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Abstract In this chapter I give a personal account of my experience in Alan Bundy’s
DReaM group in the Department of Artificial Intelligence at the University of Edin-
burgh between the years of 1995 and 1998. Of course, the impact of this experience
has been profound and long-lasting to this day. The culture and the nature of research
work, the collaborations, the interests and the connections have endured, evolved
and multiplied throughout this time. My own work in the DReaM group started by
investigating human “informal” reasoning and formalising it in a diagrammatic the-
orem prover. After leaving Edinburgh, this work naturally evolved into combining
diagrams with other representations in a uniform framework, as well as applying
visual representations in other domains, such as reasoning with ontologies. But one
of the fundamental questions remained unanswered, namely, how do we choose the
right representation of a problem and for a particular user in the first place?

1 The DReaM research environment

Few factors influence a researcher’s ethos regarding their work more than where
and with whom they did their PhD project. I arrived to Alan Bundy’s DReaM re-
search group in the autumn of 1995, fresh from finishing a post-graduate Diploma
in Computer Science at Cambridge. This was not exactly planned: I actually applied
to do a PhD in the Cognitive Science Department at the University of Edinburgh. I
was interested in humans, not machines. But given that I was a mathematician by
my undergraduate degree and that I just finished a post-graduate degree in Com-
puter Science, my application made it to Alan Bundy in the Department of Artificial
Intelligence. I am so glad for this serendipity, because the privilege has been im-
measurable.

Mateja Jamnik
Department of Computer Science and Technology, University of Cambridge, e-mail: mateja.
jamnik@cl.cam.ac.uk
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The DReaM group at that time was a large and thriving community across mul-
tiple sites, covering the Universities of Edinburgh, Heriot-Watt and Napier, of very
diverse people working on equally diverse research topics. The academic staff were
Alan Bundy, Alan Smaill, Andrew Ireland and Helen Lowe1. They were working
with numerous post-doctoral researchers including Ian Green, Toby Walsh, Richard
Boulton, Julian Richardson and Geraint Wiggins. During my time in the group,
I was part of a cohort of PhD students including Louise Dennis, Jon Whittle, Raul
Monroy, Simon Colton, Francisco Cantu, Ian Frank, Jeremy Gow, Stephen Creswell
and Jim Molony. We also collaborated internationally with scientists like Fausto
Giunchiglia, Alessandro Armando and their groups in Italy, and Jörg Siekmann,
Erica Melis, Dieter Hutter and their groups in Germany. Of course, the DReaM’s
ethos of creativity of thought and rigour of methodology has since spread around
the world as we have pursued our careers across the globe and inevitably passed
these values and skills to the next generation of researchers.

I could perhaps describe the diverse topics in mathematical reasoning that the
DReaM members pursued as either formalising symbolic reasoning or formalis-
ing human-like reasoning2. Symbolic reasoning directions included proof planing
(Chapters ??), rippling, the systems Clam and λClam, induction, co-induction and
hardware verification (Chapters ??). Human-like reasoning directions included anal-
ogy, diagrammatic reasoning and concept formation (Chapters ??). Inevitably, this
list is only partial, and all the Chapters of this Volume hopefully fill some of the
gaps. I was particularly interested in the kinds of human-like reasoning that we
could perhaps call “intuitive”, or the kind that is inherently human and that is quite
different to machine-oriented reasoning. Examples include the use of analogy, sym-
metry and diagrams.

Our daily lives as researchers were enriched by the visits of numerous scientists
who shared their expertise and thoughts with us. Three visitors strongly shaped the
direction that I took in my PhD research. Erica Melis from Saarbrücken was working
on analogy reasoning at the time [23]. I was intrigued at how one can use examples
of solutions in one problem to inspire and help us find a solution to a related prob-
lem. Erica mechanised this process in the context of proof. Whilst I did not use
her work directly in my PhD, it turns out that my first project after my PhD was to
mechanise learning of proof methods by analogy [17]. The second most memorable
visitor was Predrag Janic̀ič from Belgrade. He was interested in geometrical reason-
ing [18] which very much coincided with my interest in human visual reasoning.
Predrag also became a close friend, I could speak his language, so we had a secret
way of communicating. Finally, perhaps the most influential visitor in the DReaM
group for me was Alan Robinson. He came to Edinburgh early on in my PhD and
was interested, like me, in “intuitive” or “informal” reasoning. Our discussions sur-
rounded the distinction between a visual or spatial representation and the more usual

1 I apologise if my poor memory is not serving me well and I mixed people up or inevitably forgot
to mention some.
2 This divide is perhaps a little artificial since all of our work was motivated by the goals of Artifi-
cial Intelligence, namely we were trying to computationally model human mathematical reasoning.
Alan Bundy’s Chapter ?? of this Volume gives a more precise overall description of our work.
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machine symbolic representation. Alan Robinson showed me a number of “proofs
without words” that he encountered, and some of them became my toy or working
examples to represent, solve and mechanise the process. He believed that our ability
to “see” the truthfulness of a statement is one of the really fundamental components
of the human mathematical cognitive repertoire. Later, when my PhD research was
published in a book [15], he kindly wrote in the foreword that in this work I “found
an explanation of at least part of the mystery of how humans are able to ‘see’ the
truth of certain mathematical propositions merely by contemplating appropriate di-
agrams and constructions”.

What struck me most about the DReaM group was its openness to discuss any
topic that anybody was interested in. Clearly, Alan Bundy nurtured a kind and sup-
portive research environment in which everyone could do their best work. His intel-
lectual generosity was boundless. The Blue Book Notes (see Chapter ??) provided
the opportunity for sharing and discussing our research with the group. They laid
the ground for exploring novel and half-baked ideas that most often developed into
mature and original scientific contributions. Alan lead the DReaM group in an or-
ganised way that taught me how to be a supervisor and a mentor to my own students
and post-docs. This is perhaps best demonstrated by numerous “How-to...” guides
that Alan wrote, for example, “How to be my student”, “How to write an informat-
ics paper”, “Writing a good grant proposal”, “The Researchers Bible” and “How to
say no”3.

If I were to summarise the enduring influence that the DReaM group had on me,
then I would put in the first place the intellectual generosity that I try to bestow
on my own research group today. I learnt the importance of rigorous methodology
and the place for heuristics to guide the automation of reasoning. Perhaps uniquely
at that time, our work provided a human-oriented perspective on Artificial Intelli-
gence that remained the main motivation for my research. Finally, my time in Alan’s
DReaM group instilled in me the importance of an interdisciplinary and collabora-
tive approach to research, which I think is key to innovation in AI today.

2 Diagrammatic reasoning

Despite the fact that diagrams have been used in mathematics since the time of
Aristotle and Euclid, the invention of formal axiomatic logic at the end of the 19th
Century in the sense of Frege, Russell and Hilbert, denied diagrams a formal role
in theorem proving. Diagrams were only used informally for illustrating a formal
proof and for suggesting proof steps, but were formally superfluous. Fortunately,
the end of the 20th century started to see a redressing of this issue [5, 2]. Examples
include formalised logical systems of diagrams [35, 10, 13]. This directly abolished
the widely-held Hilbertian theoretical objections to diagrams being used in proofs.
Our work on Diamond was amongst these: it pioneered the construction of purely

3 Many of these can be found on Alan Bundy’s web page: https://sweb.inf.ed.ac.uk/
bundy/.
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1+3+5+ . . .+(2n−1) = n2

Fig. 1 The theorem is about the sum of the first n odd natural numbers. It represents the example
of a case for n = 6. The proof starts from the RHS of the theorem n2 and takes a square. Then, the
square is split into a sequence of nesting and increasing in size, so-called, “ells”. Each ell represents
a subsequent natural number: there are two edges, each of size n, but the joining vertex has been
counted twice, hence an ell is 2n−1.

diagrammatic proofs where diagrams and their manipulations are the proof [15,
16]4. The motivation for this work was rooted in formalising some of the “informal”
reasoning that humans do in mathematics when using diagrams.

Take for example, the diagram in Figure 1. It takes only secondary school level
knowledge of mathematics to understand that the diagram is about the sum of odd
natural numbers. We can “see” that the theorem is true not only for the example in
the diagram of n = 6, but for any value of n. In other words, the simple procedure of
splitting a square into so-called “ells” works in general. Diamond tackles this prob-
lem, in addition to a number of other, so-called “proofs without words”, many of
which can be found in Nelsen’s books [25, 26] and Gardner’s mathematical recre-
ations [8, 9].

Diamond’s theorems are in the domain of algebraic mathematics about natural
numbers that can be expressed as diagrams in a discrete space and are inductive over
a parameter. But there is a problem, namely, such diagrams are concrete in nature,
so abstractions such as ellipsis need to be used to express the general diagram (and
proof) for all values of the parameter. These abstractions are difficult to keep track
of while manipulating. So we proposed a solution: to use schematic proofs.

Schematic proofs are based on the mathematical notion of the ω-rule which says
that for the natural numbers 0, 1, 2, . . .:

φ(0), φ(1), φ(2), . . .

∀x.φ(x)

That is, if we can prove φ(n) for n = 0,1,2, . . ., then we can infer that φ(x) for all
natural numbers x. Clearly, the ω-rule is not very practical for automation, since it
requires the proof of an infinite number of premises to prove its conclusion. A more
practical alternative is the constructive ω-rule which has an additional condition: if
all premises φ(n) can be proved in a uniform way, that is, there exists an effective

4 This work was done for my PhD with Alan Bundy and Ian Green as my supervisors.
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procedure, proofφ , which takes a natural number n as input and returns a proof of
φ(n) as output, then we can conclude the universal statement:5

proofφ (n) ` φ(n)

One such effective procedure is, for example, a recursive program. Now proofφ can
be a recursive procedure which formalises our notion of schematic proof where the
number of steps in the proof depends on the parameter n. We used this notion in
formalising diagrammatic proofs in Diamond6.

Diamond’s theorems are expressed as diagrams for some concrete values, that
is, ground instantiations of a theorem. The initial diagram is manipulated using
some geometric operations. The sequence of geometric operations on a diagram
represents the inference steps of a diagrammatic proof. In the above example, the
inference step is splitting an ell from a square to produce an ell and a smaller
square. The set of all available operations defines the proof search space. Next,
Diamond automatically extracts a general pattern from these proof instances, and
captures it in a recursive program which constitutes a general diagrammatic proof
for the universally quantified theorem. The constructive ω-rule justifies the step
from schematic proofs to theoremhood. In Diamond, the diagrammatic schematic
proof is formalised as:

proo fφ (n+1) = A (n+1), proo fφ (n)

proo fφ (0) = B

where A (n+1) consists of a sequence of diagrammatic operations and the number
of applications of each operation is (linearly) dependent on n. B is a possibly empty
basis, that is, no additional operation is required to complete the proof.

The generated program capturing the schematic proof still needs to be verified
to be correct. This is something that human mathematicians often omit, and hence
history of mathematics is full of erroneous proofs (see Cauchy’s proof of Euler’s
theorem as reported by Lakatos in [21] and in Chapter ?? of this Volume). The
verification requires meta-level reasoning about the proof, rather than the object
level theorem, and is done by induction:

proofφ (0) ` φ(0)
proofφ (n) ` φ(n) =⇒ proofφ (n+1) ` φ(n+1)

The work on automation of diagrammatic proofs in Diamond provides important
information on proof procedure construction. It exposes the importance of repre-
senting diagrammatic expressions so that general reasoning techniques can be ap-

5 From the logical point of view, the constructive ω-rule (and also the ω-rule) is a stronger alterna-
tive to mathematical induction, where the generation of proofs for all instances is satisfied by the
requirement for the effective procedure, such as a recursive function.
6 The constructive ω-rule and schematic proofs have previously been implemented for arithmetic
theorems and their symbolic proofs by another DReaM member, Siani Baker [3].
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plied to them. Furthermore, it provides an insight into how diagrams and purely
diagrammatic inferences can be used in formal proofs.

3 Heterogeneous reasoning

Picking up any mathematical book reveals that many theorems are proved using
symbolic inference steps as well as diagrams. We call these heterogeneous proofs:
examples of two such proofs can be seen in Figure 2. In the first example, a theorem
about triangular numbers is proved by transforming it with symbolic inferences into
an expression that then has a compelling diagrammatic proof7. In the second exam-
ple, the theorem asserts a statement about a bitmap image, which clearly requires
the use of image processing steps to then combine them with symbolic inferences.

There exist tools for combining diverse systems (e.g., OpenBox [4], Omega [36],
HETS [24]), but they do not allow mixing of representations. Indeed, most mech-
anised theorem provers use only symbolic representations, like different types of
logic. Whilst Diamond (and other diagrammatic theorem provers like Speedith [42])
constructs proofs using only diagrammatic inference steps, not all theorems can
be expressed with diagrams. Moreover, human mathematicians typically use not
only multiple, but also informal representations such as natural language or images
within the same problem for different parts of the solution.

We designed and built a heterogeneous reasoning framework MixR [41] where
different existing symbolic as well as diagrammatic reasoners can be used at the
same time so that symbolic and diagrammatic proof steps can be interleaved within
the same proof8. Furthermore, when logical formalisation of a particular represen-
tation (e.g., images, natural language or audio) is not tractable, we can embed such
data in existing provers and still enable informal heterogeneous reasoning with these
opaque objects within an otherwise formal proof.

The MixR framework provides a generic infrastructure for extending existing
general-purpose theorem provers with heterogeneous reasoning in the form of het-
erogeneous logic. The crucial part of our heterogeneous logic is the mechanism,
called placeholders, which embeds foreign data into formulae of existing theorem
provers so that it can be dealt with using external tools. This data is directly em-
bedded into formulae of a prover which treats them as primitive objects that can be
reasoned with its standard inference engine. When required, the reasoner can invoke
external tools on this data to obtain new knowledge. Our approach using placehold-
ers removes the need for translations between representations which is particularly
useful when no such translation is available or even possible (e.g., diagrammatic
representations from CAD tools, images, and signal processing).

MixR is an implementation of this heterogeneous logic and placeholders, and
enables the integration of arbitrary existing theorem provers of any modality with

7 Notice that there is no compelling completely diagrammatic proof of the original expression of
the theorem, thus the need to mix symbolic and diagrammatic inference steps.
8 This work was done in collaboration with my PhD student Matej Urbas.
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(a)

(b)

Fig. 2 Examples of two heterogeneous proofs: (a) a few symbolic steps are followed by transfor-
mation of the formula into a diagram followed by diagrammatic proof steps to prove a theorem
about triangular numbers; (b) here the heterogeneous proof consists of three proof steps: the Com-
puteArea inference step is heterogeneous and takes a bitmap image and extracts some information
(the area of the square) which is expressed in the symbolic language; the ArithSimp inference step
is symbolic; the ComputeShape is also a heterogeneous inference step – it extracts that the bitmap
shape is a square and thus resolves the implication.

each other into new heterogeneous systems. A tool developer can plug their chosen
reasoners into MixR by writing MixR drivers for them. MixR, in turn, integrates
them with each other into a new heterogeneous reasoning system. For example, we
plugged Speedith [42] for spider diagrams and Isabelle [28] for sentential higher-
order logic into MixR to create the Diabelli [40] heterogeneous reasoning system.
We also integrated image processing with symbolic reasoning into PicProc [41] that
can prove a theorem in Figure 2 (b). MixR provides a user interface as well as an
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Driver A
provides goals
accepts goals
proof replay
formula format

Master
reasoner

MixR

driver coordination
managers
general UI components

Driver C
translation
between A and B

Driver B
inference
rules
visualisation
formula format

Slave
reasoner

Plug points (contracts):

translation contract goal provider contract formula presenter
contract

goal transformer
contract

formula format
provider contract

Fig. 3 MixR’s architecture with hypothetical drivers. The central box represents MixR’s core.
It contains the implementation of heterogeneous logic components, general UI components, and
driver plug-points. Drivers surround MixR’s core and plug into it through the plug-points.

application programming interface (API) for drivers. Using the API, the drivers can
share, translate and visualise formulae of various modalities. They may also apply
foreign inference steps and query other drivers to invoke foreign reasoning tools.
The architecture of MixR is illustrated in Figure 3.

Many reasoning tools, representations and visualisation aids in artificial intelli-
gence exist mostly in isolation, specialised in their specific domains. Bringing them
together in a simple, flexible and formal way, as in MixR, allows them to contribute
to the problem solving/theorem proving tasks. This better models what people do
in problem solving, it allows developers to easily design systems that are flexible
according to the needs of the end-users, and it enables us to take advantage of the
existing powerful technology in a novel and sustainable way.

4 Accessible diagrammatic reasoning about ontologies

One of our main motivating factors for computationally modelling reasoning with
diagrams has been the fact that people use them and find them intuitive and accessi-
ble. The barrier to entry for explaining problems and their solutions is lower using
diagrams than symbolic logical formalisms. One domain which routinely requires
some level of formal reasoning, but involves a range of different stakeholders is on-
tologies. Ontologies are a common knowledge representation paradigm, but they
frequently have accessibility issues due to unfamiliarity of domain experts with
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Fig. 4 Example of a concept diagram.

symbolic notations (e.g., DL, OWL). Some visualisation facilities have been im-
plemented [14, 22], but their focus is expressing and editing ontologies rather than
reasoning with and about ontologies.

Ontologies represent knowledge in a domain with definitions of concepts, their
properties and relations between concepts. Reasoning with ontologies is done with
a justification algorithm [19] which selects a minimal set of axioms responsible for
entailment. There is empirical evidence [12] that confirms that stakeholders find it
difficult to get from the justification to the explanation of the reasons for the par-
ticular selected axioms entailing the problem. Thus, a number of symbolic theo-
rem provers have been implemented which construct a symbolic explanation for
justification-entailment pair. Unfortunately, these proofs have the same inaccessibil-
ity issues as before: domain experts are not familiar with their symbolic notations.

In order to address the inaccessibility of symbolic notations, we devised a visual
theorem prover, iCon, that uses a visual language to represent and reason with on-
tologies9. The input to iCon is a justification-entailment pair expressed as diagram-
matic axioms (justifications) and a diagrammatic theorem (ontology entailment).
The output is an interactively constructed proof using applications of diagrammatic
inference rules that explains how the entailment follows from the axioms.

The visual language of iCon, concept diagrams [37], covers almost all of the
standard ontology language OWL 2. Empirical studies demonstrate the accessibil-
ity of concept diagrams compared to competing diagrammatic and symbolic nota-
tions [33]. Concept diagrams consist of curves (circles, as in Euler and Venn dia-
grams) which represent ontology classes (they are sets), dots and spiders which rep-
resent individuals in classes, and arrows which represent object properties. There are
also boundary rectangles to denote all individuals in the world, and shading to place
an upper bound on the cardinality of the sets. Complete formalisation of concept
diagrams is given in [38].

Figure 4 shows a concept diagram that has 2 bounding rectangles. Spatial rela-
tionships between parts of the diagram convey information, for example, that Person
and Animal represent disjoint sets, since the two corresponding curves are disjoint.
We can also see that Helen is a Female person, due to the location of the (red) dot
labelled Helen. A dot connected by a line to another dot is called a spider, and it sig-
nals that it is not clear which set an individual belongs to. For example, in Figure 4

9 This work was done during the Leverhulme Trust funded project “ARD: Accessible Reasoning
with Diagrams” in collaboration with Gem Stapleton, Zohreh Shams, Yuri Sato, Sean Mcgrath and
Andrew Blake.
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Fig. 5 Example of iCon’s diagrammatic inference rule.

Rex could be either a Cat or a Dog. The region outside of Other, Male and Female
is shaded, which means that there is no person who is neither a Female, a Male nor
Other. The dashed arrow ownsPet connects the dot Helen to Rex. This means that
Helen owns Rex as her pet, but she can own pets of other types too. Unlike dashed
arrows, solid arrows mean that the source is related to only the target. So, the colours
that an animal can have cannot be outside the set Colour. Together with the arrow
annotation ≥ 1, this means that all animals have at least one colour.

iCon consists of an inference engine and the graphical user interface. The infer-
ence engine contains a collection of inference rules, applies inference rules to dia-
grams and manages proofs. The inference rules can be either symbolic (conjunction
elimination or identity), or diagrammatic. The diagrammatic inference rules come
from the ontology community’s standard set of inference rules for OWL 2 RL [27],
introduced by the W3C in [43]. In order to construct a proof for a justification-
entailment pair, we equipped iCon’s inference engine with diagrammatic versions of
the symbolic inference rules for OWL 2 RL. Diagrammatic inference rules rewrite
the diagrams representing the premises of a proof state in order to make them iden-
tical to the goal of the proof state. In contrast to a symbolic proof, which is typically
is inaccessible to domain experts, this results in a diagrammatic proof, which is
empirically-evidenced to be more accessible [33, 1]. Figure 5 illustrates an example
of such a diagrammatic inference rule. Reasoning in ontologies most commonly in-
volves entailments, that is, checking if the set of axioms is consistent, coherent or for
query answering. Thus, proofs will often be about finding out why a set of axioms is
inconsistent or incoherent so that the ontology can be repaired. An example of both
a symbolic and iCon’s diagrammatic proofs of a theorem about inconsistency can
be seen in [34].

Ontologies are frequently used in the real world by diverse stakeholders, so it is
paramount to make working with them accessible. Current symbolic reasoner for
ontologies provide only a minimal set of axioms for entailments without explana-
tions for these entailments or indeed lack of entailment. In contrast, iCon’s dia-
grammatic proof provides not only an explanation for the entailment which exposes
the interaction between the minimal set of axioms, but also an accessible evidence
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and clues for how to repair the ontology when it is found inconsistent or incoherent.
Thus, iCon can be effectively used for reasoning about and debugging of ontologies.

5 How to choose a representation

So far, we showed how diagrams can be used for formal reasoning, how architec-
tures can be built to enable reasoning with diverse types of representations and in-
deed tools, and how we can formally reason with diagrams about ontologies. But
the question remains: given a problem that we want to solve, how do we choose the
representation that is best suited for solving it and that is most appropriate for the
user who is trying to solve it? Cognitive science has firmly established that choos-
ing an effective representation can yield dramatic improvements in human problem
solving performance [7, 20], and substantially enhance learning [6]. This is what
we are currently investigating in an interdisciplinary project on human-like com-
puting, which has Alan Bundy as one of its advisers10. We are combining artificial
intelligence, mathematics and cognitive science to investigate human cognitive abil-
ities to find representations that suitably match problems, and the process by which
humans adapt or switch between representations. We are devising a foundational
theory and building computational models of the critical role that representations
play in problem solving, and automating them in a new generation of adaptive AI
systems [32, 30, 39, 31].

To illustrate our approach, consider this problem in probability:

One quarter of all animals are birds. Two thirds of all birds can fly. Half of all flying animals
are birds. Birds have feathers. If X is an animal, what is the probability that it’s not a bird
and it cannot fly?

Here are three different ways one can go about solving this (see Figure 6):

1. You could divide areas of a rectangle to represent parts of the animal population
that can fly and parts that are birds.

2. You could use contingency tables to enumerate in its cells all possible divisions
of animals with relation to being birds or being able to fly.

3. You could use formal Bayesian notation about conditional probability.

Which of these is the most effective representation for the problem? It depends; the
first is probably best for school children; the last for more advanced mathematicians.
How can this choice of appropriate representation be mechanised? We are interested
to find out:

• What are the formal mathematical and cognitive foundations for choosing an
effective representation of a problem?

10 This work started during the EPSRC funded projects “How to (Re)represent it?” and “Automat-
ing Representation Choice for AI Tools” in collaboration with Peter Cheng, Daniel Raggi (also an
ex-DReaMer), Grecia Garcia Garcia, Aaron Stockdill, Holly Sutherland and Gem Stapleton.
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(a) Geometric representation – the solution is the area
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(b) Contingency table representation – the solution is
in the shaded cell:

birds non-birds total
flying (2/3)(1/4) (2/3)(1/4)
non-flying 3/4− (2/3)(1/4)
total 1/4 3/4 1

(c) Bayesian representation:

Pr(b̄∩ f̄ ) = Pr(b̄)−Pr(b̄∩ f )

= Pr(b̄)−Pr(b∩ f )

= (1−Pr(b))−Pr( f |b)Pr(b)
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Fig. 6 Bird probability example.

• Can we develop new cognitive theories that allow us to understand the relative
benefits of different representations of problems and their solutions, including
taking into account individual differences?

• How can we automate an appropriate choice of problem representation for both
humans, taking into account individual differences, and machines to improve
human-machine communication?

• Can we build an AI tutoring system, aimed at mathematical problems, that in-
corporates personalised representation choices and improves users’ abilities to
solve problems?

We distinguish between cognitive and formal properties of a representation, in
an approach that radically, but systematically, reconfigures previously descriptive
accounts of the nature of representations [11]. We use this to devise methods for
measuring competency in alternative representation use, and also to engineer a sys-
tem to automatically select representations. Cognitive properties characterise cog-
nitive processes demanded of a particular representation (e.g., problem state space
characteristics; applicable state space search methods; attention demands of recog-
nition; inference operator complexity [6]). Formal properties characterise the nature
of the content of the representation domain (e.g., operation types like associative or
commutative, symmetries, coordinate systems, quantity or measurement scales).

We devised a novel encoding for taxonomising formal and cognitive properties
of problems and representational systems [32]. We catalogue formal properties us-
ing templates of attributes that (currently) the developer of the system assigns values
to. The attributes encode the informational content of the question and a represen-
tational system. Table 1 gives snippets from a formal property catalogue for the
above Birds problem stated in the natural language representation. The colours code
the importance of the property relative to the information content (top to bottom
in decreasing importance). Table 2 gives snippets of the catalogue of formal prop-
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Table 1 Formal properties of the Birds problem in its natural language representation (note
colour).

Kind Value
error allowed 0
answer type ratio
primitives probability, and, not
types ratio, class
patterns :ratio of :class are :class, probability of :class and :class
facts Bayes’ theorem, law of total probability, unit measure, additive in-

verse, . . .
tactics deduce, calculate
primitives one, quarter, all, animals, birds, two, thirds, can, fly, half, flying, X,

animal, probability, cannot
related primitives times, divided by, plus, minus, equals, union, intersection, proba-

bility, zero, . . .
# of primitives 67
# of distinct primitives 31
# of statements 5
primitives feathers
related primitives beast, animate, creature, wing, aviate, flock, fowl, dame, carnal, be-

ing, fauna, . . .

Table 2 A section of formal properties for Bayesian representational system.

Kind Value
types real, event
primitives Ω , /0, 0, 1, =, +, −, ∗, ÷, ∪, ∩, \, ¯, Pr, |
g-complexity type-2
facts Bayes’ theorem, law of total probability, non-negative probability, unit-

measure, sigma-additivity, commutativity . . .
tactics rewrite, arithmetic calculation
i-complexity 3
rigorous TRUE

erties for the Bayes representational system (used in the solution in Figure 6(c)).
Any representational system and problem expressed in it can be encoded using this
description language.

We built algorithms that automatically analyse these encodings for a given prob-
lem (like the one in Table 1) with respect to candidate representational systems (like
the one in Table 2) in order to rank the representations, and ultimately suggest the
most appropriate one. This analysis is largely based on correspondences between the
properties of representational systems and their relative importance for a given prob-
lem. For example, the correspondences between the natural language formulation
of the example and the Bayesian one are translational/morphism-like pairs, such as
ratio real, given |, probability Pr, and intersection ∩.

Similarly to formal properties, we devised a catalogue of over 15 critical cog-
nitive properties. They span spatial and temporal scales (icons to whole displays
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and seconds to tens of minutes), numerous cognitive processes, and the mapping
of information between symbols/expressions and concepts. The attributes of cog-
nitive properties characterise the cognitive cost, that is, the difficulty of using that
representational system for problem solving. We designed weighting functions to
compute overall values of the cognitive cost for each property: they are based on a
problem at hand, a typical user and utilise the taxonomy of formal properties.

To adjust cognitive costs from a typical user to individual’s abilities, we devised
a small but diverse set of user profiling tests. The measures extracted from these
profiles enable us to scale the level of contributions of each cognitive property to
the overall cost of a representational system for an individual. We operationalised
the encoding of cognitive properties by automating heuristics that encode user pref-
erences and level of expertise to influence the ranking of potential candidate repre-
sentational systems.

In this work, we are laying the foundations for understanding formal and cog-
nitive properties that affect the choice of representations in problems solving. Our
prototype implementations of the algorithms that carry out this analysis show that
it is possible to model such processes computationally. We are now applying these
foundations in applications such as personalised AI tutoring systems.

6 Future directions

The overarching theme of the work reported here, and common to many past and
present DReaM group members, is about computationally modelling human reason-
ing. The enduring legacy of the DReaM group and our common interests mean that
in a number of these projects we continue with existing and establish new collab-
orations with the past and present DReaMers. For example, Alan Bundy is serving
on the advisory board of my project about representation choice and AI tools, and
Alison Pease is helping us with her HRL system [29] in our mathematical education
project.

The aim of my work is to make AI systems more human-like in the way they
interact with users, in the representations that they choose for this interaction, in
the methods that they employ to solve problems, and in the explanations that they
provide alongside their solutions. There are many future directions, especially with
respect to fully automating some of these processes and scaling them up to gen-
eral real-world AI systems. In particular, we are currently developing automated
methods for a diagrammatic reasoning system to discover new, intuitive solutions
to mathematical problems. We are also investigating how we can make theorem
provers construct proofs with methods at a level of abstraction and with a level of
automation that human mathematicians find appealing. Furthermore, we are marry-
ing statistical with symbolic and knowledge based approaches to machine learning
in order to enhance machine-oriented with human-oriented inference. The result are
AI systems that produce solutions from fewer examples and with better explanations
of the solutions. There are many applications of this work, but we are focusing on
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education and developing a new generation of adaptive AI tutoring systems, and on
medicine and building integrative data models for clinical decision support systems
in personalised cancer medicine.

There is currently much excitement about artificial intelligence and its impact
on society. Most of the work that is generating this excitement is due to impressive
results of statistical machine learning. However, these machine-oriented methods
produce solutions that often lack explanations and use representations that are in-
accessible to humans. My research is motivated by human reasoning, so I employ
symbolic learning and knowledge-based reasoning as well as diverse representations
to enhance this learning and inference. Interdisciplinarity and collaboration have al-
ways been at the centre of the DReaM group research ethos, and they have therefore
undoubtedly shaped me and my work. Both are key to advancing the field and build-
ing a new generation of AI systems that are transparent and have a good cognitive
model of the user to be adaptable and to produce explanations understandable to
humans.

Acknowledgements: I am thankful to all of my collaborators in the work re-
ported here, including Alan Bundy, Ian Green, Matej Urbas, Gem Stapleton, Zohreh
Shams, Yuri Sato, Sean Mcgrath, Andrew Blake, Peter Cheng, Daniel Raggi, Aaron
Stockdill, Grecia Garcia Garcia and Holly Sutherland.
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