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Voltage-dependent Na+ channel activation underlies action potential generation funda-
mental to cellular excitability. In skeletal and cardiac muscle this triggers contraction via
ryanodine-receptor (RyR)-mediated sarcoplasmic reticular (SR) Ca2+ release. We here
review potential feedback actions of intracellular [Ca2+] ([Ca2+]i) on Na+ channel activity,
surveying their structural, genetic and cellular and functional implications, translating
these to their possible clinical importance. In addition to phosphorylation sites, both
Nav1.4 and Nav1.5 possess potentially regulatory binding sites for Ca2+ and/or the
Ca2+-sensor calmodulin in their inactivating III–IV linker and C-terminal domains (CTD),
where mutations are associated with a range of skeletal and cardiac muscle diseases.
We summarize in vitro cell-attached patch clamp studies reporting correspondingly
diverse, direct and indirect, Ca2+ effects upon maximal Nav1.4 and Nav1.5 currents (Imax)
and their half-maximal voltages (V1/2) characterizing channel gating, in cellular expression
systems and isolated myocytes. Interventions increasing cytoplasmic [Ca2+]i down-regu-
lated Imax leaving V1/2 constant in native loose patch clamped, wild-type murine skeletal
and cardiac myocytes. They correspondingly reduced action potential upstroke rates and
conduction velocities, causing pro-arrhythmic effects in intact perfused hearts.
Genetically modified murine RyR2-P2328S hearts modelling catecholaminergic poly-
morphic ventricular tachycardia (CPVT), recapitulated clinical ventricular and atrial pro-
arrhythmic phenotypes following catecholaminergic challenge. These accompanied
reductions in action potential conduction velocities. The latter were reversed by flecainide
at RyR-blocking concentrations specifically in RyR2-P2328S as opposed to wild-type
hearts, suggesting a basis for its recent therapeutic application in CPVT. We finally
explore the relevance of these mechanisms in further genetic paradigms for commoner
metabolic and structural cardiac disease.

Introduction
Transmembrane action potential initiation and propagation, mediated by surface membrane Na+

channel (Nav) proteins, is strategic to activation in excitable cells, of which skeletal and cardiac myo-
cytes constitute important examples. The activation process feeds forward into a ryanodine receptor
(RyR) mediated release of sarcoplasmic reticular (SR) store Ca2+. The consequent elevation of cyto-
solic Ca2+ concentration [Ca2+]i is central to initiation of myocyte contraction. Ca2+ is additionally a
strategic second messenger with signalling actions regulating protein activity through widespread cell
types. This article addresses recent interest in possible Ca2+ feedback signalling on the Na+ channel
itself, its possible physiological significance, and implications for human disease in skeletal and
cardiac muscle. We relate the voltage sensing, and channel opening and inactivation processes in skel-
etal, Nav1.4 and cardiac Nav1.5 to their potential regulation at direct and indirect Ca2+ binding and
phosphorylation sites. This includes its III–IV linker region and its interactions with its C-terminal
domain, whose different regions are associated with widespread mutations related to skeletal and
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cardiac muscle disease. We examine in vitro studies in expression systems exploring for direct and indirect
effects of Ca2+ on channel properties, then extend these to physiological studies in both skeletal and cardiac
myocytes in situ, from experimental platforms using normal hearts, and those modelling genetic Ca2+ homeo-
static disease, broadening these to genetic exemplars for more common human disease types.

Membrane voltage-gated sodium channels underly
excitable activity
Voltage-gated sodium channels (Navs), expressed in excitable cells including neurons and skeletal and cardiac
myocytes, initiate action potentials underlying electrical excitation and its propagation. Their principal
α-subunits (Mwt ∼220–250 kDa) each include four homologous domains, DI-IV, each containing six trans-
membrane α-helices, S1–S6, following a S0 helix just preceding the S1 segment (Figure 1A). High-resolution
structures obtained by cryo-electron microscopy (cryo-EM) of Nav1.4, Nav1.5 (Figure 1B) and other Nav sub-
types demonstrate a highly conserved fourfold pseudosymmetric structure, with voltage sensing helices S1–S4
at the outer rim. Positively charged amino acid residues along one face of each S4 helix permit its outward rota-
tion upon membrane depolarization. Transitions in the DI, DII and DIII S4 helices drive conformational
changes in the tethered S5 and S6 helices forming the central pore region within each domain. These open the
central, ion-selective pore, transitioning the channel from its resting, closed to an open, activated, state. The
latter permits the inward, depolarizing, transmembrane Na+ fluxes driving cell excitation.
The slower outward movement of the DIV S4 helix then facilitates binding of a hydrophobic IFM (isoleu-

cine, phenylalanine, and methionine) motif within the cytoplasmic III–IV linker (Figure 2A) to a hydrophobic
pocket between domains III and IV (Figs. 1B and 2B) blocking the pore in the channel inactivated state, and
restoring the resting membrane potential [1,2]. Protein purification inevitably requires cell lysis, dissipating the
cell membrane potential: currently available Nav channel cryo-EM structures likely correspond to the

Figure 1. Structure of the Nav channel.

(A) Key structural features of the Nav channel α-subunit. The four internally homologous domains, DI-IV, are colour-coded, with

the S0 and transmembrane helices, S1–6, voltage-sensing domain (VSD), pore domain (PD), C-terminal domain and

intracellular DIII-DIV linker region as indicated. (B) Cryo-EM structures of human Nav1.5 (PDB: 7dtc) and human Nav1.4 (PDB:

6agf ) in top view and human Nav1.5 in side view. Domains colour-coded as in (A). The intracellular DIII-DIV linker is shown in

the side view in light grey.
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inactivated state [2–6]. Indeed, these structures represent the IFM motif, as expected, engaged with an allosteric
intracellular DIII site. In addition however, two separate, short α-helical regions of the DIII-DIV intracellular
linker, site A and site B (equivalent to helix 0 of DIV: Figure 1A), make contacts with intracellular sites on
DIV, probably further stabilizing the inactivated state (Figure 2A,B) [6]. However, if the engagement of the
DIII-DIV linker and IFM motifs with these allosteric sites is indeed critical for promoting the inactivated state,
then they must adopt different conformations in the resting and open states.
Nav channels also include a regulatory, globular, intracellular C-terminal domain (CTD), highly conserved

amongst Nav subtypes (Figure 3A), connected to the DIV S6 helix via a flexible and disordered linker
(Figure 1A). The CTD begins from amino acids 1599 in Nav1.4 and 1773 in Nav1.5, with a sequence of five
α-helical regions fitting the consensus sequence for an EF-like hand (EFL) (Figure 3A,B) [7], with the latter
part a fibroblast growth factor (FGF) homologous factor (FHF) binding site. It is followed by a sixth α-helical
region (Figure 3A,B) and ends with a more disordered and less-well structurally characterized region containing
short motifs likely controlling cytoskeletal binding and ubiquitination [8], including a Nedd4-like binding
domain, PY motif domain and a syntrophin-anchoring PDZ binding motif (Figure 3A) [9].
NMR analysis of purified EFLs indicates the presence of a prominent cleft in the EFL, bounded by α-helices

[10]. This cleft can complex with Site A of the DIII-DIV linker (Figure 2A,B). Modelling of dynamic interactions
between the DIII-DIV linker and the CTD through the Nav channel cycle in mammalian Nav1.7 and cockroach
NavPas channel structures [11] suggested that in the channel closed state, acidic residues on the CTD EFL
domain form salt bridges with basic residues on the DIV S4 helix, whilst Site A of the DIII-DIV linker is held in

Figure 2. The intracellular DIII-DIV linker.

(A) Sequence alignment of the DIII-DIV linkers from Nav1.5 and Nav1.4. Identical residues indicated by (*), conservative changes by (:) and

semi-conservative changes by (.) below the sequence alignments. IFM motifs indicated in red. Site A and site B helices boxed. In the Nav1.5

sequence, examples of residues whose mutations are associated with Long QT syndrome (LQT3) indicated by (†) and with Brugada syndrome (BrS)

by (#). LQT3 and BrS-associated residues implicated in binding of the DIII-DIV linker to the α-subunit and to Ca2+-calmodulin coloured orange and

sky blue, respectively. In the Nav1.4 sequence, residues whose mutations are associated with myotonia indicated by (|) and with paramyotonia

congenita (PMC) by (‡). (B) Expanded view of the Nav1.5 DIII-DIV linker (light grey), showing locations of the key residues coloured in (A), see text

for details. (C). Binding of site A helix and site B helix to Ca2+-calmodulin C-lobe and N-lobe, respectively. Note the location of key site A and B

residues coloured as in (A) and (B).
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the CTD EFL cleft. As a consequence, the IFM motif is physically constrained and prevented from prematurely
engaging with the inactivated state [11,12]. Upward movement of the DIV S4 helix accompanying channel
opening, disrupts these salt bridges. CTD dissociation from the DIII-DIV linker then frees the IFM motif permit-
ting transition into the inactivated state (Figure 4A). Most of the cryo-EM structures thus do not show a resolved
CTD [2–5]. This suggests that in the inactivated state, the CTD is free to adopt multiple conformations with
respect to the bulk of the Nav channel, constrained only by its tethering to the S6 helix [11].

Intracellular Ca2+ as potential Nav modulator
In skeletal and cardiac muscle, the RyR-mediated SR Ca2+ release following Nav1.4 or Nav1.5-mediated
depolarization elevates bulk [Ca2+]i from ∼100 nM to 1–10 mM causing contractile activation. In addition,
recent reports implicated cytosolic Ca2+ in a feedback Nav modulation whether through Ca2+ by itself or fol-
lowing its binding to the modulator protein calmodulin [8,13]. The latter nM-low mM Kd Ca

2+ sensor contains
N- and C-lobes, each possessing two Ca2+-binding EF hands. In turn, Ca2+-free, apo-, calmodulin shows
‘closed’ and ‘semi-open’ states, while Ca2+ bound Ca2+-calmodulin shows ‘open’ and ‘semi-open’ states. EF
hand helix orientations in the ‘open’ and ‘semi-open’ states expose a hydrophobic groove capable of binding
distinct α-helical protein sequence motifs. [14–16].

Figure 3. The Nav channel C-terminal domain (CTD).

(A) Sequence alignment of CTDs from Nav1.5 and Nav1.4. Identical residues are indicated below the sequence alignment by (*), conservative

changes by (:) and semi-conservative changes by (.). Locations of the linker region, EF hand and helix 6 highlighted. The extended region of helix

6 containing sequences implicated in apo- or Ca2+-calmodulin binding coloured cyan. Within this region, the consensus IQ-motif is indicated. In the

Nav1.5 sequence, examples of LQT3 and BrS-associated residues coloured orange and sky blue, respectively. In the Nav1.4 sequence, myotonia

and PMC-associated residues coloured tan and purple, respectively. (B) Comparative structures of CTDs from Nav1.5 (a–c) and Nav1.4 (d,e) with

apo-calmodulin (a,d) or Ca2+-calmodulin (b,c,e), in side view and top view. To emphasize the variety of ways in which calmodulin can bind to helix

6, the EF hands have been removed from the top views and the orientation of each helix 6 structure has been arbitrarily standardized, with Nav1.5

residue R1897 and its Nav1.4 equivalent K1723 placed at 12 o’clock. In the Nav1.5 structures, LQT3 and BrS-associated residues highlighted as

spheres and coloured orange and sky blue, respectively. In the Nav1.4 structures, myotonia and PMC-associated residues highlighted as spheres

and coloured tan and purple, respectively. Ca2+ ions shown as red balls.
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Biophysical studies on isolated protein fragments demonstrate that Site A and Site B of the Nav DIII-DIV
linker bind to the C- and N- lobes of Ca2+-calmodulin, respectively. But this interaction does not occur with the
C- or N-lobes of apo-calmodulin (Figure 2A,C) [17,18]. As noted above, Site A can also bind the CTD EFL cleft.
Interestingly, Nav1.5 DIII-DIV linker and CTD co-precipitation occurs in the presence of Ca2+-calmodulin, but is
inhibited by the Ca2+-chelator, EGTA. This could indicate that Ca2+-calmodulin acts catalytically to load the
DIII-DIV linker onto the CTD [19] (see below).
It had previously been suggested that Nav1.5 CTD EFLs could bind Ca2+ directly [7,9,13]. However, in

Ca2+-binding EF hands, such as those occurring in calmodulin, the Ca2+-chelating acidic residues typically lie
within turn loops between adjacent α-helices. This pattern is not seen in the CTD-EFL domain [10,20,21]. On
the other hand, the CTD, with its significant homologies between Nav subtypes, illustrated for Nav1.4 and
Nav1.5 (Figure 3A), binds calmodulin. So, this is the most likely mechanism by which the CTD senses [Ca2+]i.
The IQ motif within helix 6 of the Nav1.5 CTD [22] (Figure 3A) can bind the apo-calmodulin C-lobe [14].
Additionally, both the EFL domain and the N-terminal of helix 6 can bind the apo-calmodulin N-lobe
(Figure 3Ba). Following Ca2+-calmodulin binding, the IQ motif (Figure 3A) can bind the ‘semi-open state’
Ca2+-calmodulin C-lobe. But now a downstream, slightly overlapping N-lobe binding motif (NLBM)
(Figure 3A) can bind a shifted Ca2+-calmodulin N-lobe (Figure 3Ba,b). An alternative structure (PDB: 6mud)
for the Nav1.5 CTD Ca2+-calmodulin complex is shown in Figure 3Bc [23]. Here, the Ca2+-calmodulin N-lobe
is untethered to the CTD, and the Ca2+-calmodulin C-lobe adopts a strikingly different orientation on helix 6
(Figure 3Bc). However, the CTD construct used in this structure contained a truncated NLBM motif, so that its
binding to Ca2+-calmodulin N-lobe was likely compromised [23]. Interestingly, a BrS mutation A1924T [24]
(Table 1) occurs within the Nav1.5 NLBM site, suggesting that the structure shown in Figure 3Bc could repre-
sent an abortive complex, leading to a BrS phenotype. Nav1.4 lacks a functioning NLBM (Figure 3A), whence

Figure 4. Proposed Nav channel conformational states during the action potential cycle.

(A) Closed (resting), open (activated) and inactivated (refractory) states schematizing relationships between the activating DI-III (right side, orange),

the inactivating DIV (left side, grey) voltage sensing domains, the CTD, and sites A and B of the intracellular III–IV linker. (B) Possible conformational

relationships involving DIII-DIV linker and calmodulin during Nav1.5 recovery from inactivation. (a) Inactivated state, with IFM motif and DIII-DIV

linker fully engaged with the α-subunit and the CTD dissociated from site A. Ca2+ levels are assumed to be elevated following opening of

voltage-gated Ca2+ channels, so that Ca2+-calmodulin binds to helix 6 (PDB structure 4jq0). (b–e) Possible, sequential conformational changes

occurring during the recovery from inactivation steps (see text for details). (f ) Proposed Nav1.5 conformation after return to the closed (resting)

state. Since Ca2+ levels are now low, apo-calmodulin binds to helix 6 (PDB structure 4ovn). Ca2+ shown as red balls.
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Table 1 Disease related C-terminal mutations in the Nav1.4 and Nav1.5 channel Part 1 of 2

Disease
Nav1.4 C-terminal
associated mutations Experimental results References

Hyperkalaemic periodic
paralysis

M1592V (Rojas et al. [77])

Normokalaemic
periodic paralysis

M1592V (Xiuhai et al. [78])

Potassium-aggravated
myotonia (Myo)

Q1633E (Kubota et al. [79])

Paramyotonia
Congenita (PMC)

F1705I (Groome et al. [80])

Disease
Nav1.5 C-terminal
associated mutations Experimental results References

Brugada Syndrome (BrS) T1779M (Kapplinger et al. [81, 89])
E1784K (Kapplinger et al. [81, 89])
L1786EfsX2 (Kapplinger et al. [81])
1795insD Reduced peak INa. ∼7 mV negative shift of steady-state

inactivation and ∼8 mV positive shift of steady-state
activation. Recovery from inactivation slowed

(Bezzina et al. [83],
Kapplinger et al. [81])

Y1795H Accelerated onset of inactivation. Reduced peak INa.
Negatively shifted V1/2 of inactivation. Increased sustained INa.
Promoted entry to an intermediate or slowly developing
inactivated state.

(Rivolta et al. [84])

F1808IfsX3 (Kapplinger et al. [81])
S1812X (Kapplinger et al. [81])
L1825P Drug (e.g., cisapride) induced. Reduced peak INa. Positively

shifted V1/2 of activation. Negatively shifted V1/2 of
inactivation.

(Makita et al. [85], Huang
et al. [26])

E1823HfsX10 (Kapplinger et al. [81])
Q1832E (Kapplinger et al. [81, 89])
C1850S Decreased INa density. ∼11 mV negative shift of V1/2 of

inactivation
(Petitprez et al. [86])

R1860KfsX13 (Kapplinger et al. [81])
V1861I (Kapplinger et al. [81])
K1872N (Kapplinger et al. [81, 89])
S1904L Enhanced late INa due to increased propensity of the Na+

channel to reopen during prolonged depolarization.
(Kapplinger et al. [81, 89])

A1924T ∼9 mV negatively shifted V1/2 of steady-state activation. (Rook et al. [24],
Kapplinger et al. [81, 89])

G1935S (Kapplinger et al. [81, 89])
E1938K (Kapplinger et al. [81, 89])
V1951L (Priori et al. [82])
I1968S Decreased peak INa (Frustaci et al. [87])
F2004L Decreased peak and persistent INa. Increased INa closed state

inactivation. Accelerated slow inactivation accelerated and
delayed recovery from inactivation.

(Bebarova et al. [88],
Kapplinger et al. [89])

F2004V (Kapplinger et al. [81, 89])
F2004dup (Kapplinger et al. [81])
V1777M (Huang et al. [26],

Kapplinger et al. [89])

Long QT Syndrome Type
3 (LQT3)

T1779M (Huang et al. [26],
Kapplinger et al. [89])

E1784K (Huang et al. [26],
Kapplinger et al. [89])

D1790G (Huang et al. [26])
Y1795C Slowed onset of inactivation. Increased sustained INa.

Enhanced entry into an intermediate or slowly developing
inactivated state

(Rivolta et al. [83],
Kapplinger et al. [89],
Huang et al. [26])

Continued
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this shift cannot occur (cf. [23] and it is striking that the rearrangements of calmodulin on the Nav1.4 CTD
helix 6 are noticeably less pronounced compared with Nav1.5 (Figure 3Bd,e))
The CTD and DIII-DIV linker of both Nav1.4 or Nav1.5 show mutations associated with specific disease

phenotypes. These respectively involve skeletal or cardiac muscle electrophysiological function (Table 1) [25].
Interestingly, within the DIII-DIV linker, gain of Nav1.5 function LQT3 mutations cluster in Site A and affect
residues that stabilize DIII-DIV linker binding to the intracellular face of DIV (Figure 2A,B) [26]. In the CTD,
the LQT3 mutants tend to occur on helix 6, within and around the IQ motif anchoring apo-calmodulin, as
well as contact sufaces between helix 6 and the EFL domain [26] (Figure 3A). These mutations are rescued by
overexpressed calmodulin [27].
Contrastingly, loss of Nav1.5 function, Brugada Syndrome (BrS), mutations mainly occur in Site B of the

DIII-DIV linker [26] (Figure 2A). One exception, however, is Site A residue Y1494. Mutations in this residue
are associated with BrS, not LQT3 (Figure 2A). It may be significant that in the presumed inactivated state

Table 1 Disease related C-terminal mutations in the Nav1.4 and Nav1.5 channel Part 2 of 2

Disease
Nav1.5 C-terminal
associated mutations Experimental results References

1795insD ECG: QT prolongation and ST segment elevation. (Bezzina et al. [83],
Huang et al. [26])

D1819N (Huang et al. [26])
L1825P Drug (e.g., cisapride) induced. Slowed INa decay and

prominent TTX sensitive non-inactivating component.
(Makita et al. [85],
Huang et al. [26])

R1826H Slowed INa decay and a 2–3 fold increase in late INa. (Ackerman et al. [90],
Huang et al. [26])

D1839G (Huang et al. [26],
Kapplinger et al. [89])

H1849R Slowed rate of steady-state inactivation. Prolonged action
potential duration and delayed after depolarization.

(Musa et al. [91])

R1897W (Huang et al. [26],
Kapplinger et al. [89])

E1901Q (Huang et al. [26],
Kapplinger et al. [89])

S1904L (Bankston et al. [92],
Kapplinger et al. [89],
Huang et al. [26])

Q1909R (Huang et al. [26],
Kapplinger et al. [89])

R1913H (Napolitano et al. [93])
A1949S (Tester et al. [94])
V1951L (Arnestad et al. [95],

Kapplinger et al. [89])
R1958Q (Tester et al. [94],

Kapplinger et al. [89])
Y1977N (Kapplinger et al. [81])
F2004L Increased persistent INa (Arnestad et al. [95],

Kapplinger et al. [89])
F2004V (Kapplinger et al. [89])
P2006A Increased persistent INa (Kapplinger et al. [89],

Amestad et al. [95])
R2012C (Kapplinger et al. [89])

Atrial fibrillation R1826C (Darbar et al. [96])
V1951L (Darbar et al. [96])
V1951M (Darbar et al. [96])
N1986K (Ellinor et al. [97])
F2004L (Darbar et al. [96])

Sick Sinus Syndrome
(SSS)

D1792N (Selly et al. [98])
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structure, residue Y1494 points away from the inactivation site on the intracellular region of DIV (Figure 2B),
but in the Ca2+-calmodulin C-lobe/Site A complex, it now lies within the protein docking site (Figure 2C) [17].
Thus, BrS and LQT3-associated mutations in Site A, may perturb different molecular contacts. In the CTD,
residues associated with BrS cluster particularly within the EFL cleft (Figure 3A,B). This could compromise the
capture of the DIII-DIV linker and compromise recovery from inactivation (Figure 4A). In Nav1.4, mutations
in two EFL residues, Q1633 and F1705 are associated with myotonia and paramyotonia congenita (PMC),
respectively (Figure 3A). In the Nav1.4 EFL structure, these two residues lie suggestively close to each other,
where they could help stabilize the EFL cleft (Figure 3Bd,e).
In summary: site A of the DIII-DIV linker can bind to an intracellular site on Nav α-subunit DIV, when the

channel is in the inactivated state (Figure 2B). Yet it can also bind to the Ca2+-calmodulin C-lobe (Figure 2C)
and to the CTD-EFL domain, when the channel is in the closed state [11]. Similarly, site B of the DIII-DIV
linker can bind to DIV on the inactivated Nav α-subunit (Figure 2B), but also to the Ca2+-calmodulin N-lobe
(Figure 2C). Furthermore, in several cases, the same amino acid residues contribute to the different binding
states (Figure 2B,C). Thus, within a given channel, these interaction states must be mutually exclusive. Finally, as
noted above, the cryo-EM structure (Figure 1B), suggests that the CTD does not bind the DIII-DIV linker
when the channel is in the inactivated state [6]. The simplest interpretation is that these different binding states
can only take place at specific points during the activation/inactivation/recovery from inactivation cycle of the
channel and thus could help impose directionality onto the process.
This idea is outlined in schematic form for the whole Nav activity cycle in Figure 4A and for the role of cal-

modulin in the recovery from inactivation steps in Figure 4B. One may suggest that immediately after Nav1.5
inactivation, Site A and B, and the IFM motif of the DIII-DIV linker, are all fully engaged with their sites on
the α-subunit DIII, and the CTD does not bind the DIII-DIV linker (Figure 4Ba). With an elevated [Ca2+]i, the
interaction between Ca2+-calmodulin and the CTD is represented by structure PDB: 4jq0 (Figure 3Bb). As the
membrane potential hyperpolarizes, the voltage sensing helices of DIII and DIV return to their resting states.
Site A and the IFM motif detach from their sites on DIV (Figure 4Bb). The Ca2+-calmodulin C-lobe can then
bind Site A, adopting the conformation shown in PDB: 4djc (Figure 2C, upper panel). Further rearrangements
allow the Ca2+-calmodulin N-lobe to bind to Site B as in PDB: 5dbr (Figure 2C lower panel). Together, this
could act like a ratchet to prevent the reattachment of Sites A and B and thus the IFM motif to DIV
(Figure 4Bc) [18]. There must be further rearrangements to free the calmodulin C-lobe from Site A and the cal-
modulin N-lobe from site B, so that Site A can reattach to the cleft in the EFL domain of the CTD
(Figure 4Bd–f ) [21]. Since the affinity of calmodulin for Site A and B is strictly Ca2+-dependent, [18], this
could take place as [Ca2+]i returns to its resting state, (Figure 4Bf).
Other Nav sites may potentially be involved in Ca2+-mediated regulation. Thus, CaMKII-mediated phos-

phorylation of particular (Ser516, Ser571, and Thr594) residues within the DI-DII intracellular linker region
increases late INa delaying action potential repolarization, characteristic of LQT3 [28]. However, an existence of
calmodulin-KN93 interactions could result in attribution of modified protein function to CaMKII phosphoryl-
ation rather than calmodulin action. KN93 may also impair calmodulin-III–IV linker domain interaction and
INa recovery from inactivation [29]. Phosphorylation at a protein kinase C specific site reduced peak INa and
shifted (by −15 mV) steady state inactivation V1/2 [30]. Mutations at a Nav1.5 N-terminal domain calmodulin
binding site down-regulated INa [31]. Elevated [Ca2+] may also up-regulate Nedd4-2 in turn targeting Nav1.5
for degradation via a CTD PY motif [32].

In vitro cell expression systems exhibit Ca2+-dependent Na+

current modulation
The precise mechanisms of Ca2+-mediated channel modification amongst Nav isoforms are thus likely subjects
of continued evaluation. Nevertheless, functional assessments confirm regulatory actions of Ca2+,
Ca2+-calmodulin and apo-calmodulin on Nav1.4 and Nav1.5 electrophysiological properties. Table 2 sum-
marizes available in vitro conventional patch-clamp explorations for Ca2+-dependent Nav1.4 and Nav1.5
current modulation variously employing heterologous tsA201, HEK293 and CHO expression systems. These
quantified steady-state Na+ conductance (gNa) through its maximum currents, Imax, and activation and/or
inactivation half-maximal voltages, V1/2, and slope factors, k. Here, Nav1.4 and Nav1.5 are likely expressed in
an absence of other accompanying in vivo proteins. Manoeuvres exploring alterations in [Ca2+]i and calmodulin
often used buffered, Ca2+-containing (0–10 mM), pipette solutions, to test for Ca2+, Ca2+-calmodulin or

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).8
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Table 2 Ca2+ regulatory effects on Nav1.4 and Nav1.5 studied in heterologous expression systems Part 1 of 2

Experimental platform

Pipette buffer
(mM concentrations unless otherwise stated)1 Shifts2 due to applied Ca2+ Shifts2 due to calmodulin (CaM)

0 [Ca2+] X [Ca2+]

Activation Inactivation Activation Inactivation

INa.max V1/2 V1/2 τfast INa.max V1/2 V1/2 τfast

Nav1.5
(tsA201; Tan et al. [15])

10 EGTA 1 mM Ca2+

(1.0 EGTA/0.9 CaCl2)
3

NIL - NIL ?Reduced NIL - ?Depol Reduced

Nav1.4
(HEK293; Deschenes et al.
[33])

10 BAPTA4 - - - - - NIL5 NIL5 NIL5

0 BAPTA 504 nM Ca2+

(3.7 CaCl2/5 BAPTA)4
- NIL ?Depol - - NIL Hyper6 NIL

Nav1.5
(HEK293; Deschenes et al.
[33])

0 BAPTA 504 nM Ca2+

(3.7 CaCl2/5 BAPTA)4
- - - NIL - NIL NIL NIL

Nav1.5
(tsA201; Wingo et al. [7])

20 BAPTA 0–250 nM Ca2+

(0–13.4 CaCl2/20 BAPTA).
1 mM and 10 mM Ca2+

(0.9 CaCl2 or 1.0 CaCl2/1.0 BAPTA)7

NIL Depol8 NIL - - NIL -

Nav1.4
(CHO-K1; Young and
Caldwell [34])

5 EGTA - - - - NIL Hyper Hyper9/NIL10 NIL

Nav1.4
(CHO-K1; Young and
Caldwell [34])

10 mM Ca2+

(5 EGTA/4.9 CaCl2)
11, 12

NIL NIL NIL NIL - Hyper NIL NIL

Nav1.4
(HEK293; Young and
Caldwell [34])

5 EGTA 10 mM Ca2+

(5 EGTA/ 4.9 CaCl2)
- - - - - NIL NIL NIL

Nav1.5
(CHO-K1; Young and
Caldwell [34])

5 EGTA 10 mM Ca2+

(5 EGTA/4.9 CaCl2)
13

NIL NIL NIL NIL - Hyper NIL NIL

Nav1.4
(tsA201; Shah et al. [13])

20 BAPTA 1 mM Ca2+

(1.0 BAPTA/0.9 CaCl2)
- - Depol14 - - - - -

Nav1.5
(HEK293; Biswas et al.
[35])

20 BAPTA 10 mM Ca2+

(1.0 BAPTA/1.0 CaCl2)
16

NIL NIL Depol Increased NIL15 NIL15 Depol15 -

Nav1.5
(HEK293; Biswas et al.
[35])

0.5 mM Ca2+

(5 BAPTA/ 4 CaCl2)
16

NIL15 NIL15 NIL15 -

Nav1.5
(tsA201; Potet et al. [99])

20 BAPTA 10 mM Ca2+

(1.0 BAPTA/1.0 CaCl2)
- - Depol17 NIL

Nav1.5
(tsA201; Chagot et al. [10])

20 BAPTA 1 mM Ca2+

(1.0 BAPTA/0.9 CaCl2).
Depol18

Nav1.5
(tsA201; Sarhan et al. [17])

10 BAPTA 10 mM Ca2+

(1.0 BAPTA/1.0 CaCl2)
- - Depol19 NIL - - - -

Nav1.4
(HEK293; Ben-Johny et al.
[36])

10 BAPTA 10 mM Ca2+

(10 HEDTA/5 CaCl2)
Reduced - NIL - - - - -

Nav1.4
(HEK293; Ben-Johny et al.
[36])

0.5 EGTA Activation of co-expressed Cav2.1 Reduced - - - - - - -

Nav1.4
(HEK293; Ben-Johny et al.
[36])

Ca2+ uncaging;
1.0 citrate

0.5–2 mM Ca2+

(1.0 DMN/0.7 CaCl2)
2–8 mM Ca2+

(2 DMN/1.4 CaCl2)
21

Reduced - NIL - Reduced20 - - -

Nav1.5
(HEK293; Ben-Johny et al.
[36])

10 BAPTA 10 mM Ca2+

(10 HEDTA/5 CaCl2)
NIL - NIL - - - - -

Nav1.5
(HEK293; Ben-Johny et al.
[36])

0.5 EGTA Activation of co-expressed Cav2.1 NIL - NIL

Nav1.5
(HEK293; Ben-Johny et al.
[36])

Ca2+ uncaging;
1.0 citrate

0.5–2 mM Ca2+

(1.0 DMN/0.7 CaCl2)
2–8 mM Ca2+

(2 DMN/1.4 CaCl2)

NIL - NIL

Continued
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Table 2 Ca2+ regulatory effects on Nav1.4 and Nav1.5 studied in heterologous expression systems Part 2 of 2

Experimental platform

Pipette buffer
(mM concentrations unless otherwise stated)1 Shifts2 due to applied Ca2+ Shifts2 due to calmodulin (CaM)

0 [Ca2+] X [Ca2+]

Activation Inactivation Activation Inactivation

INa.max V1/2 V1/2 τfast INa.max V1/2 V1/2 τfast

Nav1.4
(glt skeletal muscle cells;
Ben-Johny et al. [36])

Ca2+ uncaging;
1.0 citrate

0.5–2 mM Ca2+

(1.0 DMN/0.7 CaCl2)
2–8 mM Ca2+

(2 DMN/1.4 CaCl2)

Reduced - - - - - - -

Nav1.5
(guinea-pig ventricular
myocytes; Ben-Johny et al.
[36])

Ca2+ uncaging;
1.0 citrate

0.5–2 mM Ca2+

(1.0 DMN/0.7 CaCl2)
2–8 mM Ca2+

(2 DMN/1.4 CaCl2)

NIL - - - - - - -

Nav1.5 with Nav1.4
C-terminal
(HEK293; Yoder et al. [38])

0.5 EGTA Activation of co-expressed Cav2.1 Reduced22 - - - Reduced - - -

Nav1.5 with Nav1.4
C-terminal
(HEK293; Yoder et al. [38])

Ca2+ uncaging;
1.0 citrate

0.5–2 mM Ca2+

(1.0 DMN/0.7 CaCl2)
2–8 mM Ca2+

(2 DMN/1.4 CaCl2)
23

Reduced - NIL Reduced

Nav1.4 with Nav1.5
C-terminal
(HEK293; Yoder et al. [38])

0.5 EGTA Activation of co-expressed Cav2.1 NIL24 - - - - - - -

Nav1.4 with Nav1.5
C-terminal
(HEK293; Yoder et al. [38])

Ca2+ uncaging;
1.0 citrate

0.5–2 mM Ca2+

(1.0 DMN/0.7 CaCl2)
2–8 mM Ca2+

(2 DMN/1.4 CaCl2)

NIL24 - NIL

Nav1.5
(rabbit ventricular
myocytes; Casini et al. [40])

10 BAPTA 100 nM Ca2+

(CsCl/10 BAPTA)
NIL NIL NIL NIL - - - -

Nav1.5
(rabbit ventricular
myocytes; Casini et al. [40])

500 nM Ca2+

(CsCl/10 BAPTA)
Reduced NIL NIL NIL - - - -

Nav1.5
(tsA201; Johnson et al. [18])

20 BAPTA 1.6 mM Ca2+

(5 HEDTA/0.9 Ca2+)
NIL Increased25

1∼100 mM F--containing pipette solutions except: Deschenes et al. [33] apart from C2C12 experiments (Sarhan et al. [17]; Ben-Johny et al. [36]; Yoder et al. [38]; Casini
et al. [40]). DMN = DM Nitrophen.
2Key: - = not studied; Nil = no effect; depol = depolarizing; hyper = hyperpolarizing shifts in V1/2;
3Experiments performed with ±peptide 209–309 (antagonizing Ca2+-calmodulin-Nav1.5 binding), I1908E and L1912R IQ mutant and BrS mutant A1924T (Tan et al. [15]);
4Pipette solution Cl− or F− and 0 Ca2+ (0 mM BAPTA) or 504 nM Ca2+ (3.7 mM Ca2+/5 mM BAPTA) gave similar results; further 10 mM KN92/KN93 and 100 nM CaMKII
inhibitory autocamtide-2 (AIP) controls included;
5Effects of 0 Ca2+ and of calmodulin-1234;
6Double alanine IQ mutation hyperpolarized inactivation V1/2 and reduced decay constant relative to WT regardless of calmodulin mutation (Deschenes et al. [33]);
7Experiments performed ± peptide 209–309 (antagonizing Ca2+-calmodulin-Nav1.5 binding;)
8Depolarizing effect observed at >150 nM, saturated at 1 mM Ca2+, attenuated by EF hand D1790G LQT3 mutation, and abolished by 4× EF hand mutation (Wingo et al. [7]);
9Effects of 0 Ca2+;
10Effects of calmodulin-1234;
11Experiments with 10 mM KN93/KN92, N- and C- terminal calmodulin mutants and Nav1.4/Nav1.5 C-terminal chimeras included;
12IQ mutations I1727E and L1736R, showed unchanged channel properties relative to WT; I1727E blocked all effects of calmodulin and calmodulin-1234;
13Experiments with 10 mM KN93/KN92, N- and C- terminal calmodulin mutants and Nav1.4/Nav1.5 C-terminal chimeras included (Young and Caldwell [34]);
14Single, A1924T, but not double IQ mutation also caused depolarizing V1/2 shift (Shah et al. [13]);
15Studies with calmodulin1234 included;
16Ca2+ hyperpolarized inactivation V1/2 both in mutants lacking C-terminal and double alanine IQ mutation. Both EF hand LQT3 mutation D1790G and 4X mutation
hyperpolarized inactivation V1/2 but were unresponsive to Ca2+ (Biswas et al. [35]);
17A1924T mutant showed difference from WT only at 0 Ca2+ (Potet et al. [99]);
18EF-2X mutation caused hyper and abolished Ca2+ action (Chagot et al. [10]);
19No effect at 0.3 mM Ca2+ (Sarhan et al. [17]);
20Time constants of Ca2+ dependent inactivation onset reported for different [Ca2+];
21Double alanine IQ mutation caused Ca2+ dependent facilitation; myotonia mutants Q1626E and F1698I showed attenuated Ca2+-dependent inhibition and lesser reduction in
Imax than WT. EF hand, D1621A and D1623A, mutations had no effect (Ben-Johny et al. [36]);
22WT calmodulin and calmodulin-34 maintained Ca2+ dependent inactivation, calmodulin-12 resulted in loss of such inactivation.;
23Nav1.5 mutant without the post IQ motif showed persistent Ca2+ dependent inhibition;
24Ca2+ dependent inactivation persisted with Nav1.5 C-terminal domain lacking post IQ segment (Yoder et al. [38]);
25Ca2+-calmodulin (but not apo-calmodulin) binding implicated in slowed kinetics of inactivation and accelerated recovery from inactivation, but not in Nav1.5 double mutants
involving both sites A and B of II–III linker region.
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apo-calmodulin-mediated actions, on Nav1.4 and/or Nav1.5 C-terminal EF-hand or IQ domains, with some
differences between reports [7,10,13,15,17,33–35].
However, their pipette [Ca2+] often significantly exceeded the Ca2+ dissociation constant, Kd of either the

EGTA (67 nM) or 1,2-bis(2-aminophenoxy)ethane-N,N,N0,N0-tetra-acetic acid (BAPTA) (192 nM) pipette
buffer, even as determined in the absence of Mg2+ [36]. Possible Ca2+-F- binding (solubility product Ksp∼
3.45 × 10−11 M3) with use of (often ∼100 mM, giving [Ca2+] = 3.45 nM) CsF-containing pipette solutions to
stabilize the whole-cell patch-clamp recordings, and intrinsic cell buffering properties, added additional uncer-
tainties to detailed interpretation of their experimental results [37].
Nevertheless, all these studies reported little or no effects on k. Nor did pipette Ca2+/EGTA, Ca2+/BAPTA or

calmodulin manipulations alter Imax. However, experiments instead buffering pipette Ca2+ using F--free N-(2-
hydroxyethyl)ethylenediamine-N,N0,N0-triacetic acid (HEDTA), and elevating [Ca2+]i by Nitr-photo-uncaging,
or activating co-expressed Cav1.2, contrastingly all reduced Imax in Nav1.4, or Nav1.5 chimeras expressing the
Nav1.4 CTD (Figure 5). Contrastingly, they did not do so with Nav1.5 or Nav1.4 chimeras expressing the
Nav1.5 CTD [36,38]. Inactivation V1/2s were unaffected and activation V1/2s not explored [36]. The remaining
studies investigating V1/2 reported consistently unchanged activation V1/2s, but either altered or depolarized
inactivation V1/2s, with no trends related to expression platform (Table 2). Nor did inactivation time constants
alter, with two exceptions [15,18]. Finally, Ca2+ uncaging also revealed that FGF homologous factors (FHF)

Figure 5. In vitro assessments of Ca2+-mediated Na+ current modulation in expression systems.

(A) (a) Na+ channels characterized before (i) and following (ii) pipette dialysis with mM Ca2+. (b) Assessment of Ca2+ effects on Na+ current inactivation

properties through (i) imposition of voltage steps from varying holding voltages, Vhold, to a fixed test level, for measurement of (ii) corresponding Na+

currents and (iii) plotting fractional current remaining, h∞, at different Vhold. (c) Alterations from normal (black) inactivation properties resulting in

(i) reduction in maximum Na+ current or (ii) shift in the dependence of h∞ on Vhold (red). (B) Ca2+-dependent Na+ channel inhibition under Ca2+

photo-uncaging: (a) NaV1.5 peak currents unaffected but NaV1.4 peak currents decline with 10 mM Ca2+ uncaging. Gray dots, peak currents before (b)

uncaging. (c) Ca2+-dependent inhibition plotted against Ca2+-step amplitude. (d) corresponding h∞ curves; upwardly scaled h∞ curve (red) similar to

that obtained before uncaging (black). ((A)(a),(b) from Figure 1 and (B) from Figure 2 by permission (Ben-Johny et al. [36]).
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diminished Ca2+-calmodulin-regulation of Nav1.4 expressed in HEK293 cells, possibly involving allosteric sites
within upstream CTD regions distinct from the calmodulin-binding interface [39].
Ca2+ uncaging investigations extending to skeletal myotubes derived from mouse glt cells similarly demon-

strated Ca2+-mediated Nav1.4 regulation at sensitivities appropriate for physiological Ca2+ transients, but no
such Nav1.5 regulation in adult guinea-pig ventricular myocytes [36]. However, in freshly isolated rabbit ven-
tricular myocytes, [Ca2+]i elevations produced by Ca2+-BAPTA (0–500 nM)-buffered patch-clamp electrode
solutions or caffeine challenge caused parallel reductions in INa density, unit channel amplitudes and
maximum action potential upstroke rates (dV/dt)max, without altering steady state voltage dependences of INa
activation or inactivation [40]. Cultured rat neonatal ventricular cardiomyocytes also showed altered Nav
expression with more sustained alterations in intracellular Ca2+ homeostasis. Nav1.5 mRNA levels then altered
in parallel with decreases or increases in whole cell patch-clamp INa with 24 h sustained elevations (10 mM) or

Figure 6. Na+ current down-regulation in native murine skeletal muscle fibres by altered Ca2+ homeostasis following caffeine induced

ryanodine receptor (RyR) activation, abrogated by dantrolene mediated RyR antagonism.

(A)(a) Double pulse protocol from a hyperpolarized prepulse potential V0 to activating voltage V1 followed by further depolarization to fixed

depolarized voltage V2, respectively assessing (b) Na+ current activation and subsequent inactivation produced by the voltage step to V1.

(B) 2–10 mM caffeine increases integrated background aequorin Ca2+ signal (upper trace) and twitch force (lower trace) in rat fast twitch muscle at

25°C over timecourses dependent upon caffeine concentration. Arrows denote periods of caffeine exposure. (C) Families of loose-patch clamp

membrane currents in response to the double pulse protocol before (a, b) and at successive intervals ((i)-(iv)) following introduction (c, d) of caffeine

(0.5 mM) before (a, c) and following (b, d) addition of dantrolene (10 mM). Currents expressed as current densities (pA/mm2) through 28–32 mm

pipette diameters.((A) from Figure 2 by permission (Fryer & Neering [47]); (B) from Figure 3 by permission (Sarbjit-Singh et al. [48]).
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BAPTA-AM-mediated reductions of culture media [Ca2+]. These also occurred without alterations in single
conductance, or activation and inactivation properties [41].
These varied observations could arise from a range of possible Nav Ca2+ sensing mechanisms, including

direct Ca2+ binding to the first EF-like hand [7,15,35], or Ca2+-calmodulin or apo-calmodulin binding to, the
CTD [34,36]. The latter possibilities were compatible with reported calmodulin binding to peptide channel
fragments [42,43]. Finally, structural studies invoked possible Nav regulatory sites alternative to the CTD
including the III–IV loop [17]. At all events, this available evidence permits a direct in vivo regulation of
Nav-mediated excitable activity by intracellular Ca2+, involving mechanisms highly conserved among all nine
Nav isoforms. This could complement or replace hypotheses invoking [Ca2+]i-mediated increases in electro-
genic Na+/Ca2+ exchanger (NCX) activity in cardiac muscle under pro-arrhythmic conditions [44]. The latter
may mediate delayed after depolarization (DAD) phenomena and is also implicated in altering action potential
recovery as opposed to initiation and propagation activity. NCX may also increase [Na+]i thereby influencing
transmembrane Na+ electrochemical gradients. However, this would involve mM-levels corresponding to the
altered [Ca2+]i as opposed to normal background nM-[Na+]i levels. Furthermore, NCX activity is not a promin-
ent normal skeletal as opposed to cardiac muscle feature. Nevertheless, in either event, over the long term,
reduced or increased background [Ca2+]i resulting from sustained low or high firing rates could furnish a form

Figure 7. Na+ current reduction in native murine cardiomyocytes by altered Ca2+ homeostasis following ryanodine receptor (RyR) activation

by the Epac activator 8-CPT, abrogated by dantrolene mediated RyR antagonism.

(A) Epac-induced wave of elevated cytosolic [Ca2+] ([Ca2+]i) shown in 41.0 × 20.5 mm confocal microscope fluo-3 images taken in successive 65 ms

intervals within isolated ventricular myocyte. (B, C) Families of loose-patch clamp ionic current densities in a ventricular preparation; pulse protocol

investigating Na+ channel activation and inactivation as in Figure 5A. Na+ currents in response to (B) activation by depolarization to level V1 and (C)

following their inactivation, to final level V2 following their inactivation at level V1. Recordings made (a) before pharmacological challenge, (b) in the

presence of 8-CPT (1 mM) alone or (c) following further addition of dantrolene, (d) after adding dantrolene alone or (e) combined with 8-CPT. (D)

Corresponding dependences of Na+ current activation (top row) and inactivation (bottom row) (mean ± SEM) upon voltage V1 (a) before (open

squares) and following introduction of 8-CPT (filled triangles) and 8-CPT and dantrolene combined (filled circles), (b) before (open squares) and

following introduction of dantrolene (filled diamonds), (c) before (open squares) and following introduction of a combination of 8-CPT and dantrolene

(filled circles).((A) From Figure 8 by permission (Hothi et al. [45]); (B), (C) from Figure 2 and (D) from Figure 4 by permission (Valli et al. [76]).
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of Ca2+ memory modifying Nav expression or gating and therefore its availability for driving action potential
upstroke and propagation. In skeletal muscle, this could reduce cell excitability permitting recovery from
fatiguing stimulation. However, the accompanying conduction velocity (CV) reductions could contribute to
pathological cardiac arrhythmic or epileptiform nerve cell phenotypes.

Native skeletal and cardiac myocytes show acute
Ca2+-dependent INa modulation
In vivo Ca2+-dependent Nav modulation was observed in native cardiac or skeletal myocytes in intact physio-
logical systems and clinical disease models. Use of loose, as opposed to conventional cell-attached, patch-clamp
methods, avoided Ca2+ perturbations produced by the measurement method itself. INa families recorded from
voltage steps from resting to sequentially depolarized activating test potentials, followed by further pulses to a
fixed depolarized level to evaluate the resulting channel inactivation (Figure 6Aa,b) were compared before and fol-
lowing perturbations of their in vivo Ca2+ homeostatic mechanisms. Studies in both skeletal and cardiac myocytes
demonstrated potentially physiologically significant negative feedback regulation of Nav1.4 and Nav1.5 by
RyR-mediated release of intracellularly stored SR Ca2+. In murine skeletal muscle, acute RyR2 activation by the
exchange protein directly activated by cAMP (Epac) by the activator 8-(4-chlorophenylthio)adenosine-30,50-cyclic
monophosphate (8-CPT, 1 mM) [45], reduced maximum INa whilst leaving V1/2 values unchanged, actions abro-
gated by the RyR-inhibitor dantrolene (10 mM) [46]. The RyR agonist caffeine, at concentrations of 0.5 or 2 mM,
produced sustained activation or transient activation followed by inactivation, of RyR-mediated SR Ca2+ release
and corresponding parallel alterations in [Ca2+]i [47; Figure 6B]. These changes directly paralleled time-dependent
decreases or increases in peak INa values (Figure 6Cc,d) also abrogated by dantrolene (10 mM). Finally, dantrolene
applied by itself produced small increases in INa, suggesting inhibitory effects of even background Ca2+ release on
INa ((Figure 6Ca,b) [48], potentially through formation of microdomains localizing [Ca2+]i heterogeneities in
junctional regions separating the T-tubular and SR membranes [49]
Elevating [Ca2+]i by applications of high extracellular [Ca2+], caffeine, and the SR Ca2+ ATPase inhibitor

cyclopiazonic acid in murine atria [50], in addition to 8-CPT in murine atria and ventricles, all reduced mean
peak inward INa. 8-CPT (1 mM) induced Ca2+ homeostatic changes manifesting as spectrofluometrically
measured spontaneous Ca2+ waves in murine atrial myocytes (Figure 7A) [45]. These findings accompanied
30–50% reductions in inward INa (Figure 7B,C), abrogated by dantrolene (10 mM), which by itself left INa at
pre-treatment levels. Inactivation V1/2 and k (Figure 7D), and time constants for Na+ current recovery from
inactivation remained unchanged [51]. Intracellular sharp microelectrode membrane potential recordings in
intact Langendorff-perfused preparations correspondingly demonstrated reduced maximum atrial and ventricu-
lar (dV/dt)max [51]. Action potential latencies reflecting delayed conduction increased while action potential
durations and refractory periods were unchanged. The hearts also showed increased ventricular arrhythmic
incidences following rapid pacing or extrasystolic stimuli [52].

Ca2+-dependent INa modulation may underly skeletal
muscle cold-aggravated myotonia
A first clinical example of a C-terminal Nav1.4, SCN4A, mutation associated with human disease is
cold-aggravated myotonia, which causes transient myotonic stiffness or renders fibres transiently inexcitable
resulting in a periodic paralysis (Table 1). The SCN4A mutant concerned contained two predicted amino acid
substitutions, a DIS5-S6 loop T323M and an intracellular C-terminus F1705I substitution. Whole cell patch
clamp INa from transiently transfected HEK293 cells expressing Nav1.4-T323M were indistinguishable from
WT, consistent with a benign polymorphism. However, Nav1.4-F1705I channels showed a slowed fast inactiva-
tion with a positive 8.6 mV shift in steady-state voltage-dependence often associated with myotonia, but
normal activation, recovery from fast inactivation or persistent current [53].

Ca2+-dependent INa modulation may mediate
pro-arrhythmic phenotypes in a catecholaminergic
polymorphic ventricular tachycardia model
The hereditary pro-arrhythmic condition catecholaminergic polymorphic ventricular tachycardia (CPVT), is
associated with gene mutations involving ryanodine receptor type 2 (RYR2), calsequestrin (CASQ2), triadin
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(TRDN) or calmodulin (CALM1, CALM2 and CALM3) [54]. It clinically presents as potentially fatal bidirec-
tional, and mono and polymorphic ventricular tachycardia (VT) provoked by adrenergic stress. Experimental
murine RyR2-P2328S ventricles showed abnormal RyR2-mediated diastolic [Ca2+]i elevations [55].
Homozygotic murine RyR2-P2328S ventricles showed reduced loose patch-clamp INa and possible additional
evidence for down-regulated Nav1.5 expression [56]. Intrinsically beating murine RyR2-P2328S hearts recapitu-
lated the clinical pro-arrhythmic phenotypes on isoproteronol and caffeine challenge. Intracellular floating
microelectrode and multi-electrode array recordings then demonstrated correspondingly reduced (dV/dt)max,
and ventricular epicardial CVs, particularly in homo- as opposed to heterozygotic, RyR2-P2328S/+, hearts,
changes not observed in wild-type (WT) controls [57].
CPVT is also associated with atrial fibrillation similarly attributed to abnormal Ca2+ homeostasis particularly

following increased sympathetic tone [58]. In superfused RyR2-P2328S/P2328S atrial preparations, loose patch
clamp measurements also demonstrated reduced peak INa with otherwise normal activation and inactivation
current–voltage relationships (Figure 8A,Ba) [50]. Floating intracellular microelectrode measurements demon-
strated reduced (dV/dt)max and interatrial CVs though normal action potential duration amplitudes and refrac-
tory periods (Figure 8Bb,c) while multi-electrode arrays detected reduced atrial epicardial action potential CVs
in RyR2-P2328S/P2328S atria when compared with WT [59]. Intrinsically active and regularly stimulated
RyR2-P2328S/P2328S but not wild-type atria correspondingly showed frequent sustained tachyarrhythmias,
delayed afterdepolarizations and ectopic action potentials. Extrasystolic S2 stimulation provoked arrhythmia at
longer S1S2 intervals in RyR2-P2328S/P2328S than WT atria, nevertheless corresponding to similar (dV/dt)max,
and effective interatrial CVs as in WT [59]. Gain-of-function skeletal muscle RYR1 mutations are associated
with a malignant hyperthermia typically following halothane anaesthesia. Reports of increased slowly inactivat-
ing inward, tetrodotoxin sensitive current in cultured human malignant hyperthermia skeletal myocytes may
prompt further investigations into possible electrophysiological, Nav1.4 phenotypes [60].

Figure 8. Altered Na+ current function paralleling Na+ channelopathy occurs in a murine pro-arrhythmic

catecholaminergic polymorphic ventricular tachycardia model.

(A) Loose-patch membrane current recordings in (a) WT, (b) Scn5a+/− and (c) RyR2-P2328S/P2328S atria. (B)(a) The resulting

maximum peak inward currents (# P < 0.005). (b) Maximum upstroke rates ((dV/dt)max) and (c) waveforms showing conduction

delays in left atrial intracellular action potentials. (Adapted from Figure 5 by permission (King et al. [50]).
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Anti-arrhythmic targeting of Ca2+ homeostasis in clinical
CPVT, cardiac failure and hypertrophic cardiomyopathies
The above properties may underpin reported paradoxical pro- and anti-arrhythmic actions of low (1 mM)
flecainide concentrations in WT and RyR2-P2328S/P2328S murine atria. Flecainide blocks both Nav1.5 and
RyR2 with IC50s of 2–7 mM and 5–11 mM, respectively [61–63]. Either effect could potentially rescue an
elevated [Ca2+]i. On the one hand, flecainide’s Class Ic Nav1.5 blocking action causes a pro-arrhythmic CV
slowing; however, action of a consequently reduced [Na+]i on NCX could reduce pro-arrhythmic [Ca2+]i
elevations [64–66]. In intact WT hearts, flecainide (1 mM) exerted atrial pro-arrhythmic effects, accompany-
ing reduced loose patch clamp INa and multi-electrode array recorded CV, whilst sparing refractory periods
(Figure 9Aa,Ba,Ca). On the other hand, in RyR2-P2328S/P2328S atria, flecainide paradoxically rescued
increased arrhythmic frequency. However, in contrast with its Nav1.5 inhibitory action in WT, it rescued

Figure 9. Ca2+ sensitivity of Nav1.5 accounts for paradoxical effects on Na+ currents of low dose flecainide used in clinical CPVT

monotherapy.

Comparisons of murine (a) WT and (b) RyR2-P2328S/P2328S left atria in the presence of 0, 1 and 5 mM flecainide showing: (A) Paradoxical actions

of progressively increasing flecainide concentrations on Na+ current activation and inactivation properties in response to families of depolarizing

activating steps each succeeded by a step to a constant 95 mV depolarization. (B) (a, b) Maximum peak currents with exposure followed by

withdrawal of flecainide. (C) Activation (a,b) and inactivation (c,d) current–voltage relationships and their fits to Boltzmann functions in WT (a,c) and

RyR2-P2328S/P2328S (b,d). (D) Similar paradoxical effects shown by membrane currents in response to an 80 mV depolarizing step before and

following challenge by the RyR blocker dantrolene (10 mM). ((A), (C)(c,d) from Figure 4 and (B), (C)(a, b) and (D) from Figure 3 by permission

(Salvage et al. [67]).
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INa and maintained CV at WT values, leaving refractory periods unchanged (Figure 9Ab,Bb,Cb), effects dir-
ectly replicated by the RyR blocker dantrolene (Figure 9D) [67]. These findings together suggested a rescue
of the arrhythmic phenotype by RyR2 block causing Nav1.5 rescue rather than Nav1.5 block. RyR2 inhib-
ition would reduce the elevated diastolic Ca2+ and its pro-arrhythmic inhibition of Nav1.5 [67]. The latter
mechanism of action could underlie anti-arrhythmic effects of monotherapeutic low-dose flecainide intro-
duced to treat clinical CPVT [62,68–71].
Ca2+-mediated regulation of Nav1.5 may also contribute to commoner pro-arrhythmic cardiac conditions

associated with spontaneous SR Ca2+ leak. The latter was reported in peroxisome proliferator activated
receptor-γ coactivator-1 (PGC-1) transcriptional coactivator deficient (Pgc1-β−/−) murine models for
pro-arrhythmic metabolic changes related to ageing, obesity and diabetes mellitus [72]. Atrial fibrillation,
cardiac failure and hypertrophic cardiomyopathies are also accompanied by spontaneous SR Ca2+ leak.
Classically, SR Ca2+ leak is implicated in a pro-arrhythmic activation of inward depolarizing, NCX current
[44]. However, the pro-arrhythmic phenotypes in Pgc1-β−/− atria and ventricles were also associated with
reduced INa [73,74], (dV/dt)max and CVs [75,76]. A decreased INa in these experimental conditions as well as
in clinical heart failure or atrial fibrillation slowing action potential CV could contribute pro-arrhythmic
substrate.

Perspectives
• Action potential generation by Na+ channel (Nav) activation and the resulting release of intra-

cellular Ca2+ stores underly skeletal and cardiac myocyte excitation-contraction coupling
abnormalities which underly a wide range of human genetic diseases.

• Nav channels possess sites directly or indirectly binding Ca2+ potentially of regulatory import-
ance in their reciprocal Ca2+-mediated feedback regulation. Evidence from cell expression
systems, native myocytes and normal and disease models demonstrate such Ca2+-mediated
Nav regulation effects.

• Future studies may correlate this molecular evidence bearing particularly on the Nav
C-terminal and III–IV linker domains and biophysical studies of Na+ channel function with
associated clinical conditions.
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