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The time‑course of feature‑based 
attention effects dissociated 
from temporal expectation 
and target‑related processes
Denise Moerel1,2,4*, Tijl Grootswagers3,4, Amanda K. Robinson4,5, Sophia M. Shatek4, 
Alexandra Woolgar6, Thomas A. Carlson4,8 & Anina N. Rich1,2,7,8

Selective attention prioritises relevant information amongst competing sensory input. Time-resolved 
electrophysiological studies have shown stronger representation of attended compared to unattended 
stimuli, which has been interpreted as an effect of attention on information coding. However, because 
attention is often manipulated by making only the attended stimulus a target to be remembered and/
or responded to, many reported attention effects have been confounded with target-related processes 
such as visual short-term memory or decision-making. In addition, attention effects could be 
influenced by temporal expectation about when something is likely to happen. The aim of this study 
was to investigate the dynamic effect of attention on visual processing using multivariate pattern 
analysis of electroencephalography (EEG) data, while (1) controlling for target-related confounds, and 
(2) directly investigating the influence of temporal expectation. Participants viewed rapid sequences 
of overlaid oriented grating pairs while detecting a “target” grating of a particular orientation. 
We manipulated attention, one grating was attended and the other ignored (cued by colour), and 
temporal expectation, with stimulus onset timing either predictable or not. We controlled for target-
related processing confounds by only analysing non-target trials. Both attended and ignored gratings 
were initially coded equally in the pattern of responses across EEG sensors. An effect of attention, with 
preferential coding of the attended stimulus, emerged approximately 230 ms after stimulus onset. 
This attention effect occurred even when controlling for target-related processing confounds, and 
regardless of stimulus onset expectation. These results provide insight into the effect of feature-based 
attention on the dynamic processing of competing visual information.

To interact effectively in our environment, we need to select relevant information from the continuous stream 
of incoming visual information. It is important to understand how selective attention influences different stages 
of perceptual processing, to gain insight into the mechanisms by which the brain prioritises the important 
information. Selective attention has been shown to involve a network of regions, involving frontal and parietal 
cortex1–9, which has a top-down influence on processing in sensory cortex and thalamus10–16. Single neurons in 
this network have been suggested to show adaptive coding17,18 or mixed selectivity19,20, as they adjust their tuning 
profiles to code for the features that are relevant for the current task demands. This network may in turn bias the 
response in regions such as visual cortex21, boosting representations of attended features and suppressing those 
of unattended features. At the neuronal level, attention has been shown to affect the noise that is shared across 
the neuronal population, by reducing interneuronal correlations22. In addition, attention has been shown to 
reduce the trial-to-trial variability of the neuronal response23. Time-resolved electrophysiological methods such 
as electroencephalography (EEG) and magnetoencephalography (MEG) combined with multivariate decoding 
methods are well suited to capture these changes in patterns of neural population responses with high temporal 
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resolution. This method has been used to study which stage of perceptual processing is affected by selective 
attention. Manipulations of spatial attention result in a stronger neural response to stimuli at a cued compared 
to an uncued location, starting around 80–100 ms after stimulus onset24–29. The time-course of feature-selective 
attention is thought to be slower compared to spatial attention, with stronger neural responses to the cued 
compared to the uncued feature around 100–150 ms after stimulus onset30–33, but see34). In addition, several 
studies have used multivariate decoding of time-resolved neural data to show that the coding of cued informa-
tion is sustained over time, whereas uncued information is represented only transiently and is not sustained over 
time35–39. Although these previous studies have interpreted preferential coding of cued over uncued informa-
tion as an effect of attention, their findings could be influenced by two other potential processes: target-related 
processes and expectation effects.

Attention is often manipulated by making the cued stimulus a target, while the uncued stimulus is not. This 
means that target-related processes might influence neural responses—for the cued/target stimulus only—and 
this could drive differences in coding of cued and uncued information that are being attributed to attention. 
Here, we define target-related processes as all processes other than attention that might occur when respond-
ing to a target stimulus. Specifically, we consider visual short-term memory and decision-making as two target 
related processes that could confound attention findings. First, the cued target stimulus is often kept in visual 
short-term memory until the participant can make a decision. Second, the participant usually makes decisions 
about the cued stimulus, but not about the uncued stimulus. Critically, the stimulus feature (e.g., object shape) 
that is kept in visual short-term memory and used to make a classification decision is usually the same stimulus 
feature that is used in the decoding analysis. Either of these target-related processes could contribute to stronger 
information coding for the cued compared to uncued stimuli. A few studies have separated effects of attention 
from target-related processes by comparing the neural response to cued non-targets with uncued non-targets 
using either forward encoding models40 or pattern classification37,39. One such study40 showed enhanced cod-
ing of stimuli that were task-relevant in one session but not in the other session. The authors did not analyse 
the neural response to targets, but rather to all non-target stimuli in the sequence, avoiding target-related con-
founds. However, the attended and unattended items were not present at the same time, but across different ses-
sions, which means these results might not generalise to attention effects when a distractor must be suppressed. 
Another study37 presented stimuli at in the same task context, while also only analysing the neural response to 
non-targets. The results showed enhanced of coding of the visual information that was currently relevant for the 
task relative to irrelevant visual information. However, the authors used a task which required holding only the 
cued information in visual short-term memory, thus again requiring processes additional to attention. In our 
previous work, we showed enhanced coding of the cued compared to the uncued orientations39, when followed 
by an orthogonal decision that was separated in time from the stimulus. However, here too participants had to 
keep the cued orientation in mind until the decision screen, which means that these results could also be partly 
driven by visual short-term memory. It is still unclear whether effects of attention on visual processing occur 
when we control for the influence of possible target-related processes.

In addition to target-related processes, the effects of selective attention on stimulus coding could be influenced 
by expectations about when a stimulus is likely to occur in time. Attention and temporal expectation could work 
together in an additive or interactive way to influence the processing of visual information40–42. Here, we use the 
term attention to refer to the mechanism that prioritises stimulus processing based on motivational relevance, 
in line with Summerfield and Egner43. In contrast, expectation refers to the mechanism that constrains visual 
interpretation based on prior likelihood43. Specifically, temporal expectation refers to expectations about when 
something is likely to happen. Single unit studies in non-human primates have shown that temporal expecta-
tion can modulate the neuronal firing rate, with higher firing rates for relevant inputs at expected moments, for 
neurons in inferotemporal cortex44 and V145. This modulation could ultimately lead to improve the quality of the 
sensory information46. Temporal expectation has been experimentally manipulated through different temporal 
structures, such as through the use of explicit cues, or implicitly learned temporal rhythms47. Here we focus on 
implicitly learned rhythms of visual stimulus onset, as the explicit cues used to manipulate expectation can be 
very similar to those used in attention paradigms (see48 for a discussion). Some studies have found evidence of an 
effect of temporal expectation, as manipulated through rhythms, on the efficiency of early visual processing49,50. 
These studies found increased contrast sensitivity for visual stimuli presented at fixed compared to irregular 
intervals49,50, which was associated with increased phase entrainment of 1-4 Hz oscillations49. In addition, this 
entrainment was related to the behavioural discriminability of targets presented at a regular interval49. Several 
studies have directly investigated the interaction between attention and expectation, but most of these studies 
focus on either spatial or stimulus feature expectations, that is, expectations about where or what, rather than 
when something will occur. These studies have found interactions between attention and expectation40–42, as well 
as additive effects42. There is currently no consensus on whether temporal expectation is a possible confound 
in attention research, as little is known about the interaction between attention and implicitly learned temporal 
expectations. The lack of consensus is apparent from the variability in whether or not attention researchers make 
sure the stimulus onset is unpredictable to avoid temporal expectation confounds.

In this study, we investigated the time-course of the effect of attention on the coding of visual information in 
the brain. We compared the coding of attended and unattended visual stimuli that were presented simultaneously 
in time and space, while (1) making sure the pattern classification could not be driven by target-related process-
ing, and (2) directly investigating the influence of temporal expectation. We recorded EEG data while participants 
performed a target detection task on sequences of central stimuli comprised of overlaid oriented blue and orange 
lines. We manipulated feature-based attention using colour: the participant was cued to attend to one colour 
orientation stimulus with another colour denoting a distractor, for each sequence. We used multivariate pattern 
analysis (MVPA) to compare the orientation coding of the same stimuli when they were attended or not. We 
controlled for effects of target-related processes by using a target detection task, where participants did not have 
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to retain the cued stimulus orientation over a delay period, and analysing only the responses to non-target stimuli. 
To examine the influence of temporal expectation on attention effects, we compared the orientation coding of 
stimuli presented at a constant (predictable) stimulus onset with that from varied (unpredictable) stimulus onset. 
Our results showed preferential coding of the cued compared to the uncued information emerging from about 
230 ms after stimulus onset. This difference is likely driven by the prioritisation of the task-relevant information 
through attention, as our manipulations made sure that target-related processes could not drive the classification, 
and it did not interact with temporal expectation.

Methods
Participants.  Twenty healthy adults participated in this study (12 female/8 male; 19 right-handed/1 left-
handed; mean age = 23.80  years; age range = 18–59  years). All participants reported normal or corrected-to-
normal vision and normal colour vision. Participants were recruited from the University of Sydney and received 
$40 AUD for their participation. The study was approved by the University of Sydney ethics committee and 
informed consent was obtained from all participants. All methods were performed in accordance with the rel-
evant guidelines and regulations of the University of Sydney ethics committee and the Declaration of Helsinki.

Stimuli and design.  The stimuli consisted of blue (RGB = 239, 159, 115) and orange (RGB = 72, 179, 217) 
oriented lines, overlaid at fixation, presented on a mid-grey background (RGB = 128, 128, 128) (Fig. 1A). The 
oriented lines were phase randomised over trials, had a spatial frequency of 1.15 cycles/degree, and were shown 
within a circular aperture with a diameter of 5.20 degrees of visual angle. There were 4 possible line orientations 
for the non-target stimuli, which were used for analysis: 22.5°, 67.5° 112.5°, and 157.5°. Orange and blue lines 
were always shown together, rotated 45° with respect to each other, resulting in 8 unique combinations of orien-
tations (Fig. 1B). These orientations were chosen to make sure they were orthogonal over attention conditions 
for the decoding analysis.

Participants were instructed to maintain fixation on a central bullseye throughout the entire experiment 
and to respond to a target presented at fixation using a button press response. The stimuli were presented in 64 
sequences (see Fig. 1C). At the start of each sequence, participants were shown the target stimulus. The target 
had a specific orientation (0° or 90°) and colour (orange or blue) and was counterbalanced over sequences. Par-
ticipants were instructed to attended to the lines in the target colour and ignore the lines in the other colour. The 
task was to press a button as soon as lines in the target orientation and colour appeared. The purpose of the task 
was to keep participants engaged, and to make sure participants attended to the lines of one colour, ignoring the 
other colour. In each sequence, the target orientation (0° or 90°) was paired with either 45° or 135° in the other 
colour. The target orientation could either be shown in the cued colour (target event), or in the uncued colour 
(foil event), and participants had to respond only to the target events. For instance, if the target was 90°-blue, the 
possible target stimuli for that sequence were 90°-blue/45°-orange, and 90°-blue/135°-orange, while the possible 
foils for that sequence were 45°-blue/90°-orange, and 135°-blue/90°-orange (see Fig. 1D).

Each sequence consisted of 104 non-target stimulus presentations. In addition, there were 1 or 2 target events 
and 1 or 2 foil events per sequence, counterbalanced over sequences. We added non-target padding trials at 
the start and end of each sequence as well as around targets and foils. The neural response of several stimulus 
presentations will overlap when stimulus presentations are very brief51–55. The stimuli at the start or end of the 
sequence, or those that occur after a target, might have different processing compared to typical task-related 
processes. The padding trials were used to capture responses related to the processing of the target, or the start or 
end of the sequence, and were removed from further analysis. They were randomly drawn without replacement 
from the 8 possible trial types (Fig. 1B). There were 4 padding trials at the start and end of each sequence, 3 pad-
ding trials before each target and foil, and 4 after. The total number of stimulus presentations in each sequence 
ranged between 128 and 144, depending on the number of targets and foils in each sequence. All target events, 
foil events, and padding were removed, and only the 104 non-target stimulus presentations in each sequence 
were used for further analysis.

Each stimulus in the sequence was presented for 100 ms, while the interstimulus interval (ISI) duration 
was either 200 ms in the constant ISI condition or varied between 100 and 300 ms in the varied ISI condition 
(Fig. 1C). In the varied ISI condition, there were 13 possible ISIs, equally spaced between 100 and 300 ms, reflect-
ing the 60 Hz refresh rate of the monitor (i.e., 16.67 ms steps). We counterbalanced over sequences whether the 
ISI was constant or varied. Within a sequence, the 104 stimulus presentations were balanced for every combi-
nation of ISI before stimulus onset (13 for variable ISI condition) x orientation (4) x attention condition (2).

Participants completed 3 training parts during the EEG setup. Training parts 1 and 2 consisted of 4 sequences 
with 32 stimuli per sequence. In the first training part, participants only saw lines of the cued colour and the task 
was slowed down to 400 ms stimulus presentation and 400 ms ISI. In the second training part, the lines in the 
uncued colour were introduced, while the timing was kept the same as part 1. The third training part consisted 
of 8 sequences with 104 stimulus presentations per sequence. This training part was the same as the experiment: 
the stimulus presentation was sped up to 100 ms, and the ISI was either 200 ms (4 sequences) or varied from 
100 to 300 ms (4 sequences).

EEG acquisition and pre‑processing.  We recorded continuous EEG data from 64 electrodes, digitised 
at a sample rate of 1000-Hz, using a BrainVision ActiChamp system. The electrodes were arranged according 
to the international standard 10–10 system for electrode placement56 and were referenced online to Cz. We 
performed offline pre-processing using the EEGlab toolbox in Matlab57, following an established pre-processing 
pipeline37,58. We first filtered the data using a Hamming windowed FIR filter with 0.1 Hz high pass and 100 Hz 
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low pass filters, re-referenced the data to an average reference, and down-sampled the data to 250 Hz. We created 
epochs from -100 ms to 800 ms relative to stimulus onset.

Decoding analysis.  We conducted 3 different decoding analyses, to test for (1) an effect of attention on 
orientation coding, (2) an effect of temporal expectation on orientation coding, and (3) an interaction between 
attention and temporal expectation. To investigate the time-course of the effect of attention on the coding of 
visual information in the brain, we collapsed the data over the different timing predictability conditions. We 
used MVPA to determine whether the pattern of activation across EEG channels carried information about 
the cued orientation and the uncued orientation for each time-point. Comparing the coding of the cued and 
uncued orientation allowed us to determine at which time-points an effect of attention occurred, as indicated 
by stronger coding of cued compared to uncued orientations. We used the CoSMoMVPA toolbox for MATLAB 
for all decoding analyses59. For decoding of the cued orientation, we trained a regularised Linear Discriminant 
Analysis classifier to distinguish between orientations for each time-point in the epoch. Because the cued and 
uncued orientations were presented simultaneously, we made sure orientations were orthogonal over attention 
conditions. We did this by dividing the 4 possible cued orientations into 2 pairs, 22.5° vs. 112.5° and 67.5° vs. 
157.5°, and running the decoding analysis within a single pair. For instance, when the cued orientations were 
22.5° and 112.5°, the uncued orientations could be either 67.5° or 157.5°, each occurring equally often for each 
cued orientation (Fig. 1B). We averaged decoding accuracies across pairs, resulting in a chance level of 50%. 
We determined decoding performance for each individual participant using a leave-one-sequence-out cross-
validation approach, and then analysed the subject-averaged results at the group level. The decoding analysis of 
the uncued orientation was conducted in the same way. For plotting purposes, we bootstrapped 95% confidence 
intervals across participants using 10,000 bootstrap samples.

Note that we made sure that any difference in classification could not be driven by target-related processes 
in the following ways. First, we minimised effects of visual short-term memory by using a target detection task 
(effectively a “0-back” task), so participants did not have to retain the decoded stimulus orientation over a delay 
period. Participants did have to remember which was the target orientation (horizontal or vertical) for the 
duration of the sequence, but this could not drive the classification, as the target orientation was not informa-
tive about the decoded stimulus orientation. Critically, we only analysed the non-targets. Second, we made sure 
decision-making processes could not drive the classifier. Although a decision had to be made on each trial, it was 
a decision about whether the stimulus was a target. As we only analysed non-target trials, the decision was always 
the same for the analysed orientations (i.e., “not a target” decisions) and could therefore not drive the decoding. 
To examine the effect of temporal expectation, we split the data into the constant and variable ISI conditions, 
and performed the analysis described above separately for both the attention (cued or uncued) and temporal 
expectation (constant ISI or varied ISI) conditions, and then averaged across the cued and uncued conditions to 
obtain a single time-course of decoding accuracies per temporal predictability condition.

To investigate whether the effect of attention was (1) present, and (2) the same, for the two ISI conditions, we 
examined the orientation decoding accuracies separately for the different attention (cued or uncued) x temporal 
expectation (constant ISI or varied ISI) conditions.

Statistical inference.  We used Bayesian statistics to determine the evidence for above-chance decoding 
(alternative hypothesis) and chance decoding (null hypothesis) for each point in time60–63, using the Bayes Fac-
tor R package64. We did this for (1) the orientation coding separated for the cued and uncued conditions, (2) the 
orientation coding separated for the constant and varied ISI conditions, and (3) the orientation coding separated 
for both the attention and ISI conditions. We used a half-Cauchy prior for the alternative hypothesis to capture 
directional (above chance) effects. The prior was centred around chance (d = 0, i.e., 50% decoding accuracy), 
and had the default width of 0.70763,65,66. We excluded the interval ranging from d = 0 to d = 0.5 from the prior to 
exclude irrelevant effect sizes67.

We tested for an effect of attention for data combined across temporal predictability conditions, and separately 
for the constant and varied timing conditions, by calculating the difference between decoding accuracies for the 

Figure 1.   Experimental design. (A) The stimuli consisted of blue and orange oriented lines, overlaid at 
fixation. (B) There were 4 possible line orientations: 22.5°, 67.5° 112.5°, 157.5°. The blue and orange lines were 
always rotated 45° from each other, resulting in 8 possible combinations of orientations. We made sure the 
cued and uncued orientations were orthogonal in the decoding analysis by dividing the orientations into 2 
analysis groups, labelled Analysis group 1 and 2. The decoding was done within group. For example, for the 
cued orientation in Analysis group 1 we decoded 22.5° vs. 112.5°. The decoding of the uncued orientation was 
completed in the same way. For example, for the uncued orientation in Analysis group 1 we decoded 67.5° vs. 
157.5°. Note that for each cued orientation, both uncued orientations occur equally often and vice versa, which 
means that the other feature is not informative to the decoding analysis and cannot be used by the classifier. (C) 
Shows an example of part of a sequence. At the start of each sequence, participants saw the target colour and 
orientation for that sequence until they pressed a key to start. Stimuli were presented for 100 ms. Each stimulus 
consisted of lines of the cued and uncued colour. The ISI for the sequence was either constant at 200 ms or 
varied between 100 and 300 ms. (D) Shows an example of a target or foil event. In this example, the target is 
horizontal blue lines. The target is shown at the top (cued blue target orientation), and the foil at the bottom 
(uncued orange target orientation). Participants had to respond to targets but not to foils. The target and foil 
trials, along with 3 padding trials before and 4 padding trials after each target or foil, were not used in the 
analysis. Only the non-target stimuli were used in the analysis.

◂
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cued and uncued orientations. Because we had the a-priori hypothesis that the orientation coding of the cued 
orientation would be higher compared to uncued orientation, we used the same half-Cauchy (directional) prior 
described above, centred around 0, to test whether decoding accuracies of the cued orientation were higher 
than for the uncued orientation. We tested for an effect of temporal expectation by comparing the orientation 
coding of stimuli presented in the constant and varied ISI conditions, collapsed over attention conditions. We 
used the half-Cauchy prior described above to test whether orientation decoding accuracies in the constant 
ISI condition were higher than those in the varied ISI condition. To assess whether the effect of attention was 
different across the two ISI conditions, we compared the difference between decoding accuracies for the cued 
and uncued orientations directly for the constant and varied ISI conditions. Unlike the tests described above, 
we did not have an a-priori prediction about the direction of this effect. Therefore, we used whole Cauchy (not 
directional) prior for the alternative and excluded an interval ranging from effect size of − 0.5 to 0.5 from the 
prior to make it comparable to the other analyses.

Bayes factors (BF) above 1 indicate evidence in the direction of the alternative hypothesis, and Bayes factors 
below 1 indicate evidence in the direction of the null hypothesis. Bayes factors below 1/3 or above 3 are usually 
interpreted as substantial evidence, and Bayes factors below 1/10 or above 10 are usually interpreted as strong 
evidence66. We used the conservative threshold of Bayes factors above 10 (strong evidence)66 to determine the 
onset time of above chance decoding. To avoid interpreting single time-points with evidence for above-chance 
decoding, when neighbouring time-points do not support this, we defined the onset time of above chance decod-
ing as the second consecutive time-point with a Bayes factor above 10.

Results
The purpose of the task was to make sure participants attended to the orientations in the cued colour, while 
ignoring the orientations in the other colour. The task was difficult due to its fast nature, ensuring participants 
had to pay attention. Responses within 2000 ms after the onset of the target or foil stimulus were counted as hits 
or false alarms respectively. Participants performed the target-detection task in the constant interval condition 
with a mean hit rate of 60.96% (SD = 11.60%, range = 36.73–85.42%), a mean false alarm rate on foils (target 
orientation in uncued colour) of 11.12% (SD = 6.46%, range = 0.00–28.26%), and a mean false alarm rate on 
the non-target trials of 0.34% (SD = 0.41%, range 0.00–1.68%). On the varied interval condition, participants 
had a mean hit rate of 58.06% (SD = 11.49%, range = 36.73–78.85%), a mean false alarm rate on foils of 9.89% 
(SD = 6.43, range = 0.00–25.00%), and a mean false alarm rate on non-target trials of 0.34% (SD = 0.45%, range 
0.03–1.95%). This indicates that the participants were engaged in the task and managed to discriminate between 
the orientations of the cued and uncued colour.

We decoded the cued and uncued orientations for each time-point to determine whether there is an effect of 
attention on the coding of visual information (Fig. 2A). There was strong evidence for above chance decoding of 
both the cued and uncued orientation from approximately 80 ms after stimulus onset (84 ms and 80 ms respec-
tively). There was strong evidence for an effect of attention, defined as stronger coding of the cued compared to 
uncued orientation, from 232 ms (Fig. 2B). This suggests the brain initially represented both the cued and uncued 
stimuli to a similar extent, but later prioritised the processing of the attended information.

The second aim of this study was to examine the influence of temporal expectation on the effect of atten-
tion. First, we determined whether there was a main effect of temporal expectation on the processing of visual 
orientation information, and then we tested whether there was an interaction between attention and temporal 
expectation. To determine whether there was a main effect of temporal expectation, we compared the decoding 
of orientation between stimuli presented in the constant and varied ISI sequences, collapsing across attention 
conditions. The decoding accuracies for the constant and varied ISI conditions are shown in Fig. 3A. We calcu-
lated the effect of temporal expectation as the difference between orientation coding for stimuli in the constant 
and varied ISI sequences (see Fig. 3B). There was no reliable effect of temporal expectation on the processing of 
visual information. Although a few time-points after 300 ms showed evidence for stronger orientation coding 
for the constant compared to varied ISI conditions (BF10 > 10), most time-points after 300 ms showed either 
inconclusive evidence or strong evidence for no effect (BF10 < 1/10).

To examine whether an effect of attention was present regardless of temporal expectation, we compared 
the decoding of the cued and uncued orientations separately for the constant ISI sequences (Fig. 4A) and the 
varied ISI sequences (Fig. 4B). We observed an effect of attention for both timing conditions, starting at 248 ms 
after stimulus onset for the constant timing condition, and at 232 ms after stimulus onset for the varied timing 
condition. We directly compared the effects of attention in the two different timing conditions, to examine the 
interaction between attention and temporal expectation (Fig. 4C). Although a few time-points showed evidence 
for a larger effect of attention in the varied ISI condition, no two consecutive time-points showed strong evidence 
(BF10 > 10) for this difference, and the majority of time-points showed strong evidence for no effect (BF10 < 1/10). 
Note that although the visual input was perfectly matched between the constant and varied ISI conditions until 
200 ms after stimulus onset, this is not the case after this time. While the next stimulus in the sequence was 
always presented 300 ms after the preceding one in the constant ISI condition, it was presented between 200 and 
400 ms after stimulus onset in the varied ISI condition (see grey line in Fig. 4A and grey shaded area in Fig. 4B). 
This means that masking by the next stimulus in the sequence occurred earlier in some of the varied ISI trials 
(and later in others) compared to the constant ISI trials.

Discussion
In this experiment we investigated the time-course of the effect of feature-based attention on visual informa-
tion processing. We controlled for effects of target related processes, such as visual short-term memory and 
decision-making, in the following ways. We controlled for visual short-term memory effects by using a target 
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detection task where participants did not have to retain the cued stimulus orientation over a delay period. We 
made sure decision-making processes could not drive the classifier by making the decision (i.e., target or not 
a target) orthogonal to the decoded stimulus orientations. Critically, we only analysed the non-target stimulus 
presentations. In addition, we investigated whether temporal expectation modulated the effects of attention on 
information processing by presenting the stimuli with either a constant (predictable) interval between stimuli 
of 200 ms, or a varied (unpredictable) interval between 100 and 300 ms. The results showed that whereas the 
cued and uncued visual input was initially coded equally from about 80–84 ms after stimulus onset, an effect of 
attention emerged from approximately 232 ms. After this time, the cued visual information was more strongly 
coded than uncued information. We observed this effect of attention, with a similar time-course, in both the 
varied and constant ISI conditions. These findings show that attention selectively enhances the relevant compared 
to irrelevant visual information, which is consistent with the role of attention in boosting and maintaining task-
relevant information. Importantly, this effect of attention on stimulus coding occurred even when we controlled 
for target-related effects and occurred regardless of whether the onset timing was predictable or not.

Our findings of an effect of attention on orientation coding are consistent with previous studies that used 
time-resolved methods in combination with MVPA. These studies found more sustained coding for the cued 

Figure 2.   Time-course of decoding accuracies of the cued and uncued orientations. (A) shows the decoding 
accuracy of the stimulus orientation over time, when the orientation was either presented in the cued colour 
(blue) or uncued (light green). The stimulus onset is marked with a vertical black line at 0 ms. Theoretical 
chance is 50% decoding accuracy, and shaded areas around the plot lines show the bootstrapped 95% confidence 
interval across participants (N = 20). Bayes factors are given below the plot on a log scale. Bayes factors below 
1/10 are shown in grey, indicating strong evidence for the null hypothesis. Bayes factors above 10 are shown 
in the plot colour (blue for cued and light green for uncued), indicating strong evidence for the alternative 
hypothesis. Bayes factors between 1/10 and 10 are shown in white. The cued orientation could be decoded from 
84 ms after the onset of the stimulus, and the uncued orientation from 80 ms after stimulus onset. (B) shows the 
effect of attention, measured as the difference in orientation decoding between the cued and uncued orientation 
(cued − uncued). The Bayes factors are given below the plot on a log scale. An effect of attention was present 
from 232 ms after stimulus onset.
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compared to uncued features and/or objects36,37,39. In line with our previous work39, we show that these effects are 
not contingent on confounding stimulus and decision. The current study builds on previous findings by showing 
that feature-based attention effects occur even when we control for target-related processing and ensure that 
decisions do not confound the stimulus classification, and that they occur regardless of whether the stimulus 
onset timing is expected or not. One difference with previous research is how long the cued information was 
maintained in the neural signal, as this appears to be sustained for a shorter period in this study compared to pre-
vious findings36,37,39. This difference could be caused by a number of different processes. First, the masking of each 
stimulus by the subsequent stimulus occurs earlier in this paradigm compared to previous experiments36,37,39,40, 
and masking has been shown to affect the coding of visual information51. Secondly, this difference could be 
driven by the reduced requirement to maintain or manipulate the cued visual information, as this was a relatively 
easy target detection task. These different explanations are not mutually exclusive, and both seem likely to play a 
role. Although the decoding duration of cued information might be dependent on the study design, the effect of 
attention emerges at a similar time across studies, approximately 200–300 ms after stimulus onset. The similar 
timing of the emergence of preferential processing of the relevant compared to irrelevant information is in line 
with this effect being driven by attention. Our study adds to previous findings by unequivocally demonstrating 

Figure 3.   Time-course of decoding accuracies of the orientations presented at a constant and varied ISI. (A) 
shows orientation decoding accuracy of stimuli presented at a constant ISI (purple) or varied ISI (orange). 
Plotting conventions are the same as in Fig. 2. The orientations of stimuli presented at a constant ISI or varied 
ISI could be decoded from 88 and 84 ms after stimulus onset respectively. (B) shows the effect of temporal 
expectation, measured as the difference in orientation decoding between the stimuli presented at a constant 
or varied ISI (constant − varied ISI). The BFs are given below the plot on a log scale. There was no effect 
of temporal expectation on the coding of orientation information. A few time-points after 300 ms showed 
stronger orientation coding for the constant compared to varied ISI conditions, but the Bayes factors for most 
time-points in the 300 ms to 800 ms time-window either suggested inconclusive evidence or evidence for no 
difference.
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Figure 4.   Time-course of decoding accuracies of the cued and uncued orientations for the varied and constant 
ISI conditions. Plots show the decoding accuracies of the cued (blue) and uncued (light green) stimulus 
orientation over time for the constant ISI condition in (A) and the varied ISI condition in (B). The possible 
onset time(s) of the next stimulus in the sequence are indicated by a grey shaded line at 300 ms in (A) and a grey 
shaded area between 200 and 400 ms in (B). (C) shows the effect of attention on stimulus coding, calculated as 
the difference in decoding accuracy for the cued and uncued conditions, for the constant ISI condition (yellow) 
and the varied ISI condition (red). We observed an effect of attention for both timing conditions, starting at 
248 ms after stimulus onset for the constant ISI condition, and at 232 ms after stimulus onset for the varied 
ISI condition. We directly compared the effect of attention for the 2 different ISI conditions and found no 2 
consecutive time-points with BF10 > 10. Plotting conventions are the same as in Fig. 2.
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the temporal dynamics of attention on the processing of visual information, without target-related processing 
confounds. In addition, our design allows us to study attended and unattended stimuli presented simultaneously 
in the same spatial location, in a fast and efficient paradigm.

In this study, we observed preferential coding of the attended information over the distractor information 
after 200 ms, suggesting that the attentional selection of the relevant colour feature biased visual processing at 
this time. A change in decoding could be driven by different factors. For instance, it could be driven by a reduc-
tion in trial-to-trial variability in the neural response, or by a gain in the neural coding of the stimulus features 
in the attended condition. The time-course found in this study suggests a top-down bias of attention on visual 
processing, in line with a large body of literature on non-human primates1,68–71 as well as humans72–76. The onset 
time of our attention effect is consistent with previous univariate work, which found effects of feature-based 
attention after 200 ms at anterior sites and 225 ms at posterior sites77–79. In addition, the timing is similar to the 
N2pc component, associated with the selection of relevant information, and the distractor positivity (PD) com-
ponent, associated with the suppression of irrelevant information, both of which are observed around 200 ms 
after stimulus onset in visual search studies80–85. Our results show that the coding of the attended information 
is maintained after 200 ms, whereas the stimulus coding of the unattended information decreases after 200 ms. 
This could reflect the selection of the relevant information for further processing and/or the suppression of the 
distracting information and could therefore be associated with the N2PC and PD components. The time-course 
of feature-based attention we have identified differs from univariate spatial attention studies, which found that 
spatial attention modulations can occur as early as 70-100 ms after stimulus onset25–27,86–90. This difference is 
likely due to the necessity of some initial stimulus processing to identify the relevant feature before feature-based 
attention can be applied. Spatial attention, on the other hand, can be allocated to the location where the stimulus 
is likely to appear, even before the stimulus is presented16,91,92. Here we looked at only attention to colour as a 
representation of feature-based attention, it is possible that processing of other features might differ slightly in 
time-course. The current work adds to the univariate findings by revealing what happens to both the attended 
and distractor information over time, even when both stimuli are presented simultaneously at the same location.

We found evidence that temporal expectation did not interact with the effect of attention on visual processing 
for the timescale used in this paradigm: a constant ISI of 200 ms and a varied ISI of 100–300 ms. The stimulus 
presentation duration was kept constant at 100 ms, resulting in a stimulus onset asynchrony of 300 ms, and 
200–400 ms respectively. This finding fits with findings from Smout and colleagues, who showed that expecta-
tion about stimulus identity did not interact with the effect of attention on stimulus coding. Our study adds to 
these findings by investigating the contribution of temporal expectation. It is possible that an interaction would 
occur when temporal expectations are violated, in line with the findings of Smout and colleagues40, who found an 
interaction between attention and expectation about stimulus features on the processing of mismatch informa-
tion only. Future work could therefore compare a predictable timing condition to a condition where temporal 
expectation is violated, rather than a condition where there is no temporal expectation as in our varied condition.

We did not find a main effect of temporal expectation on orientation processing. Although a few time-points 
after 300 ms showed evidence for stronger orientation coding in the constant compared to varied ISI condition, 
likely driven by more sustained decoding of the uncued orientation in the constant condition, most time-points 
showed either inconclusive evidence or evidence for no difference. The difference in those few time-points is 
likely attributable to the difference in visual stimulation starting after 200 ms. The next stimulus, which is likely 
to cause masking, occurred earlier in some of the varied ISI trials compared to the constant ISI trials. One pos-
sible interpretation of the lack of an effect is that there must be certainty about the stimulus feature in order 
to prioritise processing a certain window in time. While the general shape and colours of the stimuli in our 
paradigm were expected, the task-relevant feature (orientation) was not. Another possible interpretation is that 
temporal expectation might not affect the early sensory response, but rather influences the later ‘decision’ stages 
of information processing93. Several studies support this possibility, although these studies investigated expecta-
tions about spatial location42, stimulus features40,48,94 and motor responses48 rather than temporal expectations. 
However, the lack of a main effect of temporal expectation does not seem in agreement with other studies that 
found evidence for enhanced visual processing for stimuli presented at a constant compared to varied ISI49,50. One 
possibility for this difference is the difference in analysis methods. Whereas we used MVPA of EEG data to track 
the coding of visual information, previous studies have investigated the effect of implicit temporal expectations 
on phase-locking of oscillations49 and behaviour49,50. This means that our results are not directly comparable. 
Another possible explanation for the apparent difference between our results and other studies of the effects of 
temporal expectation49,50 could be the timescale, as other studies have used a slower ISI in the predictable timing 
condition (400 ms compared to 200 ms), as well as a wider range of range of possible ISIs for the unpredictable 
timing condition (200–600 ms instead of 100–300 ms)49,50. It is possible that this, perhaps stronger, manipulation 
of temporal expectation would lead to different results in our paradigm, as this would give participants more time 
to process the current stimulus and prepare for the next stimulus. Another, not mutually exclusive, explanation 
is that the perceptual difficulty of the stimuli plays a role in whether temporal attention can affect the processing 
of visual information. Although our task was difficult due to its fast nature, the perceptual difficulty was low, 
as the non-targets were always rotated at least 22.5° from the target orientation and there was no added visual 
noise. This was not the case for some of the previous studies, where target orientations were embedded in visual 
noise49,50. It is possible that the effect of temporal expectation may have a larger effect under conditions of high 
perceptual difficulty, when there is more to gain from attending precisely in time. Future work could disentangle 
whether temporal expectation effects are dependent on perceptual difficulty and longer time scales.

It is also important to consider different types of expectations. This study focused on expectations of when 
something will happen, which we term temporal expectation, but expectations about upcoming events often 
combine ‘when’ with ‘what’ and ‘where’. Some studies have found that temporal expectation can interact with 
spatial expectation95, as well as expectation about object features96. These results show that different types of 
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expectation can work together, with the largest effects when participants have an expectation about both where 
or what will appear and when. It is therefore important to note that in this study, participants had a spatial 
expectation about where the stimulus would appear, as this was kept constant. In addition, participants had an 
idea about the general shape and colours of the stimulus, but no expectation about what the orientation of the 
upcoming stimulus was. We therefore need to interpret the results of the temporal expectation manipulation 
keeping in mind there was also a spatial expectation and an object feature expectation about colour, but no object 
feature expectation about orientation. This could mean that an expectation about the relevant stimulus feature 
might be needed to observe an effect of temporal expectation on stimulus coding.

Taken together, our results showed that attention selectively enhanced the high-level processing of stimulus 
relevant features from about 232 ms after stimulus onset, without target-related processing confounds. The 
selection of task-relevant information occurred even when the stimulus presentation was fast and occurred 
regardless of whether the onset was temporally predictable or not. These findings reveal a detailed picture for 
the time-course of the prioritisation of task-relevant information, in the presence of competing information at 
the same time and location.

Data availability
The raw and pre-processed data are available via OpenNeuro (https://​openn​euro.​org/​datas​ets/​ds004​043), and 
the analysis code is available via the Open Science Framework (https://​doi.​org/​10.​17605/​OSF.​IO/​5B8K6).
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