors and bodily fluids”. In: Science 287.5460, pp. 2017–2019.

Frezza, Christian (2014). “The role of mitochondria in the oncogenic signal transduc-
tion”. In: The International Journal of Biochemistry & Cell Biology 48, pp. 11–
17.

Frezza, Christian, Liang Zheng, Ori Folger, et al. (2011). “Haem oxygenase is syn-
thetically lethal with the tumour suppressor fumarate hydratase”. In: Nature
477.7363, p. 225.

Frezza, Christian, Liang Zheng, Daniel A Tennant, et al. (2011). “Metabolic profiling
of hypoxic cells revealed a catabolic signature required for cell survival”. In: PLoS
one 6.9, e24411.

89



Mitochondrial metabolism in cancer transformation and progression

Gammage, Payam A, Edoardo Gaude, et al. (2016). “Near-complete elimination of
mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs”.
In: Nucleic Acids Research 44.16, pp. 7804–7816.

Gammage, Payam A, Joanna Rorbach, et al. (2014). “Mitochondrially targeted ZFNs
for selective degradation of pathogenic mitochondrial genomes bearing large-scale
deletions or point mutations”. In: EMBO Molecular Medicine, e201303672.

Gao, Ping et al. (2009). “c-Myc suppression of miR-23 enhances mitochondrial glu-
taminase and glutamine metabolism”. In: Nature 458.7239, p. 762.

Garcia-Cao, Isabel et al. (2012). “Systemic elevation of PTEN induces a tumor-
suppressive metabolic state”. In: Cell 149.1, pp. 49–62.

Gaude, Edoardo, Francesca Chignola, et al. (2013). “muma, An R package for
metabolomics univariate and multivariate statistical analysis”. In: Current Meta-
bolomics 1.2, pp. 180–189.

Gaude, Edoardo and C. Frezza (2016). “Tissue-specific and convergent metabolic
transformation of cancer correlates with metastatic potential and patient sur-
vival”. In: Nature Communications 7.

Gaude, Edoardo and Christian Frezza (2014). “Defects in mitochondrial metabolism
and cancer”. In: Cancer & Metabolism 2.1, p. 10.

Gottlieb, Eyal and Ian PM Tomlinson (2005). “Mitochondrial tumour suppressors:
a genetic and biochemical update”. In: Nature Reviews. Cancer 5.11, p. 857.

Gottlob, Kathrin et al. (2001). “Inhibition of early apoptotic events by Akt/PKB is
dependent on the first committed step of glycolysis and mitochondrial hexoki-
nase”. In: Genes & Development 15.11, pp. 1406–1418.

Gross, Andrew M, Jason F Kreisberg, and Trey Ideker (2015). “Analysis of matched
tumor and normal profiles reveals common transcriptional and epigenetic signals
shared across cancer types”. In: PLoS one 10.11, e0142618.

Hakimi, A Ari et al. (2016). “An integrated metabolic atlas of clear cell renal cell
carcinoma”. In: Cancer Cell 29.1, pp. 104–116.

Hanahan, Douglas and Robert A Weinberg (2011). “Hallmarks of cancer: the next
generation”. In: Cell 144.5, pp. 646–674.

Hanse, EA et al. (2017). “Cytosolic malate dehydrogenase activity helps support
glycolysis in actively proliferating cells and cancer”. In: Oncogene 36.27, pp. 3915–
3924.

Haq, Rizwan et al. (2013). “Oncogenic BRAF regulates oxidative metabolism via
PGC1α and MITF”. In: Cancer Cell 23.3, pp. 302–315.

Hatzivassiliou, Georgia et al. (2005). “ATP citrate lyase inhibition can suppress
tumor cell growth”. In: Cancer Cell 8.4, pp. 311–321.

He, Xuelian et al. (2013). “Suppression of mitochondrial complex I influences cell
metastatic properties”. In: PLoS one 8.4, e61677.

Hershey, Alfred D and Martha Chase (1952). “Independent functions of viral pro-
tein and nucleic acid in growth of bacteriophage”. In: The Journal of General
Physiology 36.1, pp. 39–56.

Hollander, M Christine, Gideon M Blumenthal, and Phillip A Dennis (2011). “PTEN
loss in the continuum of common cancers, rare syndromes and mouse models”.
In: Nature Reviews. Cancer 11.4, p. 289.

Hopkins, Julia F. et al. (2017). “Mitochondrial mutations drive prostate cancer ag-
gression”. In: Nature Communications 8.1, p. 656.

Edoardo Gaude 90



Bibliography

Hu, Jie, Jason W Locasale, et al. (2013). “Heterogeneity of tumor-induced gene
expression changes in the human metabolic network”. In: Nature Biotechnology
31.6, pp. 522–529.

Hu, Wenwei, Cen Zhang, et al. (2010). “Glutaminase 2, a novel p53 target gene
regulating energy metabolism and antioxidant function”. In: Proceedings of the
National Academy of Sciences of the United States of America 107.16, pp. 7455–
7460.

Huber, Wolfgang et al. (2002). “Variance stabilization applied to microarray data
calibration and to the quantification of differential expression”. In: Bioinformatics
18.suppl_1, S96–S104.

Iba, Hideo et al. (1984). “Rous sarcoma virus variants that carry the cellular src gene
instead of the viral src gene cannot transform chicken embryo fibroblasts”. In:
Proceedings of the National Academy of Sciences of the United States of America
81.14, pp. 4424–4428.

Iommarini, Luisa et al. (2013). “Different mtDNA mutations modify tumor pro-
gression in dependence of the degree of respiratory complex I impairment”. In:
Human Molecular Genetics 23.6, pp. 1453–1466.

Isaacs, Jennifer S et al. (2005). “HIF overexpression correlates with biallelic loss of
fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF
stability”. In: Cancer Cell 8.2, pp. 143–153.

Ishikawa, Kaori et al. (2008). “ROS-generating mitochondrial DNA mutations can
regulate tumor cell metastasis”. In: Science 320.5876, pp. 661–664.

Itkonen, Harri M et al. (2013). “O-GlcNAc transferase integrates metabolic pathways
to regulate the stability of c-MYC in human prostate cancer cells”. In: Cancer
Research 73.16, pp. 5277–5287.

Jain, Mohit et al. (2012). “Metabolite profiling identifies a key role for glycine in
rapid cancer cell proliferation”. In: Science 336.6084, pp. 1040–1044.

Jeon, Sang-Min, Navdeep S Chandel, and Nissim Hay (2012). “AMPK regulates
NADPH homeostasis to promote tumour cell survival during energy stress”. In:
Nature 485.7400, p. 661.

Jiang, Lei, Alexander A Shestov, et al. (2016). “Reductive carboxylation supports
redox homeostasis during anchorage-independent growth”. In: Nature 532.7598,
pp. 255–258.

Jiang, Peng, Wenjing Du, et al. (2011). “p53 regulates biosynthesis through direct
inactivation of glucose-6-phosphate dehydrogenase”. In: Nature Cell Biology 13.3,
p. 310.

Jones, Jessa B et al. (2001). “Detection of mitochondrial DNA mutations in pancre-
atic cancer offers a mass-ive advantage over detection of nuclear DNA mutations”.
In: Cancer Research 61.4, pp. 1299–1304.

Ju, Young Seok et al. (2014). “Origins and functional consequences of somatic mi-
tochondrial DNA mutations in human cancer”. In: Elife 3, e02935.

Kadenbach, Bernhard, Rabia Ramzan, and Sebastian Vogt (2013). “High efficiency
versus maximal performance - the cause of oxidative stress in eukaryotes: a hy-
pothesis”. In: Mitochondrion 13.1, pp. 1–6.

Kamarajugadda, S et al. (2013). “Manganese superoxide dismutase promotes anoikis
resistance and tumor metastasis”. In: Cell death & disease 4.2, e504.

91



Mitochondrial metabolism in cancer transformation and progression

Kang, Mi Ran et al. (2009). “Mutational analysis of IDH1 codon 132 in glioblastomas
and other common cancers”. In: International Journal of Cancer 125.2, pp. 353–
355.

Kerr, Emma et al. (2016). “Mutant Kras copy number defines metabolic reprogram-
ming and therapeutic susceptibilities”. In: Nature 531.7592, p. 110.

Killian, J Keith et al. (2013). “Succinate dehydrogenase mutation underlies global
epigenomic divergence in gastrointestinal stromal tumor”. In: Cancer Discovery
3.6, pp. 648–657.

Kim, Jung-whan et al. (2006). “HIF-1-mediated expression of pyruvate dehydroge-
nase kinase: a metabolic switch required for cellular adaptation to hypoxia”. In:
Cell Metabolism 3.3, pp. 177–185.

King, Michael P and Giuseppe Attardi (1989). “Human cells lacking mtDNA: repop-
ulation with exogenous mitochondria by complementation”. In: Science 246.4929,
pp. 500–503.

Knudson, Alfred G (1971). “Mutation and cancer: statistical study of retinoblas-
toma”. In: Proceedings of the National Academy of Sciences of the United States
of America 68.4, pp. 820–823.

Kohn, Aimee D et al. (1996). “Expression of a constitutively active Akt Ser/Thr
kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter
4 translocation”. In: Journal of Biological Chemistry 271.49, pp. 31372–31378.

Kollareddy, Madhusudhan et al. (2015). “Regulation of nucleotide metabolism by
mutant p53 contributes to its gain-of-function activities”. In: Nature Communi-
cations 6, p. 7389.

Koonin, EV and L Aravind (2002). “Origin and evolution of eukaryotic apoptosis:
the bacterial connection”. In: Cell Death and Differentiation 9.4, p. 394.

Koppenol, Willem H, Patricia L Bounds, and Chi V Dang (2011). “Otto Warburg’s
contributions to current concepts of cancer metabolism.” In: Nature Reviews
Cancer 11.5.

Krebs, Hans Adolf and William Arthur Johnson (1937). “Metabolism of ketonic
acids in animal tissues”. In: Biochemical Journal 31.4, p. 645.

Lai, Michael MC, Sylvia SF Hu, and Peter K Vogt (1979). “Avian erythroblastosis
virus: transformation-specific sequences form a contiguous segment of 3.25 kb
located in the middle of the 6-kb genome”. In: Virology 97.2, pp. 366–377.

Lane, DP and LV Crawford (1979). “T antigen is bound to a host protein in SY40-
transformed cells”. In: Nature 278.5701, pp. 261–263.

Lane, Nick and William Martin (2010). “The energetics of genome complexity”. In:
Nature 467.7318, p. 929.

LeBleu, Valerie S et al. (2014). “PGC-1α mediates mitochondrial biogenesis and
oxidative phosphorylation in cancer cells to promote metastasis”. In: Nature Cell
Biology 16.10, pp. 992–1003.

Letouzé, Eric et al. (2013). “SDH mutations establish a hypermethylator phenotype
in paraganglioma”. In: Cancer Cell 23.6, pp. 739–752.

Lewis, Caroline A et al. (2014). “Tracing compartmentalized NADPH metabolism
in the cytosol and mitochondria of mammalian cells”. In: Molecular Cell 55.2,
pp. 253–263.

Lheureux, Stéphanie et al. (2013). “FDG is a surrogate marker of therapy re-
sponse and tumor recovery after drug withdrawal during treatment with a dual

Edoardo Gaude 92



Bibliography

PI3K/mTOR inhibitor in a preclinical model of cisplatinum-resistant ovarian
cancer”. In: Journal of Nuclear Medicine 54.supplement 2, pp. 503–503.

Linzer, Daniel IH and Arnold J Levine (1979). “Characterization of a 54K Dalton
cellular SV40 tumor antigen present in SV40-transformed cells and uninfected
embryonal carcinoma cells”. In: Cell 17.1, pp. 43–52.

Liu, Vincent WS, Hong Hui Shi, et al. (2001). “High incidence of somatic mitochon-
drial DNA mutations in human ovarian carcinomas”. In: Cancer Research 61.16,
pp. 5998–6001.

Liu, Xing, Yukinari Kato, et al. (2013). “Isocitrate dehydrogenase 2 mutation is a
frequent event in osteosarcoma detected by a multi-specific monoclonal antibody
MsMab-1”. In: Cancer Medicine 2.6, pp. 803–814.

Locasale, Jason W et al. (2011). “Phosphoglycerate dehydrogenase diverts glycolytic
flux and contributes to oncogenesis”. In: Nature Genetics 43.9, pp. 869–874.

Loriot, Céline et al. (2012). “Epithelial to mesenchymal transition is activated in
metastatic pheochromocytomas and paragangliomas caused by SDHB gene mu-
tations”. In: The Journal of Clinical Endocrinology & Metabolism 97.6, E954–
E962.

Love, Michael I, Wolfgang Huber, and Simon Anders (2014). “Moderated estima-
tion of fold change and dispersion for RNA-seq data with DESeq2”. In: Genome
Biology 15.12, p. 550.

Lu, Chao, Patrick S Ward, et al. (2012). “IDH mutation impairs histone demethy-
lation and results in a block to cell differentiation”. In: Nature 483.7390, p. 474.

Lu, Ming, Lufang Zhou, et al. (2008). “Role of the malate–aspartate shuttle on the
metabolic response to myocardial ischemia”. In: Journal of Theoretical Biology
254.2, pp. 466–475.

Mackay, Gillian M et al. (2015). “Chapter Five-Analysis of Cell Metabolism Using
LC-MS and Isotope Tracers”. In: Methods in Enzymology 561, pp. 171–196.

Madiraju, Anila K et al. (2014). “Metformin suppresses gluconeogenesis by inhibiting
mitochondrial glycerophosphate dehydrogenase”. In: Nature 510.7506, p. 542.

Magda, Darren et al. (2008). “mtDNA depletion confers specific gene expression
profiles in human cells grown in culture and in xenograft”. In: BMC Genomics
9.1, p. 521.

Maki, Yoshio et al. (1987). “Avian sarcoma virus 17 carries the jun oncogene”. In:
Proceedings of the National Academy of Sciences of the United States of America
84.9, pp. 2848–2852.

Mannava, Sudha et al. (2008). “Direct role of nucleotide metabolism in C-MYC-
dependent proliferation of melanoma cells”. In: Cell Cycle 7.15, pp. 2392–2400.

Mardis, Elaine R et al. (2009). “Recurring mutations found by sequencing an acute
myeloid leukemia genome”. In: New England Journal of Medicine 361.11, pp. 1058–
1066.

Marroquin, Lisa D et al. (2007). “Circumventing the Crabtree effect: replacing media
glucose with galactose increases susceptibility of HepG2 cells to mitochondrial
toxicants”. In: Toxicological Sciences 97.2, pp. 539–547.

Martinez-Outschoorn, Ubaldo E et al. (2016). “Cancer metabolism: a therapeutic
perspective”. In: Nature Reviews. Clinical Oncology 14.1, pp. 11–31.

Martnez-Reyes, Inmaculada et al. (2016). “TCA cycle and mitochondrial membrane
potential are necessary for diverse biological functions”. In: Molecular Cell 61.2,
pp. 199–209.

93



Mitochondrial metabolism in cancer transformation and progression

Mashimo, Tomoyuki et al. (2014). “Acetate is a bioenergetic substrate for human
glioblastoma and brain metastases”. In: Cell 159.7, pp. 1603–1614.

Matoba, Satoaki et al. (2006). “p53 regulates mitochondrial respiration”. In: Science
312.5780, pp. 1650–1653.

Máximo, Valdemar et al. (2002). “Mitochondrial DNA somatic mutations (point mu-
tations and large deletions) and mitochondrial DNA variants in human thyroid
pathology: a study with emphasis on Hürthle cell tumors”. In: The American
Journal of Pathology 160.5, pp. 1857–1865.

Mayers, Jared R et al. (2016). “Tissue of origin dictates branched-chain amino acid
metabolism in mutant Kras-driven cancers”. In: Science 353.6304, pp. 1161–1165.

Meiser, Johannes et al. (2016). “Serine one-carbon catabolism with formate over-
flow”. In: Science Advances 2.10, e1601273.

Menard, Lynda, David Maughan, and Jim Vigoreaux (2014). “The structural and
functional coordination of glycolytic enzymes in muscle: evidence of a metabolon?”
In: Biology 3.3, pp. 623–644.

Menendez, Javier A and Ruth Lupu (2007). “Fatty acid synthase and the lipogenic
phenotype in cancer pathogenesis”. In: Nature Reviews. Cancer 7.10, p. 763.

Metallo, Christian M et al. (2012). “Reductive glutamine metabolism by IDH1 me-
diates lipogenesis under hypoxia”. In: Nature 481.7381, pp. 380–384.

Monod, Jacques (1971). Chance and necessity: an essay on the natural philosophy
of modern biology. Alfred A.

Mookerjee, Shona A et al. (2017). “Quantifying intracellular rates of glycolytic and
oxidative ATP production and consumption using extracellular flux measure-
ments”. In: Journal of Biological Chemistry 292.17, pp. 7189–7207.

Morais, Réjean et al. (1994). “Tumor-forming ability in athymic nude mice of human
cell lines devoid of mitochondrial DNA”. In: Cancer Research 54.14, pp. 3889–
3896.

Morrish, Fionnuala et al. (2010). “Myc-dependent mitochondrial generation of acetyl-
CoA contributes to fatty acid biosynthesis and histone acetylation during cell
cycle entry”. In: Journal of Biological Chemistry 285.47, pp. 36267–36274.

Mullen, Andrew R et al. (2012). “Reductive carboxylation supports growth in tu-
mour cells with defective mitochondria”. In: Nature 481.7381, pp. 385–388.

Müller, Johannes Peter (1838). Ueber den feinern Bau und die Formen der krankhaf-
ten Geschwülste, von Dr. Johannes Müller. G. Reimer.

Nicholson, Jeremy K and John C Lindon (2008). “Systems biology: metabonomics”.
In: Nature 455.7216, pp. 1054–1056.

Nicklin, Paul et al. (2009). “Bidirectional transport of amino acids regulates mTOR
and autophagy”. In: Cell 136.3, pp. 521–534.

Nikiforov, Mikhail A et al. (2002). “A functional screen for Myc-responsive genes
reveals serine hydroxymethyltransferase, a major source of the one-carbon unit
for cell metabolism”. In: Molecular and Cellular Biology 22.16, pp. 5793–5800.

Nilsson, Roland et al. (2014). “Metabolic enzyme expression highlights a key role
for MTHFD2 and the mitochondrial folate pathway in cancer”. In: Nature Com-
munications 5, p. 3128.

Oliveira-Ferrer, Leticia, Karen Legler, and Karin Milde-Langosch (2017). “Role of
protein glycosylation in cancer metastasis”. In: Seminars in Cancer Biology. El-
sevier.

Edoardo Gaude 94



Bibliography

Ooi, Aikseng et al. (2011). “An antioxidant response phenotype shared between
hereditary and sporadic type 2 papillary renal cell carcinoma”. In: Cancer Cell
20.4, pp. 511–523.

Orth, Jeffrey D, Ines Thiele, and Bernhard Ø Palsson (2010). “What is flux balance
analysis?” In: Nature Biotechnology 28.3, pp. 245–248.

Owen, Oliver E, Satish C Kalhan, and Richard W Hanson (2002). “The key role of
anaplerosis and cataplerosis for citric acid cycle function”. In: Journal of Biolog-
ical Chemistry 277.34, pp. 30409–30412.

Owens, Kjerstin M et al. (2011). “Impaired OXPHOS complex III in breast cancer”.
In: PLoS one 6.8, e23846.

Pallotti, Francesco et al. (2004). “Biochemical analysis of respiratory function in cy-
brid cell lines harbouring mitochondrial DNA mutations”. In: Biochemical Jour-
nal 384.2, pp. 287–293.

Papandreou, Ioanna et al. (2006). “HIF-1 mediates adaptation to hypoxia by actively
downregulating mitochondrial oxygen consumption”. In: Cell Metabolism 3.3,
pp. 187–197.

Parker, Richard C, Harold E Varmus, and J Michael Bishop (1984). “Expression of
v-src and chicken c-src in rat cells demonstrates qualitative differences between
pp60v-src and pp60c-src”. In: Cell 37.1, pp. 131–139.

Parsons, D Williams et al. (2008). “An integrated genomic analysis of human glioblas-
toma multiforme”. In: Science 321.5897, pp. 1807–1812.

Pate, Kira T et al. (2014). “Wnt signaling directs a metabolic program of glycolysis
and angiogenesis in colon cancer”. In: The EMBO Journal 33.13, pp. 1454–1473.

Patra, Krushna C and Nissim Hay (2014). “The pentose phosphate pathway and
cancer”. In: Trends in Biochemical Sciences 39.8, pp. 347–354.

Pavlova, Natalya N and Craig B Thompson (2016). “The emerging hallmarks of
cancer metabolism”. In: Cell Metabolism 23.1, pp. 27–47.

Pearce, Erika L and Edward J Pearce (2013). “Metabolic pathways in immune cell
activation and quiescence”. In: Immunity 38.4, pp. 633–643.

Pearce, Erika L, Maya C Poffenberger, et al. (2013). “Fueling immunity: insights
into metabolism and lymphocyte function”. In: Science 342.6155, p. 1242454.

Permuth-Wey, Jennifer et al. (2011). “Inherited variants in mitochondrial biogenesis
genes may influence epithelial ovarian cancer risk”. In: Cancer Epidemiology and
Prevention Biomarkers.

Pertega-Gomes, Nelma et al. (2015). “A glycolytic phenotype is associated with
prostate cancer progression and aggressiveness: a role for monocarboxylate trans-
porters as metabolic targets for therapy”. In: The Journal of Pathology 236.4,
pp. 517–530.

Petros, John A et al. (2005). “mtDNA mutations increase tumorigenicity in prostate
cancer”. In: Proceedings of the National Academy of Sciences of the United States
of America 102.3, pp. 719–724.

Pinho, Salomé S and Celso A Reis (2015). “Glycosylation in cancer: mechanisms
and clinical implications”. In: Nature Reviews. Cancer 15.9, p. 540.

Piskounova, Elena et al. (2015). “Oxidative stress inhibits distant metastasis by
human melanoma cells”. In: Nature 527.7577, p. 186.

Polyak, Kornelia et al. (1998). “Somatic mutations of the mitochondrial genome in
human colorectal tumours.” In: Nature Genetics 20.3.

95



Mitochondrial metabolism in cancer transformation and progression

Porporato, Paolo E et al. (2014). “A mitochondrial switch promotes tumor metas-
tasis”. In: Cell Reports 8.3, pp. 754–766.

Possemato, Richard et al. (2011). “Functional genomics reveals serine synthesis is
essential in PHGDH-amplified breast cancer”. In: Nature 476.7360, p. 346.

Priolo, Carmen et al. (2014). “AKT1 and MYC induce distinctive metabolic finger-
prints in human prostate cancer”. In: Cancer Research 74.24, pp. 7198–7204.

Rathmell, Jeffrey C et al. (2003). “Akt-directed glucose metabolism can prevent
Bax conformation change and promote growth factor-independent survival”. In:
Molecular and Cellular Biology 23.20, pp. 7315–7328.

Reczek, Colleen R and Navdeep S Chandel (2017). “The Two Faces of Reactive
Oxygen Species in Cancer”. In: Annual Reviews.

Reynolds, Miriam R et al. (2014). “Control of glutamine metabolism by the tumor
suppressor Rb”. In: Oncogene 33.5, p. 556.

Reznik, Ed, Martin L Miller, et al. (2016). “Mitochondrial DNA copy number vari-
ation across human cancers”. In: Elife 5, e10769.

Reznik, Ed and Chris Sander (2015). “Extensive decoupling of metabolic genes in
cancer”. In: PLoS Computational Biology 11.5, e1004176.

Rizzuto, Rosario et al. (2012). “Mitochondria as sensors and regulators of calcium
signalling”. In: Nature reviews. Molecular Cell Biology 13.9, p. 566.

Rohle, Dan et al. (2013). “An inhibitor of mutant IDH1 delays growth and promotes
differentiation of glioma cells”. In: Science 340.6132, pp. 626–630.

Rous, Peyton (1910). “A transmissible avian neoplasm.(sarcoma of the common
fowl.)” In: Journal of Experimental Medicine 12.5, pp. 696–705.

— (1911). “A sarcoma of the fowl transmissible by an agent separable from the
tumor cells”. In: The Journal of Experimental Medicine 13.4, p. 397.

Salabei, Joshua K, Andrew A Gibb, and Bradford G Hill (2014). “Comprehensive
measurement of respiratory activity in permeabilized cells using extracellular flux
analysis”. In: Nature Protocols 9.2, p. 421.

Salway, Jack G (2016). Metabolism at a Glance. John Wiley & Sons.
Santidrian, Antonio F et al. (2013). “Mitochondrial complex I activity and NAD+ /

NADH balance regulate breast cancer progression”. In: The Journal of Clinical
Investigation 123.3, p. 1068.

Schafer, Zachary T et al. (2009). “Antioxidant and oncogene rescue of metabolic
defects caused by loss of matrix attachment”. In: Nature 461.7260, p. 109.

Schug, Zachary T et al. (2015). “Acetyl-CoA synthetase 2 promotes acetate utiliza-
tion and maintains cancer cell growth under metabolic stress”. In: Cancer Cell
27.1, pp. 57–71.

Schwartzenberg-Bar-Yoseph, Fabiana, Michal Armoni, and Eddy Karnieli (2004).
“The tumor suppressor p53 down-regulates glucose transporters GLUT1 and
GLUT4 gene expression”. In: Cancer Research 64.7, pp. 2627–2633.

Sciacovelli, Marco, Edoardo Gaude, et al. (2014). “The metabolic alterations of
cancer cells”. In: Methods in Enzymology 542, pp. 1–23.

Sciacovelli, Marco, Emanuel Gonçalves, et al. (2016). “Fumarate is an epigenetic
modifier that elicits epithelial-to-mesenchymal transition.” In: Nature 537.7621,
pp. 544–547.

Selak, Mary A et al. (2005). “Succinate links TCA cycle dysfunction to oncogenesis
by inhibiting HIF-α prolyl hydroxylase”. In: Cancer Cell 7.1, pp. 77–85.

Edoardo Gaude 96



Bibliography

Seo, Byoung Boo et al. (1998). “Molecular remedy of complex I defects: rotenone-
insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae
mitochondria restores the NADH oxidase activity of complex I-deficient mam-
malian cells”. In: Proceedings of the National Academy of Sciences of the United
States of America 95.16, pp. 9167–9171.

Shangary, Sanjeev and Shaomeng Wang (2009). “Small-molecule inhibitors of the
MDM2-p53 protein-protein interaction to reactivate p53 function: a novel ap-
proach for cancer therapy”. In: Annual Review of Pharmacology and Toxicology
49, pp. 223–241.

Shao, Diane D et al. (2013). “ATARiS: computational quantification of gene sup-
pression phenotypes from multisample RNAi screens”. In: Genome Research 23.4,
pp. 665–678.

Sharma, Ashwini Kumar, Roland Eils, and Rainer König (2016). “Copy number
alterations in enzyme-coding and cancer-causing genes reprogram tumor meta-
bolism”. In: Cancer Research 76.14, pp. 4058–4067.

Shaw, Reuben J and Lewis C Cantley (2006). “Ras, PI (3) K and mTOR signalling
controls tumour cell growth”. In: Nature 441.7092, p. 424.

Shidara, Yujiro et al. (2005). “Positive contribution of pathogenic mutations in the
mitochondrial genome to the promotion of cancer by prevention from apoptosis”.
In: Cancer Research 65.5, pp. 1655–1663.

Shih, Thomas Y et al. (1979). “Identification of a sarcoma virus-coded phospho-
protein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma
virus”. In: Virology 96.1, pp. 64–79.

Shim, Hyunsuk et al. (1997). “c-Myc transactivation of LDH-A: implications for
tumor metabolism and growth”. In: Proceedings of the National Academy of Sci-
ences of the United States of America 94.13, pp. 6658–6663.

Sjöblom, Tobias et al. (2006). “The consensus coding sequences of human breast and
colorectal cancers”. In: Science 314.5797, pp. 268–274.

Smolková, Katarna et al. (2015). “Reductive carboxylation and 2-hydroxyglutarate
formation by wild-type IDH2 in breast carcinoma cells”. In: The International
Journal of Biochemistry & Cell Biology 65, pp. 125–133.

Son, Jaekyoung et al. (2013). “Glutamine supports pancreatic cancer growth through
a KRAS-regulated metabolic pathway”. In: Nature 496.7443, p. 101.

Spriet, Lawrence L, Richard A Howlett, and George JF Heigenhauser (2000). “An
enzymatic approach to lactate production in human skeletal muscle during ex-
ercise”. In: Medicine & Science in Sports & Exercise 32.4, pp. 756–763.

Stambolsky, P et al. (2006). “Regulation of AIF expression by p53”. In: Cell Death
and Differentiation 13.12, p. 2140.

Stanley, William C et al. (1997). “Regulation of myocardial carbohydrate meta-
bolism under normal and ischaemic conditions: potential for pharmacological
interventions”. In: Cardiovascular Research 33.2, pp. 243–257.

Stehelin, Dominique et al. (1976). “DNA related to the transforming genes of avian
sarcoma viruses is present in normal avian DNA”. In: Nature 260.5547, pp. 170–
173.

Subramanian, Aravind et al. (2005). “Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles”. In: Proceedings
of the National Academy of Sciences of the United States of America 102.43,
pp. 15545–15550.

97



Mitochondrial metabolism in cancer transformation and progression

Sullivan, Lucas B, Dan Y Gui, et al. (2015). “Supporting aspartate biosynthesis is
an essential function of respiration in proliferating cells”. In: Cell 162.3, pp. 552–
563.

Sullivan, Lucas B, Eva Martinez-Garcia, et al. (2013). “The proto-oncometabolite
fumarate binds glutathione to amplify ROS-dependent signaling”. In: Molecular
Cell 51.2, pp. 236–248.

Suzuki, Sawako et al. (2010). “Phosphate-activated glutaminase (GLS2), a p53-
inducible regulator of glutamine metabolism and reactive oxygen species”. In:
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 107.16, pp. 7461–7466.

Svedrui, eljko M and H Olin Spivey (2006). “Interaction between mammalian glyc-
eraldehyde 3-phosphate dehydrogenase and L-lactate dehydrogenase from heart
and muscle”. In: PROTEINS: Structure, Function, and Bioinformatics 63.3,
pp. 501–511.

Tan, An S, James W Baty, et al. (2015). “Mitochondrial genome acquisition restores
respiratory function and tumorigenic potential of cancer cells without mitochon-
drial DNA”. In: Cell Metabolism 21.1, pp. 81–94.

Tan, Duan-Jun, Ren-Kui Bai, and Lee-Jun C Wong (2002). “Comprehensive scan-
ning of somatic mitochondrial DNA mutations in breast cancer”. In: Cancer
Research 62.4, pp. 972–976.

Tarca, Adi Laurentiu et al. (2012). “Down-weighting overlapping genes improves
gene set analysis”. In: BMC Bioinformatics 13.1, p. 136.

Taylor, Ian W et al. (2009). “Dynamic modularity in protein interaction networks
predicts breast cancer outcome”. In: Nature Biotechnology 27.2, pp. 199–204.

Telang, Sucheta et al. (2012). “Cytochrome c oxidase is activated by the oncoprotein
Ras and is required for A549 lung adenocarcinoma growth”. In: Molecular Cancer
11.1, p. 60.

Tennant, Daniel A, Raúl V Durán, and Eyal Gottlieb (2010). “Targeting metabolic
transformation for cancer therapy”. In: Nature Reviews. Cancer 10.4, p. 267.

Ternette, Nicola et al. (2013). “Inhibition of mitochondrial aconitase by succination
in fumarate hydratase deficiency”. In: Cell Reports 3.3, pp. 689–700.

Terunuma, Atsushi et al. (2014). “MYC-driven accumulation of 2-hydroxyglutarate
is associated with breast cancer prognosis”. In: The Journal of Clinical Investi-
gation 124.1, p. 398.

Thompson, CB (2011). “Rethinking the regulation of cellular metabolism”. In: Cold
Spring Harbor Symposia on Quantitative Biology. Vol. 76. Cold Spring Harbor
Laboratory Press, pp. 23–29.

Tibshirani, Robert, Guenther Walther, and Trevor Hastie (2001). “Estimating the
number of clusters in a data set via the gap statistic”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 63.2, pp. 411–423.

Tomlinson, Ian PM et al. (2002). “Germline mutations in FH predispose to domi-
nantly inherited uterine fibroids, skin leiomyomata and papillary renal cell can-
cer”. In: Nature Genetics 30.4, p. 406.

Torrano, Veronica et al. (2016). “The metabolic co-regulator PGC1α suppresses
prostate cancer metastasis”. In: Nature Cell Biology 18.6, pp. 645–656.

Tsai, Jeff H and Jing Yang (2013). “Epithelial–mesenchymal plasticity in carcinoma
metastasis”. In: Genes & Development 27.20, pp. 2192–2206.

Edoardo Gaude 98



Bibliography

Tsugawa, Hiroshi et al. (2011). “Practical non-targeted gas chromatography/mass
spectrometry-based metabolomics platform for metabolic phenotype analysis”.
In: Journal of Bioscience and Bioengineering 112.3, pp. 292–298.

Turcan, Sevin et al. (2012). “IDH1 mutation is sufficient to establish the glioma
hypermethylator phenotype”. In: Nature 483.7390, p. 479.

Vander Heiden, Matthew G, Lewis C Cantley, and Craig B Thompson (2009). “Un-
derstanding the Warburg effect: the metabolic requirements of cell proliferation”.
In: Science 324.5930, pp. 1029–1033.

Vanharanta, Sakari et al. (2013). “Epigenetic expansion of VHL-HIF signal output
drives multiorgan metastasis in renal cancer”. In: Nature Medicine 19.1, pp. 50–
56.

Väremo, Leif, Jens Nielsen, and Intawat Nookaew (2013). “Enriching the gene set
analysis of genome-wide data by incorporating directionality of gene expression
and combining statistical hypotheses and methods”. In: Nucleic Acids Research
41.8, pp. 4378–4391.

Vazquez, Francisca et al. (2013). “PGC1α expression defines a subset of human
melanoma tumors with increased mitochondrial capacity and resistance to ox-
idative stress”. In: Cancer Cell 23.3, pp. 287–301.

Viale, Andrea et al. (2014). “Oncogene ablation-resistant pancreatic cancer cells
depend on mitochondrial function”. In: Nature 514.7524, p. 628.

Vogelstein, Bert and Kenneth W Kinzler (1993). “The multistep nature of cancer”.
In: Trends in Genetics 9.4, pp. 138–141.

Vogelstein, Bert, Nickolas Papadopoulos, et al. (2013). “Cancer genome landscapes”.
In: Science 339.6127, pp. 1546–1558.

Vogt, Peter K (2012). “Retroviral oncogenes: a historical primer”. In: Nature Reviews.
Cancer 12.9, p. 639.

Wallace, Douglas C (2007). “Why do we still have a maternally inherited mito-
chondrial DNA? Insights from evolutionary medicine”. In: Annual Reviews in
Biochemistry 76, pp. 781–821.

— (2012). “Mitochondria and cancer”. In: Nature Reviews. Cancer 12.10, p. 685.
Wallace, Douglas C and Weiwei Fan (2010). “Energetics, epigenetics, mitochondrial

genetics”. In: Mitochondrion 10.1, pp. 12–31.
Wang, Fang et al. (2013). “Targeted inhibition of mutant IDH2 in leukemia cells

induces cellular differentiation”. In: Science 340.6132, pp. 622–626.
Warburg, Otto (1924). “Über den stoffwechsel der carcinomzelle”. In: Naturwis-

senschaften 12.50, pp. 1131–1137.
— (1956). “On the origin of cancer”. In: Science 123.3191, pp. 309–314.
Ward, Patrick S, Jay Patel, et al. (2010). “The common feature of leukemia-associated

IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglu-
tarate to 2-hydroxyglutarate”. In: Cancer Cell 17.3, pp. 225–234.

Ward, Patrick S and Craig B Thompson (2012). “Metabolic reprogramming: a cancer
hallmark even Warburg did not anticipate”. In: Cancer Cell 21.3, pp. 297–308.

Wassermann, A v, Franz Keysser, and Michael Wassermann (1911). “Beiträge zum
Problem: Geschwülste von der Blutbahn aus therapeutisch zu beeinflussen”. In:
DMW-Deutsche Medizinische Wochenschrift 37.51, pp. 2389–2391.

Watson, James D, Francis HC Crick, et al. (1953). “Molecular structure of nucleic
acids”. In: Nature 171.4356, pp. 737–738.

99



Mitochondrial metabolism in cancer transformation and progression

Weinberg, Frank et al. (2010). “Mitochondrial metabolism and ROS generation
are essential for Kras-mediated tumorigenicity”. In: Proceedings of the National
Academy of Sciences of the United States of America 107.19, pp. 8788–8793.

Wellen, Kathryn E et al. (2010). “The hexosamine biosynthetic pathway couples
growth factor-induced glutamine uptake to glucose metabolism”. In: Genes &
Development 24.24, pp. 2784–2799.

Wieman, Heather L, Jessica A Wofford, and Jeffrey C Rathmell (2007). “Cytokine
stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt reg-
ulation of Glut1 activity and trafficking”. In: Molecular Biology of the Cell 18.4,
pp. 1437–1446.

Wise, David R et al. (2011). “Hypoxia promotes isocitrate dehydrogenase-dependent
carboxylation of α-ketoglutarate to citrate to support cell growth and viability”.
In: Proceedings of the National Academy of Sciences of the United States of
America 108.49, pp. 19611–19616.

Xiao, Mengtao et al. (2012). “Inhibition of α-KG-dependent histone and DNA
demethylases by fumarate and succinate that are accumulated in mutations of
FH and SDH tumor suppressors”. In: Genes & Development 26.12, pp. 1326–
1338.

Xu, Wei et al. (2011). “Oncometabolite 2-hydroxyglutarate is a competitive inhibitor
of α-ketoglutarate-dependent dioxygenases”. In: Cancer Cell 19.1, pp. 17–30.

Yahagi, Naoya et al. (2003). “p53 Activation in adipocytes of obese mice”. In: Journal
of Biological Chemistry 278.28, pp. 25395–25400.

Yan, Hai et al. (2009). “IDH1 and IDH2 mutations in gliomas”. In: New England
Journal of Medicine 360.8, pp. 765–773.

Yanagida, Osamu et al. (2001). “Human L-type amino acid transporter 1 (LAT1):
characterization of function and expression in tumor cell lines”. In: Biochimica
et Biophysica Acta (BBA)-Biomembranes 1514.2, pp. 291–302.

Yang, Ming and Patrick J Pollard (2013). “Succinate: a new epigenetic hacker”. In:
Cancer Cell 23.6, pp. 709–711.

Yang, Ming and Karen H Vousden (2016). “Serine and one-carbon metabolism in
cancer”. In: Nature Reviews Cancer 16.10, pp. 650–662.

Ye, Jiangbin et al. (2014). “Serine catabolism regulates mitochondrial redox control
during hypoxia”. In: Cancer Discovery 4.12, pp. 1406–1417.

Ying, Haoqiang et al. (2012). “Oncogenic Kras maintains pancreatic tumors through
regulation of anabolic glucose metabolism”. In: Cell 149.3, pp. 656–670.

Yizhak, Keren et al. (2014). “A computational study of the Warburg effect identifies
metabolic targets inhibiting cancer migration”. In: Molecular Systems Biology
10.8, p. 744.

You, Chun, Suwan Myung, and Y-H Percival Zhang (2012). “Facilitated substrate
channeling in a self-assembled trifunctional enzyme complex”. In: Angewandte
Chemie 124.35, pp. 8917–8920.

Yuan, Yuan et al. (2017). “Comprehensive molecular characterization of mitochon-
drial genomes in human cancers”. In: bioRxiv, p. 161356.

Yun, Jihye et al. (2009). “Glucose deprivation contributes to the development of
KRAS pathway mutations in tumor cells”. In: Science 325.5947, pp. 1555–1559.

Yuneva, Mariia O et al. (2012). “The metabolic profile of tumors depends on both
the responsible genetic lesion and tissue type”. In: Cell Metabolism 15.2, pp. 157–
170.

Edoardo Gaude 100



Bibliography

Zhang, Aihua, Hui Sun, et al. (2012). “Modern analytical techniques in metabolomics
analysis”. In: Analyst 137.2, pp. 293–300.

Zhang, Bing, Jing Wang, et al. (2014). “Proteogenomic characterization of human
colon and rectal cancer”. In: Nature 513.7518, pp. 382–387.

Zhang, Cen, Meihua Lin, et al. (2011). “Parkin, a p53 target gene, mediates the
role of p53 in glucose metabolism and the Warburg effect”. In: Proceedings of the
National Academy of Sciences of the United States of America 108.39, pp. 16259–
16264.

Zhao, Shimin et al. (2009). “Glioma-derived mutations in IDH1 dominantly inhibit
IDH1 catalytic activity and induce HIF-1α”. In: Science 324.5924, pp. 261–265.

Zheng, Liang, Simone Cardaci, et al. (2015). “Fumarate induces redox-dependent
senescence by modifying glutathione metabolism”. In: Nature Communications
6.

Zheng, Xiaofeng, Julienne L Carstens, et al. (2015). “EMT program is dispens-
able for metastasis but induces chemoresistance in pancreatic cancer”. In: Nature
527.7579, p. 525.

Zieliski, ukasz P et al. (2016). “Metabolic flexibility of mitochondrial respiratory
chain disorders predicted by computer modelling”. In: Mitochondrion 31, pp. 45–
55.

101


