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Summary 

The Sutherland group recently demonstrated that from a mixture of oligoribonucleotide-
2!- or 3!-phosphates the latter is chemoselectively acetylated. This is shown to mediate a 
template-directed ligation to give predominantly 3!,5!-linked RNA that is acetylated at 
the ligation junction (acetyl-RNA). It was suggested that RNA emerged prebiotically 
via acetyl-RNA and also is proposed to have favourable genotypic properties due to 
greater propensity to form duplex structure. To study the properties of acetyl-RNA, 
their synthesis by solid-phase chemistry was required and described is the design of a 
2!/3!-O-acetyl orthogonal protecting group strategy. Key to the orthogonal protecting 
group strategy is the use of (2-cyanoethoxy)carbonyl for the protection of the 
nucleobase exocyclic amines and a photolabile solid-phase linker group that allowed 
partial on-column deprotection. The synthesis of the 2!/3!-O-acetyl and 2!/3!-O-TBDMS 
phosphoramidites, in addition to preparation of a photolabile solid-phase support, are 
described. With the materials to hand the procedures for an automated synthesis of 
acetyl-RNA were optimised and several acetyl-RNA oligonucleotides were synthesised. 

The duplex stability of acetyl-RNA with up to four sites of 2!-O-acetylation were 
assessed by UV melting curve analysis. Remarkably, the acetyl groups caused a 
consistent decrease in Tm of between 3.0-3.2 °C. Thermodynamic parameters indicated 
a decrease in duplex stability that was consistent with a decrease in hydration of the 
minor groove resulting in a reduction of the stabilising hydrogen bonding network. The 
stability of a tetraloop was also found to decrease on acetylation. The acetylated-
tetraloop it is able to form duplex at lower concentrations than the natural tetraloop. 
Additionally, it is more stable at high concentrations, indicating that acetyl-RNA 
favours duplex over other secondary structure. These properties are considered to give 
acetyl-RNA competitive advantage for their non-enzymatic replication. 

Aminoacylation of RNA is an important process in modern biology but the 
intermediacy of aminoacyl-adenylates is considered to be prebiotically implausible. A 
potentially prebiotic aminoacylation of nucleoside-3!-phosphates, selective for the 2!-
hydroxyl, is presented. However, it was thought the aminoacylation yields could be 
improved and so a search for an alternative activator was conducted. 
Oligoribonucleotide-3!-phosphates were exposed to the aminoacylation conditions and 
selective aminoacylation at only the 2!-hydroxyl of the 3!-end was observed. In 
particular, the aminoacylation of a trimer lends support to Sutherland’s theory of a 
linked origin of RNA and coded peptide synthesis. 
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Abbreviations 

A   adenine    
Ac   acetyl  
Ar   aryl 
ARS   aminoacyl-tRNA synthetase 
ADP   adenosine diphosphate 
ATP   adenosine triphosphate  
aq.   aqueous    
B   nucleic acid base 
Boc   tert-butyloxycarbonyl    
tBu   tert-butyl 
BTT   5-benzylthio-1H-tetrazole 
°C   degrees Celsius    
C   cytosine     
ca.   circa  
calc.   calculated 
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cm-1   wavenumber 
CoA   Coenzyme A 
conc.   concentrated  
COSY   correlated spectroscopy (NMR) 
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DAMN   diaminomaleonitrile 
DBU   1,8-diazabicyclo[5.4.0]undec-7-ene 
DCI   4,5-dicyanoimidazole 
DIAD   N,N!-diisopropylazodicarboxylate 
DIPEA   diisopropylethylamine 
DMAP   4-(dimethylamino)-pyridine 
DMF   N,N-dimethylformamide 
dmf   dimethylformamidine   
DMSO   dimethylsulfoxide 
DMTr   4,4!-dimethoxytrityl 
DNA   deoxyribonucleic acid   
Eds.   Editors 
ee   enantiomeric excess 
ESI   electrospray ionization 
Est.   estimated    
et al.   et alia 
ETT   5-ethylthio-1H-tetrazole 
eq.   equivalent(s) 
FADH   flavin adenine dinucleotide 
G   guanine      
h   hour(s) 
HMDS   hexamethyldisilazane 
hν   electromagnetic irradiation (UV) 
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HPLC   high performance liquid chromatography   
Hz   Hertz      
i   iso 
IBCF   isobutyl chloroformate 
i.e.   id est     
IR   infrared    
J   NMR coupling constant measured in Hertz 
LCAA   long chain alkylamine 
lit.   literature (reference) 
m   milli     
M   molar 
MALDI-TOF  Matrix-assisted laser desorption/ionization-time of flight  
Me   methyl 
MeCN   acetonitrile 
MHz   megahertz     
min   minute    
mL   millilitre     
mmol   millimole     
M.P.   melting point 
mRNA   messenger ribonucleic acid 
MS   mass spectrometry 
µL   microliter 
µM   micromolar  
m/z   mass/charge ratio 
NADH   nicotinamide adenine dinucleotide 
NAI   N-acetylimidazole 
NCI   N-cyanoimidazole 
NCA   N-carboxyanhydride  
NMR   nuclear magnetic resonance 
NP   normal phase 
npe   p-nitrophenylethyl 
p   para 
PBS   phosphate buffered saline  
Ph   phenyl   
Pi   inorganic phosphate    
PPi   inorganic pyrophosphate   
ppm   parts per million    
py.   pyridine 
quant.   quantitative yield   
R   unspecified group  
rac-   racemic mixture 
RP   reverse phase 
rRNA   ribosomal ribonucleic acid 
RNA   ribonucleic acid  
RT   room temperature 
sat.   saturated 
sca-   scalemic 
soln.   solution 
t   tertiary 
tert   tertiary   
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T   thymine 
TBDMS   tert-butyldimethylsilyl 
TCA   trichloroacetic acid  
TFA   trifluoroacetic acid 
THF   tetrahydrofuran 
Tm   melting termperature 
TMS   trimethylsilyl 
TLC   thin layer chromatography 
TREAT.HF  triethylamine trihydrofluoride 
tRNA   transfer ribonucleic acid 
t1/2   half life 
U   uracil 
UMP   uridine-5!-monophosphate 
UV   ultraviolet 
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1. Introduction 

1.1. What prebiotic chemistry hopes to achieve 

The question of “How did life begin?” has been discussed and debated over the 

millennia by religion, philosophers and scientists, but this question is inherently 

complex as life is not easy to define. Luisi and Abel point out that no two definitions are 

exactly the same, although the most popular seems to be NASA’s official definition:[1-3]  

“Life is a self-sustaining chemical system capable of Darwinian evolution”. 

If physicists investigate the beginnings of the universe and biologists reduce the 

complexity of known life to its minimal requirements, then it is chemists who must 

discover how a “self-sustaining chemical system” could have emerged from inanimate 

chemicals. In research towards the origin of life there are many variables that have to be 

taken into account, such as where life started, the identity of starting materials and 

planetary conditions. We can define, to a degree of certainty, the molecules that are 

required for life such as RNA, peptides, lipids and essential metabolites. But with no 

direct clues to the conditions on the early Earth at the origin of life there is an 

immensely wide field of possible starting points and paths to follow. And so the chemist 

has to demonstrate how life may have occurred. This view is shared by Albert 

Eschenmoser who summed up this sentiment perfectly:[4] 

“The origin of life cannot be discovered, it has to be re-invented”. 

1.2. The early Earth and the prebiotic environment 

The Earth was formed around 4.5 billion years ago from the gravitational aggregation of 

cosmic gas clouds and dust orbiting the Sun. During this process the gravitational forces 

would have resulted in immense heat and a molten surface. Also, up until about 3.9 

billion years ago, large asteroids frequently impacted the earth and these would have 

sterilised the surface.[2, 5, 6] Although there is some debate over validity,[7] it is generally 

accepted that fossils found in western Australia are of organisms that resemble 

cyanobacteria, which have been dated to approximately 3.5 billion years ago.[8] Other 

fossil evidence puts the existence of photosynthetic cyanobacteria to a time point of 
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around 2.7 billion years ago.[9] These fossils suggest some sort of cellular life was 

present between 3.5 and 2.7 billion years ago, and the transition from non-living 

chemicals to living entities must have occurred within a relatively short time period of 

400 million years after meteoric bombardment had ceased (Figure 1).  

 

Figure 1. Timescale for the emergence of life. 

The atmosphere at the beginning of life was thought to have been weakly reducing or 

close to neutral and contained mostly carbon dioxide and nitrogen with traces of carbon 

monoxide, hydrogen and reduced sulphur gases.[5, 10] Oxygen would not have been 

present until the dawn of biological activity that resulted in a slow but not immediate 

rise of oxygen, and so a protective ozone layer would have formed after the emergence 

of life.[10] The identity of reactive molecules on the early earth is not known but 

observations from the atmosphere of the gas giants,[11, 12] spark discharge/UV 

experiments,[13, 14] and analysis of carbonaceous meteorites after arrival on Earth[15, 16] 

suggest that the feedstock molecules in Figure 2 were important for prebiotic chemistry. 

On cooling of the Earth, water vapour would have condensed to form the oceans. After 

cooling sufficiently they were likely to have been at a neutral pH due to the buffering 

action of basalt and other minerals.[17] 

 

Figure 2. A selection of potentially prebiotic feedstock molecules. 
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1.3. Modern biology and a common ancestry 

Life is overwhelmingly diverse, complex and interdependent. Despite this complexity, 

all life is related by the ‘Central Dogma of Molecular Biology’, which was put forward 

by Crick and underpins modern biology (Figure 3).[18] 

 

Figure 3. The 'Central Dogma of Molecular Biology'. 

The Central Dogma describes a flow of genetic information that, once translated into 

proteins, cannot flow back towards nucleic acids. The processes described in Figure 3 

are those that are common to most cells and animals, yet there are some exceptions such 

as retroviruses whose genetic data is held as RNA. This class of virus, which includes 

human immunodeficiency virus 1 (HIV-1), possess an enzyme called a reverse 

transcriptase that copies the viral RNA into DNA within a host.[19]  

 

Figure 4. a) B-form DNA double helix, redrawn from PDB file 1bna using 
MacPyMOL.[20] b) The sugar-phosphate backbone structure of DNA and the Watson-
Crick base pairing of the nucleobases. c) The sugar-phosphate backbone structure of 
RNA and the Watson-Crick base pairing of A:U that replaces A:T. B = nucleobases 
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of DNA comprises two anti-parallel strands, each with a deoxyribose-phosphate 

backbone located on the exterior and the nucleobases are found within the interior 

(Figure 4a). Genetic information is coded along a strand by four nucleobases, two 

purines (adenine (A) and guanine (G)) and two pyrimidines (thymine (T) and cytosine 

(C)). It is the specific hydrogen bonds formed between purine and pyrimidine bases 

(A=T and G≡C) that are the key to the hereditary function of DNA, and these are named 

(Watson-Crick) base pairs (Figure 4b). The replication of DNA requires enzymes called 

DNA polymerases that utilise the specific base pairing to direct the accurate transfer of 

genetic information. 

Like DNA, RNA is composed of a sugar-phosphate backbone and nucleobases. 

However, it differs in two aspects; firstly the base thymine (T) is replaced by another 

pyrimidine, uracil (U) (Figure 4c); secondly the sugar present is ribose that contains a 

2′-hydroxyl not present in DNA. During transcription, RNA polymerase enzymes use 

the DNA strands as templates with the specific base pairing to accurately ‘transcribe’ 

the genetic code into RNA. The RNA products of transcription are processed into 

messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA) that will 

be used in the next step of information transfer. The mRNA is carried to the cytoplasm 

where the small and large subunits of the ribosome enclose the ‘start’ end of the mRNA. 

The aminoacyl-tRNA that has been previously charged with the correct amino acid 

according to the anti-codon by an aminoacyl-tRNA synthetase enzyme is then recruited 

by the ribosome. If the aminoacyl-tRNA anti-codon is not complementary to the codon 

on the mRNA strand, then the aminoacyl-tRNA falls away. If the aminoacyl-tRNA anti-

codon is complementary, the ribosome catalyses the formation of a peptide bond and 

the amino acid is incorporated into the growing polypeptide (Figure 5). The specific 

folding of the 1D polypeptide chain into a 3D tertiary structure is the factor that 

determines the catalytic properties of proteins.  
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Figure 5. 1) DNA is transcribed to give mRNA. 2) The small and large subunit of the 
ribosome bind to the mRNA. 3) tRNAs are charged with the correct amino acid that 
corresponds to the anticodon. 4) At the ribosome the aminoacyl-tRNA binds with the 
mRNA and if the codon-anticodon does not match the aminoacyl-tRNA is released. 5) If 
the codon-anticodon match the amino acid is incorporated into the growing polypeptide 
and the ribosome moves along one codon step to allow another aminoacyl-tRNA to 
bind. 6) The polypeptide chain is folded into a protein. Adapted from reference[22]. 

The sequence of three nucleobases in a triplet codon represents a particular amino acid. 

Gamov initially suggested the triplet codon theory after reading Watson and Crick’s 

discovery of the structure of DNA.[23] In 1961, Crick presented preliminary evidence in 

support of Gamov’s three-letter code,[24] but it was the efforts of Nirenberg and Khorana 

that led to the deciphering of the 64 possible codons of the genetic code (Figure 6).[25-35] 

From inspection of the standard genetic code it is clearly highly degenerate, and the 

amino acids that are coded by two or more codons are called synonyms. Although some 

slight variations exist between species the genetic code is largely universal.[19]  
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 Second Base   
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Gly Glu Val Ala A 
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A 

Ser Asn Ile Thr U 
Ser Asn Ile Thr C 
Arg Lys Ile Thr A 
Arg Lys Met Thr G 

U 

Cys Tyr Phe Ser U 
Cys Tyr Phe Ser C 
Stop Stop Leu Ser A 
Trp Stop Leu Ser G 

C 

Arg His Leu Pro U 
Arg His Leu Pro C 
Arg Gln Leu Pro A 
Arg Gln Leu Pro G 

 
Figure 6. The standard genetic code. 

Due to its ubiquitous presence in all organisms, ribosomal RNA from many life forms 
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tree, which shows that the ancestry of all life forms can be traced back to a common 

beginning (Figure 7). The life form of this common beginning has become known as the 

‘Last Universal Common Ancestor’ or LUCA.[39, 40] 

 

Figure 7. The phylogenetic tree and the three kingdoms of life.[38] 

1.4. Theories for the origin of life 

Although life can be traced back to a common ancestor, the question of how such an 

organism may have emerged from the abiotic mix of feedstock molecules has led 

Nanoarchaeota
Crenarchaeota

Euryarchaeota

Fungi

Animals

Plants
Slime moulds

Flageliates
Trichomonades

Microsporidia

Diplomonads Thermotoga

Bacteroides Cytophaga

Green non-sulphur
bacteria

Plantctomyces

Gram 
positives

Cyanobacteria

Spirochetes

Proteobacteria

BacteriaAchaeaEucaryota

Last Universal Common Ancestor



 18 

researchers to suggest a more ancient life form. Moreover, DNA and RNA both act as 

propagators of genetic information, but their replication relies on enzymes, whose 

structure and function arise from the information carried within the sequence of DNA. 

This close interdependence has led to suggestions that the beginnings of life were of a 

much simpler form. The theories put forward are generally divided into two schools of 

thought, which are the autotrophic and heterotrophic theories of the origin of life. The 

former favours the emergence of autocatalytic cycles catalysed on inorganic mineral 

surfaces, because they are considered more likely to have emerged from the early 

geological environment than the complex organic molecules that are ubiquitous in 

biology. However, it is the spontaneous formation of these complex organic molecules 

that the latter heterotrophic group favours, in particular a self-replicating informational 

molecule that is also endowed with catalytic capacity.[41] This thesis assumes a 

heterotrophic origin of life but does not dismiss the autotrophic theories from which 

important ideas can be used to piece together a deeper understanding of the origin of 

life. 

1.4.1. Autotrophic origin of life 

One theory of an autotrophic origin of life was proposed by Cairns-Smith who 

suggested that the beginnings of genotypic evolution could have occurred on the edges 

of ordered layers of clay minerals such as silicates.[42] It was suggested that the 

interaction of organic materials by adsorption onto mineral surfaces could produce an 

organic polymer that eventually would take over phenotypic functions (i.e. genetic 

takeover). However, a more popular autotrophic origin of life is the ‘Iron-Sulphur 

World’ advocated by Wächerhäuser, who suggested that the first organism was an 

autotroph that derived energy from the conversion of FeS (pyrrhotite) to FeS2 (pyrite) 

by H2S exhaled from hydrothermal vents or volcanic sites. Using the reductive power of 

pyrite formation this early organism was said to be able to fix carbon by reducing 

atmospheric CO and CO2.[43, 44] This theory is backed by the observation that the metal-

sulphur minerals bear resemblance to the FeS and (Fe,Ni)S clusters of corrinoid iron-

sulphur protein (CFeSP) and carbon monoxide dehydrogenase-acetyl-CoA-synthase 

(CODH-ACS).[45] These enzymes take part in the Wood-Ljungdahl or reductive acetyl-

coenzyme A pathway, which is considered to be a primitive metabolic cycle, and is 

present in many early branching thermophilic archaea and bacteria.[46] 
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1.4.2. Heterotrophic origin of life 

Rather than favouring metabolic-cycles, this theory is based upon the gradual build-up 

of organic materials from the ‘aggregation’ of smaller molecules in the sea or on the 

surface of the earth. These organic materials are proposed to eventually form nucleic 

acids, proteins and other substances needed for life.[47] The organic material would then 

self-organise, possibly assisted by energetic species also available in the environment, 

to eventually result in a replicating life form.[4] The advantages of this theory are that it 

does not require ambiguous ‘genetic-takeover’ steps and is supported by a greater body 

of experimental work. 

However, the nature of how these organic molecules assembled to form a replicating 

system is a major problem. In particular, the interdependence of replication, 

transcription and translation raises the classic ‘chicken and egg’ question of “Which 

came first; nucleic acids or proteins?”. This question was considered in three 

complementary works by Woese [48], Crick[49] and Orgel[50] in the late 1960’s, where 

they suggested that RNA, in addition to propagating genetic information (genotypic), 

was also able to act catalytically (phenotypic) in a primitive fashion. This was based on 

the observation that DNA was known to form duplex structure and only acted as a 

template for RNA replication. Also it was known that ribosomes were composed mainly 

of RNA and that the adapter molecules tRNA were comprised of only RNA. This idea, 

however, was not developed until the discovery of catalytic RNA by Cech[51] and 

Altman.[52] 

1.4.3. The RNA world hypothesis 

In 1982 Cech et al. studied the rRNA genes of Tetrahymena thermophila. Within the 

coding region of the 26S rRNA subunit is a 413 basepair (bp) intervening sequence 

(IVS). The gene coding for the 26S subunit was transcribed into pre-rRNA that under 

enzyme-free conditions underwent splicing to remove the IVS. It was concluded that 

the IVS once transcribed was able to act like an enzyme to break and reform 

phosphodiester bonds, thus catalysing its own splicing.[51] Soon after in 1983, Altman et 

al. were studying the post-translational processing of tRNA by a ribonucleoprotein 

ribonuclease P. This ribonuclease P was deproteinised and, when incubated with the 
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correct co-factors and divalent metals, was still able to catalytically cleave the pre-

tRNA into tRNA.[51] The discovery of these catalytic functions of RNA prompted 

Gilbert to suggest a time when RNA carried genetic information and was also able to 

carry out catalytic functions; he coined this ‘The RNA world’.[53] He proposed that the 

RNA was able to develop catalytic activities to enable self-replication. Continued 

evolution would have enabled RNA to synthesise proteins by first developing adapter 

RNA molecules like tRNA. The first proteinogenic enzymes were thought to have 

catalysed the same reactions as ribozymes but with greater efficiency and the final 

major step would have been transferring the phenotypic responsibility to DNA. 

There is strong evidence for the involvement of RNA in the first primitive life form. 

Ribonucleotides are ubiquitous in modern biological processes and are constituents of 

many co-enzymes; this prompted White to consider co-enzymes as fossils of an earlier 

metabolism.[54] Ribonucleotides are used as the currency of energy storage (ATP), co-

enzymes (NADH, FADH, CoA) and signalling in cells (cyclic ADP ribose).[55] The de 

novo biosynthesis of nucleotides invariably begins with ribose-5-phosphate, which is 

activated by ribose phosphate pyrophosphokinase to 5-phosphoribosyl 1-α-

pyrophosphate (PRPP) from which the nucleoside-5!-phosphates are synthesised 

(Figure 8). Moreover, DNA nucleotides are formed from their corresponding 

ribonucleotides by reduction catalysed by ribonucleotide reductase.[55]  

 

Figure 8. Biosynthesis of the key ribosyl precursor, 5-phosphoribosyl 1-α-
pyrophosphate (PRPP), for the de novo synthesis of the nucleoside-5"-phosphates. 

Persuasive evidence for an RNA world can be seen from the X-ray crystallographic data 

of contemporary ribosomes, where the site of peptidyl-bond formation (peptidyl 

transferase centre, PTC) is comprised of only ribosomal RNA and the closest proteins 

are 18.4 Å away (Figure 9).[56-59] Additionally, Noller et al. showed that two different 

bacterial ribosomes retained peptidyl transferase activity after extensive treatment with 

proteinase K and SDS. Thus, presenting the first evidence that catalysis by the ribosome 
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is RNA based.[60] These discoveries led Steitz to suggest that the “ribosome is a 

ribozyme” and that the first primitive ribosome comprised entirely RNA.[61] More over, 

Yonath has observed that the catalytic core of the ribosome is semi-symmetrical, and 

has suggested that a primitive or proto-ribosome could have comprised an all RNA self-

assembled dimer.[62] The origin of ribosomal proteins has also been considered, many 

have long non-globular extensions that protrude in towards the centre of ribosome and 

clearly stabilise the structure of the ribosome. They fill the gaps between the RNA 

subunits and also neutralise the negative charges of the phosphates through the 

positively charged basic amino acid residues. It is therefore a possibility that the first 

peptide-synthesising RNA produced peptides that were useful in stabilising its structure, 

thereby improving its catalytic activity.[57, 61, 62] 

 

Figure 9. The peptidyl transferase centre (PTC) is represented with the RNA removed 
and is located at the magenta sphere. Also in magenta is a modelled polypeptide 
product. The closest proteins, L2, L3, L4 and L10e are shown and only approach within 
18.4 Å (all distances are quoted in Ångström). Reprinted from reference [56] with 
permission from the copyright holder, American association for the advancement of 
science.  

1.5. Chemistry towards an abiogenesis of RNA and proteins 

This thesis does not adhere to a strict RNA world, but considers that the abiogenesis of 

the first life form may have involved complementary or interrelated types of molecules. 

Nonetheless, RNA is recognised to have played an important role, and Chapter 1 will 

describe prebiotic chemistry related to the abiotic formation, oligomerisation and 

aminoacylation of RNA. Finally, an alternative theory of a linked origin of RNA and 

peptides will also be introduced. 
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1.5.1. The Miller-Urey experiment 

Stanley Miller and Harold Urey’s famous spark-discharge experiments stimulated 

origin of life research in 1953. Miller had read Oparin’s book on the origins of life in 

which he suggested that the atmosphere of the early earth was highly reduced and 

contained CH4, NH3, H2O and H2.[47] From this atmosphere it was suggested that 

organic compounds could be formed and so Miller devised an experiment where these 

simple gases and water vapour were subjected to spark discharges to simulate the action 

of lightning.[14] The products were collected over a period of a week; many organic 

compounds were isolated, including HCN 1 and formaldehyde 2.[63] Following strong 

acidic work-up of the reaction mixtures they were found to contain α-amino acids that 

included aspartic acid, glycine, valine and alanine.[14, 63-65] The formation of the amino 

acids is thought proceed via Stecker-type chemistry (Figure 10).[66] However, the 

plausibility of this chemistry is questionable in that only low yields of amino acids were 

formed, and it is now generally thought that the atmosphere of the early earth was 

neutral and dominated by N2 and CO2. 

 

Figure 10. Amino acid formation in the Miller-Urey spark discharge experiments that 
occur via Strecker-type chemistry. 

Spark discharge experiments were revisited under neutral atmospheric conditions.[67] An 

atmosphere of N2, CO2 and water vapour were subjected to spark discharge for 48 hours 

and the products subjected to acidic work-up. The results showed that amino acids 

serine, glutamic acid, glycine and alanine could be produced but yields were lower than 

those obtained under reducing conditions. It has been proposed that that the low yields 

of organic products from neutral atmospheres is due to limited formation of HCN 1 

which is a key reagent in the Strecker synthesis of amino acids.[68] Both spark discharge 

experiments suffer from low yields suggesting limited prebiotic significance. Despite 

this, similar amino acids have been detected on the Murchison meteorite in comparable 

abundances to spark discharge experiments, suggesting that some other plausible 

synthesis maybe found.[69]  
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1.5.2. The traditional disconnection of RNA 

Much of the prebiotic chemistry of RNA has focused on a structurally obvious 

disconnection (Figure 11). Firstly, polymeric RNA was proposed to have formed 

through the polymerisation of activated monomers. These monomers could be in the 

form of a 5!-phosphate 3 (X = leaving group), or of a 2!/3!-phosphate. Attack by a 3!-

hydroxyl of a monomer on an activated 5!-phosphate 3 would lead to oligomerisation. 

Activation of 2!- or 3!-phosphates, however, would lead to momomer cyclisation 

through intramolecular attack by the adjacent hydroxyl group to give a nucleoside-2!,3!-

cyclic phosphate 4. These species are ‘stably’ activated due to the slight ring strain; 

attack at cyclic phosphate by a 5!-hydroxyl group of another monomer would again give 

oligomerisation. For a detail discussion of the oligomerisation of activated nucleotide 

monomers see Chapter 1.6. The final disconnection of the activated monomers had long 

been unquestioned and seemed to be the most obvious. The assumption was that the 

monomers were derived from D-ribose 5, a preformed heterocyclic base and phosphate 

6 (Figure 11). 

 

Figure 11. The traditional and obvious disconnection of RNA. 

Although there is a wide field of work with this disconnection in mind, there are many 

problems associated with it and these are be briefly summarised here. The purine 

nucleobases can be synthesised from HCN 1 and the pyrimidine nucleobases from 

cyanoacetylene 7, both of which are formed in the spark discharge experiments (Figure 

12). However, the yield of purine bases is low, and attempts to improve the yield have 

been met with little success.[70-76] The formation of the pyrimidine nucleobases is a little 
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more efficient and the highest yields (up to 19%) are obtained with cytosine 8.[77, 78] 

Historically, Butlerow’s formose reaction has been considered the most plausible way 

to form sugars and involves the polymerisation of formaldehyde 2 via repeated aldol 

condensations catalysed by an alkaline Earth metal, such as calcium hydroxide.[79] 

However, chromatographic analysis of the products from the formose reaction revealed 

a complex mixture of sugars with lack of both regio- and stereo-selectivity. Indeed, the 

yield of rac-ribose 5 is less than 1%, and of additional concern is the instability of 

ribose 5 under the formose conditions (t1/2 < 3hrs, pH = 10, 55ºC).[80-82] Despite the lack 

of experimental evidence for a selective and efficient prebiotic method of forming 

D-ribose 5 or efficient synthesis of the nucleobases, direct attachment of a preformed 

base to 5 has been attempted. The best results have been reported by Orgel et al. who 

demonstrated that by heating D-ribose 5 with adenine 10 in the presence of MgCl2 or 

seawater salts, β-D-adenosine 11 can be formed in only 4% yield.[83, 84] Even worse, the 

pyrimidines 8-9 are completely unreactive due to delocalisation of the N1 lone pairs 

into the carbonyl groups (Figure 12).[85, 86] 

 

Figure 12. Nucleobase formation and the difficult glycosidation reaction. 

The difficulty of direct attachment of nucleobase to sugar prompted Orgel and Sanchez 

to pursue a stepwise assembly of the pyrimidine nucleosides.[87] D-Ribose 5 or D-ribose-

5-phosphate 5-5P was reacted with cyanamide 12 to give the D-ribofuranosyl 

aminooxazolines ribo-13/-5!P. These were then subsequently treated with 7 to furnish 

α-D-ribofurnanosyl cytidines α-14/-5!P in good yield, which are unfortunately the 

incorrect anomers (Figure 13a). Others have had success utilising D-arabinose to form 

the natural β-ribonucleotides[87, 88]; in particular Sutherland et al. have shown that 15 

could be formed from D-arabinose-3-phosphate D-16-3P by sequential addition of 12 

and 7 (Figure 13b).[89] The transformation of 15 into 17 and 18 was brought about under 
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prebiotically plausible conditions (pH = 7, sodium counterions) to give a conversion 

ratio of 1:4 (17:18) with an overall yield (from D-16-3P) of 3.5%.  

 

Figure 13. Stepwise assembly of pyrimidine nucleosides and nucleotides upon a) a 
ribose sugar and b) an arabinose sugar template. 

Stepwise assembly of pyrimidine nucleobase upon a sugar (phosphate) template avoids 

the need for direct assembly of preformed sugar and nucleobase. However, the synthesis 

still requires pure D-5, D-5-5P or D-16-3P of which there is, as yet, no prebiotically 

plausible synthesis. Moreover, the hydrolysis to arabino-configured 18 is preferred over 

cyclisation to the desired β-D-ribofuranosyl cytidine-2!,3!-cyclic phosphate 17, which 

contributes to the low overall yields. 

Despite some successes towards the direct synthesis of nucleoside and nucleotides, 

accumulation of prebiotically plausible feedstock molecules in pure form seemed 

impossible. In particular, the need for a preformed sugar and lack of an efficient 

synthesis of nucleosides and nucleotides were major hurdles towards considering the 

involvement of RNA at the origin of life. These problems led Joyce, Schwartz, Miller 

and Orgel to a dejected conclusion[90, 91]: 
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“It is possible that some efficient prebiotic synthesis of the β-ribosides, or some method 

of separating the β-ribosides from closely related isomers, will be discovered, but there 

is no basis in organic chemistry for optimism.” 

1.5.3. Recent successes: synthesis of the activated pyrimidine 

nucleotides bypassing preformed ribose 

The stepwise assembly of the pyrimidine nucleobases on a sugar template, whilst still 

requiring a preformed sugar, brought to light possible etiologically relevant 

intermediates: aminooxazolines (such as 13 and 19). The aminooxazolines confer 

selectivity towards the furanose sugars due to the obligate 1!,2!-cis-relationship and 

additionally their stability was found to be greater than the free sugars.[82] Powner et al. 

questioned whether the aminooxazoles (ribo-/arabino-13) could be formed from two 

simpler molecules; glyceraldehyde 20 and 2-aminooxazole 21.[92] It is known that 2-

aminooxazole 21 can be formed from the reaction of glycolaldehyde 22 with cyanamide 

12,[93] both of which are thought to be prebiotically available. This alternative 

disconnection of 13 led Powner et al. to investigate a new route to pyrimidine 

ribonucleotides that bypassed free sugars and nucleobase (spatially separated 

oxygenous and nitrogenous chemistries) where the first step involves mixed oxygenous-

nitrogenous chemistry to give 21 (Figure 14).[94] 

 

Figure 14. Disconnection of the aminooxazolines 13. 

The condensation between glycoaldehyde 22 and cyanamide 12 had been previously 

conducted in highly basic aqueous THF solution, and more prebiotically plausible 

conditions (i.e. neutral conditions) were thus sought.[93] However, in aqueous conditions 

and at neutral pH the condensation of 22 and 12 was found to be low yielding. It was 

suspected that formation of 21 was slowed by lack of specific base catalysis.  Phosphate 

was chosen as an ideal general acid-base catalyst as its second pKa is close to neutrality 
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and because it would ultimately be incorporated into the nucleotides. The addition of 

1 M phosphate, in a repeat reaction of 22 and 12 conducted at pH = 7, proved to be an 

excellent choice as the 2-aminooxazole 21 was formed in >80% yield with excellent 

suppression of by-products (Figure 15). 

 

Figure 15. Summary of the synthesis of the activated pyrimidine nucleosides by Powner 
et al.. 

The condensation of glyceraldehyde 20 and 2-aminooxazole 21 was a crucial step as it 

would bypass preformed sugars. To simulate conditions on the early Earth, 

glyceraldehyde 20 was directly added to 2-aminooxazole 21 that had been freshly made 

from cyanamide 12 and glycolaldehyde 22 in the presence of phosphate. Results show 

that the reaction was tolerant to phosphate and that all four pentose aminooxazolines 

were formed in 50% yield over two steps (ribo:arabino:lyxo:xylo 25:15:6:4).[94] Of the 

major products, ribo-13 has been found to be less soluble than arabino-13,[87] and 

additionally ribo-13 is the least soluble of the all the pentose aminooxazolines.[82] By 

cooling the product mixture from the reaction of glyceraldehyde 20 and 2-aminooxazole 

21, ribo-13 was selectively crystallised to give arabino-13 as the major product in 

solution. 

Sanchez and Orgel have previously shown that reaction of arabinose aminooxazoline 

arabino-13 with excess cyanoacetylene 7, in an unbuffered aqueous solution, gives β-
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intermediates (e.g. arabino-22) and excess cyanoacetylene 7 reacts with the hydroxyl 

groups. To control the pH rise, a buffer was needed, and as in the first reaction 

phosphate was utilised. At pH = 6.5, the reaction was very clean with little evidence of 

anhydronucleoside hydrolysis. The excess cyanoacetylene 7 was also revealed to have 

reacted with phosphate to give cyanovinyl phosphate 23 instead of reacting with the 

anhydronucleoside hydroxyl groups. The use of phosphate, which acts as both a pH and 

a chemical buffer, allowed the formation of arabino-22 in an extremely high yield of 

92%. 

With the arabinose-anhydronucleoside arabino-22 available through an efficient, 

prebiotically plausible route, the next step involved a combined phosphorylation-

rearrangement to convert arabino-22 to the activated ribonucleotide 17.[88, 95] The 

formation of cyanovinyl-phosphate 23 presented an alternative phosphorylating agent as 

it is known that 23 reacts with inorganic phosphate to form pyrophosphate.[96] Dry-state 

phosphorylation[97] in urea 24 was of particular interest as it is produced in the first step 

(formation of 21) if cyanamide 12 is initially present in excess. Thus, heating arabinose-

anhydronucleoside arabino-22 with 0.5 equivalents of pyrophosphate in urea 24 gave 

β-ribocytidine-2!,3!-cyclic phosphate 17 (32%) as the major product. Alternatively, 17 

could be formed in even greater yield (46%) by heating arabino-22 with inorganic 

phosphate and urea 24 in formamide solution.[98] Formation of 17 is thought to proceed 

by initial phosphorylation of the 3!-hydroxyl group of arabino-22 to give the 

intermediate 25 that then undergoes an intramolecular nucleophilic substitution (Figure 

16). This was remarkable, as it seemed that selectivity was for 3!-phosphorylation over 

5!-phosphorylation, which is contrary to conventional knowledge as primary hydroxyls 

are normally less sterically hindered.  

 

Figure 16. Mechanism of the phosphorylation-rearrangement of arabino-22 to give β-
ribocytidine-2",3"-cyclic phosphate 17. 

The X-ray crystal structure of arabino-22 revealed a C(4!)-endo sugar pucker with an 

added consequence that the 5!-OH is in a short contact (rO···C = 2.70 Å) with C2 (Figure 
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17a).[94] Sutherland et al., assuming that this solid-state conformation was also the 

predominant conformation in solution, suggested that phosphorylation at 5!-OH was 

more sterically hindered. Choudhary et al. carried out computational studies on 

arabino-22 and found that the short contact was preserved in the calculated structure 

(rO···C = 2.88 Å).[99] Further calculations showed that electron density of the lone pair (n) 

of the O5! is delocalised over the antibonding orbital (π*) of the C2=N3 bond (i.e. an 

n→π* electronic delocalisation, Figure 17b). Furthermore, the O5!···C2=N3 angle of 

99.2° is close to the Bürgi-Duntiz trajectory (~107°) such that the n→π* electronic 

delocalisation is reminiscent of nucleophilic attack on carbonyl groups.[100] This study 

suggested that 5!-OH reactivity was diminished towards phosphorylation as the 

proximity of O5! and C2! increased steric demand near O5!, in support of Sutherland’s 

suggestion. Additionally, the 5!-OH is engaged in an n→π* electronic delocalisation 

that decreased the intrinsic nucleophilicity of O5!. Both of these factors did not affect 

the O3!, which underwent efficient phosphorylation. 

 

Figure 17. a) X-ray crystal structure of ararbino-22. The dashed line shows the short 
contact distance between O5" and C2=N3 (2.70 Å) (adapted from reference [94]) and is 
in agreement with the gas-phase optimised geometry distance of 2.88Å. b) The gas-
phase optimised geometry of ararbino-22 that shows the overlap between the n of O5" 
and π* of C2=N3. Reprinted from reference [99] with permission from the copyright 
holder American Chemical Society. 
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phosphate 17 underwent very little destructive photochemistry but underwent 

significant hydrolysis to β-ribouridine-2!,3!-cyclic phosphate 26 (42%, with 43% of 17 

recovered).  

This route to the activated pyrimidine ribonucleotides as their 2!,3!-cyclic phosphates 17 

and 26 was the first to overcome the problem of the availability of preformed sugar and 

the need for direct attachment of nucleobase to sugar. It therefore demonstrates that, 

under the correct geochemical conditions, the prebiotic formation of activated 

pyrimidine nucleotides can be viewed as predisposed. However, one of the issues with 

this chemistry is that the glyceraldehyde 20 used was racemic and both enantiomers of 

the pyrimidine nucleotides are produced. Moreover, it is known that enantiopure 

monomers are required for the template-directed ligation of activated RNA nucleotides, 

as enantiomeric cross-inhibition is a severe limitation for continual replication.[101]  

As previously described, racemic ribo-13 selectively crystallises from a solution of all 

four aminooxazolines 13.[82] Additionally, Anastasi et al. have studied the formation of 

the aminooxazolines 13 from 2-aminooxazole 21 and scalemic glyceraldehyde 20 and 

found that if the ee of 20 is ≥60%, crystallisation of ribo-13 gives enantioenriched 

crystals that are optically pure.[92] Powner and Sutherland have now shown that 

inorganic phosphate can catalyse the interconversion of enantiopure ribo-13 to arabino-

13 (Figure 18).[102] The interconversion mechanism proceeds via the ring opened ribo-

13 to give the iminium species 27 which, can undergo phosphate-mediated 

deprotonation at C2! to give the C5 substituted 2-aminooxazole 28. From this 

intermediate reprotonation of C2! can regenerate 27 or give 29 that after ring-closure 

generates arabino-13. As enantiopure ribo-13 can be obtained by crystallisation, this 

provides a way to transfer enantiopurity from the ribo series to the arabino and finally 

to the ribo activated pyrimidine nucleotides. 

 

Figure 18. The phosphate-mediated interconversion of ribo-13 and arabino-13. 
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Hein et al. have also addressed the enantiopurity problem at the stage of 

aminooxazoline 13 synthesis.[103] Utilising slight enantiomeric imbalances of 

proteogenic amino acids results in a kinetic resolution of the natural D-aminooxazolines 

D-16. They showed that when proline 30 with an initial 1% ee of the natural L-

enantiomer was added to a reaction of rac-glyceraldehyde rac-20 and 2-aminooxazole 

21, aminooxazolines of D-ribo-13 and D-arabino-13 could be produced in 20-80% ee. 

On cooling the solution, enantiopure crystals of D-ribo-aminooxazoline D-ribo-13 could 

be produced, which can be interconverted to D-arabino-13 by inorganic phosphate as 

previously discussed. The enantioenrichment is attributed to 2.5-fold faster reaction 

rates between glyceraldehyde 20 and proline 30 for the D-D (or L-L) when compared to 

the D-L (or L-D) sugar-amino acid interaction (Figure 19). Therefore, the 

enantioenriched L-proline L-30 effectively sequesters the L-glyceraldehyde 20 to form 

the three-component product 31 and equally the D-proline D-30 effectively sequesters 

the D-glyceraldehyde 20 in the same way. However, the enantiomeric deficiency of 

D-30 leaves some of the natural D-glyceraldehyde 20 unreacted which goes on to react 

with 2-aminooxazole 21 to give the natural D-configured aminooxazolines D-13. A 

combination of kinetic resolution by amino acids and physical enantioenrichment by 

crystallisation provide strong evidence that a prebiotically plausible synthesis of 

enantiomerically pure pyrimidine nucleotides is possible. Encouragingly, only a small 

asymmetry in the amino acid enantiomers is required that could have occurred by 

chance. Moreover, small ee values of the L-amino acids have been observed in 

chondritic meteorites.[104] 
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Figure 19. In the presence of enantioenriched L-proline 30, the reaction of rac-20 and 
21 results in the diastereoselective formation the three-component product 31. Due to 
reduced rate of reaction between D-L/L-D sugar-amino acid and the enantio-deficiency 
of D-proline 30 there is incomplete conversion of D-glyceraldehyde D-20 that is then 
involved in formation of D-aminooxazolines 13. 

1.6. Abiotic synthesis of polymeric RNA 

The disconnection of RNA reduces the polymer into monomers of either nucleoside-5!-

phosphates or nucleoside-2!,3!-cyclic phosphates (see Chapter 1.5.2). Oligomerisation 

of both species has been extensively studied in the absence (non-templated) and 

presence (templated) of existing RNA oligomers.[105] There are several requirements for 

a possible monomer oligomerisation to be considered plausible. Biology almost 

exclusively contains 3!,5!-internucleotide linkages in both RNA and DNA and any 

prebiotic process overall should selectively give the natural connectivity. Recent work 

from Szostak’s lab however, shows that 10-25% of the wrong 2!,5!-linkage isomers are 

tolerated in functional RNA, suggesting some linkage heterogeneity is allowed.[106] For 

RNA to successfully take part in replication, it should be able to form complementary 

duplex structure and use Watson-Crick base pairing to accurately transfer genetic 

information.a 

                                                
a Oligomers of RNA are herein referred to as oligonucleotides rather than oligoribonucleotides for 
simplicity. 
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1.6.1. Oligomerisation of activated 5!-nucleotides 

In contemporary biology, RNA is enzymatically polymerised using nucleoside-5!-

triphosphates 32 (NTPs), which are high-energy phosphate esters (adenosine-5!-

triphosphate ATP (32, B = A, Figure 20); standard free-energy of hydrolysis ∆G!° = 

−45.6 kJmol−1).[107] However, in aqueous solution they are relatively stable and react 

slowly without enzymatic catalysis, so it is difficult to envisage how the prebiotic world 

would have utilised 32.[91] Additionally, regiocontrol is a severe problem since 

polymerisation of activated NTPs can occur from attack of either the 2!-OH or 3!-OH. 

The 2!-OH is known to be 6-9 times more reactive than the 3!-OH and so leads to the 

unnatural linkage isomerism.[108] However, different salts, the identity of the activating 

agent and stereochemical orientation of monomers can vary the ratio of 2!,5!- or 3!,5!-

linked products and these shall be discussed hereafter.  

Nucleoside-5!-phosphorimidazolides 33 (Figure 20, where R = H, alternative 

nomenclature - ImpN where N = A, C, G or U) have been commonly used to study the 

oligomerisation of 5!-activated nucleotides. They were chosen due to ease of 

preparation and showed convenient reaction rates in aqueous solution, so should be 

considered as model systems.[109] In non-templated experiments and in the absence of 

catalysts, ImpN polymerise to give complex mixtures of short linear and cyclic 

oligomers.[105] Various metal ions have been found to catalyse the polymerisation 

reaction.[110, 111] In particular, Pb2+[112, 113] and [UO2]2+ have been found to produce 

longer oligomers. The uranyl ion has been found to efficiently catalyse the self-

condensation of ImpA, ImpC or ImpU up to 16 nucleotides (nt).[114, 115] However, one 

major problem with the chemistry described so far is that the newly formed 

internucleotide linkages constitute greater than 80% of the unnatural 2!,5!-linkage 

isomer. Impressive work by Ferris and co-workers has shown that the clay-mineral 

montmorillonite is also a very effective catalyst.[116-118] Using activated nucleoside-5!-

phosphates based on 1-methyladenine 34 (Figure 20), it has been found that under 

mildly alkaline aqueous conditions (pH = 8), 34 can be oligomerised up to lengths of 

50nt. Remarkably, the internucleotide linkages were found to be approximately 80% of 

the natural 3!,5!-linkage. Although the exact mechanism is not known, Ferris suggests 

that the selectivity is due to the intercalation of monomers 34 into the layers of 
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montmorillonite. This adsorption on the surface of the mineral brings the monomers 

into close proximity and an orientation that favours attack of the 3!-OH.[119] 

 

Figure 20. Activated nucleoside-5-phosphates. 

Orgel and co-workers conducted much of the early work on the templated 

oligomerisation of activated nucleoside-5!-phosphates such as 33. In the presence of a 

polyuridine template (polyU), the condensation of ImpA yields mainly dimers and 

trimers with principally the unnatural 2!,5!-linkages (95%).[108] Further work by Ninio et 

al. found that oligomerisation of ImpG on a polyC template gave oligomers with 

predominantly the natural 3!,5!-linkages (65%).[120] The oligomerisation can be 

enhanced using Pb2+
 ions, and in the presence of polyU, ImpA can oligomerised to give 

products longer than 5nt that contain more than 75% of the natural 3!,5!-linkages.[113] 

Conversely, ImpG can be polymerised on a polyC template in the presence of Pb2+ to 

very effectively give polymers of at least 40nt; however 2!,5!-linkages now total 

90%.[121] Using the more prebiotically plausible metal ions Zn2+ and Mg2+, Bridson and 

Orgel found that the templated oligomerisation of ImpG on polyC produced oligomers 

of 9-10nt and surprisingly with purely 3!,5!-linkages.[122] Despite this success, the 

catalysis by Zn2+ and Mg2+ could not be transferred to the corresponding reaction of 

ImpA on polyU. Overall, the templated condensations using nucleoside-5!-

phosphorimidazoles are inconsistent and the internucleotide connectivity of the 

products are highly dependent upon the identity of the metal ions and the 

monomer/template.  

In related work with nucleoside-5!-phospho-2-methylimidazole 33 (Figure 20, where R 

= Me, alternative nomenclature - 2-MeImpN where N = A, C, G or U), Inoue et al. 

found that 2-MeImpG can be oligomerised very efficiently upon a polyC 

oligonucleotide[123]: maximally 89% of the monomer could be converted to oligomeric 

material up to 50nt and which constituted exclusively 3!,5!-linkages. However, the 

corresponding condensation of 2-MeImpA cannot be achieved as the polyU template 
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forms triple helices rather than double helices. Conversely, the oligomerisation of 2-

MeImpC is prevented as polyG forms very stable G-quadruplexes.[124] With regards to 

templates of random sequence, the sequence can be faithfully copied using mixtures of 

2-MeImpN (N = A, C, G and U) with very low rates of misincorporation but only if the 

sequence contains 60% C residues.[125] The requirement for at least 60% C residues is a 

major roadblock for replication in this system since the progeny contains 40% C 

residues.[126]  

The ligation of short 5!-phosphate oligonucleotides activated as the 5!-

phosphorimidazolides has seen less interest as the prebiotic accumulation of this type of 

chemical substrate has been doubted.[105, 127] Using more biotically relevant 

5!-triphosphate oligonucleotides, Rohatgi et al. have described a template-directed non-

enzymatic oligonucleotide ligation reaction that shows strong preference for the 

formation of native 3!,5!-internucleotide bonds.[128, 129] Using a complementary 13nt 

template, a 10nt ‘primer’ oligonucleotide was ligated to a 5!-triphosphate-activated 7nt 

‘ligator’ oligonucleotide at pH = 7.4, 37 °C and in the presence of divalent metal ions 

(Figure 21a). Ligation occurred through attack by the 3!-OH  (or 2!-OH) of the primer 

on the 5!-triphosphate of the ligator. In this system attack by the 3!-OH was 60-80 times 

faster than attack of the 2!-OH, leading to favoured formation of 3!,5!-linked-over-2!,5!-

linked phosphodiester bonds. 

The selectivity of ligation was not affected by the identity of the base pair at the 3!-end 

of the attacking primer. Divalent metal ions were found to be essential for ligation, with 

Mn2+ and Mg2+ the most efficient catalysts. The requirement for divalent ions was 

rationalised by the association of a metal ion to the β- and γ-phosphates, which 

stabilised the developing negative charge of the leaving pyrophosphate. A metal ion is 

also thought to bind to the α-phosphate and the 3!-OH through a bridging hydroxide. 

This is proposed to assist in deprotonation and stabilising the transition state of the 

attacking nucleophile (Figure 21b). However, this ligation is extremely slow (t1/2 ≈ 15-

30 years at pH 7.4 and 100 mM Mg2+) and at higher pH = 8.9, where the ligation rate is 

higher, only 0.2% yield is observed after 100 hours. An important observation is that, in 

the context of a double helix, an isolated 2!,5!-linkage suffers hydrolysis 50-100 times 

faster than a 3!,5!-linkage in the same location. This indicates that the natural 3!,5!-

linked oligonucleotides would have accumulated in preference to the unnaturally-linked 
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oligonucleotides. However, the rate of ligation is so slow it would be in competition 

with hydrolysis of the products, which would be a major hindrance to significant 

accumulation of longer oligonucleotides. 

 

Figure 21. a) Ligation of 5"-triphosphate activated oligonucleotides. The primer and 
ligators are aligned by Watson-Crick base-pairing on a complementary template. 
Asterisk denotes a 32P-labelled phosphate. b) Suggested transition state for the ligation 
reaction. A divalent metal (M2+) ion binds to the β- and γ-phosphates to stabilise the 
negative charge. A second metal ion is suggested to bind to the α-phosphate and the 
3"-OH (through a bridging hydroxide) of the primer. This aids in deprotonation of the 
3"-OH. Adapted from references.[128, 129] 

In summary, although formation of purely 3!,5!-linked oligonucleotides can be formed 

from 5!-activated (oligo)ribonucleotides, these experiments have tended to use 5!-

activation chemistry that is considered to be prebiotically implausible. Ligation 

reactions using 5!-triphosphate activated oligonucleotides have proven to be very slow, 

suggesting that accumulation of oligomeric RNA would have been difficult. Moreover, 

prebiotic syntheses of β-D-ribonucleotide-5!-phosphates and their activated derivatives 

have not been reported, so it is difficult to envisage RNA assembly by this pathway. 

1.6.2. Oligomerisation of nucleoside-2! ,3!-cyclic phosphates 

The prebiotically plausible synthesis of the activated pyrimidine ribonucleotides 17 and 

26 has provided experimental evidence that these RNA building blocks could have 
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existed on the early earth and gives support to RNA’s significance at the origin of 

life.[130, 131] A related prebiotic pathway to the activated purine ribonucleotides would 

lead to further support and studies are on going.[132] Nucleoside-2!,3!-cyclic phosphates 

are possible monomers for oligomerisation as identified from the disconnection of RNA 

(Chapter 1.5.2). These nucleotides retain some activation because of ring strain and 

have for many years been considered monomers for RNA synthesis by 

polymerisation.[133-135] An issue with these activated nucleotides is that, if 

oligomerisation reactions are to take place in aqueous solution, it is inevitable that they 

will undergo competing hydrolysis to a mixture of the nucleoside-2!- and 3!-phosphates 

35-2!P/3!P and thus become deactivated (Figure 22). Oligomerisations could be carried 

out in the dry-state, but hydrolysis of 4 is likely to occur during evaporation to form the 

dry-state mixtures, possibly limiting oligomerisation yields. Hydrolysis is a pervasive 

deactivation pathway, but this problem can be alleviated if the hydrolysis products can 

be converted back to the cyclic products 4 by phosphate activation. It is also for this 

reason that 35-2!P/3!P are poor candidates for the oligomerisation as cyclisation back to 

4 is favoured. 

 

Figure 22. Nucleoside-2",3"-cyclic phosphates are susceptible to hydrolysis, which 
depletes stock available for oligomerisation. A continual activation is desirable to allow 
regeneration of 4 to provide monomers for the oligomerisation to RNA.  

Prebiotically plausible activating agents for the cyclisation of 35 back to the nucleoside-

2!,3!-cyclic phosphates 4 have been investigated.[136] The activating agents studied 

include cyanoformamide, cyanamide 12 and cyanate. The most successful of these was 

12 (0.8 M, pH = 5.0 and 65 °C), which was able to bring about conversion to 4 in 73% 

yield over 6 days. Alternatively, Sutherland and co-workers have described 

cyanoacetylene 7 as a possible activating agent, which is considered to be prebiotically 
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plausible and is a building block used in the synthesis of the nucleotides (Figure 15).[137, 

138] β-D-Cytidine-monophosphates 36-2!P/3!P can be converted to 17 in 55-60% yield at 

60 °C with 6 equivalents of cyanoacetylene 7 (Figure 23). Nucleobase modification by 

7 is a competing reaction, but encouragingly it was found to be reversible and could be 

minimised by addition of L-alanine (6 equivalents) to buffer the reaction. Nucleobase 

modification by 7 is not restricted to cytidine nucleotides; Furukawa et al. have shown 

that the base of adenosine nucleotides undergoes irreversible addition to 7.[139] 

 

Figure 23. Formation of 17 by activation of 36-3"P/-2"P with cyanoacetylene 7. 

Another efficient but selective phosphate activation was described by Mullen et al., 

who’s work was inspired by the multicomponent Ugi reaction[140] (and the related 

Passerini reaction[141]). They postulated that the initial reaction of isocyanide, an 

aldehyde, and NH4Cl would form an intermediate that, instead of activating a 

carboxylic acid as in the classic Ugi reaction, could be used to activate a 2!-/3!-

phosphate to give intermediate 37. The byproducts of the reaction also produce 

derivatives of α-amino acids (Figure 24a).[142] A second pathway was also envisioned, 

though later found not to occur, whereby an adjacent 2!- or 3!-hydroxyl could undergo 

aminoacylation via a 7-membered transition state instead of a 5-membered transition 

state required for phosphate cyclisation. This type of aminoacyl transfer has 

experimental precedence, where nucleoside-3!-phosphates 35-3!P were reacted with N-

carboxyanhydrides (see Chapter 4.1). Nonetheless, the nucleoside-2!,3!-cyclic 

phosphates 4 were produced in near quantitative yields without any apparent 

modification of the nucleobases. Side-products of these reactions were also found to 

include the amino acid derivative 39 (Figure 24b). 
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Figure 24. a) Possible mechanism for the phosphate cyclisation or C2" aminoacylation 
by Ugi/Passerini type reactions. b) Multicomponent reaction of nucleoside-2"/3"-
phosphates 35 to give 4. The side-products 38-40 are also formed, with 39 as the major 
byproduct.  

The non-templated oligomerisation of adenosine-2!,3!-cyclic phosphate 41 catalysed by 

various amines under dry-state conditions has been extensively studied by Verlander et 

al.[133, 134] Mixtures of 41 and catalysts such as aliphatic amines, amino acids and 

imidazole salts were evaporated to dryness under vacuum over P2O5. Once dry the 

residues were maintained at temperatures obtainable at the surface of the earth (25-

85 °C). The most efficient catalyst was ethylenediamine 42 which gave 69% oligomeric 

material after 3 days of heating at 85 °C (Figure 25). Under more prebiotically plausible 

conditions whereby mixtures of 41 and 42 were allowed to evaporate under ambient 

conditions, 25% oligomeric material was obtained. Upon analysis of the reaction 

products, oligomeric material of hexamer and longer totalled 7.5%. Detailed analysis of 

this portion was found to contain significant amounts of oligomer in the range of 13-

14nt long.[134] The most interesting finding of these studies was that the natural 3!,5!-

linkage dominated over the unnatural 2!,5!-linkage (ratio of 3!,5!:2!,5!: dimer 1.85:1, 

trimer 1.65:1), as it suggests that the formation of 3!,5!-linked RNA is chemically 

predisposed. 

R1

O NH3

R1

NH
R2NC

R1

NH2

N
R2

O B

O OH

HO

PO
O O 35-3!P

O B

O OH

HO

P
O

37

O
O

N
NH2

R1

R2

phosphate
cyclisation 4

aminoacylation

a

O B

O O

HO

P OH
O O

35

NH4Cl
R1

O

N CR2

+

pH = 6.0, 40 °C
O B

HO

O
P

O

O O
4

NHR2

YX

R1
+

38 X = OH, Y = O
39 X = NH2, Y = O
40 X = OH, Y = NH2

+

b



 40 

 

Figure 25. Yield of oligomers from the non-templated oligomerisation of 41 catalysed 
by 1,2-diamimoethane 42. 

Other catalysts that were used included imidazole, spermidine, NaCN and glycine, and 

under similar conditions (pH = 9.0-10.5, 85 °C, 5-8 hours) these prebiotically available 

compounds give total polymeric material in the range of 16-44% yield. Interestingly, 

these catalysts also cause significant amounts of hydrolysis of 41 to give the adenosine-

2!/3!-monophosphates, with yields ranging from 25% to as high as 76%. A large 

proportion of the oligomeric products are also terminated as 2!/3!-monophophates, and 

it seems apparent that deactivation of the 2!,3!-cyclic phosphate by hydrolysis is 

unavoidable. This behaviour is important for an alternative oligonucleotide ligation 

method described in chapter 1.6.3. 

In contrast to these results, the template-directed condensation of 41 in the presence of 

catalysts is very inefficient.[135] Hydrolysis of 41 is the predominant process with only a 

small percentage of dimers and trimers formed. To compound this problem further, the 

oligomeric products were 97% 2!,5!-linked. Usher and McHale have shown that the 

ligation yields can be improved by using Watson-Crick base pairing in oligomers. 

Utilising a polyU template to direct the ligation of 2!,3!-cyclic phosphate-terminated 

adenosine-hexamers in the presence of ethylenediamine 42 at pH = 8 was found to give 

12mer (24%) and 18mer (5%) in moderate yields.[143] However, again it was found that 

the newly formed internucleotide phosphosdiester bonds constituted 95% the 2!,5!-

linkage. Lutay et al. have attempted to improve the yields of template-directed ligation 

of 2!,3!-cyclic phosphate oligomers using divalent metal ions but without success.[144] 

Again it is predominantly 2!,5!-linkages that are formed. In agreement with findings 

from Rohatgi et al. (Chapter 1.6.1), the newly formed 2!,5!-phosphodiester linkages 

underwent a higher rate of hydrolysis.  
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It is clear that the condensation of nucleoside-2!,3!-cyclic phosphates 4 to form the 

natural 3!,5!-linkage is difficult, but it is encouraging that the natural linkage isomer is 

nonetheless favoured in the dry-state reactions. Unfortunately, it is almost impossible to 

form 3!,5!-linked RNA in templated reactions. Given that non-enzymatic template-

directed ligation must surely have occurred at some point, it seems that 2!,3!-cyclic 

phosphates could not have led to the synthesis of RNA (Figure 26). It is also apparent 

that hydrolysis is a pervasive problem but it has been found that nucleoside-2!,3!-cyclic 

phosphates 4 can be hydrolysed cleanly with L-serine to 35-3!P and 35-2!P in a ratio of 

2:1 and this is important for a recent prebiotically plausible ligation of 

oligonucleotides.[145] 

 

Figure 26. The template-directed oligomerisation/ligation of monomers/oligomers 
exclusively leads to the formation of the unnatural 2",5"-linkage. 

1.6.3. Oligonucleotide ligation facilitated by chemoselective acetylation 

Further to the discussion in chapter 1.6.2, Bowler et al. postulated that longer RNA 

could be synthesised from the short strands generated by the dry-state condensation of 

nucleoside-2!,3!-cyclic phosphates 4.[146] These short oligomers terminate in mixed 

2!/3!-phosphates, and activation of the phosphate would only reform the 2!,3!-cyclic 

phosphate before ligation could take place. It is also suggested that the evolutionary 

transition to fully 3!,5!-linked nucleic acids would have been easier if prebiotically 

formed RNA was significantly enriched in 3!,5!-linkages. As demonstrated by Rohatgi 

et al. and Lutay et al. the preferential hydrolysis of 2!,5!-linkages can enrich for 3!,5!-

linkages but at the expense of chain cleavage. The key postulate of Bowler et al. is that, 

if a prebiotically plausible selective protection of the 2!-OH of a terminal 3!-phosphate 

could be found, subsequent phosphate activation would not lead to cyclisation. If this 
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acetylated and phosphate activated species was brought into proximity to the 5!-OH of 

another oligonucleotide by annealing to a complementary template this would lead to 

ligation with enrichment of 3!,5!-ligation junctions. 

The protecting group used in this work was the acetyl group; thioacetate 43 was chosen 

as it is considered prebiotically available from Wächerhäuser iron-sulphur world 

chemistry.[147] Thioacetate 43 can be converted to an acetylating agent by either 

electrophilic or oxidative activation.[148, 149] To activate 43, the electrophile 

cyanoacetylene 7 was first chosen as it is involved in the synthesis of the activated 

pyrimidine nucleotides.[94] Thus, treating a mixture of adenosine-3!-phosphate A3!P and 

sodium thioacetate 43 with cyanoacetylene 7 in D2O at pD = 6.5 resulted in selective 

acetylation of the 2!-OH to give adenosine-2!OAc-3!-phosphate A3!P-2!OAc in 52% 

yield (Figure 27a).b A precipitate also formed rapidly and proved to be tetradeuterio-

β,β-dicyanovinyl thioether 44. Extending this chemistry to other nucleoside-3!-

phosphates N3!P, they also showed selective 2!-OH acetylation with the following 

rough reactivity trends A3!P ~ I3!P > G3!P > C3!P > U3!P. When the chemistry was 

applied to nucleoside-2!-phosphates N2!P, 3!-OH acetylation was still observed but at 

significantly reduced efficiency. Additionally, relative to the acetylation of N3!P, a 

greater amount of phosphate cyclisation was observed. In mixtures of N3!P and N2!P, 

the reduced acetylation efficiency of the 3!-OH of the N2!P resulted in selective 2!-OH 

acetylation of N3!P (Figure 27b). 

Alternative electrophiles to 7 were efficient and acetylation was equally selective 

(Figure 27c). These included cyanogen 45, methyl isonitrile 46 and N-cyanoimidazole 

47; the latter was thought to bring about acetylation by intermediacy of N-

acetylimidazole 48. Direct acetylation with 48 was later used as a generic prebiotic 

acetylating reagent with 47 serving as the subsequent phosphate-activating agent. 

Oxidative activation was also found to be effective with thioacetate 43 and ferricyanide 

49 affording high yields of A3!P-2!OAc and low yields of A2!P-3!OAc. 

                                                
b The following numbering system will be used in this chapter for simplicity: nucleotides shall be referred 
to by either A, C, G etc. with the position and nature of the phosphate and/or modification indicated. For 
example, adenosine-3!-phosphate is numbered A3!P, adenosine-2!,3!-cyclic phosphate is numbered A>P 
and adenosine-2!-OAc-3!-phosphate A3!P-2!OAc.  
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Figure 27. a) Adenosine-3"-phosphate A3"P (100 mM) was treated with sodium 
thioacetate 43 (100 mM) and cyanoacetylene 7 (200 mM) in D2O at pD = 6.5 for 24 
hours. b) A3"P (80 mM) and A2"P (20 mM) treated in the same way as b) results in 
exclusive 2"-acetylation of A3"P. c) Additional electrophiles 45-47 have been shown to 
drive the acetylation of ribonucleotides with 43. Direct acetylation with 48 is also 
possible, as it the oxidative activation of 43 with ferricyanide 49 to afford ferrocyanide 
50 and the dimeric acetylating agent 51. 

The mechanism of the acetylation chemistry is proposed to proceed by reaction between 

the phosphate dianion of N3!P and the acetylating agent to give N3!P(OAc)-2!OH 

(Figure 28). This mixed carboxy-phosphate anhydride then undergoes rearrangement, 

resulting in an acyl-transfer of the acetate to give nucleoside-2!OAc-3!-phosphate N3!P-

2!OAc. The selectivity of acetylation is rationalised in two ways: firstly, the reaction 

pD (or pH) is close to the pKa of the 2!- and 3!-phosphates and the slightly lower pKa of 

the 3!-phosphate (0.2-0.5 units) may influence the selectivity;[150] secondly, the 

intermediate carboxy-phosphate anhydrides (e.g. N3!P(OAc)-2!OH) behave differently 

such that, N3!P(OAc)-2!OH  favours attack at carbon rather than phosphate and the 

N2!P intermediate attacks either phosphate or carbon. 
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Figure 28. Proposed mechanism of acetylation of N3"P by activated thioacetate 52 (X = 
leaving group). 

The acetylation chemistry was also shown to be selective for 3!-phosphate terminated 

dimer and trimer oligonucleotides. The chemistry was then extended to oligonucleotides 

in order determine whether selective acetylation of 3!P-terminated RNA would assist 

templated-ligation to form the natural 3!,5!-linkage. Oligonucleotide sequences used by 

Rohatgi et al. (see Chapter 1.6.1, Figure 21) were chosen to allow comparison of the 

chemistry; the primer in this work terminated in an adenosine-3!-phosphate. Thus, an 

upstream 10nt ‘primer’ was treated with N-acetylimidazole (NAI) 48 that was found to 

be >70% acetylated (estimated from mass spectrometry peak integrals). This acetylated 

primer was mixed with a downstream 7nt ‘ligator’ strand and a 13nt ‘template’ RNA, 

and the resultant gapped duplex was activated for ligation with N-cyanoimidazole (NCI) 

47 (Figure 29). Denaturing gel electrophoresis revealed successful ligation of the primer 

and ligator to give the 17nt product; control reactions showed that acetylation followed 

by phosphate activation was required for efficient ligation. Further experiments with a 

5!-fluorescently labelled primer demonstrated that a yield 49% of the 17nt ligation 

product was obtained after 19 hours. Ligation was also achieved when the primer was 

acetylated as part of a gapped duplex, albeit with a lower yield of 23% of the 17nt 

product (Figure 29). In comparison to Rohatgi’s ligation of 5!-triphosphates, the yields 

were an order of magnitude higher and the rate of ligation was far greater (ligation of 

the gapped duplex was essentially complete after 4 hours). 

 

Figure 29. Efficient ligation of the chemoselectively acetylated 3"-phosphate 
oligonucleotide primer is high yielding both when the primer is acetylated separately 
and as a gapped duplex. 
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The relative selectivity for ligation of 2!P- and 3!P-terminated RNA oligonucleotides 

was also assessed with the original 10nt 3!P primer and a 7nt 2!P primer to permit 

resolution by gel electrophoresis. To control for the differing overhang length, ligations 

of 7nt 3!P primers and 10nt 2!P primers were also conducted. In all cases a 3!-

fluorescently labelled ligator was used. Using mass spectrometry and estimates from 

integration of the peak areas, the 3!P primers were found to consistently give 2- to 3-

fold higher acetylation yields. Ligation of these 3!P primers was found to be highly 

selective, affording yields up to 700-fold greater than for 2!P primers, including when 

the primers were in competition (Figure 30).  

 

Figure 30. Sequences of oligonucleotides that were used to assess the selectivity of 
ligation. Illustrated is the acetylation-ligation reactions, showing that the ligation of the 
3"P terminated primers were the major products. 
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products were analysed by HPLC pre- and post-ammonolysis. The results showed that 

the 3!,5!-phosphodiester bonds were stable to the deacetylation conditions but that the 

single 2!,5!-phosphodiester bond was susceptible to hydrolysis after deacetylation had 

occurred. It is suggested that the deacetylation step, required to reveal the native RNA, 

would provide a way to enrich for 3!,5!-bonds that are more resistant to hydrolysis, thus 

allowing catalytic properties of RNA to emerge. The partial 2!-O-acetylated RNA is 

also hypothesised to favour duplex structure due to reduced A-minor interactions and 

increased North-type sugar puckering. Reduced secondary structure is thought to 

facilitate replication of partially 2!-O-acetylated RNA relative to RNA. The properties 

of partially 2!-O-acetylated RNA and consequences for replication are returned to in 

Chapter 3.  

In summary, this work showed that the natural 3!,5!-linkages in RNA are selected for by 

an initial chemoselective acetylation that favours ligation of 3!-phosphate terminated 

oligonucleotides. The required deacetylation is effectively accomplished by aqueous 

ammonia; the same deacetylation conditions lead to increased hydrolysis of 2!,5!- versus 

3!,5!-linkages, thus providing a further pathway towards enrichment of the latter.  

1.7. From RNA towards peptides 

Modern biomolecular machinery required to synthesise peptides is complex and highly 

evolved. Key to the process are the ribosome, messenger RNA (mRNA), the full set of 

transfer-RNA (tRNA) molecules and 20 aminoacyl-tRNA synthetases (ARSs).[19] The 

ARSs are enzymes (proteins) crucial for the correct charging of amino acids (each 

amino acid has a unique ARS) onto the correct tRNAs, which is considered to be the 

most important step in accurate translation of the genetic code.[151, 152] The elucidation 

of how this biological process arose and evolved is a major goal for origins of life 

research.  

The ARSs are responsible for essentially two chemical reactions.[19, 152] Firstly, an 

amino acid is activated with adenosine-5!-triphosphate (ATP) to form an aminoacyl-

adenylate (aa-AMP) that is tightly bound to the active site (Figure 31a). Secondly, the 

ARS with the bound aa-AMP recruits its cognate tRNA and the activated amino acid is 
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transferred to either the 2!- or 3!-OH of the tRNA molecule to form aminoacyl-tRNA 

(aa-tRNA, Figure 31b).  

 

Figure 31. a) Formation of the activated aminoacyl-adenylate (aa-AMP). b) Transfer of 
the aminoacyl group to the 3"-terminus of tRNA. Both reactions are cataylsed by the 
aminoacyl-tRNA synthetase.  

ARSs achieve accurate aminoacylation of the corresponding tRNA by utilising 

particular molecular interactions in the amino acid binding site, before the tRNA is 

charged, such as hydrogen bonding to the hydroxyl group in threonine 53 to 

discriminate from valine 54 (Figure 32).[19] The ARS then in most cases carries out 

further ‘proof-reading’ of the charged tRNA, and if it is incorrect, the amino acid is 

hydrolysed from the tRNA.[153] In addition to these processes, the ARS also selects the 

correct tRNA by interacting with the anticodon loop and the acceptor stem (green 

portion of tRNA molecule in Figure 33). At the origin of life, a primitive translation 

system must have been in operation. The strongly supported idea of an RNA world has 

inspired several workers to investigate possible RNA-only aminoacylation systems and 

to also look for simplified systems. 

 

Figure 32. Threonine 53 and valine 54 are discriminated by hydrogen bonding to the β-
hydroxyl. 
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1.7.1. The search for a primitive aminoacylation 

Schimmel and co-workers have searched for minimal tRNA structures that are still 

aminoacylated by their cognate ARS. It was found that a single G:U basepair (3:70) in 

the acceptor stem of the tRNAAla was the main determinant for the alanyl-ARS to 

recognise the correct tRNA.[152] Efficient aminoacylation could be achieved when the 

anti-codon and D-loops (and later also the TψC-loop) were dispensed with to give a 

minihelix based solely upon the acceptor step (Figure 33).[154] Further work has found 

other minihelix or minihelix-like structures that are substrates for nine ARSs, which 

include histidine, glycine, valine 54 and methionine.[152, 155, 156] Even smaller substrates 

that resemble the acceptor stem have been shown to be aminoacylated by their cognate 

ARS.[157] These smaller substrates were composed of a 4-basepair stem stabilised by a 

tetraloop, and the results indicated that for glycine, alanine and histidine only the first 

three basepairs are required to overcome other deleterious effects of minimising the 

tRNA. These studies suggested that tRNA may have evolved from smaller species, and 

that early synthetases discriminated between different primitive tRNAs by the base 

pairs closest to the amino acid attachment site: such that the anticodon was a later 

addition.[155] 

 

Figure 33. The main determinant for recognition of alanyl-tRNA by alanyl-tRNA-
synthetase is the G:U (3:70) basepair. Reducing the tRNA structure to a microhelix 
based upon only the acceptor stem confirmed that the anticodon was not necessary for 
accurate recognition. 
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Schimmel and Tamura then looked for a way to aminoacylate these minihelices without 

the use of enzymes. They took a minihelix derived from E. coli tRNAAla (minihelixAla) 

and showed that its 3!-hydroxyl could be non-enzymatically aminoacylated by an 

aminoacyl donor oligonucleotide.[158, 159] This reaction was actually an aminoacyl-

transfer where a chemically synthesised 5!-aminoacyl phosphate oligonucleotide was 

brought into proximity with the minihelix by hybridisation with a complementary 

bridging oligonucleotide (Figure 34). The approximate 15% yield of the aminoacylated 

minihelixAla was limited by the hydrolysis of the aminoacyl-5!-phosphate 

oligonucleotide.  

 

Figure 34. The aminoacylation of a minihelix by an aminoacyl-oligonucleotide-5"-
phosphate brought together by hybridisation to a bridging oligonucleotide. 
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phenylalanyl-5!-adenylate (Phe-AMP) and then the amino groups derivatised with a 
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aminoacylating RNAs was formed; in particular a 95nt RNA was isolated and named 

‘isolate 29’. This isolate 29 was subsequently found to aminoacylate its own 3!-terminus 

and was able to use activated amino acids such seryl-AMP and alanyl-AMP.[161] In a 

later publication, isolate 29 was reduced in size to give a 29nt oligonucleotide that was 

also found to aminoacylate itself.[162] Additionally, a second product characterised as 

the diphenyl-RNA suggested that small RNAs could have catalysed the formation of 

peptide bonds. 
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By using a different selection protocol (SELEX[163-165]) Yarus et al. were able to create 

a pool of self-aminoacylating RNAs of varying size that contained three conserved 

nucleotides at the aminoacyl-transfer site. Sequencing of these oligonucleotides 

suggested that the aminoacyl-transfer centre consisted of a helix-loop-helix junction 

with a 5!-NGU or longer loop and a 3!-U aminoacyl-acceptor (Figure 35a).[166] The most 

active self-aminoacylating RNA was found to the C3 RNA (Figure 35a). Divalent metal 

ions were nonessential for activity, and the C3 RNA accepted several different activated 

aminoacyl species (Phe-AMP, Phe-UMP and Met-AMP) with yields of the 

aminoacylated-RNA ranging from 65-95%. Interestingly, when the C3 RNA was 

incubated with unnatural D-Phe-AMP, aminoacylation was much slower, suggesting the 

active site is stereospecific. This observation may be important for the emergence of 

biological homochirality. In the pool of RNA, the 3!-U was substituted with A, C and G 

and in all cases the rate of reaction was greatly reduced. Aminoacylation is most 

efficient when in the 5!-NGU loop sequence N = U (i.e. 5!-UGU in C3 RNA) but this 

position is tolerant of all four nucleobase residues. Through computational studies, the 

aminoacyl-transfer centre was found to interact only with the amino, carbonyl and 

phosphate groups of the phenyl-AMP. This suggests that any amino acid or phosphate-

leaving group could be utilised and indicates a universal aminoacylating RNA. 

 

Figure 35. a) The C3 RNA that was one of the selected self-aminoacylating RNAs. In 
red are the conserved nucleotides. b) The small trans-aminoacylating RNA complex. 
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and MgCl2 (5 mM) were incubated with Phe-AMP (18.2 mM) at pH = 7 and 4 °C, 

multiple peptidyl products are observed.[168] These products include the full range of 

GCCU-polypetides up to pentapeptides. Additionally, as the aminoacyl group is 

susceptible to 2!/3!-OH migration, GCCU-bis(2!/3!-O-Phe) and higher peptides are 

observed (Figure 36). Although, peptide bond formation is accelerated in this system, 

the ribozyme is not a peptide-bond forming catalyst. Rather the amino group of GCCU-

Phe is thought to attack free Phe-AMP. The ribozyme is essentially catalytic as when 

the substrate:ribozyme ratio is 10:1, 50% of the substrates are aminoacylated. Thus, the 

ribozyme is acting on multiple substrates. The small size of this ribozyme suggests that 

catalytically active RNAs would have been in existence very soon after the 

oligomerisation of RNA monomers commenced. The work by Yarus shows the 

capabilities of small RNAs and also suggests that, once small RNAs were formed, 

aminoacylation and peptides would have shortly followed.  

 

Figure 36. Aminoacylation of GCCU by the 5nt ribozyme, and a selection of the 
products formed. 
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workers have directed evolution of a cis-acting ARS-like ribozyme (Figure 37b).[171] 

This cis-ribozyme was selective for the cyanomethylester-activated N-biotin-Phe-CME 

55 and activity was also seen with Phe-CME 56. The cis-5!-ribozyme was then cleaved 

from the pre-tRNA by RNase P and it was shown to aminoacylate the 3!-end of tRNA 

in trans whether cleaved from the pre-tRNA or separately transcribed in vitro. The 

trans-5!-ribozyme was also able to aminoacylate a minihelix consisting of the 

acceptor:T-stem:loop region of tRNA (see Figure 33 for tRNA nomenclature). The 

trans-5!-ribozyme is regioselective as it recognises the 4nt 3!-terminus of tRNA (5!-

GCCA-3! in the tRNA used in this case) in a similar manner to protein ARS. In 

particular, the CCA sequence is critical for activity as single mutations reduced activity 

by 3.3- to 5-fold. Moreover, it has also been found to selectively aminoacylate the 3!-

hydroxyl of the 2!/3!-diol of the terminal A residue of the tRNA.[172] However, one issue 

with the cis- and trans-5!-ribozyme is that it can only charge aromatic amino acids onto 

the specific tRNA used in their development. A 45nt ribozyme called flexizyme3 (Fx3) 

was thus developed and subsequently shown to utilise asparaginyl-CME to 

aminoacylate with a variety of different tRNAs, and crucially with multiple 

turnover.[173] The Fx system has been optimised a great deal and can aminoacylate a 

wide variety of natural and unnatural aminoacids.[174] Although, the direction of this 

work travelled away from the premise of an origin of protein synthesis, it does show the 

power and capabilities of relatively small RNA enzymes. Moreover, it supports the idea 

that aminoacylating ribozymes could have existed and supported some kind of peptide 

bonding forming system. 
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Figure 37. a) The initially discovered aminoacyl-transfer ribozyme. b) The cis-
aminoacylating ribozyme-tRNA construct, highlighted in blue is the ribozyme-region 
that catalyses self-aminoacylation (left). After cleavage by RNase P RNA the tRNA is 
separated from the 5"-ribozyme and gives a trans-aminoacylating ribozyme. Activated 
amino acids used by this ribozyme are also shown. tRNA-ribozyme structures were 
preprinted from reference [171] with permission from the copyright holder Nature 
Publishing Group. 

1.7.2. A linked prebiotic origin of RNA and coded peptides 

Small RNAs have been shown to catalyse or promote aminoacylation reactions and 

minimal substrates have been used for this purpose (Chapter 1.7.1). The RNA world 

hypothesis demands that RNA was the first aminoacylation catalyst. However, it is 

difficult to theorise how RNA passed the function of catalysis over to proteins because 

RNA would have to invent translation, and then in some way pass it on to 

coded/preformed proteins. An alternative scenario was considered, and by detailed 

analysis of the genetic code, Sutherland and co-workers have suggested a theory of a 

RNA:coded peptide subsystem. This theory is based on aminoacyl-RNA trimers that 

links coded protein synthesis to simultaneous RNA replication.[138, 175] 
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There are several key features of the genetic code that were noted soon after its 

resolution (Figure 38):[49] 

• The genetic code is read in triplets. 

• A triplet code has the capacity to code for 64 amino acids but only 20 are used. 

• The 20 amino acids are not randomly distributed. 

• XYU and XYC always code for the same amino acid. 

• XYA and XYG usually code for the same amino acid. 

• XYN (N = any base) codes for the same amino acid in half the cases. 

• In some cases, there is a relationship between the second base of the codon and 

the chemical nature of the amino acid side chain.  

• Structurally similar amino acids tend to have codon sets connected by single 

nucleotide changes. 

• Biosynthetically related amino acids sometimes have codon sets connected by 

single nucleotide changes.  

• The code is essentially universal. 

Several theories have been suggested to explain how the genetic code was assigned. The 

‘frozen accident’ hypothesis states that codon assignments were initially random and 

became fixed in the last common ancestor.[49] This theory is not well supported as the 

genetic code is not strictly universal and nor does the theory explain the ordered 

features of the code. The ‘adaptation theory’ attempts to explain some of these aspects 

and suggests that the code was assigned to minimize mutation or mistranslation. The 

‘historical theory’ proposed a gradual assignment of codons as amino acids became 

available by biosynthesis.[176] Lastly, the ‘stereochemical theory’ suggests that chemical 

interaction between codons and/or anticodons with the side chains of the amino acids 

influenced the assignment of the genetic code.[177-179] By using the stereochemical and 

historical theories outlined above, Sutherland was able to propose an ancient genetic 

code that was simpler than the modern code.[138] 
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Figure 38. The 'universal' genetic code. Family boxes are highlighted (bold) and 
allocation of the aminoacyl-tRNA synthetases (ARSs) to either class one or two (bold 
numbers). Amino acids highlighted in red are those that are deemed to be late 
additions, had low prebiotic abundance or break the class rule. 

The aromatic amino acids (Trp, Try and Phe) require long and complex biosynthetic 

routes, as do His, Lys and Met. But since early metabolic machinery is expected to have 

been crude, only abiosynthesis of amino acids would have been possible so the above 

are thought to be late additions. Aminoacyl-tRNA synthetases (ARSs) are split into two 

classes, class-I and class-II (Figure 38). Across the three kingdoms each amino acid is 

associated with a particular class of ARS (the so called class rule) and these 

relationships are thought to have been established early on in evolution. Violations of 

the class rule are thus more likely with amino acids assigned to codons more recently. 

Eukarya and most bacteria possess class-II lysyl-tRNA synthetase but most archaea 

possess class-I enzymes. Also, most amino acids are charged directly by their cognate 

tRNA synthetase, but exceptions exist. Asparaginyl-tRNA and glutaminyl-tRNA can be 

made directly from Asn and Gln or by transamidation of Asp and Glu post-

aminoacylation. Cysteinyl-tRNA can be synthesised directly or by additional activity of 

class-II proyl-tRNA synthetases.[180] These charging discrepancies for Gln, Asn, Lys 

and Cys break the class rule and are also deemed to be late codon assignments. 

If these late additions and stop codons (Met being the exception) are examined, a 

pattern emerges where these amino acids are allowed with codons in which the second 

base is an A (XAZ) or the first base is a U (UYZ) (Figure 38). Thus, if XAZ and UYZ 
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codons are removed, AUG (Met codon) is pre-assigned to Ile, and AGN to either Ser or 

Arg a much simpler genetic code is revealed (Figure 39). The resulting groups of XYN 

that encode for the same amino acid are called family boxes (bold outline) and appear to 

be those that were the earliest assigned amino acids. 
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Figure 39. The postulated simplified genetic code. 

The simplified code gives much better ARS class correlation (class-I for XUZ, class-II 

for XCZ). It also improves relationship between codons (or anti-codons) and amino 

acids. XUZ now codes for hydrophobic, branched aliphatic amino acids side chains. 

XCZ is linked to small hydrophobic amino acids (where emphasis is placed on the Me 

group rather than the OH group of Thr) and XGZ is associated with Gly, Arg and Ser or 

Arg (depending on assignment of AGN). This retrosynthesis of the genetic code thus 

further points towards a stereochemical basis for its origin where the amino acid can be 

selected through direct chemical interaction with the first and second base of a triplet 

codon. This proposed early code is now based on coding by XYN (where X is –U and Y 

is –A). 

With a simplified genetic code now proposed, Sutherland then suggested a mechanism 

by which templated oligomerisation of 2!/3!-aminoacyl-RNA trimers and tandem 

protein synthesis could be achieved. This mechanism suggests that coding was achieved 

by a ‘folded-back’ conformation where intramolecular interaction of the amino acid side 

chain was with the first two bases of the trimer. Base pairing of the ‘folded-back’ 2!/3!-

aminoacyl-RNA trimers with a template would bring it into proximity with an extended 
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peptidyl-RNA and this would allow peptidyl transfer and phosphodiester bond 

formation. Once complete, the bonded ‘folded-back’ peptidyl-RNA trimer could unfold, 

base pair and thus enable further reaction. 

 

Figure 40. Postulated linked origin of RNA replication and coded peptide synthesis. 
Grey ovals represent unknown chemistries. 

Through consideration of the possible chemistries that could work (Figure 40 grey 

ovals) it was the activated 2!-aminoacyl trimer 57 that was thought to be the most 

promising (Figure 41). The trimer 57 was proposed to have formed from cyclic 

trinucleotides 58. Prebiotic formation of 58 has been demonstrated to be catalysed by 

montmorillonite clay, with a high yield of the natural 3!,5!-linkage formed.[181] The 

conformation of species such as 58 have been studied in solution.[182] The lowest energy 
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aminoacyl-phosphate ester trinucleotide 59. The aminoacyl group of 59 would then 
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phosphate would give 57 the required species for oligomerisation. Thus, activation of 

the 3!-phosphate of 2!-aminoacyl trimer 60 would allow the attack of a 5!-hydroxyl of 

another trimer and give chain elongation with formation of the natural 3!,5!-linkage. 

 

Figure 41. A proposed prebiotic synthesis of aminoacyl-RNA trimers 57 from cyclic 
trinucleotide 58. 
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1.8. Project aims 

1. A recent report from the Sutherland group demonstrated the successful prebiotically 

plausible ligation of oligonucleotides mediated by chemoselective acetylation. To 

support this work, synthetic standards of the partially 2!/3!-O-acetylated-

oligonucleotide products were required. However, no commercially available 

synthetic precursors or procedures were available for their solid-phase synthesis. In 

addition, commercial starting materials, reagents and protocols were not orthogonal 

with a sequence possessing internal 2!- or 3!-ester groups. Thus, chapter 2 describes 

the design and synthesis of an acetyl-orthogonal protecting group strategy for the 

protection of RNA phosphoramidites. The synthesis and preparation of a photolabile 

solid-phase linker is described. The protocols and procedures were extensively 

developed to optimise the solid-phase synthesis, work-up and purification of the 

partially 2!/3!-O-acetylated-oligonucleotides. 

 

2. The properties of partially 2!/3!-O-acetylated oligonucleotides were proposed to 

have aided replication by favouring duplex structure. With an optimised synthesis of 

partially acetylated-oligonucleotides available, several acetylated oligonucleotides 

were synthesised. The Tm and thermodynamic parameters of these oligonucleotides 

were investigated by UV spectroscopy to assess their potential for replication over 

native RNA. 

 

3. The aminoacylation of RNA is an important process in modern biology and for a 

linked origin of RNA and coded peptides. Given that the activation of thioacetic 

acid by various electrophiles is in many cases very efficient and selective, this 

chemistry was applied to the activation of amino thioacids, and the subsequent 

aminoacylation reactions were investigated. 
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2. Solid-phase synthesis of 2! /3!-O-acetylated 
RNA oligonucleotidesc 

2.1. Background 

The recent report by Bowler et al.[146] to has shown that the ligation of short 

oligonucleotides can form the natural 3!,5!-linkage isomerism mediated by a 

chemoselective acetylation. The products of this chemistry are partially 2!/3!-O-

acetylated-RNA oligonucleotides (acetyl-RNA) and it was from this work that the need 

for a conventional organic synthesis of acetyl-RNA arose. The ability to synthesis 

acetyl-RNA would allow full control over their sequence, number and position of acetyl 

groups. Acetyl-RNA could then be synthesised to serve as synthetic standards to 

confirm the identity of the products arising from the acetylation-ligation chemistry 

described above. Additionally, the effect of acetyl groups on properties such as duplex 

stability or tertiary structure could be investigated in context of partially 

2!/3!-O-acetylated RNA oligonucleotides as a possible precursor to extant RNA in the 

prebiotic world. It was this impetus that led to the desire to begin the development of 

chemistry to produce partially 2!/3!-O-acetylated-RNA oligonucleotides, which is 

describe herein. 

2.1.1. Incompatibilities of conventional RNA oligonucleotide synthesis 

The most common and established strategy for the automated synthesis of RNA has 

been the use of 2!-O-TBDMS (tert-butyldimethylsilyl) phosphoramidite chemistry and 

solid-phase immobilisation of the oligonucleotide.[183] Solid supported assembly of 

ribonucleotides occurs in a stepwise fashion (Figure 42). To begin the synthesis, the 

first support-bound nucleoside is deblocked by a strong acid exposing a 5!-hydroxyl and 

releasing a trityl cation. The next nucleoside phosphoramidite is coupled to the newly 

exposed 5!-hydroxyl in the presence of a weakly acidic activating agent such as 1H-

tetrazole. Following the coupling step is a capping step that involves treatment with 

acetic anhydride to ‘block’ any unreacted 5!-hydroxyl groups and reduce the generation 
                                                
c This chapter was conducted in collaboration with Dr. Colm D. Duffy and Dr. Jianfeng Xu. Particular 
contributions shall be noted within the text. 
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of truncated sequences. The newly formed phosphite triester is subsequently oxidised 

with an aqueous solution of I2 in the presence of a weak base. At this point the steps can 

be repeated in an iterative cycle to build the RNA oligonucleotide with the desired 

sequence. Once complete the final DMTr can be left intact or removed depending on the 

choice of oligonucleotide purification. 

The fully protected solid-support bound oligonucleotides are then subjected to a 

solution of ammonium hydroxide to deprotect the nucleobases and cleave the 

oligonucleotide from the solid-support. The TBDMS protected oligonucleotide is 

redissolved in a suitable solvent such as DMSO and treated with a fluoride reagent most 

commonly triethylamine trihydrofluoride (TREAT.HF). Upon precipitation the 

oligonucleotide is fully deprotected and the full-length product can be purified by 

methods such as HPLC or polyacrylamide gel electrophoresis (PAGE). 

 

Figure 42. The steps in a typical cycle for the synthesis of ribonucleotides by the 
phosphite triester method. 
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exocyclic amines of A, C and G. The acyl protecting groups include acetyl, benzoyl and 

isobutyryl and removal of these protecting groups employ a concentrated aqueous 

ammonia solution with heating. However, this has seen less use with 

NH4OH/methylamine (AMA) solutions becoming the standard due to the reduction of 

2!-O-TBDMS loss during nucleobase deprotection (Figure 43a).[184-186] These conditions 

are also used for the deprotection of formamidine protecting groups, such as 

N-dimethylformamidine (dmf), which are used for the protection of the exocyclic 

amines of purine nucleobases (Figure 43b). Acetyl protected C is generally used in 

conjunction with formamidine protected purines.[187] The UltraMILD protecting groups 

are used for protection of the purine nucleobases and are differentiated by their ease of 

deprotection and are employed where base-sensitive nucleobase modifications are used 

or faster oligonucleotide deprotection times are required.[188] The UltraMILD protecting 

groups consist of an oxyacetyl such as phenoxyacetyl (Pac) or isopropylphenoxyacetyl 

(iPr-Pac) and for deprotection employ K2CO3/MeOH or an ammonia solution without 

heating (again acetyl protected C is used with UltraMILD) (Figure 43c).[189, 190] The 

common feature of these protecting groups is the requirement for nucleophilic bases for 

their removal, which is incompatible with the goal to synthesis 2!/3!-O-acetylated-RNA 

oligonucleotides (hereafter referred to as acetylated-RNA oligonucleotides). 

 

Figure 43. The a) acyl protecting groups, b) dmf protecting groups for purine 
nucleobases and c) UltraMILD protecting groups for purine nucleobases. 

N

N N

N

HN

O

N

N

HN

O

O

N

N N

NH

O

N
H

O

N

N N

N

N
N

N N

NH

O

N

NMe2

NMe2

a

b

c
N

N N

N

HN

N

N N

NH

O

N
H

O
OPh

O
OPhiPr

N6-Bz-A N4-Ac-C N2-ibu-G

N6-dmf-A N2-dmf-G

N6-Pac-A N2-iPr-Pac-G



 63 

In addition to 2!/3!-O-acetylated phosphoramidites, the synthesis of partially acetylated-

RNA oligonucleotides would also require phosphoramidites with alternative 

2!/3!-hydroxyl protection that upon removal would give the free 2!/3!-hydroxyl. The 

extensively used TBDMS group is orthogonal to 2!/3!-acetate groups as deprotection is 

easily accomplished under mild conditions with the use of TREAT.HF.[191] Protection 

of 5!-hydroxyls is commonly with a trityl such as the 4,4!-dimethoxytrityl group 

(DMTr). This protecting group is ubiquitous and has the added advantage of enabling 

the coupling efficiency of each step to be monitored during the synthesis of the 

oligonucleotides. Removal of the trityl group is accomplished with a non-aqueous acid 

such as dichloroacetic acid (DCA) or trichloroacetic acid (TCA) and is thus compatible 

with a 2!/3!-acetate group (Figure 44).[192] 

 

Figure 44. The 4,4"-dimethoxytrityl group used for 5"-hydroxyl protection and tert-
butyldimethylsilyl ether used for 2"/3"-hydroxyl protection. 

Since the report by Sinha et al. detailing synthesis of 2-cyanoethyl (ce) 

phosphosphoramidites, the 2-cyanoethyl protection of phosphites has found extensive 

use in the synthesis of RNA and DNA oligonucleotides (Figure 45). The advantages 

over previous phosphoramidites were ease of deprotection (within the time needed to 

remove the nucleobase protecting groups) and their stability as they could be stored for 

more than six months.[193] On completion of oligonucleotide synthesis the 2-cyanoethyl 

phosphate protecting groups are routinely removed under the same conditions that 

remove the nucleobase protecting groups. Deprotection of the 2-cyanoethyl groups 

proceeds by β-elimination[194] such that a variety of bases have been shown to be 

effective, including triethylamine (TEA) and methylamine. In particular a 

non-nucleophilic strong base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), has been used 

in the synthesis of oligonucleotides.[195, 196] Thus, the use of a non-nucleophilic base for 

the deprotection of the 2-cyanoethyl groups should enable orthogonality with the 

2!/3!-acetyl groups.  
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Figure 45. The 2-cyanoethyl-N,N-diisopropyl phosphoramidites most commonly used to 
synthesis RNA oligonucleotides, the 2-cyanoethyl phosphite protecting group is 
highlighted in green. 

During automated synthesis the nascent oligonucleotide is attached the solid-phase 

support by a linker that is cleaved to during deprotection to release the oligonucleotide. 

The most common linker groups in commercial use are the succinate linker[197] and the 

Q-linker[198] which form an ester via the 2!- or 3!-hydroxyl of the first nucleoside. After 

cleavage of the oligonucleotide from the solid-support however these linkers result in a 

2!,3!-diol-terminated oligonucleotide. For maximum flexibility it was decided that a 

linker suitable for terminal 2!/3!-phosphorylation would be preferred. It was thought that 

if 2!,3!-diols were required at a later stage the terminal phosphate could be easily 

removed enzymatically. Commercially available 3!-phosphate solid-supports use a 

β-eliminating sulphonyl linker and methylamine-ammonia (AMA) solutions are again 

recommended for the cleavage of these linkers.[199] Each of the above linker groups 

again require a nucleophilic base for cleavage and are not compatible with 2!/3!-acetyl 

groups (Figure 46).  

 

Figure 46. Three common supports used in the synthesis of oligonucleotides. 
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In summary, three areas of phosphoramidite protection are compatible with 2!/3!-acetyl 

RNA and the remaining two, upon deprotection or cleavage, will lead to removal of the 

desired 2!,3!-acetyl groups, Figure 47 emphasises those sites of protection which require 

an alternative strategy: 

1. 5!-Hydroxyl protection: 

− Acid-labile DMTr group. 

− Compatible if conditions are anhydrous. 

2. 2!-Hydroxyl protection: 

− Fluoride-labile TBDMS. 

− Compatible if slightly acidic TREAT.HF used. 

3. Phosphite/phosphate protection: 

− Base-labile 2-cyanoethyl group. 

− Compatible if base is non-nucleophilic. 

4. Nucleobase protection: 

− Base-labile acyl or amidine type protecting groups. 

− Commonly requires a nucleophilic base such as methylamine for 

deprotection. 

− Not compatible. 

5. Solid-support linker groups: 

− Succinate linker and Q-linker utilise acyl groups for linkage to 

oligonucleotide. Universal supports use an alkyl linkage to the 

oligonucleotide. 

− In most cases employ the conditions used for nucleobase deprotection for 

cleavage therefore nucleophilic bases are used.  

− Not compatible. 
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Figure 47. An oligoribonucleotide dimer synthesised by conventional chemistry prior to 
deprotection and cleavage. Green coloured protecting groups represent those groups 
that are 2"/3"-acetyl compatible and red that are not. 

2.1.2. An acetyl compatible protecting group strategy 

The analysis of current chemistry used in RNA oligonucleotide synthesis brought up 

two areas that needed an alternative protecting group strategy. Inspection of the 

literature revealed many nucleobase protecting groups but the majority require ammonia 

treatment for removal.[200] The chosen orthogonal protecting groups were the 
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protecting groups developed by Pfleiderer et al.[201, 202] These protecting groups are 
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conditions via a β-elimination process. As such deprotection conditions were thought to 
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The exocyclic amines of A and C were protected with the ceoc protecting group and the 

deprotections have been shown to be rapid with nucleoside half-lifes of <15 

minutes.[201] The exocyclic amine of G was also protected with ceoc however, the 

O6-position required the npe protecting group for efficient nucleobase deprotection 

(Figure 48). The deprotection of N2-ceoc-guanosine 61 was explored and the nucleoside 

half-life was found to be 8-9 hours (Figure 49). The unfavourable kinetics was 

suggested to be due to electronic effects whereby the anion formed on the nucleobase 

(N(1)-H deprotonation by DBU)  hindered β-elimination of the N2-ceoc. To solve this 

problem O6-protection with the relatively more stable npe group was utilised in 

conjunction with N2-ceoc. The O6-npe group allowed β-elimination of the N2-ceoc to 

occur first eliminating the formation of the anion on the nucleobase and resulting in a 

much shorter half-live of 30 minutes.  

 

Figure 48. The exocyclic amines of A, C and G protected with the 
(2-cyanoethoxy)carbonyl (ceoc) protecting group. Due to kinetic reasons the 
O6-position of G was also protected with the (4-nitrophenyl)ethyl (npe) protecting 
group. 

 

Figure 49. Slow deprotection of N2-ceoc-guanosine 61. 
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occur with the fully deprotected oligonucleotide where the 2!/3!-hydroxyl positions 

previously blocked by TBDMS would then be susceptible to chain cleavage under 

aqueous conditions.[203] The primary 5!-hydroxyl group would also need to remain 

DMTr protected to prevent processes such as acetyl migration during exposure to DBU.  

Damha et al. had recently described a photo-labile linker 63 used for solid-phase 

synthesis of 2!-O-acetalester oligonucleotides that is orthogonal to ester and acetalesters 

(Figure 50). One key feature of the linker was that it was directly attached to an 

internucleotide phosphate which gave confidence to the proposal that it would enable 

synthesis of 2!/3!-phosphorylated RNA.[204] However, this linker group has β-protons to 

the linkage site such that it could also be susceptible to β-elimination upon exposure to 

DBU. A more DBU-base resistant linker group 64 was found that is structurally similar 

and is used predominantly in peptide synthesis.[205-207] This linker 64 has been employed 

for peptide synthesis on controlled-pore glass (CPG, this was the preferred solid-

support, see section 2.3) and additionally its chemical stability towards DBU has been 

demonstrated during basic removal of FMOC protecting groups.[207] Cleavage or 

photolysis of this class of ortho-nitrobenzyl-based groups has been previously 

demonstrated at wavelengths of 316-400 nm and no nucleobase modification has been 

reported at these wavelengths.[204, 208-210] 

 

Figure 50. Photo-labile linker 63 developed by Damha and co-workers and the 
photolabile linker 64 that will be used in the current work. 
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From the discussion above, an 2!/3!-O-acetyl orthogonal protecting group strategy has 

been rationally designed and is summarised below (Figure 51): 

1. On-column deprotection using DBU under anhydrous conditions should not lead to 

acetyl loss and removes: 

− Nucleobase protecting groups (ceoc and npe) 

− Phosphate protecting groups (ce) 

2. On-column DMTr removal with anhydrous strong acid. 

3. Light-labile linker enables oligonucleotide cleavage from the solid-support under 

mild conditions. 

4. TBDMS groups can be removed in solution phase using standard procedures. 

 

Figure 51. Protecting group and linker changes to the design of a 2"/3"-O-acetyl 
compatible protecting group strategy to enable the synthesis of 2"/3"-O-acetylated RNA 
oligonucleotides. 
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enable synthesis of 3!,5!- and 2!,5!-linkages. These requirements give in total 16 final 

phosphoramidites 65-72 (Figure 52). Their proposed synthetic route was planned to 

proceed initially with the nucleobase protection. Once in hand the base-protected 

nucleosides would undergo tritylation with DMTr-Cl. At this stage the 2!/3!-diol were to 

be functionalised by either mono-acetylation or mono-silylation using silver salts.[212] 

The silylated regioisomers were to be separated and phosphitylated to yield the final 

TBDMS phosphoramidites. But for the 2!/3!-OAc regioisomers it is known that acyl 

2!/3!-migration is quite facile so it was envisaged that separation of the two 

regioisomers would not be possible.[213, 214] Therefore, the phosphitylation of the 

acetylated-nucleosides would be conducted on the regioisomeric mixture of the mono-

acetylated species prior to separation (Figure 53).  

 

Figure 52. The 16 phosphoramidites to be synthesised. 
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Figure 53. Proposed synthetic route to the 16 acetyl and TBDMS phosphoramidites. 
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Figure 54. The synthesis of (2-cyanoethoxy)carbonylation reagents, 2-cyanoethyl 
carbonochloridate 75 and 1-[(2-cyanoethoxy)carbonyl]-3-methyl-1H-imidazolium 
chloride 76. 

With the (2-cyanoethoxy)carbonylation reagents at hand, the single step protection of 

adenosine 11 and cytidine 73 was begun by transient silylation of the hydroxyl groups 

of 11 and 73 by refluxing with an excess of hexamethyldisilazane (HMDS). After a 

change of solvent the TMS protected nucleosides were then treated for up to 48 hours 

with 1-[(2-cyanoethoxy)carbonyl]-3-methyl-1H-imidazolium chloride 76. Workup 

involved hydrolysis of the TMS groups by treatment with methanol from which the 

base-protected nucleosides were precipitated to give good yields of 78 and 79 at 86% 

and 91% respectively (Figure 55).  

 

Figure 55. Synthesis of the (2-cyanoethoxy)carbonyl protected A and C, 78 and 79. 

Nucleobase protection of guanosine 74 required several steps to install both the N2-ceoc 

and the O6-npe protecting groups. The synthetic route as described by Pfleiderer and 

coworkers[201, 216] involved first per-acylation of guanosine with isobutyryl chloride to 

give 80.[217] Using Mitsunobu-type conditions, O6-alkylation is afforded by treating 80 

with 1.5 equivalents each of diethyl azodicarboxylate (DEAD), triphenylphosphine 

(Ph3P) and p-nitrophenylethanol 81.[218] The O6-alkylation product 82 is then treated 

with aqueous NH4OH over 6 days to remove the isobutyryl groups. In one pot the O6-

[2-(4-nitrophenyl)ethyl]-guanosine 83 hydroxyl groups are transiently silylated by 

treatment with trimethylsilyl chloride (TMS-Cl), followed by N2-carbonylation with 2-

cyanoethyl carbonochloridate 76. The TMS groups are then hydrolysed by treatment 

with methanol and the product 84 is isolated by precipitation (Figure 56). 
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Figure 56. Literature procedure for the synthesis of 84.[201] 

Formation of 80 was high yielding (99%) and was then O6-alkylated to 82 under 

Mitsunobu reaction conditions, using the less explosive diisoproyl azodicarboxylate 

(DIAD), to give 82 in high yield (90%). Subjecting 82 to aqueous NH4OH lead to facile 

hydrolysis of the ester groups within several hours as monitored by TLC. However, 

hydrolysis of the N2-isobutyryl group proved to be difficult requiring exposure to 

concentrated NH4OH for more than 6 days. This long exposure to basic conditions led 

to slow deprotection of the O6-npe group as deduced by the appearance of a fast running 

spot on TLC assumed to correspond to p-nitrostyrene. Isolated yields of 83 (Gnpe) using 

isobutyryl protecting groups were no higher than 29%, giving an overall yield over 
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column chromatography was also difficult due to the closely running 2!,3!,5!-tri-acetyl-

guanosine 86 and contamination by 86 was sometimes observed. Several variations of 

the reaction conditions were performed in the hope of improving the yield but maximal 

yields of only approximately 50% were obtained (Figure 57, Table 1). 

 

Figure 57. Reaction to per-acetylate guanosine and the incomplete acetylation to form 
2",3",5"-tri-acetyl-guanosine 86. 

 Equivalents to 74  Isolated Yield (%) 
Entry Ac2O Et3N Time (h) 85 86 

1 7 7.7 6 26 - 
2 5 5.5 3 44 9 
3 6 6.6 18 52 - 

Table 1. Summary of yields of 85 and 86 the reaction were conducted in anhydrous 
acetonitrile and at 50 °C. 
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protecting group was faster than removal of the isobutyryl groups but still required 

exposure to aqueous NH4OH for at least 72 hours at room temperature. Although, 

incubation times were shorter to remove the N2-acetyl group, over the 72  hours 

dealkylation of the O6-npe group was again observed. Thus, this led to less than ideal 

yields of O6-[2-(4-nitrophenyl)ethyl]-guanosine 83 to a maximal isolated yield of 40% 

with an overall yield over three steps of 20%. 

The problems with the previously discussed synthesis originate from the protection and 

deprotection of the exocyclic amine of guanosine 74. It was found that acetylation of 

the exocyclic amine was difficult, which suggests a reduced nucleophilicity of the 

amine that is likely due to extensive delocalisation of the amine lone pair into the 

aromatic nucleobase (Figure 58a). This may also account for the difficulty encountered 

O N

HO OH

HO
N

NH
N O

H2N

Ac2O, Et3N, cat.  DMAP

MeCN, 50 °C O N

AcO OAc

AcO
N

NH
N O

AcHN

74 85

+ O N

AcO OAc

AcO
N

NH
N O

86

H2N



 75 

when attempting the deacylation step by aminolysis whereby the N2-amide bond is also 

further delocalised into the nucleobase. The increased delocalisation relative to a non-

aromatic amide will reduce the magnitude of the dipole at the carbonyl leading a 

smaller δ+
 charge at the carbonyl carbon (Figure 58b). This in turn reduced the 

electrophilicity of the carbonyl carbon and so resulted in the slow ammonolysis 

reaction.  

 

Figure 58. Delocalisation of the exocyclic amine lone pairs of a) guanosine, b) N2-
acetyl guanosine. 
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Reduced exposure to basic conditions resulted in no observed loss of the O6-npe 

protecting group. Precipitation of O6-[2-(4-nitrophenyl)ethyl]-guanosine 83 from 

methanol enabled efficient removal of the triphenylphosphine oxide contaminant with 

76% yield over two steps. Thus, synthesis of 83 with 70% yield over three steps was 

much improved over the previous methods. 

 

Figure 59. Optimised synthetic route to the nucleobase protection of guanosine 74 to 
give N2-[(2-cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-guanosine 84. 
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The method to isolate 78 and 79 post nucleobase protection both involved precipitation 

from methanol and it was decided that this could be applied to the isolation of 84, thus 

avoiding the problematic organic extraction. After co-evaporation of the reaction 

mixture with toluene and methanol to remove excess pyridine the residue was dissolved 

in a minimum of methanol. Addition of small amounts of water was found to aid the 

precipitation of the product and it was added until a precipitate began to form. The 

resultant mixture was placed in a fridge overnight and the precipitate collected and 

washed with cold methanol. This gave the product 84 but it contained pyridinium.HCl 

salt, which was removed by boiling a suspension of 84 in water for 15 min. This 

efficiently removed the salt and furnished the product 84 cleanly in an improved yield 

of 96% (Figure 59). 

2.2.3. Synthesis of the 2! /3!-O-acetyl RNA phosphoramidites 

With the nucleobase-protected nucleosides of 78, 79 and 84 to hand, synthesis towards 

the 2!/3!-acetylated phosphoramidites could begin. The 5!-hydroxyls of the nucleosides 

78, 79 and 84 were first tritylated using 4,4!-dimethoxytrityl chloride (DMTr-Cl) in 

pyridine as base and solvent. Purification by flash column chromatography afforded the 

5!-protected nucleosides 88, 89 and 90 in high yield, with the final nucleoside 5!-O-

(4,4'-dimethoxytrityl)-uridine 91 purchased from ChemGenes. 

 

Figure 60. Dimethoxytritylation reaction of the nucleobase protected nucleosides. 

Attention turned to the 2!/3!-O-monoacetylation of 88, 89, 90 and 91. The acetylation 

reaction was first explored using 91 as it was commercially available. Acetylation was 

brought about using 1 mole equivalent of acetyl chloride to ensure no over acetylation 

O B

HO OH

HO
DMTr-Cl, py.

RT,  3 - 16 h

O B

HO OH

DMTrO

78, B = i
79, B = ii
84, B = iii

88, B = i, 83%
89, B = ii, 89%
90, B = iii, 91%

N

NN

N

HN O

O
N

i =

N

NN

N

O

iii =

N
H

NO2

O

O
N

N

N

O

HN

O

O
N

ii =



 78 

to the fully protected 2!,3!-bis-acetylated nucleoside. The reaction was carried out in 

THF with 1 mole equivalent of pyridine to neutralise in situ generated HCl. This 

encouragingly furnished the inseparable regioisomeric mixture of 2!/3!-O-(acetyl)-5!-O-

(4,4'-dimethoxytrityl)-uridine 92a+92b with a ratio ca. 2.4:1 with respect to 92b:92a. 

Acetyl groups are known to migrate between the 2!-OH and 3!-OH such that on 

subsequent repeat acetylation reactions some variation of the ratio was observed. 

Although not a significant change in the ratio it was noted that the migration tended to 

favour isomerisation to the 3!-O-acetyl isomer 92b. Migration is known to be catalysed 

by base and 1-2% triethylamine is usually added to the mobile of DMTr protected 

compounds to neutralise the slightly acidic silica.[214] Omission of triethylamine during 

silica gel chromatography also results in migration indicating acetyl migration is either 

acid or base catalysed thus as a precaution to DMTr removal triethylamine use was 

continued.  

 

Figure 61. Reaction to form the regioisomeric mix of 2"/3"-O-(acetyl)-5"-O-(4,4'-
dimethoxytrityl)-uridine 92a+92b. Reaction carried out by Dr Colm D. Duffy. 

Acetylation of the 5!-O-(4,4!-dimethoxytrityl)-purine nucleosides 88 and 90 was 

explored with attention concentrating first on 88. Acetylation was conducted by 

dissolving 88 in anhydrous THF and adding 1 equivalent each of pyridine and AcCl and 

allowing the reaction to stir for 30 minutes. The TLC analysis of the reaction mixture 

indicated an incomplete reaction with a single faster running spot that was assumed to 

be the acetylated products. A crude NMR confirmed that the acetylation reaction was 

not complete and characteristic downfield shifted peaks of H-C(2!) (0.99 ppm) and 

H-C(3!) (1.08 ppm) corresponding to the 2!-O-acetylated 93a and 3!-O-acetylated 93b 

nucleosides respectively were observed. However, also observed were additional 

downfield shifted peaks of H-C(1!), H-C(2!) and H-C(3!) that corresponded to the N6-

[(2-cyanoethoxy)carbonyl]-2!,3!-O-(bis-acetyl)-5!-O-(4,4!-dimethoxytrityl)-adenosine 

94 as supported by H1-H1 COSY analysis. The ease of migration of the acetyl group 

was observed, where the ratio prior to purification was 1.8:1 with respect to 93b:93a. 
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After purification isomerism is seen to favour 3!-acetylation to give a value of 2.5:1, 

93b:93a (Figure 62). 

 

Figure 62. a) Crude 1H-NMR spectrum of the acetylation of 88. b) NMR spectrum of the 
separated acetylated products showing the mixture of mono- and bis-acetylated 
compounds, 93a+93b and 94. c) 1H-NMR spectrum of the separated starting material 
88. 

 

Figure 63. Acetylation of 5"-O-(4,4'-dimethoxytrityl)-purine ribonucleotides 88 and 90 
with the formation of the various acetylation products. 
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The yields of this first reaction were quite poor with the total amount of acetylated 

material recovered at 19% (Table 2, entry 1). The remaining starting material was 

isolated in 61% yield. From these results it was thought that the reaction time was too 

short but also that the acetylation was slower than acetylation of 91 due to steric 

hindrance from the nucleobase. The reaction was repeated using 1.2 equivalents each of 

pyridine and AcCl with reaction carried out in THF with stirring at RT for 1 hour. The 

products of the reaction were then purified and separated by preparative TLC. Although 

yield of the mono-acetylated regioisomeric mixture was increased to 68%, both bis-

acetylation and starting material were still recovered (Table 2, entry 2). The mono-

acetylation of 90 was also explored but with alternative conditions (Figure 63), 90 was 

dissolved in anhydrous acetonitrile and treated with 1 equivalent of Ac2O, 1.1 mole 

equivalent of triethylamine and 0.1 mole equivalent of DMAP. After stirring for 2 hours 

the reaction did not proceed to completion and so the reaction mixture was subjected to 

purification by flash column chromatography. In this case, the starting material and 

mono-acetylated material were not separable and isolated as a mixture in a yield of 

47%. However, it was found that a much higher amount of the bis-acetylated product 

was formed (Table 2, entry 3). Also of note is the ratio of the 95b:95a within the 

regioisomeric mixture favoured the 3!-acetylated isomer in a ratio of 5:1 respectively.  

    Products (% yield) Ratio of 
3!-OAc: 
2!-OAc 

Entry SM Reaction conditions  
(mole eq. to SM) 

Time 
(h) SM 2!/3!-OAc 2!,3!-bis-

OAc 
1 88 Ac-Cl (1), py. (1), THF 0.5 88 (61) 93a+93b+94 (19) 2:1 
2 88 Ac-Cl (1.2), py.(1.2), THF 1 88 (22) 93a+93b (68) 94(7) 3:1 
3 90 Ac2O (1), Et3N (1.1), 

DMAP (0.1), MeCN 2 90+95a+95b (47) 96 (27) 5:1 

Table 2. Reaction conditions and product yields from acetylation of the 
5"-O-(4,4'-dimethoxytrityl)-purine ribonucleotides 88 and 90. Reactions were carried 
out in anhydrous conditions, at RT and 0.1 M concentration of starting material. 

The attempted methods to mono-acetylate the 2!/3!-diol of 5!-O-(4,4'-dimethoxytrityl)-

purine ribonucleotides 88 and 90 were not optimal as full reaction of the starting 

materials with the acetylating reagents was not observed. Despite only using one mole 

equivalent of acetylating reagent formation of the fully protected bis-acetylated 

products was also observed. It was concluded that bis-acetylation could not be 

controlled but also that full reaction of the starting material to produce only mono-

acetylated products would not be possible.  
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On evaluation of the literature it was found that Fromageot and co-workers have utilised 

orthoesters in the 2!/3!-monoacylation of ribonucleotides and monoacylation of 

1,2-cis-diols.[222-225] The use of orthoesters has the advantage that 2!,3!-hydroxyl 

selectivity can be achieved by forming a cyclic 5-membered orthoester, such as 

2!,3!-O-methoxyethylylidene if trimethyl orthoacetate is used. This intermediate can 

then be quantitatively hydrolysed to a regioisomeric mixture of 2!/3!-monoacetylated 

ribonucleosides. Thus, the monoacetylation can be driven to completion and 

bisacetylation of the 2!/3!-diol can be avoided.  Additionally, this method requires acidic 

catalysis so installation of the acid-labile 5!-DMTr group was carried out after 

acetylation. With a free primary hydroxyl group a small amount of 5!-orthoesterification 

leading to 5!-acetylation was expected, but experimentally in most cases was not 

observed by TLC. Where traces were observed, these 5!,3!- or 5!,2!-O-bisacetylated 

nucleosides were easily separated by flash column chromatography.[225] 

Thus, monoacetylation of 78, 79 and 84 was furnished by reaction with excess trimethyl 

orthoacetate and catalytic trifluoroacetic acid to ensure complete formation of the 

2!,3!-O-methoxyethylylidene in a suitable anhydrous solvent such as dioxane. Addition 

of water to the reaction led to the hydrolysis of the cyclic orthoester to yield the 

regioisomeric mixture of 2!/3!-acetylated nucleosides in high yield after purification by 

flash column chromatography (Figure 64).[222] Ratio of 3!-OAc:2!-OAc regioisomers 

were again found to favour the 3!-OAc and were in general ca. 2:1 respectfully. 

 

Figure 64. Monoacetylation reaction of the base-protected nucleosides 78, 79 and 84.  
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With a reliable and high yielding method for the 2!/3!-monoacetylation now established 

the regioisomeric mixtures 97a+97b, 98a+98b and 99a+99b were tritylated under 

standard conditions.[201] The monoacetylated nucleosides were 5!-hydroxyl protected 

with DMTr-Cl in anhydrous pyridine to give the 5!-(4,4!-dimethoxytrityl) 

2!/3!-monoacetylated ribonucleosides 93a+93b, 100a+100b and 95a+95b (Figure 65).  

 

Figure 65. Tritylation reactions of the regioisomeric mixtures of 97a+97b, 98a+98b 
and 99a+99b. 
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Figure 66. Generic phosphitylation reaction scheme. 

The phosphitylating agents studied were 2-cyanoethyl N,N-diisopropyl 

phosphoamidochloridite 101 and 2-cyanoethyl N,N,N!,N!-

tetraisopropylphosphoramidite 102, the former requires basic conditions in order to 

neutralise the in-situ generated by-product HCl whilst the later phosphitylating reagent 

requires acid catalysis or ‘activator’ and it was here that the most scope for 

improvement was foreseen as various activators of varying acidity could be used. The 

various reaction conditions, reagents used, ratios of the 2!/3-OAc ribonucleoside alcohol 

mixtures and ratios of the isolated and separated 2!- or 3!-OAc phosphoramidites are 

given in Table 3.  

Entry 
Acetylated 

mixture 
(1 mole eq.) 

Mixture ratio 
(3!OAc:2!OAc) 

Reaction conditions 
(mole eq.) 

Isolated 
phosphoramidite ratio 
3!-OAc 2!-OAc 

     103b 103a 
1 93a+93b 3:1 101 (1.3) DIPEA (4) 5 1 
2 93a+93b 3:1 102 (2) DCI (2) 4 1 
3 93a+93b 3:1 102 (1.2) 1H-Tetrazole (1) 4 1 
4 93a+93b 3:1 102 (1.2) BTT (1) 3 1 
     104b 104a 

5 95a+95b 5:1 101 (1.3) DIPEA (4) 7 1 
6 95a+95b 5:1 102 (1.2) BTT (1) 3.7 1 

Table 3. Reaction conditions used to scope the phosphitylation reaction. Reactions were 
conducted in anhydrous THF (starting material concentration, 0.1 M), at room 
temperature and reactions times within a range of 1-3 hours. 1H-Tetrazole (0.45 M) 
and 5-benzylthio-1H-tetrazole (BTT, 0.3 M) were added to the reaction as a solution in 
anhydrous MeCN. DIPEA = N,N-diisopropylethylamine, DCI = 4,5-dicyanoimidazole. 
The author would like to thank Dr Jianfeng Xu for the initial suggestion and conducting 
the entries 2-4.   
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As expected using 101 and N,N-diisopropylethylamine lead to undesired migration of 

the acetyl group and an increased formation of the 3!-OAc-2!-phosphoramidite. Where 

the phosphitylating agent 102 was employed, three commercially used acidic activators 

of varying pKa values were utilised as follows, 4,5-dicyanoimidazole, (DCI, pKa = 5.2), 

1H-tetrazole (pKa = 4.9) and 5-benzylthio-1H-tetrazole (BTT, pKa = 4.1). The results 

show that acidic activators enabled phosphitylation to occur with reduced migration of 

the 2!/3!-acetyl group when compared to phosphitylation with 101 and N,N-

diisopropylethylamine. The most effective of the acid activators was BTT and enabled 

phosphitylation with either no ratio change (Table 3, entry 4) or a ratio improvement 

towards the 2!-acetyl-3!-phosphoramidite (Table 1, entry 6).  

The mechanism of activation of 102 involves protonation by BTT proceeded by 

nucleophilic attack at phosphite by the conjugate base of BTT and subsequent 

displacement of N,N-diisopropylamine to form a tetrazolide 105. This tetrazolide 105 is 

the active phosphitylating agent and attack by a hydroxyl group at the phosphite centre 

with displacement of conjugated base of BTT results in phosphitylation (Figure 67).[226] 

Presumably, the increased acidity of BTT increased the effective concentration of the 

protonated phosphitylating agent and in turn increased the concentration of the 

tetrazolide 105, formation of which is the slow step.[227] This increased the rate of 

phosphitylation reduced the reaction time and this is thought to have limited acetyl 

migration to the 3!-hydroxyl. Additionally, the use of acidic activators may also 

minimise the 2!/3!-acetyl migration by decreasing the pH and reducing the formation of 

a 2!- or 3!-alkoxide.[228] The improved isolated ratio of the guanosine derivative is less 

understood and may be due to steric demand from the protected nucleobase. This could 

have reduced the rate of phosphitylation of the relatively hindered 2!-hydroxyl, allowing 

acetyl migration to occur and leading to preferential phosphitylation of the 3!-hydroxyl. 
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Figure 67. Mechanism of the phosphitylation reaction with 102 and the activator BTT. 

It was decided that BTT was the activator of choice to improve the yields of the 

2!-acetyl-3!-phosphoramidites. The four monoacetylated ribonucleoside derivatives 

93a+93b, 100a+100b, 95a+95b and 92a+92b were phosphitylated as regioisomeric 

mixtures by treating them with an excess of 102 (1.2-2 mole equivalents) in THF and 1 

mole equivalent of BTT added as a 0.35 M solution in acetonitrile. The resultant 2!/3!-

regioisomeric mixture of phosphoramidites was briefly purified by flash column 

chromatography to remove the activator BTT. The regioisomers were cleanly separated 

by normal-phase HPLC to give the regioisomers in high yield (Figure 68). In each case 

it was found that the 3!-acetyl-2!-phosphoramidite regioisomer eluted first with typically 

3-5 min separation between regioisomers. The separated regioisomers also exist as 

diastereoisomers and each was observed during separation but were not isolated 

separately (Figure 69).  
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Figure 68. Phosphitylation reaction of the monoacetylated ribonucleoside derviatives. 
Phosphitylation reactions of 100 and 92 were carried out by either Dr Colm D. Duffy or 
Dr Jianfeng Xu.  

 

Figure 69. Preparative HPLC trace of the 2"/3"-acetylated guanosine phosphoramidites 
104a and 104b. 

To summarise, an efficient and high yielding synthetic strategy has been developed and 

optimised to allow the synthesis 2!/3!-monoacetylated phosphoramidites. The key step 

was monoacylation via 2!,3!-cyclic orthoester to bring about the complete 

monoacetylation at the 2!- or 3!-hydroxyl with no bisacetylation. This required an 

inversion of the initially planned steps, which meant monoacetylation was followed by 

the tritylation reaction. However, this led to the unavoidable and undesirable 

equilibration of the acetyl group to favour the 3!-OAc. This equilibrium was to some 
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extent remedied by utilising a more acidic activator in the final phosphitylating step, 

which resulted in improved 2!/3!-OAc ratio from the starting mixture. In context of the 

crystallisation of mixtures of 2!/3!-O-acetylated uridine derivatives, it has been 

suggested that the 3!-O-acetylated isomer is the more thermodynamically stable, as pure 

crystals of the 3!-O-acetyl isomer can be obtained in high yield.[223] The reasoning 

remains unclear, however this suggested that the acid catalysed phosphitylation is under 

greater kinetic control and hence the improved 3!-OAc:2!-OAc ratio upon use of 

increasingly acidic activating agents. In other words, the 3!-hydroxyl of the 2!-O-acetyl 

isomer is more nucleophilic than the corresponding 2!-hydroxyl of the 3!-O-acetyl 

isomer. Attention now turned to the synthesis of the 2!/3!-silylated phosphoramidites. 

2.2.4. Synthesis of the 2! /3!-O-TBDMS phosphoramidites 

The synthesis of the silylated phosphoramidites follows well-developed procedures and 

first requires dimethoxytritylation of the base-protected ribonucleosides, which is 

previously described in section 2.2.3 (Figure 60). As it was felt that 

3!-phosphoramidites would be required in higher quantities, to produce the natural 3!,5!-

linked oligonucleotides, selective 2!-silylations were considered for the next step. 

Ogilive et al. have extensively evaluated the tert-butyldimethylsilyl group as a useful 

2!/3!-hydroxyl protecting group and have found that the addition of silver nitrate 

significantly improves the selectivity of 2!-hydroxyl silylation.[212, 229-231] This method 

was deemed ideal as it would improve the yields of the 2!-TBDMS regioisomer yet 

allow synthesis of both, so allowing maximum flexibility during oligonucleotide 

synthesis.   

The dimethoxytritylated ribonucleoside derivatives 88, 89 and 90 were treated with 

TBDMS-Cl, AgNO3 and pyridine in anhydrous THF for a minimum of 5 hours (Figure 

70). The reaction resulted in a regioisomeric mixture of 2!/3!-O-TBDMS 

ribonucleosides and with the adenosine 108a and 108b and cytidine 109a and 109b 

derivatives these were easily separated by silica gel flash column chromatography. With 

silica gel chromatography of the compounds that contained the acid-labile DMTr group, 

1-2% triethylamine was usually added to the mobile phase to neutralise the slightly 

acidic silica gel. However, it was crucial triethylamine was omitted during the 
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separation of the 2!/3!-O-TBDMS regioisomers as it lead to 2!/3!-migration of the 

TBDMS group. Separation of the 2!/3!-O-TBDMS guanosine derivatives 110a and 

110b proved to be difficult by flash column chromatography due to poor resolution and 

so these regioisomers were separated by normal-phase HPLC. Selectivity for 

2!-hydroxyl silylation of 88 and 89 was approximately 2:1 (2!-TBDMS:3!-TBDMS). 

With guanosine ribonucleoside derivatives it is known selectivity for 2!-hydroxyl 

silylation is poor, in this work selectivity is on par with the literature value, and is 

believed to be due to steric hindrance in the vicinity of 2!-hydroxyl by the N2-protecting 

group.[212]  

 

Figure 70. The selective 2"-silylations and the phosphitylation reaction to give the final 
phosphoramidites. Silyation of 88 conducted by Dr Jianfeng Xu, phosphitylations of 
108a-b and 111 conducted by Dr Colm D. Duffy or Dr Jianfeng Xu. 

With the silylated ribonucleosides now to hand the regioisomerically pure silylated 

ribonucleosides were treated with 2-cyanoethyl N,N-diisopropyl 

phosphoamidochloridite 101, N,N-diisopropylethylamine and in most cases catalytic 4-

dimethylaminopryidine (DMAP) in anhydrous THF gave the fully protected 

phosphoramidites in high yields (Figure 70). The 2!-TBDMS uridine phosphoramidite is 
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commercially available but the 3!-TBDMS uridine phosphoramidite is only available as 

the non-phosphitylated precursor and so this was also phosphitylated using the same 

conditions. It is useful to note that alternative phosphitylation reaction conditions, 

which utilise 2,4,6-collidine as base and N-methylimidazole as catalyst, are generally 

used due to concerns for TBMDS group migration.[232, 233] However, in this work 

migration of the 2!/3!-TBDMS groups were not observed within the detection limits of 

NMR spectroscopy (< 1%). 

To summarise optimised synthetic routes have been developed to produce the required 

silylated phosphoramidites and the synthetic routes were applicable to multi-gram scale 

synthesis. This completed the synthetic work to produce the phosphoramidites for the 

solid-phase synthesis of partially acetylated RNA oligonucleotides. Attention now 

turned to the synthesis of the photolabile linker. 

2.3. Synthesis of the photolabile linker and preparation of the 

solid-support 

Controlled-pore glass (CPG) solid-supports are currently the most widely used supports 

for automated oligonucleotide synthesis for several practical reasons.[183] Firstly, the 

porous surfaces of the beads are etched with either acid or base to give pores of the 

required mean pore size. They can also be manufactured to a uniform spherical size thus 

allowing a good flow through of solvent when packed into synthesis columns, without 

excessive back-pressure. More crucially during the synthesis of the oligonucleotides, 

CPG does not allow solvent swelling as opposed to other commonly used gel-type 

solid-supports such as cross-linked polystyrene (PS).[205] This has the advantage of 

enabling the by-products and excess reagents to be efficiently washed from the beads. 

Also the choice of solvents for each synthetic step is less crucial as swelling properties 

and diffusion of solvents/reagents into a solid-support does not need to be considered. 

This was ideal as available automated RNA oligonucleotide synthesis machines have 

been optimised with the consideration of utilising both anhydrous and aqueous 

conditions within one synthesis cycle. The surfaces of the CPG beads are derivatised by 

a ‘spacer’ that is in most cases a long-chain alkylamines (LCAA, Figure 71). These act 

as spacers to distance the functional end away from the surface of the solid-support to 
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maximise the diffusion of reagents.[205] It is to this terminal amine that the chosen 

photolabile linker will be attached. 

 

Figure 71. Structure of a commonly used long-chain alkylamine (LCAA) controlled 
pore glass solid support. 

The chosen photolabile linker 123 is of the ortho-nitrobenzyl type of protecting groups 

and linkers that are most commonly released by UV irradiation at λ = 320-400 nm. 

Photo-irradiation leads to electronic excitation of the nitro group and formation of a 

diradical 116. This diradical 116 abstracts a proton from the benzylic position, which 

undergoes rearrangement and cyclisation to 117. Release of the product is accompanied 

by the formation of the ortho-nitrosobenzyaldehyde photoproduct 118 which can 

undergo further cross-linking to give azobenzene-2,2!-dicarboxylic acid 119. This by-

product, which has a deep red colour, is known to reduce cleavage yields by acting as a 

strong light filter.[234-237] Using α-substituted ortho-nitrobenzyl groups such as the linker 

123 chosen in this work, reduces cross-linking, so photolysis can be maximised. The 

linker 123 has been predominantly used in peptide chemistry and has shown overall 

yields (i.e. yields of product after synthesis and cleavage) of 40-50% indicating an 

efficient photocleavage and so was considered ideal for synthesis of RNA 

oligonucleotides on µmol scales.[206]   
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Figure 72. Cleavage mechanism of the photolabile ortho-nitrobenzyl linkers. Boxed is 
the dimerisation of the ortho-nitrosobenzylaldehyde photoproduct 118 to the dimer 119. 

Synthesis of the photolabile linker began with the Grignard reaction on the 

commercially available 3-formyl-4-nitrobenzoate 120 with methyl magnesium bromide 

at room temperature. This gave the α-methyl alcohol 121 but the isolated product also 

contained the benzyl product 122, which was present at 15% of the mixture as 

calculated by integration of NMR peaks (Figure 73a). It is known that Grignard 

reagents with β-hydrogens exhibit a side-reaction that involves reduction of the 

aldehyde by hydride transfer via a cyclic six-membered transition state (Figure 73b).[238, 

239] However, since there were no β-hydrogens available from methyl magnesium 

bromide this mechanism was excluded. It was not clear by what mechanism the 

reduction was taking place but reduction via a radical pathway was possible as single 

electron transfer pathways for addition of Grignard reagents to aromatic aldehydes are 

known.[239, 240] The mixture 121+122 was taken on to the next step where it was hoped 

the side-product could be separated by NP-HPLC. Thus, the mixture of 121+122 was 

tritylated with DMTr-Cl in pyridine/CH2Cl2 to give 123 containing 124. The benzyl 

side-product 124 was cleanly separated from the α-methyl dimethoxytrityl product 123 

by preparative NP-HPLC to complete the synthesis of the photolabile-linker to give a 

yield of 9% over two steps. 
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Figure 73. a) Synthesis of the photolabile linker 123. The author thanks CDC for the 
development and optimisation of this synthetic route. b) Reduction of an aldehyde by 
ethyl magnesium bromide via β-hydride transfer. 

The solid-support was prepared by first taking the photolabile-linker 123 and treating it 

with a LiOH in a mixture of THF and water to hydrolyse the methyl ester. Without 

further purification the lithium benzoate salt was used in the next step after fastidious 

removal of water by co-evaporation with anhydrous pyridine. The lithium benzoate salt 

was treated with isobutylchloroformate in anhydrous pyridine to afford the mixed 

anhydride 125. Under anhydrous conditions the LCAA-CPG was treated with the mixed 

anhydride 125 (200-1000 µmol per gram of CPG). Any unreacted amines were ‘capped’ 

with pivaloyl chloride (initially with Ac2O) and the ‘loading’ or in other words the 

number of linkage sites possible for oligonucleotide synthesis was determined by the 

trityl analysis to give a loading of 33.3-56.2 µmolg−1 (vide infra) (Figure 74). This was 

deemed a suitable range when compared to commercial solid-supports[241] that have 

loadings of 15-40 µmolg−1 and Johnsson et al. whom produce their CPG with a loading 

of 35-60 µmolg−1.[204] 
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Figure 74. Preparation of the solid-phase support 126 (photolabile-CPG). The author 
thanks Dr Colm D. Duffy or Dr Jianfeng Xu for assistance in development of this stage 
of the solid-phase preparation, author contributions - optimisation of step 2. 

Analytical techniques usually used in organic chemistry are usually unsuitable for the 

characterisation of functionalised solid-supports. For oligonucleotide synthesis the 

standard method is the trityl assay which takes advantage of the DMTr cation that is 

released on deprotection of hydroxyl group.[183] The cation is a strong chromophore and 

has an absorption maxima at λ 503 nm (ε = 76 mL cm−1 µmol−1). The release of the 

DMTr cation during each cycle of oligonucleotide synthesis also serves to assess the 

yield/coupling efficiency of each phosphoramidite to the nascent oligonucleotide albeit 

only as an approximate calculation (Figure 75). Theoretically, the trityl assay is accurate 

but the assay conducted by the automated synthesis machine is only used to give an 

approximate yield.   

 

Figure 75. Acid deprotection of the DMTr group to form the DMTr cation. 
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λ 503 nm is measured in a UV machine and the loading determined using the equation 

below: 

Loading (µmolg-1) = (A503 × 
vol
76

) × (
1000
wt

) 

Equation 1. Equation to calculate the loading. A503 is the absorption at λ 503 nm, vol is 
the volume of the solution in mL, 76 µmol−1 mL cm−1 is the extinction coefficient at 
λ 503 nm and wt is the amount of support in mg. Path length assumed to be 1 cm.  

With the photolabile-CPG 126 prepared it was decided to test the efficiency of the 

photocleavage of oligonucleotides as this type of linker has only previously been used 

in the synthesis of peptides. An RNA oligonucleotide of sequence 5!-GCCCGCCC-3!P 

was synthesised for the purpose of testing the photocleavage. The synthesis used 

commercially available standard RNA amidites, reagents and standard synthesis 

programs (1 µmol scale, see Chapter 6.2.3 for a detailed description). Trityl monitoring 

during the synthesis indicated that the yield of each coupling step was >95%. On 

completion of the trityl-on synthesis the CPG was dried under vacuum and no 

deprotections were carried out. 

UV irradiation of the CPG was conducted in a 24 well cell culture tray using an LED 

light that emitted at λ 365 nm placed at a distance of 2 cm from the bottom of the well 

containing the CPG. The polystyrene cell culture trays do not absorb λ 365 nm and 

were ideal as they were sterile and free from RNase contamination.[242] It is useful to 

note that UV damage to RNA nucleobases should not be observed at these energies and 

it is at higher energies of 256 nm where damage such as photodimers are observed. The 

CPG was layered with 1 mL of acetonitrile and distributed evenly on the bottom of the 

vessel and irradiated for 1:20 h during which the CPG was regularly agitated and 10 µL 

aliquots of solvent removed at the described time points to allow quantification of 

cleaved oligonucleotide by UV absorption. The results show maximum absorption is 

attained at 60 minutes indicating the photocleavage is effectively complete. The 

maximum reached O.D. = 42.3 and corresponds to 683 nmol of oligonucleotide and 

yield of 68%, suggesting that photocleavage was efficient. Alternatively, the UV 

induced cleavage of the DMTr-O− from the photolabile-CPG 126 was used to confirm 

this result. Thus, 20 mg of the photolabile-CPG 126 was irradiated for 1 h in 1 mL of 

acetonitrile, the colourless supernatant was removed and then diluted with 3% TCA in a 
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volumetric flask to give an orange solution. The trityl assay of this solution gave a 

photocleaved DMTr cation ‘loading’ of 33.8 µmolg−1 where the original loading of the 

CPG was 56.2 µmolg−1, thus indicated a 60% cleavage yield of the photocleavable 

linker. This supported the initial finding and gave confidence that good yields of 

oligonucleotides could be obtained. Higher cleavage yields were likely not attainable 

due to the dimerisation of the ortho-nitrosobenzyaldehyde photoproduct 119 which was 

observed by the change in colour of the CPG from off-white to orange. 

 

Figure 76. Rate of oligonucleotide release from the CPG when it is irradiated at 
λ 365 nm. O.D. = Optical density. 

Demonstrated above is a simple synthesis of a photolabile-linker 126 and preparation of 

the CPG solid-support. It was found to be suitable for oligonucleotide synthesis and 

photocleavage of the oligonucleotide was achievable in a relatively short time. With all 

materials and phosphoamidites prepared it was possible to begin solid-phase synthesis 

of acetylated oligonucleotides so development and optimisation of the synthetic 

methods was initiated. 
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2.4. Solid-phase synthesis of acetyl-RNA 

2.4.1. Optimisation of the automated synthesis of acetyl-RNA 

oligonucleotides 

Synthesis of acetylated oligonucleotides was performed using a BioAutomation 

MerMade 4 automated synthesis machine. The system included preprogramed script 

files to control the addition of reagents and this was used as a basis for the following 

work. There were several procedures and reagents that were altered and changes are 

described hereafter. First a brief overview of the conditions that served as a starting 

point for the synthesis of acetylated-RNA oligonucleotides. The synthesis cycle began 

with the deblock using two treatments of dichloroacetic acid (DCA) and it was at that 

point an approximate trityl reading was obtained by the machine. The trityl value of the 

elute from each deblock step is then compared to the initial deblock value and an 

approximate indicated percentage yield is calculated. Following on was the coupling 

step that added an 8-fold excess of phosphoramidite over the synthesis scale and an 

excess of activator ETT to the synthesis column. This step was a ‘double coupling’ 

meaning the CPG was treated twice for 6 minutes with the coupling mixture. Coupling 

of the new amidites rarely results in 100% reaction and the unreacted 5!-hydroxyls are 

‘capped’ by acetylation with acetic anhydride, thus blocking them from further chain 

elongation. This reduces synthesis of truncated sequences with internal base deletions. 

The capping step is followed by oxidation of the newly formed phosphite triester to the 

phosphate triester using iodine, H2O and pyridine in THF. A second ‘capping’ step is 

then carried out but takes advantage of the acetic anhydride to remove any traces of 

water from the oxidation step thus ensuring anhydrous conditions for the next iteration 

of the synthetic cycle. In all syntheses removal of the final 5!-ODMTr group was not 

automatically conducted; the final trityl assay was conducted manually to enable 

accurate yield measurements of the full-length oligonucleotides (Figure 77). 
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Figure 77. A standard synthesis cycle used as a basis for synthesis of acetylated-RNA 
oligonucleotides. 

To test and develop the synthesis of acetylated-RNA oligonucleotides we designed an 

oligonucleotide of sequence 5!-GCCX-3’,5’(2’-OAc)GCCX-3!P (X = C, G)d. 

This sequence was chosen as it predominantly utilises one phosphoramidite, 

2!-OTBDMS Cceoc phosphoramidite 113a, which is relatively straightforward to 

synthesis such that more material could be brought forward relatively swiftly if 

required. Inclusion of the 2!-OTBDMS Gnpe
ceoc phosphoramidite 114a would allow 

deprotection of both (2-cyanoethyloxy)carbonyl and the 2-(4-nitrophenyl)ethyl groups 

to be evaluated after an efficient synthesis was found. The use of 2!-OAc Cceoc 

phosphoramidite 106a allowed evaluation of the stability of the acetyl group towards 

synthesis and deprotection conditions throughout the preparation of an oligonucleotide. 

                                                
d The linkage nomenclature here indicates a natural 3!,5!-linkage at the fourth internucleotide phosphate 
(5! to 3! direction) with a 2!-O-acetyl group at the same position. Where linkage isomerisation is not 
explicitly indicated it is assumed to be 3!,5!-linked. 
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When the standard preprogramed synthesis conditions were examined it was decided to 

alter the coupling step to a single injection i.e. a ‘single coupling’ in order to conserve 

phosphoramidites. However, reducing the reaction time and effective equivalents of 

phosphoramidites led to a low overall yield of 9-34%. In response to this result the 

reaction time of each coupling was increased to 15 minutes to give a similar overall 

reaction time to the 6 minute double coupling method. The knowledge gained from the 

synthesis of the acetylated phosphoramidites gave impetus to change the activator to 

BTT to improve the coupling yields by increasing the rate of reaction. These changes 

gave much improved yields of 64-73% of full length oligonucleotide. For the synthesis 

of longer oligonucleotides coupling times were increased to 20 minutes in an effort to 

maximise the yields further. 

Once synthesis and full deprotection of an 8nt oligonucleotide with the sequence 

5!-GCCX-3’,5’(2’-OAc)GCCX-3!P (X = G) had been accomplished 

MALDI-TOF analysis of the oligonucleotide showed a correct mass peak that 

corresponded to the correct singly acetylated 8nt oligonucleotide. However, peaks with 

masses that corresponded to bis- and tris-acetylated oligonucleotides were observed, 

plus 42 and 84 Da respectively. The source of the additional acetyl groups was thought 

to be from the capping step where the use of acetic anhydride was resulting in 

acetylation of the nucleobase exocyclic amines (Figure 78a). This problem has been 

observed by Greenberg et al. during the synthesis of oligonucleotides using fast-

deprotecting phosphoramidites and Ultra-MILD deprotection conditions. As a solution 

he recommended to substitute acetic anhydride with pivalic anhydride as the capping 

reagent.[188] A second oligonucleotide was synthesised but with pivalic anhydride 

substituted as the capping agent. However, a mass peak corresponding to the 

bis-acetylated oligonucleotide was again observed albeit at a lower intensity. No 

tris-acetylated oligonucleotides were observed indicating that removal of acetic 

anhydride from the capping step had been partially successful (Figure 78b). During 

preliminary preparations of the photolabile-CPG 126 capping of the unreacted amines 

of the support had been carried out using acetic anhydride. It was thought that during 

on-column DBU deprotection of the oligonucleotides, acetyl transfer was occurring 

from the acetylated long-chain alkyl amines to the deprotected exocyclic amines of the 

nucleobases. Thus, the photolabile-CPG 126 was prepared by a modified procedure to 

cap the amines with pivaloyl chloride. A repeated oligonucleotide synthesis on this 
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pivaloyl capped CPG, and using pivalic anhydride as capping agent during automated 

synthesis, gave acetylated-RNA oligonucleotides with the expected number of acetyl 

groups (Figure 77c).  

 

Figure 78. MALDI-TOF mass spectra of a synthesised oligonucleotide of sequence 
5"-GCCG-3’,5’(2’-OAc)GCCG-3"P (Mr = 2662.59) using a) acetyl-capped CPG 
and acetic anhydride used as the capping agent and b) acetyl-capped CPG and pivalic 
anhydride used as the capping agent. c) MALDI-TOF mass spectra of a synthesised 
oligonucleotide of sequence 5"-UGUGCCAGUA-3',5'(2'OAc)-GGUUCUC-3"P (Mr 
= 5424.24) using pivoyl capped CPG and pivalic anhydride as capping agent.  

Use of pivalic anhydride was effective in eliminating acetylation of the exocyclic 

amines due its greater steric bulk. However, the increased steric bulk also decreased the 

rate of reaction with the 5!-hydroxyls that were not coupled with the phosphoramidite 

during the coupling step.  As a consequence of this the capping time of 1 minute was 

deemed to be insufficient and was increased to 5 minutes, which was found to be 

effective. 
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Figure 79. Reaction chamber of the MerMade 4 synthesis machine. Visible at the top 
right of the image are the reagent injection nozzles that move to the left to deliver 
reagents to the yellow synthesis column. Visible on the ends of the nozzles is build up of 
crystallised activator, which prevented reliable delivery of activator during synthesis of 
long oligonucleotides. 

The MerMade 4 oligonucleotide synthesis machine is designed such that reagents are 

delivered via injection nozzles that are separate from the synthesis columns. The ends of 

these nozzles are open to the inert atmosphere of the synthesis chamber, which posed 

some practical problems. Specifically, the activator BTT has a relatively low solubility 

of 0.44 M in acetonitrile and had a tendency to crystallise on the ends of the reagent 

delivery nozzles. As coupling and capping reaction times were far longer than standard 

procedures, a full synthesis cycle was approximately one hour. Depending on the 

sequence of the oligonucleotide some nozzles may not have been used for several hours. 

This led to significant precipitation of the activator at the ends of the nozzles, leading to 

blockage. Consequently, addition of the activating agent failed and the synthesis of n-x 

oligonucleotides occurred (where n = the length of the desired oligonucleotide and 

x ≥ 1). To reduce the blockage of the nozzles an alternative activator DCI was used in 

place of BTT as it is more soluble and can be used at concentrations up to 1.2 M in 

acetonitrile (a suggested concentration is 0.5 M).[243] Despite this it was decided to take 

advantage of the higher solubility of DCI and use a 1.0 M solution to improve coupling 

yields as it was suspected that the phosphoramidites synthesised in this work were more 

sterically hindered than standard phosphoramidites. Although DCI is less acidic (pKa = 

5.2) it is thought to be equally effective as the more acidic tetrazole based activators due 

to its greater nucleophilicity. Together with the higher concentrations of DCI it was 

hoped that a higher effective concentration of the activated phosphoramidites could be 
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achieved. Although the effect on the yields of oligonucleotides by the use of DCI was 

not specifically investigated no real consequences were observed. The most significant 

improvement was elimination of activator precipitation on the reagent delivery nozzles, 

which allowed for a far more consistent and reliable synthesis of full-length 

oligonucleotides. 

In summary, conditions and reagents have been optimised for the synthesis of the 

partially acetylated-RNA oligonucleotides (Figure 80). The synthesis began with the 

unaltered deblock step using 3% DCA in CH2Cl2. Coupling of the new phosphoramidite 

used a single injection of reagents. To improve coupling yields the activation of 

phosphoramidites employed BTT and longer reaction times of at least 20 minutes were 

used. However, issues with solubility of BTT led to its replacement with the more 

soluble DCI activator used at a higher concentration of 1.0 M. Original capping 

conditions and acetyl blocking of the CPG amines led to N-acetylation of the 

synthesised oligonucleotides but use of pivolyl capped CPG and pivalic anhydride as 

the capping reagent eliminated this issue. The capping step was also increased in time to 

maximise reaction of the 5!-hydroxyls with the less reactive pivalic anhydride. The 

oxidation step was unchanged from the original conditions. 
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Figure 80. The optimised reaction conditions for the automated synthesis of the 
acetylated-RNA oligomers. 

2.4.2. Method optimisation for the deprotection, cleavage and 

purification of the acetylated-RNA oligonucleotides 

With an optimised automated synthesis of oligonucleotides now established it was 

possible to quickly synthesise oligonucleotides for the purpose of optimisation of the 

deprotection, cleavage and purification protocols of acetylated-RNA oligonucleotides. 

The general strategy was first ‘on-column’ removal of the nucleobase and phosphate 

protecting groups. Followed by removal of the final DMTr group and measurement of 

the synthesis yield by trityl assay. The next step was photocleavage of the partially 

protected oligonucleotide and then removal of the TBDMS protecting groups after 

separation from the CPG as HF reagents such as TREAT.HF are known to dissolve 

glass. The 2!/3!-phosphate may have also required removal, which was easily 

accomplished by enzymatic methods. Upon full deprotection the oligonucleotide would 

then be ready for purification by reverse-phase HPLC (RP-HPLC).  

O

O

O(Ac/TBDMS)

DMTrO
Bn-1

O

O

O(Ac/TBDMS)

HO
Bn-1

O

O

O(Ac/TBDMS)

O
Bn-1

PO
O

N

O

O(Ac/TBDMS)

Bn

DMTrO

O

O

O(Ac/TBDMS)

O
Bn-1

Synthesis Start i) Deblock
3% DCA, CH2Cl2,
2 x 1 min

O

O

O(Ac/TBDMS)

DMTrO
Bn-1

P
ON

N
ii) Coupling
TBDMS amidites: 1 M DCI, MeCN, 1 x 20 min
OAc amidites:       1 M DCI, MeCN, 2 x 17 min

iii) Capping
[(Me)3CCO]2O, 10% methylimidazole, 
THF, 2 x 5 min
iv) Oxidation
I2, py., H2O, THF, 2 x 1 min
v) Capping

Synthesis End
DMTr on

P OO
O

O

O(Ac/TBDMS)

Bn

N

DMTrO

Trityl reading



 103 

Nucleobase and phosphate deprotection was accomplished on-column using a 

combination of modified procedures by Damha et al.[196] and Pfleiderer et al..[201] In 

practice, 0.5 M DBU (10 % morpholine) in anhydrous acetonitrile was initially passed 

over the CPG for 5 minutes and then exposed to DBU in anhydrous conditions for 

initially 3 hours at room temperature. However, on a few occasions presence of 

protected nucleobases were observed and so the CPG was exposed to 0.5 M DBU (10 % 

morpholine) in anhydrous acetonitrile at 40 ºC for 6 hours, which effectively removed 

all nucleobase and phosphate protecting groups. It was crucial to carry out this 

deprotection under anhydrous conditions as presence of water in the strongly basic 

solution could lead to hydrolysis of the 2!/3!-acetyl group. On-column deprotection 

allowed excess DBU and by-products, notably acrylonitrile, to be easily and thoroughly 

washed away. 

The nucleobase 2-(cyanoethoxy)carbonyl, 2-(4-nitrophenyl)ethyl and phosphate 

2-cyanoethyl moieties were removed via β-elimination under DBU conditions.[244] The 

by-product from ceoc and ce deprotection is acrylonitrile 127 and from the npe group, 

para-nitrostyrene 128 (Figure 81a). The inclusion of the strong base labile nucleobase 

protecting groups meant that in particular, the relative equivalents of acrylonitrile 

relative to oligonucleotide were high. As such there were concerns over alkylation of 

the deprotected nucleobases by acrylonitrile via a Michael-type addition (Figure 81b). 

During exposure to DBU, alkylation has been seen to be very facile leading to full 

alkylation of thymidine in one report.[244-246] This problem is well documented in the 

literature and several groups have suggested scavengers of acrylonitrile to be added to 

the deprotection mixture. One such scavenger is nitromethane (pKa = 10.2, H2O) but it 

is a good nucleophile and so it was decided that it had the potential to deacetylate a 

2!/3!-acetylated oligonucleotide. In another report by Zhou et al., Michael-addition of a 

tolyl vinyl sulphones to nucleobases were prevented by utilising morpholine that has a 

lower pKa (pKa = 8.4).[247] The lower basicity of morpholine was attractive as a 

scavenger as it would be less likely to react with 2!/3!-acetyl groups. Alkylation 

products were not observed during the synthesis of any acetylated-RNA 

oligonucleotides and so the addition of morpholine was seen as a success. 
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Figure 81. a) β-Elimination of the nucleobase and phosphate protecting groups by 
DBU. b) Possible N3-alkylation of uridine nucleobase by acrylonitrile.  

The next deprotection step was on-column removal of the DMTr group, which was 

carried out by passing 3% trichloroacetic acid (TCA) in CH2Cl2 through the synthesis 

column. The TCA solution was passed over the CPG until the supernatant was 

colourless and the resultant orange supernatant was collected into a 50 mL volumetric 

flask. This enabled an accurate trityl reading and gave a CPG loading value 

corresponding to the yield of full-length oligonucleotides. The DMTr group was not 

removed before DBU treatment as a 5!-hydroxyl under basic conditions could act as a 

nucleophile and lead to acetyl transfer away from the 2!/3!-acetyl positions. 

The acetyl-RNA oligonucleotide at this point was still attached to the CPG but was now 

prepared for UV irradiation to cleave the photolabile linker and release the TBDMS 

protected oligonucleotide. However, an unexpected and time-consuming problem was 

encountered, which is described below. The syntheses of several 8nt oligonucleotides, 

related to those described in section 2.4.1, were in general high yielding as calculated 

by the final trityl assay. These 8nt oligomers were used in the following photocleavage 

experiments and each were deprotected on-column using the DBU conditions as 

described above. The photocleavage was carried out according to a modified procedure 

by Venkatesan et al., in which the CPG was layered with 3:1 mixture of H2O:MeCN 

and subjected to UV irradiation for 1 hour.[248] In all cases, a 10 µL sample of the 

supernatant was removed and the amount of cleavage oligonucleotide quantitated by 

UV absorption. The initial irradiation experiment (Table 4, entry 1) shows that although 
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the synthesis yield was high, the apparent cleavage yield of oligonucleotide was very 

poor. At this point the issue was not clear, so it was chosen to synthesis a poly-U 8nt 

oligonucleotide and it was found that photocleavage was efficient and high yielding 

(Table 4, entry 2). To rule out possible unspecified side-reactions, two poly-U 8nt 

oligomers were synthesised one with a 2!-acetylated U nucleoside substitution and the 

second with two G substitutions (Table 4, entries 3 and 4). Again the photocleavage 

yield for the U 8nt oligomer with one 2!-acetylated nucleoside was comparable to the 

poly-U photocleavage. However, it was noticed the photocleavage yield for the doubly 

G substituted sequence was slightly reduced (Table 4, entry 4). It was questioned 

whether nucleophilic attack of the free amines of G and C at the nitroso position of the 

ortho-nitrosobenzylaldehyde 118 photoproduct and formation of a diimine was the 

cause of the poor photocleavage yields. To ascertain whether this was the cause, 

glyoxlate was used to act as a nitroso scavenger in the irradiation solvent (Table 4, 

entries 5 and 6).[249, 250] It was also noted that with purely aqueous solvents the CPG was 

not wetted and required some organic solvents to reduce the surface tension of water. 

Again, photocleavage was carried out with the CPG exposed to two different 

concentrations of glyoxylate but the yields were found to be poor suggesting either the 

glyoxylate was not an efficient scavenger of the photoproduct 121 or covalent 

reattachment via the exocyclic amines of the oligonucleotide was not the issue. 

  
Trityl 
Yield 
(%) 

UV Irradiation (365 nm, 1 h) 

Entry RNA Sequence (5! to 3!P) Irradiation Solvent 
(1 mL) 

Yield 
(%) 

Est. Cleavage 
(%) 

1 GCCCC2'OAcGCCC 69 3:1 (H2O:MeCN) 1 1 
2 UUUUUUUU 69 3:1 (H2O:MeCN) 55 80 
3 UUUU2'OAcUUUU 78 3:1 (H2O:MeCN) 62 79 
4 G2’,5’UUUG2’,5’UUU 67 3:1 (H2O:MeCN) 48 71 
5 GCCC3'OAcGCCC 79 20 mM glyoxylate 

10 % MeCN 
12 18 

6 GCCC3'OAcGCCC 59 50 mM glyoxylate 
25 % MeCN 

4 7 

7 GCCC2'OAcGCCC 62 MeCN 4 6 
8 GCCG2'OAcGCCG 51 DMSO 48 95 

Table 4. Photocleavage experiments, the trityl yield is given to assess the success of the 
synthesis and is used to calculate the percentage yield of oligonucleotide cleaved from 
the CPG. The oligonucleotides were all deprotected on-column prior to UV irradiation 
using the following conditions 0.5 M DBU (10 % morpholine) in MeCN. 
Superscripts/subscripts denote site of acetylation or linkage isomerism, green denotes 
site of 3"-5" natural linkage isomerism and red denotes site of 2"-5" unnatural linkage 
isomerism. 
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It was decided that the latter conclusion was the more likely as the CPG became orange 

during UV irradiation suggesting significant dimerization to 119 was occurring (see 

Figure 72) rather than reaction with the cleaved oligonucleotide. It was noted that 

sequences that were GC rich did not produce high photocleavage yields whereas U rich 

sequences did. All sequences except Table 4, entry 7 were deprotected under DBU 

conditions and the resultant oligonucleotide could have existed as a DBU salt and may 

have been relatively non-polar and poorly solvated by water/acetonitrile mixtures. Thus, 

to deduce whether solubility of the cleaved oligonucleotide was the limiting issue the 

organic solvents, acetonitrile and DMSO, were explored as irradiation solvents. It was 

found that acetonitrile did not lead to improved irradiation yields (Table 4, entry 7). 

Gratifyingly, using DMSO was found to be an excellent choice and resulted in 

improved yields of cleaved oligonucleotides (Table 4, entry 8). 

With optimised conditions found for the photocleavage of acetylated-RNA 

oligonucleotides, the final TBDMS protecting groups could now be removed. Standard 

conditions were employed for the removal of the 2!/3!-O-TBDMS groups that involved 

dissolving the oligonucleotide in anhydrous DMSO and treating it with TREAT.HF at 

65 °C for 3 hours.[211] The oligonucleotides were most commonly isolated by 

precipitation with sodium acetate after which point the oligonucleotide was quantitated 

by UV absorption to give a crude yield. The crude samples were then analysed by 

MALDI-TOF mass spectrometry in order to identify the desired oligonucleotide. 

The final step before purification of the oligonucleotides was enzymatic removal of the 

terminal 3!-phosphate, which was accomplished by treatment with calf intestinal 

phosphatase (CIP) in PBS buffer (pH = 7.4) at 37 °C for 1 hour. This step was optional 

but in all cases during this work the terminal phosphate was removed. The fully 

prepared oligonucleotides were finally purified by strong anion exchange HPLC 

(SAX-HPLC) chromatography. The fractions containing the target oligonucleotide were 

combined and dialysed against 10 mM TEAA buffer to remove excess buffer and salts 

used in HPLC purification. Finally the purity of the oligonucleotides was confirmed by 

analytical SAX-HPLC and characterised by MALDI-TOF mass spectrometry. 

In summary, a deprotection strategy has been optimised to allow isolation of pure 

partially acetylated-RNA oligonucleotides: 
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1. On-column nucleobase and phosphate deprotection (0.5 M DBU, MeCN 10 % 

morpholine). 

2. On-column 5!-hydroxyl deprotection and trityl assay (3 % TCA, CH2Cl2). 

3. UV irradiation – photocleavage (365 nm, 1 hour). 

4. 2!/3!-O-TBDMS removal (DMSO, 65 °C, 3 hours). 

5. Dephosphorylation, CIP (PBS buffer, pH = 7.4, 37 °C, 1 hour). 

6. SAX-HPLC purification. 

In particular, reaction of nucleobase and phosphate deprotection by-products resulting 

in alkylation of the nucleobases was considered and steps were taken to prevent 

alkylation by using an acrylonitrile scavenger. The poor yields of the photocleavage 

step were found to be due to solubility of the partially deprotected oligonucleotide and 

the use of DMSO was found to effectively dissolve the cleaved oligonucleotide. 

2.5. Synthesis of acetyl-RNA oligonucleotides 

The optimised synthesis conditions resulted in high yields of full length 

oligonucleotides with average stepwise coupling yields of  >98.5 % which is 

comparable with standard 2!-O-TBDMS chemistry (Table 5, entries 1-4). However, 

synthesis of an acetylated-GUAA tetraloop showed a significantly lower yield with an 

average stepwise coupling yield of 85.1 % (Table 5, entry 5). A crude MALDI-TOF 

spectra of the oligonucleotide showed the major failure sequences to be due to the failed 

couplings of 2!-O-TBDMS Aceoc phosphoramidite 112a and suggests phosphoramidite 

quality may have been to blame. 

Entry RNA Sequence (5! to 3!) 
Trityl 
yield 
(%) 

Avg. 
coupling 
yield (%) 

UV Irradiation 
Yield  
(%) 

Est. Cleavage 
(%) 

1 UGUGCCAGUA2'OAcGGUUCUC 86 99.1 53 62 
2 UGUGCCAGUA3'OAcGGUUCUC 89 99.3 56 64 
3 CCAG2'OAcUAGGU2'OAcUCUC 83 98.6 62 75 
4 GAGA2'OAcACC2'OAcUACUGG 66 96.8 57 86 
5 GCCG2'OAcUAAGGC 20 85.1 31 155 

Table 5. Synthesised oligonucleotides, final yields are not given as only 1/2 or 1/3 of the 
material was purified by HPLC. Estimates of final yields range between 4-19 %, which 
is on par with yields of oligonucleotides from commercial sources. 
Superscripts/subscripts denote site of acetylation or linkage isomerism, green denotes 
site of 3"-5" natural linkage isomerism and red denotes site of 2"-5" unnatural linkage 
isomerism. 
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Photocleavage yields within the range of 60-80 % were obtained and are comparable to 

previous photocleavage experiments. The high value obtained for the percentage 

cleavage with entry 5 was likely due to the higher concentration of failure sequences, 

which are not taken into account when calculating the yield by the trityl assay. Post 

photocleavage, the yield is calculated by UV absorption and absorption by the 5!-OAc 

capped failure sequences will contribute to the calculated yield. 

 

Figure 82. MALDI-TOF spectra showing that it was possible to remove the 
deacetylated oligonucleotides formed during deprotection: a) crude mixture before 
SAX-HPLC shows the mass of an acetylated 17nt oligomer (see Table 5, entry 1, Mr = 
5423.29) in green and the small amount of deacetylated 17nt oligomer in red (−42 Da 
= Ac), b) is the same material after SAX-HPLC purification and shows a mass peak for 
only the target oligonucleotide. 

During the deprotection it was expected that a small amount of deacetylation of 

acetylated-RNA oligonucleotides would be observed as an unavoidable process. This 

indeed was the case but where deacetylation occurred only a small amount of hydrolysis 

was observed, up to approximately 10 % estimated by comparison of the MALDI-TOF 

mass spectrum peak height corresponding to the full length acetylated product. In nearly 

all cases it was possible remove the deacetylated-RNA oligomers during SAX-HPLC 

(Figure 82). 

In summary, successful optimisation of the automated synthesis cycle and the 

deprotection procedures has enabled synthesis of several partially 2!/3!-O-acetylated 

RNA oligonucleotides. The calculated average coupling yields are comparable to those 

obtained by commercial 2!-O-TBDMS chemistry.[196] However, average coupling yields 

of the final oligonucleotide (Table 5, entry 7) were found to be notably lower, as small 

reductions in each coupling yield has a significant effect on the yield of full length 
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product. Due to time constraints, reasons for the lower coupling yields with this 

particular sequence were not fully explored. One possibility is age of the 

phosphoramidites, as inadequate storage of the materials could lead to excessive 

absorption of atmospheric water and/or oxidation of the phosphite such that both would 

be detrimental to the coupling efficiency. Due to the novel nature the 2!/3!-O-acetylated 

phosphoramidites it would be useful to compare coupling efficiencies of freshly made 

material with material stored for different lengths of time and under varying storage 

conditions. 
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3. Properties of 2! /3!-O-acetyl RNA 
oligonucleotides and consequences for the non-
enzymatic replication of RNA 

3.1. Background 

As previously described in Chapter 1.6.3, chemoselective acetylation allows the rapid 

and efficient template-directed ligation of short RNA oligomers. Subjecting a mixture 

of 3!P and 2!P oligomers to the acetylation-ligation reaction conditions showed a 700-

fold selectivity for ligation of the 3!P oligomers. Thus, the products of acetylation-

ligation reactions are partially 2!/3!-O-acetylated RNA oligonucleotides (acetyl-RNA) 

with acetyl groups present predominantly at internal 2!-positions. Acetyl-RNA is 

predicted to have greater potential for replication over extant RNA due to favourable 

conformational changes and suppression of key hydrogen bonding interactions.  

The furanonse five-membered ring of the sugar-phosphate backbone of RNA is known 

to exist in two main conformations, usually referred to as C2!-endo (south 

conformation) and C3!-endo (north conformation) (Figure 83).[251] Acetylation of the 

2!-hydroxyl of a 3!P oligonucleotide favours the C3!-endo sugar pucker because of the 

electronegative acetate group that stabilises a non-bonding (σC-H3' → σ*
C-O2') 

overlap.[252] The C3!-endo is the dominant sugar pucker in duplex RNA which forms a 

right-handed helix and is otherwise known as A-form RNA (Figure 83).[253] Thus, 2!-

acetylation was predicted to increase the C3!-endo conformation and improve the 

propensity of acetyl-RNA to form duplex over other RNA structures such as turns and 

loops where the C2!-endo sugar pucker is preferred.  

Modified RNA such as 2!-deoxy-2!-OMe-RNA and 2!-deoxy-2!-F-RNA are 

conformationally limited to the C3!-endo sugar pucker. The hybrid duplexes such as 

2!-OMe-RNA:RNA and 2!-F-RNA:RNA have also been shown to possess greater 

thermodynamic stability when compared to their RNA:RNA hybrids.[254, 255] However, 

thermodynamic studies on 2!-O-alkyl-RNA:RNA duplexes have shown reduced Tm 

(defined as the temperature at which half of the oligonucleotides are folded/associated 

and half are unfold/dissociated) and thermodynamic stability, which decreased further 
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with an increase in alkyl chain length.[256] Moreover, Damha et al. have synthesised 2!-

O-levulinyl modified RNA oligonucleotides and showed that with extensive 

modification no duplex formation was observed.[196] With this in mind, 2!-acetylation of 

RNA was predicted to reduce duplex stability due its greater steric bulk compared with 

the 2!-OMe and 2!-F modifications and functional group similarity (ester group) to the 

levulinyl group.  

 
Figure 83. Conformational changes due to acetylation of RNA. 

RNA has the ability to form secondary and tertiary structure to give certain sequences 

phenotypic properties. However, highly structured RNA, such as in the ribosome, 

inhibits non-enzymatic replication of RNA. An analysis of structured RNA brings to 

light a common and ubiquitous structural motif that has been termed the A-minor 

interaction. This is an important interaction that involves insertion of unpaired adenines 

into the minor grooves of RNA helices where hydrogen-bonding through their N(1), 

N(3) and 2!-hydroxyl stabilises tertiary structure (Figure 84).[257, 258] The partial 

acetylation of RNA oligonucleotides has the potential to block a significant number of 

2!-hydroxyl hydrogen bonding interactions at A-minor sites. Additionally, steric 

demand and electronegativity of the acetyl group may be poorly accommodated deep 

within a structure. These factors are predicted to weaken the A-minor interactions, 

thereby reducing the formation of tertiary structure and so favour duplex RNA. 

Reduction of tertiary structure would allow acetyl-RNA oligonucleotides to undergo a 

period of genotypic behaviour (replication) and potentially overcome the problem of 
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product inhibition. Subsequent deacetylation, without phosphodiester backbone 

cleavage, of replicated acetyl-RNA will allow formation of A-minor interactions and 

emergence of tertiary structure.[259]  

  
Figure 84. Examples of the four main A-minor interactions from the H. marismortui 50S 
subunit. Types I and II are the most common A-minor motifs and are highly specific for 
adenine bases. Type III and the much rarer type 0 motif are less specific as the bases 
stack against the receptor (base-paired) riboses however, adenine bases are still 
preferred as they maximise the stacking interaction. Redrawn from PDB file 1FFK 
using MacPyMOL.[257]  

3.2. Duplex stability of acetyl-RNA assessed by UV melting 

analysis 

Optical melting was chosen to assess the thermodynamics of acetyl-RNA secondary 

structure because small amounts of material are required and measurements can be 

obtained fairly quickly. The vast majority of thermodynamics of nucleic acids have 

been measured by optical melting.[260] This takes advantage of the phenomenon of 

stacked nucleobases such as those in duplex structures, whereby the UV absorbance of 

an oligonucleotide increases as the temperature increases, that is otherwise known as 

hyperchromism. Absorption of light causes an excitation of electrons in the nucleobases 

of oligonucleotides, which in turn causes an electric dipole transition moment. Where 

bases are stacked or within secondary structure the transition dipole induces a dipole in 

neighbouring bases. These induced dipoles are opposite to the transition dipole and so 
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reduce the effective transition dipole. As the extinction coefficient is proportional to the 

square of the magnitude of the transition dipole, stacked bases or structured 

oligonucleotides are hypochromic compared to unpaired oligonucleotides.[261] Heating 

and cooling a solution of oligonucleotide causes a reversible melting and annealing of 

oligonucleotides, which is observed as an increase and decrease respectively in 

absorption. In practice, a plot of absorption versus temperature gives a sigmoidal 

melting curve. 

The Tm and thermodynamic parameters (enthalpy and entropy) can be calculated from 

the absorption versus temperature curves. To calculate the Tm the melting curve needs 

to be converted to a fraction associated/folded versus temperature curve. This is done by 

fitting straight lines to the lower and upper baselines of the curve that relate to the fully 

associated and fully dissociated states respectively (Figure 85a, see also Equation 5). 

The computed equations of these lines are used to the convert each absorbance value 

into a fraction of the difference between the lower and upper baseline. This gives a 

fraction associated versus temperature curve and the Tm is the temperature at which 

α = 0.5 (Figure 85b). An important assumption is that the oligonucleotides exist in a 

two-state equilibrium, either duplexed/folded or single stranded/unfold. The α values at 

the Tm transition (0.15<α<0.85) are used to determine ΔH°, ΔS° and ultimately ΔG°. It 

is at this transition point that gives the true measure of the stability of an 

oligonucleotide structure. A sharp transition indicates a strongly temperature dependent 

affinity and a relatively more stable structure (a more favourable ΔG°). Conversely, a 

transition over a wider temperature range indicates a less favourable ΔG° and a less 

stable structure. The association constant (Ka) is calculated for each α value at the Tm 

transition using Equation 2 and is related to ΔG° by Equation 3. Rearrangement of 

Equation 3 and plotting ln(Ka) versus 1/Tm gives the van’t Hoff plot (Figure 85c), which 

should follow a straight line if the two-state assumption holds. From the linear 

regression, the slope gives ΔH° and the y-intercept gives ΔS° allowing calculation of 

ΔG° (see Chapter 6.3 for further details).[260, 262, 263] 
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Ka =
α

!( CT
n
)
n–1

(1 - α)n
 

Equation 2. Calculation of the association constant (Ka) for non-self-complementary 
sequences, in terms of fraction associated (α), total oligonucleotide concentration (CT) 
and the molecularity (n ,e.g. n = 2 for a bimolecular interaction). 

ΔG° = !RTln(Ka) = ΔH° – T.∆S° 

ln(Ka) = 
–∆H°
R .

1
T+!

∆S°
R  

Equation 3. Derivation to calculate the thermodynamic parameters of the melting 
curves. R = Gas Constant (8.314 JK−1mol−1), T = temperature (°C), ΔG° = Gibbs free 
energy (kJmol−1), ΔH° = Enthalpy (kJmol−1), ΔS° = Entropy (JK−1mol−1) and Ka = 
association constant. 

 
Figure 85. a) A typical melting curve with fitted upper and lower baselines. b) Fraction 
associated versus temperature curve with graphical representation for extraction of the 
Tm value. c) The van’t Hoff plot with linear regression, the slope and intercept of the 
linear regression give the thermodynamic values for ΔH° and ΔS°. (Data and analysis 
of Table 6, entry 7). 
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To study the effect of acetylation on RNA duplex stability, sequences were selected 

based upon oligonucleotides originally used in the template directed non-enzymatic 

oligonucleotide ligation experiments by Szostak et al..[128, 129] The monoacetylated-RNA 

oligonucleotides (Table 6, entries 3-4) are based upon the acetylation-ligation products 

of recent work by Bowler et al..[146] The two complementary bisacetylated 13nt 

oligonucleotides (Table 6, entries 7) were designed to test the effect of multiple acetyl 

groups within in a duplex. The position of the acetyl groups was chosen to take into 

account two considerations: the first was to utilise each of the nucleoside bases; the 

second was so that the acetylated-RNA oligonucleotides resembled one that could have 

been prebiotically assembled from tiled shortmers of 3<nt<6 (Figure 86). The following 

results and discussion relate to data contained within Table 6. 

 

Figure 86. Prebiotic ligation of shortmers and considerations for the positioning the 
acetyl groups within the 13nt oligonucleotides for melting curve measurements. 
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Entry 
R

N
A

 Sequence (5! to 3!) 
C

om
plem

ent (5! to 3!) 
T

m
 

 (°C
) 

ΔT
m

  
(°C

) 
ΔT

m /O
A

c 
(°C

) 
 

1 
UGUGCCAGUAGGUUCUC 

GAGAACCUACUGG 
74.7 

+0.9 
- 

 

2 
UGUGCCAGUA

2’,5’GGUUCUC 
GAGAACCUACUGG 

67.8 
−6.9 

- 
 

3 
UGUGCCAGUA

2'OAcGGUUCUC 
GAGAACCUACUGG 

71.6 
−3.1 

−3.1 
 

4 
UGUGCCAGUA

3'OAc GGUUCUC 
GAGAACCUACUGG 

72.0 
+4.2 

+4.2 
 

5 
UGUGCCAGUAGGUUCUC 

GAGA
2'OAcACC

2'OAcUACUGG 
68.5 

−5.9 
−3.0 

 

6 
UGUGCCAGUA

2'OAcGGUUCUC 
GAGA

2'OAcACC
2'OAcUACUGG 

65.6 
−9.1 

−3.0 
 

7 
CCAG

2'OAcUAGGU
2'OAcUCUC 

GAGA
2'OAcACC

2'OAcUACUGG 
61.5 

−12.3 
−3.1 

 

8 
CCAG

2'OAcUAGGU
2'OAcUCUC 

GAGAACCUACUGG 
67.9 

−5.9 
−3.0 

 
9 

CCAGUAGGUUCUC 
GAGA

2'OAcACC
2'OAcUACUGG 

67.4 
−6.4 

−3.2 
C

ontinued 
10 

CCAGUAGGUUCUC 
GAGAACCUACUGG 

73.8 
−0.9 

- 
below

. 

Entry 
ΔH

° 
(kJm

ol −1) 
ΔS

° 
(Jm

ol −1K
−1) 

ΔG
°0 

(kJm
ol −1) 

ΔG
°37 

(kJm
ol −1) 

ΔΔH
° 

(kJm
ol −1) 

ΔΔS
° 

(Jm
ol −1K

−1) 
ΔΔG

°37  
(kJm

ol −1) 
ΔΔG

°37 /O
A

c 
(kJm

ol −1) 
D

uplex 
C

om
parison 

1 
−

530.0 
−

1410.5 
−

144.7 
−

92.6 
−

8.4 
−

20.0 
−

2.3 
- 

1-10 
2 

−
421.7 

−
1123.7 

−
114.7 

−
73.2 

+108.4 
+286.8 

+19.4 
- 

2-1 
3 

−
420.4 

−
1113.3 

−
116.3 

−
75.1 

+109.6 
+297.2 

+17.4 
+17.4 

3-1 
4 

−
517.2 

−
1385.1 

−
138.9 

−
87.7 

−
95.6 

−
261.4 

−
14.5 

−
14.5 

4-2 
5 

−
428.5 

−
1140.6 

−
116.9 

−
74.7 

+101.5 
+269.9 

+17.8 
+8.9 

5-1 
6 

−
363.9 

−
961.0 

−
101.4 

−
65.9 

+166.1 
+449.5 

+26.7 
+8.9 

6-1 
7 

−
361.7 

−
967.4 

−
97.5 

−
61.7 

+159.9 
+423.1 

+28.6 
+7.2 

7-10 
8 

−
462.7 

−
1243.0 

−
123.2 

−
77.2 

+58.8 
+147.4 

+13.1 
+6.6 

8-10 
9 

−
461.9 

−
1242.2 

−
122.6 

−
76.7 

+59.6 
+148.3 

+13.6 
+6.8 

9-10 
10 

−
521.6 

−
1390.5 

−
141.8 

−
90.3 

+8.4 
+20.0 

+2.3 
- 

10-1 

Table 6. Effect of acetylation on the T
m  and therm

odynam
ic param

eters of various oligonucleotide duplexes. Each m
easurem

ent used 2.5 µM
 of 

each oligom
er to give a total RN

A concentration of 5 µM
, in 10 m

M
 N

a
2 H

PO
4 , 0.5 m

M
 N

a
2 ED

TA buffer (pH
 7), 1 M

 N
aC

l and a tem
perature 

range of 30-90 °C
. U

nderlined nucleotides denote overhanging sequence, superscripts/subscripts denote site of acetylation or linkage isom
erism

, 
green denotes site of 3!-5! natural linkage isom

erism
 and red denotes site of 2!-5! unnatural linkage isom

erism
. 
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Comparing entries 1 and 10 it can be seen that the 4nt overhang (underlined) in the 17nt 

RNA oligonucleotide confers a Tm increase (ΔTm = +0.9 °C) and a decrease in ΔG°37 

(ΔΔG°37 = −2.3 kJmol−1) indicating a slight stabilising effect. The increased stability is 

likely due to base stacking of the overhang.  

Analysis of the Tm data showed a remarkable regularity to the effect of 2"-acetylation on 

the value of the Tm. With increasing number of acetyl groups the Tm decreased with a 

consistent ΔTm of between −3.0-−3.2 °C per acetyl group. The attenuation of the Tm did 

not appear to depend on the sequence location of the acetyl groups. Acetylation at the 

terminal positions were not explored, although it is known that other modifications such 

as the 2"-O-neopentyl located at the ends give a less significant reduction in duplex 

stability.[264] 

It is well known that A-form RNA duplexes are well hydrated in both the major and 

minor grooves with regular arrangements of water molecules. In comparison to DNA 

duplexes, RNA duplexes are more stable partially because the 2"-hydroxyl causes the 

sugar to favour the C3"-endo pucker and form an A-form duplex. But crucially, the 

2"-hydroxyl, that is both a hydrogen bond acceptor and donator, is directed into the 

minor groove. It is this ability that confers the largest stabilising effect as the 

2"-hydroxyl allows for a more extensive and ordered hydrogen bonding network within 

the minor groove.[265-268] X-ray crystallographic studies show that several water 

molecules in the minor groove form a bridge between the 2"-hydroxyl groups of 

opposite strands. They are also found to hydrogen bond to the nucleobases thus 

providing a link between the backbone and nucleobases. This hydrogen bond network 

contributes to a significant enthalpy driven increase in thermodynamic stability of RNA 

duplex but as a result RNA also takes an inevitable entropic penalty for the increased 

hydration (Figure 87).[266, 267]  
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Figure 87. a) Hydration of C:G pairs illustrating the bridging of water molecule in the 
major and minor grooves and the hydrogen bonding to the nucleobases. b) Hydration 
network in the minor grooves from the crystal structure of a RNA duplex. Hydrogen 
bonds are indicated by dashed lines and water molecules are the red spheres. Redrawn 
from PDB file 3JXQ using MacPyMOL.[267] 

Where an RNA oligonucleotide was 2"-O-acetylated either on one or both duplex 

strands it led to an increase of both ΔH° and ΔS°. The positive ΔΔS° values indicated a 

favourable entropic consequence of 2"-acetylation and preorganisation of the sugar 

pucker could contribute to the entropic advantage as is also suggested for other types of 

2"-O-modifications such as the 2"-O-methyl modification.[255, 264, 269] However, it was 

believed that the effect of preorganisation was minimal as RNA duplexes generally 

adopt the C3"-endo sugar pucker and 2"-O-acetylation may not contribute further 

significant entropic increase. Rather, the more significant factor is that the 2"-O-acetyl 

decreased the hydrogen bonding ability at the 2"-position and is thought to result in the 

reduced hydration of the minor groove or entropic gain. The reduced hydration in the 

minor groove therefore disrupted the ordered network of water molecules causing the 

large and positive ΔΔH° or enthalpic penalty. In other words, 2"-O-acetylation is 

preventing the duplex RNA from anchoring water molecules (the observed favourable 

entropy change) via the 2"-hydroxyl and so preventing formation of the stabilising water 

bridges (the dominating observed unfavourable enthalpy change) such that the duplex is 

destabilised (unfavourable Gibbs energy change). 

In general terms, the thermodynamic data showed that acetylation of the 2"-hydroxyls 

causes a decrease in the duplex stability compared to the non-acetylated parent duplex 
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(entries 3,5,6 vs. 1 and entries 7,8,9 vs. 10). However, in contrast to the decrease in Tm, 

the addition of each 2"-O-acetyl group does not infer equal change in ΔG°. The largest 

destabilisation was the addition of one acetyl group into the 17nt oligonucleotide 

(ΔΔG°37 = +17.4 kJmol−1, entry 3), but subsequent additions of further 2"-acetyl groups 

do not destabilise the duplex to the same degree per acetyl group (ΔΔG°37 = +8.9-

+6.6 kJmol−1, entries 5-9). This suggests that the initial disruption of the ordered 

hydrogen network could be quite far reaching, but the addition of more acetyl groups 

could not bring about the same degree of destabilisation on an already disrupted 

hydrogen bonding network.  

The decrease in duplex stability from inclusion of 2",5"-linkages in oligonucleotide 

sequences is well known.[270] In this work it was observed that the inclusion of one 

2",5"-linkage caused a decrease in Tm (ΔTm = −6.9 °C) and an increase in ΔG°37 

(ΔΔG°37 = +19.4 kJmol−1, entries 1 and 2). The sugar puckers of A-form duplex RNA 

exist as the C3"-endo; this north conformation leads to a compact/compressed duplex 

with an axial phosphate-phosphate (P…P) distance of 5.9 Å. To accommodate a 

2",5"-linkage there is a strong preference for a C2"-endo sugar pucker presumably 

because this also gives a P...P distance of 5.9 Å and so allows for formation of the 

A-form duplex without too much deformation of the duplex (Figure 88).[271] The 

decrease in duplex stability was thought to be due to the C3"-endo/C2"-endo equilibrium 

where a significant C3"-endo population still existed due to stabilisation by a 

σC-H3' → σ*
C-O2' orbital overlap from the presence of the 2"-phosphate (Figure 89a).  

 
Figure 88. Duplex axial phosphate-phosphate distances and sugar puckers that allow 
inclusion of a 2!,5!-linkage in A-form RNA duplex. Reprinted from reference [271] with 
permission from the copyright holder, Elsevier Limited.  

Acetylation of the 3"-hydroxyl at the 2",5"-linkage was thought to have stabilised the 

preferred C2"-endo sugar pucker by facilitating a σC-H2' → σ*
C-O3' orbital overlap (Figure 

89b). The UV melting studies showed an increase in Tm (ΔTm = +4.2 °C) and a more 
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favourable ΔG°37 (ΔΔG°37 = −14.5 kJmol−1, entries 2 and 4) indicating a more stable 

duplex. In this case, stabilisation of the C2"-endo pucker reduces the pseudorotation of 

the furanose ring and in effect the south sugar conformation is frozen leading to the 

unfavourable decrease in ΔS°. The more equal P…P distance will lead to less 

deformation of the duplex and so maximise hydrogen bonding that would account for 

the favourable decrease in ΔH° (ΔΔH° = −95.6 kJmol−1, ΔΔS° = −261.4 Jmol−1K−1). 

Use of nucleoside analogues to freeze the south-type sugar of 2"-5"-linked 

oligonucleotides is used by Erande et al. to improve RNA duplex formation for use in 

possible siRNA and miRNA applications.[272] 

 
Figure 89. a) The C2!-endo sugar pucker at a 2!,5!-linkage site is preferred in A-form 
duplex but pseudorotation to C3!-endo may be the major cause of Tm decrease. b) An 
increase in Tm is observed on acetylation of the 3!-hydroxyl where the electronegative 
acetyl group is thought to have further stabilised the preferred C2!-endo sugar pucker. 

3.2.1. Consequences of acetyl-RNA for the non-enzymatic replication 

of RNA 

One of the major difficulties for the replication of RNA is that once the length of the 

oligonucleotides reaches >30 base-pairs the Tm of the oligonucleotides become very 

high (close to 100 °C).[273] This means that under conditions of non-enzymatic 

replication of RNA a template and product strand would be very difficult to separate 

leading to product inhibition. Even the smallest active ribozymes are still approximately 

50nt long and so it is conceivable that it would be difficult to replicate such sequences 
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non-enzymatically as native RNA.[274] Suggestions to lower the Tm have included 

introduction of copying errors or to introduce 2",5"-linkages into predominantly 3",5"-

linked oligonucleotides.[275] However, both these solutions have their caveats, the 

former would not be suitable for inheritance of important sequences or functional RNA, 

while the latter 2",5"-linkages are known to hydrolyse more rapidly than 3",5"-linkages 

when in the context of a duplex and could lead to premature chain cleavage and 

degradation of oligonucleotides.[276] Additionally, the acetylation-ligation chemistry has 

shown that 3"-phosphate oligomers are selectively ligated and hence would lead to 

fewer 2",5"-linkages.[146]  

The decrease of Tm and duplex stability imparted by the acetyl groups has the distinct 

potential to allow non-enzymatic template-directed synthesis of much longer 

oligonucleotides than is possible with native RNA. For example, a 33nt minizyme used 

by Wochner et al. has a calculated Tm = 101.3 °C (atdbio online calculator[277], nearest-

neighbour model, 1000 µM NaCl, 2.5 µM oligonucleotide), which is clearly very stable 

and would be near impossible to denature at prebiotically plausible conditions.[278] If 

this minizyme was, for example, replicated from 3"-phosphate 3-5nt oligomers[133] it 

could contain approximately 8 internucleotide 2"-O-acetyl groups. Utilising this 

acetylated minizyme as a template for further rounds of acetylation-ligation reactions of 

complementary 3-5nt oligomers would result in a complementary product itself 

containing approximately 8 internucleotide 2"-O-acetyl groups. Extrapolating the Tm 

reduction per acetyl group for this acetylated-minizyme-product duplex would give it a 

predicted Tm of 51.7 °C. The significant decrease in Tm and duplex stability would 

enable strand separation possibly by solar heating of a small body of water during the 

day and reannealing of shortmers could occur gradually on cooling of the body of water 

during the night. 
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Figure 90. Replication of a long acetylated oligonucleotide with a supressed Tm that 
allows duplex melting and annealing under mild conditions. 

An appealing scenario for the emergence of catalytic RNA can be suggested that utilises 

mixtures of acetyl-RNA and native RNA (i.e. formed from slow deacetylation). Under 

the replication cycles described in Figure 90, the reduced stability of acetyl-RNA 

oligonucleotides would allow a significant population to undergo replication but 

conversely, the deacetylated RNA will remain annealed/folded (Figure 91). Utilising the 

pool of shortmers, continuous formation of ligated acetyl-RNA could be envisioned 

under acetylation and ligation conditions. Simulanteously, slow deacetylation by 

hydrolysis or ammonolysis of the longer oligonucleotides could reveal RNA slowly 

over time until catalytically superior RNA (ribozymes) emerged that could take over 

replication.[259] These ribozymes could then utilise the remaining RNA or other products 

in the local environment to carry out processes such as replication or peptide synthesis.  
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Figure 91. At the Tm (50 % dissociated) of the duplexes containing the highest number 
of acetyl groups the native RNA duplexes remain at or close to the fully associated 
state. Thus, at temperatures that denature a significant population of acetyl-RNA, native 
RNA is still stable, indicating the greater replication potential of acetyl-RNA. 

3.3. Stability of an acetylated hairpin structure 

To further explore the consequences of acetylated-RNA, a common secondary structure 

was sought that is implicated in the formation of tertiary structure. RNA hairpins loops 

are a type of structural motif that are some of the most common. In particular, 

tetranucleotide hairpin loops or tetraloops make up more than 55% of all loops.[279] 

These tetraloops consist of a Watson-Crick base paired A-form stem and a 4nt loop. 

This RNA structural motif is found throughout all large RNA structures and is 

implicated in the stabilisation of tertiary structure by utilising A-minor interactions to 

bind to a receptor.[257, 280-284] This so-called tetraloop-receptor interaction however 

involves a relatively large RNA that would have been difficult to synthesis by the 2"/3"-

O-acetyl phosphoramidite method described previously. Therefore, as a compromise it 

was decided to study the effect of acetylation on the tetraloop itself. The tetraloops with 

the general sequence GNRA (where N = any base and R = purine base) were chosen as 

they make up 50% of the tetraloops, additionally their hairpin stabilities and structures 
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have been extensively studied.[279, 285, 286] The chosen tetraloop was a 10nt GUAA 

tetraloop of sequence 5’-GCCGUAAGGC-3’ with a Tm value of 74.4 °C and a high-

resolution crystal structure was available that allowed visualisation of the loop. [285, 287] 

 
Figure 92. GUAA Tetraloop. Structures show the tetraloop and the closing CG base 
pair of the stem. Examination of the crystal structure showed limited space at the 
2!-hydroxyl (arrow) of G4, which also formed several hydrogen bonds (yellow dashed 
lines) to A6, A7 nucleobase amino groups and to an associated water molecule (cyan). 
Redrawn from PDB file 1MSY using MacPyMOL.[287] 

Inspection of the crystal structure of a GUAA tetraloop (Figure 92) and specifically its 

2"-hydroxyls showed that the 2"-hydroxyl of G4 (arrow) of the loop formed several 

hydrogen bonds to N6, N7 of A6 and N6 of A7. In addition there was also an associated 

water molecule that formed hydrogen bonds to N6 of A6, O2" and O3" of G4. The 

remaining 2"-hydroxyls of the loop nucleosides extend out into solvent but it was not 

clear whether they are important for hairpin stability. The requirement of hydrogen 

bonding for tetraloop stability has been investigated and showed that removal of 2"-

hydroxyl of G4 led to only a small decrease in stability and Tm (ΔΔG°70 = +1.26 

kJmol−1, ΔTm = −2.9 °C). It was concluded that hydrogen bonds within a tetraloop 

contribute relatively little to its thermodynamic stability.[288] However, when a space-

filling model of the tetraloop was inspected it was noted that the environment around 
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the 2"-hydroxyl of G4 was sterically demanding (Figure 92). It was hypothesised that 

addition of an acetyl group to this 2"-hydroxyl could prevent stable formation of the 

tetraloop and result in an unfolded hairpin that could served as a template for non-

enzymatic replication.  

To this end an acetylated GUAA tetraloop was synthesised, which incorporated a 

2"-O-acetyl group at G4 of the hairpin loop. The tetraloop of sequence 

5’-GCCG-3',5'(2'OAc)-UAAGGC-3’ (acetylated-tetraloop) was synthesised as 

described in Chapter 2.4. The stability of the acetylated-tetraloop (Table 7, entries 1) 

was studied by UV melting analysis. For a comparative study the melting curves of 2"-

deoxy-G4 tetraloop (deoxy-tetraloop, Table 7, entries 2) and GUAA tetraloop without 

modification (natural tetraloop, Table 7, entries 3) were also measured.  

The UV melting curves of the GUAA tetraloops (Table 7) were measured and the 

natural tetraloop was found to have a Tm that agreed with the literature value (avg. Tm = 

74.0 °C, entries 3.1-3.3. Lit. Tm = 74.4 °C).[285] In agreement with previous studies on 

other GNRA tetraloops the loss of 2"-hydroxyl at G4 was found to have little effect, 

giving a small reduction in Tm (avg. Tm = 72.6 °C, avg. ΔTm = −1.4 °C, entries 2.1-

2.3).[288] UV melting analysis of the acetylated-tetraloop showed reduction in Tm (avg. 

Tm = 69.0 °C) with an average ΔTm = −5.0 °C when compared to the natural-tetraloop. 

The reduction of Tm by the 2"-O-acetyl was greater than previous duplex studies. 

However, the relatively high Tm suggested that either the hairpin structure was still 

forming or that the unfolded hairpin was forming a ‘self-complimentary’ duplex (with 

two base pair mismatches). As hairpin formation is an intramolecular process the Tm is 

independent of concentration and UV melting analysis over a range of oligonucleotide 

concentrations gave the same Tm within error (entries 1.1-1.3, ±0.7 °C) confirming the 

acetylated-tetraloop was still forming a hairpin. For comparison the same concentration 

independence was also observed for the deoxy-tetraloop (entries 2.1-2.3) and natural-

tetraloop (entries 3.1-3.3). The calculated thermodynamic data indicated the natural 

tetraloop as the most stable tetraloop (ΔG°37 = −20.8 kJmol−1). The loss of hydrogen 

bonding in the 2"-deoxy-G4 tetraloop gave a small decrease in hairpin stability (ΔG°37 = 

−19.2 kJmol−1) with the greatest loss of stability observed in the acetylated-tetraloop 

(ΔG°37 = −15.5 kJmol−1). 
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Entry 
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Δ
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−38.6 

−17.7 
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The 2!-deoxy-G4 tetraloop results in reduced hydrogen bonding and a small reduction 

in hydration resulting in a small decrease in enthalpy (ΔΔH° = +8.1 kJmol−1) and a 

reduced entropic penalty (ΔΔS° = +21.1 Jmol−1K−1) that is attributed to the loss of 

hydrogen bonding around the G4 2!-hydroxyl. A larger destabilisation of the acetylated-

tetraloop is observed through increased reduction in the enthalpy term (ΔΔH° = 

+25.2 kJmol-1) and a reduced entropic penalty (ΔΔS° = +64.2 Jmol−1K−1). Acetylation 

of the 2!-hydroxyl at G4 has approximately three times the destabilising effect of loss of 

the 2-hydroxyl. Thus, in addition to loss of hydrogen bonding and hydration in the 

immediate vicinity of the 2!-hydroxyl it seemed that the acetyl group conferred 

increased destabilisation through some other effect. The increased destabilisation could 

be due to steric demand required to accommodate the acetyl group by a conformational 

shift in the loop. This may have led to changes in atom positions resulting in non-

optimal hydrogen bonding and/or π-stacking. Whatever the mechanism of 

destabilisation of the tetraloop by the acetyl group the effect is not clear without a 

greater understanding of the hydration of the tetraloop and structural changes, which 

could be solved by high-resolution X-ray crystallography.  

The UV melting curves of the three GUAA tetraloops was also examined when in the 

presence of a complementary oligonucleotide to assess whether the acetylated-tetraloop 

would be suitable as a template in non-enzymatic replication. Each GUAA tetraloop 

was melted in the presence of the sequence complement oligonucleotide in a 1:1 ratio 

over a 10-fold concentration range. Ideally these experiments are recommended to be 

carried out over a 100-fold concentration range but limited stock of acetylated-tetraloop 

excluded higher concentrations that could be used and sensitivity of the spectrometer 

prevented the use of lower concentrations.[262] Each of the GUAA tetraloops, except the 

acetylated-tetraloop at a total concentration of 20 µM, showed similar behaviour at total 

concentrations of 10 µM and 20 µM where the UV melting curves did not show two-

state behaviour (Figure 93a, entries 1.4, 2.4, 2.5, 3.4 and 3.5). The UV melting curves in 

general had a very short baseline of few degrees followed by a transition-like absorption 

increase, which continued over a very wide temperature range. In each case no clear 

upper baseline was observed. The clearest indicator of non-two-state was the non-

linearity of the data in the van’t Hoff plots (Figure 93b). The results from these 

experiments suggested that two successive or overlapping melting curves were being 
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observed; in other words the tetraloops were not solely forming duplexes with the 

complement at these concentrations. Consequently, the UV melting curves of the 

complement was also measured over a range of concentrations and was found to have a 

relatively high concentration independent Tm (avg. Tm = 67.8 °C) and comparable 

thermodynamic parameters (Figure 93c). This indicated that the complement was also 

forming a tetraloop structure that likely hindered duplex formation. The complement 

was later found to be a known UNAC tetraloop (N = any nucleobase).[289] 

 
Figure 93. See Table 7 for entry references. a) Non-two-state UV melting curves of the 
GUAA tetraloops with the complement. b) van’t Hoff plot for entry 3.4, the non-linear 
nature of the data indicated a non-two-state behaviour. c) UV melting curve of the 
tetraloop complement (Entry 4.3).   

The UV melting curve of the acetylated-tetraloop with the complement at 20 µM (entry 

1.5) showed a very broad transition with non-distinct baselines. The melting curve plot 

nonetheless appeared to be a two-state transition with van’t Hoff plot corroborating this 

observation. This observation suggested a weak duplex structure (Figure 94). The 

acetylated-tetraloop with the complement appeared to exhibit concentration-dependent 

Tm as at 100 µM an increase in Tm and ΔG° was observed (ΔTm = +10.1 °C, ΔΔG°37 = 

−16.2 kJmol−1, entries 1.5, 1.6). The deoxy- and natural-tetraloop with the complement 
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exhibited two-state behaviour at 100 µM; the reappearance of two-state melting curves 

at this higher concentration indicated duplex formation. Due to loss of the 2!-hydroxyl 

the deoxy-tetraloop formed a less stable duplex indicated by lower Tm and also less 

favourable ΔG° than the natural-tetraloop (entry 2.6 vs. 3.6).  

Interestingly, the Tm and thermodynamic parameters suggested that the acetylated-

tetraloop formed the most stable duplex and the deoxy-tetraloop being the weakest at 

100 µM total oligonucleotide concentration. Tetraloop destabilisation by the acetyl 

group at higher concentrations means that duplex structure is increasingly favoured over 

hairpin formation. Conversely, the stability of the hairpin in non-acetylated tetraloops 

competes more effectively with duplex formation (entries 1.6, 2.6 and 3.6). This result 

is consistent with the hypothesis that acetyl-RNA favours duplex structure and so 

suggests that it will enable more efficient ligation of oligonucleotides over native RNA.  

 
Figure 94. a) UV melting curves of GUAA tetraloops with their complementary strands 
at higher concentrations. b) van’t Hoff plot of entry 1.5, data is very close to linear 
indicating two-state behaviour and duplex formation.  

3.4. Future work and conclusions 

In order to ration use of the acetylated-tetraloop small volume cuvettes (50 µL) were 

used but this had the disadvantage of low UV absorption and at low concentration 

instrument noise became significant. Additionally, the high stability of the parent native 

RNA tetraloop meant that in most cases high temperatures were required to obtain a 

clear upper baseline from the UV melting curves. Both these issues resulted in 

significant evaporation of the buffer, thus affecting the accuracy of the melting curves 
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especially at low concentrations. This was remedied to some extent by using relatively 

large volumes of mineral oil to reduce evaporation.  

An alternative GNRA tetraloop should be synthesised where the native tetraloop also 

has a lower stability to ease melting curve measurements. A suggestion is the GAGA 

tetraloop of sequence 5’-GCCGAGAGGC-3’, which has a lower Tm and 

thermodynamic parameters (Tm = 68.8 °C, ΔH° = −148.5 kJmol−1, ΔS° = 

−434.3 Jmol−1K−1, ΔG°37 = −13.8 kJmol−1; 1.0 M NaCl, 10 mM sodium cacodylate and 

0.5 mM Na2EDTA, pH = 7).[285] In addition to synthesising the G4 acetylated GAGA 

tetraloop, a bis-acetylated GAGA tetraloop could also be made. An ideal position of 

secondary acetylation would be at the closing base pair. Considering a prebiotic 

synthesis from shorter oligomers indicates that the G8 position should be the second site 

of acetylation. The CG closing base pair of the hairpin loop confers a significant degree 

of stability to the tetraloop.[288, 290] Extra destabilisation at the CG closing base-pair of 

this doubly acetylated-GAGA tetraloop may mean that it is even more amenable to 

duplex formation and hence replication. 

3.4.1. Disruption of A-minor and tertiary structure 

Although the stability studies showed that acetyl-RNA favours duplex, the complement-

free concentration independent behaviour of the acetyl-GUAA tetraloop indicated that 

secondary structure could still form. If secondary structure is present, tertiary structure 

could presumably form that could hinder duplex formation. Therefore, experiments to 

show that tertiary interactions can be reduced must also be carried out.  

One strategy could be to use the tetraloop-receptor motif where interactions are 

predominately through A-minor like interactions. An example is the highly conserved 

‘11nt motif’ (R(11nt) receptor motif) that specifically recognises the GAAA tetraloop 

(Figure 95).[291] Blocking of the 2!-hydroxyls of either the tetraloop or receptor may 

weaken or completely prevent this long-range interaction. To supplement data obtained 

from UV melting curves additional techniques such as Differential Scanning 

Calorimetry (DSC)[292] or Fluorescence Resonance Energy Transfer (FRET) analysis[293] 

could be used to accurately calculate the thermodynamics of dissociation of the 

tetraloop-receptor motif and also support data from the UV melting curves.  
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Figure 95. Intramolecular interactions involved in the recognition of a GAAA tetraloop 
by the R(11nt) receptor motif. Reprinted from reference [291] with permission from the 
copyright holder, Elsevier Limited.  

The kink-turn (K-turn) secondary structure is another important structural motif that is 

important for RNA function such as translation and could be an ideal candidate for 

tertiary structure reduction by acetylation (Figure 96a).[294] A canonical K-turn is 

exemplified by a 3nt bulge (L1-L3) that induces a kink in RNA of approximately 60°. 

The bulge is flanked on its 5!-side by regular base pairing and on the 3!-side by trans-

Hoogsteen sugar edge AG base pairs (Figure 96b). Interestingly, the importance of 2!-

hydroxyls and hydrogen bonding for the stability of the K-turn has been investigated by 

Lilley et al.. Using a 25nt duplex with a K-turn at the centre, the folding of the RNA 

was monitored with FRET analysis. They found that removal of the 2!-hydroxyl at L1 

resulted in complete ablation of folding of the K-turn (Figure 96c). Acetylation of this 

2!-hydroxyl could potentially have a similar effect by blocking the hydrogen bonding 

ability.[295] The oligonucleotides in this case could be easily made as the length of the 

oligomers are not much longer than the 17nt acetyl-RNA previously synthesised. 

However, the fluorophore chemistry would require careful consideration to enable a 

compatibility with synthesis and deprotection.   
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Figure 96. a) Nomenclature for the K-turn suggested by Lilley et al., the K-turn is 
represented using a colouring system based on the original diagram. The large red 
arrow indicates location of the important hydrogen bond. b) Diagram of the trans-
Hoogsteen sugar edge AG base pair that is generally found between 1n-1b and 2b-2n. 
c) Representation of the important hydrogen bond between L1-1n. Diagrams adapted 
from original references.[295, 296] 

3.4.2. Summary 

In summary, UV melting studies have shown that internucleotide acetyl groups in RNA 

reduce the Tm consistently by approximately 3.1 °C per acetyl group in the context of 

duplex structure. Subsequent calculation of the thermodynamic parameters shows that 

the duplex stability of acetyl-RNA is also reduced. The minor groove of native RNA 

duplexes contain a highly ordered network of water molecules that bridge the two 

stands. The reduction in Tm and thermodynamic stability is attributed to blocking of 2!-

hydroxyl hydrogen bonding leading to reduced hydration of the minor groove. Thus, the 

number of water molecules and hence hydrogen bonds are reduced and the two strands 

are less effectively bridged. The effect of acetylation was also investigated on the 

stability of a tetraloop hairpin. Acetylation of the G4 2!-hydroxyl, which is known to 

form hydrogen bonds within the loop, showed approximately 5 °C decrease in Tm over 

the natural tetraloop. Encouragingly, the acetylated-tetraloop was found to form duplex 

structure with its complement at lower concentrations than the equivalent deoxy- or 

natural-tetraloops. Additionally, at higher concentrations the acetylated-tetraloop was 

found to form more stable duplex structure. This supports the hypothesis that acetyl-
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RNA favours duplex structure over other secondary structures such as hairpin loops. A 

geochemical scenario can be suggested where the concentrations of a pool(s) of acetyl-

RNA could be in constant flux by action of environmental evaporation and 

precipitation; with these changing conditions acetyl-RNA should be able to form duplex 

structure over a much wider concentration range than native RNA. This could have 

provided an environmental pressure for the formation of a pre-RNA stage where 

“populations” of acetyl-RNA replicated. Subsequent slow removal of the acetyl groups 

by hydrolysis or ammonolysis would allow catalytic RNA to emerge over time. 
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4. Potentially prebiotic aminoacylation of RNA 

4.1. Background 

Aminoacylation is an important process for the correct translation of the genetic code 

and the process catalysed by aminoacyl-tRNA synthetases (ARSs) are considered the 

most important step.[151, 152] However, ARSs are thought to have replaced an earlier 

RNA-based system.[297] In current biology amino acids are first activated by reaction 

with adenosine-5!-triphosphate (ATP) within the ARS active site to give an aminoacyl-

adenylate (aa-AMP) and pyrophosphate (PPi). The aa-AMP is now activated to 

nucleophilic attack by the 2!/3!-hydroxyl of the 3!-end of the corresponding tRNA with 

the hydrolysis of inorganic pyrophosphate providing the driving force (Figure 97a).[19] 

However, ATP activation of amino acids is thought to be prebiotically implausible due 

to thermodynamic reasons, that is the free energy contained with aa-AMP is 

~37 kJmol−1 higher than that available in ATP. Thus, ATP activation of amino acids is 

dependent on the existence of the ARS active site to allow favourable arrangement and 

stabilisation of the tetrahedral intermediate to provide a favourable equilibrium to the 

formation of aa-AMP. It has been proposed that amino acid activation was preceded by 

a different mechanism that was replaced once the potential energy in ATP could be 

exploited.[297] A notable alternative activation of amino acids is via 

N-carboxyanhydrides (NCA) that can be abiotically formed by reaction with the 

volcanic gas, carbonyl sulphide.[298, 299] Through the intermediary of NCAs it has been 

shown that aa-AMPs can be formed in yields of ~10% for several amino acids (Figure 

97b).[300] 
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Figure 97. Formation of aminoacyl-adenylates (aa-AMP) a) in current biology by ARSs 
and b) reaction of adenosine-5!-phosphate A5!P with NCA.  

The reaction of valyl-NCA 129 with nucleoside-2!/3!-phosphates N3!P (N = A/C) has 

also been investigated and found to give the corresponding 2!/3!-aminoacyl phosphates 

N3!P-2!val.[301] Aminoacylation to form N3!P-2!val is initiated upon transient 

formation of the 2!/3!-valyl phosphate, which undergoes a rapid intramolecular 

aminoacyl transfer to the 2!/3!-hydroxyl via a seven-membered transition state. 

Interestingly, aminoacylation of the nucleoside-3!-phosphates was more efficient than 

the phosphate regioisomer nucleoside-2!-phosphates. However, maximal 

aminoacylation yields with the nucleoside-3!-phosphates were only found to be 13.8% 

(Figure 98).  

 

Figure 98. Aminoacylation of nucleoside-2!/3!-phosphates by valyl-NCA 129. 

The 2!-aminoacyl-3!-phosphates such as A3!P-2!val and C3!P-2!val are important 

structures invoked in Sutherland’s theory of a linked prebiotic origin of RNA and coded 
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peptides.[138, 175] The aminoacylation of nucleoside-3!-phosphates is significant as it 

suggests that forming trimers such as 60 is possible. However, the NCA chemistry did 

not indicate any aminoacylations of oligonucleotides. The structure of 64 is also closely 

related to 2!-O-acetylated oligomers obtained through the acetylation-ligation chemistry 

(see Chapter 1.6.3).[146] 

 

Figure 99. An amino acyl trimer candidate 60 that is related to recent studies to 
investigate an acetyl-mediated oligoribonulceotide ligation. X = phosphate activating 
chemistry.[138] 

The acetylation-ligation chemistry showed that prebiotically available thioacetate 43 

can be activated by various electrophiles to chemoselectively acetylate the 3!-terminal 

2!-OH group of 3!-phosphate oligonucleotides. This allows the subsequent activation of 

the phosphate and then ligation to produce the native 3!,5!-linked acetyl-RNA. For 

example, the activation of sodium thioacetate 43 with the electrophile cyanoacetylene 7 

and subsequent acetylation gave the highest yields where the nucleobase was A, 

resulting in 2!-O-acetyladenosine-3!-phosphate A3!P-2!OAc in 52% yield (Figure 100, 

see Chapter 1.6.3 for further discussion). 

 

Figure 100. Chemoselective acetylation of adenosine-3!-phosphate A3!P by thioacetic 
acid 43 activated with the electrophile cyanoacetylene 7. 
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It was decided to apply this chemistry to the aminoacylation of nucleoside-3!-

phosphates N3!P using amino thioacids 130 and activation by various electrophiles 

(Figure 101) in the hope that an equivalent chemoselective aminoacylation could be 

found. Additionally, the chemistry held the potential to enable aminoacylation of 

oligonucleotides that was not demonstrated by NCA aminoacylation chemistries.[301] 

 

Figure 101. Aminoacylation of nucleoside-3-phosphates N3!P using amino thioacids 
130 and electrophilic activators. 

4.1.1. The Iron-Sulphur World and the prebiotic plausibility of amino 

thioacids 

In addition to thioacetate 43, the Iron-Sulphur World, could provide possible 

chemistries to the prebiotic formation of amino thioacids 130.[44] Primitive deep-sea 

hydrothermal vents are thought to have provided materials such as CO, H2S, Ni, Fe, Mn 

and Co. Under simulated hydrothermal vent conditions it has been shown that NiS 

catalysis utilising CO and H2S can form thioacetic acid 43 directly, in addition to other 

thiol derivatives and carboxylic acids.[147, 302] It is conceivable that similar chemistry 

could have also formed amino thioacids 130 but this has yet to be demonstrated. 

Despite this, amino thioacids and their derivatives such as amino thioesters are 

considered prebiotically plausible from the context of peptide formation.[149, 303, 304] 

Wieland showed that amino thioacids 130 in the presence of carbonate buffers and 

hence carbon dioxide (abundant in the primitive atmosphere) can form amino acid 

N-carboxyanhydrides aa-NCA that then undergo polymerisation with free amino acids 

or peptides (Figure 102).[304-307] Similarly, Wächerhäuser has shown that amino acids 

can be activated as NCAs with CO and H2S (or CH3SH) on the surfaces of (Ni,Fe)S 

minerals.[308] However, to obtain yields of up to 17% of dipeptides required relatively 

high pH values (pH = 8-9) and only traces of tripeptides were observed. The prebiotic 

plausibility is questionable as high pH values were required and low yields of peptides 

were obtained. 
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Figure 102.  Polymerisation of the amino thioacids via the NCA cyclised by carbonate. 

A theory related to the Iron-Sulphur World is De Duve’s ‘Thioester World’ whereby the 

formation of a thioester from a carboxylic acid and thiol could be catalysed by the iron 

complexes invoked by Wächerhäuser.[309] The high-energy thioester bonds (ΔG°! = 

−31.5 kJ mol−1) were proposed to have represented an intermediate stage that could 

have provided the potential energy in a primitive metabolism in place of adenosine-5!-

triphosphate (ATP, ΔG°! = −32.2 kJ mol−1).[310-312] This theory is supported by the fact 

that thioesters in the form of acetyl-coenzyme A are involved in biological processes 

such as fatty acid synthesis and the citric acid cycle.[313] The prebiotic considerations of 

amino thioesters has led Weber to develop a synthesis for amino thioesters from 

glycolaldehyde 22, which is an important feedstock molecule used in the prebiotic 

synthesis of the activated pyrimidine nucleosides.[94, 314] The key step involves the 

condensation of NH3 and a thiol with the α-ketoaldehyde 131 to give the imine-

hemithioacetal 132, a subsequent redox rearrangement is thought to give the amino 

thioester 133. As 133 is highly reactive it is not observed and subsequent hydrolysis or 

reaction with another amino acid gives amino acids or peptides respectively (Figure 

103). Yields of amino acids gained by this synthesis are less than 0.5% indicating that 

formation of amino thioester is not high. Despite this bleak outlook the results of the 

acetylation by activated thioacetate was encouraging for the activation of amino 

thioacids 130 by similar electrophilic activators. 

H3N

R
S

O

HCO3+
± H2O

HN

R
SH

OO
O

O
HN

R

O

O
SH

O
HN

R

O

− SH-

O

130

Peptides or
free amino acids

H2N

N
H

R H
N

O

R
X

O
X = S, O or peptide

X

O

R
O

O

− H+

− CO2

H2N

R H
N

O
X

O

R
+ H+

aa-NCA



 

 139 

 

Figure 103. Prebiotic amino thioester synthesis. 

4.2. Organic synthesis of amino thioacids 

In Sutherland’s theory of a linked origin of RNA and coded peptides valine 54 is 

identified as part of the early genetic code. To also allow comparison to previous 

aminoacylation studies[301] using valyl-NCA 129, it was therefore decided to synthesise 

the amino thioacid, thiovaline 134.  

Commercially available Boc-Val-OH 135 was dissolved in anhydrous THF and the 

carboxylic acid was activated with isobutyl chloroformate (IBCF) at 0 °C. The 

formation of the intermediate carboxylic-carbonic anhydride renders the carboxylic 

carbonyl susceptible to nucleophilic attack. To this was added Li2S dissolved in 

anhydrous DMF that resulted in a green solution, and this reaction mixture stirred for 

3 hours. Water was added to the reaction mixture, which was then adjusted to pH = 3. 

The Boc-protected thiovaline 136 was extracted into organic solvent. Evaporation 

afforded 136 cleanly, which was taken to the next step without further purification. 

Deprotection of the Boc-group was conducted by dissolving 136 in freshly distilled 

trifluoroacetic acid. Upon removal of excess TFA, thiovaline 134 was triturated with 

anhydrous diethyl ether, redissolved in water and lyophilised to removed traces of 

volatile organics (Figure 104). Thiovaline 134 was isolated as a pure solid without the 

need for any further purification. 
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Figure 104. Synthesis of thiovaline 134. 

4.3. Prebiotically plausible aminoacylation of nucleoside 

phosphates with amino thioacids 

4.3.1. Aminoacylation with thiovaline 134 and cyanoacetylene 7 

Cyanoacetylene 7 is an important intermediate in the assembly of the pyrimidine 

ribonucleotides and has been demonstrated as a potent electrophile for the 

chemoselective acetylation of ribonucleotides with 43.[94] Native amino acids exist as 

zwitterions at physiological pH and as 43 (pKa = 3.33) exists as an anion at pH = 6.5, it 

was expected that thiovaline 134 also existed as a zwitterion. Thus, reaction of 134 with 

7 was expected to form a thioester 137 that would then react with the phosphate of a 

nucleoside-3!-phosphate before undergoing a trans-aminoacylation to the 2!-hydroxyl 

via a 7-membered transition state (Figure 105). 

 

Figure 105. A potential prebiotic aminoacylation of a nucleoside-3!-phosphate N3!P by 
134 activated with 7 via the intermediate 138 analogous to the aminaocylation by 
NCAs.[301] 

Thus, cyanoacetylene 7 (200 mM) was added to a mixture of thiovaline 134 (100 mM) 

and adenosine-3!-phosphate A3!P (100 mM) at pH = 6.5 in D2O. Upon addition of 7 a 
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adenosine-2!-valyl-3!-phosphate A3!P-2!val in 17% yield with 6% formation of the 

adenosine-2!,3!-cyclic phosphate A>P after 1 hour (Figure 106a). A downfield shifted 

H-C(1!) coupled to a highly downfield shifted H-C(2!) (approximately 1 ppm) was 

observed and is characteristic of the aminoacylation at the 2!-OH (Figure 106c). The 

yield of A3!P-2!val was only a slight improvement over aminoacylation with the NCA 

chemistry where aminoacylation of A3!P was observed up to 14%.[301] In comparison, a 

control reaction with 43 (100 mM) showed 60% formation of only adenosine-2!-OAc-

3!-phoshpate A3!P-2!OAc and no A>P was observed (within the detection limit of 

NMR <1%). The control reaction ruled out cyanoacetylene 7 as a limiting factor, which 

is a gas and easily lost through diffusion suggesting other limiting factors (Figure 106b).  

 

Figure 106. a) Aminoacylation reaction of A3!P (100 mM) with 134 (100 mM) and 7 
(200 mM) in D2O at pD = 6.5. b) Control acetylation reaction with 43 (100 mM) in 
place of 134. c) 1H-NMR (400 MHz, D2O) and 31P-NMR (162 MHz, D2O) spectrum of 
the aminoacylation reaction described in a).  
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spectrometry revealed the solid to be the β,β-bicyanovinyl-thioether 139 (Figure 107). 

The cis-geometry was assigned to the double bond according to the coupling constants 

between H-C(2) and H-C(3) (J = 10.4 Hz).[96, 315]  Although the valyl thioester 137 was 

not observed here it was transiently observed by NMR analysis during spiking 

experiments (see Figure 110). 

 

Figure 107. Formation of the solid precipitate 139 during the aminoacylation reaction 
with thiovaline 134 and cyanoacetylene 7. 

The low yield of A3!P-2!val was initially suspected to be as a consequence of the 

hydrolytic instability of the 2!-valyl ester due to its proximity to the 3!-phosphate. The 

mechanism for 2!-valyl ester hydrolysis was thought to occur in the reverse fashion to 

the aminoacylation (Figure 105), whereby attack of the 3!-phosphate dianion at the 

2!-valyl carbonyl leads to intramolecular transfer to phosphate. Hydrolysis of the 

3!-phosphate-valyl mixed anhydride 138 gives the apparent hydrolysis of the 2!-valyl 

group.  At pH = 6.5 the phosphate of A3!P is mostly as the reactive dibasic form (pKa = 

6.16[150], 70% ionised). It was thought that protonation of the phosphate to the less 

nucleophilic monobasic form would reduce hydrolysis of A3!P-2!val. Thus, the 

aminoacylation reaction was repeated at pH = 5.0, 6.0, and 6.5. 
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Figure 108. Time-course of the aminoacylation of A3!P (100 mM) with 134 (100 mM) 
and 9 (200 mM) in D2O at three acidic pHs. 

The initial yields A3!P-2!val were found to be comparable to each other and previous 

results with an average yield of 12% (Figure 108). The similarity in yields at the studied 

pHs is likely due to the rapid increase in pH on addition of 7, which leads to a greater 

population of the dibasic phosphate until the pH can be controlled by addition of acid. 

The time course study revealed no further increase in the A3!P-2!val species suggesting 

that the aminoacylation reaction occurred immediately on addition of 7. The clearest 

consequence of decreasing the pH was the reduced hydrolysis rate of the 2!-valyl group. 

The increased protonation of the phosphate to the less nucleophilic monobasic form 

reduces intramolecular attack of the 3!-phosphate at the carbonyl carbon of the 2!-valyl. 

At pH = 6.5 the A3!P-2!val had been completely hydrolysed back to A3!P after 24 

hours, in contrast the adenosine-2!-OAc-3!-phosphate A3!P-2!OAc that was still present 

in greater than 50% yield.[146] This relative hydrolytic instability is attributed to the 

electron-withdrawing effect of the α-amine group that renders the carbonyl carbon more 

δ-positive and so more susceptible to nucleophilic attack.  

Formation of A>P was also observed from the onset of the reaction (3-4%), in 

approximately equal amounts at each pH. Cyclisation of cytidine-3!-phosphate C3!P 

with cyanoacetylene 7 to cytidine-2!/3!-cyclic phosphate C>P (44% yield after 2 hours) 

has been previously studied and it is suggested that cyclisation proceeds via the 

phosphate activated adduct 140 (Figure 109a).[138] In the case of the aminoacylation 

reactions there also exists a second alternative cyclisation pathway. This pathway could 

proceed via the aminoacyl-mixed anhydride adduct 141 whereby the 2!-OH could attack 
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phosphate instead of carbon to give A>P (Figure 109b). The aminoacyl-mixed 

anhydride adduct 141 could be formed from either reaction of A3!P with 137 (“on-

reaction”) or by hydrolysis of the 2!-valyl moiety (“off-reaction”). Cyclisation via this 

later pathway does not seem to occur as A>P is observed from the beginning of the 

reaction when the concentration of the 7 is highest. Additionally, formation of A>P 

could increase as the population of A3!P-2!val decreased, if hydrolysis of the 2!-valyl 

proceeded via the aminoacyl-mixed anhydride 141, but no increase over time of A>P 

was observed.  

 

Figure 109. Cyclisation of nucleoside-3!-phosphates: a) cyclisation of C3!P by 
activation of the phosphate by 7, b) alternative cyclisation pathway via the aminoacyl-
mixed anhydride 141. 

Although the aminoacylation yields were comparable to previous work, they were lower 

than the acetylation reaction by activation of 43 with 7; and attention thus turned to the 

fates of thiovaline 134. However, due to overlap of the various valyl derivatives in the 
1H-NMR spectrum it was difficult to obtain accurate yields (Figure 106c). The β-proton 

of the valyl species fell into a less complicated chemical shift region (1.9-2.6 ppm) so 

spiking experiments were conducted to identify some of the valyl products (Figure 
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aminoacylation reaction was initiated (Figure 110a). A multiplet at 2.37 ppm was 

observed that after incubation of the reaction mixture for 1 hour was no longer 

observed, and thus was assigned to the amino thioester 137 due to its transient nature 

(Figure 110b). The hydrolysis product valine 54 was also observed and so the remaining 

upfield multiplet at 2.16 ppm was assigned to A3!P-2!val (Figure 110c). In a separate 

experiment (Figure 110d) it was also noticed that traces of a further valyl derivative was 

present and it was thought to be the divaline peptide 142, however due to overlapping 

peaks assignment is tentative (Figure 110e).  

 

Figure 110. Spiking experiments to identify the valyl derivatives formed during the 
aminoacylation reactions. a) Reaction 15 minutes after addition of cyanoacetylene 7. b) 
Reaction 1 hour after addition of cyanoacetylene 7. c) Spiking the reaction with 
commercially available valine 54. d) Second reaction where divaline was thought to 
have be formed. e) Spiking with commercially available divaline 142.  (Note: intensity 
of spectrum d) is twice that of e) for clarity of the divaline peptide product 142). 

The spiking experiments show that valine 54 is formed immediately after activation of 

thiovaline 134, suggesting that significant amounts of 137 were consumed by hydrolysis 

rather than aminoacylating A3!P. This suggested that the intermediate is highly reactive 

such that the high effective concentration of water (~55 M) causes preferential 

hydrolysis and so limits the yield of A3!P-2!val.   

A mixed acylation competition reaction between 134 and 43 was next conducted to 

investigate if the acyl thioester is a more efficient acylating agent than the amino 

thioester 137. Thus, cyanoacetylene 7 (400 mM) was added to a mixture of thiovaline 

134 (100 mM), thioacetate 43 (100 mM) and adenosine-3!-phosphate A3!P (100 mM) at 

pH 6.5 in D2O (Table 8). However, no selectivity was observed with the maximal 4% 

yield each of A3!P-2!val and A3!P-2!OAc (Table 8, entry 1). The yields of A3!P-2!val 
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and A3!P-2!OAc in the separate control reactions were as expected and were 21% and 

56% respectively (Table 8, entries 2 and 3).  

     Products and residual starting 
materials (%) 

Entry Nucleotide 
(100 µM) 

Val-SH 
(µM) 

NaSAc 
(µM) 

DCCCN 
(µM) 

A3′P A3!P-
2!val 

A3!P-
2!OAc 

A>P 

1 A3′P 100 100 400 87 4 4 < 1% 
2 A3′P 100 - 200 75 21 - 5 
3 A3′P - 100 200 33 - 56 n.d. 

Table 8. Competition acylation reaction between thiovaline 134 and thioacetate 43 each 
entry was analysed by NMR spectroscopy after approximately 30 minutes. Entries 2 and 
3 are control reaction for comparison. 

The poor acylation in the mixed reaction is likely due to the higher concentration of the 

nucleophilic acylating agents 134 and 43. Such that the activated intermediates acetyl 

thioester and 140 preferentially reacted with unreacted 134 and 43. On another note, the 

yield of A3!P-2!val in the control reaction was the highest observed. The variation in 

yields obtained so far was attributed to inconsistency in concentration of the 

cyanoacetylene 7 solutions. The inconsistency of 7 was because it was difficult to 

obtain accurate mass measurements of the condensed cyanoacetylene 7 gas before 

dissolution and the loss of the gas during thawing of the stored solution. 

4.3.2. Aminoacylation with thiovaline 134 and alternative electrophilic 

activators 

Due to the variable yields of aminoacylation by activation with cyanoacetylene 7, the 

search began for an alternative electrophilic activator in the hopes of finding an 

activator that would form a valyl thioester that would be more easily handled, less 

susceptible to hydrolysis and one that would lead to high aminoacylation yields.  

 
Figure 111. Selected alternative electrophiles. 
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used in the prebiotically plausible synthesis of the activated pyrimidine nucleotides and 

key to the formation of 2-aminooxazole 21.[94] Diaminomaleonitrile 143 has been found 

to an intermediate in the formation of adenine 10.[316] Acrylonitrile 127 as the alkene 

derivative of 9 was hoped to lead to a less reactive amino thioester, so lead to less 

hydrolysis and hopefully preferential reaction with the phosphate. Methyl isonitrile 46 

and N-cyanoimidazole 47 have been used to activate thioacetate 43.[146] 

When these electrophiles (200 mM) were incubated with thiovaline 134 (100 mM) 

overnight, 12 and 143 showed no reaction with 134, in particular 143 did not react due 

to its insolubility. The reaction with electrophile 127 on the other hand only showed 

15% conversion of 134 to two unassigned derivatives after 15 hours. However, this was 

decided to be too slow to effect any aminoacylation and so other electrophiles were 

investigated. 

The electrophiles 46 and 47 have been shown to also bring about the selective 

acetylation of A3!P in comparable yields to activation with cyanoacetylene 7 and so 

their ability to furnish A3!P-2!val was investigated.[146] Furthermore, isonitriles have 

been used for the simultaneous cyclisation of nucleoside-2!/3!-phosphates and the 

formation of amino acid amides.[142] Aminoacylation of A3!P with 134 by activation 

with methyl isonitrile 46 was attempted. However, observation of the reaction over 

several days revealed no aminoacylation. Attention turned to N-cyanoimidazole 47 that 

is generally used as efficient water-soluble reagent for the formation of phosphodiester 

bonds especially for the ligation of DNA.[317-320] Thus, N-cyanoimidazole 47 (200 mM) 

was added to a mixture of thiovaline 134 (200 mM) and adenosine-3!-phosphate A3!P 

(100 mM) at pH = 6.5 in D2O. After 4 hours a maximal 12% yield of A3!P-2!val was 

observed with formation of 31% of A>P. The higher yield of the cyclic phosphate is 

expected considering the more common use of 47. However, the yield of A3!P-2!val 

did not exceed those obtained by activation of 134 by 7 (Figure 112). 
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Figure 112. Aminoacylation reaction of A3!P (100 mM) with 134 (200 mM) and 47 
(200 mM) in D2O at pH = 6.4. 

Finally, formaldehyde 2 was investigated for the activation of thiovaline 137. Initially, 2 

(200 mM) was added to a solution of 134 (100 mM) at pH = 6.5 in D2O. This reaction 

resulted in precipitation of a white solid and 1H NMR analysis of the resultant reaction 

mixture revealed mainly starting material and small amount of a single product. The 

reaction mixture was lyophilised and the residue redissolved in DMSO-d6. 1H NMR 

analysis showed the formation of a single product in approximately 91% yield that 

corresponded to the formaldehyde-induced dimer 144. This was proposed to have been 

formed by the cyclisation of thiovaline 134 with 2 to form the thiazolidin-5-one 145, 

which then undergoes dimerization with another molecule of 145 through a bridging 

methylene derived from a third formaldehyde to give 144 (Figure 113a). The structure 

of 144 was confirmed by X-ray crystallography (Figure 113b). 
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Figure 113. a) Formation of the formaldehyde-induced dimer 144. b) X-ray crystal 
structure of 144. 

With the identity of the formaldehyde-induced dimer 144 deduced, it was decided to 

explore whether 144 could possibly be activated and act as an aminoacylating agent. It 

was foreseen that the insolubility of the thiovaline 134 derived dimer could hinder 

aminoacylation. Thus, repeating the aminoacylation reaction as previously described 

and using formaldehyde 2 as the electrophile resulted as expected in the precipitation of 

144 with no aminoacylation observed. 

To rule out solubility as a limiting factor it was decided to form a water-soluble 

formaldehyde-induced dimer by altering the amino acid side chain. Glutamic acid was 

chosen and so thioglutamic acid 146 was synthesised utilising the same procedures for 

the synthesis of thiovaline 134. Boc-L-glutamic acid 5-tert-butyl ester 147 was treated 

with IBCF to activate the carboxylic acid. Li2S was then added to afford the protected-

thioglutamic acid 148 and then treated with freshly distilled TFA. Thioglutamic acid 

146 was again triturated with diethyl ether and stored as a 0.5 M solution at pH = 6.5 in 

either D2O or H2O (Figure 114).[306]  
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Figure 114. Synthesis of thioglutamic acid 146. 

 

Figure 115. a) Envisioned homo-formaldehyde-induced dimerisation reaction. b) 
Envisioned hetero-formaldehyde-induced dimerisation reaction. 

With thioglutamic acid 146 now to hand the reaction with 2 was investigated where it 

was hoped thioglutamic acid formaldehyde-induced dimers 149 and 150 could be 

formed (Figure 115). Formaldehyde 2 (600 mM) was added to a solution of 

thioglutamic acid 146 (100 mM) at pH = 6.5 in H2O and the mixture was allowed to stir 

for 3 hours upon which the solution was lyophilised and the residue redissolved in D2O 

for 1H-NMR analysis. No peaks were observed that would correspond to a 

formaldehyde-induced Glu dimer 149. However, it was found that the main by-product 

was glutamate 151 that was confirmed by mass spectrometry (Figure 116a).[321, 322] A 

mixed dimerization reaction (Figure 115b) was then conducted in which formaldehyde 

2 (1200 mM) was added to a solution of thioglutamic acid 146 (100 mM) and thiovaline 

134 (100 mM) at pH = 6.5 in H2O, and the mixture was allowed to stir for 3 hours. 

During the reaction a white solid precipitated that was removed by filtration and found 

to be 144 as a single product. The supernatant was lyophilised, redissolved in D2O and 

analysed by 1H-NMR spectroscopy. This supernatant gave a mixture of predominantly 

glutamate 151 and valine 54 (Figure 116b). The formation of the natural amino acids 

indicated possible activation of the amino acids and their subsequent hydrolysis 

suggested aminoacylation could have been possible. A reaction with A3!P (100 mM), 
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146 (100 mM) and 2 (300 mM) in D2O at pH = 6.5 was conducted but no 

aminoacylation was observed (Figure 116c). 

 

Figure 116. Reactions to form water-soluble formaldehyde-induced dimers. 

The results above indicated that of the alternative activating electrophiles chosen, 

N-cyanoimidazole 47 was the most effective. However, the aminoacylation yield was 

not as high as those obtained by activation using 7. Additionally, the greater cyclisation 

of the phosphate whilst using 47 suggests it is better suited as a phosphate activator. 

Utilising formaldehyde 2 to activate the amino thioacids was unsuccessful with respect 

to aminoacylation. In the case of 134 formation of formaldehyde-induced dimer 144 

was very efficient but a similar water-soluble dimer compound could not be formed 

using thioglutamic acid 146. Although, the aminoacylation reactions were not 

successful, the facile formation of 5-thiazolidinones maybe worthy of further study. 

Thiazolidinones are important structures and these compounds have been shown to have 

bactericidal, pesticidal, fungicidal, insecticidal properties amongst other biological 

activities.[323] The synthesis of 2- and 4-thiazolidinones is diverse and well established 

but reports of 5-thiazolidinones are less well known.[323, 324] The cyclisation of amino 

thioacids by formaldehyde 2 may represent a possible synthetic method to new 

5-thiazolidinones, where variation of the aldehyde and amino acid side chain could 

result in new biologically active compounds (Figure 117). 
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Figure 117. Potentially new synthetic route to 5-thiazolidinones. 

4.3.3. Aminoacylation of oligonucleotides with thiovaline and 

cyanoacetylene 

As the search for an alternative electrophile was unsuccessful it was decided to attempt 

aminoacylation of oligonucleotides with thiovaline 134 by activation with 

cyanoacetylene 7. Thus, 7 (100 mM) was added to a mixture of thiovaline 134 (50 mM) 

and CC3!P (50 mM) at pH = 6.5 in D2O. The reaction gave a total 8% of the 

aminoacylated species CC3!P-2!val. The aminoacylation reaction appears to be highly 

selective for the 3!-terminal 2!-hydroxyl as there does not appear to be any other 

aminoacyl species. As aminoacylation is low, over aminoacylation is unlikely (Figure 

118). The yield obtained in this reaction is comparable to the NCA aminoacylation of 

cytidine-3!-phosphate C3!P.[137] 
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Figure 118. Aminoacylation reaction of CC3!P (50 mM) with 134 (50 mM) and 7 
(100 mM) in D2O at pH = 6.5. 

Next, the aminoacylation of a trimer AGA3!P was examined under the same reaction 

conditions as above. The 1H-NMR spectroscopy revealed approximately 10% formation 

of the aminoacylated trimer AGA3!P-2!val. The yield is lower than A3!P monomer 

aminoacylation reactions but may be due to the lower concentration that the reaction 

was conducted (Figure 119). A trace degree of aminoacylation at the 2!-hydroxyls of the 

internucleotide linkages were observed in the 31P NMR spectrum but these peaks were 

not clearly identified. Positively, this reaction showed that formation 2!-aminoacyl 

trimers is possible and lends support to a linked origin of RNA and coded peptides.  

4.64.85.05.25.4 4.45.86.06.2 5.6
1H (ppm)

4.26.4 4.0 3.8 3.4 3.23.6

A
H-C(1'C2)

HOD

A + B
H-C(1'C1)

B
H-C(1'C2)

B
H-C(2'C2)

A = CC3'P
B = CC3'P-2'val
C = CC>P

A + B
H-C(5)

19.019.520.020.521.0 -1.00.01.02.0 -2.0
31P decoupled (ppm)

C
C2

A
C2

A + B + C
C1

B
C2

b

a

CC3 P (1 eq.) CC3 P-2 val (8%) CC>P (<2%)

CC3 P (90%)

134  (1 eq.), 7 (2 eq.)

D2O, pH 6.5, 1h

O

O OH

O

P
O O

P
O

OO

O

OH

HO

O

N

N N

N

O

O

NH2

NH2

O

O O

O

P
O O

P
O

OO

O

OH

HO

O

N N

O

NH2

C
O

NH2

O
O

P
O

OO

O

OH

HO
N

N N

N

O

O

NH2

NH2

O
P

O

O O

+



 

 154 

 

Figure 119. Aminoacylation reaction of AGA3!P (50 mM) with 134 (50 mM) and 7 
(100 mM) in D2O at pH = 6.5. 

In conclusion, these results show that selective 2!-OH aminoacylation of a 3!-phosphate 

RNA oligonucleotide is possible. However, obtaining yields of these aminoacylated 

products on par with acetylation reactions, using cyanoacetylene 7 activation of amino 

thioacids, appears to be difficult. The limiting factors were the hydrolytic instability of 

both the amino thioester intermediate and the resulting aminoacyl species. Positively, 

the aminoacylation of the trimer gave support to Sutherland’s theory of a linked 

prebiotic origin of RNA and coded peptides as it was demonstrated that formation of a 

key intermediate was possible.[138] On the other hand, the results suggest that ribozyme 

or enzyme-free aminoacylation by amino thioesters of a primitive tRNA may be 

intrinsically difficult due the high effective concentration of water. As in currently 
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biology, the chemistry may have required catalysis by an RNA ribozyme before 

proteinogenic enzymes could be formed and evolved.[325]  
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5. Conclusions 

An orthogonal protecting group strategy for the solid-phase synthesis of 2!/3!-O-acetyl 

RNA oligonucleotides has been developed. Key to the synthesis of 2!- or 3!-acetylated 

phosphoramidites was the use of an orthoacetate that, through the intermediary of a 

2!,3!-cyclic orthoester, gives overall selective 2!- or 3!-acetylation. The ease of 2!/3!-

migration of the acetyl group limited the synthesis of 2!-OAc phosphoramidites and 

their yields were maximised by use of a more acidic activator during the final 

phosphitylation step. Isolation of partially deprotected acetyl-RNA oligonucleotides 

from the solid-phase proved to be a major hurdle. After extensive investigation the 

problem was found to be due to solubility of the TBDMS protected oligonucleotides 

and utilising DMSO during the irradiation enabled isolation of the cleaved 

oligonucleotides. Overall, the synthetic strategy has enabled the synthesis of partially 

acetylated-RNA oligonucleotides with high purity and minimal loss of the acetyl 

groups. The synthetic strategy and methods that have been developed enabled the 

successful synthesis of partially 2!- or 3!-O-acetylated RNA oligonucleotides. However, 

if 2!- or 3!-O-acetyl-RNA were to be utilised for example, in antisense technology, 

several issues would first need to be addressed. Firstly, a method for 2!- or 3!-selective 

acetylation should be found. A selective route to 2! or 3!-O-TBDMS Gnpe
ceoc 

phosphoramidites should be sought or the 2!/3!-protecting group changed to enable 

greater chromatographic separation. These suggestions would completely eliminate the 

need for NP-HPLC separations for the purifications of all the precursors and 

phosphoramidites. An investigation into the stability and relative coupling rates of the 

phosphoramidites should be conducted and so that the feasibility of synthesising longer 

oligonucleotides can be assessed. 

The Tm values and thermodynamic parameters of acetyl-RNA have revealed that 2!-O-

acetyl groups destabilise the secondary structures of duplex and hairpins. The 3.1 °C 

reduction in Tm was found to be very consistent for each additional acetyl group within 

a duplex structure. Reduced stability was suggested to be an advantage for a primitive 

replication of acetyl-RNA by allowing the possibility for much longer 

oligoribonucleotides to be replicated, thus diminishing the product inhibition 

problem.[275] Importantly, when acetylated and non-acetylated tetraloops were melted in 
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presence of their complements at different oligomer concentrations, the acetylated-

tetraloop was found to form duplex structure at lower concentrations. At higher 

concentrations where non-acetylated tetraloops also formed duplex, the acetylated-

tetraloop duplex was more stable. The results indicated that acetyl-RNA favours duplex 

structure adding support to the hypothesis that it can be replicated in favour of native 

RNA. Further Tm and thermodynamic studies should be carried out with a less stable 

tetraloop to enable more results to be gathered that are more easily analysed. Using the 

tetraloops as templates, the ligation of complementary shortmers using the acetylation-

ligation chemistry should be carried out to confirm acetyl-RNA’s superior replication 

potential. RNA structures that utilise tertiary interactions should be synthesised as 

acetylated-RNA to confirm that interactions such as A-minor contacts can also be 

reduced. 

An aminoacylation of nucleotides-3!-phosphates using an activated amino thioacid has 

been shown to selectively aminoacylate at the 2!-hydroxyl. The most effective 

activating electrophile was found to be cyanoacetylene 7 but yields of the 2!-aminoacyl 

species were low. In the hope of finding an activator that gave higher yields of the 2!-

aminoacyl species a screen of prebiotically plausible electrophiles was carried out. Only 

N-cyanoimidazole 47 was found to form an activated thiovaline 134 able to 

aminoacylate but the yield obtained was not improved and additionally led to higher 

yields of the 2!/3!-cyclic phosphate. The cyanoacetylene 7 activated aminoacylation of 

oligomeric 3!-phosphates was also found to be selective for the terminal 2!-hydroxyl. In 

particular, aminoacylation of the trimer lends support to the theory of a linked prebiotic 

origin of RNA and coded peptides. In consideration of a possible aminoacylation and 

ligation of trimers, the relatively low yields of the 2!-aminoacyl species will prevent 

significant amounts of 3!,5!-linked oligomeric material to be selectively synthesised. 

Alternative aminoacylating chemistries more selective for the 3!-phosphate should be 

sought. Aminoacylation possibly utilising an aminoacyl-ribozyme could also be 

investigated to enhance the yield of and stabilise the activated aminoacyl species. 
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6. Experimental 

6.1.  General procedures 

Reagents were obtained from Acros Organics, Alfa-Aesar, ChemGenes, Fisher 

Scientific, Glen Research, Link Technologies, New England Biolabs, Sigma-Alrich, 

Santa Cruz Biotechnology, Thermo Scientific, Toronto Research Chemicals, Roche 

Diagnostics and VWR International and were used without further purification. 

Anhydrous solvents were purchased from Sigma-Aldrich. Solvent pre-dried with 

molecular sieves were purchased from Acros Organics. All synthetic reactions were 

carried out in oven-dried glassware under an argon atmosphere unless stated otherwise. 

Ion-exchange resin was purchased as the Na+ form (Bio-rad AG® 50W-X8 molecular 

biology grade, 200-400 mesh) and pre-washed with 1 M NaOH aq. for 1 hour then 

water until the filtrate was pH neutral. DCl was prepared by the addition of oxalyl 

chloride to D2O. NaOD was prepared by dissolving sodium metal in D2O, or by dilution 

of a concentrated sodium deuteroxide solution (40 wt.% in D2O) to the desired 

concentration. All water was purified using a Millipore Milli-Q Plus 185 purification 

system. pH and pD readings were carried out using a Mettler Toledo S20 SevenEasy™ 

pH meter with a Thermo Scientific glass pH electrode and pD measurements were 

recorded  as pH values on the meter according to the following standard equation pD = 

pH + 0.41.[326] 

Silica gel flash column chromatography was carried out using Fluorochem 60 Å (40-60 

µm).  For difficult separations and purification of the final amidites, Silicycle spherical 

silica gel 70 Å (40-75 µm) was used. TLC analysis was performed on Merck TLC Silica 

Gel 60 F254 on aluminium plates. Visualisation was by UV (254 nm) irradiation, or by 

staining plates with the stains below followed by heating with a heat gun. Alkaline 

permanganate solution (KMnO4 (3 g), and K2CO3 (20 g) dissolved in NaOH aq. (5% 

w/v, 5 mL) made up to 300 mL with H2O). Vanilin (vanilin (15 g) dissolved in ethanol 

(250 mL) and concentrated sulphuric acid (2.5 mL) was added slowly). 

Phosphomolybdic acid (phosphomolybdic acid (12 g) dissolved in ethanol (250 mL)). 
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Normal phase-HPLC (NP-HPLC) was carried out on a Varian HPLC system equipped 

with Varian PrepStar Pumps modules, Varian ProStar UV module and a Varian 440-LC 

fraction collector. UV detection in all cases was at λ 254 nm. For analytical separations 

A YMC YMC-Pack SIL-06 column (4.6 × 250 mm) was used at a flow rate of 

1 mLmin-1 with a 20 µL injection loop. For preparative separations A YMC YMC-Pack 

SIL-06 column (30 × 250 mm) was used at a flow rate of 42 mLmin-1 with a 1 mL 

injection loop. Samples were filtered through Phenomenex PHENX™ PTFE 0.45 µm 

syringe tip filters prior to injection. Methods are described below, and solvent ratios are 

EtOAc:n-Hex: 

Method A: 90:10, 0-30 min. 

Method B: 90:10, 0-12 min; 90:10 to 100:0, 12-15 min; 100:0, 15-35 min. 

Method C: 65:35, 1-16 min; 65:35 to 80:20, 16-18 min; 80:20, 18-30 min. 

Method D: 50:50, 1-30 min. 

Method E: 60:40, 1-12 min; 60:40 to 80:20, 12-15 min; 80:20, 15-35 min. 

Method F: 15:85, 1-30 min. 

Synthesised oligonucleotides were purified by strong anion exchange-HPLC (SAX-

HPLC) using a Varian 940-LC liquid chromatograph with 445-LC scale-up module, a 

ProStar column valve module and a Varian 440-LC fraction collector. For preparative 

separations a Dionex DNA PAC™ PA-100 (22 × 250 mm) was used at a flow rate of 15 

mLmin-1. For analytical separations of oligonucleotides a Dionex DNA PAC™ PA-100 

(4 × 250 mm) was used at a flow rate of 1 mLmin-1.  

Method G: detection λ 280 nm, gradient of 0 to 0.4M NaCl in 10 mM Tris aqueous 

buffer (pH 8.0, 25% v/v formamide) over 40 min, then isocratic elution at 0.4M NaCl 

for 5 min. 

Method H: detection λ 260 nm, gradient of 0 to 1 M NaCl in 10 mM phosphate aqueous 

buffer (pH 11.5) over 30 min, then isocratic elution at 1 M NaCl for 5 min. 



 

 160 

In all cases HPLC instrument control, data collection and analysis was performed using 

Varian Galaxie chromatography data system software. 

Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker 

Avance 300 MHz spectrometer, a Bruker Avance III 400 MHz spectrometer or a Bruker 

Avance II+ 500 MHz spectrometer. Carbon nuclear magnetic resonance (13C NMR) 

spectra were recorded on a Bruker Avance 300 MHz spectrometer at 75 MHz, a Bruker 

Avance III 400 MHz spectrometer at 101 MHz or a Bruker Avance II+ 500 MHz 

spectrometer at 125 MHz. Phosphorus nuclear magnetic resonance (31P NMR) and 

Proton decoupled Phosphorous nuclear magnetic resonance (31P NMR decoupled) were 

recorded on a Bruker Avance III spectrometer at 162 MHz. Collected spectra were 

referenced to TMS by way of residual non-deuterated solvent. d in ppm, J in Hz, 

assignments by COSY, HMBC, HMQC. Signal splittings are recorded as singlet (s), 

broad singlet (br. s), doublet (d), doublet of doublets (dd), double double doublet (ddd), 

triplet (t), doublet of triplets (dt), triplet of doublets (td), quartet (q), doublet of quartets 

(dq), triplet of quartets (tq), quintet (quin.), sextet (sex.), heptet (hept.), heptet of 

doublets (hept.d), doublet of heptet (dhept.) and multiplet (m). The notation (ABX) 

refers to a methylene spin system coupled to a unique adjacent proton.  

Electrospray ionisation mass spectrometry (ESI MS) and high resolution mass 

spectrometry (ESI-HRMS); Micromass Platform II, Waters QTOF. ESI-HRMS; 

Thermo Finnigan MAT95XP, Waters LCT Premier or a Thermo Orbitrap instruments. 

MALDI-TOF spectra were obtained using an Applied Biosystems Voyager-DE Pro, 

using a matrix containing 3-hydroxypicolinic acid and diammonium hydrogen citrate 

(25 mg/mL and 35 mg/mL respectively) dissolved in acetonitrile in water (30% v/v). 

Typically 1-2 µL of analyte solution was mixed with 8 µL of matrix, 2 µL of this 

solution was spotted in duplicate. Spectra were recorded in linear positive ionisation 

mode, using a minimum of 200 shots/spectrum and calibrating to internal or external 

synthetic RNA standards, average mass values are reported.  

Infrared (IR) spectra of solid samples were recorded using a Bruker Equinox 55/Bruker 

FRA 106/5 with coherent 500 mW laser as Attenuated Total Reflectance (ATR) spectra 

with a ‘golden gate’ attachment and a resolution of 2 cm-1. Absorption maxima are 

quoted in wavenumbers (cm-1). Alternatively, IR spectra were recorded using a Thermo 

Nicolet iS5 with a iD5 ATR diamond attachment with resolution of 4 cm-1. Melting 
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points (M.P.) were measured using a Buchi M-560 or a Sanyo Gallenkamp variable 

heater and values are uncorrected. 

6.2.  Experimental for Chapter 2e 

6.2.1.  Synthetic procedures for the synthesis of the phosphoramidites 

2-Cyanoethyl carbonochloridate 75 

C4H4ClNO2; Mr = 133.53 

 

Triphosgene (5.94 g, 20.0 mmol) was dissolved in anhydrous THF (50 mL) and cooled 

to 0 °C. 3-Hydroxypropionitrile 77 (2.73 mL, 40.0 mmol) was diluted with anhydrous 

THF (17 mL) and was added dropwise to the solution of triphosgene over a 2 h period. 

The resultant mixture was warmed to RT and stirred overnight. Anhydrous pyridine 

(4.84 mL, 60.0 mmol) was diluted with anhydrous THF (5 mL) and added dropwise to 

the solution at 0 °C. The resultant mixture was warmed to RT and stirred for a further 1 

h. The precipitate pyridinium hydrochloride salt, was filtered and the supernatant was 

evaporated under vacuum. The title compound was isolated as a pale yellow viscous oil 

in quantitative yield. The product was used immediately without further purification or 

stored at -30 °C under argon until required. 1H NMR (400 MHz, CDCl3) δ 4.52 (2H, t, J 

= 6.3 Hz, -CH2CH2CN), 2.84 (2H, t, J = 6.3 Hz, CH2CH2CN). 13C NMR (100 MHz, 

CDCl3) δ 151.7 (C=O), 115.3 (CN), 65.0 (CH2CH2CN), 17.8 (CH2CH2CN). 

 

 

 

                                                
e Compounds not synthesised by the author are denoted with ‡ in the title and are either synthesised 
by Dr Colm D. Duffy or Dr Jianfeng Xu. NMR characterisation data of these compounds, in some 
cases, was obtained the author and is additionally denoted with ƒ. Compounds are included for 
completeness. 
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1-[(2-Cyanoethoxy)carbonyl]-3-methyl-1H-imidazolium Chloride 76 

 

C8H10ClN3O2; Mr = 215.64 

A solution of 75 (9.35g, 70.0 mmol) in anhydrous CH2Cl2 (50 mL) was cooled to 0 °C, 

1-methyl-1H-imidazole (5.55 mL, 70.0 mmol) diluted with anhydrous CH2Cl2 (5 mL) 

was added dropwise. The mixture was stirred for 12 h and the resultant precipitate was 

filtered under a nitrogen atmosphere. The filtrate was washed with anhydrous CH2Cl2 (3 

× 20 mL) and dried under vacuum to yield a colourless powder (13.3 g, 88%). 1H NMR 

(400 MHz, DMSO-d6) δ 10.20 (s, 1H, H-C(2)), 8.16 (t, J = 1.8 Hz, 1H, H-C(4)), 8.03 (t, 

J = 1.8 Hz 1H, H-C(5)), 4.68 (t, J = 5.8 Hz, 2H, -OCH2CH2CN), 4.00 (s, 3H, CH3), 

3.15 (t, J = 5.8 Hz, 2H, -OCH2CH2CN). 

N6-[(2-Cyanoethoxy)carbonyl]adenosine 78 

C14H16N6O6; Mr = 364.31 

 

Adenosine (10.0 g, 11.2 mmol) and a few crystals of ammonium sulphate were 

suspended in hexamethyldisilizane (HMDS) (140 mL) and anhydrous dioxane 

(140 mL). The mixture was heated to reflux for 6 h after which the solution was cooled 

to RT and the solvents removed under vacuum. The resultant syrup was treated with 

anhydrous toluene (50 mL) and the undissolved material removed my filtration. The 

supernatant was evaporated to dryness and the oil redissolved in anhydrous CH2Cl2 

(200 mL). The imidazolium salt 76 (2.90 g, 13.4 mmol) was added to the solution and 

the mixture stirred under argon until all solids had dissolved. The solvent was removed 

under vacuum and the residue taken up in MeOH (60 mL) and EtOH (150 mL) and 

stirred slowly for 24 h. The resultant precipitate was filtered, washed with ethanol (3 × 

20 mL) and diethylether (3 × 20 mL). The solid was dried under vacuum to give the title 

product as a colourless amorphous solid (10.40 g, 86%). M.P. = 151-154 °C (lit[201] = 

158-161 °C). IR (cm-1) 3422 (OH), 3264, 3176, 3111, 3055, 2966, 2941 2919, 2872, 

N
O

O

NN
Cl

O N

HO OH

HO N

N N

H
N O

O

N



 

 163 

2251 (wk. CN), 1751 (carbamate C=O). 1H NMR (400 MHz, DMSO-d6) δ 10.84 (br. s, 

1H, NH), 8.71 (s, 1H H-C(8)), 8.66 (s, 1H, H-C(2)), 6.01 (d, J = 5.5 Hz, 1H, H-C(1#)), 

5.56 (d, J = 6.1 Hz, 1H, HO-C(2#)), 5.26 (d, J = 4.8 Hz, 1H, HO-C(3#)), 5.15 (t, J = 5.5 

Hz, 1H, HO-C(5#)), 4.62 (q, J = 5.8 Hz, 1H, H-C(2#)), 4.33 (t, J = 6.1 Hz, 2H, H2-

C(12)), 4.22-4.14 (m, 1H, H-C(3#)), 3.98 (q, J = 3.8 Hz, 1H, H-C(4#)), 3.75  3.65 (m, 

1H, H-C(5#)), 3.62-3.52 (m, 1H, H-C(5##)), 2.95 (t, J = 6.1 Hz, 2H, H2-C(13)). 13C NMR 

(100 MHz, DMSO-d6) δ 151.8, 151.7 (C(4)+C(6)+C(10)), 149.6 (C(2)), 143.0 (C(8)), 

124.1 (C(5)), 118.7 (C(14)), 87.7 (C(1#)), 85.8 (C(4#)), 73.7 (C(2#)), 70.4 (C(3#)), 61.3 

(C(5#)), 60.0 (C(12)), 17.7 (C(13)). m/z ESI−: 363 ([M−H]−, 100%); ESI-HRMS (neg.) 

[M−H]− calculated for C14H15N6O6−, 363.1058; found 363.1057. 

N6-[(2-Cyanoethoxy)carbonyl]-2# /3#-O-acetyl-adenosine 97a+97b 

C16H18N6O7; Mr = 406.35 

     

To a suspension of N6-[(2-cyanoethoxy)carbonyl]adenosine 78 (2.00 g, 5.48 mmol) in 

anhydrous dioxane (50 mL), trimethyl orthoacetate (2.07 mL, 16.4 mmol) and TFA (8.4 

µL, 0.11 mmol) were added and the mixture stirred at 50 °C for 24 h. Water (20 mL) 

was added to the mixture and stirred for a further 1 h at 50 °C. The solvent was 

removed and the residue was purified by flash column chromatography (98:2 → 90:10, 

CH2Cl2:MeOH) to give an off-white solid of the title products as a mixture of 

regioisomers (quant. yeild). (Note: the regioisomers were isolated as a mixture in a ratio 

of ca. 2.3:1, b:a calculated by integrations of both H-C(1#) of 97a+97b). Rf = 0.38 

(90:10, CH2Cl2:MeOH). 1H NMR (400 MHz, CDCl3) δ 9.92 (s, 0.70H, NH, b), 9.79 (s, 

0.30H, NH, a), 8.62 (s, 0.30H, H-C(8), a), 8.40 (s, 0.70H, H-C(8), b), 8.27 (s, 0.30H, H-

C(2), a), 8.21 (s, 0.70H, H-C(2), b), 6.17 (d, J = 5.7 Hz, 0.30H, H-C(1#), a), 6.00 (br. s, 

0.40H, 5#-OH), 5.92 (d, J = 7.8 Hz, 0.70H, H-C(1#), b), 5.74 (t, J = 5.5 Hz, 0.30H, H-

C(2#), a), 5.58 (d, J = 5.2 Hz, 0.70H, H-C(3#), b), 5.14 (dd, J = 7.9, 5.3 Hz, 0.70H, H-

C(2#), b), 4.85 (t, J = 4.3 Hz, 0.30H, H-C(3#), a), 4.64 (s, 0.60H, OH), 4.49-4.38 (m, 2H, 

H2-C(12), a+b), 4.35 (s, 0.70H, H-C(4#), b), 4.31 (q, J = 2.4 Hz, 0.30H, H-C(4#), a), 
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4.07-3.74 (m, 2H, H2-C(5#), a+b), 2.82 (t, J = 6.1 Hz, 2H, H2-C(13), a+b), 2.21 (s, 

2.10H, CO-CH3, b), 2.08 (s, 0.90H, CO-CH3, a). 13C NMR (CDCl3, 101 MHz) δ 170.7 

(CO-CH3, b), 170.1 (CO-CH3, a), 152.5 (C(8), a), 151.9 (C(8), b), 150.8 (C(10), b), 

150.7 (C(10), a), 150.3 (C(4), a+b), 149.8 (C(6), b), 149.6 (C(6),a), 143.7 (C(2), b), 

143.1 (C(2), a), 123.4 (C(5), b), 123.0 (C(5), a), 117.5 (C(14), b), 117.4 (C(14), a), 90.8 

(C(1#), b), 88.3 (C(1#), a), 87.0 (C(4#), a), 85.8 (C(4#), b), 75.8 (C(2#), a), 74.5 (C(3#), b), 

72.7 (C(2#), b), 70.1 (C(3#), a), 62.9 (C(5#), b), 62.0 (C(5#), a), 60.4 (C(12), b), 60.4 

(C(12), a), 21.1 (CO-CH3, b), 20.8 (CO-CH3, a), 18.4 (C(12), a+b). ESI-HRMS (pos.) 

[M+H]+ calculated for C16H19N6O7
+, 407.1315; found 407.1310. 

N6-[(2-Cyanoethoxy)carbonyl]-2# /3#-O-acetyl-5#-O-(4,4#-dimethoxytrityl)adenosine 

93a+93b 

C37H36N6O9; Mr = 708.72 

   

N6-[(2-Cyanoethoxy)carbonyl]-2#/3#-O-acetyl-adenosine 97a+97b (1.50 g, 3.69 mmol) 

was co-evaporated with anhydrous pyridine (3 × 20 mL). The residue was taken up in 

anhydrous pyridine (35 mL), DMTr-Cl (2.50 g, 7.38 mmol) was added and the mixture 

stirred for 3 h. MeOH (20 mL) was added and stirred for 10 min, the solvent was 

removed under vacuum and the residue taken up in CH2Cl2 (30 mL). The organics were 

washed with saturated aq. NaHCO3 (3 × 50 mL). The organics were separated and dried 

over Na2SO4 and evaporated to dryness. The residue was co-evaporated with toluene 

(3 × 20 mL) followed by CH2Cl2 (3 × 20 mL). The crude products were isolated 

together by flash column chromatography (50:50:1, EtOAc:Tol:Et3N  → 50:45:5:1, 

EtOAc:Tol:MeOH:Et3N) to give the purified mixture as an off-white solid (1.64 g, 

63%). (Note: the regioisomers were isolated as a mixture in a ratio of ca. 3.2:1, b:a, 

calculated by integrations of both H-C(1#) of 93a+93b). Rf = 0.15 (50:45:5:1, 

EtOAc:Tol:MeOH:Et3N). IR (cm−1) 3259, 3183, 3127, 2963, 2934, 2913, 2254 (wk. 

CN) 1742 (C=O). 1H NMR (400 MHz, CDCl3) δ 9.75, 9.63 (2 × s, 1H, NH, b, a), 8.69, 

8.67 (2 × s, 1H, H-C(8), a, b), 8.26, 8.24 (2 × s, 1H, H-C(2), b, a), 7.39-7.13 (m, 9H, 
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DMTr, a+b), 6.78-6.74 (m, 4H, DMTr, a+b), 6.27 (d, J = 4.5 Hz, 0.24H, H-C(1#), a), 

6.10 (d, J = 6.5 Hz, 0.76H, H-C(1#), b), 5.87 (t, J = 4.9 Hz, 0.24H, H-C(2#), a), 5.47 (dd, 

J = 5.4, 2.4 Hz, 0.76H, H-C(3#), b), 5.14 (t, J = 6.0 Hz, 0.76H, H-C(2#), b), 4.88 (t, J = 

5.2 Hz, 0.24H, H-C(3#), a), 4.40-4.33 (m, 2.76H, (H2-C(12), a+b), (H-C(4#), b)), 4.27 

(q, J = 3.9 Hz, 0.24H, H-C(4#), a), 3.74-3.73 (m, 6H, OCH3, a+b), 3.56-3.35 (m, 2H, 

H2-C(5#), a+b), 2.72-2.68 (m, 2H, H2-C(13), a+b), 2.15 (s, 2.28H, CO-CH3, b), 2.08 (s, 

0.72H, CO-CH3, a). 13C NMR (CDCl3, 101 MHz) δ 170.5 (CO-CH3, b), 170.2 (CO-

CH3, a), 158.6 (DMTr, a+b), 152.9 (C(8), a), 152.6 (C(8), b), 151.3 (C(4), a+b), 150.6 

(C(10), a+b), 149.4 (C(6), b), 149.3 (C(6), a), 144.4, 144.3 (DMTr, a+b), 142.1 (C(2), 

a), 141.8 (C(2), b), 135.6, 135.5, 135.4, 135.4, 130.1, 130.1, 128.2, 128.1, 128.0, 127.1 

(DMTr, a+b), 122.5 (C(5), a+b), 117.0 (C(14), a+b), 113.3 (DMTr, a+b), 89.2 (C(1#), 

b), 86.9 (DMTr-C, b), 86.7 (DMTr-C, a), 86.6 (C(1#), a), 83.9 (C(4#), a), 83.4 (C(4#), 

b), 75.8 (C(2#), a), 73.8 , 73.7 ((C(2#), b), (C(3#), b)), 70.2 (C(3#), a), 63.3 (C(5#), b), 

63.0 (C(5#), b), 60.1 (C(12), a+b), 55.3 (OCH3, a+b), 21.0 (CO-CH3, b), 20.8 (CO-

CH3, a), 18.2 (C(13), a+b). m/z ESI+: 731 ([M+Na]+, 100%).  ESI-HRMS (pos.) 

[M+H]+ calculated for C37H37N6O9
+, 709.2610; found 709.2617. 

N6-[(2-Cyanoethoxy)carbonyl]-2#-O-acetyl-5#-O-(4,4#-dimethoxyltrityl)adenosine 

3#-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite 103a and N6-[(2-

cyanoethoxy)carbonyl]-3#-O-acetyl-5#-O-(4,4#-dimethoxyltrityl)adenosine-2#-O-(2-

cyanoethyl-N,N-diisopropyl)phosphoramidite 103b‡ 

C46H53N8O10P; Mr = 908.93 

   

93a+93b (1.00g, 1.41 mmol) and 2-cyanoethyl N,N,N!,N!-tetraisopropyl 

phosphoramidite (0.90 mL, 2.82 mmol) were dissolved in anhydrous THF (10 mL). A 

solution of 5-benzylthio-1H-tetrazole in anhydrous MeCN (0.35 M, 4 mL) was added 

dropwise and the mixture was stirred at RT for 3 h. The reaction mixture was added 

with stirring to saturated aq. NaHCO3 (10 mL). The organics were extracted with 
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CH2Cl2 (3 × 15 mL) and the combined organics dried over MgSO4 and evaporated to 

dryness. The residue was passed through a short flash chromatography column (100% 

EtOAc) to remove the 5-benzylthio-1H-tetrazole. The regioisomers were dissolved in 

EtOAc (∼100 mg/mL), purified and separated by NP-HPLC (Method A), with retention 

times of 9 min (b), 11 min (b), 15 min (a) and 24 min (a). The separated title 

regioisomers 103a (287 mg, 22%) and 103b (850 mg, 66%) were isolated as mixtures 

of two diastereomers in the form of colourless foams. 

Data for 103a 

1H NMR (400 MHz, CDCl3) δ 8.71, 8.69 (2 × s, 2H, H-C(8), NH), 8.19 (s, 1H, H-C(2)), 

7.49-7.12 (m, 9H, DMTr), 6.79 (dd, J = 8.6, 4.8 Hz, 4H, DMTr), 6.29 (2 × d, J = 5.9 

Hz, 1H, H-C(1#)), 6.00 (t, J = 5.4 Hz, 0.5H, H-C(2#)), 5.90 (t, J = 5.7 Hz, 0.5H, H-

C(2#)), 5.01-4.78 (m, 1H, H-C(3#)), 4.52-4.38 (m, 2.5H, H2-C(12), H-C(4#)), 4.35 (q, J = 

3.6 Hz, 0.5H, H-C(4#)), 3.98-3.46 (m, 11H, ce OCH2, OCH3, iPr CH, H-C(5#)), 3.38 

(ABX, JBA = 10.7 Hz, JBX = 4.0 Hz, 1H, H-C(5()), 2.79 (t, J = 6.3 Hz, 2H, H2-C(13)), 

2.64 (t, J = 6.4 Hz, 1H, ce CH2CN), 2.36 (m, 1H, ce CH2CN), 2.12, 2.08 (2 × s, 3H, 

CO-CH3), 1.23-1.00 (m, 12H, iPr CH3). 13C NMR (CDCl3, 101 MHz) δ 169.9, 169.9 

(CO-CH3), 158.7 (DMTr), 153.0, 153.0 (C(8)), 151.6 (C(4)), 150.3 (C(10)), 149.1 

(C(6)), 144.4, 144.3 (DMTr), 141.9 (C(2)), 135.6, 135.6, 135.5, 135.4, 130.3, 130.3, 

130.3, 130.2, 128.4, 128.2, 128.0, 127.2, 127.1 (DMTr), 122.6 (C(5)), 117.7, 117.4 (ce 

CN), 116.8 (C(14)), 113.3 (DMTr), 86.9, 86.9 (DMTr-C), 86.1 (C(1#)), 84.7, 84.4, 84.4 

(C(4#)), 74.8, 74.7, 74.7 (C(2#)), 71.5, 71.3, 71.0, 70.8 (C(3#)), 63.0 (C(5#)), 60.3 

(C(12)), 59.0, 58.8, 58.3, 58.1 (ce OCH2), 55.4, 55.4 (OCH3), 43.5, 43.4, 43.4, 43.3 (iPr 

CH), 24.9, 24.8, 24.7, 24.7, 24.7, 24.6 (iPr CH3), 21.0, 20.9 (CO-CH3), 20.3, 20.2 (ce 

CH2CN), 18.3 (C(13)). 31P NMR (162 MHz, CDCl3) δ 151.33-150.98 (m), 150.44-

150.02 (m). 31P NMR (162 MHz, CDCl3, decoupled) δ 151.17 (s), 150.22 (s). ESI-

HRMS (pos.) [M+H]+ calculated for C46H54N8O10P+, 909.3665; found 909.3701. 

Data for 103b 

1H NMR (400 MHz, CDCl3) δ 8.74, 8.71, 8.69 (3 × s, 2H, NH, H-C(8)), 8.26, 8.23 

(2 × s, 1H, H-C(2)), 7.47-7.13 (m, 9H, DMTr), 6.88-6.73 (m, 4H, DMTr), 6.26 (d, J = 

5.3 Hz, 0.5H, H-C(1#)), 6.22 (d, J = 5.7 Hz, 0.5H, H-C(1#)), 5.57, 5.52 ((app. t, J = 4.4 
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Hz), (t, J = 4.8 Hz, 1H, H-C(3#))), 5.21, 5.15 (2 × dt, J = 10.4, 5.4 Hz, 1H, H-C(2#)), 

4.46 (t, J = 6.2 Hz, 2H, H-C(12)), 4.33 (quin., J = 3.7 Hz, 1H, H-C(4#)), 3.88-3.64 (m, 

7H, OCH3, ce OCH2), 3.63-3.36 (m, 5H, H-C(5#), ce OCH2, iPr CH), 2.80 (t, J = 6.2 

Hz, 2H, H-C(13)), 2.55 (td, J = 6.4, 2.9 Hz, 1H, ce CH2CN), 2.33 (t, J = 6.4 Hz, 1H, ce 

CH2CN), 2.14, 2.10 (2×s, 3H, CO-CH3), 1.20-1.00 (m, 9H, iPr CH3), 0.88 (d, J = 6.7 

Hz, 3H, iPr CH3). 13C NMR (CDCl3, 101 MHz) δ 169.9, 169.8 (CO-CH3), 158.7 

(DMTr), 153.0, 152.8 (C(8)), 151.7, 151.6 (C(4)), 150.4, 150.3 (C(10)), 149.1, 149.0 

(C(6)), 144.5, 144.5 (DMTr), 142.0, 141.8 (C(2)), 135.6, 135.5, 130.2, 130.2, 128.3, 

128.2, 128.1, 128.1, 128.0, 127.2 (DMTr), 122.6 (C(5)), 117.5, 117.4 (ce CN), 116.8 

(C(14)), 113.4, 113.3 (DMTr), 87.7, 87.6, 87.5 (C(1#)), 87.0, 87.0 (DMTr-C), 82.5, 82.1 

(C(4#)), 74.7, 74.5, 74.2, 74.0 (C(2#)), 72.2, 72.1 (C(3#)), 63.0 (C(5#)), 60.3 (C(12)), 

58.8, 58.6, 58.1, 57.9 (ce OCH2), 55.4 (OCH3), 43.5, 43.4 (iPr CH), 24.8, 24.7, 24.6, 

24.6, 24.6, 24.5, 24.4, 24.3 (iPr CH3), 21.1, 21.0 (CO-CH3), 20.3, 20.2, 20.1, 20.0 (ce 

CH2CN), 18.3 (C(13)). 31P NMR (162 MHz, CDCl3) δ 151.70-151.41 (m), 151.37-

151.08 (m). 31P NMR (162 MHz, CDCl3, decoupled) δ 151.56 (s), 151.18 (s). ESI-

HRMS (pos.) [M+H]+ calculated for C46H54N8O10P+, 909.3665; found 909.3701. 

N6-[(2-Cyanoethoxy)carbonyl]-5#-O-(4,4#-dimethoxytrityl)adenosine 88 

C35H34N6O8; Mr =  666.68 

 

N6-[(2-Cyanoethoxy)carbonyl]adenosine 78 (0.92 g, 2.52 mmol) was co-evaporated 

with anhydrous pyridine (3 × 20 ml). The residue was taken up in anhydrous pyridine 

(20 ml), DMTr-Cl (1.03 g, 3.4 mmol) was added and the mixture stirred for 3 h. The 

solvent was removed under vacuum and the residue taken up in CH2Cl2 (20 ml) and the 

organic layer was washed with saturated aq. NaHCO3 (3 × 30 ml). The organics were 

dried over Na2SO4 and the solvent removed under vacuum. The crude residue was 

co-evaporated with toluene (3 × 20 ml) followed by CH2Cl2 (2 × 20 ml) to remove 

residual pyridine, and finally purified by flash column chromatography (75:25:2, 

EtOAc:Tol:Et3N → 40:2:2:2, EtOAc:Tol:MeOH:Et3N) to give the title compound as a 

slightly yellow foam (1.41 g, 83%). Rf = 0.38 (40:2:2:1, EtOAc:Tol:MeOH:Et3N). M.P. 
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= 97-100 °C. IR (cm−1) 3248 (O-H), 2930, 2835 (CH), 1757 (carbamate C=O). 1H NMR 

(400 MHz, CDCl3) δ 8.67 (s, 1H, H-C(8)), 8.28 (s, 1H, H-C(2)), 7.31-7.14 (m, 9H, 

DMTr), 6.74 (d, J = 8.8 Hz, 4H, DMTr), 6.11 (d, J = 5.5 Hz, 1H, H-C(1#), 4.90 (t, J = 

5.4 Hz, 1H, H-C(2#)), 4.51 (dd, J = 5.0, 2.8 Hz, 1H, H-C(3#)), 4.42-4.36 (m, 3H, H-

C(4#) and H2-C(11)), 3.74 (s, 6H, OCH3), 3.46 (ABX, JAB = 10.6, JAX = 3.3 Hz, 1H, H-

C(5#)), 3.34 (ABX, JBA = 10.6, JBX = 3.8 Hz, 1H, H-C(5()), 2.71 (t, J = 6.2 Hz, 2H, H2-

C(12)). 13C NMR (CDCl3 , 101 MHz) δ 158.5 (DMTr), 152.3 (C(8)), 150.9 (C(4)), 

150.3 (C(10)), 149.1 (C(6)), 144.3 (DMTr), 141.8 (C(2)), 135.4 (DMTr), 135.4 

(DMTr), 129.9 (DMTr), 127.9 (DMTr), 127.8 (DMTr), 126.9 (DMTr), 122.3 (C(5)), 

116.8 (CN), 113.1 (DMTr), 90.0 (C(1#)), 86.5 (DMTr-C), 85.5 (C(4#)), 75.3 (C(2#)), 

72.1 (C(3#)), 63.4 (C(5#)), 60.0 (C(11)), 55.2 (OCH3), 18.1 (C(12)). m/z ESI-: 665 

([M−H]−, 75%), 701 ([M+Cl]−, 100%); ESI-HRMS (neg.) [M−H]− calculated for 

C35H35N6O8
-, 667.2511; found 667.2533. 

N6-[(2-Cyanoethoxy)carbonyl]-2#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)adenosine 108a and N6-[(2-Cyanoethoxy)carbonyl]-3#-O-(tert-

butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)adenosine 108b‡ 

C41H48N6O8Si; Mr = 780.94 

   

N6-[(2-Cyanoethoxy)carbonyl]-5#-O-(4,4#-dimethoxytrityl)adenosine 88 (4.00 g, 

6.00 mmol) was dissolved in anhydrous  THF (50 mL). Anhydrous pyridine (1.80 mL, 

22.2 mmol) followed by AgNO3 (1.22 g, 7.20 mmol) was added, the mixture was 

warmed until the AgNO3 had fully dissolved. Whilst the mixture was still warm, 

TBDMS-Cl (1.18 g, 7.80 mmol) was added resulting in a colourless precipitate. The 

mixture was stirred in the dark for 5 h. The solid was removed by filtration and the 

supernatant immediately filtered into saturated aq. NaHCO3 (50 mL). The aqueous 

phase was extracted with EtOAc (3 × 50 mL), the combined organic phases were dried 

over MgSO4, and finally the solvent remove under vacuum. The crude residue was 

purified and the regioisomers separated by flash column chromatography (3:1 → 2:1 → 
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1:1, Et2O:EtOAc) to the give 108a (2.50 g, 53%) and 108b (0.91 g, 20%) both as 

colourless foams. 

Data for 108a 

Rf = 0.45 (1:1, Et2O:EtOAc). 1H NMR (400 MHz, DMSO) δ 10.80 (s, 1H, NH), 8.58, 

8.57 (2 × s, 2H, H-C(2), H-C(8)), 7.43-7.35 (m, 2H, DMTr), 7.31-7.16 (m, 7H, DMTr), 

6.85 (dd, J = 9.0, 3.1 Hz, 4H, DMTr), 6.05 (d, J = 4.8 Hz, 1H, H-C(1#)), 5.18 (d, J = 5.9 

Hz, 1H, 3#-OH), 4.86 (t, J = 4.9 Hz, 1H, H-C(2#)), 4.29 (m, 3H, H2-C(12), H-C(3#)), 

4.13 (q, J = 4.5 Hz, 1H, H-C(4#)), 3.73 (s, 6H, OCH3), 3.29 (m, 2H, H-C(5#))f, 2.93 (t, J 

= 6.0 Hz, 2H, H-C(13)), 0.75 (s, 9H, SiC(CH3)3), −0.04 (s, 3H, Si(CH3)2), −0.14 (s, 3H, 

Si(CH3)2). 13C NMR (DMSO, 101 MHz) δ 158.0 (DMTr), 151.6, 151.6 (C(8), C(10)), 

149.6 (C(4), C(6)), 144.8 (DMTr), 142.9 (C(2)), 135.5, 135.4, 129.7, 127.8, 127.6, 

126.7 (DMTr), 124.0 (C(5)), 118.5 (C(14)), 113.1 (DMTr), 88.2 (C(1#)), 85.5 (DMTr-

C), 83.5 (C(4#)), 74.8 (C(2#)), 70.1 (C(3#)), 63.4 (C(5#)), 59.9 (C(12)), 55.0, 54.9 

(OCH3), 25.5 (SiC(CH3)3), 17.8, 17.6 (C(13), SiC(CH3)3), -4.8 (Si(CH3)2), -5.3 

(Si(CH3)2). ESI-HRMS (pos.) [M+H]+ calculated for C41H49N6O8Si+, 781.3381; found 

781.3354. 

Data for 108b 

Rf = 0.33 (1:1, Et2O:EtOAc). 1H NMR (400 MHz, DMSO) δ 10.81 (s, 1H, NH), 8.63 (s, 

1H, H-C(2)), 8.56 (s, 1H, H-C(8)), 7.39-7.17 (m, 9H, DMTr), 6.88-6.79 (m, 4H, 

DMTr), 6.00 (d, J = 5.1 Hz, 1H, H-C(1#)), 5.47 (d, J = 6.0 Hz, 1H, 2#-OH), 4.88 (q, J = 

5.4 Hz, 1H, H-C(2#)), 4.49 (t, J = 4.6 Hz, 1H, H-C(3#)), 4.32 (t, J = 6.0 Hz, 2H, H2-

C(12)), 4.06 (q, J = 4.5 Hz, 1H, H-C(4#)), 3.72 (s, 6H, OCH3), 3.36 (m, 1H, H-C(5#))f, 

3.15 (ABX, JBA = 10.5, JBX = 4.9 Hz, 1H, H-C(5()), 2.93 (t, J = 6.0 Hz, 2H, H2-C(13)), 

0.84 (s, 9H, Si(C(CH3)3), 0.08 (s, 3H, Si(CH3)2), 0.05 (s, 3H, Si(CH3)2). 13C NMR 

(DMSO, 101 MHz) δ = 158.1 (DMTr), 151.7, 151.6, 151.5 (C(10), C(8), C(4)), 149.6 

(C(6)), 144.7 (DMTr), 143.7 (C(2)), 135.4, 129.6, 129.6, 127.7, 127.6, 126.7 (DMTr), 

124.2 (C(5)), 118.5 (C(14)), 113.1 (DMTr), 88.3 (C(1#)), 85.6 (DMTr-C), 83.6 (C(4#)), 

72.2 (C(3#)), 72.0 (C(2#)), 63.0 (C(5#)), 59.9 (C(12)), 55.0 (OCH3), 25.8 (SiC(CH3)3), 

                                                
f Obscured by HOD peak. 
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18.0 (C(13)), 17.6 (SiC(CH3)3), −4.5 (Si(CH3)2), −5.1 (Si(CH3)2). ESI-HRMS (pos.) 

[M+H]+ calculated for C41H49N6O8Si+, 781.3381; found 781.3380. 

N6-[(2-Cyanoethoxy)carbonyl]-2#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)adenosine-3#-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite 

112a‡ 

C50H65N8O9PSi; Mr = 981.16 

 

N6-[(2-Cyanoethoxy)carbonyl]-2#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)adenosine 108a (1.00 g, 1.28 mmol) was dissolved in anhydrous THF 

(8 mL). To this solution was added N,N-diisopropylethylamine (780 µL, 4.48 mmol) 

and 2-cyanoethyl N,N-diisopropyl phosphoamidochloridite (400 µL, 1.80 mmol) at 0 

°C. The mixture was warmed up to RT and stirred for 5 h. Anhydrous methanol (4 ml) 

was added to quench the reaction and the mixture was stirred for a further 30 min. The 

reaction was diluted with EtOAc (10 mL) and washed with saturated aq. NaHCO3 (3 × 

20 mL). The combined organic layers were dried over MgSO4 and the solvent 

evaporated under vacuum. The crude product was purified by flash column 

chromatography (50:50:1 → 60:40:1, EtOAc:c-Hex:Et3N). The title product was 

isolated as a mixed of two diastereoisomers in the form of a colourless foam (1.10 g, 

88% yield). Rf = 0.28 (60:40:1, EtOAc:c-Hex:Et3N). 1H NMR (400 MHz, CDCl3) δ 

8.67, 8.65 (s, 1H, H-C(8)), 8.49 (s, 1H, NH), 8.24, 8.21 (s, 1H, H-C(2)), 7.51-7.19 (m, 

9H, DMTr), 6.92-6.73 (m, 4H, DMTr), 6.08 (d, J = 6.3 Hz, 0.55H, H-C(1#)), 6.03 (d, J 

= 6.1 Hz, 0.45H, H-C(1#)), 5.12-4.98  (m, 1H, H-C(2#)), 4.52-4.32  (m, 4H,  H2-C(12), 

H-C(3#), H-C(4#)), 4.03-3.52 (m, 11H, ce OCH2, OCH3, iPr CH, H-C(5#)), 3.41-3.27 (m, 

1H, H-C(5()), 2.81 (m, 2H, H2-C(13)), 2.73-2.57 (m, 1H, ce CH2CN), 2.44-2.22 (m, 

1H, ce CH2CN), 1.23-1.11 (m, 9H, iPr CH3), 1.05 (d, J = 6.8 Hz, 3H, iPr CH3), 0.75 (s, 

9H, SiC(CH3)3), −0.03, −0.06 (2×s, 3H, Si(CH3)2), −0.22, −0.23 (2×s, 3H, Si(CH3)2). 
13C NMR (CDCl3, 101 MHz) δ 158.7 (DMTr), 152.9 (C(8)), 151.5 (C(4)), 150.2 
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(C(10)), 148.9 (C(6)), 144.7, 144.6 (DMTr), 142.3 (C(2)), 135.8, 135.8, 135.6, 135.6, 

130.3, 130.3, 130.2, 128.4, 128.3, 128.1, 128.0, 127.1 (DMTr), 122.7, 122.6 (C(5)), 

117.7, 117.4 (ce CN), 116.8 (C(14)), 113.3, 113.3 (DMTr), 88.6, 88.4 (C(1#)), 86.9, 

86.8 (DMTr), 84.4, 84.1, 84.1 (C(4#)), 75.4, 74.8, 74.8 (C(2#)), 73.5, 73.4, 72.9, 72.7 

(C(3#)), 63.4, 63.2 (C(5#)), 60.2 (C(12)), 59.0, 58.8, 57.8, 57.6 (ce OCH2), 55.4, 55.4 

(OCH3), 43.6, 43.5, 43.2, 43.0 (iPr CH), 25.7, 25.7 SiC(CH3)3, 24.9, 24.8, 24.8, 24.7 

(iPr CH3), 20.6, 20.6, 20.3, 20.2 (ce CH2CN), 18.3, 18.1, 18.0 (C(13), SiC(CH3)3), −4.5, 

−4.6, −5.0 (Si(CH3)2). 31P NMR (162 MHz, CDCl3) δ 151.21-150.80 (m), 149.28-

148.85 (m). 31P NMR (162 MHz, CDCl3, decoupled) δ 151.04 (s), 149.06 (s). ESI-

HRMS (pos.) [M+H]+ calculated for C50H66N8O9SiP+, 981.4460; found 981.4433. 

N6-[(2-Cyanoethoxy)carbonyl]-3#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)adenosine-2#-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite 

112b‡ 

C50H65N8O9PSi; Mr = 981.16 

 

N6-[(2-Cyanoethoxy)carbonyl]-3#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)adenosine 108b (1.00 g, 1.28 mmol) was dissolved in anhydrous THF 

(8 mL). To the solution was added N,N-diisopropylethylamine (780 µL, 4.48 mmol) and 

2-cyanoethyl N,N-diisopropyl phosphoamidochloridite (400 µL, 1.8 mmol) at 0 °C. The 

mixture was warmed to RT and stirred for 4 h. Anhydrous methanol (4 ml) was added 

to quench the reaction and the mixture was stirred for a further 30 min. The reaction 

was diluted with EtOAc (10 mL) and washed with saturated aq. NaHCO3 (3 × 20 mL). 

The combined organic layers were dried over MgSO4 and the solvent evaporated under 

vacuum. The crude product was purified by flash column chromatography (50:50:1 → 

60:40:1 EtOAc:c-Hex:Et3N). The title product was isolated as a mixed of two 

diastereoisomers in the form of a colourless foam (1.10 g, 88% yield). Rf = 0.25 

(60:40:1 EtOAc:c-Hex:Et3N). 1H NMR (400 MHz, CDCl3) δ 8.70, 8.68 (s, 1H, H-C(8)), 
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8.56 (s, 1H, NH), 8.30, 8.27 (s, 1H, H-C(2)), 7.44-7.14 (m, 9H, DMTr), 6.79 (m, 4H, 

DMTr), 6.27 (d, J = 4.3 Hz, 0.62H, H-C(1#)), 6.18 (d, J = 4.7 Hz, 0.38H, H-C(1#)), 5.01 

(dt, J = 11.3, 4.6 Hz, 0.38H, H-C(2#)), 4.82 (dt, J = 9.5, 4.5 Hz, 0.62H, H-C(2#)), 4.57-

4.49 (m, 1H, H-C(3#)), 4.45 (t, J = 6.2 Hz, 2H, H2-C(12)), 4.29-4.13 (m, 1H, H-C(4#)), 

3.87-3.42 (m, 11H, ce OCH2, OCH3, iPr CH, H-C(5#)), 3.36-3.20 (m, 1H, H-C(5()), 

2.83-2.76 (m, 2H, H2-C(13)), 2.50 (t, J = 6.4 Hz, 1H, ce CH2CN), 2.38 (t, J = 6.3, 1H, 

ce CH2CN), 1.15-1.02 (m, 9H, iPr CH3), 0.95-0.79 (m, 12H, iPr CH3, SiC(CH3)3), 0.09, 

0.06 (2×s, 3H, Si(CH3)2), 0.01, −0.00 (2×s, 3H, Si(CH3)2). 13C NMR (CDCl3, 101 

MHz) δ 158.7, 158.7 (DMTr), 152.7, 152.6 (C(8)), 151.4, 151.4 (C(4)), 150.3, 150.3 

(C(10)), 149.0, 149.0 (C(6)), 144.6 (DMTr), 142.6, 142.4 (C(2)), 135.7, 135.7, 130.2, 

130.2, 130.2, 128.3, 128.3, 128.0, 128.0, 127.1, 127.1 (DMTr), 122.7 (C(5)), 117.6 (ce 

CN), 116.8 (C(14)), 113.3, 113.3 (DMTr), 88.1, 88.0, 87.9 (C(1#)), 86.9, 86.7 (DMTr-

C), 84.8, 84.4 (C(4#)), 76.0, 75.9, 75.6, 75.4 (C(2#)), 71.9, 71.6, 71.5 (C(3#)), 63.1, 62.8 

(C(5#)), 60.3, 60.2 (C(12)), 58.6, 58.4, 57.9, 57.7 (ce OCH2), 55.4, 55.4 (OCH3), 43.5, 

43.3, 43.3, 43.2 (iPr CH), 25.9 (SiC(CH3)3), 24.8, 24.8, 24.7, 24.7, 24.4, 24.4 (iPr CH3), 

20.4, 20.3, 20.2, 20.1 (ce CH2CN), 18.3, 18.2 (C(13), SiC(CH3)3), −4.2, −4.3, −4.7, 

−4.8 (Si(CH3)2). 31P NMR (162 MHz, CDCl3) δ 150.74-149.95 (m). 31P NMR (162 

MHz, CDCl3, decoupled) δ 150.44 (s), 150.15 (s). ESI-HRMS (pos.) [M+H]+ calculated 

for C50H66N8O9SiP+, 981.4460; found 981.4424. 

N4-[(2-Cyanoethyloxy)carbonyl]cytidine 79 

C13H16N4O7; Mr = 340.10 

  

A suspension of cytidine (11.8 g, 48.5 mmol) and a few crystals of ammonium sulphate 

in hexamethyldisilazane (HMDS) (100 mL) and anhydrous dioxane (100 mL) were 

heated to reflux for 3 h. The solvents were removed under vacuum and the resultant oil 

was treated with toluene (100 mL). The insoluble materials were removed by filtration 

and the supernatant evaporated to dryness. The resultant oil was taken up in anhydrous 

CH2Cl2 (150 mL), 76 (13.6 g, 63.1 mmol) was added to the solution and the mixture 

stirred for 48 h. The CH2Cl2 was removed under vacuum and the residue treated with 
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MeOH (100 mL) followed by stirring for 72 h. The resultant colourless solids were 

collected by filtration and washed with cold MeOH (3 × 30 mL) and Et2O (2 × 30 mL). 

The solids were dried in air then under high vacuum to give the title compound as a 

colourless amorphous solid (15.0 g, 91%). M.P. = 141-142 °C. IR (cm−1) 3493 (O-H), 

3349 (NH), 3126, 3053, 2971, 2941 (CH), 1733 (carbamate C=O). 1H NMR (400MHz, 

DMSO-d6) δ 10.90 (br. s., 1H, NH), 8.41 (d, J = 7.6 Hz, 1H, H-C(6)), 6.98 (d, J = 7.6 

Hz, 1H, H-C(5)), 5.77 (d, J = 2.8 Hz, 1H, H-C(1#)), 5.08 (br. s., 3H, -OH), 4.30 (t, J = 

6.1 Hz, 2H, H2-C(9)), 3.93-4.01 (m, 2H, H-C(2#), H-C(3#)), 3.89 (dt, J = 5.7, 2.8 Hz, 

1H, H-C(4#)), 3.74 (ABX, JAB = 12.2, JAX = 2.8 Hz, 1H, H-C(5#)), 3.59 (ABX, JBA = 12.2, 

JBX = 2.8 Hz, 1H, H-C(5()), 2.93 (t, J = 6.1 Hz, 2H, H2-C(10)). 13C NMR (100MHz, 

DMSO-d6) δ 162.7 (C(4)), 154.4 (C(2)), 152.9 ((C(7)), 145.1 (C(6)), 118.5 (C(11)), 

94.3 (C(5)), 90.1 (C(1#)), 84.2 (C(4#)), 74.5 (C(2#)/C(3#)), 68.7 (C(2#)/C(3#)), 60.2, 60.0 

(C(9), C(5#)), 17.6 (C(10)). m/z ESI−: 339 ([M−H]−, 100%); ESI-HRMS (pos.) [M+H]+ 

calculated for C13H17N4O7
+, 341.1092; found 341.1101. Elemental analysis (% calcd, % 

found for C13H16N4O7.⅓H2O): C (45.09, 45.03), H (4.85, 4.63), N (16.18, 15.97). 

N4-[(2-Cyanoethyloxy)carbonyl]-2# /3#-O-(acetyl)cytidine 98a+98b 

C15H18N4O8; Mr = 382.33 

   

To a suspension of N4-[(2-cyanoethyloxy)carbonyl]cytidine 79 (7.00 g, 20.6 mmol) in 

anhydrous MeCN (140 mL), trimethyl orthoacetate (5.82 mL, 46.4 mmol) and TFA 

(158 µL, 2.06 mmol) were added and the mixture stirred overnight. Water (50 mL) was 

added and reaction mixture stirred for a further 20 min. The reaction mixture was 

evaporated to dryness and the residue purified by flash column chromatography (92:8 

CH2Cl2:MeOH) to give the mixture of isomers as a colourless solid (6.46 g, 82%). 

(Note: The products were isolated in a ratio of ca. 2.5:1, b: a respectively, calculated by 

integrations of both H-C(1#) of 98a+98b). Rf = 0.23 (92:8 CH2Cl2:MeOH). IR (cm−1) 

3327 (O-H), 3265 (NH), 3140, 2976, 2938 (CH), 2254 (wk. CN), 1752 (ester C=O), 

1732 (carbamate C=O). 1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H, NH), 8.39-8.34 

(m, 1H, H-C(6), a+b), 7.01 (s, 1H, H-C(5), a+b), 5.95 (d, J = 3.9 Hz, 0.30H, H-C(1#), 
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a), 5.86 (d, J = 4.9 Hz, 0.70H, H-C(1#), b), 5.79 (d, J = 5.7 Hz, 0.70H, 2#-OH, b), 5.50 

(d, J = 5.6, 0.30H, 3#-OH, a), 5.39, 5.19 (2×br. s, 1H, 5#-OH, a+b), 5.17 (t, J = 4.5 Hz, 

0.30H, H-C(2#), a), 5.02 (t, J = 5.0 Hz, 0.70H, H-C(3#), b), 4.30 (m, 3H, (H-C(2#), b) 

(H2-C(9), a+b)), 4.22 (q, J = 5.4 Hz, 0.30H, H-C(3#), a), 4.13-4.10 (m, 0.70H, H-C(4#), 

b), 3.92 (dt, J = 5.6, 2.7 Hz, 0.70H, H-C(4#), a), 3.76-3.58 (m, 2H, H2-C(5#), a+b), 2.93 

(t, J = 6.0 Hz, 2H, H2-C(10), a+b), 2.08 (s, 3H, CO-CH3, a+b). 13C NMR (101 MHz, 

DMSO-d6) δ 169.8 (CO-CH3, b), 169.3 (CO-CH3, a), 162.9, 162.8 (C(4), a+b), 154.5, 

154.2 (C(2), a+b), 152.9 (C(7), a+b), 145.0, 145.0 (C(6), a+b), 118.4 (C(11), a+b), 

94.9, 94.8 (C(5), a+b), 89.6 (C(1#), b), 87.7 (C(1#), a), 85.0 (C(4#), a), 82.4 (C(4#), b), 

75.8 (C(2#), a), 72.6 (C(2#), b), 71.9 (C(3#), b), 67.8 (C(3#), a), 60.3, 60.2, 60.0 ([C(5#), 

a+b], [C(9), a+b]), 20.8, 20.7 (CO-CH3, a+b), 17.6 (C(10), a+b). ESI-HRMS (pos.) 

[M+H]+ calculated for C15H19N4O8
+, 383.1203; found 383.1213. 

N4-[(2-Cyanoethyloxy)carbonyl]-2# /3#-O-(acetyl)-5#-O-(4,4#-

dimethoxytrityl)cytidine 100a+100b 

C36H36N4O10; Mr = 684.69 

  

N4-[(2-Cyanoethyloxy)carbonyl]-2#/3#-O-(acetyl)cytidine 98a+98b (6.46 g, 16.9 mmol) 

was co-evaporated with anhydrous pyridine (3 × 50 mL). The residue and DMTr-Cl 

(6.85 g, 20.2 mmol) were dissolved in anhydrous pyridine (65 mL) and stirred overnight 

at RT. MeOH (30 mL) was added to quench the reaction and the solvent completely 

removed. The residue was taken up in CH2Cl2 and washed with saturated aq. NaHCO3 

(3 × 50 mL). The organic layer was separated and dried over MgSO4. The solvent was 

removed under vacuum and the residue co-evaporated with toluene (3 × 40 mL) then 

CH2Cl2 (3 × 50 mL). The residue was purified by flash column chromatography (100:2, 

EtOAc:Et3N → 95:5:2, EtOAc:MeOH:Et3N) to yield to the mixture of regioisomers as 

an off-white foam (11.0g, 96%). (Note: the regioisomers were isolated as a mixture in a 

ratio of ca. 3:1, b:a calculated by integrations of both H-C(1#) of 100a+100b). Rf = 0.29 

(95:5:2, EtOAc:MeOH:Et3N). IR (cm−1) 3273 (O-H), 3001, 2965, 2934, 2837 (CH), 

2359 (wk. CN), 1744, (C=O). 1H NMR (400 MHz, CDCl3) δ 8.34 (d, J = 7.5 Hz, 1H, 
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H-C(6), a+b), 7.43-7.21 (m, 9H, DMTr, a+b), 7.03 (br. s, 1H, H-C(5), a+b), 6.86-6.83 

(m, 4H, DMTr, a+b), 6.05 (d, J = 1.7 Hz, 0.25H, H-C(1#), a), 5.92 (d, J = 2.7 Hz, 

0.75H, H-C(1#), b), 5.47 (dd, J = 4.8, 1.9 Hz, 0.25H, H-C(2#), a), 5.21 (t, J = 5.7 Hz, 

0.75H, H-C(3#), b), 4.67-4.63 (m, 1H, (H-C(3#), a), (H-C(2#), b)), 4.33 (m, 2.75H, (H-

C(4#), b), (H2-C(9), a+b)), 4.20-4.16 (m, 0.25H, H-C(4#), a), 3.79-3.78 (m, 6H, OCH3, 

a+b), 3.61-3.49 (m, 1.25H, (H2-C(5#), a), (H-C(5#), b)), 3.39 (dd, J = 11.2, 2.7 Hz, 

0.75H, H-C(5(), b), 2.72 (m, 2H, H2-C(10), a+b), 2.14 (s, 0.75H, CH3, a), 2.11 (s, 

2.25H, CH3, b). 13C NMR (101 MHz, CDCl3) δ 170.6 (CO-CH3, a), 170.4 (CO-CH3, 

b), 162.9 (C(4), a+b), 158.8 (DMTr, a+b), 155.9 (C(2), a+b), 152.1 (C(7), a+b), 144.4, 

144.2, 144.1 ((C(6), a+b), (DMTr, a+b)), 135.6, 135.4, 135.2 (DMTr, a+b), 130.1, 

130.1, 128.3, 128.1, 127.2 (DMTr, a+b), 117.0, 116.9 (C(11), a+b), 113.4 (DMTr, 

a+b), 95.6 (C(5), a+b), 92.7 (C(1#), b), 89.0 (C(1#), a), 87.3, 87.2 (DMTr-C, a+b), 82.8 

(C(4#), a), 81.8 (C(1#), b), 76.7 (C(2#), a), 74.5 (C(2#), b), 71.5 (C(3#), b), 68.5 (C(3#), a), 

61.6 (C(5#), b), 61.4 (C(5#), a), 60.2 (C(9), a+b), 55.3 (OCH3, a+b), 20.8 (CO-CH3, 

a+b), 18.1 (C(10), a+b). ESI-HRMS (pos.) [M+H]+ calculated for C36H37N4O10
+, 

685.2510; found 685.2528. 

N4-[(2-Cyanoethyloxy)carbonyl]-2#-O-(acetyl)-5#-O-(4,4#-dimethoxytrityl)cytidine-

3#-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite 106a and N4-[(2-

cyanoethyloxy)carbonyl]-3#-O-(acetyl)-5#-O-(4,4#-dimethoxytrityl)cytidine-2#-O-(2-

cyanoethyl-N,N-diisopropyl)phosphoramidite 106b‡ƒ 

C45H53N6O11P; Mr = 884.35 

  

N4-[(2-Cyanoethyloxy)carbonyl]-2#/3#-O-(acetyl)-5#-O-(4,4#-dimethoxytrityl)cytidine 

100a+100b (1.50 g, 2.19 mmol) and 2-cyanoethyl N,N,N!,N!-tetraisopropyl 

phosphoramidite (0.90 mL, 2.82 mmol) were dissolved in anhydrous THF (10 mL). To 

this solution was added dropwise 5-benzylthio-1H-tetrazole in anhydrous MeCN 
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(0.30 M, 7.3 mL). The mixture was stirred at RT for 2 h after which saturated aq. 

NaHCO3 was added to quench the reaction. The organics were extracted with EtOAc 

(3 × 10 mL), combined and dried over MgSO4. The solvent was removed and the 

residue applied to a short flash chromatography column (100% EtOAc) to remove 5-

benzylthio-1H-tetrazole. The regioisomers were dissolved in EtOAc (∼200 mg/mL), 

purified and separated by NP-HPLC (Method B) with retention times of 8 min (b), 10.5 

min (b), 14.5 min (a) and 25 min (a). The separated title regioisomers 106a (500 mg, 

26%, contaminated with H-phosphonate) and 106b (1.00 g, 52%) were isolated as 

mixtures of two diastereomers in the form of colourless foams. 

Data for 106a 

1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H, H-C(6)), 7.51-7.21 (m, 9H, DMTr), 6.96-

6.72 (m, 5H, DMTr, H-C(5)), 6.16 (2 × d, J = 2.9 Hz, 1H, H-C(1#)), 5.56 (dd, J = 4.9, 

3.5 Hz, 0.44H, H-C(2#)), 5.52-5.45 (m, 0.56H, H-C(2#)), 4.72-4.58 (m, 1H, H-C(3#)), 

4.37 (t, J = 6.4 Hz, 2H, H2-C(9)), 4.32-4.27 (m, 0.56H, H-C(4#)), 4.22 (H-C(4#))g, 3.92-

3.35 (m, 12H, ce OCH2, OCH3, H2-C(5#), iPr CH), 2.77 (m, 2H, H2-C(10)), 2.64 (q, J = 

6.4 Hz, 0.86H, ce CH2CN), 2.36 (q, J = 6.0 Hz, 1.14H, ce CH2CN), 2.14, 2.11 (2×s, 

3H, CO-CH3), 1.34-1.00 (m, 12H, iPr CH3). 13C NMR (CDCl3, 101 MHz) δ 169.2, 

169.1 (CO-CH3), 162.9 (C(4)), 158.8, 158.8 (DMTr), 154.8 (C(2)), 152.1 (C(7)), 144.7 

(C(6)), 144.1, 144.0, 135.5, 135.3, 135.1, 130.3, 130.3, 128.5, 128.4, 128.4, 128.1, 

128.1, 127.3, 127.3 (DMTr), 117.9, 117.5, 117.1, 116.9, 116.8 (ce CH2CN, C(11)), 

113.4, 113.4 (DMTr), 95.4 (C(5)), 88.8 (C(1#)), 87.2, 87.2 (DMTr-C), 83.2, 82.9 

(C(4#)), 75.3, 74.8 (C(2#)), 69.8 (C(3#)), 61.4 (C(5#)), 60.1 (C(9)), 58.5, 58.3, 58.3, 58.2, 

58.0 (ce OCH2), 55.3, 55.3 (OCH3), 45.7, 45.6, 45.4, 45.4, 43.4, 43.4, 43.3, 43.2 (iPr 

CH), 24.7, 24.7, 24.6, 24.6, 24.5, 23.2, 23.1, 23.1, 23.0, 23.0 (iPr CH3), 21.1, 20.9 (CO-

CH3), 20.4, 20.3, 20.2, 20.2, 20.2, 20.1 (ce CH2CN), 18.1 (C(10)). 31P NMR (162 MHz, 

CDCl3) δ 150.69-150.47 (m), 150.21-149.92 (m). 31P NMR (162 MHz, CDCl3, 

decoupled) δ 150.62 (s), 150.07 (s). m/z ESI-HRMS (pos.) [M+H]+ calculated for 

C45H54N6O11P+, 885.3588; found 885.3617. 

 

                                                
g Obscured by H-phosphonate contaminant. 
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Data for 106b 

1H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H, H-C(6)), 8.13 (br. s, 1H, NH), 7.42-7.21 (m, 

9H, DMTr), 6.85 (m, 5H, H-C(5), DMTr), 6.14 (d, J = 1.8 Hz, 0.54H, H-C(1#)), 6.06 (s, 

0.46H, H-C(1#)), 5.25-5.06 (m, 1H, H-C(3#)), 4.74-4.66 (m, 0.54H, H-C(2#)), 4.65-4.56 

(m, 0.46H, H-C(2#)), 4.42-4.29 (m, 3H, H2-C(9), H-C(4#)), 4.09-3.50 (m, 11H, ce 

OCH2, OCH3, iPr CH, H-C(5#)), 3.41 (d, J = 11.4 Hz, 1H, H-C(5()), 2.77 (t, J = 6.5 Hz, 

2.50H, H2-C(10), ce CH2CN), 2.64 (dt, J = 16.6, 5.9 Hz, 1.50H, ce CH2CN), 2.06 (m, 

3H, CO-CH3), 1.23-1.11 (m, 12H, iPr CH3). 13C NMR (CDCl3, 101 MHz) δ 169.9, 

169.8 (CO-CH3), 162.2, 162.2 (C(4)), 158.8 (DMTr), 154.7 (C(2)), 151.6 (C7)), 144.9 

(C(6)), 144.1, 135.4, 135.3, 130.2, 130.2, 128.3, 128.2, 127.3 (DMTr), 118.2, 117.8 (ce 

CH2CN), 116.5 (C(11)), 113.5 (DMTr), 94.9 (C(5)), 90.7, 90.3 (C(1#)), 87.5 (DMTr-C), 

80.8, 80.7, 80.5 (C(4#)), 75.7, 75.5, 74.5, 74.4 (C(2#)), 69.9, 69.5, 69.4 (C(3#)), 61.0, 

60.7 (C(5#)), 60.3 (C(9)), 59.0, 58.8, 58.8, 58.6 (ce CH2), 55.3 (OCH3), 43.6, 43.5 (iPr-

CH), 24.8, 24.8, 24.7, 24.7, 24.6, 24.6 (iPr-CH3), 20.9, 20.9, 20.4, 20.3 (CO-CH3), 18.2 

(C(10), ce CH2CN). 31P NMR (162 MHz, CDCl3) δ = 152.39-152.23 (m), 150.38-

150.18 (m). 31P NMR (162 MHz, CDCl3, decoupled) δ = 152.32 (s), 150.29 (s). m/z 

ESI-HRMS (pos.) [M+Na]+ calculated for C45H53N6O11NaP+, 907.3402; found 

907.3374. 

N4-[(2-Cyanoethyloxy)carbonyl]-5#-O-(4,4#-dimethoxytrityl)cytidine 89 

C34H34N4O9; Mr = 642.66 

 

N4-[(2-Cyanoethyloxy)carbonyl]cytidine 79 (9.00 g, 26.4 mmol) was co-evaporated 

with anhydrous pyridine (3 × 60 mL). The residue and DMTr-Cl (10.8 g, 31.7 mmol) 

were dissolved in anhydrous pyridine (90 mL) and stirred at RT for 4 h. MeOH (20 mL) 

was added and the mixture stirred for a further 30 min and the solvent was removed 

under vacuum. The residue was taken up in CH2Cl2 (50 mL) and the organics washed 

with saturated aq. NaHCO3 (3 × 100 mL), separated and dried over MgSO4. The crude 

product was co-evaporated with toluene (3 × 50 mL) and followed by CH2Cl2 (3 × 
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50 mL) to remove residual pyridine. The crude product was purified by flash column 

chromatography (50:50:2 EtOAc:CH2Cl2:Et3N → 50:45:5:2 

EtOAc:CH2Cl2:MeOH:Et3N) to give the title product as a colourless foamy solid 

(15.0 g, 89%). Rf = 0.26 (50:45:5:2 EtOAc:CH2Cl2:MeOH:Et3N). M.P. = 93-95 °C. IR 

(cm-1) 3270 (br., O-H), 3066, 2965, 2933, 2837, 2255 (wk. CN), 1752 (C=O). 1H NMR 

(400 MHz, CDCl3) δ 8.32 (d, J = 7.5 Hz, 1H, H-C(6)), 7.39-7.16 (m, 9H, DMTr), 6.97 

(s, 1H, H-C(5)), 6.82 (dd, J = 9.0, 2.3 Hz, 4H, DMTr), 5.90 (d, J = 1.8 Hz, 1H, 

H-C(1#)), 4.48-4.24 (m, 5H, H-C(2#), H-C(3#), H-C(4#), H2-C(9)), 3.77 (s, 6H, OCH3), 

3.52-3.39 (m, 2H, H2-C(5#)), 2.74 (t, J = 6.3 Hz, 2H, H2-C(10)). 13C NMR (CDCl3, 100 

MHz) δ 162.8 (C(4)), 158.7, 158.7 (DMTr), 156.3 (C(2)), 152.0 (C(7)), 144.8 (C(6)), 

144.2, 135.6, 135.3, 130.2, 130.1, 128.2, 128.1, 127.2 (DMTr), 116.8 (C(11)), 113.4 

(DMTr), 95.6 (C(5)), 92.9 (C(1#)), 87.1 (DMTr), 84.9, 76.5, 70.7 (C(2#)/C(3#)/C(4#)), 

62.3 (C(5#)), 60.3 (C(9)), 55.3 (OCH3), 18.1 (C(10)). ESI-HRMS (pos.) [M+Na]+ 

calculated for C34H34N4O9Na+, 665.2218; found 665.2233. 

N4-[(2-Cyanoethyloxy)carbonyl]-2#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)cytidine 109a and N4-[(2-Cyanoethyloxy)carbonyl]-3#-O-(tert-

butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)cytidine 109b 

C40H48N4O9Si; Mr = 756.92 

  

N4-[(2-Cyanoethyloxy)carbonyl]-5#-O-(4,4#-dimethoxytrityl)cytidine 89 (15.0 g, 23.3 

mmol) and anhydrous pyridine (6.98 mL, 86.3 mmol) were dissolved in anhydrous THF 

(120 mL). To the solution was added AgNO3 (4.76 g, 28.0 mmol) and warmed to 

encourage most of the AgNO3 to dissolve. Whilst the mixture was still warm 

TBDMS-Cl (4.57 g, 30.3 mmol) was added upon which a colourless precipitate 

immediately formed. The reaction mixture was stirred at RT in the dark overnight. The 

solids were removed by filtration and the supernatant filtered into saturated aq. 

NaHCO3 (50 mL). The organics were extracted with CH2Cl2 (3 × 50 mL). The 

combined organics were dried over MgSO4 and evaporated to dryness under vacuum. 

The crude was purified by flash column chromatography (9:1 → 1:1, Et2O:EtOAc) to 
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give the separated isomers as colourless solid foams 109a (8.12 g, 46%) and 109b (4.26 

g, 24%) 

Data for 109a 

Rf = 0.38 (50:50, EtOAc:Et2O) M.P. = 116-118 °C. IR (cm-1) 3542 (NH) 2951, 2929, 

2856, 2255 (wk. CN), 1751 (C=O). 1H NMR (400 MHz, CDCl3) δ 9.10 (s, 1H, NH), 

8.52 (s, 1H, H-C(6)), 7.49-7.21 (m, 9H, DMTr), 6.86 (m, 5H, DMTr, H-C(5)), 5.89 (s, 

1H, H-C(1#)), 4.45-4.25 (m, 4H, H-C(2#), H-C(3#), H2-C(9)), 4.10 (d, J = 7.9 Hz, 1H, H-

C(4#)), 3.80 (s, 6H, OCH3), 3.65-3.50 (m, 2H, H2-C(5#)), 2.83-2.67 (m, 2H, H2-C(10)), 

2.43 (d, J = 8.1 Hz, 1H, HO-C(3#)), 0.93 (s, 9H, SiC(CH3)3), 0.31 (s, 3H, Si(CH3)2), 

0.19 (s, 3H, Si(CH3)2). 13C NMR (CDCl3, 100 MHz) δ 162.6 (C(4)), 158.8 (DMTr), 

154.7 (C(2)), 151.9 (C(7)), 145.1 (C(6)), 144.2, 135.6, 135.3, 130.2, 130.2, 128.3, 

128.1, 127.2 (DMTr), 116.6 (C(11)), 113.4 (DMTr), 94.8 (C(5)), 90.8 (C(1#)), 87.2 

(DMTr), 83.1 (C(4#)), 76.6 (C(2#)/C(3#)), 69.1 (C(2#)/C(3#)), 61.4 (C(5#)), 60.1 (C(9)), 

55.3 (OCH3), 25.9 (SiC(CH3)3), 18.1 (SiC(CH3)3/C(10)), 18.1 (SiC(CH3)3/C(10)), −4.2 

(Si(CH3)2), −5.3 (Si(CH3)2). m/z ESI-HRMS (pos.) [M+H]+ calculated for 

C40H49N4O9Si+, 757.3269; found 757.3281. 

Data for 109b 

Rf = 0.15 (1:1, EtOAc:Et2O) M.P. = 159-165 °C. IR (cm-1) 2951, 2929, 2855, 2254 (wk. 

CN), 1751 (C=O). 1H NMR (400 MHz, CDCl3) δ 9.16 (s, 1H, NH), 8.43 (s, 1H, H-

C(6)), 7.43-7.20 (m, 9H, DMTr), 6.85 (d, J = 8.8 Hz, 5H, DMTr, H-C(5)), 6.02 (d, J = 

2.3 Hz, 1H, H-C(1#)), 4.41-4.26 (m, 3H, H-C(3#), H2-C(9)), 4.23-4.11 (m, 2H, H-C(2#), 

H-C(4#)), 3.80 (s, 6H, OCH3), 3.70 (dd, J = 10.9, 2.0 Hz, 1H, H-C(5#)), 3.31 (m, 2H, H-

C(5##), HO-C(2#)), 2.77 (t, J = 6.5 Hz, 2H, H2-C(10)), 0.81 (s, 9H, SiC(CH3)3), 0.03 (s, 

3H, Si(CH3)2), −0.09 (s, 3H, Si(CH3)2). 13C NMR (CDCl3, 100 MHz) δ 162.7 (C(4)), 

158.9 (DMTr), 155.0 (C(2)), 152.0 ((C(7)), 144.8 (C(6)), 143.9, 135.2, 130.3, 128.5, 

128.1, 127.4 (DMTr), 116.7 (C(11)), 113.4 (DMTr), 95.1 (C(5)), 91.4 (C(1#)), 87.1 

(DMTr), 83.6 (C(2#)/C(4#)), 76.0 (C(2#)/C(4#)), 70.7 (C(3#)), 61.4 (C(5#)), 60.2 (C(9)), 

55.3 (OCH3), 25.7 (SiC(CH3)3), 18.1 (SiC(CH3)3/C(10)), −4.7 (Si(CH3)2), −4.9 

(Si(CH3)2). m/z ESI-HRMS (pos.) [M+H]+ calculated for C40H49N4O9Si+, 757.3269; 

found 757.3267. 
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N4-[(2-Cyanoethyloxy)carbonyl]-2#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)cytidine-3#-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) 

113a 

C49H65N6O10PSi; Mr = 957.13 

 

N4-[(2-Cyanoethyloxy)carbonyl]-2#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)cytidine 109a (2.00 g, 2.64 mmol) was co-evaporated with anhydrous 

THF (3 × 20 mL). The residue was dissolved in anhydrous THF (20 mL) and to this 

solution was added DMAP (64.5 mg, 5.28 × 10-4 mol) and N,N-diisopropylethylamine 

(1.84 mL, 10.6 mmol). Finally 2-cyanoethyl N,N-diisopropyl phosphoamidochloridite 

(0.88 mL, 3.96 mmol) was added dropwise and the resultant mixture stirred at RT for 

16 h. The reaction was quenched with anhydrous MeOH (5 mL) and the solvent 

removed under vacuum. The crude product was purified by flash column 

chromatography (30:70:2 → 80:20:2, EtOAc:c-Hex:Et3N) to give the title compound as 

a colourless foam (2.03 g, 81%). Rf = 0.38, 0.30 (80:20:2, EtOAc:c-Hex:Et3N). 1H 

NMR (400 MHz, CDCl3) δ 8.70-8.11 (m, 2H, H-C(6), NH), 7.50-7.21 (m, 9H, DMTr), 

6.92-6.59 (m, 5H, DMTr, H-C(5)), 5.92 (d, J = 2.3 Hz, 0.32H, H-C(1#)), 5.82 (s, 0.68H, 

H-C(1#)), 4.45-4.21 (m, 5H, H-C(2#), H-C(3#), H-C(4#), H2-C(9)), 3.92-3.38 (m, 12H, 

OCH3, H2-C(5#), iPr CH, ce OCH2), 2.76 (t, J = 6.5 Hz, 2H, H2-C(10)), 2.59 (t, J = 6.3 

Hz, 0.68H, ce CH2CN), 2.41 (t, J = 6.4 Hz, 1.32H, ce CH2CN), 1.31-0.97 (m, 12H, iPr 

CH3), 0.94-0.86 (m, 9H, SiC(CH3)3), 0.25 (s, 3H, Si(CH3)2), 0.17-0.09 (m, 3H, 

Si(CH3)2). 13C NMR (CDCl3, 101 MHz) δ 162.5, 162.3 (C(4)), 158.8 (DMTr), 154.7 

(C(2)), 151.9 (C(7)), 145.2 (C(6)), 144.2, 144.1, 135.5, 135.4, 135.2, 130.4, 130.3, 

128.5, 128.0, 127.3 (DMTr), 117.6, 117.5, 116.6 (CN), 113.4, 113.3 (DMTr), 94.7 

(C(5)), 91.5 (C(1#)), 87.3, 87.2 (DMTr), 81.7, 81.5, 75.9, 75.3, 71.5, 69.6 

((C(2#)/C(3#)/C(4#)), 61.6, 61.0 ((C(5#)/ce CH2), 60.1 (C(9)), 58.4, 58.3, 58.2 (C(5#)/ce 
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CH2), 55.3, 55.3 (OCH3), 45.5, 45.4, 43.4, 43.2, 43.1 (iPr CH), 26.0, 25.9 (SiC(CH3)3), 

25.0, 24.9, 24.9, 24.8, 24.7, 24.6, 23.1, 23.0 (iPr CH3), 20.6, 20.5, 20.3, 20.3, 20.2 (ce 

CH2), 18.2, 18.1 (C(10), SiC(CH3)3, -4.2, -4.3, -4.9, -5.0 (Si(CH3)2). 31P NMR (162 

MHz, CDCl3) δ 150.39-150.16 (m), 149.19-148.97 (m). 31P NMR (162 MHz, CDCl3, 

decoupled) δ 150.30 (s), 149.10 (s). m/z ESI-HRMS (pos.) [M+H]+ calculated for 

C49H66N6O10PSi+, 957.4347; found 957.4380. 

N4-[(2-Cyanoethyloxy)carbonyl]-3#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)cytidine-2#-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) 

113b 

C49H65N6O10PSi; Mr = 957.13 

 

N4-[(2-Cyanoethyloxy)carbonyl]-3#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)cytidine 109b (1.00 g, 1.32 mmol) was co-evaporated with anhydrous 

THF (3 × 10 mL). The residue was suspended in anhydrous THF (6 mL) and anhydrous 

CH2Cl2 (4 mL), N,N-diisopropylethylamine (0.92 mL, 5.28 mmol) and DMAP (32.2 

mg, 0.26 mmol) were added to the suspension. Finally, 2-cyanoethyl N,N-diisopropyl 

phosphoramidochloridite (0.44 mL, 1.98  mmol) was added dropwise and the resultant 

mixture stirred at RT for 4 h. The reaction was quenched with anhydrous MeOH (5 mL) 

and stirred for a further 5 min after which the mixture was evaporated to dryness. The 

crude product was purified by flash column chromatography (30:70:2 → 80:20:2, 

EtOAc:c-Hex:Et3N) to give the title compound as a colourless foam (1.13 g, 89%). Rf = 

0.31 (80:20:2, EtOAc:c-Hex:Et3N). 1H NMR (400 MHz, CDCl3) δ 8.68 (br. s, 1H, H-

C(6)), 7.46-7.17 (m, 9H, DMTr), 6.86-6.65 (m, 5H, DMTr, H-C(5)), 6.17-6.13 (m, 1H, 

H-C(1#)), 4.36-4.24 (m, 4H, H-C(2#), H-C(3#), H2-C(9)), 4.21-4.09 (m, 1H, H-C(4#)), 

4.08-3.93 (m, 1H, ce OCH2), 3.87-3.70 (m, 8H, OCH3, H-C(5#), ce OCH2), 3.69-3.57 

(m, 2H, iPr CH), 3.35-3.29 (m, 1H, H-C(5()), 2.83-2.54 (m, 4H, H2-C(10), ce CH2CN), 

1.21-1.01 (m, 12H, iPr CH3), 0.73, 0.72 (2 × s, 9H, SiC(CH3)3), 0.03, −0.02 (2 × s, 3H, 
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Si(CH3)2), −0.09, −0.10 (2 × s, 3H, Si(CH3)2). 13C NMR (CDCl3, 101 MHz) δ 162.4, 

162.3 (C(4)), 158.7, 158.7 (DMTr), 154.4 (C(2)), 151.9 (C(7)), 144.9 (C(6)), 143.6, 

143.6, 135.0, 135.0, 130.3, 130.2, 130.2, 130.2, 128.5, 128.5, 127.9, 127.3, 127.2 

(DMTr), 118.3, 117.9 (ce CH2CN), 117.1, 116.6, 116.6 ((C(11)), 113.2 (DMTr), 94.9 

(C(5)), 90.0 (C(1#)), 87.1, 87.1 (DMTr-C), 82.3, 82.1 (C(4#)), 76.0, 75.9 (C(2#)), 69.0, 

68.9 (C(3#)), 60.6, 60.5 (C(5#)), 60.0 (C(9)), 58.6, 58.4, 58.3, 58.2, 58.2, 57.9 (ce 

OCH2), 55.2 (OCH3), 43.5, 43.3, 43.2, 43.0 (iPr CH), 25.7, 25.6, 25.5 (SiC(CH3)3), 

24.7, 24.7, 24.6, 24.6, 24.6, 24.5, 24.4 (iPr CH3), 20.1, 20.1, 20.0 (ce CH2CN), 18.0, 

17.9, 17.9, 17.9 (C(10), SiC(CH3)3), −4.3, −4.3, −5.2 (Si(CH3)2). 31P NMR (162 MHz, 

CDCl3) δ 151.42-151.03 (m), 148.04-147.85 (m). 31P NMR (162 MHz, CDCl3, 

decoupled) δ 151.23 (s), 147.97 (s). m/z ESI-HRMS (pos.) [M+Na]+ calculated for 

C49H65N6O10PSiNa+, 979.4161; found 979.4132. 

2# ,3# ,5#-Tri-acetyl-guanosine 86 

C16H19N5O8; Mr = 409.35 

 

Guanosine (20.0 g, 70.4 mmol) was suspended in anhydrous acetonitrile (200 mL). To 

this mixture was added DMAP (647 mg, 5.29 mmol), triethylamine (39 mL, 0.28 mol) 

and finally dropwise acetic anhydride (24 mL, 0.25 mol). The resultant mixture was 

stirred for 30 min, quenched with MeOH (50 mL) and the solvent removed under 

vacuum. The resultant oil was treated with propan-2-ol (400 mL) and a solid 

precipitated. The precipitate was collected by filtration and washed with cold 

propan-2-ol (3 × 50 mL). The solid was air dried and then dried under high vacuum to 

give the title compound as a colourless amorphous solid (26.6 g, 92%). M.P. = 223-226 

°C (lit.[327] = 224-227 °C). IR (cm−1) 3465 (H-N(2)), 3300 (NH2), 2727 (CH), 1770, 

1745 (C=O), 1698, 1630, 1607, 1571. 1H NMR (400 MHz, MeOD) δ = 7.84 (s, 1H, H-

C(8)), 6.05 (d, J = 5.0 Hz, 1H, H-C(1#)), 5.92 (t, J = 5.4 Hz, 1H, H-C(2#)), 5.66 (app. t, 

J = 5.1 Hz, 1H, H-C(3#)), 4.45-4.34 (m, 3H, H-C(4#), H2-C(5#)), 2.12 (s, 3H, CO-CH3), 

2.07-2.06 (m, 6H, CO-CH3). 13C NMR (100 MHz, MeOD) δ 172.3, 171.5, 171.2 (CO-
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CH3), 159.3 (C(6)), 155.4 (C(2)), 152.8 (C(4)), 138.2 (C(8)), 118.2 (C(5)), 87.8 (C(1#)), 

81.4 (C(4#)), 74.3 (C(2#)), 72.0 (C(3#)), 64.2 (C(5#)), 20.6, 20.4, 20.3 (CO-CH3). m/z 

ESI-: 408.1 ([M−H]−, 60%); ESI+: 410.1 ([M+H]+, 100%); ESI-HRMS (pos.) [M+H]+ 

calculated for C16H20N5O8, 410.1312; found 410.1314. 

O6-[2-(4-nitrophenyl)ethyl]guanosine 83 

C18H20N6O7; Mr = 432.39 

  

All solid reagents were dried over P2O5 under vacuum for 24 h. 2#,3#,5#-Tri-

acetylguanosine 86 (10.8 g, 26.3 mmol) was suspended in anhydrous dioxane (100 mL). 

p-Nitrophenylethanol (5.27 g, 31.5 mmol) and triphenylphosphine (8.27 g, 31.5 mmol) 

were added to this mixture and the resultant mixture heated at 80 °C for 45 min. 

Diisopropyl azodicarboxylate (6.20 mL, 31.5 mmol) was added dropwise upon which 

the solution began to boil and then the solution was stirred at 60 °C for a further 1 h. 

The solution was cooled to RT and evaporated to dryness under vacuum to give an oil, 

from which the 2#,3#,5#-tri-acetyl-O6-[2-(4-nitrophenyl)ethyl]guanosine was isolated by 

flash column chromatography (60:35:5, EtOAc:n-Hex:MeOH, Rf = 0.25). The product 

which contained triphenylphosphine oxide was taken up in MeOH (200 mL) and cooled 

to 0 °C.  To the solution was added saturated aq. NH3 (200 mL) and the solution stirred 

in a sealed vessel at RT overnight. The solution was degassed then the solvent was 

removed under vacuum to give an orange oil. The oil was taken up in MeOH (∼80 mL) 

and on concentration, by evaporation under vacuum, a yellow solid precipitated. The 

mixture was cooled at 4 °C overnight, the resultant solid precipitate collected by 

filtration and washed with cold MeOH (3 × 20 mL). The solid contained acetamide and 

so was suspended in H2O (100 mL) and heated at 90 °C for 15 min. Once cooled to RT, 

the insoluble material was collected by filtration and washed with H2O (3 × 20 mL). 

The solid was air dried then dried under high vacuum to give the title compound over 

two steps as a yellow amorphous solid (8.45 g, 76%). Rf = 0.50 (9:1, CH2Cl2:MeOH). 
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M.P. = 173-174 °C. IR (cm−1) 3509 (H-bonded O-H), 3386 (NH), 3110 (br., O-H), 2934 

(CH) 1612 (Ar), 1589, 1504 (Ar). 1H NMR (400 MHz, DMSO-d6) δ 8.18 (d, J = 8.2 

Hz, 2H, H-C(14)), 8.09 (s, 1H, H-C(8)), 7.64 (d, J = 8.2 Hz, 2H, H-C(13)), 6.44 (s, 2H, 

NH), 5.78 (d, J = 5.9 Hz, 1H, H-C(1#)), 5.37 (d, J = 6.0 Hz, 1H, 2#-OH), 5.12-5.06 (m, 

2H, 3#-OH and 5#-OH), 4.68 (t, J = 6.8 Hz, 2H, H2-C(10)), 4.46 (q, J = 5.7 Hz, 1H, H-

C(2#)), 4.10 (q, J = 4.3 Hz, 1H, H-C(3#)), 3.89 (q, J = 3.8 Hz, 1H, H-C(4#)), 3.65-3.50 

(m, 2H, H2-C(5#)), 3.25 (t, J = 6.8 Hz, 2H, H2-C(11)). 13C NMR (100 MHz, DMSO-d6) 

δ 160.1 (C(6)), 159.7 (C(2)), 154.3 (C(4)), 146.7 (C(12), 146.3 (C(15)), 138.1 (C(8)), 

130.3 (C(13)), 123.4 (C(14)), 113.8 (C(5)), 86.6 (C(1#)), 85.3 (C(4#)), 73.5 (C(2#)), 70.4 

(C(3#)), 65.5 (C(10)), 61.4 (C(5#)), 34.4 (C(11)). m/z ESI−: 467.1 ([M+Cl]−, 55%), 

477.1 ([M+H COO]−, 100%); ESI+: 433.2 ([M+H]+, 100%); ESI-HRMS (pos.) [M+H]+ 

calculated for C18H21N6O7, 433.1472; found 433.1462. 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]guanosine 84 

C22H23N7O9; Mr = 529.46 

 

O6-[2-(4-Nitrophenyl)ethyl]guanosine 83 (4.32 g, 10.0 mmol) was co-evaporated with 

anhydrous pyridine (3 × 20 mL). The residue was dissolved in anhydrous pyridine 

(40 mL) and anhydrous CH2Cl2 (55 mL). To the solution was added dropwise Me3Si-Cl 

(7.61 mL, 60.0 mmol) and the resultant mixture was stirred at RT for 20 min. 

2-Cyanoethyl carbonochloridate 75 (2.00 g, 15.0 mmol) diluted in anhydrous CH2Cl2 

(10 mL) was added dropwise and the mixture stirred for a further 3 h. MeOH (30 mL) 

was added to quench the reaction and remove the Me3Si groups. The solvent was 

removed under vacuum and the oil co-evaporated with 1:1 MeOH:Tol. (3 × 30 mL). 

The residue was taken up in MeOH (15 mL) and H2O was added dropwise until 

precipitation of a solid began, the solution was kept at 4 °C overnight to afford a 

slightly pink precipitate that was collected by filtration and washed with cold MeOH (3 

× 20 mL). The solid contained pyridinium.HCl and this was removed by boiling the 
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solid as a suspension in H2O (50 mL) for 15 min. After the suspension was cooled to 

RT the solid was collected, washed with H2O (3 × 20 mL) and dried under high vacuum 

to yield the title compound as a slightly off-white amorphous solid (5.08 g, 96%). M.P. 

= 173-177 °C. IR (cm−1) 3386 (NH), 3330 (O-H), 3120, 2960, 2911 (CH), 2866 (CH), 

1747 (C=O). 1H NMR (400 MHz, DMSO-d6) δ 10.54 (s, 1H, NH), 8.43 (s, 1H, H-C(8)), 

8.18 (d, J = 8.7 Hz, 2H, H-C(14)), 7.66 (d, J = 8.7 Hz, 2H, H-C(13)), 5.89 (d, J = 5.9 

Hz, 1H, H-C(1#)), 5.45 (d, J = 5.9 Hz, 1H, 2#-OH), 5.16 (d, J = 4.7 Hz, 1H, 3#-OH), 

4.93 (t, J = 5.5 Hz, 1H, 5#-OH), 4.79 (t, J = 6.9 Hz, 2H, H2-C(10)), 4.61 (q, J = 5.7 Hz, 

1H, H-C(2#)), 4.31 (t, J = 6.0 Hz, 2H, H2-C(18)), 4.19 (td, J = 4.8 Hz, 3.3, 1H, H-

C(3#)), 3.92 (q, J = 4.2 Hz, 1H, H-C(4#)), 3.65 (ABX, JAB = 11.8, JAX = 4.9 Hz, 1H, H-

C(5#)), 3.54 (ABX, JBA = 11.8, JBX = 4.9 Hz, 1H, H-C(5()), 3.34-3.31 (m, 2H, H2-

C(11)h), 2.94 (t, J = 6.0 Hz, 2H, H2-C(19)). 13C NMR (100 MHz, DMSO-d6) δ 159.7 

(C(6)), 153.1 (C(4)), 151.9 (C(2)), 151.5 (C(16)), 146.4 (C(12)), 146.3 (C(15)), 141.4 

(C(8)), 130.4 (C(13)), 123.4 (C(14)), 118.6 (C(20)), 117.3 (C(5)), 87.1 (C(1#)), 85.7 

(C(4#)), 73.4 (C(2#)), 70.4 (C(3#)), 66.4 (C(10)), 61.4 (C(5#)), 59.4 (C(18)), 34.2 (C(11)), 

17.7 (C(19)). m/z ESI+: 530.2 ([M+H]+, 60%); ESI-HRMS (pos.) [M+H]+ calculated for 

C22H24N7O9, 530.1636; found 530.1620. 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2# /3#-O-

(acetyl)guanosine 99a+99b 

C24H25N7O10; Mr = 571.50 

  

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-guanosine 84 (3.00 g, 

5.67 mmol) was suspended in anhydrous dioxane (60 mL) and stirred at 60 °C for 

20 min. Trimethyl orthoacetate (2.14 mL, 17.0 mmol) and trifluoroacetic acid (43 µL, 

0.57 mmol) were added and the mixture stirred at 60 °C for 4 h. Full conversion to the 
                                                
h Peak overlaps with HOD peak. 
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orthoester was checked by TLC before it was hydroylsed by addition of H2O (30 mL) 

and the mixture was stirred for a further 15 min. The mixture was evaporated to dryness 

under vacuum and the resultant oil purified as a mixture of regioisomers by flash 

column chromatography (92:8, CH2Cl2:MeOH). The title compounds were isolated as a 

regioisomeric mixture in the form of a colourless foam in quantitative yield (3.23 g, 

>99%). (Note: The products were isolated in a ratio of ca. 1.5:1 b:a, calculated by 

integrations of both H-C(1#) of 99a+99b). Rf = 0.53 and 0.43 (92:8, CH2Cl2:MeOH). IR 

(cm−1) 3289 (O-H), 3113 (NH), 2937 (CH), 1738 (C=O), 1595 (Ar), 1515 (Ar). 1H 

NMR (400 MHz, DMSO-d6) δ 10.58-10.57 (m, 1H, NH, a+b), 8.46-8.45 (m, 1H, H-

C(8), a+b), 8.18 (d, J = 8.6 Hz, 2H, H-C(14), a+b), 7.66 (d, J = 8.6 Hz, 2H, H-C(13), 

a+b), 6.14 (d, J = 5.9 Hz, 0.40H, H-C(1#), a), 5.89 (d, J = 7.0 Hz, 0.60H, H-C(1#), b), 

5.81 (d, J = 6.1 Hz, 0.60H, 2#-OH, b), 5.59-5.55 (m, 0.80H, H-C(2#), 3#-OH, a), 5.31 

(dd, J = 5.4, 2.3 Hz, 0.60H, H-C(3#), b), 5.12 (t, J = 5.6 Hz, 0.60H, 5#-OH, b), 5.02 (t, J 

= 5.4 Hz, 0.40H, 5#-OH, a), 4.91 (q, J = 6.2 Hz, 0.6H, H-C(2#), b), 4.82-4.77 (m, 2H, 

H2-C(10), a+b), 4.53 (td, J = 5.3 Hz, 3.7, 0.40H, H-C(3#), a), 4.31 (t, J = 6.0 Hz, 2H, 

H2-C(18), a+b), 4.10 (q, J = 4.1 Hz, 0.60H, H-C(4#), b), 3.97 (q, J = 4.1 Hz, 0.40H, H-

C(4#), a), 3.73-3.56 (m, 2H, H2-C(5#), a+b), 3.34-3.31 (H2-C(11)i), 2.95 (t, J = 6.0 Hz, 

2H, H2-C(19), a+b), 2.12 (s, 1.80H, CO-CH3, b), 2.03 (s, 1.20H, CO-CH3, a). 13C NMR 

(101 MHz, DMSO-d6) δ 169.6 (CO-CH3, a+b), 159.8 (C(6), a+b), 153.2 (C(4), b), 

152.9 (C(4), a), 152.0 (C(2), a, b), 151.5 (C(16), a, b), 146.5, 146.4, 146.3 ((C(12), 

a+b), (C(15), a+b)), 141.4 (C(8), a), 141.2 (C(8), b), 130.4 (C(13), a+b), 123.4 (C(14), 

a+b), 118.6 (C(20), a+b), 117.3 (C(5), a+b), 86.9 (C(1#), b), 86.1 (C(4#), a), 84.8 (C(1#), 

a), 83.5 (C(4#), b), 75.3 (C(2#), a), 73.2 (C(3#), b), 71.8 (C(2#), b), 68.8 (C(3#), a), 66.5 

(C(10), a+b), 61.3, 61.3 (C(5#), a+b), 59.5, 59.3 (C(18), a+b), 34.3, 34.2 (C(11), a+b), 

20.8 (CO-CH3, b), 20.6 (CO-CH3, a), 17.8, 17.7 (C(19), a+b). m/z ESI+: 572.3 

([M+H]+, 70%); ESI-HRMS (pos.) [M+H]+ calculated for C24H26N7O10, 572.1741; 

found 572.1757. 

 

 

                                                
i Peak obscured by HOD peak, assignment made by 2D-COSY. 
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N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2# /3#-O-(acetyl)-5#-O-

(4,4#-dimethoxytrityl)guanosine 95a+95b  

C45H43N7O12; Mr = 873.86 

  

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2#/3#-O-monoacetyl-

guanosine 99a+99b (3.23 g, 5.66 mmol) mixture was co-evaporated with anhydrous 

pyridine (3 × 20 mL) and the residue taken up in anhydrous pyridine (20 mL). DMTr-Cl 

(2.88 g, 8.49 mmol) was added and the reaction stirred at RT for 3 h. MeOH (20 mL) 

was added and the mixture stirred for a further 15 min before the solvent was removed 

under vacuum. The residue was taken up in CH2Cl2 (20 mL) and the organic layer 

washed with saturated aq. NaHCO3 (3 × 40 mL). The organics were separated, dried 

over MgSO4, and after evaporation the residue was co-evaporated with toluene (3 × 

20 mL) followed by CH2Cl2 (3 × 20 mL). The crude product was purified by flash 

column chromatography (30:70:2 → 70:30:2, EtOAc:Tol:Et3N) to give the title 

compounds as a colourless foam (3.64 g, 74%). (Note: the isomers were isolated as a 

mixture in a ratio of ca. 5:1, b:a, calculated by integrations of both H-C(1#) of 

95a+95b). Rf = 0.30 (70:30:2, EtOAc:Tol:Et3N). IR (cm-1) 3364 (O-H), 2933, 2837 

(CH), 2360 (CN), 1742 (C=O), 1606 (Ar), 1508 (Ar). 1H NMR (400 MHz, CDCl3) δ 

8.17-8.13 (m, 2H, H-C(14), a+b), 8.08 (s, 0.83H, H-C(8), b), 7.94 (s, 0.17H, H-C(8), a), 

7.64 (s, 1H, NH), 7.51-7.46 (m, 2H, H-C(13), a+b), 7.39-7.09 (m, 9H, DMTr, a+b), 

6.77-6.68 (m, 4H, DMTr, a+b), 6.42 (s, 0.75H, 2#-OH, b), 6.09 (d, J = 4.0 Hz, 0.17H, 

H-C(1#), a), 5.92-5.89 (m, 1H, (H-C(1#), b), (H-C(2#), a)), 5.48 (d, J = 5.5 Hz, 0.83H, 

H-C(3#), b), 5.18 (t, J = 5.3 Hz, 0.83H, H-C(2#), b), 5.11 (t, J = 5.6 Hz, 0.17H, H-C(3#), 

a), 4.78 (t, J = 6.8 Hz, 2H, H2-C(10), a+b), 4.47-4.32 (m, 2.83H, (H-C(4#), b), (H2-

C(18))), 4.19 (q, J = 4.5 Hz, 0.17H, H-C(4#), a), 3.75, 3.74 (2 × s, 6H, OCH3, a+b), 

3.48-3.23 (m, 4H, (H2-C(5#), a+b), (H2-C(11), a+b)), 2.78 (t, J = 6.1 Hz, 1.67H, H2-

C(19), b), 2.69-2.66 (m, 0.33H, H2-C(19), a), 2.18 (s, 2.50H, CO-CH3, b), 2.15 (s, 
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0.50H, CO-CH3, a). 13C NMR (CDCl3, 101 MHz) δ 170.5 (CO-CH3, b), 170.2 (CO-

CH3, a), 161.0, 160.8 (C(6), a+b), 158.6 (DMTr), 152.7 (C(4), a), 151.8 ((C(4), b), 

(C(2), b)), 151.4 (C(2), a) 150.9 (C(16), a), 150.4 (C(16), b), 147.0 (C(15), a+b), 145.8 

(C(12), a), 145.6 (C(12), b), 144.6, 144.2 (DMTr), 141.0 (C(8), a), 140.5 (C(8), b), 

135.8, 135.4, 135.3 (DMTr), 130.2, 130.1, 130.0 ((DMTr), (C(13), a+b)), 128.3, 128.0, 

127.9, 126.9 (DMTr), 123.9 (C(14), a+b), 118.5 (C(5), a+b), 116.8 (C(20), a+b), 113.2 

(DMTr), 91.6 (C(1#), b), 86.9 (DMTr-C), 86.6 (C(1#), a), 85.4 (C(4#), b), 83.7 (C(4#), a), 

75.8 (C(2#), a), 75.2, 75.1 (C(2#), C(3#), b), 70.1 (C(3#), a), 67.2 (C(10), a+b), 63.7 

(C(5#), b), 63.3 (C(5#), a), 60.1 (C(18), b), 59.7 (C(18), a), 55.3 (OCH3), 35.1 (C(11), 

a+b), 21.2 (CO-CH3, b), 20.8 (CO-CH3, a), 18.4, 18.3 (C(19), a+b). m/z ESI-HRMS 

(pos.) [M+H]+ calculated for C45H44N7O12, 874.3048; found 874.3030. 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2#-O-(acetyl)-5#-O-(4,4#-

dimethoxytrityl)guanosine-3#-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite 

104a and N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-3#-O-(acetyl)-

5#-O-(4,4#-dimethoxytrityl)guanosine-2#-O-(2-cyanoethyl-N,N-

diisopropyl)phosphoramidite 104b 

C54H60N9O13P; Mr = 1074.08 

  

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-5#-O-(4,4#-dimethoxytrityl)-

2#/3-O-monoacetyl-guanosine 95a+95b (1.00 g, 1.14 mmmol) was dissolved in 

anhydrous THF (6 mL) and stirred with 3Å molecular sieves for 20 min. To the solution 

was added 2-cyanoethyl N,N,N!,N!-tetraisopropyl phosphoroamidite (0.73 mL, 

2.29 mmol) then 5-benzylthio-1H-tetrazole (220 mg, 1.14 mmol) as a solution in 

anhydrous MeCN (4 mL) and the mixture was stirred for 1 h. The molecular sieves 
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were removed by filtration and the supernatant was added with stirring to saturated aq. 

NaHCO3 (30 mL) from which, the organics were extracted with CH2Cl2 (3 × 15 mL). 

The combined organic layers were dried over MgSO4 and evaporated to dryness. The 

residue was purified by flash column chromatography (60:40:2, EtOAc:Pentane:Et3N, 

Rf = 0.5) to give the purified mixture of regioisomers. The regioisomers were dissolved 

in EtOAc (∼100 mg/mL) and separated by NP-HPLC (Method C), with retention times 

of 10 min (b), 15.5 min (a) and 21 min (a). The separated title regioisomers 104a (227 

mg, 18%) and 104b (818 mg, 67%), were isolated as mixtures of two diastereomers in 

the form of colourless foams. 

Data for 104a  

1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 8.6 Hz, 2H, H-C(14)), 7.96, 7.95 (2×s, 1H, 

H-C(8)), 7.52 (2×d, J = 8.6 Hz, 2H, H-C(13)), 7.47-7.15 (m, 9H, DMTr), 6.77 (d, J = 

8.8 Hz, 4H, DMTr), 6.16 (d, J = 6.5 Hz, 0.40H, H-C(1#)), 6.09 (d, J = 6.2 Hz, 0.60H, 

H-C(1#)), 6.04 (t, J = 5.7 Hz, 0.45H, H-C(2#)), 5.95 (t, J = 5.9 Hz, 0.55H, H-C(2#)), 

4.90-4.78 (m, 3H, H-C(3#), H2-C(10)), 4.41-4.26 (m, 3H, H-C(4#), H2-C(18)), 3.97-3.25 

(m, 14H, ce OCH2, OCH3, iPr CH, H2-C(5#), H2-C(11)), 2.76-2.62 (m, 3H, H2-C(19), ce 

CH2CN), 2.31 (t, J = 6.4 Hz, 1H, ce CH2CN), 2.09 (m, 3H, CO-CH3), 1.21-1.02 (m, 

12H, iPr CH3). 13C NMR (CDCl3, 101 MHz) δ 169.8, 169.8 (CO-CH3), 160.8 (C(6)), 

158.7 (DMTr), 153.1, 152.9 (C(4)), 151.6 (C(2)), 150.5, 150.4 (C(16)), 147.0 (C(15)), 

145.9 (C(12)), 144.5, 144.3 (DMTr), 141.0, 140.7 (C(8)), 135.8, 135.7, 135.6, 135.6 

(DMTr), 130.3, 130.2, 130.2, 130.2 (C(13), DMTr), 128.5, 128.3, 128.0, 128.0, 127.1 

(DMTr), 123.9 (C(14)), 118.8, 118.7 (C(5)), 117.7, 117.4, 116.9 (CN), 113.3, 113.2 

(DMTr), 86.8, 86.7 (DMTr-C), 86.3, 85.8 (C(1#)), 84.8, 84.5, 84.5 (C(4#)), 74.3, 74.1, 

74.0 (C(2#)), 71.4, 71.3, 70.9, 70.7 (C(3#)), 67.1 (C(10)), 63.4, 63.3 (C(5#)), 59.6, 59.5 

(C(18)), 59.0, 58.8, 58.1, 57.8 (ce OCH2), 55.4 (OCH3), 43.5, 43.4, 43.2 (iPr CH), 35.2 

(C(11)), 24.8, 24.8, 24.7, 24.7, 24.6 (iPr CH3), 21.1, 20.9 (CO-CH3), 20.5, 20.4, 20.2, 

20.1 (ce CH2CN), 18.3 (C(19)). 31P NMR (162 MHz, CDCl3) δ 150.86 (m), 150.42-

150.08 (m). 31P NMR (162 MHz, CDCl3, decoupled) δ 150.90 (s), 150.28 (s). m/z ESI-

HRMS (pos.) [M+H]+ calculated for C54H61N9O13P, 1074.4126; found 1074.4131. 
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Data for 104b 

1H NMR (400 MHz, CDCl3) δ 8.17 (2 × d, J = 8.7 Hz, 2H, H-C(14)), 8.02 (s, 0.5H, 

H-C(8)), 7.97 (s, 0.5H, H-C(8)), 7.53 (d, J = 8.7 Hz, 2H, H-C(13)), 7.40-7.16 (m, 9H, 

DMTr), 6.79-6.74 (m, 4H, DMTr), 6.10 (d, J = 5.5 Hz, 0.5H, H-C(1#)), 6.02 (d, J = 5.9 

Hz, 0.5H, H-C(1#)), 5.63-5.60 (m, 1H, H-C(3#)), 5.37 (dt, J = 10.9, 5.6 Hz, 0.5H, H-

C(2#)), 5.19 (dt, J = 10.6, 5.5 Hz, 0.5H, H-C(2#)), 4.87-4.82 (m, 2H, H2-C(10)), 4.34 (t, 

J = 6.2 Hz, 2H, H2-C(18)), 4.29-4.25 (m, 1H, H-C(4#)), 3.84-3.66 (m, 7H, OCH3, ce 

OCH2), 3.58-3.41 (m, 5H, H2-C(5#), ce OCH2, iPr CH), 3.34 (t, J = 6.9 Hz, 2H, H2-

C(11)), 2.75-2.70 (m, 2H, H2-C(19)), 2.58 (t, J = 6.3 Hz, 1H, ce CH2CN), 2.38-2.25 (m, 

1H, ce CH2CN), 2.14-2.14, 2.11 (2 × s, 3H, CO-CH3), 1.14-1.08 (m, 9H, iPr CH3), 0.90 

(d, J = 6.8 Hz, 3H, iPr CH3). 13C NMR (101 MHz, CDCl3) δ 169.9 (CO-CH3), 160.8 

(C(6)), 158.7 (DMTr), 153.1, 152.9 (C(4)), 151.5, 151.5 (C(2)), 150.4, 150.3 (C(16)), 

147.0 (C(12)), 145.8 (C(15)), 144.7, 144.6 (DMTr), 141.0, 140.9 (C(8)), 135.8, 135.7, 

135.7, 135.6 (DMTr), 130.2, 130.1 (C(13), DMTr), 128.2, 128.2, 128.0, 128.0, 127.9, 

127.1, 127.0 (DMTr), 123.8 (C(14)), 118.8, 118.6 (C(5)), 117.6, 117.3 (ce CN), 116.9 

(C(20)), 113.3, 113.2 (DMTr), 87.9, 87.8 (C(1#)), 86.8, 86.7 (DMTr-C), 82.6, 82.1 

(C(4#)), 74.4, 74.2, 73.4, 73.2 (C(2#)), 72.4, 72.3, 72.3 (C(3#)), 67.1 (C(10)), 63.4, 63.3 

(C(5#)), 59.6, 59.6 (C(18)), 58.6, 58.4, 58.1, 58.0 (ce OCH2), 55.3 (OCH3), 43.5, 43.4, 

43.4, 43.3 (iPr CH), 35.2 (C(11)), 24.8, 24.7, 24.6, 24.6, 24.4, 24.4 (iPr CH3), 21.1, 21.0 

(CO-CH3), 20.3, 20.3, 20.0, 19.9 (ce CH2CN), 18.3, 18.3 (C(19)). 31P NMR (162 MHz, 

CDCl3) δ 151.84-151.48 (m), 151.17-150.87 (m). 31P NMR (162 MHz, CDCl3, 

decoupled) δ 151.62, 151.01. m/z ESI-HRMS (pos.) [M+H]+ calculated for 

C54H61N9O13P, 1074.4126; found 1074.4169. 
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N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-5#-O-(4,4#-

dimethoxytrityl)guanosine 90 

C43H41N7O11; Mr = 831.83 

 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]guanosine 84 (2.97 g, 

5.61 mmol) was co-evaporated with anhydrous pyridine (3 × 25 mL). The residue and 

DMTr-Cl (2.28 g, 6.73 mmol) were dissolved in anhydrous pyridine (40 mL) and stirred 

at RT overnight. MeOH (10 mL) was added and the reaction mixture stirred for 15 min, 

before the solvent was removed under vacuum. The residue was taken up in CH2Cl2 (30 

mL) and the organic layer washed with saturated aq. NaHCO3 (3 × 40 mL). The organic 

layer was separated and then dried over MgSO4, filtered and evaporated to dryness. The 

residue was co-evaporated with toluene (3 × 20 mL) and followed by CH2Cl2 (3 × 

20 mL). The resultant crude solid was purified by flash column chromatography 

(50:50:2, EtOAc:Tol:Et3N → 50:45:5:2, EtOAc:Tol:MeOH:Et3N) to give the title 

compound as an off-white foam (4.27 g, 91%). Rf  = 0.30 (70:30:2 EtOAc:Tol.:Et3N). 

M.P. = 103-106 °C. IR (cm-1) 3364 (NH), 2932 (CH), 2912 (CH), 2360 (CN), 1748 

(C=O), 1606 (Ar), 1507 (Ar). 1H NMR (400 MHz, CDCl3) δ 8.15-8.12 (m, 3H, 

H-C(14), H-C(8)), 7.81 (s, 1H, NH), 7.47 (d, J = 8.7 Hz, 2H, H-C(13)), 7.18-7.08 (m, 

9H, DMTr), 6.99 (br. s, 1H, 2#-OH), 6.69 (2×d, J = 8.8 Hz, 4H, DMTr), 5.90 (d, J = 6.2 

Hz, 1H, H-C(1#)), 4.93 (t, J = 5.7 Hz, 1H, H-C(2#)), 4.79 (t, J = 6.7 Hz, 2H, H2-C(10)), 

4.49-4.38 (m, 4H, H-C(3#), H-C(4#), H2-C(18)), 3.74 (s, 6H, OCH3), 3.38 (ABX, JAB = 

10.6, JAX = 3.2 Hz, 1H, H-C(5#)), 3.29 (t, J = 6.8 Hz, 2H, H2-C(11)), 3.17 (ABX, JBA = 

10.6, JBX = 3.2 Hz, 1H, H-C(5()), 2.77 (t, J = 6.1 Hz, 2H, H2-C(19). 1H NMR (100 

MHz, CDCl3) δ 161.0 (C(6)), 158.6 (DMTr), 151.8 (C(4)), 151.1 (C(2)), 150.7 (C(16)), 

147.0 (C(15)), 145.6 (C(12)), 144.3 (DMTr), 140.3 (C(8)), 135.5, 135.3 (DMTr), 130.0, 

(DMTr, C(13)), 128.0, 127.8, 126.9 (DMTr), 123.9 (C(14)), 118.6 (C(5)), 116.7 

(C(20)), 113.2 (DMTr), 92.1 (C(1#)), 87.1 (C(4#)), 86.7 (DMTr-C), 76.7 (C(2#)) 74.0 

O

OHHO

DMTrO
N N

N
N

HN

O

NO2
O

O

N



 

 192 

(C(3#)), 67.2 (C(10)), 63.9 (C(5#)), 60.1 (C(18)), 55.3 (OCH3), 35.1 (C(11)), 18.4 

(C(19)). m/z ESI-HRMS (pos.) [M+H]+ calculated for C43H42N7O11, 832.2942; found 

832.2941. 

 N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2#-O-(tert-

butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)guanosine 110a and N2-[(2-

cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-3#-O-(tert-butyldimethylsilyl)-

5#-O-(4,4#-dimethoxytrityl)guanosine 110b  

C49H55N7O11Si; Mr = 946.09 

  

N2-Cyanoethyloxycarbonyl-O6-nitrophenylethyl-5#-O-(4,4#-dimethoxytrityl)guanosine 

90 (3.20 g, 3.93 mmol) was co-evaporated with anhydrous THF (2 × 30 mL). The 

residue was dissolved in anhydrous THF (40 mL), to which anhydrous pyridine 

(1.59 mL, 19.6 mmol) and AgNO3 (1.00 g, 5.89 mmol) were added. The mixture was 

stirred for 10 min and warmed gently to dissolve most of the AgNO3. TBDMS-Cl (1.00 

g, 6.67 mmol) was added upon which a white precipitate formed immediately and the 

mixture was stirred in the dark at RT for 5 h. The solids were removed by filtration and 

the supernatant separated directly into saturated aq. NaHCO3 (50 mL). The organics 

were extracted with CH2Cl2 (3 × 50 mL), the combined organic layers were dried over 

MgSO4 and finally evaporated to dryness under vacuum. The mixture of 2#/3#-O-tert-

butyldimethylsilyl nucleosides were purified as a mixture by flash column 

chromatography (9:1, Et2O:EtOAc). The purified regioisomers were dissolved in 

EtOAc (∼300 mg/mL) and separated by NP-HPLC (Method D), with retention times of 

17.8 min (a) and 30 min (b)). The separated regioisomers 110a (1.64 g, 44%) and 110b 

(1.29 g, 35%) were isolated as colourless foams. 
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Data for 110a 

Rf = 0.43 (9:1, Et2O:EtOAc) M.P. = 72-75 °C. IR (cm-1) 2953, 2927, 2855 (CH), 2253 

(wk. CN), 1760 (C=O), 1606 (Ar), 1509 (Ar). 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J 

= 8.6 Hz, 2H, H-C(14)), 7.99 (s, 1H, H-C(8)), 7.53 (d, J = 8.6 Hz, 2H, H-C(13)), 7.44 

(d, J = 7.0 Hz, 2H, DMTr), 7.33 (2×d, J = 8.9 Hz, 4H, DMTr), 7.25-7.17 (m, 3H, 

DMTr), 6.78 (2×d, J = 8.7 Hz, 4H, DMTr), 5.93 (d, J = 5.7 Hz, 1H, H-C(1#)), 5.03 (t, J 

= 5.4 Hz, 1H, H-C(2#)), 4.84 (t, J = 6.6 Hz, 2H, H2-C(10)), 4.42 (q, J = 3.5 Hz, 1H, H-

C(3#)), 4.30 (t, J = 6.2 Hz, 2H, H2-C(18)), 4.23 (q, J = 3.1 Hz, 1H, H-C(4#)), 3.77 (m, 

6H, OCH3), 3.50 (ABX, JAB = 10.6, JAX = 2.6 Hz, 1H, H-C(5#)), 3.40-3.32 (m, 3H, H-

C(5(), H2-C(11)), 2.72 (d, J = 3.7 Hz, 1H, 3#-OH), 2.66 (t, J = 6.2 Hz, 2H, H2C-(19)), 

0.84 (s, 9H, SiC(CH3)3), 0.00 (s, 3H, Si(CH3)2), -0.18 (s, 3H, Si(CH3)2). 13C NMR (100 

MHz, CDCl3) δ 160.9 (C(6)), 158.7 (DMTr), 153.0 (C(4)), 151.5 (C(2)), 150.4 (C(16)), 

147.0 (C(15)), 145.8 (C(12)), 144.8 (DMTr), 141.0 (C(8)), 135.9, 135.8 (DMTr), 130.2 

(C(13) and DMTr), 128.2, 128.0, 127.1 (DMTr), 123.9 (C(14)), 118.8 (C(5)), 116.8 

(C(20)), 113.3 (DMTr), 88.5 (C(1#)), 86.7 (DMTr-C), 84.5 (C(4#)), 75.4 (C(2#)), 71.6 

(C(3#)), 67.1 (C(10)), 63.8 (C(5#)), 59.6 (C(18)), 55.4 (2 × OCH3), 35.2 (C(11)), 25.7 

(SiC(CH3)3), 18.3 (C(19)), 18.0 (SiC(CH3)3), −4.9, −5.0 (Si(CH3)2). m/z ESI-HRMS 

(pos.) [M+H]+ calculated for C49H56N7O11Si, 946.3807; found 946.3785. 

Data for 110b 

Rf = 0.33 (9:1, Et2O:EtOAc) M.P. = 65-67 °C. IR (cm−1) 2953 (CH2/CH3), 2926 

(CH2/CH3), 2854 (CH), 2359 (wk. CN), 1755 (C=O), 1607, 1509 (Ar). 1H NMR (400 

MHz, CDCl3) δ 8.15 (d, J = 8.7 Hz, 2H, H-C(14)), 8.05 (s, 1H, H-C(8)), 7.50 (d, J = 

8.7 Hz, 2H, H-C(13)), 7.46 (s, 1H, NH), 7.34-7.32 (m, 2H, DMTr), 7.24-7.14 (m, 7H, 

DMTr), 6.74 (d, J = 8.6 Hz, 4H, DMTr), 5.93 (d, J = 5.2 Hz, 1H, H-C(1#)), 4.80 (t, J = 

6.8 Hz, 2H, H2-C(10)), 4.69 (q, J = 5.3 Hz, 1H, H-C(2#)), 4.56 (dd, J = 5.2, 3.3 Hz, 1H, 

H-C(3#)), 4.42-4.33 (m, 2H, H2-C(18)), 4.23-4.15 (m, 2H, H-C(4#), 2#-OH), 3.76 (s, 6H, 

OCH3), 3.43-3.21 (m, 4H, H2-C(5#), H-C(11)), 2.75 (t, J = 6.2 Hz, 2H H-C(19)), 0.89 

(s, 9H, SiC(CH3)3), 0.11 (s, 3H, Si(CH3)2), 0.04 (s, 3H, Si(CH3)2). 13C NMR (101 MHz, 

CDCl3) δ 160.8 (C(6)), 158.7 (DMTr), 152.5 (C(4)), 151.1 (C(2)), 150.5 (C(16)), 147.0 

(C(15)), 145.8 (C(12)), 144.5 (DMTr), 140.9 (C(8)), 135.8, 135.7 (DMTr), 130.1 (C(13) 

and DMTr), 128.2, 127.9, 127.0 (DMTr), 123.9 (C(14)), 118.8 (C(5)), 116.8 (C(20)), 



 

 194 

113.2 (DMTr), 90.3 (C(1#)), 86.7 (DMTr-C), 85.9 (C(4#)), 75.2 (C(2#)), 73.1 (C(3#)), 

67.1 (C(10)), 63.5 (C(5#)), 59.8 (C(18)), 55.3 (OCH3), 35.2 (C(11)), 25.9 (SiC(CH3)3), 

18.37 (C(19)), 18.27 (SiC(CH3)3), −4.56, −4.71 (Si(CH3)2). m/z ESI-HRMS (pos.) 

[M+H]+ calculated for C49H56N7O11Si, 946.3807; found 946.3787. 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2#-O-(tert-

butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)guanosine-3#-O-(2-cyanoethyl-N,N-

diisopropylphosphoramidite) 114a 

C58H72N9O12SiP; Mr = 1146.30 

 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-2#-O-(tert-

butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)guanosine 110a (1.00 g, 1.06 mmol) was 

co-evaporated with anhydrous THF (3 × 10 mL). The residue, DMAP (26.0 mg, 

0.22 mmol) and N,N-diisopropylethylamine (0.74 mL, 4.24 mmol) were dissolved in 

anhydrous THF (10 mL). 2-Cyanoethyl N,N-diisopropyl phosphoamidochloridite (0.35 

mL, 1.59 mmol) was added dropwise to the solution and the resultant mixture stirred at 

RT for 3 h. The reaction was quenched with anhydrous MeOH (5 mL) and the solvent 

removed under vacuum. The residue was purified by flash column chromatography 

(30:70:1 → 60:40:1, EtOAc:c-Hex:Et3N) to give the title compound (1.02 g, 84%) as a 

mixture of diastereoisomers as a colourless foam. Rf = 0.43 (60:40:1, EtOAc:c-

Hex:Et3N). 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 8.7 Hz, 2H, H-C(14)), 8.04, 8.02 

(2 × s, 1H, H-C(8)), 7.58-7.30 (m, 9H, H-C(13), DMTr), 7.30-7.17 (m, 2H, DMTr), 

7.09 (s, 1H, NH), 6.80 (m, 4H, DMTr), 6.01 (d, J = 7.2 Hz, 0.40H, H-C(1#)), 5.86 (d, J 

= 6.9 Hz, 0.60H, H-C(1#)), 5.12 (dd, J = 6.9, 5.2 Hz, 0.60H, H-C(2#)), 5.00 (dd, J = 7.2, 

4.5 Hz, 0.40H, H-C(2#)), 4.86 (t, J = 6.8 Hz, 2H, H2-C(10)), 4.43-4.19 (m, 4H, H-C(3#), 
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H-C(4#), H2-C(18)), 3.98-3.87 (m, 0.47H, ce OCH2), 3.98-3.87 (m, 0.53H, ce OCH2), 

3.81-3.75 (m, 6H, OCH3), 3.68-3.46 (m, 4H, iPr CH, H-C(5#), ce OCH2), 3.39-3.22 (m, 

3H, H2-C(11), H-C(5()), 2.34-2.16 (m, 3H, H2-C(19), ce CH2CN), 2.34-2.16 (m, 1H, ce 

CH2CN), 1.23-1.13 (m, 9H, iPr CH3), 1.01 (d, J = 6.7 Hz, 3H, iPr CH3), 0.75 (s, 9H, 

SiC(CH3)3), −0.01, −0.06 (2 × s, 3H, Si(CH3)2), −0.25, −0.26 (2 × s, 3H, Si(CH3)2). 13C 

NMR (100 MHz, CDCl3) δ 160.8, 160.8 (C(6)), 158.8, 158.5 (DMTr), 153.3, 153.1 

(C(4)), 151.6, 151.4 (C(2)), 150.5, 150.4 (C(16)), 147.0, 146.8 (C(15)), 145.9, 145.7 

(C(12)), 144.8, 144.6 (DMTr), 141.4, 140.6 (C(8)), 136.0, 135.8, 135.7, 135.6 (DMTr), 

130.2, 130.2, 130.1, 130.0, 129.9 (DMTr, C(13)), 128.3, 128.2, 128.1, 128.0, 127.2, 

126.9 (DMTr), 123.8, 123.6 (C(14)), 118.9, 118.6 (C(5)), 118.0, 117.4, 116.9, 116.8 

(CN), 113.4, 113.3, 113.2, 113.1 (DMTr), 88.4, 87.5 (C(1#)), 86.9, 86.6 (DMTr-C), 

84.7, 84.3 (C(4#)), 75.8, 74.1, 74.0 (C(2#)), 73.6, 73.5, 72.7, 72.6 (C(3#)), 67.1, 67.0 

(C(10)), 63.6, 63.5 (C(5#)), 59.5, 59.5, 59.7 (ce OCH2, C(18)), 59.1, 57.8, 57.6 (ce 

OCH2), 55.4, 55.1 (OCH3), 43.6,  43.5, 43.1, 43.0 (iPr CH), 35.2, 35.0 (C(11)), 25.7, 

25.7, 25.5, 25.4 (SiC(CH3)3), 24.9, 24.9, 24.8, 24.8, 24.7, 24.5, 24.5 (iPr CH3), 20.6, 

20.5, 20.2, 20.1 (ce CH2CN), 18.3, 18.2, 18.1, 18.0 (ce CH2CN, SiC(CH3)3), −4.5, −4.6, 

−4.6, −5.1, −5.3 (Si(CH3)2). 31P NMR (162 MHz, CDCl3) δ 151.32-150.91 (m), 149.25-

148.86 (m). 31P NMR (162 MHz, CDCl3, decoupled) δ 151.07 (s), 149.03 (s). m/z ESI-

HRMS (pos.) [M+H]+ calculated for C58H73N9O12SiP, 1146.4886; found 1146.4889. 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-3#-O-(tert-

butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)guanosine-2#-O-(2-cyanoethyl-N,N-

diisopropyl)phosphoramidite 114b 

C58H72N9O12PSi; Mr = 1146.30 

 

O

OTBDMSO

DMTrO
N N

N
N

HN

O

NO2
O

O

N

P
NO

N



 

 196 

N2-[(2-Cyanoethoxy)carbonyl]-O6-[2-(4-nitrophenyl)ethyl]-3#-O-tert-

butyldimethylsilyl-5#-O-(4,4#-dimethoxytrityl)guanosine 110b (1.00 g, 1.06 mmol) was 

co-evaporated with anhydrous THF (3 × 10 mL). The residue, DMAP (26.0 mg, 

0.22 mmol) and N,N-diisopropylethylamine (0.74 mL, 4.24 mmol) were dissolved in 

anhydrous THF (10 mL). 2-Cyanoethyl N,N-diisopropyl phosphoamidochloridite (0.35 

mL, 1.59 mmol) was added dropwise to the solution and the resultant mixture stirred at 

RT for 3 h. The reaction was quenched with anhydrous MeOH (5 mL) and the solvent 

removed under vacuum. The residue was purified by flash column chromatography 

(30:70:2 → 50:50:2, EtOAc:c-Hex:Et3N) to give the title compound (939 mg, 77%) as a 

mixture of diastereoisomers as a colourless foam. Rf = 0.29 (50:50:2, EtOAc:c-

Hex:Et3N). 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 7.6 Hz, 2H, H-C(14)), 8.07, 8.05 

(2 × s, 1H, H-C(8)), 7.52 (d, J = 8.6 Hz, 2H, H-C(13)), 7.45-7.17 (m, 9H, DMTr), 6.78 

(d, J = 8.6 Hz, 4H, DMTr), 6.14 (d, J = 5.2 Hz, 0.51H, H-C(1#)), 6.04 (d, J = 5.6 Hz, 

0.49H, H-C(1#)), 5.08 (dt, J = 10.8, 5.1 Hz, 0.50H, H-C(2#)), 4.86-4.76 (m, 2.50H, H2-

C(10), H-C(2#)), 4.47 (t, J = 4.1 Hz, 1H, H-C(3#)), 4.36 (q, J = 6.0 Hz, 2H, H2-C(18)), 

4.17-4.13 (m, 1H, H-C(4#)), 3.84-3.45 (m, 11H, ce OCH2, OCH3, iPr CH, H-C(5#)), 

3.35-3.27 (m, 3H, H2-C(11), H-C(5()), 2.74 (q, J = 6.2 Hz, 2H, H2-C(19)), 2.51 (t, J = 

6.3 Hz, 1H, ce CH2CN), 2.40-2.32 (m, 1H, ce CH2CN), 1.14-1.03 (m, 9H, iPr CH3), 

0.91-0.85 (m, 12H, iPr CH3, SiC(CH3)3), 0.11-0.07 (2 × s, 3H, Si(CH3)2), 0.00-−0.01 (2 

× s, 3H, Si(CH3)2). 13C NMR (CDCl3, 101 MHz) δ 160.7 (C(6)), 158.6 (DMTr), 153.1, 

153.0 (C(4)), 151.4 (C(2)), 150.5, 150.4 (C(16)), 147.0 (C(15)), 145.9 (C(12)), 144.7, 

144.7 (DMTr), 141.2, 141.1 (C(8)), 135.9, 135.8, 135.8, 135.8 (DMTr), 130.2 (DMTr, 

C(13)), 128.3, 128.0, 127.0 (DMTr), 123.8 (C(14)), 118.8, 118.7 (C(5)), 117.6, 117.6 

(ce CN), 116.9 (C(20)), 113.3 (DMTr), 87.7, 87.6, 87.6 (C(1#)), 86.8, 86.7 (DMTr-C), 

85.3, 84.8 (C(4#)), 75.8, 75.7, 75.4, 75.2 (C(2#)), 72.2, 71.9 (C(3#)), 67.1 (C(10)), 63.5, 

63.3 (C(5#)), 59.6, 59.6 (C(18)), 58.3, 58.1, 58.0, 57.8 (ce OCH2), 55.3 (OCH3), 43.4, 

43.3, 43.3, 43.1 (iPr CH), 35.2 (C(11)), 25.9 (SiC(CH3)3), 24.8, 24.8, 24.7, 24.6, 24.4, 

24.3 (iPr CH3), 20.4, 20.4, 20.1, 20.0 (ce CH2CN), 18.4 (C(19)), 18.2, 18.2 

(SiC(CH3)3), −4.3, −4.7, −4.8 (Si(CH3)2). 31P NMR (162 MHz, CDCl3) δ 150.44-149.75 

(m). 31P NMR (162 MHz, CDCl3, decoupled) δ 150.24 (s), 149.97 (s). m/z ESI-HRMS 

(pos.) [M+Na]+ calculated for C58H72N9O12NaSiP, 1168.4700; found 1168.4669. 
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2# /3#-O-(Acetyl)-5#-O-(4,4#-dimethoxytrityl)uridine 92a+92b‡ 

C32H32N2O9; Mr = 588.60 

  

To a solution of commercially available 5#-O-(4,4#-dimethoxytrityl)uridine 91 (3.00 g, 

5.49 mmol) in anhydrous THF (20 mL) was added anhydrous pyridine (0.44 mL, 

5.49 mmol), followed by acetyl chloride (0.39 mL, 5.49 mmol) at 0 °C. The mixture 

was warmed to RT and stirred for 3 h, then quenched by addition of saturated aq. 

NaHCO3. The organics were extracted with CH2Cl2 (3 × 20 mL), the combined organic 

layers were dried over MgSO4 and finaly concentrated under vacuum. The residue was 

purified by flash column chromatography (50:50:1:1, EtOAc:Tol.:MeOH:Et3N) to give 

the title compounds (2.20 g, 68%) as a regioisomeric mixture and as a colourless foam. 

(Note: the isomers were isolated as a mixture in a ratio of ca. 2.4:1, b:a calculated by 

integrations of both H-C(1#) of 92a+92b). Rf = 0.32 (60:40:1 CH2Cl2:EtOAc:Et3N).  1H 

NMR (400 MHz, CDCl3) δ 9.40 (s, 0.7H, NH, b), 8.66 (d, J = 1.4 Hz, 0.3H, NH, a), 

7.84 (d, J = 8.1 Hz, 0.7H, H-C(6), b), 7.79 (d, J = 8.2 Hz, 0.3H, H-C(6), a), 7.44-7.18 

(m, 9H, DMTr, a+b), 6.84 (d, J = 8.8 Hz, 4H, DMTr, a+b), 6.14 (d, J = 4.5 Hz, 0.3H, 

H-C(1#), a), 6.00 (d, J = 4.9 Hz, 0.7H, H-C(1#), b), 5.45-5.33 (m, 1.3H, [H-C(5), a+b], 

[H-C(2#), a]), 5.26 (t, J = 4.9 Hz, 0.7H, H-C(3#), b), 4.59 (q, J = 4.8 Hz, 0.3H, H-C(3#), 

a), 4.53 (q, J = 5.4 Hz, 0.7H, H-C(2#), b), 4.28 (d, J = 4.4 Hz, 0.7H, H-C(4#), b), 4.14 

(dt, J = 4.9, 2.3 Hz, 0.3H, H-C(4#), a), 3.91 (d, J = 6.5 Hz, 0.7H, 2#-OH, b), 3.79 (s, 6H, 

OCH3, a+b), 3.55 (app. dd, J = 11.0, 2.3 Hz, 1H, H-C(5#), a+b), 3.49-3.43 (m, 1H, H-

C(5(), a+b), 2.48 (d, J = 3.9 Hz, 0.3H, 3#-OH, a) 2.18, 2.14 (2 × s, 3H, CO-CH3, a+b). 
13C NMR (CDCl3, 101 MHz): δ 170.7, 170.5 (CO-CH3), 163.7, 163.4 (C(4)), 158.8, 

158.7 (DMTr), 151.2 (C(2), b), 150.6 (C(2), a), 147.4, 144.2 (DMTr), 140.2, 140.0, 

139.6 (C(6), a+b), 135.3, 135.2, 135.1, 130.3, 130.2, 130.2, 129.2, 129.1, 128.3, 128.3, 

128.2, 128.2, 127.9, 127.9, 127.3, 127.2, 113.4, 113.2 (DMTr), 102.8, 102.8 (C(5), 

a+b), 89.5 (C(1#), b), 87.4, 87.3 (DMTr-C), 86.8 (C(1#), a), 83.7 (C(4#), a), 81.7, 81.5 

(C(4#), b), 76.0, 75.8 (C(2#), a), 74.1 (C(2#), b), 71.9 (C(3#), b), 69.9 (C(3#), a), 62.4 
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(C(5#), a), 62.2 (C(5#), a), 55.4 (OCH3, a+b), 21.6 (CO-CH3, a), 20.9 (CO-CH3, b). m/z 

ESI-HRMS (pos.) [M+Na]+ calculated for C32H32N2O9Na, 611.2000; found 611.1979. 

2#-O-(Acetyl)-5#-O-(4,4#-dimethoxytrityl)uridine-3#-O-(2-cyanoethyl-N,N-

diisopropyl)phosphoramidite 107a and 3#-O-(acetyl)-5#-O-(4,4#-

dimethoxytrityl)uridine-2#-O-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite 

107b‡ 

C41H49N4O10P; Mr = 788.82 

   

2#/3#-O-Acetyl-5#-O-(4,4#-dimethoxytrityl)uridine 92a+92b (1.10 g, 1.87 mmol) was 

dissolved in anhydrous THF (6 mL). To this solution was added 2-cyanoethyl 

N,N,N!,N!-tetraisopropyl phosphoramidite (1.20 mL, 3.74 mmol), followed by slow 

addition of a solution of 5-benzylthio-1H-tetrazole in anhydrous CH3CN (0.35 M, 

5.40 mL). The mixture was stirred at RT for 2 h and quenched by addition of saturated 

aq. NaHCO3 (6 mL). The organics were extracted with EtOAc (3 × 10 mL), the 

combined organic layers were dried over MgSO4 and finally concentrated under 

vacuum. The residue was purified by a short flash column chromatography (100% 

EtOAc) to remove 5-benzylthio-1H-tetrazole. The regioisomers were dissolved in 

EtOAc (∼200 mg/mL), and separated by NP-HPLC (Method E), with retention times of 

9 min (b), 10.5 min (b), 13 min (a) and 19 min (a). The separated title regioisomers 

were isolated as mixtures of two diastereomers in the form of colourless foams, 107a 

(440 mg, 30%, contained H-phosphonate) and 107b (750 mg, 48%). 

Data for 107aƒ 

1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H, NH), 7.81-7.69 (m, 1H, H-C(6)), 7.45-7.20 

(m, 9H, DMTr), 6.90-6.78 (m, 4H, DMTr), 6.24-6.12 (m, 1H, H-C(1#)), 5.53 (t, J = 5.3 

Hz, 0.4H, H-C(2#)), 5.38 (t, J = 5.7 Hz, 0.6H, H-C(2#)), 5.36-5.27 (m, 1H, H-C(5)), 

4.76-4.61 (m, 1H, H-C(3#)), 4.30 (d, J = 2.6 Hz, 0.5H, H-C(4#)), 4.20 (d, J = 3.4 Hz, 
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0.5H, H-C(4#)), 3.98-3.85 (m, 0.5H, ce OCH2), 3.84-3.74 (m, 6H, OCH3), 3.73-3.39 (m, 

5.5H, ce OCH2, H2-C(5#), iPr CH), 2.66 (td, J = 6.2, 1.9 Hz, 0.8H, ce CH2CN), 2.46-

2.31 (m, 1.2H, ce CH2CN), 2.20-2.07 (m, 3H, CO-CH3), 1.32-1.01 (m, 12H, iPr CH3). 
13C NMR (101 MHz, CDCl3) δ 169.9, 169.7 (CO-CH3), 162.7, 162.7 (C(4)), 158.9 

(DMTr), 150.3 (C(2)), 144.2, 144.1 (DMTr), 140.1 (C(6)), 135.3, 135.2, 135.1, 135.0, 

134.4, 130.4, 130.3, 128.5, 128.4, 128.2, 128.2, 127.4, 127.4 (DMTr), 117.8, 117.4 

(CN), 113.5, 113.4 (DMTr), 102.9, 102.9 (C(5)), 87.5, 87.4 (DMTr-C), 86.5, 86.3 

(C(1#)), 84.2, 83.8, 83.7 (C(4#)), 74.8, 74.5, 74.5 (C(2#)), 71.5, 71.3, 70.7, 70.5 (C(3#)), 

62.7, 62.5 (C(5#)), 58.9, 58.7, 58.3, 58.1, 57.9 (ce OCH2), 55.4, 55.4 (OCH3), 43.5, 

43.4, 43.3 (iPr CH), 24.8, 24.7, 24.7, 24.7, 24.7 (iPr CH3), 21.1, 20.9 (CO-CH3, 20.5, 

20.5, 20.3, 20.3 (ce CH2CN). 31P NMR (162 MHz, CDCl3) δ 151.03 (m), 150.25 (m). 
31P NMR (162 MHz, CDCl3, decoupled) δ 151.04 (s), 150.25 (s). m/z ESI-HRMS (pos.) 

[M+Na]+ calculated for C41H49N4O10PNa+, 881.3084; found 811.3083. 

Data for 107b 

1H NMR (400 MHz, CDCl3) δ 8.57 (br. s, 1H, NH), 7.86 (dd, J = 10.1, 8.1 Hz, 1H, H-

C(6)), 7.38-7.22 (m, 9H, DMTr), 6.85-6.83 (m, 4H, DMTr), 6.13, 6.09 (2 × d, J = 4.4 

Hz, 1H, H-C(1#)), 5.39-5.27 (m, 2H, H-C(5), H-C(3#)), 4.63-4.56 (m, 1H, H-C(2#)) 4.23-

4.22 (m, 1H, H-C(4#)), 3.89-3.55 (m, 11H, ce OCH2, OCH3, iPr CH, H-C(5#)), 3.46-

3.41 (m, 1H, H-C(5()), 2.67-2.53 (m, 2H, ce CH2CN), 2.10 (2 × s, 3H, CO-CH3), 1.18-

1.14 (m, 12H, iPr CH3). 13C NMR (CDCl3, 101 MHz): δ 170.0, 169.9 (CO-CH3), 162.9, 

162.9 (C(4)), 158.9 (DMTr), 150.3, 150.2 (C(2)), 144.3, 144.3 (DMTr), 140.3, 140.1 

(C(6)), 135.2, 135.1, 130.3, 130.2, 128.2, 128.2, 128.2, 127.4 (DMTr), 117.8, 117.6 (ce 

CH2CN), 113.5, 113.5 (DMTr), 102.6, 102.6 (C(5)), 88.3, 88.2 (C(1#)), 87.6, 87.5 

(DMTr-C), 81.5 (C(4#)), 74.9, 74.8, 74.6, 74.5 (C(2#)), 71.3, 71.3, 71.1 (C(3#)), 62.2, 

62.0 (C(5#)), 58.8, 58.6, 58.6, 58.4 (ce OCH2), 55.4 (OCH3), 43.7, 43.6, 43.5, 43.5 (iPr 

CH), 24.9, 24.8, 24.7, 24.7, 24.6, 24.6 (iPr CH3), 21.1, 21.0 (CO-CH3), 20.4, 20.4, 20.3, 

20.3 (ce CH2CN). 31P NMR (162 MHz, CDCl3) δ 152.01-151.60 (m), 151.28-150.88 

(m). 31P NMR (162 MHz, CDCl3, decoupled) δ 151.80 (s), 151.11 (s). m/z ESI-HRMS 

(pos.) [M+Na]+ calculated for C41H49N4O10PNa+, 811.3084; found 811.3072. 
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3#-O-(tert-Butyldimethylsilyl)-5#-O-(4,4#-dimethoxytrityl)uridine-2#-O-(2-

cyanoethyl-N,N-diisopropyl)phosphoramidite 115b‡ 

C45H61N4O9Psi; Mr = 861.05 

 

Commercially available 3#-O-(tert-butyldimethylsilyl)-5#-O-(4,4#-

dimethoxytrityl)uridine 111 (1.50 g, 2.27 mmol) was co-evaporated with anhydrous 

THF (3 × 10 mL). The residue and N,N-diisopropylethylamine (1.20 mL, 6.81 mmol) 

were dissolved in anhydrous THF (12 mL). 2-Cyanoethyl N,N-diisopropyl 

phosphoamidochloridite (0.61 mL, 2.72  mmol) was added to the solution dropwise at 

0 °C and the resultant mixture stirred at RT for 4 h. The reaction was quenched with 

anhydrous MeOH (2.5 mL) and the solvent removed under vacuum. The residue was 

taken up in EtOAc (10 mL) and the organics were washed with saturated aq. NaHCO3 

(3 × 10 mL). The organics were separated and dried over MgSO4 and evaporated to 

dryness.  The residue was then purified by flash column chromatography (50:50:1 

EtOAc:c-Hex:Et3N) to give the title compound (1.80 g, 92%) as a colourless foam. 1H 

NMR (400 MHz, CDCl3) δ 8.72, 8.53 (2 × s, 1H, NH), 8.14, 8.06 (2 × d, J = 8.2 Hz, 

1H, H-C(6)), 7.38-7.23 (m, 9H, DMTr), 6.87-6.81 (m, 4H, DMTr), 6.15 (d, J = 3.2 Hz, 

0.4H, H-C(1#)), 6.06 (d, J = 2.2 Hz, 0.6H, H-C(1#)), 5.35, 5.27 (2 × d, J = 8.1 Hz, 1H, 

H-C(5)), 4.37-4.19 (m, 2H, H-C(2#), H-C(3#)), 4.14-4.06 (m, 1H, H-C(4#)), 3.99-3.85 

(m, 1H, ce OCH2), 3.84-3.54 (m, 10H, OCH3, ce OCH2, iPr CH, H-C(5#)), 3.37-3.29 (m, 

1H, H-C(5()), 2.72-2.47 (m, 2H, ce CH2CN), 1.18-1.15 (m, 12H, iPr CH3), 0.80-0.78 

(m, 9H, SiC(CH3)3), 0.09, 0.04 (2 × s, 3H, Si(CH3)2), −0.01, −0.03 (2 × s, 3H, 

Si(CH3)2). 13C NMR (CDCl3, 101 MHz) δ 163.2, 163.1 (C(4)), 158.9, 158.9 (DMTr), 

150.3, 150.1 (C(2)), 144.2, 144.2 (DMTr), 140.6, 140.4 (C(6)), 135.2, 135.1, 135.0, 

130.4, 130.4, 128.5, 128.4, 128.1, 127.4, 127.4 (DMTr), 118.1, 117.8 (ce CH2CN), 

113.4, 113.4 (DMTr), 102.2, 102.1 (C(5)), 88.7, 88.6, 88.5 (C(1#)), 87.4, 87.3 (DMTr-
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C), 83.6, 83.5 (C(4#)), 76.6, 76.5 (C(2#))j, 70.5, 70.5, 70.4 (C(3#)), 61.7, 61.6 (C(5#)), 

58.5, 58.3, 58.3, 58.1 (ce OCH2), 55.4, 55.4 (OCH3), 43.5, 43.4, 43.3 (iPr CH), 25.9 

(SiC(CH3)3), 24.9, 24.9, 24.8, 24.8, 24.6, 24.5 (iPr CH3), 20.5, 20.4, 20.4, 20.3 (ce 

CH2CN), 18.2, 18.1 (SiC(CH3)3), −4.1, −4.2, −4.8, −4.9 (Si(CH3)2). 31P NMR (162 

MHz, CDCl3) δ 150.60-150.25 (m), 149.59-149.25 (m). 31P NMR (162 MHz, CDCl3, 

decoupled) δ 150.42 (s), 149.37 (s). m/z ESI-HRMS (pos.) [M+Na]+ calculated for 

C45H61O9N4PSiNa+, 883.3838; found 883.3816. 

6.2.2. Preparation of the Solid-Phase Support 

Methyl 4-(1-(bis(4-methoxyphenyl)(phenyl)methoxy)ethyl)-3-nitrobenzoate 123 

C31H29NO7, Mr = 527.56 

 

Methyl 3-formyl-4-nitrobenzoate 120 (5.00 g, 23.9 mmol) was dissolved in anhydrous 

diethyl ether (150 mL) and methylmagnesium bromide (1 M in dibutyl ether, 59.7 mL, 

59.7 mmol) was added dropwise slowly, maintaining the reaction vessel at RT. The 

reaction mixture was stirred for 4 h and quenched with the addition of saturated 

ammonium chloride (50 mL). The organics were extracted with Et2O (3 x 50 mL), the 

combined organic layers were washed with water (50 mL), brine (50 mL) and dried 

over MgSO4. The solvent was remove under vacuum and the residue was purified by 

flash column chromatography (50:50, EtOAc:c-Hex; Rf  = 0.27 (90:10, CHCl3:EtOAc)). 

The product was found to also contain a benzyl alcohol side product that could not be 

separated by flash column chromatography. The material was used in the next step 

without further purification. Alcohol 121 (1.22 g, 5.42 mmol) was co-evaporated with 

anhydrous pyridine (3×10 mL). The residue and DMTr-Cl (2.75 g, 8.12 mmol) were 

dissolved in anhydrous pyridine (20 mL) and anhydrous CH2Cl2 (10 mL) and the 

reaction mixture stirred at RT overnight. MeOH (20 mL) was added and the mixture 

stirred for a further 10 min before the solvent was removed under vacuum. The residue 

was dissolved in CHCl3 (50 mL) and washed with saturated aq. NaHCO3 (2 × 40 mL). 

                                                
j Partial overlap with CDCl3 
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The organic layer was dried over MgSO4 and evaporated under vacuum. The residue 

was purified by flash column chromatography (6:4, c-Hex:CHCl3) to afford a yellow 

oil. This residue contained the benzyl side product from the previous step and was 

further purified by NP-HLPC (Method F), with a retention time of 15.5 min. To give the 

title product (1.02 g, 9%) as a colourless solid. Rf  = 0.33 (99:1, toluene:Et3N). IR 

(cm−1) 1725 (C=O), 1607 (Ar), 1530, 1507 (Ar), 1282, 1247, 1149, 1029. 1H NMR 

(400 MHz, CDCl3) δ 8.21 (d, J = 1.7 Hz, 1H, H-C(2)), 7.97 (dd, J = 8.2, 1.7 Hz, 1H, H-

C(6)), 7.82 (d, J = 8.2 Hz, 1H, H-C(5)), 7.48-7.43 (m, 2H, DMTr), 7.29-7.10 (m, 7H, 

DMTr), 6.68-6.59 (m, 4H, DMTr), 5.23 (q, J = 6.2 Hz, 1H, H-C(7)), 3.92 (s, 3H, CO-

OCH3), 3.74, 3.73 (2×s, 6H, DMTr OCH3), 1.65 (d, J = 6.2 Hz, 3H, H3-C(8)). 13C NMR 

(CDCl3, 101 MHz) δ  165.0, 158.5, 158.4, 147.6, 146.0, 145.3, 136.2, 135.7, 132.0, 

130.1, 130.02, 130.0, 128.7, 127.8, 127.8, 126.8, 124.7, 113.1, 113.0, 68.0, 55.2, 55.2, 

52.5, 24.8. m/z ESI-HRMS (pos.) [M+Na]+ calculated for C31H29O7N1Na+, 550.1836; 

found 550.1827. 

Procedure for the Preparation of the Photolabile-CPG 126‡ 

 

Methyl 4-(1-(bis(4-methoxyphenyl)(phenyl)methoxy)ethyl)-3-nitrobenzoate 123 

(500 mg, 0.94 mmol) was dissolved in THF (1.50 mL) and water (0.50 mL). LiOH 

(24.9 mg, 1.04 mmol) was added and the mixture was stirred at RT for 24 h, the 

reaction monitored by TLC until no starting material was observable. The solvent was 

removed to give a white solid and this material was used in the next step without further 

purification. The lithium salt (250 mg, 0.48 mmol) was co-evaporated with anhydrous 

pyridine (3 × 4 mL). The residue was dissolved in anhydrous pyridine (4 mL), 

isobutylchloroformate (72.0 mg, 0.53 mmol) was added and the formation of a white 

precipitate was observed. The reaction mixture was stirred for 30 min before the 

precipitate was removed by filtration under argon and the supernatant filtered directly 

into oven-dried glassware. The solvent was removed under vacuum and the subsequent 

mixed anhydride was dissolved in anhydrous CH2Cl2 (4 mL) followed by the addition 

of N,N-diisopropylethylamine (68 mg, 0.53 mmol) and long chain alkylamine 

controlled pore glass (250 mg, 120-200 mesh, nominal diameter 500 Å, 100-175 

ODMTr

NO2

H
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µmolg−1). The suspension was rotated gently under argon at RT for 24 h. The CPG was 

filtered and washed with CH2Cl2, MeCN, water, MeCN and finally CH2Cl2 (15 mL 

each). The modified CPG was dried overnight under vacuum then treated with CAP A 

(80:10:10, THF:2,6-lutidine:pivaloyl chloride) (2 mL) and commercially available CAP 

B (90:10, THF:N-methylimidazole) (2 mL) solution and the mixture was rotated gently 

for 1.5 h. The CPG was filtered and washed with CH2Cl2 (15 mL) and dried under 

vacuum. The loading was determined by Trityl assay (see below - Section 6.2.3) and 

loading values of 33.3-56.2 µmolg−1 were obtained. The prepared CPG was stored in 

the dark at 4 °C.  

6.2.3. Synthesis of oligonucleotides 

General Methods 

Trityl assays[183] were conducted using a Varian CARY 6000i UV-Vis spectrometer. 

The solid-support (3-4 mg for CPG loading calculations) was accurately weighed into a 

10 or 50 mL volumetric flask. 3% TCA in CH2Cl2 was added and the absorption of the 

resultant orange solution was measured on the spectrometer at λ 503 nm. The loading 

was calculated using the equation below: 

Loading (µmolg-1) = (A503 × 
vol
76

) × (
1000
wt

) 

Equation 1. Equation to calculate the loading. A503 is the absorption at λ 503 nm, vol is 
the volume of the solution in mL, 76 µmol−1 mL cm−1 is the extinction coefficient at 
λ 503 nm and wt is the amount of support in mg. Path length assumed to be 1 cm. 

RNA was quantitated using an Eppendorf Biophotometer Plus by dissolving the 

oligonucleotide of interest in a known volume of H2O. A 10 µL aliquot of this solution 

was diluted to a volume of 1 mL and a UV absorbance at λ 260 nm was obtained. The 

concentration (nmolmL−1) calculated using the below equation: 

Oligonucleotide concentration nmolmL-1  = 
A260× dilution factor × 106

Molar extinction coefficient
 

Equation 4. Equation for the quantification of oligonucleotides. 
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RNA synthesis was typically conducted on a 1 µmol scale and desalted using a Waters 

C18 Sep-Pak® column using the following protocol: A Waters C18 Sep-Pak® column 

(2 g, 12cc) was washed with MeOH (20 mL) then water (20 mL). The RNA sample was 

diluted 1:1 with 1 M triethylammonium acetate (TEAA) buffer (pH 7) and loaded 

slowly on to the cartridge. The column was flushed slowly with TEAA (50 mM, pH 7, 

12 mL) and the oligonucleotide was eluted with 50 mM TEAA:MeOH (7:3, 10 mL) and 

collected in 5 × 2 mL fractions. Fractions containing RNA were determined by UV 

absorbance at λ 260 nm were combined, lyophilised, redissolved in water and 

re-lyophilised to remove traces of TEAA buffer. 

Synthesis of the Acetylated RNA Oligonucleotides 

Oligonucleotides (Table 9, entries 3-9) were synthesised as described below. Additional 

non-acetylated oligonucleotides used in Tm and thermodynamic studies were purchased 

in HPLC-purified Na+ form from Integrated DNA Technologies. 

Conditions and materials for the automated synthesis of acetyl-RNA 

oligonucleotides 

RNA oligonucleotide synthesis was performed using a Bioautomation MerMade 4 on a 

1 µmol scale using monomers 112-115 (0.1 M in 1:1 CH2Cl2:MeCN), acetylated 

monomers 103, 104, 106 and 107 (0.1 M, CH2CH2) and utilised the photolabile-CPG 

126. The synthesis cycle began with detritylation using 3% dichloroacetic acid (DCA) 

in CH2Cl2. The coupling step utilised 80 µL of each amidite (0.1 M, 1:1, 

MeCN:CH2Cl2) and 1 M 4,5-dicyanoimidazole (DCI) as the activator with a single 20 

min coupling, with the exception that the acetylated amidites were given a 17 min 

double coupling step. A 5 min capping step was carried out with CAP A (THF:2,6-

lutidine:pivalic anhydride) and CAP B (90:10, THF:N-methylimidazole) solutions. The 

oxidation of the phosphites was carried out with 0.02 M iodine (THF/pyridine/water, 

7:2:1). The automation program was set as DMTr-ON such that the final DMTr group 

not removed. 

Deprotection, cleavage and purification of acetyl-RNA oligonucleotides 

Without removal of the CPG from the synthesis column, the CPG was dried under 

vacuum for 15 min. A solution of 0.5 M DBU in anhydrous MeCN (3.5 mL, 10% 
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morpholine) was initially passed through the column for 5 min then the column and 

CPG were immersed in the DBU solution under an atmosphere of argon for 6 h at 40 °C 

with sonication every hour. The column was washed with anhydrous acetonitrile 

(10 mL) and CH2Cl2 (10 mL). The final DMTr group was removed by passing 3% TCA 

in CH2Cl2 through the column until the washings became colourless. The collected 

orange coloured solution was diluted to 50 mL with CH2Cl2 and the yield of full length 

product calculated by trityl assay. At this point the CPG was extracted and placed into a 

4 mL UV transparent vessel (Corning costar 24 Well Cell Culture Cluster 3526) and 

suspended in DMSO (0.5 mL). The CPG was irradiated at λ = 365 nm (max = 

34.5 mW/cm2, Prizmatix Mic-LED-365) for 1 h. The CPG was removed by filtration, 

washed with DMSO (2 × 0.5 mL) and the fractions combined. The DMSO was removed 

by lyophilisation and the residue redissolved in anhydrous DMSO (200 µL). To the 

solution Et3N.3HF (125 µL) was added, the mixture was thoroughly mixed and then 

heated at 65 °C for 3 h. The fully deprotected oligonucleotide were desalted by using a 

Waters C18 Sep-Pak® column or more commonly by the precipitation method as 

follows. Firstly, 3 M sodium acetate (25 µL, pH 7) was added followed by thorough 

mixing. After the addition of n-butanol (1 mL) the mixture was cooled at -80 °C for 30 

min and then centrifuged for 10 min at 13200 rpm. The n-butanol was decanted, 

followed by washing of the pellet with ethanol (2 × 0.75 mL) and finally drying the 

pellet in a SpeedVac at 65 °C for 1 h. The dried pellet was dissolved in RNAase-free 

water (0.5-1 mL) and the RNA oligomer was quantified by UV absorbance at λ 260 nm 

and analysed by MALDI-TOF MS to assess the synthesis. Dephosphorylation (if 

required) of the acetylated RNA oligonucleotide began by dilution to a concentration of 

1µg/10µL with PBS buffer (0.01 M phosphate, 0.138 M NaCl, 0.0027 M KCl, 1 M 

MgCl2, pH 7.4). To the dissolved RNA oligonucleotide calf intestinal alkaline 

phosphatase (0.5u/µg) was added and the mixture heated at 37 °C for 1 h. To the 

solution was added one volume of 1 M TEAA buffer (pH 7) and the oligonucleotide 

was desalted using a Waters C18 Sep-Pak® column prior to HPLC purification of the 

oligonucleotide. Acetylated RNA oligomers were purified by preparative SAX-HPLC 

(Method G). The target fractions were combined and desalted by dialysis (Thermo 

Scientific Slide-A-Lyzer Dialysis Cassettes, 2K MWCO) against 10 mM TEAA buffer 

pH 7.0 at 4 °C. Finally the purified oligonucleotides were quantified by UV absorbance 

at 260 nm, and characterised by MALDI-TOF MS. 
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Synthesis of non-acetylated oligonucleotides 

Non-acetylated oligonucleotides (Table 9, entry 1-2) were synthesised using a 

BioAutomation MerMade 4 on a 1 µmol scale utilising standard RNA 

phosphormamidites and reagents from ChemGenes or Link Technologies. 2#-5#-linkages 

were introduced using 3#-TBDMS phosphoramidites from ChemGenes. Oligomers were 

purified by SAX-HPLC (Method H), target fractions were immediately neutralised with 

one volume of 1M TEAA buffer (pH 7). The combined target fractions were desalted 

by Waters C18 Sep-Pak® column. The oligomers were quantified by UV absorbance at 

260 nm and were characterised by MALDI-TOF MS. 

Entry RNA Sequence (5#-3#) 
Average Mass for 
[M+H]+ (Da) 
Calc. Obser. 

1 UGUGCCAGUA-3’,5’-GGUUCUC 5381.26 5378.58 
2 UGUGCCAGUA-2’,5’-GGUUCUC 5381.26 5378.89 
3 UGUGCCAGUA-3’,5’(2#OAc)-GGUUCUC 5423.29 5424.24 
4 UGUGCCAGUA-2’,5’(3#OAc)-GGUUCUC 5423.29 5422.84 
5 CCAG-3’,5’(2#OAc)-UAGGU-3’,5’(2’OAc)-UCUC 4162.59 4163.47 
6 GAGA-3’,5’(2#OAc)-ACC-3’,5’(2#OAc)-UACUGG 4248.70 4249.72 
7 GCCG-3’,5’(2#OAc)-UAAGGC 3242.07 3242.60 
8 GCCG-3’,5’(2#OAc)-AGAGGC 3281.06 3281.95 
9 GCCG-3’,5’(2#OAc)-AGAG-3’,5’(2’OAc)-GC 3323.06 3324.24 

Table 9. Synthesised RNA oligomers and their MALDI-TOF MS characterisation data. 
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Continued overleaf. 

 

Continued overleaf. 
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Figure 120. MADLI-TOF mass spectrum and HPLC traces of the synthesised partially 
acetylated RNA oligonucleotides from Table 9. 

6.3. Procedures for Chapter 3 

General procedure for measuring UV melting curves 

Oligomers used for Tm measurements were converted to the Na+ form using prewashed 

Bio-rad AG® 50W-X8 resin. An excess of resin (100 mg) was added to an aqueous 

solution of RNA oligomer (0.5-1.0 mL) and the mixture agitated for a minimum of 4 h. 

The resin was removed by filtration and washed with water (2 × 250 µL), the oligomer 

was quantified by UV absorbance at 260 nm. UV thermal melting curves were acquired 

using a Varian CARY 6000i UV-Vis spectrometer equipped with a multi-sample Peltier 

temperature controller. All measurements were carried out in 10 mM Na2HPO4, 0.5 mM 
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Na2EDTA buffer (pH 7) and between 0.1-1 M NaCl. Prior to UV measurements, 

samples were degassed by heating at 95 °C for 4 min followed by brief sonication and 

slowly cooling to RT. Measurements were made in masked quartz cuvettes with mineral 

oil layered over the sample to reduce evaporation. Absorbance versus temperature 

spectra were measured within a range of 10-95 °C and at λ 260 nm (280 nm was used 

with some GC rich oligonucleotides).[328] The temperature was ramped at a rate of 

0.5 °Cmin-1 with absorbance measurements taken at a 0.5 °C intervals. The 

oligonucleotides were annealed and equilibrated by the first heat-cool cycle and holding 

at the maximum temperature in the range selected for 5 min. UV melting heat-cool runs 

were then conducted in triplicate holding for 5 min between ramps.  

Data analysis, Tm and thermodynamic parameter calculation 

Data analysis, Tm and thermodynamic parameter calculations were conducted with 

GraphPad Prism 5.0d and Microsoft Excel:Mac 2011.[262, 329] To calculate the Tm, the 

absorbance verses temperature melting curves were first converted to a normalised 

absorbance (An) versus temperature (T) curve. Assuming a two-state model[260] the 

lower (B1T) and upper (B0T) baselines (corresponding to fully associated/folded and 

fully dissociated/unfolded respectively) were computed by performing a linear 

regression on the associated and dissociated parts of the normalised melting curves. The 

equations of each baseline were used to transform the normalised absorbance (An) 

versus temperature (T) plots into a fraction associated/folded (α) versus temperature (T) 

plots using Equation 5. Finally, the Tm was extracted by reading the temperature at α = 

0.5. The data from three heat-cool cycles were analysed as described above and an 

average of the six Tm values were taken as the final Tm. 

α = 
B0T ! ATn
B0T !− B1T

 

Equation 5. The equation used to convert the normalised absorbance (A) versus 

temperature (T) plot to a fraction folded/associated (α) versus temperature (T) plot. 

Thermodynamic parameters were calculated using a van’t Hoff analysis using Microsoft 

Excel for Mac 2011. The data analysis was restricted to the range 0.15 < α < 0.85. The 

association constant (Ka) was calculated for each data point using the equations 
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below[263], where the association involves non-self-complementary sequences either 

monomolecular (i.e. hairpin formation) or bimolecular (i.e. duplex formation): 

Ka =
α

!( CT
n
)
n!1
(1!!!α)n

 

Equation 2. Calculation of the association constant (Ka) for non-self-complementary 
sequences, in terms of fraction associated (α), total oligonucleotide concentration (CT) 
and the molecularity (n ,e.g. n = 2 for a bimolecular interaction). 

For Tm experiments in which the equilibria involve self-complementary sequences the 

following equation was used: 

Ka = 
α

(nCT
n!1)(1!!!α)n!

Equation 6. Calculation of the association constant (Ka) for self-complementary 
sequences. 

In all cases: 

ΔG° = !RTln(Ka) = ΔH°!T.∆S° 

Therefore;                                ln(Ka) = "∆H°
R
. 1
Tm
+! ∆S°

R
  

Equation 3. Derivation to calculate the thermodynamic parameters of the melting 
curves. R = Gas Constant (8.314 JK−1mol−1), T = temperature (°C), ΔG° = Gibbs free 
energy (kJmol−1), ΔH° = Enthalpy (kJmol−1), ΔS° = Entropy (JK−1mol−1) and Ka = 
association constant. 

From the above derivation a plot of ln(Ka) versus 1/Tm was made, which should result in 

a straight line and is otherwise called a van’t Hoff plot. A linear regression was 

performed in GraphPad Prism and from the straight line the values for the slope which 

gives −ΔH°/R and y-intercept which gives ΔS°/R were extracted (where R is the ideal 

gas constant). Thus, the Gibb’s energy (ΔG°) can be calculated using: 

ΔG° = ΔH°!T.∆S° 

Equation 7. Gibbs free energy equation where T is temperature in Kelvins (0 °C = 
273.15 K), ΔH° is the standard enthalpy and ΔS° is the standard entropy. 
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6.4. Procedures for Chapter 4 

6.4.1. Synthetic procedures for materials used in the aminoacylation 

reactions 

Propiolamide 152 

C3H3NO; Mr = 69.02 

 

Methyl propiolate (20.0 g, 238 mmol) was added to liquid ammonia (150 mL) at -55 °C 

and stirred for 24 h under an atmosphere of nitrogen. Excess ammonia was removed by 

warming the solution to RT and bubbling nitrogen through the solution over 2 h. This 

resulted in a colourless oil, which was dissolved in Et2O (200 mL), dried over MgSO4 

and evaporated to dryness. The crude product was dissolved in warm anhydrous CH2Cl2 

and cooled to −20 °C overnight to give propiolamide as white needle-like crystals (15.8 

g, 96%). M.P. = 57-59 °C (Lit.[330] 61-62 °C). IR (cm−1) 3319, 3111 (br., N-H), 3291 

(med, alkyne C-H), 2106 (str, C≡C), 1651 and 1613 (s, C=O). 1H NMR (Acetone-D6, 

400 MHz) δ 7.44 (1H, s, CO-NH2), 7.01 (1H, s, CO-NH2), 3.48 (1H, s, H-CC). 13C 

NMR (D2O, 100 MHz) δ 154.8 (CO), 78.5 (HCC-CO), 74.6 (HCC-CO). m/z ESI+: 70 

([M+H]+, 100%). 

Cyanoacetylene 7 

C3HN; Mr = 51.01 

 

Propiolamide 152 (1.00 g, 14.4 mmol), oven dry chromatography grade sand (8 g) and 

P2O5 (4.11 g, 29.0 mmol) were mixed together with a mortar and pestle. The mixture 

was dry distilled at 130 °C under a slight vacuum for 1 h. Cyanoacetylene (550 mg, 

74%) was condensed at −78 °C and was isolated as a white colourless solid. The white 

solid was dissolved immediately in required solvent (at low temperature to prevent loss 

NH2

O

N
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of cyanoacetylene, aliquoted and stored at −85 °C. 1H NMR (D2O, 300 MHz) δ 2.54 (s , 

1H, H-CC). 13C NMR (D2O, 100 MHz) δ 105.0 (CN), 76.1 (t, J = 41.1 Hz, DCC), 55.8 

(t, J = 7.8 Hz, DCC-).  

(S)-2-Amino-3-methylbutanethioic S-acid (thiovaline) 134 

C5H11NOS; Mr = 133.21 

 

Boc-Val-OH 135 (500 mg, 2.30 mmol) and N-methyl morpholine (0.38 mL, 3.45 

mmol) was dissolved in anhydrous THF (5 mL). Isobutyl chloroformate (0.45 mL, 

3.45 mmol) was added dropwise at −20 °C, the resultant mixture was warmed to 0 °C 

and stirred for 1 h. A suspension of Li2S (210 mg, 4.60 mmol) in anhydrous DMF 

(10 mL) was added to the solution of activated Boc-val-OH via a cannula. The resultant 

green mixture was stirred for 1 hr at 0 °C, then water (15 mL) was added and the 

mixture further stirred for another 1 hr. The solution was adjusted to pH = 3 with 1 M 

HCl and extracted with EtOAc (3 × 20 mL). The organic layer was washed with water 

(3 × 30mL), then with brine (20 mL) and dried over MgSO4. The solvent was removed 

under vacuum giving the crude Boc-Val-SH 136 (512 mg) as a yellow oil. The crude 

residue was dissolved in freshly distilled TFA (5 mL) and stirred for 1 h at 0 °C and at 

RT for a further 1 h. The mixture was evaporated to dryness under vacuum and the 

cream coloured residue was triturated with anhydrous Et2O (20 mL). The precipitate 

was collected by filtration under a nitrogen atmosphere and further washed with 

anhydrous Et2O (20 mL). The wet solid was dried under vacuum and then dissolved in 

water (5 mL). The resultant solution was filtered and the supernatant lyophilized to give 

the title compound (209 mg, 69%) as a colourless powder. M.P. = 340 °C (decomp.). IR 

(cm−1) 3024 (wk, N-H), 2964, 2932, 2875 (C-H), 2623 (wk, S-H), 1477 (str, C=O). 1H 

NMR (D2O, 400 MHz) δ 3.77 (d, J = 4.6 Hz, 1H, H-C(2)), 2.43 (hept.d, J = 7.0, 4.6 Hz, 

1H, H-C(3)), 0.98 (d, J = 7.0 Hz, 3H, H3-C(4)), 0.85 (d,  J = 7.0 Hz, 3H, H3-C(4")). 13C 

NMR (D2O, 100 MHz) δ 214.4 (CO-SH), 68.1 (C(2)), 30.2 (C(3)), 18.4, 15.5 (C(4)+ 

C(4")). m/z ESI+: 133 ([M]+, 100%); ESI-HRMS (pos.): [M−H]− calculated for 

C5H10NOS, 132.0488; found 132.0492. 

H2N
SH

O
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α-Thioglutamic Acid 146 

C5H9NO3S; Mr = 163.19  

 

Boc-L-glutamic acid 5-tert-butyl ester 147 (400 mg, 1.32 mmol) and N-methyl 

morpholine (200 µL, 1.98 mmol) were dissolved in anhydrous THF (5 mL). Isobutyl 

chloroformate (260 µL, 1.97 mmol) was added dropwise at −20 °C. The resultant 

mixture was warmed to 0 °C and stirred for 1 h. A suspension of Li2S (120 mg, 

2.64 mmol) in anhydrous DMF (10 mL) was added to the solution of activated Boc-L-

glutamic acid 5-tert-butyl ester via a cannula. The resultant pink mixture was stirred for 

1 h at 0 °C, water (15 mL) was added and the mixture further stirred for 1 hr. The 

solution was adjusted to pH = 3 and extracted with EtOAc (3 × 20 mL). The organic 

layer was washed with water (3 × 30 mL), then with brine (20 mL) and dried over 

MgSO4. The solvent was removed under vacuum resulting in the crude Boc-L-glutamic 

thioacid 5-tert-butyl ester 148 (428 mg) as a pink crystalline solid. The pink crystalline 

solid was dissolved in freshly distilled TFA (10 mL) and stirred for 1 h at 0 °C and at 

RT for a further 1 h. The solvent was removed under vacuum and the cream coloured 

residue was triturated with anhydrous Et2O (20 mL). The residue was suspended in 

anhydrous diethyl ether (20 mL), the suspension was centrifuged and the solvent 

decanted and the centrifugal workup was repeated twice more. The wet solid was dried 

under vacuum, dissolved in water (5 mL), filtered and finally lyophilized to give the 

title compound (196 mg, 91%) as a hygroscopic off-white solid. After characterisation 

the solid was dissolved in H2O at the desired concentration, and 1 M NaOH was added 

to adjust the solution to pH = 6.5 and the resultant solution stored at −85 °C. M.P. 58-60 

°C. IR (cm−1) 2964 (br, CO-OH), 2237 (-NH3
+) 1691 and 1660 (str, C=O). 1H NMR 

(D2O, 500 MHz) δ 3.93 (t, J = 6.3 Hz, 1H, H-C(2)), 2.47 (t, J = 7.6 Hz, 2H, H2-C(4)), 

2.03-2.18 (m, 2H, H2-C(3)). 13C NMR (D2O, 125 MHz) δ 213.8 (C(1)), 176.6 (C(5)), 

61.7 (C(2)), 29.3 (C(4)), 26.8 (C(3)). m/z ESI-: 162 ([M−H]−, 54%), 128 ([M−H2S]−, 

100%); ESI-HRMS (pos.): [M−H]− calculated for C5H8NO3S, 162.0230; found 

162.0236. 

H2N

O OH

SH

O
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Solid precipitate isolated from aminoacylation reactions 

(2Z,2"Z)-3,3"-Sulfanediylbisprop-2-enenitrile 139 

C6H4N2S; Mr = 136.17 

 

1H NMR (MeOD-d4, 300 MHz) δ 7.75 (d, J = 10.4 Hz, 2H, -SCHCH-), 5.82 (d, J = 

10.4 Hz, 2H, -SCHCH-). 13C NMR (MeOD-d4, 300 MHz) δ 147.9 (2 × -SCHCH-), 

115.7 (CN), 97.9 (2 × -SCHCH-). m/z ESI: 136 ([M]+, 100%). ESI-HRMS (pos.): [M]+ 

calculated for C6H4N2S1N, 136.0090; found 136.0087. 

Preparative synthesis of 144 

(4S,4"S)-3,3"-Methylenebis(4-isopropylthiazolidin-5-one) 144 

C13H22N2O2S2; Mr = 302.11 

 

Thiovaline 134 (100 mg, 0.75 mmol) was dissolved in H2O (5 mL) and the solution 

adjusted to pH = 6.5 with 1 M NaOH solution. Formaldehyde 2 solution (0.22 mL, 13.4 

M) was then added and the solution readjusted to pH = 6.5. The resultant mixture was 

allowed to stir for 2 h. The precipitate was separated by centrifugation and the pellet 

was washed with water (3 × 10 mL). The wet solid was dried under high vacuum to 

yield the title compound as a colourless powder (67.6 mg, 60%). M.P. = 123-124 °C. IR 

(cm−1) νmax: 2977, 2959, 2922 (C-H), 1686 (s, C=O), 2886 and 2868 (CH2-N). 1H NMR 

(DMSO-d6, 400 MHz) δ 5.02 (AB, JAB = 11.0 Hz, 2H, H-(C2)+H-(C2")), 4.93 (BA, JBA 

= 11.0 Hz, 2H, H-(C2)+H-(C2")), 3.48 (s, 2H, N-CH2-N), 3.13 (d, J = 8.9 Hz, 2H, H-

C(4)+H-C(4")), 1.96 (dhept., J = 8.9, 6.5 Hz, 2H, -CHCH(CH3)2), 1.02 (d, J = 6.5 Hz, 

6H, -CHCH(CH3)2), 0.98 (d, J = 6.5 Hz, 6H, -CHCH(CH3)2). 13C NMR (DMSO-d6, 

100 MHz) δ 209.8 (C(5)+C(5")), 78.2 (C(4)+C(4")), 75.3 (N-CH2-N), 58.6 ((C2)+(C2")), 

28.3 (-CHCH(CH3)2), 20.2 (-CHCH(CH3)2), 18.9 (-CHCH(CH3)2). m/z ESI+: 325 

S

N N

N N

SS
OO
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([M+Na]+, 40%), 341 ([M+K]+, 100%); ESI-HRMS (pos.): [M+Na]+ calculated for 

C13H22N2O2S2Na, 325.1015; found 325.1020. 

6.4.2. Procedures for aminoacylation using amino thioacids and 

various electrophilic activators 

The formation (and quantification) of aminoacyl-nucleoside phosphate(s) was observed 

by NMR spectroscopic analysis. Characteristic downfield shifted H-(C2") was detected 

by 1H-NMR and 1H-1H COSY analysis, in tandem with 31P NMR spectroscopy. 

Percentage yields of various species of nucleoside phosphate(s) were calculated by 

using 100% as the summation of integrals of H-C(1") from each species. 

Nomenclature for key species observed in the aminoacylation reactions 
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Table legends  

n.d., not detectable. n.a., not assignable due to overlapping of signals/not applicable. -, 

not obtained. obs., obscured. part. obs., partially obscured.  

General procedure for the aminoacylation of nucleoside-3"-phosphates using 

cyanoacetylene 9 

In a 1.5 mL plastic vial, nucleoside-3′-monophosphate N3"P (100 µM) was dissolved in 

D2O (0.8 mL) by addition of 1 M NaOD to adjust the solution to pD = 6.5. To the 

solution was added an amino thioacid or thioacetic acid (see tables for concentration) 

followed by cyanoacetylene 7 (200 µM, D2O), a rapid increase in pD was observed and 

returned to pD = 6.5 by addition of 1 M DCl. The solution was immediately analysed by 

NMR spectroscopy. Concentrations and values as above unless otherwise stated in the 

following tables. 
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E
xploratory reaction of β-D-adenosine-3"-phosphate A

3"P, thiovaline 134 and cyanoacetylene 7 

 
 

 
 

 
 

Products and residual starting m
aterials/%

 

Entry 
N

ucleotide 
134 

(µM
) 

N
aSA

c 
(µM

) 
D

C
C

C
N

 
(µM

) 
Tim

e 
(m

ins) 
A

3′P 
A

3"P-2"val 
A

3"P-2"O
A

c 
A

>P 

1 
A

3′P 
100 

- 
200 

60 
85 

17 
- 

6 
2 

A
3′P 

- 
100 

200 
65 

40 
- 

60 
0 

Table 12. Prelim
inary am

inoacylation experim
ent (entry 2 is a control for cyanoacetylene). 

 

 
A

3′P 
A

3"P-2"val 
A

>P 

δ/ppm
 

(m
ultiplicity, J/H

z) 

H
-C

(8) 
8.25 (s) 

8.30 (s) 
8.20 (s) 

H
-C

(2) 
8.06 (s) 

8.06 (s) 
8.06 (s) 

H
-C

(1") 
6.01 

(d, J =
 6.3) 

6.28 
(d, J =

 6.6) 
6.18 

(d, J =
 4.4) 

H
-C

(2") 
obs. 

5.80 
(app. t, J =

 5.9) 
5.38-5.33 

(m
) 

H
-C

(3") 
obs. 

obs. 
5.12-5.07 

(m
) 

H
-C

(4") 
4.43 

(q, J =
 2.9) 

4.50 
(q, J =

 2.8) 
obs. 

H
2 -C

(5") 
3.98-3.81 

(m
) 

P 
1.21 

(d, J=8.1) 
1.43 

(d, J=8.8) 
19.99-19.88 

(m
) 

P (dec) 
1.21 (s) 

1.43 (s) 
19.94 (s) 

Table 13. C
haracterisation of products from

 the reaction described in Table 12, entry 1. 
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A

3′
P 

A
3"

P-
2"

O
A

c 
A

>P
 

δ/
pp

m
 

(m
ul

tip
lic

ity
, J

/H
z)

 

H
-C

(8
) 

8.
24

 (s
) 

8.
24

 (s
) 

n.
d.

 
H

-C
(2

) 
8.

04
 (s

) 
8.

05
 (s

) 
n.

d.
 

H
-C

(1
") 

6.
01

 
(d

, J
 =

 6
.3

) 
6.

20
 

(d
, J

 =
 5

.6
) 

n.
d.

 

H
-C

(2
") 

ob
s. 

5.
61

 
(t,

 J
 =

 5
.6

) 
n.

d.
 

H
-C

(3
") 

ob
s. 

4.
93

-4
.8

8 
(m

) p
ar

t o
bs

. 
n.

d.
 

H
-C

(4
") 

4.
41

 
(q

, J
 =

 3
.3

 
4.

46
 

(q
, J

 =
 3

.3
) 

n.
d.

 

H
2-

C
(5
") 

3.
97

-3
.8

2 
(m

) 
n.

d.
 

P 
2.

52
 

(d
, J

 =
 7

.6
) 

0.
99

 
(d

, J
 =

 8
.7

) 
n.

d.
 

P 
(d

ec
) 

2.
52

 (s
) 

0.
99

 (s
) 

n.
d.

 
Ta

bl
e 

14
. C

ha
ra

ct
er

is
at

io
n 
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du

ct
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om

 th
e 

co
nt

ro
l r

ea
ct

io
n 

de
sc

ri
be

d 
in

 T
ab

le
 1

2,
 e

nt
ry

 2
. 

Chris Chan

Chris Chan
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A
m

inoacylation reactions at a range of pH
s 

 Table 15. Yields of product and residual starting m
aterials of am

inoacylation reaction conducted at various pD
s. aPoor shim

.  

Entry 
N

ucleotide 
134 

(µM
) 

D
C

C
C

N
 

(µM
) 

Initial 
pD

 
Equivalent 

pH
[331] 

Tim
e 

(h:m
in) 

Products and residual starting m
aterials/%

 
A

3"P 
A

3"P-2O
A

c 
A

>P 

1 

A
3′P 

100 
200 

4.6 
5.0 

0:00 
100 

0 
0 

 
 

 
 

 
0:13 

84 
13 

3 
 

 
 

 
 

1:43 
86 

11 
3 

 
 

 
 

 
3:27 

86 
11 

- 
 

 
 

 
 

6:10 
88 

10 
5 

 
 

 
 

 
23:52 

90 
8 

5 
 

 
 

 
 

50:27 
90 

5 
4 

 
 

 
 

 
78:37 

92 
4 

4 
 

 
 

 
 

97:00 
92 

3 
5 

 
 

 
 

 
184:41 

90 
2 

6 

2 

A
3′P 

100 
200 

5.6 
6.0 

0:00 
100 

0 
0 

 
 

 
 

 
0:07 

85 
12 

3 
 

 
 

 
 

1:26 
- 

- 
- a 

 
 

 
 

 
3:09 

85 
9 

6 
 

 
 

 
 

5:52 
90 

5 
4 

 
 

 
 

 
24:15 

95 
2 

3 
 

 
 

 
 

50:11 
95 

1 
4 

 
 

 
 

 
78:19 

96 
0 

3 
 

 
 

 
 

96:43 
94 

0 
4 

 
 

 
 

 
197:05 

94 
0 

5 

3 

A
3′P 

100 
200 

6.1 
6.5 

0:00 
100 

0 
0 

 
 

 
 

 
0:15 

87 
11 

3 
 

 
 

 
 

1:12 
88 

9 
2 

 
 

 
 

 
2:56 

91 
7 

3 
 

 
 

 
 

5:39 
94 

4 
3 

 
 

 
 

 
24:03 

97 
0 

2 
 

 
 

 
 

49:57 
97 

0 
2 

 
 

 
 

 
78:06 

97 
0 

3 
 

 
 

 
 

96:30 
97 

0 
2 

 
 

 
 

 
196:45 

96 
0 

4 
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A

3′
P 

A
3"

P-
2"

va
l 

A
>P

 

δ/
pp

m
 

(m
ul

tip
lic

ity
, J

/H
z)

 

H
-C

(8
) 

8.
22

 (s
) 

8.
26

 (s
) 

8.
18

 (s
) 

H
-C

(2
) 

8.
00

 (s
) 

8.
00

 (s
) 

8.
00

 (s
) 

H
-C

(1
") 

5.
98

 
(d

, J
 =

 6
.2

) 
6.

24
 

(d
, J

 =
 5

.8
) 

6.
14

 
(d

, J
 =

 4
.7

) 

H
-C

(2
") 

ob
s. 

5.
77

 
(a

pp
. t

, J
 =

 5
.3

) 
5.

35
-5

.2
8 

(m
) 

H
-C

(3
") 

ob
s. 

4.
95

 
(d

t, 
J 

=
 8

.3
, 4

.1
) 

pa
rt 

O
bs

. 

5.
12

-5
.0

2 
(m

) 

H
-C

(4
") 

4.
46

-4
.4

0 
(m

) 
4.

51
-4

.4
7 

(m
) 

n.
a.

 

H
2-

C
(5
") 

3.
94

-3
.8

3 
(m

) 

P 
0.

21
 

(d
, J

 =
 8

.4
) 

-0
.1

8 
(d

, J
 =

 8
.3

) 
19

.9
6-

19
.8

3 
(m

) 
P 

(d
ec

) 
0.

20
 (s

) 
-0

.1
8 

(s
) 

19
.8

9 
(s

) 
Ta

bl
e 

16
. C

ha
ra

ct
er

is
at

io
n 

of
 p

ro
du

ct
s 

fr
om

 th
e 

re
ac

tio
n 

de
sc

ri
be

d 
in

 T
ab

le
 1

5,
 e

nt
ry

 1
 a

t t
im

e 
po

in
t 0

:1
3 

h.
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A

3′P 
A

3"P-2"val 
A

>P 

δ/ppm
 

(m
ultiplicity, J/H

z) 

H
-C

(8) 
8.21 (s) 

8.26 (s) 
8.15 (s) 

H
-C

(2) 
7.98 (s) 

8.00 (s) 
7.98 (s) 

H
-C

(1") 
5.98 

(d, J =
 6.3) 

6.24 
(d, J =

 6.5) 
6.13 

(d, J =
 4.3) 

H
-C

(2") 
obs. 

5.76 
(app. t, J =

 5.9) 
5.31 

(ddd, J =
 11.0, 6.8, 4.6) 

H
-C

(3") 
4.69 

(ddd, J =
 8.1, 5.2, 3.0) 

obs. 
5.07 

(td, J =
 7.3, 4.2) 

H
-C

(4") 
4.41 

(q, J =
 2.7) 

4.49 
(q, J =

 2.6) 
n.a. 

H
2 -C

(5") 
3.97-3.81 

(m
) 

P 
1.71 

(d, J =
 6.5) 

obs. 
n.a. 

P (dec) 
1.69  (s) 

1.77 (s) 
19.91 (s) 

Table 17. C
haracterisation of products from

 the reaction described in Table 15, entry 2 at tim
e point 0:07 h. 
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A

3′
P 

A
3"

P-
2"

va
l 

A
>P

 

δ/
pp

m
 

(m
ul

tip
lic

ity
, J

/H
z)

 

H
-C

(8
) 

8.
21

 (s
) 

8.
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 (s
) 

8.
15

 (s
) 

H
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(2
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7.
98

 (s
) 

8.
00
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) 

H
-C

(1
") 
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C
om

petition reaction betw
een thiovaline 134 and thioacetate 43 for acylation of β-D-adenosine-3"-phosphate A

3"P 

 
 

 
 

 
 

 
Products and residual starting m

aterials/%
 

Entry 
N

ucleotide 
(100 µM

) 
134 

(µM
) 

N
aSA

c 
(µM

) 
D

C
C

C
N

 
(µM

) 
pH

 
Tim

e 
(h:m

in) 
A

3′P 
A

3"P-
2"val 

A
3"P-

2"O
A

c 
A

>P 

Thioacetic acid 43 and thiovaline 134 com
petition experim

ent 
1 

A
3′P 

100 
100 

400 
6.5 

0:00 
100 

0 
0 

0 
 

 
 

 
 

 
0:22 

87 
4 

4 
< 1%

 
 

 
 

 
 

 
3:19 

83 
4 

5 
6 

 
 

 
 

 
 

7:04 
89 

3 
4 

4 
 

 
 

 
 

 
98:54 

88 
2 

3 
5 

Thiovaline 134 control experim
ent 

2 
A

3′P 
100 

- 
200 

6.5 
0:00 

100 
0 

- 
0 

 
 

 
 

 
 

0:32 
75 

21 
- 

5 
 

 
 

 
 

 
2:36 

70 
20 

- 
9 

 
 

 
 

 
 

6:10 
77 

12 
- 

7 
 

 
 

 
 

 
98:01 

88 
3 

- 
7 

Thioacetic acid 43 control 
3 

A
3′P 

- 
100 

200 
6.5 

0:00 
100 

- 
0 

n.d. 
 

 
 

 
 

 
0:46 

33 
- 

56 
n.d. 

 
 

 
 

 
 

2:59 
36 

- 
59 

n.d. 
 

 
 

 
 

 
6:44 

35 
- 

59 
n.d. 

 
 

 
 

 
 

98:34 
36 

- 
24 

n.d. 
Table 19. Results of a com

petition acylation of β-D-adenosine-3"-phosphate A3"P betw
een thioacetate 43 and thiovaline 134. Entries 2 and 3 are 

control reactions for com
parison. 
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A

3′P 
A

3"P-2"val 
A

>P 

δ/ppm
 

(m
ultiplicity, J/H

z) 

H
-C

(8) 
8.18 (s) 

8.24 (s) 
8.13 (s) 

H
-C

(2) 
7.95 (s) 

7.97 (s) 
7.95 (s) 

H
-C

(1") 
5.95 

(d, J =
 6.3) 

6.22 
(d, J =

 6.4) 
6.11 

(d, J =
 4.5) 

H
-C

(2") 
obs. 

5.74 
(app. t, J =

 5.9) 
5.29 

(ddd, J =
 10.8, 6.7, 4.4) 

H
-C

(3") 
4.70-4.65 (m

) 
part obs. 

4.89-4.84 (m
) 

part obs. 
5.05 

(td, J =
 7.2, 3.9) 

H
-C

(4") 
4.40 

(q, J =
 3.0) 

4.47 
(q, J =

 2.8) 
n.a. 

H
2 -C

(5") 
3.95-3.78 

(m
) 

P 
1.09 

(d, J =
 8.4) 

1.18 
part obs. 

20.03-19.77 
(m

) 
P (dec) 

1.09  (s) 
1.16 (s) 

19.91 (s) 
Table 21. C

haracterisation of products from
 the reaction described in Table 19, entry 2 at tim

e point 0:32 h. 
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Investigation into aminacylation reactions with alternative activating electrophiles 

Electrophiles below were mixed with thiovaline 134 only to assess whether the two 

would react. The electrophile and thiovaline 134 were dissolved/suspended in D2O and 

the solution adjusted to pD = 6.1. The resultant solution was immediately submitted for 

NMR analysis and again after reaction overnight. Formaldehyde 2 was further 

investigated (see below).  

Electrophiles 46-47 are known activators of thioacetate 43 and so aminoacylation was 

attempted with nucleotide-3!-phosphate using the general procedure (see above). 

N
H2N NH2N

H2N
N

N

O

HH
N

N
N

N

12 127143 24746
cyanamide acrylonitrilediaminomalonitrile methyl

isonitrile
N-cyanoimidazole formaldehyde
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A

3′P 
A

3!P-2!val 
A

>P 

δ/ppm
 

(m
ultiplicity, J/H

z) 

H
-C

(8) 
8.21 (s) 

8.21 (s) 
8.16 (s) 

H
-C

(2) 
8.00 (s) 

8.03 (s) 
8.00 (s) 

H
-C

(1!) 
5.96 

(d, J =
 6.1) 

6.17 
(d, J =

 6.3) 
6.13 

(d, J =
 3.8) 

H
-C

(2!) 
4.75-4.71 

obs. 
5.78-5.75 

(m
) 

5.31 
(dt, J =

 10.6, 5.4) 

H
-C

(3!) 
4.70-4.65 (m

) 
Part obs. 

obs. 
5.09-5.04 

(m
) 

H
-C

(4!) 
4.40-4.37 (m

) 
part obs. 

4.55-4.52 (s) 
br. 

4.43-4.40 (m
) 

part obs. 

H
2 -C

(5!) 
3.96-3.77 

(m
) 

P 
2.96 

(d, J =
 7.6) 

0.92 
(d, J =

 8.1) 
19.88 

(dd, J =
 10.1, 8.1) 

P (dec) 
2.96  (s) 

0.91 (s) 
19.88 (s) 

Table 25. C
haracterisation of products from

 the reaction described in Table 23, entry 5. 
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Detailed procedure for Table 23, entry 6 

Thiovaline 134 (13.8 mg, 0.1 mmol) was dissolved in D2O (1 mL) and the solution adjust 

to pD = 6.1 with 1 M NaOD. Formaldehyde (15.0 µL, 0.2 mmol) was then added upon 

which a solid precipitate formed. The mixture was analysed NMR spectroscopy and after 

2 h the mixture lyophilised and the resultant residue redissolved in d6-DMSO and 

resubmitted to NMR analysis. 

Lyophilised residue was found to contain mainly a formaldehyde-thiovaline derivative 

that was found to be (4S,4!S)-3,3!-methylenebis(4-isopropylthiazolidin-5-one) 144 and a 

trace of starting material. Data as given in section 6.4.1. 

Reaction of thioglutamic acid 146 and formaldehyde 2 

Thioglutamic acid 146 (0.5 M, 0.2 mL) was diluted with H2O (0.8 mL) and the solution 

adjusted to pH = 6.5. Formaldehyde 2 (13.4 M, 44.8 µL) was added and pH of the 

solution readjusted as necessary with 1 M HCl/1 M NaOH. The solution was stirred for 

3 h, lyophilised and finally taken up in D2O. The mixture was analysed by NMR 

spectroscopy and found to contain mainly glutamate 151. m/z ESI−: 128 (20%), 146 

([Glu-H]−,100%); ESI+: 258 (85%), 285 (100%), 286 (100%).  

Reaction between thioglutamic acid 146, thiovaline 134 and formaldehyde 2 

Thioglutamic acid 146 (0.5 M, 0.2 mL) was diluted with H2O (0.8 mL), thiovaline 134 

(13.3 mg, 0.1 mmol) was added and the solution adjusted to pH = 6.5. Formaldehyde 2 

(13.4 M, 89.5 µL) was added and the solution readjusted as necessary with 1 M HCl/1 M 

NaOH. The solution was stirred for 3 h, during which a white precipitate formed. The 

precipitate was filtered, washed with water and then dried under vacuum and the solid 

was taken up in d6-DMSO. The supernatant was lyophilised and the residue taken up in 

D2O. The solid and filtrate were analysed by NMR spectroscopy. The solid precipitate 

was found to be 144 and the supernatant a mixture of glutamic acid 151 derivatives and 

valine 54. m/z ESI−: 146 ([Glu−H]−, 100%), 158 (40%); ESI+: 219 (60%), 249 (75%), 

258 (100%), 279 (40%), 371 (40%). 
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Reaction of β-D-adenosine-3′-phosphate A3"P with thioglutamic acid 146 and 

formaldehyde 2 

β-D-Adenosine-3′-phosphate A3!P (34.7 mg, 0.1 mmol) was dissolved in D2O (0.6 mL) 

and the solution was adjusted to pD = 6.1 with 1 M NaOD, thioglutamic acid 146 (0.2 

mL, 0.5 M/D2O, 0.1 mmol) was then added and the solution readjusted to pD = 6.1. 

Formaldehyde 2 (22.4 µl, 0.3 mmol) was added and the pD of the resultant mixture was 

readjusted to pD = 6.1. The sample was immediately analysed by NMR spectroscopy. 

Aminoacylation of dimer and trimer nucleoside-3!-phosphates 

The dimer/trimer (50 mM) was dissolved in D2O (0.8 mL) and thiovaline 134 (50 µM) 

was added and the solution adjusted to pD = 6.1 with 1 M DCl/1 M NaOD as necessary. 

Cyanoacetylene (100 mM) was added with stirring and an increase in pD was observed 

and the solution readjusted to pD = 6.1 with 1 M DCl. The sample was immediately 

analysed by NMR spectroscopy.  

In the case of the CC3!P aminoacylation was determined by the distinctive downfield shift 

(> 1 ppm) of the H-C(2!) proton of C2, that was identified by its coupling pattern and 

chemical shift (app. t, J = 4.7 Hz). A COSY coupling was observed to a downfield shifted 

H-C(1!). Extent of aminoacylation was based on the integration of the downfield shifted 

H-C(2!) and confirmed by integration of the 31P CPD spectrum. Based on the chemical 

shifts of H-C(5) and H-C(6) no aminoacylation of the nucleobases were observed. 

Aminoacylation of C1 HO-C(2!) was not observed because there was no a second 31P 

CPD peak corresponding to the phosphate diester of an aminoacylated species. Other sites 

of aminoacylation could not be determined due to extensive peak overlap. 

For the reaction AGA3!P reaction, aminoacylation was determined by the downfield shift 

(> 0.2 ppm) of the H-C(1!) proton of A3, which was identified by it’s coupling pattern 

and chemical shift (d, J = 5.7 Hz). A COSY coupling was observed to a downfield shifted 

H-C(2!) but this peak was overlapped which hindered integration. The extent of 

aminoacylation was based on the integration of the downfield shifted H-C(1!) and 

supported by integration of the 31P CPD spectrum. Aminoacylation of A1 and G2 

HO-C(2!) was suspected due to observation of several upfield shifted 31P CPD peaks 

corresponding to the phosphate diesters, these correspond to aminoacylation in the order 
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of < 2.5%. However, confirmation with 1H NMR was not possible due to extensive peak 

overlap and poor COSY couplings. 
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Products and residual starting m

aterials/%
 

Entry 
O

ligoucleotide 
Tim

e 
(h) 

C
C

3!P 
C

C
3!P-

2!val 
C

C
>P 

A
G

A
3!P 

A
G

A
3!P-

2!val 
U

nidentified am
inoacyl 

species 
A

G
A

>P 

1 
C

C
3!P

a 
1 

90 
8 

<2 
- 

- 
- 

- 
2 

A
G

A
3!P

b 
0:10 

- 
- 

- 
~85 

~12 
~7 

~4 
Table 26. Results of am

inoacylation reaction of a dim
er and a trim

er w
ith thiovaline 134 and cyanoacetylene 7. aD

im
er w

as synthesised by S. 
Islam

 bTrim
er w

as synthesised by F.R. Bow
ler. 
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