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Abstract

In light of an urgent need for improved antimicrobial diagnostics and therapeutics, understand-

ing bacterial behaviour, and bacterial responses to treatments in particular, is one of the key

objectives of modern medical research. While the molecular mode of action of antibiotics is

usually well known, their effect on the cell at a "systems" level (on the regulatory networks,

metabolism, etc.) is only beginning to be quantitatively understood. We address some of

these response phenotypes in Escherichia coli testing different antibiotic classes and growth

conditions. We study the short (<15 s) time-scale fluctuation dynamics of fluorescently-tagged

chromosomal loci and cytosolic aggregates, which report for the state of locus ”compaction”

and the levels of macromolecular crowding of the cytosol, respectively. We improve the

precision of those measurements developing a novel data treatment procedure and discover

that sub-lethal doses of ciprofloxacin, rifampicin, and vancomycin as well as hyperosmotic

shock conditions cause small but consistent changes (unique to each treatment agent) to the

physical organisation of chromosomal Ori2 and Ter3 loci and the cytosol. We reveal, among

other findings, strong correlations between the effects in different parts of the chromosome and

between the chromosome and cytosol. In addition, we complement the marker dynamics work

with single-cell level gene expression measurements during sub-lethal translation inhibition.

Specifically, we compare responses to tetracycline and chloramphenicol from constitutive

and ribosomal promoters in Ori3 and Ter3 chromosomal positions over long (7 h) treatment

times in exponentially growing bacteria. We reveal, for the first time, the kinetics of cellular

resource allocation and provide novel insights on globally regulated transcription, relevant

to the three-component proteome partitioning model, gene-length dependent effects of the

processivity of translation, and ”reversibility” of ribosome-binding antibiotics. In addition, we

discover a strong correlation between the timing of responses from promoters in the Ori3 and

Ter3 positions, and a small but consistent difference in the response magnitude between the

two positions.



Initial remarks

Motivation and context for this work

Over the last 10-20 years, the premise that physical organisation of the nucleoid can directly

influence its biological function has grown in importance, particularly in areas of chromoso-

mal segregation [1–4] and gene expression [5–8]. In parallel, despite vast improvements in

medicine such as the success of complex biologic therapeutics and the emergence of advanced

gene-editing therapies and cell-based medicines against increasingly challenging diseases,

untreatable bacterial infections remain one of the main causes of death and pose an increasing

threat to public health worldwide [9]. Consequently, we motivate our work with the urgent

necessity for improved antimicrobial diagnostics and therapeutics, and a need for more com-

plete systems-level understanding of how antibiotics affect bacterial physiology. Through this

research work we aim to improve understanding of the effects that antibiotic treatments have

on the physical organisation of the E. coli chromosome and cytosol, and how these properties

can affect biological functions of these components.

Bacterial nucleoid is now understood to show significant structural complexity and dy-

namics [10–12]. In recent years, a picture of the bacterial chromosome has emerged where

the chromosome can be seen as as a polymer molecule suspended in a viscolelastic medium

(the cystosol), where individual parts of such polymer (e.g., genetic loci) sub-diffuse through a

crowded environment of macromolecules, some of which (e.g., nucleic acids and cytoskeletal

filaments) show significant elasticity [13–15]. It follows that changes to the elastic moduli

of macromolecules or to the viscosity of the surrounding medium (for example, modulated

by local enzymatic processes or altered by stressors such as antibiotics) will affect the energy

states of individual polymer parts [16, 17]. Given the important role of the nucleoid-associated

proteins at DNA supercoil stabilisation and gene regulation, and the role of DNA topology

and local energy states at transcription initiation, physical properties of genetic loci are now

thought to have a significant influence on the activity of genes [16, 5].

Despite these important advancements, the exact nature of the physical interplay between

the chromosome and cytosol and how they affect each other’s dynamics and biological function,

including response to treatments, remain subjects of study and debate [18–20]. In this work,

we gain insight into the physical properties of the chromosome and cytosol of live antibiotic-

challenged bacteria, using a ”microrheology” technique that allows us to track intracellular



xi

fluorescent markers, whose short time-scale displacements report for – we speculate – the

local state of ”compaction” of genetic loci and the level of molecular crowding of the cytosol.

The majority of work involving tracking of chromosomal markers so far have focused on

the segregation dynamics (e.g, [3]), with only a limited number of studies characterising the

physical structure of the chromosome at the local level [21, 13, 14, 22]. Of those, several used

antibiotics but only at relativity high doses and limited exposure times to shut down specific

cellular processes but none provided systematic analysis of the physical effects excreted by

antibiotics.

In response to these critical gaps in understanding of antibiotic effects, we first improve

the precision of our measurements developing a crucial data treatment procedure and then

perform a systematic study of how sub-lethal doses of clinically important classes of antibiotics

and hyperosmotic shock conditions alter these physical properties in bacteria cultured in

different growth conditions. Finally, we complement the biophysical measurements with gene

expression experiments: by combining microscopy and microfluidics methods, we measure

high-throughput single-cell level kinetic responses in gene activity under translation inhibition

in populations of exponentially growing bacteria. We investigate how the position of a gene

in the chromosome affects its activity depending on what type of promoter (constitutive of

regulated) controls its expression. As a result we offer a number of novel insights about

the kinetics of the compensatory cellular resource allocation during treatment with different

translation inhibitors, and about position-dependent differences in gene expression responses

to treatment.

Overview of individual chapters

Chapter 1 serves as an introduction to this PhD work and presents current state of knowledge

on the E. coli nucleoid, its physical properties and biological function, antibiotics, single-

cell level microscopy, and chromosomal and cytosolic dynamics. It also outlines gaps in our

understanding of these areas and explains how this work attempts to improve our understanding

of these topics.

Chapter 2 presents the methods employed to answer the research questions set out in this

work. Specifically, it outlines the details about the bacterial strains, laboratory techniques,

experimental set-ups, and image processing and data analysis protocols.

Chapter 3 explains our data treatment developments which account for fluorescent marker

photo-bleaching and size-displacement dependence. This empirical data correction proce-

dure serves as a foundation for the next chapter providing a precise way to quantify marker

displacements over time, critical for investigating effects of antibiotics.

Chapter 4 presents and discusses our systematic study of how various sub-lethal antibiotic

treatments and hyperosmoic shock conditions affect the short time-scale dynamics of the

chromosomal and cytosolic markers, and discusses relationship between effects in different

parts of the chromosome and between the genome and the cytosol.
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Chapter 5 complements the biophysical measurements of previous two chapters with a

high-throughput single-cell level study on how chromosomal positions of genes affect kinetic

responses in gene activity to different translation inhibitors.

Chapter 6 draws conclusions from the previous chapters and outlines possible directions of

future work.

Appendices A-C contain supplementary materials to chapters 3-5, respectively, Appendix

D presents key findings gathered after the submission of this dissertation (added after the PhD

viva examination), and Appendix E outlines past communications of this research work and

attended educational events.
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Chapter 1

Introduction

1.1 E. coli and its nucleoid

1.1.1 E. coli bacterium

Bacteria form a separate domain of life and belong to prokaryotic microorganisms [23]. They

are simpler than eukaryotes: for example, do not have distinct organelles and intracellular

membranes, and are three orders of magnitude smaller in volume than a typical mammalian

cell. At the same time, bacteria present extensive complexity of life and show an extraordinary

ability to adapt to the changing environment adjusting their biology to the varying metabolic

requirements [24, 25].

E. coli is a model organism in cell biology and by far the most comprehensively charac-

terised bacterium with many details of its structural, genetic, and molecular biology relatively

well understood. This rod-shaped, Gram-negative, facultative anaerobic bacterium reproduces

asexually through binary fission to produce, in principle, two genetically identical daughter

cells from each mother cell [26]. Typically, it follows logistic growth dynamics, consisting of

the lag, exponential, stationary, and death growth phases – with the reduction in the growth

rate and the cell death occurring primarily due to nutrient depletion and toxic metabolite accu-

mulation. Its growth rate can vary widely, for example in a bulk liquid culture, the doubling

time ranges between 20 minutes and several hours, depending on the strain cultured, nutrient

composition, temperature of the medium, and degree of culture aeration [25].

The relatively well understood biology and short doubling times are some of the reasons

why we chose E. coli for this work. Other important reasons include its ease of handling,

culturing, and manipulating in laboratory conditions, relevance to clinical practice, and com-

patibility with existing image processing protocols. Moreover, the majority of the genome

and cytosol dynamics studies, including the work of A. Javer et al. – whose project directly

preceded this one and provided many of the methods applied here (refer to Section 2.6) – were

completed using E. coli as the model organism [14, 22].

Formation of colonies and multi-species communities are important aspects of bacterial

growth affecting physiology of individual bacteria and the speed of evolutionary adaptation.
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As E. coli uses horizontal gene transfer to exchange genetic material, its denser communities,

characterised by spatially inhomogeneous metabolic requirements (e.g., as in biofilms [27, 28]),

promote genetic variation and differentiated gene expression as well as provide mechanical

protection for the colony and limit the population exposure to toxins. The growth complexities

outlined above make eradication of infections more challenging. With bacterial physiology

depending heavily on growth conditions, we studied E. coli in two different conditions: as

standard microcolonies on agarose pads and as planktonic cultures in a customised microfluidic

device (refer to Section 2.3, Methods). The latter condition also provided a crucial advantage

of long (13 h) experiments, important in studying bacterial responses to antibiotics (refer to

Chapter 5).

While invaluable in the laboratory, E. coli is also important in the clinic. Although most E.

coli strains are non-pathogenic and constitute beneficial human flora, several pathotypes exist

and can cause acute and traveller’s diarrhoea [29], urinary tract infections (UTIs) [30], and

contribute to Crohn disease development [29]. While many E. coli infections are self-limiting,

some – such as the UTIs – need to be controlled with antibiotics (usually ciprofloxacin or

trimethoprim [30]), and some – such as those caused by the multi-drug resistant extended-

spectrum beta-lactamase E. coli – may require surgical interventions [31].

In light of an urgent need for improved antimicrobial diagnostics and therapeutics [32–34],

understanding bacterial behaviour and bacterial responses to treatments is one of the key objec-

tives of modern medical research. Despite many attempts to provide a more complete picture

of antibiotic effects (e.g., [35]), systems-level physiological responses such as effects on gene

regulatory networks and on the macromolecular composition of cells (e.g., the concentration

of ribosomes, protein-DNA ratio) remain largely unexplored. In this work, we study some of

such responses in E. coli by exploring effects of a variety of antibiotics on the organisation

of the genome and the cytosol, and how physical properties of those components may affect

expression of genes.

1.1.2 Levels of nucleoid organisation

In the last 40-50 years, enormous amount of evidence has emerged that the bacterial chro-

mosome has a remarkable level of spatial and temporal organization (reviewed in [36]). E.

coli bacterium stores most of its genetic code in a form of a single circular chromosome. The

chromosome consists of about 4.7 million base pairs and has a total length of approximately

1.5 mm [37]. The chromosome structure shows multiple levels of organisation starting at the

level of the DNA strands which interact with themselves, RNA, and associated proteins: first

locally – forming bends and loops, then at intermediate length scales – giving rise to numerous

supercoil domains, and then globally – forming several million base-pair long macro domains.

Plectonemic and toroidal loops The helical nature of DNA [38], its closed circular form,

and the under-wound state (fewer helical loops than expected for given DNA piece in a relaxed

state) cause the bacterial DNA to bend and form plectonemic and toroidal loops (supercoils)
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Fig. 1.1 Schematic representation of DNA supercoiling. The helical nature of DNA, its closed
circular form, and the under-wound (thermodynamically strained) state cause the DNA molecule to
bend forming plectonemic and toroidal supercoils. DNA supercoils (stabilised by active processes)
constitute the basic level of chromosomal organisation and generally allow for improved access to
genetic information stored in DNA.

(Figure 1.1) [39]. This thermodynamically strained supercoiled state (stabilised by active

processes) generally allows for improved access to genetic information stored in DNA and

constitutes the basic level of chromosomal organisation.

DNA supercoil domains Torsionally constrained chromosomal DNA forms approximately

500 supercoiling domains [40]. Consequently, the E. coli chromosome is generally a negatively

supercoiled structure, meaning its linking number – the number of times each single strand of

DNA winds around the other – is lower than in the relaxed configuration. This widespread

negative supercoiling is critical to its function: expression of hundreds of E. coli genes depends

on suitable negative supercoiling levels [40].

Chromosomal macrodomains Macrodomains govern the global organisation of the bac-

terial chromosome and were first identified as parts of the chromosome localised in specific

intracellular locations [41]. There are four macrodomains (Ori, Right, Ter, Left) which do

not interact with each other and two non-structured (NSR, NSL) regions which can inter-

act with its neighbouring macrodomains. By fluorescently tagging specific chromosomal

loci, macrodomains were shown to have lower loci motilities compared to the non-structured

regions [42]. In addtion, MatP, SeqA and SlmA proteins were demonstrated to be macrodomain-

specific [43].

Nucleoid-associated proteins Key architectural component are the nulecoid associated

proteins (NAPs) (Figure 1.2). Twelve distinct NAPs were identified in E. coli [44] and include

the major ’exponential growth phase’ NAPs (Fis, H-NS, IHF, and HU), starvation-induced

protein (Dps) which is important in the stationary phase of the population growth curve [45],
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Fig. 1.2 E. coli nucleoid and a schematic model of its organisation by the nucleoid-associated
proteins (NAPs) and RNAP. (A) An electron micrograph of a longitudinal thin section of a dividing
E.coli bacterium. The centrally located (white) nucleoid is prominent. Original magnification ×12,000;
vertical bar represents the length of 1 µm. Image is available under a Creative Commons Attribution
(Non-Commercial Share Alike License; CIL: 37254). (B) Folded chromosome is organised into
negatively supercoiled looped domains (and stabilised) by NAPs such as the exponential phase Fis and
H-NS. In addition, at fast growth, RNAP forms superstructures (transcription factories).

and also Lrp, MukB, StpA,CbpA, CbpB, EbfC, and MvaT [18, 46, 47]. These proteins not only

contribute to maintenance of the under-wound state of DNA critical for information access

but are also responsible for DNA wrapping (e.g., HU, Fis), bridging (e.g., Fis H-NS, StpA),

bending (e.g., HU, Fis, IHF), and ultimately can bring together geographically distant genes

into co-regulated clusters, and contribute to chromosomal macrodomain formation [19, 47, 46].

In addition, at fast growth, RNAP organises superstructures termed transcription factories (or

foci) where active transcription of rRNA genes occurs [48].

1.1.3 Importance of nucleoid compaction

As the E. coli DNA is several orders of magnitude longer than the cell length, it must be

organised and packaged with associated proteins and RNA into a compact structure called

the nucleoid [37, 18]. The strong compaction of nucleoid arises from a combination of forces

generated by cellular confinement, macromolecular crowders, interactions with proteins (e.g.,

NAPs and enzymes), self-adherence, DNA supercoiling, and transcription [16, 49].

Cellular confinement Packing of the chromosomal material into a small volume of a cell

produces strong forces which compact and reduce the size of the nucleoid [16]. However,

confinement occurs in the radial and not the longitudinal dimension. This is implied by

non-septating cells containing discrete nucleoid structures as well the pre-replication (’G1’)

nucleoid in normally dividing cells not extending to the end of the cells but extending into the

cell periphery in the radial direction [10].
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Macromolecular crowding The intracellular concentrations of macromolecules tend to be

much higher in bacteria than in eukaryotes. In the crowded environment of the bacterial cytosol

(refer to Section 1.5.4), proteins and larger protein-nucleic acid structures such as ribosomes

cannot diffuse freely due to significant steric hindrance. In such conditions, entropic forces

cause the chromosome material to reduce its size through depletion-attraction interactions for

other molecules to have more space and less steric constrain [20, 19, 18].

Self-adherence There is a tendency for coalescence of chromosomal material [10]. Imaging

reveals that virtually all of the chromosomal DNA is part of the nucleoid [50, 1] and also, that

during the replication and segregation processes, the newly replicated material can be observed

to protrude in elongated shapes [1]. Moreover, the relative fixed positions of chromosomal loci

and pairs of loci also imply self-adherence of the chromosome.

DNA-protein interactions The activity of type II DNA topoisomerases determines the

torsional constraint of the chromosome as explained previously. The nuceloid shape modulation

by the NAPs can add to the mechanical forces acting on the chromosome with DNA bending and

wrapping. Finally, transcription and translation processes contribute to the modulation of the

physical structure of the nucleoid – locally with multiple copies of RNA polymerase enzymes

forming transcription foci [51] and globally as a consequence of transcription-translation

coupling mechanisms [37].

Transcription In bacteria, the processes of transcription and translation are physically

linked. As RNAP transcribes DNA into messenger RNA (mRNA), the newly synthesised

mRNA molecule elongates away from the nucleoid surface into the cytoplasm where it is

simultaneously translated in by polysomes (ribosome complexes). If the synthesised protein is

transmembrane, the resultant DNA–RNAP–mRNA–polysome–protein–membrane chain exerts

an expanding ’transertion’ force on the nucleoid (Figure 1.3). Transertion can be viewed as a

highly dynamic process in which multiple membrane-DNA tethers are constantly formed and

broken modulating the overall shape and degree of compaction of the nucleoid [52, 53, 48, 17].

As part of the ’DNA-ribsome mixing’ theory, transertion is also important for ensuring

optimal use of RNAP and ribosomes. In exponentially growing cells, the expanding force of

transertion allows the 30S and 50S ribosome components to enter the nucleoid and initiate

translation and thus to contribute to the nucleoid expanding forces in a positive feedback loop

[54]. Co-transcriptional translation is thought to provide protection of nascent mRNA from

degradation by ribonucleases and to increase translation efficiency. It is also evident that under

favourable growth conditions, the majority of ribosomes form polysome complexes that do

not mix with the nucleoid material. Following translation initiation, the 70S ribosomes diffuse

out of the nucleoid into ribosome-rich regions. This dynamic picture of the DNA-ribosome

mixing model implies circulation of ribosome components and presents gene expression as
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Fig. 1.3 Schematic representation of the origins of the nucleoid-expanding ’transertion’ force. In
bacteria, transcription and translation are physically linked. The newly synthesised mRNA molecule
elongates away from the nucleoid surface and is simultaneously translated. If the synthesised protein
is transmembrane, the resultant DNA–RNAP–mRNA–polysome–protein–membrane chain exerts an
expanding ’transertion’ force (red arrow), which can be viewed as a highly dynamic process in which
multiple membrane-DNA tethers are constantly formed and broken modulating the shape and degree of
compaction of the nucleoid.

highly interlinked with the physical system of the cell [17].

In addition to those introduced above, numerous other factors such as signalling and alarmone

[55] molecules play a role in altering the local DNA topology and the levels of local DNA

physical compaction. By modulating these parameters, the cell must ensure sufficient energy

(level of negative supercoiling) is available to enable key biological processes such as DNA

replication and transcription. In this picture, the local physical properties of a bacterial

chromosomal locus reflect the nature of its nucleo-protein environment and can directly

influence its biological activity.

1.2 Gene expression in E. coli

1.2.1 Growth-rate dependent gene regulation

Regulation of E. coli genes in response to environmental clues can be achieved with transcrip-

tion factors binding directly to the DNA and thus blocking access of transcription machinery

to the promoter (reviewed in [56]). Transcription factors ’sense’ changes in the surroundings

by direct binding to ligands or protein, by covalent modification, or by changes in their in-

tracellular availability. These regulatory proteins achieve binding specificity with structural

motifs that are ’cognate’ to the DNA base sequences. Specificity can be further enhanced with

a number of mechanisms including multimerisation of the transcription factor.

In addition to regulation with transcription factors, expression of a large number of genes

can be intrinsically regulated by the global physiological state of a bacterium [25]. For E. coli,

a variety of parameters such as gene copy number and transcription rate, the macromolecular
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Fig. 1.4 Global transcription regulation enables efficient resource allocation to achieve balanced
growth in changing environment. (A) Schematic representation of how the activity of ribosomal
(left) and constitutive (right) promoters changes as a function of growth rate. As nutrient conditions
improve and the growth rate increases, the activity of ribosomal promoters is stimulated (e.g., through
the decrease in the (p)ppGpp concentration – refer to Section 1.2.1) to meet the high demand for protein
synthesis. At the same time, as cellular resources are allocated to ribosomal promoters, expression
of constitutive proteins decreases. (B) Schematic representation of the three-component proteome
partition model at translation inhibition. The simplest constraint to cellular resources includes three
protein fractions: fixed (blue; estimated at 50% for E. coli and invariant to growth-rate dependent
regulation), ribosome and ribosome-affiliated (orange), and constitutive (gray). Dose-dependent effects
of translation inhibition on both promoters operating at fixed nutrient conditions are depicted in (A) as
dashed red arrows, with the inhibitor’s dose increasing in the arrow’s direction. Translation inhibition
causes compensatory production of ribosomes at an expense of constitutive protein synthesis. Adapted
from [60].

composition of the cytosol (including protein-to-DNA ratio and the number of RNAP molecules

and ribosomes), and the total cell mass and size, were shown to depend strongly on the growth

conditions, with strong correlations between individual gene expression levels and the growth

rate rather than specific nutrient concentrations [57–59, 25]. Such global gene regulation

can have significant population effects. For example, in case of toxic (growth-limiting) gene

products, growth-rate dependent regulation can constitute a positive feedback mechanism and

even without specific regulation lead to bistability and emergence of antibiotic-tolerant sub-

populations (Section 1.3.4). Similarly, growth-promoting expression of constitutive antibiotic

resistance conferring genes can result in bistability in the presence of antibiotics [25, 24].
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Global gene regulation provides efficient and highly sophisticated mechanism of response

to, for example, stressors such as antibiotics or changes in metabolic requirements. One

key example is the regulatory action of an alarmone molecule, guanosine tetraphosphate

and pentaphosphate, collectively termed (p)ppGpp, which exerts differential gene regulation

depending on the promoter type [61–63]. The ribosome-associated RelA protein senses

amino acid scarcity by synthesising (p)ppGpp, which then interacts with RNAP but affects

transcription from only a subset of promoters. Different kinetic properties of promoters

determine differential outcomes of (p)ppGpp action: as (p)ppGpp decreases stability of the

open complex (melted, RNA-bound promoter region), it reduces transcription of intrinsically

unstable complexes [63].

Such mechanism enables efficient resource allocation to achieve balanced growth in

changing environment: if nutrient conditions improve and the growth rate increases, the

(p)ppGpp concentration will decrease, stimulating the activity of ribosomal promoters to

meet the high demand for protein synthesis. At the same time, as cellular resources such as

RNAP and transcription factors are allocated to ribosomal promoters, expression of constitutive

proteins will decrease (Figure 1.4A) [64, 60, 65, 66]. Globally regulated transcription also helps

bacteria face antibiotic-induced translation inhibition, which – similarly to improved nutrient

conditions – causes a build-up of intracellular amino acids and results in a compensatory

production of ribosomes at an expense of constitutive protein synthesis [60] (Figure 1.4B).

1.2.2 Role of the nucleo-protein environment of a genetic locus

While highly condensed, the physical organisation of the nucleoid must allow for efficient

and flexible gene expression [44, 16] as well as protein diffusion, and DNA replication

and segregation [67, 16]. Recent evidence suggests that changes to the local chromosome

organisation can directly affect the accessibility of genes and the activity of regulatory proteins

[16]. A variety of gene expression regulators capable of modulating local DNA organisation

and energy levels have been identified and include: action of specific NAPs, nature of local

DNA topology and changes to the supercoiling levels, and fluctuations in the concentration of

metabolites such as (p)ppGpp.

NAPs binding heterogeneity Most bacterial NAPs show preference for binding to curved

or AT-rich DNA regions. For example, HU, H-NS, and IHF all have higher binding affinity

to curved DNA [68] while Fis, StpA, MvaT and also H-NS and IHF bind strongly to AT-

rich regions [46]. When DNA-bound, NAPs can act as typical transcription factors, either

stabilising or inhibiting RNAP-promoter interactions [44]. In addition, NAPs can affect gene

expression by modulating local DNA supercoiling levels and changing DNA strand topology

[49]. Specific examples of NAP binding patterns and NAP-dependent regulation include:

the compacting and regulatory HU activity correlated with levels of negative superhelicity

[69] and DNA gyrase binding [69]; Fis activating activity of stable RNA promoters at low

negative supercoiling regions [70]; and formation of extended binding domains by H-NS in
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high affinity binding sites to silence transcription via plectoneme stabilisation and RNAP

trapping [71, 46, 72, 73].

Normal bacterial growth depends heavily on NAPs activity. A number of specific NAP-

coding gene null mutants showed significant changes in the cellular motility, metabolism, and

virulence [74]. Antibiotic sensitivity was also affected, with infA and fis null mutants displaying

hypersensitivity to ciprofloxacin and with the hns null mutant displaying hypersensitivity to

rifampicin, vancomycin, and other antibiotics [75]. In addition, large scale gene silencing

mediated by IHF and other global regulators, combined with the nucleoid condensation

controlled by the Dps protein is thought to underpin some of the bacterial survival ’bet-hedging’

strategies [76, 77].

DNA supercoiling The level of DNA supercoiling has a global effect on gene expression

[78, 49]. More than 300 supercoiling-sensitive genes were identified with approximately

one-third of these genes increasing their activity if the level of negative supercoiling is reduced,

while the remaining two-thirds having the opposite response [79]. TopoIV and DNA gyrase

enzymes control the level of supercoiling [80]. This is important for gene expression as the

mechanical stress carried by the supercoiled configuration can locally weaken the attraction

between the DNA strands. The resultant breaking of base-pair bonds between the two strands

is required for the transcription machinery to reach relevant gene regions in order to initiate

transcription [16]. In addition, as protein discriminate between different spacing between DNA

strands, the level of supercoiling is important for the protein-DNA interactions [46], which in

turn have an influence on the chromosome organisation and on the gene expression regulation

[81].

Small molecule metabolites Small molecule metabolites such as nucleoside triphosphates

(NTPs) [82, 83] and (p)ppGpp can affect RNAP-promoter interactions exerting global regu-

latory effects described earlier (refer to Section 1.2.1). In addition to its widespread effects

on transcription, (p)ppGpp contributes to replication, translation, and metabolism regulation

to allow stress survival; coordinates these processes to prevent conflict during stress; and

contributes to emergence of antibiotic ’tolerance’ (or ’persistence’) and resistance [84].

Among promoters strongly affected by regulatory factors introduced in this Section are those

involved in growth rate modulation, growth phase-dependent adaptation, and stress responses

to nutrient alterations and toxins (e.g., the SOS response, refer to Section 1.3.4). One of the

promoters studied in this work is the rrnBP1 (refer to Chapter 5), a well characterised ribosomal

promoter regulated by the global regulators introduced above. Conversely, in this work we

also include a constitutive P5 promoter which is not regulated and whose activity depends

on availability of gene expression machinery components such as RNAP and transcription

initiation (sigma) factors (refer to Section 1.2.1).
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1.2.3 Importance of the genomic position

Locus distance from the origin of replication is an important factor affecting expression

of a gene [6]. There are at least four reasons why occupying a specific position along the

chromosome will influence the activity of a genetic promoter.

First, at fast growth, when the doubling time is shorter than the duration of chromosome

replication, new rounds of DNA replication begin before the previous ones terminate. In cells

undertaking such ’multifork DNA replication’ [85, 26], the gene copy number is larger for

genes closer to the origin of replication, generally leading to a higher gene product yield for

these genes.

Second, DNA gyrase binding site density is higher in regions closer to the origin of

replication [78]. As gyrase plays a crucial role of relieving topological tension formed by the

transcription machinery moving down the double-stranded DNA ahead of the transcribing

RNAP [86], it can reduce high levels of positive supercoiling arising in the Ori half of the

genome during increased gene expression (in the exponential growth phase) in that part of the

chromosome [87].

Next, heterogeneous distribution of NAPs along the chromosome can contribute to the

formation of co-regulated gene clusters, as outlined earlier (refer to Section 1.2.2). Conse-

quently, the same gene, acquired via intra-/inter-genomic or horizontal gene transfer [88], may

experience, depending on its position in the genome: high expression levels making use of

existing regulatory mechanisms or low expression levels, for example being silenced in an

extended binding domain formed by H-NS.

Finally, position in the genome is important due to local effects resulting from the orien-

tation of neighbouring genes. Convergent transcription can lead to transcription interference

(TI) where the RNAP transcribing a neighbouring gene does not stop and clashes head-on

with the incoming transcription complex [89]. Depending on the promoter strengths (and

thus the number of RNAP molecules at a gene and transcription initiation frequency) of the

two convergently transcribed genes, the probability of successfully transcribing the whole

gene without interference may vary considerably [90]. Conversely, divergent transcription of

a neighbouring gene can result in increased gene expression rates due to the local negative

supercoiling build-up behind the transcription complex [91]. Interestingly, divergent gene

orientation is more common in E. coli genome that the convergent one [92, 90]. Remarkably,

presence of Fis and H-NS binding sites near the promoter region can effectively insulate

promoters from the effects from neighbouring genes [private conversation with Dr Bianca

Sclavi, ENS Cachan, Université Paris-Saclay].

Although gene expression regulation mechanisms, gene cluster formation and activity, NAPs

binding site distributions across the genome, and even some physical properties of individual

chromosomal loci were studied previously, it remains unknown whether exposure to antibiotics

can affect the physical organisation of the genome and how these effects vary for different
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genomic positions. Further, it is currently unclear whether the widespread antibiotic-induced

changes to gene expression reported previously are chromosomal position- and promoter

type-dependent.

1.3 Antibacterial treatments

1.3.1 Importance of antibiotics and the problem of resistance

Antibiotics revolutionised medicine by providing accessible, non-invasive means of combating

previously untreatable and often highly contagious infectious diseases. These agents have been

in use for more than 70 years and saved countless lives [93]. However, their use was associated

with a rapid development of resistant bacterial strains rendering many of antibiotics ineffective

[93, 94]. First cases of ineffective therapies were observed soon after the introduction of

antibiotics with resistance to important antibiotic classes reported in 1930–50s. Nowadays,

each of the major groups of antibiotics, including penicillin derivatives, tetracycline, quinolones,

and glycopeptides, confronted clinically significant organisms exhibiting resistance, with some

microbes presenting multi-drug resistance [94].

The diminishing arsenal of antibiotics available to clinicians is now a widely recognised

global problem [32–34]. Local guidelines on effective prescribing [95] and patients’ adherence

to anti-infective treatments as well as reports addressing global problems associated with the

antibiotic use in animal husbandry and agronomy [96] were publicised. In line with these

recommendations and warnings, the need for novel antimicrobial agents or more effective

delivery strategies is widely expressed [97, 98]. The most recent years have seen an encouraging

revival in antibiotic development, partly due to the Generating Antibiotic Incentives act and

the Innovative Medicines Initiative scheme, with three first-in-class antibiotics discovered in

2011, 2012, and 2017 [99] (Figure 1.5). However, given that in Europe alone 25,000 people

die every year of antibiotic resistant bacteria the need for improvement is vast [9].

It is recognised that the gaps in understanding of microbial biology and especially the

limited insight into the genetic and functional basis of resistance development fundamentally

hinder the long-awaited progress [32, 98]. It is the scientific progress in the understanding of

the biology of microbes that has a chance to propel the industrial innovation towards novel more

accessible means of antimicrobial therapies, provide policy makers with more manageable

solutions, and therefore facilitate the disease management for the prescribers and their patients.

1.3.2 Modes of action of antibiotics

Clinically successful antibiotics must show selective toxicity, meaning they must be toxic to

the pathogen and innocuous to the host. Selective toxicity relies on the ability to exploit the

differences between the pathogen and the host biochemistry. Three broad classes of reactions

can be distinguished representing potential targets for antibiotics [100]: utilisation of a carbon

source material for the production of ATP and simple precursor carbon compounds; utilisation
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Fig. 1.5 Timeline of antibiotic discovery. Schematic not-to-scale representation of when some of the
distinct classes of clinically used antibiotics were discovered. Discovery or patent dates were used and
rounded to nearest decade. Antibiotic ”discovery void” starting in 1980s is prominent. After 2010,
encouraging revival in antibiotic development has seen the discovery of three first-in-class antibiotics.
Antibiotics used in this work are shown in colour.

of those precursors in synthesis of small molecules necessary for cell growth (e.g., amino

acids, phospholipids, carbohydrates, growth factors); assembly of those small molecules

into macromolecular structures (e.g., proteins, RNA, DNA, polysaccharides, peptidoglycan).

Drugs used in this work are clinically important antibiotics that interact with with bacteria-

specific enzymes or structures to inhibit assembly of macromolecules (Figure 1.6): DNA

(ciprofloxacin; targets DNA gyrase), mRNA (rifampicin; targets RNA polymerase), protein

(tetracycline and chloramphenicol; target the ribosome), and peptidoglycan (vancomycin;

targets peptide subunits of peptidoglycan). Their pharmacology is characterised below.

Ciprofloxacin Ciprofloxacin is an example of a fluoroquinolone (a group of clinically sig-

nificant quinolones) and is active against Gram-positive and Gram-negative bacteria (broad

spectrum). It acts by inhibiting the bacterial type II topoisomerases activity. In E. coli its

primary target is DNA gyrase [101], however, it also affects the activity of topoIV [102]. By

inhibiting topoisomerases, it prevents DNA replication (and thus segregation) and transcription

[100, 103].

Rifampicin Rifampicin is classified as an antimycobacterial agent due to its prominent role

in the treatment of infections caused by mycobacteria (e.g., tuberculosis) [104]. However, it is

active against most Gram-positive and many Gram-negative bacteria. It binds to and inhibits

the activity of bacterial RNAP and thus inhibits transcription and indirectly prevents protein

synthesis [100].
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Fig. 1.6 We test effects of sub-lethal doses of antibiotics from four major antibiotic classes and
a hyperosmotic shock inducing agent, sorbitol. Tested antibiotic classes include: DNA replication
(ciprofloxacin), transcription (ciprofloxacin and rifampicin), translation (tetracycline and chlorampheni-
col), cell wall synthesis (vancomycin) inhibitors. Figure shows a schematic representation of primary
modes of action of each agent. Red arrows point to the main molecular targets. Dashed lines represent
movement of water. RNAP, RNA polymerase; mRNA, messenger RNA.

Tetracycline Tetracycline is a broad spectrum polyketide antibiotic which exerts its bacterio-

static effects primarily by binding reversibly to the 16S rRNA of the bacterial 30S ribosomal

subunit. As a result, it inhibits peptide elongation as incoming aminoacyl tRNA cannot bind to

the ribosome acceptor site [105]. Another broad spectrum antibiotic, chloramphenicol (refer

to Chapter 5) has a similar mode of action to tetracycline, however, its main binding site is in

the 23S rRNA of the 50S ribosomal subunit [106].

Vancomycin Vancomycin belongs to a group of glycopeptide antibiotics and although used

clinically to treat Gram-positive infections, at high concentrations it can exert bactericidal

effects also in Gram-negative bacteria. It acts by inhibiting the bacterial cell wall synthesis.

Specifically, it binds to D-alanyl-D-alanine moieties of the side peptides of the NAM and NAG

residues of peptidoglycan. Binding prevents the NAM-NAG strands from cross-linking [107].

As a result, the strong polymeric lattice is not formed and the cell cannot maintain its internal

osmotic pressure [100]. Notably, at concentrations used in the clinic, vancomycin does not

penetrate into the cytoplasm [108].

1.3.3 Effects of antibiotics on bacterial growth

Treatment-induced change to the bacterial growth rate constitutes the most basic and clinically

most relevant effect and it has been studied extensively since the discovery of these agents

(e.g., [109]). Effects of antibiotics are traditionally divided into bacteriostatic – when the

bacterial growth rate is inhibited, and bactericidal – when the treatment results in cell death.

In reality, assigning antibiotics to one of these two groups is not feasible as any antibiotic
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will kill bacteria if given at a high enough dose. In clinical practice, so called ’bactericidal’

drugs usually fail to kill every organism within the standard 18–24 h after the test, and most

of so called ’bacteriostatic’ agents do kill some bacteria within that period of time. The

effects on growth of individual strains are usually reported in terms of the minimal bactericidal

concentration (MBC) at which ≥ 99.9% of bacteria are killed and the minimal inhibitory

concentration (MIC) at which visible growth is inhibited. Formally, an effect against a specific

bacterial strain as measured under standardised conditions is classified as bacteriostatic when

its MBC to MIC ratio is > 4 [110].

Treatment efficacy can be largely affected by environmentally induced changes to the bac-

terial physiology, for example through biofilm structure formation [28], phenotypic switching

to ’persister’ states [111, 112] (Section 1.3.4), and responses to metabolic stimuli [113]. On

the molecular level, the nature of the drug-target interaction was recently proposed to be a

basis (in conjunction with the physiochemical properties of the drug molecule) of growth-rate

dependent efficacy of ribosome-targeting drugs. Faster growing cells were less susceptible to

bactericidal antibiotics, the opposite being true for bacteriostatic antibiotics [114].

Antibiotics used in this work are typically classified as bactericidal (with the exception of

tetracycline and chloramphenicol). However, how exactly their action results in the reduction

of growth rate or death is debated.

1. For ciprofloxacin, the net effect is the formation of DNA breaks covalently bound to

topoisomerases, whose drug-induced inhibition prevents DNA replication and transcrip-

tion leading to the cell division and protein synthesis inhibition, respectively. In addition,

given that gyrase is distributed roughly every 100 kilobases along the chromosome, the

number of resultant DNA breaks is thought to lead to substantial problems with the cell’s

ability to deal with the widespread DNA damage [103]. Erroneous protein synthesis is

also thought to play a role in quinolone killing as protein synthesis was demonstrated as

necessary for the bacteriocidal effects of several quinolones while inhibition of the SOS

response (below) significantly enhanced the killing effects.

2. For tetracycline, reversible binding to ribosomes causes inhibition of peptide elongation

and results in reduced protein production rates. As a result, bacteria remain viable,

however, their growth rate is reduced [105]. The same is true for chloramphenicol
[106]. At very high doses, secondary mechanisms may become dominant leading

to bacteriocidal effects. For example, tetracycline can alter cytoplasmic membrane

properties (lower membrane polarisation values) and cause leakage of intracellular

components [115].

3. For rifampicin, its high affinity binding to RNAP suggests that at sufficiently high drug

concentrations the cell death occurs as a result of insufficient protein synthesis. Given

the non-reversible interaction with the target, the fact that there are approximately only

5,000 RNAP actively transcribing molecules in a cell at any moment and that mRNA



1.3 Antibacterial treatments 15

molecules experience a short 5–10 min lifetime [17], even relatively low rifampicin

concentrations can prove potent and escape the compensatory RNAP production.

4. For vancomycin, the lytic and non-lytic cell death mechanisms were identified. Inter-

estingly, cell lysis is thought to occur as a result of peptidoglycan synthesis inhibition

and necessarily also as a consequence of active degradation of peptidoglacan by (in E.

coli) murein hydrolyses. The non-lytic mechanisms can also lead to cell death though

at lower rates and were demonstrated to involve the activation of the two-component

systems controlling autolysin expression [103].

In addition to growth-inhibiting and killing mechanisms outlined above, hydroxyl radical

formation was suggested as a possible common killing mechanisms of three distinct antibiotics

(a quinolone, a β -lactam, and a aminoglacoside). Hydroxyl radicals are extremely toxic and

readily damage proteins, membrane lipids, and DNA. Regardless of their molecular targets, the

drugs stimulate hydroxyl radical formation in bacteria and contribute to the killing efficiency

of these bacteriocidal drugs. It was further suggested that there is a common mechanism

of cellular death underlying all classes of bactericidal antibiotics whereby harmful hydroxyl

radicals are formed as a function of metabolism-related NADH depletion, leaching of iron

from iron-sulfur clusters, and stimulation of the Fenton reaction [116].

1.3.4 Complexity of bacterial response to antibiotics

In addition to adjustments in the growth rate, bacteria respond to antibiotics by changing their

morphology, macromolecular composition, metabolism, gene expression patterns, and even

DNA mutation rates [117]. The nature and dynamics of such responses is incredibly complex

and will depend on the antibiotic class, dose, exposure time, as well as bacterial growth phase,

rate, and environment. The fact that bacteria can use antibiotics as signalling molecules to

coordinate multicellular processes within a population, for example in antibiotic-induced

biofilm growth [118, 119], exemplifies both the complexity and elegance of such responses.

Their multi-factorial nature points toward the network- and systems-like character of responses

to antibiotics, where a number of distinct (e.g., genetic, metabolic, structural) cellular processes

interact over time to adjust global physiology in order to ultimately avoid death or even to

make use of the antibiotic.

Different facets of antibiotic effects have been studied in the past. It is known, for example,

that exposure to an antibiotic may change the expression rate of a specific gene or gene cluster

to directly compensate for the drug’s action, for example by increasing the number of target

protein to compensate for its inhibition or to synthesise machinery to repair antibiotic-induced

damage [120, 121, 35]. Also, through global changes to the physiology (e.g., effects on the

growth rate), antibiotics alter global gene expression patterns [120, 121, 35], with the total

number of genes affected varying significantly for different antibiotics [35]. Further, some

antibiotics affect macromolecular composition, including protein-to-DNA ratio [122], and

the RNAP [64] and ribosome concentrations [60], among other, while some were reported
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to change concentrations of second messengers (e.g., [119]) and (p)ppGpp [61], further

contributing to widespread gene expression changes.

Despite attempts to provide a more holistic picture of antibiotic effects, systems-level

physiological responses such as effects on gene regulatory networks and on the macromolec-

ular composition of cells remain largely unexplored, especially on the quantitative level. It

is believed that combined theoretical and experimental efforts are necessary to more fully

understand bacterial responses to antibiotics (and their combinations), and to ultimately devise

more effective antibacterial treatments [117].

In addition to various changes in physiology, bacteria have evolved efficient damage-

mitigating mechanisms. For example, the SOS response is a global DNA-repair response

in which RecA protein is activated by DNA damage and promotes auto-cleavage of the

LexA repressor protein, inducing expression of SOS-response genes, for example, ’bypass’

DNA polymerases (e.g., Pol II) capable of replicating across lesions [123]. Ciprofloxacin

activates the SOS response as explained earlier, while rifampicin – due to its irreversible

transcription inhibition – can effectively shut it [116]. Vancomycin – in contrary to other cell

wall synthesis inhibiting antibitoics such as β -lactams – does not induce the SOS response

[124]. Interestingly, the response not only contributes to the normal cell functioning following

an episode of DNA damage-inducing stress, it also increases DNA mutation rates providing

greater genetic variability, necessary for rapid resistance acquisition [123].

In addition to the relatively quick (minutes–hours) types of responses to antibiotics, bacteria

show an extraordinary ability to adapt to even the most hostile conditions by acquiring and

inheriting resistance-conferring genes over generations [125]. Molecular mechanisms of

resistance include those which minimise intracellular concentration of antibiotic (through

either reduced outer membrane penetration or efflux), modify antibiotic target (through either

genetic mutation in target-encoding gene or post-translational modification of the target

protein), and inactivate the antibiotic (through either its hydrolysis or chemical modification).

In addition to acquired resistance, bacteria may show intrinsic resistance to specific antibiotics,

for example Gram-negative species show high intrinsic resistance to many compounds due

to an inability of these agents to cross the outer membrane (absent in Gram-positive species)

[126]. Despite the relatively well characterised biochemistry of antibiotic resistance, current

understanding of how resistance spreads across populations and time is limited. Defining and

quantifying the determinants of the evolutionary dynamics of resistance to individual drugs

and their combinations is necessary to predict resistance spreading patterns and represents one

of the more challenging and urgent research questions of our time [127, 125].

Besides the vast challenges presented by antibiotic resistance, antibiotic ’tolerance’ (or

’persistence’) to treatments remains at least an equally important and clinically relevant but,

until recently, somewhat neglected problem [128, 129]. ’Tolerant’ bacteria have the ability

(inherited or not) to survive transient exposure to high concentrations of an antibiotic, often

achieved not by genetically-encoded molecular mechanisms (as in resistance) but by slowing

down an essential cellular process (and the growth rate) [111]. While tolerance is thought to
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cause the relapse of many bacterial infections [130], current understanding of the origins of

tolerant bacteria, how ’tolerance’ interlinks with the emergence of resistance [128, 131, 132],

and our ability to study this phenomenon (only <1% of bacteria switch to the ’tolerant’ state)

remain limited [129, 132].

1.4 Importance of quantitative investigation at single-cell level

1.4.1 Phenotypic heterogeneity of bacterial populations

Studying bacteria is associated with an inherent challenge of high intra-population hetero-

geneity, displayed even by isogenic populations investigated under controlled environmental

conditions [133]. Making use of recently developed automated microscopy technologies

combined with established bioengineering techniques and computational methods of analysis,

it has recently become possible to observe the phenotypes of individual cells and investigate

the genetic and environmental basis of these differences. It was demonstrated that the gene

expression of individual bacteria as measured for clonal populations presents significant varia-

tion with both the stochasticity in the gene expression processes and fluctuations in the cellular

components contributing to the overall phenotypic variation. As a result, population-averaged

measurements may lead to the loss of potentially important aspects of cell biology [133].

There are at least two – not mutually exclusive – beneficial population-level consequences

of phenotypic heterogeneity. First, from a survival point of view, phenotypic differences

between the members of a population are beneficial due to the ’bet-hedging’ strategy. That

is, a heterogeneous bacterial population is more likely to survive unfavourable environmental

conditions compared to a homogeneous one as there is a greater probability that some of its

members will not be – by chance – affected by the harmful stimulus. A special type of such

survival technique is presented by ’persisters’ (refer to Section 1.3.4. Second, from a functional

point of view, phenotypic differences can contribute to new population functionalities [134].

In some cases, genetically identical bacteria can complement each other by specialising in

distinct metabolic capabilities or collectively display pathogenicity as a result of the division

of labour between members of the population [135].

It follows that the nature of the response of individual bacterial cells to treatment, including

acquisition of resistance-conferring genes and the degree of their expression may all vary

significantly. Consequently, to gain a more complete understanding of the population response

to antibiotics exposure, measurements resolved at the single-cell level are necessary to account

for the inter-cellular variability [133].

1.4.2 The challenge of high-throughput imaging of live bacteria

Recent advancements in time-lapse microscopy combined with established biotechnology

techniques have led to the development of quantitative fluorescence time-lapse microscopy.

Tested strains are engineered to emit fluorescent signals in order to report on specific cellular
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events, structure morphologies and locations, and gene expression levels. Fluorescent proteins

(FPs) are either directly fused or co-expressed with the proteins of interest [136]. FPs offer

advantages over traditional fluorescent staining [137]: high molecular specificity (via direct

fusion proteins), high spatial resolution (allowing single-cell and intra-cell imaging), and tem-

poral sampling over long time-scales in live cells. In addition, FPs show practical advantages

of their relative stability, pH insensitivity, and low cytotoxicity levels. Genetic modifications of

FPs can alter their spectral properties, stability, and folding time, among other [138]. Flexibility

of FP-encoding gene insertion allows to report on a large range of molecule levels and process

rates, while the possibility to use multiple reporters in a single-cell, allows to monitor and

quantify several events in overlapping spatial and temporal dimensions [139, 136]. Emitted

fluorescent signals are detected and recorded with an automated fluorescence microscope,

typically equipped with a computer-controlled autofocus, stage, and high-sensitivity camera.

Combined with automated image acquisition and processing, the technique enables a high-

throughput analysis, where fluorescence levels from multiple cells (or multiple intracellular

structures from each cell) and multiple fields of view are collected over virtually undefined

time-scales (hours–days). Cell lineages can be established for multiple generations providing,

for example, information on the nature and rates of phenotypic trait spread within a population.

While several processing software packages are available, the processing algorithms can often

be customised to the species and experimental settings of interest [140, 136].

In order to study bacterial behaviour with single-cell level microscopy techniques, bacteria

need to be cultured in two dimensional microcolonies on the focal plane of the microscope.

This can be achieved either by growing bacteria on a solid pad, where bacteria grow in two

dimensions for several hours before they start buckling up and grow out of the focal plane, or

in a customised microfluidic device where bacteria grow immobilised in micro-channels. Use

of microfluidic device allows for an exquisite control of the environment, including the spatial

dimensions available for growth, extent of intercellular communication, nutrient availability,

and flow rates. In addition, control of the growth environment provides a possibility of precise

cell stimulation across spatial and temporal dimensions. Moreover, immobilising cells in

suitably sized microchannels allows for tracking of intracellular structure movement. Finally,

stable growth conditions in the device allow for long (over several hounded hours, if needed)

measurements [141].

One of the challenges associated with fluorescence imaging of live cells is autofluorescence.

Most viable cells exhibit some levels of inherent fluorescence originating from endogenous

molecules such as aromatic amino acids, NAD(P)H, flavins, and lipofuscins. Autofluores-

cence can increase the apparent signal intensity and decrease the signal-to-noise (SNR) ratio,

decreasing the sensitivity of fluorescence microscopic imaging by interfering with or even

precluding the detection of low-level specific fluorescence [142]. Consequently, use of media

of minimal fluorescence profiles is advised to ensure minimal background signal. In addition,

fluorophores photo-bleach when exposed to light. As a result, samples exposed to different

intensity illumination levels or for different imaging times may show varied SNRs or, in case
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of biological samples, show differences in physiology due to the detrimental effects of high

intensity light on cell viability [143].

1.5 Dynamics of the genome and cytosol

1.5.1 Global nucleoid-wide dynamics

The nucleoid experiences dynamic motions at short (main focus of this work; refer to Section

1.5.2, below) and long time-scales, with the latter displaying two distinct types of dynamics [1].

Firstly, throughout the cell cycle total nucleoid density fluctuates along its length with a 1–2

min periodicity. Roughly 5% of nucleoid material displaces every 5 s. Secondly, the length

of the nucleoid changes discontinuously in a cyclic pattern with a 5 min period of nucleoid

shortening followed by a 20 min period of elongation. This is contrary to cell length elongation

which is monotonic throughout the cell cycle. The nucleoid elongation rate increases for 10

min reaching a maximum and then starts to decline, ultimately turning negative during the

shortening phase. The periodicity implies existence of mechanical stress cycles as the kinetics

is consistent with visco-elastic stress accumulation, release, and dissipation [10].

This global dynamic behaviour is implicated in chromosome segregation. As described

previously, DNA replication and segregation occur simultaneously in bacteria. However,

splitting of individual replicated loci occurs with delays, with most loci transiting from

one spot to two separate spots about 7–10 min after passage of the replication fork [144].

Insights into the loci splitting dynamics do not explain, however, how bacteria segregate

entire chromosome with no need for spindle-like structures used by eukaryotes. The exact

mechanisms are not known, however, all proposed models involve removal of inter-segment

tethers along or between sisters that contribute to the increase of nucleoid ’fluidity’ [10, 145].

This fluidity makes the local motions possible allowing for co-translational transcription,

movement of the transcribed regions to the nulecoid periphery, as well as the local dynamics

of DNA replication and segregation.

1.5.2 Short time-scale chromosomal dynamics

Tracking intra-cellular movement of biological molecules has been performed in prokaryotes

[146] and eukaryotes [147]. Only recently however this approach has been applied to study

local physical properties of the chromosome [14, 22, 42, 21, 13]. High-frequency dynamics

(fluctuations) of chromosomal loci can be followed with high time-resolution microscopy

[14, 42, 21], while recent developments in automation enable long (several hours) time-lapse

microscopy imaging.

At time-scales over a minute, chromosomal movement is dominated by segregation, show-

ing up as directed (ballistic) motion [42, 67]. However, on time-scales much shorter than this,

displacements are interpreted as fluctuations in a complex environment; in physical systems

this is commonly referred to as “microrheology” [148, 149]. The properties of a medium
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Fig. 1.7 Single-cell level investigation of fluorescent intracellular marker dynamics. (A) Example
phase contrast image of live E. coli cells (black) with fluorescently-tagged chromosomal loci (green).
High-frequency dynamics (fluctuations) of chromosomal (and cytosolic) loci is followed with high time-
resolution microscopy. On short time-scales (<1 min), displacements are interpreted as fluctuations
in a complex environment; in physical systems this is commonly referred to as “microrheology”. (B)
The properties of a medium are measured by tracking and quantifying the mean square displacement
(MSD) of a tracer travelling through the medium. MSD scales as τα with the amplitude proportional
to driving forces and inversely proportional to the viscoelastic resistance of the surrounding medium.
Chromosomal Ori2 and Ter3 loci explore space slower (α≃0.4) than the cytosolic µNS aggregates
(α≃0.6).

are measured by tracking and quantifying the mean square displacement (MSD) of a tracer

travelling through the medium.

The MSD is defined as:

MSD(τ) = ⟨(x(t + τ)−x(τ))2⟩, (1.1)

where x is the position of a particle at a given time, t is the initial time of observation, and τ

is the observation time scale (lag time) [150]. The average in Eq. 1.1 can be either a ‘time

average’ of the initial times t for a single locus track, or an ‘ensemble average’ of multiple

tracks at the fixed initial time t, or both, as used in this work. In complex viscoelastic fluids,

such as the bacterial nucleoid and cytosol, random motion is subdiffusive, with the MSD

scaling as τα with the exponent 0 < α < 1 (for diffusion, α = 1) [21] with the amplitude

proportional to driving forces and inversely proportional to the viscoelastic resistance of the

surrounding medium [151] (Figure 1.7).

By measuring MSD of chromosomal loci at short (< 100 s) time-scales, Weber et al. [21]

revealed that the ‘jiggling’ motion of chromosomal loci is subdiffusive with the power law

exponent α≃0.4, as well as superthermal, meaning it is characterised by much stronger temper-

ature dependence than predicted by the Stokes-Einstein relation [13, 151]. The latter suggested

a significant contribution from active (ATP-dependent) processes resulting in motion by active

diffusion, potentially capable of speeding up diffusion-limited reactions [13]. Supporting
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these observations, Javer et al. [22] reported that a small fraction (typically 2-5%) of tracked

chromosomal loci display super-diffusive dynamics and seemingly directed, near-ballistic

trajectories again pointing to the presence of non-trivial active or stress-release contributions to

chromosomal motion. The amplitude of this motion varies as a function of the chromosomal

coordinate, with regions located closer to the origin of replication (Ori macrodomain)lam

showing MSD up to 4-fold larger compared to regions near the terminus of replication (Ter

macrodomain) [14]. The latter is likely due to MatP-mediated condensation [43] and possible

tethering of the Ter region at certain stages of the cell cycle [152]. Previous work suggested an

Ori-Ter gradient in supercoiling, which corresponds to the uneven distribution of DNA gyrase

and HU sites [7] and is likely to also contribute to these differences. Functionally, varying local

dynamics of the genetic loci can potentially contribute to differential expression of groups of

genes as indicated by higher expression of genes (during the exponential phase of growth)

belonging to the Ori-proximal region compared to the more distal regions.

1.5.3 Effects of antibiotics on genome organisation and dynamics

In this work, we contribute to the much needed improved understanding of systems-level

bacterial responses to antibiotics, introduced earlier. Specifically, we study localisation and

fluctuation dynamics of fluorescently-tagged chromosomal loci (and cytosolic markers; refer to

Section 1.5.4) under sub-lethal antibiotic treatments. This way, we report on antibiotic-induced

changes to genome organisation and cytosol properties (Chapters 3 and 4) and attempt to link

those to gene expression responses (Chapter 5). These are very important and novel insights as

to date, only few studies investigated effects of antibiotics on the chromosomal organisation

and dynamics. In addition, with antibiotic concentrations several times larger than the predicted

MICs and short drug exposure times (≤ 30 min), these studies provided limited understanding

of such biophysical responses to antibiotics. We summarise these finds below.

Weber et al. reported no change in loci dynamics upon treatment with mecillinam

(penicillin-binding protein 2 inhibitor) suggesting that effects of inhibition of the motion

of MreB do not penetrate into the nucleoid. Rifampicin excreted non-monotonic effects on loci

motility. After 1 min of treatment, motility decreased slightly but significantly and consistently.

After longer treatment times (up to 30 min), motility increased, plateauing to approximately

two-fold greater magnitude. Rifampicin was suggested to have opposing effects on different

timescales. Inhibited RNA polymerase activity results in decreased locus motion and remains

low during the lifetime of RNA molecules. At longer times, the cellular pool of mRNA decays

and contributes to the decrease in the effective viscosity of the cytoplasm, which may result in

faster loci motion.

Cabrera et al. observed RNA polymerase form ”transcription foci” which disappear fol-

lowing treatment with rifampicin. They used their findings to develop a descriptive model of

transcription-dependent nucleoid condensation in line with the trasertion theory. They con-

cluded the process of transcription contributes to nucleoid compaction through the formation
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of RNA polymerase foci in the nucleoid’s periphery in actively growing cells [53]. Authors

proposed that through RNA polymerase inhibition rifampicin can relax the nucleoid as a direct

result of RNA polymerase foci dissociation. This effect was assigned to RNA polymerase

activity inhibition as the nucloids of rifampicin-resistant mutant cells did not expand follow-

ing treatment. Conversely, by inhibiting translation (but not transcription), chloramphenicol

can reduce the nucleoid-expanding transertion force and consequently compact the nucloid.

Moreover, by subjecting cells to rifampicin and chloramphenicol treatments sequentially,

they observed that active transcription is necessary for the chlormaphenicol-induced nucleoid

compaction [48, 11].

Bakshi et al. added to those findings by proposing the DNA-ribosome mixing model

(refer to Section 1.3.3) [12]. Effects of rifampicin and choramphenicol on global nuceloid

organisation were explained with ribosomal subunits movements between the non-mixing

nucloid and polysome structures and without the need to refer to nucleoid-condensing effects

of the RNA polymerase foci. At short (0–5 min) timescales, both drugs contract the nucleoid

in both length and width by interfering with the expanding force of transertion. At longer

(5–20 min) timescales, rifampicin-induced RNA polymerase inhibition results in the mRNA

pool depletion and the subsequent polysome structure and 70S ribosome dissociation into 30S

and 50S subunits. Free ribosomal subunits mix with the nucleoid contributing to its expansion.

Conversely, chloramphenicol-induced translation inhibition leads to further association of ribo-

somal subunits into 70S ribosomes and polysome structures resulting in even stronger nucleoid

compaction. It worth noticing that the non-monotonic global-scale effects of rifampicin are in

agreement with the findings of Weber et al. on chromosomal loci motility discussed earlier

[13].

1.5.4 Cytoplasm composition and cytosol dynamics

The interior of a typical E. coli cell (0.5–2 µm3 in volume, depending on growth conditions) is

filled with the cytosol, which constitutes water (∼70% of the total cell mass), crowded with

a variety of macromolecules (which occupy 15-20% of the total cytoplasmic space) such as

protein (∼55% of the total dry mass) and ribosomal RNA (rRNA; ∼15% of the total dry mass),

among other [153]. Even though the highly compacted nucleoid spans across ∼75% of the

cytoplasmic space [1], it accounts for only ∼3% of the total dry mass (at fast growth), with

other nucleic acids such as mRNA and tRNA accounting for ∼1% and ∼3% of the total dry

mass, respectively [153]. All these components, excluding the nucleoid, comprise the bacterial

cytoplasm. In addition to cytoplasm, Gram-negative bacteria such as E. coli possess periplasm,

which fills the space between the outer and inner cell membranes (30 nm apart along the long

cell axis) and can be as crowded as the cytoplasm [154].

Remarkably, at a macromolecular volume fraction (volume occupied by macromolecules

relative to the total volume of the cytoplasm) of 0.2 (average value reported for E. coli), homoge-

neously distributed particles of 5 nm in diameter would experience an average intra-particulate
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distance of only <2 nm. Consequently, cytoplasmic (and periplasmic) macromolecules produce

high levels of ’excluded volume’ (volume inaccessible for tracer molecules in the presence of

crowders), causing significant steric hindrance and reduced ability to move for intracellular

particles [153]. Despite such incredibly crowded cellular environment, processes such as

DNA replication and transcription depend on a highly crowded cytoplasm as indicated by the

inability to complete (or much lower rates of these processes) in vitro, without the presence of

synthetic crowders at high concentrations [155].

Given the apparent importance of crowding, bacterial cells are thought to actively maintain

a constant range of macromolecule density (and thus a crowding level), presumably to ensure

optimal reaction rates. Several osmosensing mechanisms [156] and ’homeocrowding’ models

[153] have been proposed. Such regulation is important for an enteric bacterium such as E.

coli, which regularly experiences changes in its osmotic environment, for example at entry

and exit from the intestine. Bacterial functioning is typically not affected by small changes

to environment osmolarity, however, exposure to a severe osmotic upshift (hyperosmotic

shock) can disturb E. coli cell function and lead to growth inhibition or even arrest [157]. At

such conditions, water is rapidly removed from the cell causing instantaneous cell shrinkage,

reduction in cytoplasmic volume (up to ∼50%), and plasmolysis (contraction of the protoplast)

[158].

Similarily to chromosomal loci, tracer objects in the cytosol also display subdiffusive

motions (Figure 1.7), with non-trivial size dependence [15]. In a recent study, genetically

encoded size-calibrated cytosolic µNS-GFP aggregates foreign to E. coli showed, similarly

to chromosomal loci, metabolism-dependent motion. The size of cytosolic aggregates ac-

centuated the effects of metabolism, with the difference in the MSD between metabolically

active and inactive cells increasing with aggregate size [15]. The same study, and to date

the only one, considered use of an antibiotic, rifampicin, in context of the cytosol dynamics.

A relatively high dose was used to switch off transcription and caused a small reduction of

cytosolic µNS-GFP aggregates motility. The study measured MSD for long (minutes-hours)

lag times [15]. In another study, hyper-osmotic shock conditions of >0.3 osmol caused a

decrease in the cytosol dynamics (quantified as change in the diffusion coefficient of GFP).

The change was proportional to the magnitude of the osmotic upshift [159].

Despite the well characterised structures and functions of the E. coli nucleoid and cytoplasm,

the exact nature of the physical interplay between the two and how they affect their biological

functions remain subjects of study and debate [18–20]. It is thus currently an open question

whether one or other of the chromosome or the crowded cytosol (or both jointly) is causing the

complex dynamics observed in the other. Consequently, in order to fully characterise genome

dynamics and provide improved systems-level understanding of responses to antibiotics, it is

necessary to measure both motions.
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Materials and Methods

2.1 Strains

We used two E. coli MG1655 strains with the GFP-ParB/parS fluorescent labelling system

(provided by Dr Olivier Espéli and Dr Frédéric Boccard [81]) to investigate chromosomal

dynamics. Each of these strains has a P1 parS site inserted at either Ori2 or Ter3 positions

on the chromosome (3,928,826 and 1,341,067 chromosomal coordinates, respectively). Loci

have names assigned according to the MD they belong to. Expression of the ParB-GFP

fusion protein is driven by the pALA2705 plasmid. No isopropyl β -D-1-thiogalactopyranoside

(IPTG) induction was required to produce the ParB-GFP levels necessary to visualize and track

loci.

We used the E. coli CJW4617 strain (provided by Christine Jacobs-Wagner’s laboratory) of

a MG1655 background capable of expressing µNS-GFP fusion protein to investigate cytosolic

dynamics. The avian reovirus protein µNS is a self-assembling protein [160] and its C-terminal

fragment can form globular cytoplasmic particles, even when fused to GFP [161]. µNS-GFP

synthesis is under control of the chromosomal IPTG-inducible promoter lac. In this strain, the

lactose/IPTG permease-encoding, lacY gene is deleted from the lac operon. Crucially, µNS-

GFP aggregates are unlikely to make specific interactions with components of the bacterial

cytoplasm, given the evolutionary divergence between bacteria and the avian reovirus. We

induced the synthesis of the aggregates with 1 mM IPTG for 3.5-4 h, centrifuged the pre-culture

at 4,000 rpm for 10 min, and stopped induction by washing the pellet with the growth medium

(refer to Section 2.2) directly before experiments. Induction of GFP-µNS synthesis usually

resulted in a single fluorescent focus per cell.

In gene expression experiments, we used E. coli BW25113 strains where the GFP pro-

duction was under control of either the ribosomal rrnBP1 or the constitutive P5 promoter

inserted in either Ori or Ter region of the genome (strains provided by Dr Bianca Sclavi).

The promoter-gfp KanR cassette construct fragment was amplified by PCR from the pDoc-K

plasmid [162] and inserted at either Ori3 or Ter3 positions (4,413,930 and 1,395,689 chromo-

somal coordinates, respectively) using λ Red recombination [163]. The insertion positions
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were chosen to correspond to the positions of ParS sites in the work by Espeli et al. [42].

Ter3 position corresponds directly, while Ori3 was chosen as the closest possible position to

Ori2. All inserts were within intragenic regions, as defined by the gene positions in the Ecocyc

Genome browser [164].

2.2 Culture conditions

All chemical reagents were obtained from Sigma-Aldrich unless otherwise stated. For all

microscopy experiments, we used the ”minimal medium” consisting of M9 minimal salts (BD)

supplemented with complementary salts (CS; MgSO4 2 mM, CaCl2 100 µM, tryptophan 4

µg/mL, and thymidine 5 µg/mL), 0.4% glucose (Glu), and 0.5% casamino acids (CAAs; BD).

Experiments testing chloramphenicol did not use CAAs (refer to Chapter 5). Strains were

stored at -80°C in lysogeny broth (LB) + 25% glycerol stocks and were streaked on LB plates

(containing relevant antibiotic for selection: ampicillin 100 µg/mL and chloramphenicol 25

µg/mL, or kanamycin 50 µg/mL). From each plate, bacteria from 3-4 distinct colonies were

selected to inoculate medium and strains were grown overnight at 37°C in LB (with ampicillin

100 µg/mL; for dynamics experiments) or the minimal medium (with kanamycin 50 µg/mL;

for gene expression experiments) with shaking at 200 rpm at a 45° angle. Overnight cultures

were diluted 200:1 into 2 mL of fresh minimal medium (with no antibiotic) and grown at either

30°C (dynamics experiments) or 37°C (gene expression experiments) to the optical density at a

600 nm wavelength (OD600) of 0.2-0.3 (early exponential growth phase) and transferred either

onto agarose pads or loaded into the microfluidic device for image acquisition. Doubling times

in bulk (at 37°C in the minimal medium with CAAs) were 65 min, Ori2 and Ter3 MG1655;

80 min, CJW4617; 68 min, BW25113 P1-Ori; 65 min, BW25113 P1-Ter; 72 min, BW25113

P1-Ori; and 68 min, BW25113 P5-Ter.

2.3 Sample preparation for microscopy experiments

Agarose pads contained 1.5% w/v agarose dissolved in the minimal medium and (if required)

a fixed concentration of an antibiotic. Pads were approximately 8 mm in diameter and 0.5

mm in thickness. 2.5 µL of the pre-culture were deposited on a pad under aseptic conditions.

The pad was then sealed between a cover slip and a glass slide with a stack of 3 frame seals

(Fisher Scientific) to ensure access to excess of oxygen (Figure 2.1). Under the microscope,

the sample was maintained at 30°C during image acquisition for 2 hours, waiting for 20 min

before acquiring the first image.

Microfluidic polydimethylsiloxane (PDMS) device (provided by Prof. Kevin Dorfman) con-

sisted of two main channels supplying fresh medium to and removing waste from submicron-

sized channels capable of immobilising bacteria while allowing for balanced exponential

growth (Figure 2.1). Device was plasma-cleaned and bonded to a previously sonicated (10

min in acetone and 10 min in isopropanol) and plasma-cleaned cover slip. Bonded device was
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Fig. 2.1 Experimental set-ups used at microscopy experiments. (A) Agarose pads (yellow) are
sealed between a cover slip and a glass slide with spacers (blue) and sit on a heating block (gray) for
temperature control. (B) Customised microfluidic device consists of (a) 2 main channels supplying
and removing media from perpendicularly positioned micro-channels (schematic, not-to-scale repre-
sentation); (b) media is supplied and removed via tubing while device sits under the microscope; (c)
micro-channels are tapered on one end for improved bacteria loading; and (d) fluorescent markers inside
live bacteria loaded into the micro-channels are shown.

passivated for at least 1 h with a 2 mg/mL bovine serum albumin (BSA) solution at 30°C and

then manually loaded (using a syringe connected to device with a tube) with the pre-culture

to ensure suitable loading of bacteria (assessed visually under the microscope). The minimal

medium containing 0.1 mg/mL BSA was supplied at 4 µL/min using an automated syringe

pump (KD Scientific) throughout the experiment. Bacteria were allowed to equilibrate and

populate channels for 6 h prior to a media switch (if required) to introduce antibiotic. Image

acquisition started 5 h after loading (1 h before the switch). The time of medium arrival at the

microfludic device varied by ± 8 min (as measured 6 times for fluorescein-containing medium,

arriving at microfluidic devices loaded with bacteria).

For temperature control, we used a custom built proportional–integral–derivative (PID)

temperature controller with two output channels, developed by Dr Jurij Kotar. One channel

is used for heating a microscope objective with a heating collar, the other channel is used for
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heating either a Fluorine doped Tin Oxide (FTO) glass plate or an aluminium chamber. A

sample sits either on the glass plate (agarose pad experiments) or in the chamber (microfluidic

experiments). Temperature is measured with K-type thermocouples.

2.4 Determining sub-lethal antibiotic concentrations

In all experiments, we treated bacteria with antibiotic concentrations capable of affecting

significantly the cellular physiology but allowing for normal growth. For agarose experiments

(loci tracking), the minimal inhibitory concentration (MIC) range for each antibiotic was

determined for each of the three strains (MG1655 Ori2, MG1655 Ter3, and CJW4617 µNS)

using a standard agar dilution MIC determinaton method [165]. Determined MIC ranges did

not differ between different strains. Tested sublethal concentrations were ∼75% of the MIC

(Table 2.1). Sorbitol was tested at a 400 mM concentration, capable of inducing a hyperosmotic

shock in E. coli as reported previously [157]. As agarose pads can absorb liquid, it is possible

that dissolved antibiotic was diluted after loading the pad with pre-culture. Volume of an

agarose pad was about 25 µL and loaded pre-culture volume was 2.5 µL, resulting in a 10%

decrease in the antibiotic concentration. However, smaller dilution is likely as some of the

loaded pre-culture evaporated rather then was absorbed into the pad.

For loci tracking experiments in the microfluidic device, dose-response curves were

constructed using a FLUOstar OMEGA 96-well plate reader (BMG Labtech) growing bacteria

at 30°C after diluting overnight cultures 200:1 into 300 µL of minimal medium containing

a range of antibiotic concentrations, and measuring the OD600 every 30 min for 12 h with

shaking at 200 rpm. Slopes of the linear parts of the growth curves from at least 4 biological

replicates were calculated and the means used to construct the dose-response curves (Figure

2.2), fitted with Equation 2.1:

g(c) =
g0

1+ c
IC50

, (2.1)

where g is growth rate, g0 is the growth rate without antibiotic, c is antibiotic concentration,

and IC50 is the fitted IC50 concentration, selected for experiments (Table 2.1). For gene

expression experiments, a separate dose-response curve for tetracycline for the P5-Ori strain

was constructed (method as above, with growth at 37°C) and the determined IC50 concentration

of 0.4 µg/mL (0.9 µM) and its ten-fold dilution, 0.04 µg/mL (0.09 µM; approximately IC8),

were used as the ”high” and ’low” tetracycline doses, respectively (refer to Chapter 5). Different

strains showed a small variability (within one order of magnitude) in the determined IC50

concentrations. Chloramphenicol was tested at a 4 µg/mL (12 µM) concentration, one of

the concentrations used by Scott et al. [60], who measured ribosomal genes activity under

chloramphenicol (through determination of the RNA concentration in treated bulk cultures)

and proposed the three component proteome allocation model we refer to in this work.
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Table 2.1 Antibiotic concentrations used at loci tracking experiments. For agarose pad experiments,
the MIC range for each antibiotic was determined for each of the three strains (MIC ranges did not differ
between different strains). Tested sublethal concentrations were ∼75% of the MIC. For the microfluidic
device experiments, dose-response curves were constructed (Figure 2.2) and fitted IC50 concentrations
were selected for experiments.

2.5 Image acquisition and processing

2.5.1 Equipment specifications

We used a Nikon Eclipse TiE inverted microscope with a 60× oil immersion objective (NA

1.45). Images were further magnified with a 2.5× TV adapter before detection on an Andor

iXon EM-CCD camera, capable of detecting single fluorophores and yielding a high signal-to-

noise ratio to enable high marker localisation precision. Blue LED with a 470 nm peak and 20

nm spectral width was used to excite the GFP using a Semrock LED-FI filter with the exciter

474 nm (25 nm spectral width), dichroic 495 nm, and emitter 515 nm (25 nm spectral width)

bands. Focus during image acquisition was maintained with the Nikon perfect focus hardware

autofocus system (PFS).

2.5.2 Image acquisition

For marker tracking, manually selected fields of view (21 at agarose pad experiments and

up to 50 at microfluidics experiments) were scanned, each field of view containing about 30

fluorescent markers. 45 s movies were acquired at a 9.6 frame-per-second frame rate with
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Fig. 2.2 Dose-response curves used for the IC50 concentrations determination. Slopes of the
linear parts of the growth curves obtained at varying concentrations of antibiotics were calculated
and the means were used to construct the dose-response curves. After fitting with Equation 2.1, IC50

concentrations (dashed vertical lines) were selected for microfluidic device experiments (Table 2.1).
For loci tracking experiments, Ori2 (blue), Ter3 (green), and µNS (black) strains were tested, while
for gene expression experiments, the IC50 concentration of tetracycline was determined for the P5-Ori
strain (orange).

an exposure time of 104 ms. In addition to the movie acquired in the fluoresence mode, a

phase contrast image, and a dark frame (acquired immediately before the fluorescent image

acquisition using identical settings but no illumination) of each field of view were acquired

at every scan. During agarose pad experiments, each field of view was scanned 6 times, 20

min apart (total scanning time 2 h), while at microfluidic experiments each field of view was

scanned 7 times, 1 h apart (total scanning time 7 h).

For gene expression level measurements, up to 50 fields of view across whole microfluidic

device were manually selected, each field of view containing at least several microchannels

loaded with at least one cell. A fluorescence, bright field, and dark frames of each field of

view were acquired. After all images at a given measurement time point were collected, the

automated stage was idle until the next 5 min mark. Device was scanned 156 times every 5

minutes (total scanning time 13 h). Scanning of individual fields of view and sequential image

acquisition were automated with customised software developed by Dr Jurij Kotar. During

each experiment, this program stored the positions of manually selected fields of view and sent
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appropriate instructions to the microscope stage, camera, heating controller, and illumination

system to ensure automated and uninterrupted image acquisition and storage.

2.6 Image processing and data analysis

First, the dark frame was subtracted from all other images. For marker dynamics analysis,

image processing methods, tracking analysis, image feature extraction, and MSD fitting

algorithms were identical to those previously reported by Javer et al. [14]. For gene expression

analysis, cell segmentation and feature extraction algorithms were developed by Mia Panlilio

(University of Cambridge). All image processing and data analysis including plotting the data

were accomplished with custom-written programs using in-built and open-source functions

of MATLABr software, with occasional use of Python programming language. In addition,

ImageJ, IrfanView, and Inkscape programmes, and Microsoft Officer package were also used.

2.7 Semi-manual cell size analysis

In addition to using the automated cell segmentation programme, we performed semi-manual

measurements of cell lengths (and widths, in specific cases). The length of the long (and short

in several conditions to obtain cell width) axis of individual bacteria was measured manually

using in-built MATLAB® image display and coordinate marking functions (Figure 2.3). We

worked with three different imaging modes (phase contrast, fluorescence, and bright field)

and two growth conditions (agarose pads and microfluidic device) (Figure 2.3). In each case,

cell length was calculated by determining the distance between two furthest points on the

bacterium edge (marked on images in Figure 2.3C). The P1 and P5 E. coli strains showed a

halo of diffracted fluorescent light around cell boundaries (fluorescence images in Figure 2.3B

and C). Consequently, for these strains, furthest points on the edges of the brightest (central)

region of the cell were selected. For highest accuracy, all semi-manual measurements were

performed by the same person and identical criteria were applied to determine cell boundaries

for all measured cells across all treatment conditions.

Semi-manual cell size analysis of phase contrast images was further corroborated with the

SuperSegger program designed for automated bacteria segmentation and lineage generation.

For SuperSegger software features, capabilities and benchmarks refer to [166], while for gating

capabilities refer to [167].
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Fig. 2.3 Semi-manual single-cell level cell size measurements. (A) Example images of E. coli in
the phase contrast, fluorescence, and bright field mode (on agarose pads or in microfluidic device), as
labelled on top of each image column. (B) Images of individual cells were enlarged manually for higher
measurement accuracy. (C) Length of each measured cell was determined by calculating the distance
between two furthest points on the bacterium edge (marked on images with star symbols).



Chapter 3

Empirical correction of
photo-bleaching effects and marker
size-dynamics dependence

3.1 Chapter overview

In this Chapter, we build on the work of Javer et al. [14, 22] on short-time chromosomal

dynamics in E. coli by developing an empirical data treatment procedure to effectively account

for marker photo-bleaching effects and size-dynamics dependence. As a result, the procedure

enables comparison of dynamics data sets for different treatment conditions and over long

measurement times while preserving information about all tracked markers. The purpose

of this work is to allow for investigation of long (several hours) short time-scale dynamics

measurements in order to accurately measure antibiotics effects on live bacterial cells (Chapter

4).

3.2 Chapter methods

For the purpose of work discussed in this chapter, we performed high-throughput tracking

of chromosomal Ori2 and Ter3 loci and rheovirus nonstructural protein cytosolic µNS-GFP

aggregates (from here onwards referred to as cytosolic µNS aggregates) collecting in total

34,654 tracks from up to 9 biological replicates per treatment condition (for details refer to

the ”control” column of Table B1, Appendix B), growing bacteria in standard agarose pad

microcolonies (Figure 3.1A) or as planktonic cultures inside of microchannels of a customised

microfluidic chip (Figure 3.1B). Mean cell lengths and elongation rates did not differ signifi-

cantly between the two growth conditions, however, elongation rates were consistently smaller

(by ∼1 µm h−1, a factor of ∼1.5) on agarose pads (Figure A1, Appendix A). For details of

sample preparation and growth conditions refer to Methods chapter (Section 2.3).
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3.3 Results

3.3.1 MSD shows dependence on marker size

Chromosomal Ori2 and Ter3 loci (Figure 3.1A, left and middle) consist of ∆ParB-GFP

monomers which polymerise at specific parS sites in Ori and Ter chromosomal macrodomains

(MD) (Figure 3.1C and D), respectively, to form trackable fluorescent markers, stable at

30°C. These loci were previously found to show large (up to 4-fold) differences in MSD [14].

Cytosolic µNS aggregates consist of GFP-labelled proteins of a rheovirus origin foreign to E.

coli bacteria and capable of self-assembly into trackable particles of variable size (Figure 3.1A,

right) [15]. The MSD vs lag time curves of the three markers are compatible with a power law

with exponent α , with chromosomal loci exploring space slower (α∼0.4) than the cytosolic

aggregates (α∼0.6) (Figure 3.1E).

Our markers show wide intensity (size) distributions (100-4,000 AU) and large coefficients

of variation (0.87–0.92, depending on the marker), with fainter (having fewer GFP molecules)

markers generally having higher MSD compared to brighter ones (having more GFP molecules;

Figure 3.1F). In addition, markers photo-bleach when illuminated during image acquisition.

This is important because in experiments reported here as the same fields of view are imaged

repeatedly over time. In order to precisely quantify the magnitude of changes to marker

dynamics, we accounted empirically for photo-bleaching effects, as well as for dependence of

MSD on the size of the fluorescent markers.

3.3.2 Empirical correction of marker photo-bleaching effects

Chromosomal loci photo-bleach to a finite baseline value due to a continuous production

of ∆ParB-GFP molecules (Figure 3.2) while cytosolic aggregates decay to zero (Figure A2,

Appendix A) as IPTG-induced µNS-GFP production is stopped by washing the cells directly

before experiments. In order to measure the photo-bleaching rate, we consider frequency

distributions of recorded loci intensities for individual measurement time points (Figure 3.2A

and Equation A1, Appendix A). The decay in the distributions’ means (dashed vertical lines in

Figure 3.2A and black solid circles in Figure 3.2B) represents a population photo-bleaching

profile that can be fitted empirically (Figure 3.2B, blue line) with an exponential function,

It = I0e(−λ (t−t0))+B , (3.1)

where It is locus intensity at time t, I0 is initial locus intensity at time t0, t0 is the initial

measurement time (fixed at 20 min for all experiments), and λ and B are free fitting parameters

and represent the photo-bleaching rate and the intensity baseline respectively (this is valid for

chromosomal loci only, see Equation A2, Appendix A for cytosolic µNS aggregates). Initial

intensity is defined as the mean locus intensity as recorded in the first 10 frames of a movie.

For each tracked marker, we use its population photo-bleaching rate, λ , to evaluate, using
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Fig. 3.1 Illustration of the experiment and basic results. (A) Example phase-contrast images of
agarose microcolonies of the three strains, with fluorescent markers (left, Ori2; middle, Ter3; right, µNS)
overlaid in green. (B) Example bright-field image of three microchannels loaded with E. coli bacteria
with Ori2 loci overlaid in green. (C) Schematic representation of the E. coli genome with colour-coded
four macrodomains (MD; Ori, origin of replication; Right; Ter, terminus of replication; and Left MD)
and two non-structured regions (NSL, left non-structured region; NSR, right non-structured region),
and indicated Ori2 and Ter3 loci relative positions [4]. (D) Schematic not-to-scale representation of
a dividing E. coli chromosome and a cytosolic µNS-GFP aggregate (green). Ori MD replicates and
segregates first, followed by non-structured regions and then Left and Right MDs, and finishing with Ter
MD. The cytosolic µNS-GFP aggregate (foreign to E. coli) assembles and suspends in the cytoplasm.
(E) MSD as a function of a lag time (τ) for the three fluorescent markers tracked in this work. Marker
photo-bleaching and size effects are corrected with the data treatment procedure as indicated by a star
sign (*). The 10 s lag time selected for analysis is indicated with a dashed line. MSD(τ)* scales as
τα with chromosomal loci exploring space slower (α≃0.4) than the cytosolic aggegates (α≃0.6). (F)
“Raw” data MSD(10 s) vs locus intensity, from an example Ori2 loci data set, illustrating the wide MSD
(left, part of the distribution tail not shown) and intensity (top) distributions as well as MSD–intensity
(size) dependence (dashed violet line; function fitting as in Figure 3.3). Bigger (brighter) loci generally
show lower motility compared to smaller (fainter) ones.

Equation 3.1, its original intensity (pre-photo-bleaching, I0) assuming an exponential decay in

intensity.
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Fig. 3.2 Correction of marker photo-bleaching. This procedure evaluates the average marker
bleaching rate and uses it to calculate marker intensities. Plots show data for a non-treated Ori2
loci sample as an example. (A) Normalised log-normal marker intensity distributions (Equation A1,
Appendix A) for different experiment time points (20 – 120 min). Part of the high end of the distribution
tails is not shown (full distributions shown in Figure A3, Appendix A). Dashed lines show means
of the fitted distributions to demonstrate intensity-time dependence caused by photo-bleaching. (B)
Distribution mean values from (A) over experiment time fitted with an exponential function (Equation
3.1, blue line) with a free baseline parameter. Inset: Distributions mean values with subtracted fitted
baseline parameter indicating an exponential decay in intensity over experiment time. (C) Normalised
log-normal marker intensity distributions for different experiment time points as in (A) after calculating
individual marker intensities.

The pre-photo-bleaching intensity of each locus at each measurement time point is used

to correct for marker MSD-size dependence (Figure 3.3). This procedure uses a control (not

treated) Ori2 model dataset generated previously by Javer et al. [14] consisting of about 2,000

tracks collected using the same experimental set-up and analysis methods. Both Ori2 and

Ter3 chromosomal loci data are treated with the same Ori2 model dataset as this approach

results in most effective size-dynamics dependence correction (Figure A5, Appendix A). The

procedure defines 20 logarithmically-spaced bins along a 100-4,000 AU locus intensity range

and evaluates median MSD for each bin. Medians for bins where the number of loci is equal or

greater than the mean number of loci per bin (red solid circles in Figure 3.3A) are fitted with a

custom exponential function (Figure 3.3A, dashed violet line; Equation A3, Appendix A) that

we then use to normalise our data. To flatten this normalisaton curve, we select the statistically

strongest ”reference” intensity bin and generate a 20-element correction factor vector that

normalises the median MSD values of all other bins to that reference value (black solid circles

in Figure 3.3B). This approach minimises locus size effects while including contributions from

all tracked loci. We repeat this for five lag times (0.1, 1.0, 5.0, 10, and 14 s; Figure 3.3C) and

use the correction vectors to normalise our data.

3.3.3 Empirical correction of marker size effects

To appreciate the effects of the correction procedure on a control Ori2 dataset, compare panels

A (before correction) and B (after correction) in Figure 3.4. For correction profiles of Ter3 and

µNS control datasets refer to Figure A4, Appendix A. Before correction, there is a strong MSD-

intensity (size) dependence as well as a considerable change in median MSD and intensity
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Fig. 3.3 Correction of marker MSD-size dependence. Correction factor vectors for MSD at five
lag times of our choice (0.1, 1.0, 5.0, 10, and 14 s) based on empirically fitted exponential curves
(Equation A3, Appendix A) built on data from the work of Javer et al. [14] to correct for MSD–size
dependence. (A) MSD(10 s) vs marker intensity scatter plot with median MSDs (red solid circles)
for statistically-strongest bins (containing at least 100 loci). Loci are arbitrarily segregated according
their absolute intensities by binning into 20 logarithmically-spaced bins along a 100-4,000 AU range.
The medians are used to fit the exponential function (dashed violet line). (B) For each intensity bin, a
correcting factor is calculated to flatten the curve to the reference MSD of the statistically-strongest bin.
Black solid circles show corrected MSD values for individual bins after correction. (C) Exponential
curves for the five lag times used for data correction.

over measurement time (Figure 3.4A). Our procedure effectively eliminates photo-bleaching

effects (top side plot distribution in Figure 3.4B) and largely reduces MSD-size dependence

(generally flat fitted curves in Figure 3.4B) as well as reveals only little change in MSD over

measurement time (left side plot distribution in Figure 3.4B).
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Fig. 3.4 Effects of correction on the control (not treated) datasets. Panels (A) and (B) show scatter-
plots of the MSD(10 s) over marker intensities with overlaid fitted exponential curves (dashed lines; for
function fitting details see Appendix A) and variable distributions in side panels (tails of distributions not
shown; agarose data only). Initial measurement time point (20 min) is in blue and the final one (120 min)
in red. Data for Ori2, Ter3, and µNS markers is shown in the left, middle, and right columns as indicated
in the figure. (A) ”Raw” (before correction) data. Fitted curves decrease monotonically with increasing
locus intensity and the intensity distribution means shift over time, both indicating photo-bleaching. (B)
Corrected data. Curves are approximately flat indicating reduced MSD-size dependence and show no
time-dependence. Overlapping marker intensity distribution means and median MSD*(10 s) indicate
almost no time-dependence in locus intensity and motility, as expected for the control data set.

3.3.4 Short time-scale marker dynamics over several hours of measurements

Our procedure allows to accurately measure long term (several hours) changes to marker

dynamics. This is important as it enables investigation of long term responses to antibiotics

(Chapter 4), which commonly involve gradual changes to the expression levels of a large

number of genes as well as evolutionary adaptations often taking place over tens of generations.

Effects of the data treatment procedure on the MSD(τ) profiles for all tested lag times

(0.1-14 s) for chromosomal Ori2 loci and cytosolic µNS aggregates can be appreciated in

Figure 3.5 (agarose pad data only). For data treatment effects on MSD(τ) profiles of all markers

in both growth conditions, refer to Figures A6 and A7, Appendix A. Correction procedure

reduces time-dependent differences in the chromosomal loci motility, especially at shorter

(<1.1 s) lag times, while the procedure has negligible effects on cytosolic marker motility.

By plotting MSD at a lag time of choice (10 s) over measurement times, it is possible to
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Fig. 3.5 Photo-bleaching and marker size corrections allows for accurate long (several hours)
measurements of short (0.1-14 s) time-scale marker dynamics. (A) Raw and (B) photo-bleaching
and marker size corrected median ensemble-averaged MSD(τ) for 9 biological replicates for different
measurements times (20 - 120 min) for a chromosomal Ori2 locus (top panels) and a cytosolic aggregate
µNS (bottom panels). 10 s lag time indicated with vertical dashed lines. (C) Raw (grey) and corrected
(black) MSD(10 s) over 2 h. Agarose pads data only. Error bars show the standard deviations of the
medians of the distributions divided by the square root of the number of biological replicates (n = 9
and 6 for chromosomal and cytosolic markers, respectively). For remaining control data sets, Ter3 on
agarose pads and all markers in microfluidic device, refer to Figures A6 and A7, Appendix A.

assess changes to marker dynamics over time (Figure 3.5C). We observe that all three markers

in control (not treated) conditions show generally stable MSD value throughout the whole

experiment time.

In addition, application of our data treatment procedure reveals a transient decrease (40-100

min) in the motility of both chromosomal loci and cytosolic µNS aggregates for agarose pad

experiments. This trend is consistent with fluctuations in cell elongation rate (Figure 3.6; for

cell elongation profiles for all strains in all conditions refer to Figures B16 and B19, Appendix

A), possibly due to bacteria adapting to new growth conditions after the transfer from liquid

culture onto solid agarose pads as no such trend is observed in microfluidic device data (Figure

A7C, Appendix A).
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Fig. 3.6 Control (untreated) cells show characteristic transient increase in elongation rates. Ap-
plication of our data treatment procedure reveals a transient decrease (40-100 min) in the motility of
both chromosomal loci and cytosolic µNS aggregates for agarose pad experiments (Figure 3.5C). Here
we show that this trend is consistent with fluctuations in cell elongation rate: all three tested strains
show characteristic small transient increase in mean elongation rate around (40-100 min), possibly
due to bacteria adapting to new growth conditions after the transfer from liquid culture onto solid
agarose pads. Whiskers indicate the widths of the distributions (specifically, 68.2% of data points,
i.e. observations within one standard deviation from the mean). We used semi-manual cell length
determination method to calculate cell elongation rates (Section 2.7, Methods). Automated analysis
with SupperSegger software confirms observed trends (Figure B19, Appendix B).

3.3.5 Faster Ori2 dynamics remains stable for hours

We also confirm higher motility of Ori2 loci compared to Ter3 loci as reported previously [14].

This is an important addition to the pool of evidence demonstrating that the local physical

properties of genetic loci are chromosome position dependent. However, we observe a smaller

difference in motility between the two loci (by factor of ∼1.7) compared to the previously

reported factor of 4 [14]. In addition, we demonstrate that this result is stable for hours

for exponentially growing cells in two different growth conditions (Figure 3.7). We also

reveal that marker motilities measured in the microfluidic device are higher (≃6.2×10−3 and

≃3.9×10−3 µm2 for Ori2 and Ter3 loci, respectively) compared to agarose pads (≃4.0×10−3

µm2 and ≃2.8×10−3 µm2) for Ori2 and Ter3 loci, respectively. We elaborate on reasons and

implications of these differences in Section 4.3.5.
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Fig. 3.7 Chromosomal Ori2 locus shows higher motility than Ter3 and this result is stable for
hours in exponentially growing cells in two different growth conditions. (A) Agarose pads data.
Left: MSD(τ)* for Ori2 (solid lines) and Ter3 (dashed lines) at 20 (blue lines) and 120 min (red
lines). Right: MSD(10 s)* for 20-120 measurement times for Ori2 (blue) and Ter3 (green). Error
bars show the standard deviations of the medians of the distributions divided by the square root of the
number of biological replicates (n = 9 and 6 for chromosomal and cytosolic markers, respectively). (B)
Microfluidic device data. Left: MSD(τ)* for Ori2 (solid lines) and Ter3 (dashed lines) at 1 (blue lines)
and 7 h (red lines). Right: MSD(10 s)* for 1-7 h measurement times for Ori2 (blue) and Ter3 (green).
10 s lag time is indicated with vertical dashed lines. Each curve is a single biological replicate.

3.4 Discussion

3.4.1 Empirical approach to data treatment

The empirical approach to data treatment developed here accounts for both marker photo-

bleaching and marker size effects, and enables precise quantification of the magnitude of

changes to chromosomal and cytosolic marker dynamics. Accounting for photo-bleaching

makes it possible to perform long-time (several hours) measurements, necessary to study effects

of antibiotics, which often exert measurable effects only after a prolonged exposure (Chapter

4). The correction of marker MSD-size dependence, reduces bias arising from physical effects

such as caging and metabolism-dependent contributions to motion, which were shown to

depend on marker size [15]. Previous studies on short time-scale genome [42, 21, 14, 13, 22]

and cytosol dynamics [15] were limited to single dynamics measurements and did not consider

these significant corrections.
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3.4.2 Limitations of the data treatment procedure

One limitation of the data treatment procedure presented here is that corrections are computed

from population-averages, and hence need a large sample of data. While extracting photo-

bleaching profiles of individual markers is possible, it may be problematic, especially for

faster-moving markers such as cytosolic aggregates. Additionally, since a formal physical

model describing size-dependent marker motion at short time-scales in live cells has not been

developed yet, in the future, a physical model describing tracer size-dependent motions of

chromosomal loci and cytosolic aggregates in live cells may further improve the data treatment

procedure and highlight aspects of biological and physical significance (refer to Chapter 6).

3.4.3 Ori2 faster than Ter3 over long measurement times

The basic outcome of applying this data treatment procedure is the ability to assess changes

to marker dynamics over long measurement times. We were thus able to confirm that chro-

mosomal Ori2 loci show higher motility than Ter3 loci (by a factor of approximately 1.7)

and that this does not change (except for small fluctuations, discussed below) over time in a

population of exponentially growing cells. This confirms that while allowing for small and

transient fluctuations in loci dynamics, these large differences in physical organisation between

different regions of the E. coli chromosome are a permanent characteristic maintained between

generations of cells grown in stable conditions. In addition, relatively small fluctuations in

marker dynamics demonstrate that the growth conditions used in this work allow for stable

unperturbed exponential growth of bacteria for multiple hours: up to at least 2 h and 11 h on

agarose pads and in microfluidic device, respectively.

3.4.4 Faster growth correlates with slower loci dynamics

We explain small fluctuations in chromosomal loci motility such as a transient decrease

(during 40-100 min of the experiment) in the motility of both chromosomal loci and cytosolic

aggregates for agarose pad experiments with the fact that prior to experiment bacteria were

transferred from liquid culture onto solid agarose pads. This trend is consistent with fluctuations

in growth rate (Figure 3.6; also refer to Figures B16 and B19, Appendix A), possibly due to

bacteria adapting to new growth conditions after the transfer from liquid culture onto solid

agarose pads.

Adjusting bacterial physiology to new growth conditions involves changes to the expression

rates of multiple genes (reviewed in [168]) and measurable physiological changes may come

into effect at time-scales of tens of minutes due to time needed for protein synthesis and folding

[169]. Although the compositions of liquid pre-culture medium and solid agarose pads are

identical (except for 1.5% w/w agarose in the pads), the change from a planktonic culture to a

microcolony on a solid surface is likely to trigger changes to expression of genes responsible

for cellular attachment, biofilm formation, and cell-to-cell communication [170]. Supporting

these speculations is the fact that although we observe small fluctuations in loci motility for
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bacteria grown in the microfluidic device, no systematic transient decrease in MSD is observed

in this growth condition (Figure A7C, Appendix A).

The small transient increase in growth rate observed on agarose pads results in an overshoot

in global protein and mRNA concentrations, as reported before [25]. Consequently, viscosity

of cysotol and macromolecular crowding effects increase during this time leading to a decrease

in the motility of cytosolic µNS aggregates and – consequently – chromosomal loci (for

speculated causal link between changes to cytosol and chromosomal dynamics, refer to Section

4.4.3, Chapter 4). Similar but very weak correlation between growth rate and locus motility

was observed previously by Javer et al. [14] for Ori2 loci, however, the effect was too small

and highly locus size-dependent to be considered meaningful. Our improved approach allows

to quantify these small changes with higher precision.



Chapter 4

E. coli genome and cytosol dynamics
under sublethal antibiotic treatments

4.1 Chapter overview

In this chapter we use the empirical data correction method discussed in Chapter 3 to investigate

effects of long (several hours) sublethal antibiotic treatments on short time-scale chromosome

and cytosole dynamics in two growth conditions: standard agarose pads and a customised

microfluidic device. We find that sublethal doses of most of tested antibiotics cause small

but consistent effects on motility of both chromosomal loci and cytosolic aggregates. We

find that different antibiotics have different effects on genome and cytosol dynamics and that

chromosomal and cytosolic responses to each antibiotic are consistent with each other but not

between the growth conditions. We speculate on causal mechanisms of the observed effects

and possible reasons for differences observed between the growth conditions. We also discuss

possible consequences of these physical effects on biological processes of the bacterial cell,

and possible consequences for the clinical use of antibiotics.

4.2 Chapter methods

Using experimental and analytical methods identical to those used in Chapter 3, we extended

our high-throughput tracking of chromosomal Ori2 and Ter3 loci and cytosolic µNS aggregates

to the total of 180,476 tracks across 6 different treatment conditions, with up to 9 biological

replicates per treatment condition (for details refer to Table B1, Appendix B). Exponentially

growing cells were either not treated (controls) or exposed to sub-lethal antibiotic treatments

(ciprofloxacin, rifampicin, teteracycline, vancomycin) or to a hyperosmotic shock inducing dose

of sorbitol. For details of treatment conditions refer Methods chapter (Section 2.4). Treatments

did not affect the growth rates significantly with an exception of tetracycline (Figures B16

and B19, Appendix B). As previously, we investigated bacteria growing exponentially in

two growth conditions: standard agarose pad microcolonies and as planktonic cultures in
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microchannels of a customised microfluidic chip as outlined in Section 2.3 and discussed in

Chapter 3. To reveal true antibiotic and sorbitol treatment effects on marker dynamics, we

applied the data treatment procedure developed in Chapter 3 to empirically account for marker

photo-bleaching effects and size-dynamics dependence.

4.3 Results

4.3.1 Sublethal antibiotic treatments cause small but consistent effects on genome
and cytosol dynamics

For initial comparison of treatment effects we choose the MSD at an arbitrary lag time of 10 s

and look at the agarose pads experiments only. We reveal that in control (not treated) bacteria,

motilities of both chromosomal loci and cytosolic µNS aggregates remain stable throughout

the experiments (Figure 4.1, blue lines). As expected, cytosolic aggregates show highest

motility (≃0.08 µm2) while chromosomal loci show the MSD which is an order of magnitude

lower, with Ori2 loci exploring space quicker than Ter3 loci (≃4.0×10−3 and ≃2.5×10−3

µm2, respectively).

We find that sublethal doses of most of tested antibiotics and sorbitol cause small changes

to short time-scale dynamics of both chromosomal loci and cytosolic µNS aggregates (Figure

4.1). Importantly, the effects are consistent between the three markers and, in most cases, over

the entire drug exposure time.

Treatment with ciprofloxacin increases the MSD of both Ori2 and Ter3 loci gradually over

the treatment time up to ≃4.0×10−3 and ≃2.5×10−3 µm2 at final treatment time point (120

min), respectively. Cytosolic µNS aggregates show an increased MSD already at initial time

point (20 min) and gradually decrease motility and reach the control level (≃0.08 µm2) at final

treatment time point.

We observe a similar trend for rifampicin, however, the effects are smaller and especially

minute for Ori2 loci, whose motility increases up to ≃5.0×10−3 µm2 only after 90 min of

drug exposure. Ter3 motility remains increased fractionally but consistently at the level of

≃3.5×10−3 µm2 across the whole drug exposure time. Effects are also very small for cytosolic

µNS aggregates, whose MSD remains higher by ∼0.01 µm2 throughout the whole treatment

time, except the final time point.

Tetracycline is the only treatment agent tested in this work which does not show any

consistent effects on the motility of the three markers. In addition, as translation inhibition

causes a decease in ∆ParB-GFP production, it results in excessive marker photo-bleaching

with all trackable Ori2 loci disappearing after the 80th min of experiment.

Vancomycin causes a small decrease in MSD of both chromosomal loci already at the initial

treatment time point (≃3.0×10−3 and ≃2.0×10−3 µm2 for Ori2 and Ter3 loci, respectively),

and continues to decrease Ori2 loci motility down to ≃2.0×10−3 µm2 while Ter3 motility loci

remains relatively constant. Motility of cytosolic µNS aggregates deceases by ≃0.01 µm2 and
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remains at this level till the end of the experiment. In addition, we observed that vancomycin

affected visibly cell morphology causing characteristic bending of cells (Figure B21, Appendix

B).

Sorbitol also decreases the MSD of both Ori2 and Ter3 loci, however, effects are well

pronounced already at the initial treatment time point. Motility is down to ≃1.5×10−3 µm2 for

both Ori2 and Ter3 loci at final treatment times. Under hyperosmotic shock conditions, gene

expression processes may be impaired [153], resulting in strong marker photo-bleaching and

thus inability to collect valid loci tracks after 80 and 60 min for Ori2 and Ter3 loci, respectively.

Motilty of cytosolic µNS aggregates remains decreased at ≃0.06 µm2.
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Fig. 4.1 Sublethal doses of different antibiotics and sorbitol cause small but consistent changes
to the short time-scale motility of chromosomal loci and cytosolic aggregates. (A) MSD(10 s)*
over 2 h for different antibiotics (in different colours as indicated in the figure) and sorbitol, compared to
control (blue lines) for Ori2 (solid lines) and Ter3 (dashed lines) loci. (C) Data for cytosolic aggregates
µNS. Error bars (in B and C) show the standard deviations of the medians of the distributions divided
by the square root of the number of biological replicates (n = 9 and 6 for chromosomal and cytosolic
markers, respectively).
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4.3.2 Directions of effects generally correlate between chromosomal Ori2 and
Ter3 loci

To compare chromosomal responses directly, we consider relative fold changes in motility,

defined as the logarithm of treated-to-control MSD(10 s) ratios, for Ori2 and Ter3 loci for

individual treatments and treatment times Figure 4.2). We reveal that the directions of effects

are consistent for the two chromosomal loci for each the treatment conditions.

Notably, we show that the initially fast-moving loci, Ori2, increased their motility less when

treated with ciprofloxacin and rifampicin (maximal fold changes +0.12 and +0.08, respectively)

if compared to the initially slow-moving loci, Ter3 (maximal fold changes +0.2 and +0.1,

respectively). Conversely, we show that the initially fast-moving loci, Ter3, decreased their

motility less when treated with vancomycin (maximal fold change -0.18) if compared to the

initially fast-moving loci, Ori2 (maximal fold change -0.28) and showed comparable magniture

in fold change under sorbitol treatment (maximal fold change -0.39 and -0.40 for Ori2 and

Ter3, respectively).

Fig. 4.2 Directions of effect generally correlate (except for vancomycin) for chromosomal Ori2
and Ter3 loci. Fold changes in Ori2 vs Ter3 loci motility, defined as the logarithm of treated-to-control
MSD(10 s)* ratios, are plotted for ciprofloxacin, rifampicin, vancomycin, and sorbitol (in different
colours as indicated in the figure). Plot marker size increases with increasing treatment time (20-120
min). Diagonal dashed line represents a gradient of 1.
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4.3.3 Directions of chromosomal and cytosolic effects generally correlate

Analogously, we compare chromosomal and cytosolic responses directly (Figure 4.3) consider-

ing relative changes in motility defined again as the logarithm of treated-to-control MSD(10

s) ratios for chromosomal Ori2 and Ter3 loci and cytosolic µNS aggregates for individual

treatments and treatment times. We show that directions of responses are generally consis-

tent between chromosomal and cytosolic markers and that the magnitude of fold change for

chromosome and cytosol dynamics is generally comparable. In fact, most of the responses

lay on or near a straight line with gradient equal to 1 (Figure 4.3, dashed diagonal line). This

suggests that changes to the cytosol physical properties generally correlate both in timing and

magnitude with changes to the chromosome physical properties. Exceptions to this pattern are

Ori2 loci under vancomycin treatment and both chromosomal loci under sorbitol treatment.

Fig. 4.3 Direction of effects generally correlate for chromosomal loci and cytosolic aggregates.
Fold changes in chromosomal Ori2 (circles) and Ter3 (squares) loci vs cytosolic aggregates µNS loci
motility, defined as the logarithm of treated-to-control MSD(10 s) ratios, are plotted for ciprofloxacin,
rifampicin, vancomycin, and sorbitol (in different colours as indicated in the figure). Plot marker size
increases with increasing treatment time (20-120 min). Diagonal dashed line represents a gradient of 1.
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4.3.4 Dynamics responses to treatments evolve during lag time

We also looked at how dynamics responses evolve as a function of lag time (Figure 4.4). We

plotted fold changes in motility as shown earlier for 5 arbitrary lag times (0.1, 1.0, 5.0, 10, and

14 s) representing full range of tested lag times.

Fig. 4.4 Responses in marker dynamics to different antibiotics and sorbitol evolve during the
lag time. Fold changes in chromosomal Ori2 (circles) and Ter3 (squares) loci vs cytosolic µNS
aggregates loci motility, defined as the logarithm of treated-to-control MSD(10 s) ratios, are plotted
for ciprofloxacin, rifampicin, vancomycin, and sorbitol (in different colours as indicated in the figure)
for for 5 arbitrary lag times (0.1, 1.0, 5.0, 10, and 14 s) representing full range of tested lag times as
indicated above individual figures. Plot marker size increases with increasing treatment time (20-120
min). Diagonal dashed lines represent gradient of 1.

As expected, dynamics responses for all antibiotics increase in magnitude with increasing

lag time, for both chromosomal and cytosolic makers. We reveal however that the differences

in responses between all tested antibiotics become apparent after 10 s, with data points for

individual treatment conditions forming distinct clouds, especially at longer treatment times.

In addition, the difference between Ori2 and Ter3 responses to vancomycin becomes well

differentiated only after 5 s and, for ciprofloxacin and rifampicin, only at longer (>40 min)

treatment times. Remarkably, sorbitol follows a different pattern, causing distinct effects for

both chromosomal and cytosolic makers already at the shortest tested lag time (0.1 s). In

addition, the difference between Ori2 and Ter3 responses is apparent already at this lag time

and it becomes less noticeable at longer lag times.
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4.3.5 Dynamics results for agarose pads and microfluidic device are not consis-
tent

When working with a different fluorescent reporter, E. coli strain (MG1655 rrnBP1-gfp, refer

to Chapter 5) we noticed that cells appear wider after leaving microchannels of our customised

microfluidic device than they are when inside of the microchannels (Figure D4).

Fig. 4.5 Cells appear wider when leaving microchannels of our customised chip than they are
when inside of microchannels. Three consecutive frames (5 min apart) showing images in the
fluorescence mode of two example microchannels of a customised microfluidic device filled with
exponentially growing E. coli bacteria (MG1655 rrnBP1-gfp fluorescent reporter). Cells leaving the
microchannels appear wider than those inside the microchannels suggesting that bacteria may be
subjected to significant mechanistic forces when growing inside the microfluidic device.

We compared width distributions between bacteria from agarose pads and microfludicic

device and discovered that cells were systematically narrower in the microfluidic device (Figure

4.6). This suggested that bacteria may be subjected to significant mechanistic forces when

growing inside of those microchannels, what could in turn affect physical properties of cells

and their components.

We observed differences in marker dynamics and in dynamics responses between bacteria

grown on agarose pads and in the microfluidic device (Figure D1). While (the long term)

responses to ciprofloxacin and rifampicin are at least qualitatively consistent between agarose

pads and microfludics device, this it not the case for vancomycin and sorbitol. The latter

treatments do not result in a decrease in motility of markers (neither chromosomal nor cytosolic)
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Fig. 4.6 Bacteria in microfluidic device are systematically narrower compared to agarose pads.
Mean cell widths were calculated for cells growing on (A) agarose pads and (B) inside of microchannels
of the microfluidic device. Two methods were used to determine widths of imaged cells: semi-manual
(method 1) and in-house cell segmentation (method 2). For the measurement method details refer to
Methods chapter (Section 2.7). When working with images of agarose pad micro-colonies, method 2
was applied to images acquired only at the initial measurement time point (20 min). Whiskers in all
four panels indicate the widths of the distributions (specifically, 68.2% of data points, i.e. observations
within one standard deviation from the mean). Empty points in the right panel in row (A) indicate
outliers data points. While the first method systematically measures smaller widths, both methods
show that mean width of cells grown in microfluidic device is smaller by ∼10% (method 1) and ∼20%
(method 2) compared to widths of cells grown on agarose pads.

as seen on agarose pads. Conversely, we observe a small increase in the motility of all markers.

Notably, and similarly to agarose pads, the initially fast-moving loci, Ori2, increase their

motility less if compared to the initially slow-moving loci, Ter3 (maximal fold changes +0.03

and +0.16, respectively).

We speculate that cell squeezing inside microchannels may be the reason for the con-

siderable inconsistency of vancomycin and sorbitol effects seen between agarose pads and

microfluidic device experiments. It is possible that as pressure is applied to cells in microchan-

nels, the concentration of their cytosol contents (comprising macromolecules such as protein

and nucleid acids) increases compared to ”relaxed” cells. We note that the motilty of cytosolic

µNS aggregates in untreated cells in microfluidic device is lower (by a factor of ∼2) compared

to agarose pads as shown earlier (Figure 3.7, Section 3.3.5) strongly suggesting changes to the

cytosol properties such as an increase in macromolecular crowding. Consequently, applying

vancomycin or sorbitol does not result in a further decrease in marker motility. Conversely,
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Fig. 4.7 Dynamics responses to treatments measured on agarose pads and in microfluidic device
are not consistent. Fold changes in chromosomal Ori2 (circles) and Ter3 (squares) loci vs cytosolic
aggregates µNS loci motility, defined as the logarithm of treated-to-control MSD(10 s)* ratios, are
plotted for ciprofloxacin, rifampicin, vancomycin, and sorbitol (in different colours as indicated in the
figure) for agarose pads (solid plot markers) and chip (empty plot markers) data for various treatment
times (20-120 min for agarose pads and 1 and 2 h for chip). Diagonal dashed lines represent gradient of
1.

as these treatments change cell morphology (Appendix B), they may cause cells to sit in

microchannels more loosely, resulting in a small increase in marker motility.

4.4 Discussion

4.4.1 Genome and cytosol dynamics at long (several hours) drug exposure times

Many important aspects of how antibiotics affect bacterial physiology remain unknown. Al-

though attempts have been made to provide a more holistic picture of antibiotic effects (e.g.,

through DNA microarray studies on global gene expression [35]), systems-level physiological

responses such as effects on gene regulatory networks and on the macromolecular composition

of cells (e.g., the concentration of ribosomes, protein-DNA ratio) remain largely unexplored. In

this Chapter, we addressed some of these response phenotypes as a function of antibiotic class
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and growth conditions. Specifically, using fluorescence microscopy we studied spatial short

time-scale fluctuations of fluorescently-tagged chromosomal Ori2 and Ter3 loci and cytosolic

µNS aggregates.

In order to accurately measure long term (several hours) changes to marker dynamics, we

applied the data treatment procedure we developed in Chapter 3. These corrections are critical

in order to enable investigation to long-term responses to antibiotics, which commonly can

cause gradual and cumulative changes to the expression levels of a large number of genes

[35, 120, 121] as well as evolutionary adaptations often taking place over tens of generations

[125]. Some of the previous studies on genome and cytosol dynamics included insights on the

effects of antibiotic treatments [21, 13, 15], however, they did not consider these important

corrections. In addition, these studies were limited to single time-point dynamics measurements

and high (above estimated IC50) antibiotic doses.

By addressing these critical considerations, we are able to reveal with high precision that

sublethal antibiotic and sorbitol treatments have small but consistent effects on genome and

cytosol short time-scale motility. In addition, by selecting sub-lethal antibiotic concentrations,

we minimised effects from growth-rate dependent modulations in expression of genes (refer to

Section 1.2.1). Furthermore, by studying how antibiotics of different modes of action affect

the dynamics of two geographically distant (and physically distinct [14]) chromosomal loci as

well as the cytosol, we revealed that antibiotics can have diverse and widespread effects on

biophysical properties of the bacterial cell. We discuss these findings and their implications in

detail below.

4.4.2 Genomic position affects the degree of response

We observed that almost all (with an exception of tetracycline) tested antibiotics caused small

changes to the chromosome dynamics and that these changes persisted for most of the treatment

time. We also showed that the directions of effect were generally consistent for both Ori2

and Ter3 loci. Notably, we showed that the change in the amplitude of motion depended on

the initial (before treatment) locus motility. The initially fast-moving loci, Ori2, increased

their motility less when treated with ciprofloxacin and rifampicin if compared to the initially

slow-moving loci, Ter3. The opposite was true for vancomycin.

We hypothesise that the amplitude of these local motions is a measure of the level of

genetic locus ”compaction” and macromolecular crowding of the cytosol, respectively. Conse-

quently, limitations to changes in motion may suggest a functional limit to maximal relaxation

and compaction of a genetic locus and the ability of a bacterial cell to alter gene physical

environment flexibly, not only depending on external stimuli but also on the chromosomal

coordinate of a gene. Possible reasons for such limits include, for relaxation: local cytoso-

lic macromolecule crowding and cellular confinement, and for compaction: DNA molecule

elasticity and locus-specific NAP density.
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4.4.3 Findings support the ”polymer in viscoelastic cytosol” model of chromo-
some

We observed that most of the responses, when plotted as fold changes in chromosomal against

cytosolic motility lay on or near a straight line with gradient equal to 1 (Figure 4.3). This

general correlation in both timing and magnitude of responses between the chromosome

and cytosol is consistent with the physical representation of the chromosome as a ”polymer

suspended in a viscoelastic medium”. In this model, individual parts (e.g., genetic loci) of such

polymer explore space by sub-diffusing through a crowded environment of macromolecules,

some of which (e.g., nucleic acids and cytoskeletal filaments) possess significant elastic

properties. It follows that changes to the elastic moduli of macromolecules or to the viscosity

of the surrounding medium will affect the energy states of individual polymer parts [16, 17].

Consequently, we speculate that the treatment-induced chromosomal effects, are a direct

consequence of changes to the properties of the cytosol.

Furthermore, since local DNA topology and energy states are key to gene function [16], the

antibiotic-induced changes to chromosomal loci dynamics discussed here may at least in part

explain global gene expression changes reported previously for many antibiotics [35, 120, 121].

By modulating the ”compaction” levels of individual genetic loci, antibiotics can affect the

topology and thus physical availability of a gene to the expression machinery proteins as well

as its energy levels (negative supercoiling) critical for RNA polymerase activity.

4.4.4 Antibiotics exert biophysical effects

For each treatment agent, we compare our findings to relevant results reported previously and

propose a biophysical mechanism that is rooted in the polymer model outlined above and

ultimately causes a change in the cystosolic macromolecule concentration.

For ciprofloxacin, we speculate that effects are caused primarily through inhibition of

topoisomerase IV, an E. coli quinolone target secondary to DNA gyrase. Interference with

decatenation of replicated DNA strands causes excessive cell filamentation and significant

dilution of cytosol contents. The latter is likely to result in an increase in cytosolic aggregate

and chromosomal loci motility. Work of Weber et al. also points to the causal role of

topoisomerase IV. In their work novobiocin, an aminocoumarin antibiotic which – similarly to

ciprofloxacin – targets DNA gyrase but has a significantly lower affinity to topoisomerase IV

[171], caused no significant change to loci motility.

Our rifampicin effects are generally consistent with those reported by Weber et al., who

showed that after longer (≥5 but ≤30 min) treatments, chromosomal loci motility increased and

plateaued at an approximately two-fold greater magnitude [13]. While Parry et al. [15] reported

a small decrease in the motility of cytosolic µNS aggregates under rifampicin treatment, the

tested dose was high enough (25 µg/mL, 1.5×expected MIC) to likely cause severe changes

to cell physiology (e.g., near complete shut-down of gene expression and significant growth

stalling). Following Weber et al. [13] and Bakshi et al. [17], we speculate that RNAP inhibition
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and mRNA pool decay combined with subsequent ribosomal subunit-nucleoid mixing cause

a decrease in cytosol viscosity and nucleoid expansion, ultimately increasing cytosolic µNS

aggregate and chromosomal loci motility.

Interestingly, the same study reported that treatment with chloramphenicol, a protein

synthesis inhibitor which similarly to tetracycline targets the 30S ribosomal subunit to stall

translation, resulted in an increase in chromosomal loci motility. This is not consistent

with our finding that tetracycline causes no consistent effect on loci motility. However, the

chloramphenicol dose used by Weber et al. (25 µg/mL, 2,500×expected MIC) was much

higher than our tetracycline dose (refer to Section 2.4, Methods). Interestingly, we observed

that while tetracycline was the only treatment agent that affected (and decreased) cell lengths

(Figures B15 and B18, Appendix B) (and also elongation rates, Figures B16 and B19, Appendix

B), it also increased cell widths (Figure B20, Appendix B). We speculate that these two changes

to cell size cancelled out (no net change in cell volume) resulting in no net change to cytosol

viscosity. It is possible that responses to different doses could be different. It would be

particularly useful to establish and test a tetracycline dose that does not affect cell elongation

rates as was achieved for all other treatments in this work.

For vancomycin, although we detected only very small and not consistent effects on cell

lengths and elongation rates (Figures B16 and B19, Appendix B), we noticed significant

changes to cell morphology such as bending of cells (Figure B21). We speculate that inhibited

cell wall synthesis resulted in impaired cell elongation and thus morphological defects, possibly

creating conditions for condensation of cell contents and reduced motility of tracked markers.

For sorbitol, hyperosmotic shock conditions caused rapid water withdrawal from cells,

effectively condensing cytosol components and leading to increased macromolecular crowd-

ing effects (e.g., increasing attractive depletion forces between cytosolic proteins and other

molecules), what in turn reduced motility of markers. We expected to observe a normalising

response to the shock (recovery of pre-shock marker motilities), reported previously in E. coli

for other parameters such as cytoplasmic osmolarity [156] achieved by import of compatible

solutes and ions [172]. Unfortunately, we observed more rapid than typically photo-bleaching

of chromosomal markers and were unable to collect valid Ori2 and Ter3 tracks after 80 and 60

min of exposure, respectively. We speculate that the strong shock conditions (sorbitol at 400

mM) impaired the production of ∆ParB-GFP proteins. Cytosolic µNS aggregates appeared

stable but no response to the initial decrease in motility was observed.

4.4.5 Microfluidics-aided studies of live cells

We observed that bacteria occupying microchannels of our customised microfluidic device are

significantly narrower (by ∼10-20%) compared to bacteria growing on agarose pads, strongly

suggesting bacteria grown in the microfluidic device were exposed to significant mechanistic

forces (Figure 4.6). We also observed that dynamics of both genome and cytosol (in untreated

cells) and the dynamics responses to treatments differed between those growth conditions,
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especially for motility-decreasing treatment agents (vancomycin and sorbitol) (Figure D1).

This suggested that physical pressure applied to cells affects the concentration of cytosol

contents. This is possible because the elastic bacterial cell wall can be compressed and the

cell volume reduced, leading to increased macromolecule concentration and reduced marker

motility. Both, changes to cell morphology (without significant changes to physiology) [29]

and reduction in cytosolic marker motilty under controlled pressure [private conversation with

Professor Kevin Dorfman and Dr Shi Yu, University of Minnesota] were observed previously.

More generally, our findings indicate that care should be taken to ensure that microfluidics-

aided experiments involving live cells are not biased by the nature of the experiment set-up.

Microfluidic devices need to be designed with the investigated organism in mind to enable

unbiased inquiry into cell properties and behaviour.



Chapter 5

Single-cell level gene expression under
sublethal antibiotic treatments

5.1 Chapter overview

In this Chapter we investigate single-cell level gene expression responses to sublethal doses

of tetracycline and chloramphenicol. We measure the levels of GFP production, controlled

by either a constitutive or ribosomal promoter (inserted in either Ori3 or Ter3 chromosomal

position), over long (7 h) treatment times in exponentially growing bacteria. We explore

dose-dependent kinetic responses in cellular resource allocation to translation inhibition and

reveal that both the dose and the relative level of antibiotic ”reversibility” can affect response

kinetics. We discuss the differences in responses from the constitutive and ribosomal promoter

in the context of the minimal three-component proteome partitioning model and the gene-

length dependent effects on processivity of translation. Finally, we discover that the position

of a gene in the genome may affect the response in its activity and that the character of this

position-dependence is consistent with the premises of the ”polymer in a viscoelastic medium”

model of the bacterial chromosome.

5.2 Chapter methods

Exponentially growing bacteria were allowed to populate micro-channels of a customised

microfluidic device for 6 h prior to the arrival of a new medium containing either tetracycline (at

a ”high” 0.9 µM or ”low” 0.09 µM dose) or chloramphenicol (”high” 12 µM dose only) (refer

to Section 2.4 of the Methods chapter). The ”high” tetracycline dose and the chloramphenicol

dose appeared to reduce the growth rate by ∼30% when measured at a single-cell level,

while the ”low” tetracycline dose had a negligible effect on the growth rate. Each treatment

condition was tested in a single experiment with cells from a single biological replicate. Once

equilibrated, the device contained between approximately 2,000 and 3,500 bacteria (refer to

Appendix C for details). Cells were segmented using a custom program developed by Mia
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Panlilio (University of Cambridge). Cell total fluorescence, area, length, width were computed

for all segmented cells. Values smaller or larger than 2 standard deviations from the mean

were rejected from analysis. Semi-manual cell size analysis was used to corroborate cell

length measurements and to compute cell elongation rates (refer to Section 2.7 of the Methods

chapter).

5.3 Results

5.3.1 High dose of tetracycline decreases activity of constitutive and ribosomal
promoters

We start by treating bacteria with the ”high” dose (0.9 µM) of tetracycline and reveal that

activity of both, the constitutive P5 (Figure 5.1) and ribosomal P1 (Figure 5.2) promoters

decreases, regardless of their position in the genome. Notably, for both promoter types, the

absolute promoter activity (quantified as protein concentration, i.e. cell intensity/area) is

much higher for Ori (1,700 and 800 AU for P5 and P1, respectively) than for Ter (1,000 and

400 AU, for P5 and P1, respectively), as expected due to the gene copy number and other

effects introduced earlier (refer to Section 1.2.3). At this dose, the growth rates decrease by

approximately 30% (Figures 5.1C and 5.2C).

Following treatment, activity of the constitutive promoter decreases (∼0.1-fold decrease in

protein concentration, defined as the logarithm of ratio between normalised protein concentra-

tion before and after the media switch) in first 90 min of treatment and remains at this level

for 3 h (Figure 5.1B). Notably, the response in Ori position is consistently stronger than in

Ter (Figures 5.1B and 5.1D). Activity of the promoter in both positions returns to the original

(pre-treatment) level, however, this recovery is faster for Ori position and it eventually exceeds

its original value by ∼0.05-fold after 5 hours of treatment. The level is likely not stable at this

stage and longer experiment would be necessary to determine equilibrated value. Conversely,

the promoter in Ter position recovers much slower and reaches its original value after about 6

hours of treatment.

Response of the P1 promoter follows a similar trend, however, the decrease in protein

concentration is faster and stronger (0.22-fold change reached after about 3 hours of treatment;

Figures 5.2B and 5.2D) and the activity remains approximately at this level for the duration of

the experiment. Similarly to the P5 promoter, response is consistently stronger in Ori position

(Figure 5.2D).
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Fig. 5.1 High dose (0.9 µM) of tetracycline decreases activity of a constitutive promoter. Panels
show (A) mean protein concentration (cell intensity/area), (B) mean fold change in protein concentration
defined as the logarithm of ratio between normalised protein concentration before and after the media
switch (indicated with vertical dashed line), (C) mean cell elongation rate (refer to Appendix for
details) with whiskers indicating the widths of the distributions (specifically, 68.2% of data points, i.e.
observations within one standard deviation from the mean), and (D) mean fold changes from (B) for
P5-Ori and P5-Ter plotted against each other where each point represents fold change in mean protein
concentration for all cells in a given hour (12 measurement time points per hour). Marker point size
increases with increasing time (1-7 h after media switch). Straight dashed line represents gradient of 1.
High dose (0.9 µM) of tetracycline decreases activity of constitutive P5 in both chromosomal positions:
Ori (blue) and Ter (green).

5.3.2 Low dose tetracycline increases activity of a ribosomal promoter

Next, we decrease tetracycline dose 10-fold to 0.09 µM (”low” dose) and while we do not

observe significant effects on the growth rate (Figure 5.3C), activity of the P1 promoter (in

Ter position) increases 0.05-fold and fluctuates around this level throughout the experiment

(Figure 5.3B). Such an increase is generally consistent with the three component partition of

the proteome and global resource allocation through transcription regulation introduced earlier

(Section 1.2.1).

In addition, we gathered some evidence that activity of the P1 promoter increases also

in Ori position (as indicated with a prominent increase in cell intensity directly after media

switch), however, its pre-treatment activity level is not stable and consequently does not allow

for valid comparisons (refer to Figure C12, Appendix C).
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Fig. 5.2 High dose (0.9 µM) of tetracycline decreases activity of a ribosomal promoters. Panels
show (A) mean protein concentration (cell intensity/area), (B) fold change in protein concentration
defined as the logarithm of ratio between normalised protein concentration before and after the media
switch (indicated with vertical dashed line), (C) mean cell elongation rate (refer to Appendix for
details) with whiskers indicating the widths of the distributions (specifically, 68.2% of data points, i.e.
observations within one standard deviation from the mean), and (D) mean fold changes from (B) for
P1-Ori and P1-Ter plotted against each other where each point represents fold change in mean protein
concentration for all cells in a given hour (12 measurement time points per hour). Marker point size
increases with increasing time (1-7 h after media switch). Straight dashed line represents gradient of 1.
High dose (0.9 µM) of tetracycline decreases activity of ribosomal P1 in both chromosomal positions:
Ori (blue) and Ter (green).

5.3.3 Low dose tetracycline increases activity also of a constitutive promoter

When treated with the low dose (0.09 µM) of tetracycline, also the P5 promoter shows an

increase in its activity and fluctuates around this level for the duration of the experiment,

regardless of its position in the genome (Figures 5.4A and 5.4B). Again, at this dose, effects

on growth rates are insignificant (Figure 5.4C).

The initial (<2 h of treatment) increase is approximately two times larger in Ori (up to

nearly 0.1-fold) position than in Ter (∼0.04-fold) (Figures 5.4B). It should be noted, however,

that since measurements are of a single biological replicate and this P1-Ori measurement

shows unusually low pre-treatment activity levels (400 AU; Figure 5.4A), this result needs

to be interpreted with caution. At longer treatment times responses in Ori and Ter virtually

equalise and remain around +0.06, with Ter showing a slightly greater fold change during final

4 h of experiment (Figures 5.4D).
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Fig. 5.3 Low dose (0.09 µM) of tetracycline increases activity of a ribosomal promoter. Panels
show (A) protein concentration (cell intensity/area), (B) normalised fold change, defined as logarithm
of ratio between normalised mean protein concentration before and after the media switch, and (C)
mean cell elongation rate (refer to Appendix for details) with whiskers indicating the widths of the
distributions (specifically, 68.2% of data points, i.e. observations within one standard deviation from
the mean). Low dose (0.09 µM) of tetracycline causes an increase in the activity of the ribosomal P1
promoter (Ter position shown).

5.3.4 Responses to tetracycline for Ori and Ter positions are generally consis-
tent between all conditions and most treatment times

In order to compare directly responses between different promoter positions across all treatment

conditions, we plot mean fold changes in the activity of both promoters during each hour of

treatment with ”high” and ”low” doses of tetracycline (Figure 5.5). We reveal that responses

to tetracycline from promoters in Ori and Ter positions are generally consistent between all

conditions and most treatment times. All responses to low dose tetracycline and all shorter-term

responses (≤4 h of treatment) to high dose tetracycline lay on or near a straight line with

gradient equal to 1 (Figure 5.5, dashed diagonal line). That is, these responses generally

correlate in both magnitude and timing. Longer-term responses (>4 h of treatment) under high

dose treatment deviate from this pattern: for the P5 promoter, response in Ori position becomes

larger (by up to 30%), while for the P1 promoter, response in Ori returns to its original value

quicker compared to Ter and then changes sign to reach a fold change of +0.04. Another

important observation is that, where responses between positions correlate, response in Ori

position is slightly stronger than in Ter, at most treatment times.
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Fig. 5.4 Low dose (0.09 µM) tetracycline increases activity also of a constitutive promoter, in
both chromosomal positions. Panels show (A) mean protein concentration (cell intensity/area), (B)
normalised fold change, defined as logarithm of ratio between normalised mean protein concentration
before and after the media switch, (C) mean cell elongation rate (refer to Figure C1, Appendix C for
details) with whiskers indicating the widths of the distributions (specifically, 68.2% of data points, i.e.
observations within one standard deviation from the mean), and (D) mean fold changes from (B) for
P5-Ori and P5-Ter plotted against each other where each point represents fold change in mean protein
concentration for all cells in a given hour (12 measurement time points per hour). Marker point size
increases with increasing time (1-7 h after media switch). Straight dashed line represents gradient of 1.
Low dose (0.09 µM) of tetracycline causes an increase in the activity of the constitutive P5 promoter in
both chromosomal positions. The short-term (<1.5 h) is larger for the promoter in Ori position.

5.3.5 Chloramphenicol increases activity of a ribosomal promoter in both posi-
tions

We continue by attempting to corroborate the results obtained with tetracycline, using chlo-

ramphenicol, another translation inhibitor (refer to Section 1.3.2) with a very similar mode

of action to tetracycline whose effects on promoter activity were studied previously [60]. We

test effects of a relatively high dose (12 µM) of chloramphenicol, similar to the ”high” dose

of tetracycline used earlier. Remarkably, we discover that even though both treatments cause

similar reductions in the elongation rate (by approximately 30%; Figures 5.2C and 5.6C) and

a similar increase in mean cell length (from 2.5-3.0 to 3.2-3.5 µm; Figure C1, Appendix

C), chloramphenicol causes an increase in the activity of the ribosomal P1 promoter. This is

opposite to the response of this promoter to (an equivalent) ”high” dose tetracycline (Figure

5.2). Responses to chloramphenicol in both positions are highly consistent between each

other: responses in both Ori and Ter positions increase during the first 2 h of treatment and

then stabilise (with some fluctuations), with response in Ori being slightly larger (∼+0.07)

compared to Ter (∼+0.06) in the last 5 h of treatment.
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Fig. 5.5 Responses for Ori and Ter positions are generally consistent between all conditions and
most treatment times. Responses in the activity of P1 (circles) and P5 (squares) promoters to ”low”
(blue points) and ”high” (red points) doses of tetracycline lay near the straight dashed line representing
gradient of 1. Marker point size increases with increasing time (1-7 h after media switch). Each point
represents fold change in mean protein concentration for all cells in a given hour (12 measurement
time points per hour). All responses to low dose tetracycline and all shorter-term responses (≤4 h of
treatment) to high dose tetracycline lay on or near a straight line with gradient equal to 1 (Figure 5.5,
dashed diagonal line). That is, these responses generally correlate in both magnitude and timing. In
addition, where responses between positions correlate, response in Ori position is slightly stronger than
in Ter, at most treatment times.

5.3.6 Similar antibiotics can have comparable effects on a promoter activity
but different on cell size and elongation rate

Our final observation is that, remarkably, tetracycline and chloramphenicol – when used at

doses exerting comparable effects on promoter activity (Figure 5.7D) – cause drastically

different effects on cell size and elongation rates (Figure 5.7). Chloramphenicol causes

significant cell filamentation (by up to +0.15-fold; 2.8-3.9 µm in cell length) and a ∼30%

reduction in the cell elongation rate while tetracycline causes a small decrease in cell length (by

only up to -0.05-fold) and a very small and practically negligible change in the cell elongation

rate. It is important to point out that the semi-manual cell size analysis did not corroborate

effects of tetracycline: no effect on cell length was measured there (Figure C1, Appendix C).
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Fig. 5.6 ”High” dose (12 µM) chloramphenicol increases activity of ribosomal promoter in both
positions. Panels show (A) mean protein concentration (cell intensity/area), (B) normalised fold change,
defined as the logarithm of ratio between normalised mean protein concentration before and after the
media switch, (C) mean cell elongation rate (refer to Appendix for details) with whiskers indicating
the widths of the distributions (specifically, 68.2% of data points, i.e. observations within one standard
deviation from the mean), and (D) mean fold changes from (B) for P1-ori and P1-ter plotted against each
other where each point represents fold change in mean protein concentration for all cells in a given hour
(12 measurement time points per hour). Marker point size increases with increasing time (1-7 h after
media switch). Straight dashed line represents gradient of 1. ”High” dose (12 µM) chloramphenicol
causes an increase in the activity of the ribosomal P1 promoter. Responses are comparable for both Ori
and Ter position.

5.4 Discussion

5.4.1 Resource allocation at translation inhibition

Bacteria evolved efficient mechanisms of response to changes in their environment. One of

these mechanisms is global transcription regulation where stimuli-sensitive fluctuations in

metabolites such as ppGpp can cause widespread and differential effects on the activity of

a variety of genetic promoters. At translation inhibition, transcription machinery is directed

mostly to ribosomal promoters to compensate for lowered translation rates and thus reduce the

intracellular build-up of amino acids. Consequently, constitutive promoters can experience

changes in their activity caused by intracellular competition for transcription resources as

predicted by the minimal three-component proteome partitioning model.

We observed these effects by monitoring GFP production under control of constitutive and

ribosomal promoters. Following treatment with the ”low” dose of tetracycline, we observed an

increase in the activity of the ribosomal P1 promoter and – to our knowledge, for the first time

– revealed the kinetics of this response in exponentially growing cells. The activity increased

0.05-fold over the first 60 min of treatment and then showed marked fluctuations around this

level (from +0.02 to +0.07-fold) during the next 6 hours of treatment, suggesting prolonged
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Fig. 5.7 Similar antibiotics can have comparable effects on a promoter activity but different on
cell size and elongation rate. Panels show (A) mean cell length of all cells at each measurement
time point and (B) normalised fold change in mean cell length, defined as logarithm of ratio between
normalised mean cell length before and after the media switch, (C) mean cell elongation rate (refer to
Figure C1 Appendix C) with whiskers indicating the widths of the distributions (specifically, 68.2%
of data points, i.e. observations within one standard deviation from the mean), and (D) mean fold
changes from (B) for P1-Ter under tetracycline and chloramphenicol treatment plotted against each
other where each point represents fold change in mean protein concentration for all cells in a given hour
(12 measurement time points per hour). Marker point size increases with increasing time (1-7 h after
media switch). Straight dashed line represents gradient of 1. Low dose (0.09 µM) of tetracycline and a
relatively high dose (12 µM) of chloramphenicol both cause a comparable increase in the activity of the
P1 promoter (in Ter position) but radically different changes in cell length.

adaptation to translation inhibition (Figure 5.3). The highly reversible nature of permeation

of tetracycline through bacterial membranes and of binding to its target, can at least partially

explain the delayed onset of effects and fluctuations in the response. In agreement with these

findings, we observed similar kinetics of response also to chloramphenicol, another reversible

translation inhibitor.

By normalising responses by dose potency (antibiotic-induced reduction in growth rate or

cell elongation rate), we compared the effects of tetracycline to the effects of chloramphenicol

reported by Hwa et al., who used the latter antibiotic to inhibit translation and measured

(in bulk) the RNA/protein ratio, which directly reported for the mass fraction of ribosomes

in the cell. We revealed that tetracycline and chloramphenicol (at equivalent doses) caused

comparable increases (∼0.05-fold and ∼0.03-fold, respectively) in the ribosome concentration.

We speculate on the origins of this small difference in Section 5.4.3.

In order to compare directly our findings to literature, we challenged bacteria with a 12

µM dose of chloramphenicol and observed an increase in the activity of the P1 promoter of

up to 0.08-fold. By normalising responses by the dose potency, we revealed that Hwa et al.

observed, at an equivalent dose, a ∼0.16-fold increase in the RNA/protein ratio. This difference
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between our studies may originate from the fact that our measurements were performed on

exponentially growing cells while the cited work used values averaged along the growth curve

(total RNA and protein assayed across a range of OD600).

5.4.2 Effects of gene length and the processivity of translation

Generally, activity of a constitutive promoter is expected to decrease in response to translation

inhibition as predicted by the three component partition of the proteome model and as shown

previously for β -galactosidase production under chloramphenicol treatment [60]. Seemingly

contradicting this prediction, we observed a tetracycline-induced increase (up to 0.08-fold) in

the P5 promoter activity. This apparent contradiction can be explained with translation effects.

As the processivity of translation (number of codons successfully translated into amino acids

per unit time) decreases exponentially with increasing gene length [173], the probability to

finish translation of a long gene is lower compared to a shorter gene. Consequently, translation

inhibition will decrease the rate of expression of the longer gene to a greater extent.

This was recently demonstrated experimentally for two reporter proteins (a GFP and

β -galactosidase), characterised by a ∼4-fold difference in their amino acid length and whose

expression was under control of the constitutive P5 promoter. Despite competition for tran-

scription resources at translation inhibition, the shorter reporter protein (GFP) still showed an

increase in its intracellular concentration as its production rate was higher than its dilution rate.

The opposite was true for the longer reporter protein [private conversation with Dr Bianca

Sclavi, ENS Cachan, Université Paris-Saclay].

5.4.3 Response kinetics may be affected by antibiotic reversibility

Despite the consistent effects discussed above and a general similarity in the pharmacology,

tetracycline and chloramphenicol showed a number of striking differences in their effects. We

observed that equivalent doses (limiting growth to a comparable degree) of the two antibiotics

caused drastically different effects on promoter activity. Tetracycline decreased significantly the

GFP production rates, regardless of which promoter type controlled its transcription (Figures

5.1 and 5.2), while chlorampenicol caused an increase in the P1 promoter activity (Figure 5.6).

Although reversible translation inhibitors such as tetracycline and chloramphenicol cause

a gradual decline in translation rates as a function of dose (in contrast to irreversible transla-

tion inhibitors, which cause a sharp decline above a critical dose) [114], a sufficiently high

intracellular antibiotic concentration may effectively shut down the compensatory ribosome

production. The ability to elicit such a compensatory response depends also on the degree

of antibiotic reversibility. For two antibiotics of higher and lower reversibility present at the

same concentration in the cell, the fraction of free (not inhibitor-bound) ribosomes capable

of compensatory production will be higher at any moment for the relatively more reversible

one, speeding up the compensatory response. Further, since transport of molecules such

as antibiotics across bacterial membranes may be metabolically regulated [113], change in
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nutrient quality may affect the degree of antibiotic reversibility. Scott et al. showed that a

reduction in nutrient quality caused an increase in the critical reversibility of chloramphenicol

(factoring in its transport across the cell membrane and binding to ribosomes) [114].

Consequently, since our experiments involving chloramphenicol used media without

casamino acids (CAAs) and tetracyline experiments used media with CAAs (not affecting pre-

treatment growth rates significantly), it is possible that this difference resulted in a relatively

lower reversibility of tetracycline action and the observed decrease in the activity of both

promoters in response to the high tetracycline dose during the experiment. At this dose,

tetracycline saturated most ribosomes (lower reversibility) shutting down most of protein

synthesis and caused a slow compensatory ribosome production while an equivalent dose of

chloramphenicol was far from saturating most ribosomes (higher reversibility) resulting in a

quicker compensatory ribosome production, as observed experimentally in this work.

As a result, only after we lowered the tetracycline dose (10-fold), we observed compara-

ble response kinetics and measured an increase in the P1 promoter activity caused by both

antibiotics (discussed earlier; refer to Section 5.4.1). While the two antibiotics when used at

different doses caused similar changes to the promoter activity, they affected the cell elongation

rates and sizes differently, as expected: chloramphenicol caused a significant reduction in

the elongation rate and considerable cell filamentation while tetracycline caused very small

reductions in the elongation rate and cell size. Chloramphenicol-induced filamentation of

bacterial cells was reported before and although its mechanism is not fully understood, it can

be a result of erroneous synthesis of the divisome proteins [174].

5.4.4 Responses from promoters in different genomic positions are generally
consistent but responses from Ori tend to be larger than from Ter

The fundamental question asked in this PhD work was how different antibiotics can affect the

physical properties (Chapter 3 and 4) of the genetic loci (and the cytosol) and whether these

effects may affect their biological function. In this Chapter, we discovered that responses to

various doses of tetracycline in the activity of ribosomal and constitutive promoters generally

correlated between the promoter positions in the genome, in both response magnitude and

timing. At the same time, we noticed that wherever there was a general consistency in effects

from both positions, responses from the Ori position were (by a small degree but consistently)

larger than from Ter.

We speculate that the observed general genome-wide consistency in effects reflects the

global structure of the chromosome as a compacted ”polymer in a viscoelastic medium”,

while the systematic differences in the magnitude of responses from individual loci originate

from the combined effect of several local factors: higher gene copy number and DNA gyrase

concentration in the Ori half of the genome, and an uneven NAPs distribution along the genome:

for example, preferential clustering of upregulated genes (including the rRNA operons) around
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the OriC site by HU and the preferential formation of gene-silencing extensive binding domains

in the Ter half of the genome by H-NS.



Chapter 6

Conclusions and future work

This PhD work contributed to the much needed systems-level understanding of bacterial

responses to antibiotics. First, we improved the precision of ”microrheology” measurements

developing a novel data treatment procedure. This way we empirically accounted for marker

photo-bleaching and size-displacement dependence and, as a result, enabled comparisons

of long term (several hours) effects of different antibiotics. Similar studies in the past [13–

15, 21, 22, 42] were limited to single time-point measurements and did not consider these

significant corrections. Applying the procedure to control (not treated) data sets revealed, for

the first time, the stable nature (over several hours in exponentially growing cells) of position-

dependent differences in the physical organisation of the chromosome reported previously [14]

and possible growth-rate dependent effects on loci motility.

Second, by performing high-throughput and high-precision intracellular marker tracking,

we discovered that sublethal doses of ciprofloxacin, rifampicin, and vancomycin as well as

hyperosmotic shock conditions caused small but consistent changes (unique to each treatment

agent) to the physical organisation of chromosomal Ori2 and Ter3 loci and the cytosol. We

revealed strong correlations between the effects in different parts of the chromosome and

between the chromosome and cytosol, and proposed specific mechanisms – consistent with

the current physical view of the bacterial chromosome – on how different antibiotics can exert

observed effects. It is for the first time that the physical chromosomal and cytosolic responses

to a range of sublethal treatments were characterised systematically.

Finally, we linked the biophysical observations with gene expression effects. By per-

forming high-throughput single-cell level promoter activity measurements during exposure

to antibiotics, we revealed that the relationship between position of a gene and response in

its activity to treatment may reflect the globally consistent but locally modulated structure

of the chromosome. In addition, we compared responses from constitutive and ribosomal

promoters over long (7 h) treatment times in exponentially growing bacteria and revealed, for

the first time, the kinetics of cellular resource allocation at translation inhibition. We then

proposed how differences in the ”reversibility” of different translation inhibitors may account

for differences in response kinetics.
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Despite the novel and important insights delivered in this work, further research is needed

to gain a more complete understanding of how antibiotics affect bacterial physiology and

behaviour to eventually devise improved methods of infection control. We briefly discuss

possible directions of future research originating from each segment of this work and outline

relevant examples of work already in progress.

Although our empirical data procedure is useful for comparing different data sets and

improves measurement precision, it does not take into account the underlying physics of

marker motion. In the future, a physical model describing tracer size-dependent motions of

chromosomal loci and cytosolic aggregates in live cells may further improve the data treatment

procedure and highlight aspects of biological and physical significance. Ground work in this

field has already been completed by J. Theriot et al. and A. Spakowitz et al., among others,

with recent publications discussing physical models of motion for both chromosomal loci

[13, 175] and cytosolic molecules [15, 176]).

Since bacterial growth and susceptibility to treatments depend heavily on the growth

conditions, future work on the genome and cytosol dynamics needs to include measurements in

bacteria grown in a variety of environments. Such experiments may include microfluidic growth

platforms (e.g., [141, 177, 178]), however, device designs must ensure minimal or no impact

on the bacterial physiology, as explained earlier (refer to Section 4.4.5). Further, alternative

approaches, for example agarose pads systems with permeable membranes for fresh medium

supply and waste removal, can be considered. Moreover, in order to further foster development

of novel antimicrobial therapeutics, studies need to emulate closely clinically relevant treatment

conditions, for example, by enabling monitoring of responses to dynamically modulated

concentrations of a variety of antibiotics, including novel peptide antibiotics (reviewed in [179]),

and their combinations. Use of antibiotic gradients in agarose pads [125] and microfluidic

devices [180] have been explored recently while the recent work of T. Bollenbach et al.,

and other groups, offered improved understanding of the effects of combinatorial antibiotic

therapies (e.g., [117]).

In addition, in order to better understand relationships between the structures and functions

of the genome and cytosol, fluorescent tagging of multiple markers per cell is necessary to

reduce strain-dependent bias and to provide insights on real-time interactions between different

cellular components. This has been achieved in bacteria using modern genetic engineering and

automated high-resolution microscopy methods (e.g., [181]). Moreover, researchers should aim

for complete characterisation of marker motion and thus compute – in addition to the MSD and

where relevant – the radius of gyration, length of confinement, eccentricity levels, and elastic

properties of individual markers. Robust analytical workflows for the analysis of single-particle

trajectories have been developed (e.g., [182]). Furthermore, other loci tagging techniques

such as the ParB-parSpMT 1 system [183] can be explored to minimise label-dependent effects.

Additionally, changes to local physical properties should be complemented with measurements

of the global macromolecular composition of the cell such as changes to the total protein

concentration and – where relevant – total RNA and ribosome concentrations. Methods for
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measuring macromolecular composition in bulk cultures have long been established (e.g.,

[184, 185]) and novel approaches of single-molecule sensitivity are emerging (e.g., [186]).

Single-cell level gene expression studies should take into account the above considerations

regarding growth and treatment conditions and, ultimately, aim for correlating directly ”biolog-

ical” effects with the ”physical” ones. For example, characterising gene expression kinetics

as a function of the genome and cytosol dynamics will provide a more holistic understanding

of gene regulation mechanisms. This can be achieved directly, with real-time reporting on

promoter activity and marker dynamics using multi-colour labelling and automated microscopy

systems and indirectly with single-cell level ’-omics’ measurements (reviewed in [187]), ideally

performed on selected cells whose physical properties were previously measured (for example,

in a microfluidic device). Another approach, where heterogeneous populations of bacteria with

pre-determined (fluorescently-labelled) genotypes are investigated at a single-cell level has

been recently explored [188].

Studies should include resistant strains and, ideally, measure changes in variables as a

function of resistance levels. Experimental techniques for controlled resistance development

have been explored (e.g., [125]). Understanding how resistance emerges and spreads in

temporal and spatial dimensions should remain key area of microbiological research. In

addition to resistance however, future experiments should focus on responses from ’tolerant’

(or ’persistent’) bacterial subpopulations. N. Balaban et al. and K. Gerdes et al., among others,

have completed ground work on the experimental methods of tolerant bacteria determination

[129] and the characterisation of some of the molecular mechanisms underlying tolerance

emergence [77, 132, 111, 189, 190], including the causal relationship between tolerance and

resistance [191].
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Appendix A
Supplementary materials for Chapter 3

Comparison of cell length and elongation rate between the two growth conditions

Fig. A1 Comparison of cell length and elongation rate between the two growth conditions. Mean
cell lengths (black solid lines) and elongation rates (blue dashed lines) are plotted over experiment
time. Cell lengths were measured semi-manually for not treated (control) Ori2 cells grown on agarose
pads (left; 691 cells measured from 3 biological replicates) and in microfluidic device (right; 519 cells
measured from a single biological replicate). For microfluidic device, measurements were performed
only from 1 h before and up to 2 h after media switch time. Cell lengths and elongation rates are
generally comparable between the two growth conditions, however, cells grown in microfluidic device
consistently appear to have larger (∼1.3 µm h−1) elongation rates compared to agarose pads (∼1.0 µm
h−1).
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Photo-bleaching profile of an example cytosolic aggregate data set

Fig. A2 Example data set of µNS-GFP cytosolic aggregates before and after photo-bleaching
correction. We calculate marker population bleaching rate and use it to calculate marker intensities.
Plots show data for an example control (no drug) µNS-GFP sample. (A) Normalised log-normal marker
intensity distributions for different experiment time points (20-120 min) (for function fitting details
see Supplementary Materials). Part of the high end of the distribution tails is not shown. Dashed
lines show means of the fitted distributions to demonstrate intensity-time dependence caused by photo-
bleaching. (B) Distribution mean values from (A) over experiment time fitted with an exponential
function (Equation A2, blue line). (C) Normalised log-normal marker intensity distributions for different
experiment time points after calculating individual marker intensities.

Function fitting for data treatment

Marker intensity distribution and photo-bleaching profile fitting

To compare loci dynamics at various measurement times, effects of photo-bleaching must be

accounted for first. We start by plotting frequency distributions of recorded loci intensities for

individual measurement time points. We apply a cut-off to our intensity data at 100 AU as

markers below this intensity value show significant static resolution errors, as shown previously.

For this reason, we fit the data by generating maximum likelihood estimates of mean (µ) and

standard deviation (σ ) and then fit a log-normal probability density function, truncated at 100

AU, and then renormalized so that it integrates to one:

f (x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

1− 1
σ
√

2πx

∫ x
0

e
−(ln(t)−µ)2)

2σ2

t dt

, (A1)

The decay in distribution means (dashed vertical lines in Figure 2A and black solid circles

in Figure 2B in main text) represents population photo-bleaching profile that can be fitted

(Figure 2B) with an exponential function with a free baseline parameter for chromosomal loci

(Equation 2, main text) or without a baseline parameter (for cytosolic aggregates to determine

photo-bleaching rate):

It = I0e(−λ (t−t0)), (A2)
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Fig. A3 Locus intensity distributions of an example Ori2 loci sample for individual measurement
time points. Distribution means are represented with dashed vertical lines.

where It is locus intensity at time t, I0 is initial locus intensity at time t0, t0 is the initial

measurement time (fixed at 20 min for all experiments), and λ is a free fitting parameter

representing the photo-bleaching rate. For each tracked locus, we use its population photo-

bleaching rate, λ , to evaluate, using either Equation 2 (for chromosomal loci) or Equation A2

(for cytosolic aggregates), its original intensity (pre-photo-bleaching, I0) assuming exponential

decay in intensity.

Marker MSD–size dependence fitting

Once pre-photo-bleaching intensity of each locus at each measurement time point is determined,

we proceed to correct for locus MSD–size dependence. Procedure is applied to MSDs at five

arbitrary lag times (0.1, 1.0, 5.0, 10, and 14 s). For each lag time, we first arbitrarily segregate

loci according their intensities by binning into 20 logarithmically-spaced bins along a 100-

4,000 AU range and evaluate median MSD for each bin. We select medians for bins where
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the number of loci is equal of larger than the mean number of loci per bin (red solid circles in

Figure 3A, main text) and fit those medians with a custom exponential function:

MSDτ(I) = p1ep2I, (A3)

where MSDτ is MSD at one of the five lag times, τ , as a function of median binned locus

intensity, I, and p1−2 are free fitting parameters.
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Effects of photo-beaching and marker size correction on the three markers in
control condition

Fig. A4 Effects of correction on the control data sets. Panels show scatter-plots of the MSD(10 s)
over loci intensities with overlaid fitted exponential curves (for function fitting details see Supplementary
Materials) and variable distributions in side panels (tails of distributions not shown; agarose pads data
only) for control (not treated) (A) Ori2, (B) Ter3, and (C) µNS data sets as indicated in the figure.
Initial measurement time point (20 min) is in blue and the final one (120 min) in red. Corrected
variables are indicated with a star sign (*). Top: ”Raw” (before correction) data. Fitted curves decrease
monotonically with increasing locus intensity and the intensity distribution peaks shift over time, both
indicating photo-bleaching. Bottom: Corrected data. Curves are approximately flat indicating reduced
MSD-size dependence and show no time-dependence. Overlapping locus intensity distribution peaks
and median MSD*(10 s) indicate almost no time-dependence in locus intensity and motility.
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Marker size corrections performed on Ter3 loci data with Ori2 model data is
more effective than if performed with Ter3 model data

Fig. A5 Marker size corrections performed on Ter3 loci data with Ori2 model is more effective
than if performed with Ter3 model data.
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Photo-bleaching and marker size correction effects on MSD(τ) for control (not
treated) samples for all lag times, measurement time points, markers, and growth
conditions.

Fig. A6 Photo-bleaching and marker size corrections allows for accurate long (several hours)
measurements of short time-scale marker dynamics. (A) Raw and (B) photo-bleaching and marker
size corrected median ensemble-averaged MSD(τ) for 9 biological replicates for different measurements
times (20 - 120 min) for chromosomal Ori2 loci (top panels), Ter3 loci (middle panels), and a cytosolic
aggregate µNS (bottom panels). 10 s lag time indicated with vertical dashed lines. (C) Raw (grey) and
corrected (black) MSD(10 s) over 2 h.
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Fig. A7 Photo-bleaching and marker size corrections allows for accurate long (several hours)
measurements of short time-scale marker dynamics. (A) Raw and (B) photo-bleaching and marker
size corrected median ensemble-averaged MSD(τ) for 9 biological replicates for different measurements
times (1 - 7 h) for chromosomal Ori2 loci (top panels), Ter3 loci (middle panels), and cytosolic aggregates
µNS (bottom panels). 10 s lag time indicated with vertical dashed lines. (C) Raw (grey) and corrected
(black) MSD(10 s) over 7 h.



94 Appendix B

Appendix B
Supplementary materials for Chapter 4

Track and biological replicate statistics
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Table B1 Number of collected and analysed tracks and biological replicates for individual ex-
periments. Numbers represent sums of tracks acquired at all measurement time points (6 every 20 min
for agarose pads and 7 for microfluidic device every 1 h). At agarose pads experiments, for each marker,
three experiments, each for 3 (chromosomal loci) or 2 (cytosolic aggregates) biological replicates (refer
to Methods for details) In total, at least 23,322 (rifampicin) and up to 36,303 (ciprofloxacin) tracks were
collected per treatment condition in both growth conditions. The total of 180,476 tracks were collected
and analysed for entire work.
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Photo-bleaching profiles of all data sets

Fig. B1 Photo-bleaching profiles of Ori2 loci, biological replicate 1/3, in all treatment conditions.
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Cell lengths, elongation rates, and widths for all strains and treat-
ment conditions using two measurement methods (semi-manual and
SuperSegger software)

Fig. B15 Cell lengths measured semi-manually. Strains are indicated at the top of each column of
plots; treated with ciprofloxacin (orange), rifampicin (yellow), tetracycline (violet), vancomycin (green),
and sorbitol (red); and the controls (blue).
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Fig. B16 Cell elongation rates measured semi-manually. Strains are indicated at the top of each col-
umn of plots; treated with ciprofloxacin (orange), rifampicin (yellow), tetracycline (violet), vancomycin
(green), and sorbitol (red); and the controls (blue).
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Fig. B17 Numbers of cells measured semi-manually for cell size analysis of phase contrast images
(cells grown on agarose pads).
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Fig. B18 Cell lengths measured with SupperSegger software. Strains are indicated at the top of
each column of plots; treated with ciprofloxacin (orange), rifampicin (yellow), tetracycline (violet),
vancomycin (green), and sorbitol (red); and the controls (blue).
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Fig. B19 Cell elongation rates measured with SupperSegger software. Strains are indicated at
the top of each column of plots; treated with ciprofloxacin (orange), rifampicin (yellow), tetracycline
(violet), vancomycin (green), and sorbitol (red); and the controls (blue).
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Fig. B20 Cell widths measured with SupperSegger software. Strains are indicated at the top of
each column of plots; treated with ciprofloxacin (orange), rifampicin (yellow), tetracycline (violet),
vancomycin (green), and sorbitol (red); and the controls (blue).
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Fig. B21 Vancomycin changes cell morphology. Example phase contrast images of three E. coli
strains under no treatment and sub-lethal vancomycin. Treatment with vancomycin affects cell shape
causing unusual bending of cells.
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Appendix C
Supplementary materials for Chapter 5

Semi-manual analysis of cell lengths and elongation rates (for cells grown in
microfluidic device)

Fig. C1 Semi-manual analysis of cell lengths and elongation rates. Effects on (A) cell length and
(B) elongation rate of all treatment conditions. Cell lengths were measured manually at 36 frames (1
h before and 2 h after the media switch), as detailed in Methods. Elongation rate is the difference in
cell length between two consecutive frames. Mean cell length and elongation rates for two closest data
points were plotted for clarity.
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Fig. C2 Number of cells measured semi-manually for cell size analysis in each treatment condi-
tion (for cells grown in microfluidic device).
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All variables (cell intensity, protein concentration, area, length, width, and count)
for all promoter types, chromosomal positions, and treatment conditions

Fig. C3 Response of the P5 strain to a high dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C4 Response of the P1 strain to a high dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C5 Response of the P5 strain to a low dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C6 Response of the P1 strain to a low dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C7 Response of the P5 and P1 strains with promoters in Ter positions to a low dose of
tetracycline. Absolute values of cell intensity, protein concentration, area, length, width, and count are
shown across full experiment time.
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Fig. C8 Response of the P5 and P1 strains with promoters in Ori positions to chloramphenicol.
Absolute values of cell intensity, protein concentration, area, length, width, and count for are shown
across full experiment time.
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Fold change in all variables (cell intensity, protein concentration, area, length,
and width) for all promoter types, chromosomal positions, and treatment condi-
tions

Fig. C9 Response of the P5 strain to a high dose of tetracycline. Fold change in cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C10 Response of the P1 strain to a high dose of tetracycline. Fold change in cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C11 Response of the P5 strain to a low dose of tetracycline. Fold change in cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.
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Fig. C12 Response of the P1 strain to a low dose of tetracycline. Fold change in cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time.



129 Appendix C

Fig. C13 Response of the P5 and P1 strains with promoters in Ter positions to tetracycline.
Absolute values of cell intensity, protein concentration, area, length, width, and count for are shown
across full experiment time.
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Fig. C14 Response of the P1 strain to chloramphenicol. Fold change in cell intensity, protein
concentration, area, length, width, and count for all chromosomal positions are shown across full
experiment time.
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Fig. C15 Response of the P5 and P1 strains with promoters in Ori positions to chloramphenicol.
Absolute values of cell intensity, protein concentration, area, length, width, and count for are shown
across full experiment time.
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All variables (cell intensity, protein concentration, area, length, width, and count)
for all promoter types, chromosomal positions, and treatment conditions with
standard deviations of the mean plotted as errorbars

Fig. C16 Response of the P5 strain to a high dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time with standard deviations of the mean plotted as errorbars.
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Fig. C17 Response of the P1 strain to a high dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time with standard deviations of the mean plotted as errorbars.
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Fig. C18 Response of the P5 strain to a low dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time with standard deviations of the mean plotted as errorbars.
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Fig. C19 Response of the P1 strain to a low dose of tetracycline. Absolute values of cell intensity,
protein concentration, area, length, width, and count for all chromosomal positions are shown across
full experiment time with standard deviations of the mean plotted as errorbars.
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Fig. C20 Response of the P5 and P1 strains with promoters in Ter positions to a low dose of
tetracycline. Absolute values of cell intensity, protein concentration, area, length, width, and count are
shown across full experiment time with standard deviations of the mean plotted as errorbars.
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Fig. C21 Response of the P5 and P1 strains with promoters in Ori positions to chloramphenicol.
Absolute values of cell intensity, protein concentration, area, length, width, and count are shown across
full experiment time with standard deviations of the mean plotted as errorbars.
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Appendix D
Work completed post PhD thesis submission

1. Growth condition dependent effects
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experiments). Conversely, cytosolic µNS aggregates show a significant ∼2-fold decrease in MSD in the
microfluidic device, likely due to cell compression by the walls of the micrchannels. Similar reduction
in motility of the cytosolic µNS aggregates has also been observed recently by Yu et al. under 10 psi
compression.
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Fig. D3 Motility of chromosomal loci and cytosolic aggregates generally increases as a function
of temperature. Each point represents the mean MSD of 100-260 makers for five different lag times.
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Fig. D4 Bacteria in microfluidic device are systematically narrower compared to agarose pads.
(A) Three consecutive frames (5 min apart) showing images in the fluorescence mode of two example
microchannels of a customised microfluidic device filled with exponentially growing E. coli bacteria
(MG1655 rrnBP1-gfp). Cells leaving the microchannels (indicated with blue arrows) appear wider that
those inside the microchannels suggesting that bacteria may be subjected to significant mechanistic
forces when growing inside the microfluidic device. Mean cell widths were calculated for cells growing
on (B) agarose pads (for first 20 min experiment before bacteria formed dense microcolonies) and
(C) inside the microchannels of the microfluidic device (for the 6th hour of experiment, after 5 h
of equilibration inside the device). Two methods were used to determine widths of imaged cells:
semi-manual (method 1) and in-house cell segmentation (method 2). For the measurement method
details refer to Methods. When working with images of agarose pad micro-colonies, method 2 was
applied to images acquired only at the initial measurement time point (Ttreat = 20 min). While the first
method systematically measures smaller widths, both methods show that mean width of cells grown in
microfluidic deveice is smaller by ∼10% (method 1) and ∼20% (method 2) compared to widths of cells
grown on agarose pads.
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Fig. D5 Step size distributions show evidence of cell compression inside microfluidic device. Pan-
els show normalised probability distributions of step sizes at τ=1 s along a fixed x-direction normalised
by standard deviation for (A) Ori2 and (B) Ter3 chromosomal loci, and (C) cytosolic µNS aggregates,
tracked on agar and in microfluidic device (magenta). Data is binned into an arbitrary number of 32
linearly spaced out bins; bins containing at least 50 steps are shown. The solid lines represent Laplacian
fits of agar data. In microfluidic device, the fraction of longer steps increases (and the fraction of
shorter steps decreases) for Ter3 and also – to some extent – for cytosolic µNS aggregates, suggesting
significant cell compression in the microchannels. Similar effect on step-size distribution of cytosolic
µNS aggregates has been observed recently by Yu et al. No characteristic effects on the step-size
distribution of Ori2 markers was observed.
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2. Crowding levels under treatment conditions measured in bulk
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Fig. D6 Treatment-induced changes to crowding levels of cytosol are consistent with dynamics
responses. (A) Total soluble protein concentration in cell lysate after 1 h of antibiotic treatment mea-
sured with Bradford test. Treatment conditions include: CTL, control (not treated); CIP, ciprofloxacin;
RIF, rifampicin; VAN, vancomycin; and SOR, sorbitol. (B) Total protein mass per cell. Assuming
108 cells in culture of OD=1 and using mean cell volume calculated from the cell dimensions from
microscopy images acquired in each condition after 1 h of treatment on agarose pads (Supplementary
Materials, Figures B15 and B20), total number of cells in each sample was calculated to obtain total
soluble protein mass per cell. (C) Total protein concentration as mass of protein per µm3 of cell,
representing the intracellular crowding level. Using total protein mass per cell and mean cell volume,
protein mass per µm3 of cell was calculated for each condition. (D) Change in the crowding level
relative to the control (not treated) sample. Error bars represent standard deviation from the mean for 5
biological replicates (refer to Methods for details). (E) Scatter plot of the logarithm of fold change in
MSD(10 s) after 1 h of treatment vs fold change in crowding levels for the three tested strains (Ori2,
circles; Ter, squares; µNS, triangles) under the four treatments. The dashed diagonal line represents a
gradient of −1. Changes to the crowding levels are generally consistent with the dynamics responses
shown earlier (Figure 4.3). That is, marker motility is generally inversely proportional to the crowding
level.
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