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ABSTRACT 

Optical interconnects have an important role to play in next-generation high-performance electronic systems by 

enabling power-efficient high-speed board-level communication links. Polymer-based optical waveguides is a 

leading technology for integrating optical links onto standard printed circuit boards as it is sufficiently low cost 

and enables cost-effective manufacturing and assembly. Various polymer-based optical backplanes have been 

reported in recent years enabling different on-board interconnection architectures. However, all currently 

demonstrated systems are purely passive, which limits therefore the reach, complexity and functionality of these 

on-board systems. Here, we present recent simulation and experimental studies towards the development of Er- 

doped polymer-based waveguide amplifiers. Two different approaches to integrate Er-doped materials in 

siloxane polymer are investigated: (i) ultrafast laser plasma implantation of Er-doped glasses and (ii) solution-

based dispersion of Er-doped nanoparticles. Experimental and simulation results on the achievable performance 

from such waveguide amplifiers are presented focusing on impact of the waveguide loss and upconversion on 

the gain figure. 
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1. INTRODUCTION 

Optical interconnects have gained a lot of interest for use in board-level communication links inside high-

performance electronic systems such as data centres and supercomputers. The vital arguments supporting the use 

of photonics in such applications are linked to the performance advantages they provide over currently employed 

electrical solutions, such as lower power consumption, higher bandwidth and increased channel density [1]. One 

of the leading candidates for the implementation of such systems are polymer waveguides, in particular a 

recently developed new class of polymer materials which exhibit favourable mechanical, thermal and optical 

properties for direct integration onto printed circuit boards (PCBs) [2], [3]. Siloxanes are one of the most 

promising types of such polymer materials: they can withstand the manufacturing processes of PCBs (solder 

reflow and board lamination), they exhibit good environmental stability and long lifetimes, they are sufficiently 

low cost and exhibit low loss at the wavelength of interest (~ 0.04 dB/cm at 850 nm) [4]. Initial work has been 

focused on multimode waveguides (~ 50×50 µm
2
) as these provide relaxed alignment tolerances in the system 

assembly and are an ideal match for low-cost vertical-cavity surface-emitting lasers (VCSELs) and multimode 

fibres (MMFs) which are widely used in short-reach links in datacentre environments. High-speed transmission 

using VCSELs over multimode polymer waveguides has been achieved, with record values of 40 Gb/s and 56 

Gb/s demonstrated over a 1-m-long waveguide using non-return-to-zero (NRZ) and 4-level pulse amplitude 

modulation (PAM-4) respectively [5], [6]. Additionally, a number of successful system demonstrators 

implementing different optical on-board interconnection architectures have been recently reported [7]–[9]. 

Migration of this polymer-based technology to longer telecommunications’ wavelengths (1310 nm and 1550 nm) 

and single mode waveguides has gained a lot of interest in order to enable the direct interface of board-level 

polymer waveguides with the emerging high-performance photonic integrated circuits (PICs) and Si photonics 

(SiPh) [10], [11]. Recent advances in polymer structures engineered specifically for C-band (1550 nm) have 

demonstrated reduced  material loss of less than 0.5 dB/cm in single mode waveguides [12]. 

However, so far, only purely passive polymer-based optical backplanes and on-board links have been 

implemented. This imposes a limit on both the length of the on-board links and the number of passive optical 

components (such as crossings, splitters) that can be used due to additional loss that they introduce. Whilst 

erbium-doped fibre amplifiers (EDFAs) have dominated long-haul optical links [13], no practical equivalent 

erbium-doped waveguide amplifier (EDWA) has been demonstrated for PCB-based optical interconnects. 

Various host materials and doping approaches have been studied and some encouraging results have been 

reported in recent years [14]–[16], but a PCB-compatible EDWA with high-gain and power-efficiency is still to 

be demonstrated. In order to reach the required erbium concentrations for few-centimetre-long devices with 

minimal ion clustering and gain quenching, different fabrication techniques have been investigated, such as 

atomic layer deposition [17] and liquid phase epitaxy [18] with some encouraging results. Out of these, ultra-fast 

laser plasma implantation (ULPI) and nanoparticle (NP) dispersion seem to be very promising. The first method 

has demonstrated erbium-doped thin films with extremely high rare-earth ion content of 1.63 × 10
21

 cm
-3

 [19], 

while the latter has already been shown to generate relatively high internal gain of 6.6 dB/cm [20]. Here, we 



therefore present recent work towards the formation of EDWAs suitable for board-level interconnects using 

these two methods. Er-doped polymer thin films are fabricated using both ULPI and NP dispersion and their 

basic optical properties are compared in terms of their emission spectra and metastable lifetimes. Signal 

propagation in waveguides fabricated using the latter approach are then characterised across the erbium emission 

spectrum. Additionally, the potential to achieve high-gain amplification using hybrid channel waveguide EDWA 

is also demonstrated using multi-level rate equations model and its optimum design in terms of highest 

achievable optical gain is explored based on known physical properties of the material. Additionally, effect of 

co-doping the device with ytterbium, varying background loss and upconversion coefficient are investigated in 

order to improve the performance of the proposed EDWA and identify optimum Er-Yb ratios for different 

operating conditions. 

The rest of the article is organised as follows. In section 2, the fabrication processes used in this work are 

introduced and experimental studies on the optical properties of Er-doped polymer thin films are reported. 

Waveguide measurements of the optical properties of NP-doped waveguides are shown in section 3. In section 4, 

amplifier modelling studies for a hybrid polymer-glass EDWA are presented with particular focus on device 

optimisation based on losses and upconversion in the system. Finally, section 5 provides the conclusions. 

2. ERBIUM-DOPED THIN FILM FABRICATION AND CHARACTERISATION 

The two approaches used in this work to integrate erbium ions into polymer thin films are briefly described and 

the spectral properties of the thin films produced are compared. 

2.1 Polymer and Er-doped glass technology and fabrication 

The polymer materials used in this work are siloxane-type WG-2020 (core) and WG-2021 (cladding) Optical 

Elastomers developed by Dow Corning. These materials have been engineered to exhibit all the necessary 

mechanical and optical properties for PCB integration [21]. Additionally, these materials can be used to create a 

wide range of waveguides and waveguide components with a variety of fabrication methods. They can be 

deposited by a range of methods (spin-coating, doctor-blading or drop casting) on various substrates (glass, 

silicon, FR4) and then patterned with UV photolithography, embossing or direct laser writing [22]. The 

refractive index difference Δn between undoped core and cladding materials is 0.0065 at 1550 nm allowing the 

formation of single mode waveguides with relatively large dimensions (up to 7.5 µm). 

The first type of erbium-doped thin films described in this work has been fabricated using the ULPI process 

[23]. The Er-doped tellurite glass target is prepared using glass melting and quenching processes [24], which 

provide good control of the molar concentration of erbium ions in the deposited layer. High-power femtosecond 

laser pulses are then used to ablate the Er-doped tellurite glass target and generate a highly energetic plasma that 

then expands towards a heated-up substrate surface in low-pressure deposition chamber environment. The 

thermally-assisted diffusion leads to formation of a homogenous Er-doped thin film layer as shown for hosts 

such as silica glass [25]. The ULPI technique has been appropriately modified to enable implantation of Er-

doped glass into polymer thin film and has been reported in detail in [26]. 

The second type of erbium-doped thin films has been prepared by directly dissolving Er-doped nanoparticles 

into a siloxane polymer solution. The erbium-gadolinium-cerium (EGC) nanoparticles are synthesised through 

the Leeds alginate process [27] with an estimated size of approximately 10 nm. The NPs are dispersed in a 

polymer and toluene solution using magnetic stirring and the resulting composite solution is deposited on a silica 

glass using a 200 nm syringe membrane filters to form a 10-μm-thick polymer film. Various samples with 

different NP doping concentrations are produced and characterised. 

2.2 Thin Film Characterisation 

Optical characterisation of the erbium-doped thin films is performed to compare the properties of the films 

prepared using the different methods and extract the key parameters required for amplifier simulation studies. 

The photoluminescence (PL) spectrum and lifetime are measured at a room temperature using the FS920 

spectrometer (Edinburgh Instruments,UK) under an 980 nm laser-diode excitation. The pump light is blocked 

from reaching the spectrometer by using a long-pass filter with a cut-off wavelength of 1100 nm. The PL 

emission spectrum of the thin film is recorded around 1550 nm which corresponds to the erbium 
4
I13/2 to 

4
I15/2 

transition. A broad emission spectrum and a long lifetime (long metastable time that the erbium ion remains in 

the 
4
I13/2 energy level) are important parameters for the implementation of efficient optical amplifiers. 

Fig. 1 shows the normalised photoluminescence spectrum obtained from the two Er-doped polymer thin films 

produced via the ULPI and NP dispersion methods described in the previous section. Although both spectra 

show the same emission intensity peak at ~ 1533 nm, some differences can be observed in terms of their shape. 

For the film fabricated using the ULPI method, the emission spectrum full-width at half-maximum (FWHM) is 

38.7 nm, while the NP-doped film exhibits a slightly reduced FWHM of 31.5 nm. 



 

Figure 1. PL comparison of Er-doped polymer thin films obtained through ULPI and NP dispersion. 

The lifetime of the Er ions in the NP-doped polymer film is measured and shown in Fig. 2 for the different 

concentrations of Er dopants as well as for the Er-doped polymer film fabricated by ULPI. The erbium lifetime is 

estimated to be 3.52 ms and 5.67 ms for the implanted and dissolved NPs respectively by fitting the decay with 

single exponentials. In case of the ECG particles some variation in the lifetime was observed depending on the 

weight percentage of the dopant as shown in Fig. 2. This measurement confirms the potential of the polymer 

material for forming high-gain waveguide amplifiers using both methods. It has to be noted though that a longer 

lifetime of 12.07 ms has been reported using ULPI in silica substrates [28]. 

 

Figure 2. Erbium lifetime variation with concentration of dispersed NPs. ULPI polymer film used as a reference. 

3. NP-DOPED WAVEGUIDE MEASUREMENTS 

Polymer waveguide samples have been prepared using the NP-doped core solution with the NP concentration 

of 5.1 wt.% and their loss performance in the 1475-1575 nm wavelength range was measured using a tuneable 

laser (HP 8168E) and optical spectrum analyser (Yokogawa AQ6370D). 

Fig. 3 presents the obtained insertion loss of a 1.4 cm long NP-doped polymer waveguide across the erbium 

emission region. The total insertion loss is > 20 dB in the wavelength range of interest which is too high for the 

formation of efficient waveguide amplifiers. As a result the underlying loss components are identified and their 

magnitude is estimated in order to better understand the limitations in the observed device performance. Three 

main loss components can be identified: propagation and coupling loss due light propagation in the polymer 

waveguide (polymer-only), scattering (Rayleigh) loss due to the presence of the NPs, and erbium absorption loss 

due to the presence of Er ions. The polymer-only loss is estimated using a non-doped polymer waveguide of the 

same dimensions and length, while the scattering loss is calculated using a Rayleigh model [29] and the fact that 

very low Er-induced absorption losses are expected at the longer wavelength of 1575 nm [30]. The analysis 

reveals a scattering loss in the range of 11 to 14 dB for wavelength range studied. The remaining loss is assigned 

to erbium absorption. 



 

Figure 3. Insertion loss (red line) of a 1.4-cm-long NP-doped waveguide and estimated loss components. 

 

Figure 4. Er-absorption analysis: a) expected absorption cross-section based on McCumber theorem and b) 

matching with measured absorption. 



In order to validate the loss analysis, the McCumber theorem [31] is employed to derive the Er absorption 

cross section (Fig. 4a) and estimate the erbium absorption spectrum. This spectrum is then compared with that 

obtained through the above analysis of the experimental results (Fig. 4b). The absorption cross-section is 

obtained using the Fuchbauer-Ladenburg method [32] based on the measured PL emission spectrum shown in 

Fig. 1. Fig. 4b compares the predicted Er absorption loss through the McCumber theorem (red line) and the loss 

analysis (yellow line) on the experimental results. Relatively good agreement is obtained between the two 

methods validating the loss analysis presented above. As a result, we conclude that the fabricated NP-doped 

polymer waveguides suffer from large scattering losses due to NP clustering in the polymer matrix. The 

estimated Er concentration in the waveguide is in the range of 1.47-1.8 × 10
20

 cm
-3

 which is calculated to be 

adequate for achieving internal gain (1.1 dB/cm without further doping optimisation) in such structures, provided 

that the scattering loss is significantly reduced to 0.3 dB/cm. As a result, work towards improving the dispersion 

of the NPs in the polymer matrix is currently underway and we hope to the present these at the conference. 

4. HYBRID EDWA STUDIES 

An alternative approach to produce polymer-compatible EDWAs consists of using hybrid glass-polymer 

waveguide structures [28]. The hybrid channel waveguide studied here comprises an Er-doped glass core 

(EDTS) fabricated using the ULPI method and a polymer cladding. Using a waveguide amplifier model we 

demonstrate the potential to achieve a high-gain amplifier using this type of structures. The results presented 

below are based on a 1-cm-long 2x2 μm
2
 hybrid ETDS-polymer channel waveguide (Fig. 5). 

 

Figure 5. Channel waveguide cross-section based on a hybrid glass-polymer structure 

The key parameters used in the EDWA simulations are listed in Table 1  and are based on values either 

extracted from fabricated glass samples using the UPLI method [28] or reported in literature on similar Er-doped 

glass systems [33]–[35]. The main unknown parameters for the hybrid structures are the upconversion factor and 

the background waveguide propagation loss. As a result, the rest of the parameters (total ion concentration, 

lifetime and cross-sections) are kept constant, while these two are varied to assess their impact on the amplifier’s 

performance and optimum design. Three values are used for the background loss: 0.3, 1 and 3 dB/cm, as 0.3 

dB/cm represents a very good quality waveguide, 1 dB/cm represents an average quality waveguide and 3 dB/cm 

a worst-case scenario. In terms of upconversion factor, a similar approach is undertaken with three values chosen 

based on values reported in other Er-doped glass systems: 0.8, 5 and 10 × 10
-23

 m
3
s

-1
. 

Table 1. Main simulation parameters 

Parameter Value Reference 

Dopant concentration 1.63 × 10
21

 cm
−3

 [28] 

Lifetime [Er I13/2 / Yb F5/2] 12 / 1.5 ms [28], [33] 

Erbium emission cross-section [1534 nm] 4.7 × 10
-21

 cm
2
 [28] 

Erbium absorption cross-section [1534 nm] 4.7 × 10
-21

 cm
2
 [28] 

Erbium absorption cross-section [980 nm] 2.5 × 10
-21

 cm
2
 [28] 

Ytterbium absorption cross-section [980 nm] 1.4 × 10
-20

 cm
2
 [33] 

Upconversion rate 0.8,5,10 × 10
-23 

m
3
s

-1
 [33],[36] 

Er-Yb cross-relaxation 2.3 × 10
-22

 m
3
s

-1
 [33],[35] 

Background loss 0.3, 1 or 3 dB/cm - 

A multi-level rate equations model implemented using the VPI Photonics software is employed to obtain the 

gain of the amplifier by taking into account both upconversion and Er-Yb ion interactions. Ytterbium co-doping 

is used with erbium ions in order to take advantage of its very high absorption cross-section and efficient energy 

transfer mechanism to the neighbouring Er ions [34]. In order to find an optimum performance of the EDWA for 

a given set of background loss and upconversion factor, the ratio of erbium and ytterbium has been varied while 

maintaining the total ion concentration of 1.63 × 10
21

 cm
−3

 constant. Fig. 6 shows optimised internal gain that 



could be achieved from a 1-cm-long device as a function of the pump power (from 0 to 600 mW) and Er:Yb 

ratio (from 1:99 to 99:1). Fig 6. (a-c) show how the background loss affects the device performance. Comparison 

of the three graphs indicates that the background loss reduces the achievable gain of the device for a given pump 

power. Although the highest gain can be achieved by using a 600 mW pump power, this power is too high for 

practical applications and as a result, a more realistic pump power of 200 mW is used for comparing the different 

plots (red dashed line in plots). 

 

Figure 6. Gain and Er:Yb ratio optimisation for a 1-cm-long EDWA with varied upconversion and background 

losses (a-e). 



A summary of the simulation results for the optimised hybrid EDWA is shown in Table 2. For an EDWA with 

a 1 dB/cm loss (Fig. 6a), a maximum gain of 4.2 dB can be achieved with an Er:Yb ratio slightly below 1:2. 

When the loss in the waveguide is changed to 0.3 dB or 3 dB, the maximum gain changes to 5 dB and 1.9 dB 

respectively, as shown in Fig. 6(b) and (c). The 2 dB loss increase results in a 2.3 dB gain drop, while the 0.7 dB 

loss reduction yields a 0.8 dB gain increase. Changing the background loss affects the intensity of the pump 

signal along the device length and therefore the population inversion along the device and the obtained gain 

itself. However, the variation of the waveguide loss does not significantly affect the optimum Er:Yb ratio for a 

particular device which is found to be ~ 1:2. 

With respect to the upconversion factor, a more pronounced effect on the optimum device structure is 

observed. In the initial scenario [Fig. 6(a)], a strong upconversion effect due to very high erbium concentration is 

assumed. However, introduction of ytterbium as a co-dopant not only acts as a sensitizer for the pump signal, but 

it has also been shown to reduce the effect of upconversion due to adding an additional energy transition in the 

system [37]. Therefore, Fig. 6(d) and (e) present simulation results where the upconversion factor is reduced 

from 10 × 10
-23

 m
3
s

-1
 to 5 and 0.8 × 10

-23
 m

3
s

-1
 respectively. For a design with the pump power limited to 200 

mW, the reduction in the upconversion coefficient results in a significant increase in the maximum achievable 

internal gain: from 4.2 dB to 6.8 dB and 16.8 dB for the two values studied. A reduction in the upconversion 

coefficient by a factor of 2 and 5 increased the internal gain by 2.6 and 12.6 dB respectively. Additionally, the 

change in the value of the upconversion coefficient significantly affects the optimum Er:Yb ratio for the 

amplifier, changing it from ~ 1:2 to ~ 1:1 and ~ 7:1 for the upconversion coefficients of 5 and 0.8 × 10
-23

 m
3
s

-1
 

respectively. These results highlight the importance of the upconversion factor for optimising the amplifier 

design and achieving high-gain in this material system. 

Table 2. Summary of the simulation results for an optimised EDWA 

Operating Conditions Optimisation Results 

Upconversion coefficient 

[× 10
-23

 m
3
s

-1
] 

Background 

loss [dB/cm] 

Maximum internal 

gain [dB/cm] 

Optimum 

Er:Yb ratio 

Varying background loss 

10 

0.3 1.9 1:2 

1.0 4.2 1:2 

3.0 5.0 1:2 

Varying upconversion coefficient 

0.8 

1.0 

16.8 7:1 

5 6.8 1:1 

10 4.2 1:2 

5. CONCLUSIONS 

Two approaches of doping polymers with erbium, namely ultrafast laser plasma implantation and nanoparticles 

dispersion in a polymer matrix are studied for PCB-compatible optical amplifiers. The comparison of the PL 

spectrum of fabricated Er-doped polymer thin films using these two methods has shown similar spectral 

characteristics. ULPI implanted film has a wider FWHM of 38.7 nm while the NP-dissolved approach yields to a 

longer Er lifetime of 5.67 ms. Early work on NP-doped waveguides indicate that scattering loss due to NP 

clustering is the major limiting factor in demonstrating gain from such structures. As a result, methods to achieve 

improved dispersion of the NP in the polymer matrix are currently under investigation. The initial results suggest 

indicate that gain of 1.1 dB/cm at the estimated Er concentration of 1.5 × 10
20

 cm
-3

 could be achieved if the 

scattering losses were reduced to 0.3 dB/cm. This could be then improved through increasing erbium content and 

adding ytterbium to the mix. 

Hybrid glass-polymer waveguide structures are an alternative approach to achieve high gain EDWAs. 

Simulation results on a 1-cm-long channel EDWA provide optimisation guidelines for the co-doping of Yb as a 

function of the background waveguide loss and upconversion coefficient. The result indicate that a gain of 4.2 

dB can be achieved for the reasonable values of 1 dB/cm background loss and a upconversion coefficient of 10 × 

10-23 m
3
s

-1
.  It is further shown that the variation of the upconversion coefficient has a greater impact of the 

optimum design of such an EDWA that a change in background loss. Experimental studies are underway to 

determine these and allow the formation of high gain hybrid EDWA structures. 
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