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SUMMARY 
 
Respiratory chain dysfunction plays an important role in human disease and aging. It is now 

well established that the individual respiratory complexes can be organized into 

supercomplexes, and structures for these macromolecular assemblies, determined by electron 

cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes 

exist remains an enigma. The widely-held view that they enhance catalysis by channeling 

substrates is challenged by both structural and biophysical information. Here, we evaluate and 

discuss data and hypotheses on the structures, roles and assembly of respiratory-chain 

supercomplexes, and propose a future research agenda to address unanswered questions. 
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INTRODUCTION  

The structure, function and organization of the respiratory chain have been under investigation 

since Otto Warburg discovered Atmungsferment, the enzymatic basis for cellular respiration 

(Warburg, 1928). Thirty years later, progress in understanding how the mitochondrial 

respiratory chain drives ATP synthesis culminated in Peter Mitchell’s chemiosmotic 

hypothesis (Ernster and Schatz, 1981; Mitchell, 1961). Since then, molecular-level knowledge 

of the structures and mechanisms of the enzymes that comprise the respiratory chain and 

catalyze oxidative phosphorylation has exploded (Nicholls and Ferguson, 2013). Three proton-

translocating complexes, complex I (CI, NADH:ubiquinone oxidoreductase), complex III 

(CIII, ubiquinol-cytochrome c oxidoreductase) and complex IV (CIV, cytochrome c oxidase), 

connected by the mobile electron carriers ubiquinone (Q, ubiquinone-10 in humans) and 

cytochrome c (cyt c), catalyze electron transfer from NADH to O2. Many other pathways also 

contain enzymes that reduce ubiquinone to ubiquinol and so feed electrons into the respiratory 

chain. Proton translocation by CI, CIII and CIV generates a proton-motive force across the 

inner membrane that is used by F1Fo-ATP synthase to synthesize ATP. Consistent with the 

central role of oxidative phosphorylation in cellular energy metabolism, deficiencies in the 

enzymes that catalyze it are important contributors to human disease, both to rare inherited 

conditions and common age-associated diseases (Picard et al., 2016). 

 The organization of the mitochondrial respiratory complexes is commonly discussed in 

terms of two extreme models, the ‘fluid state’ and ‘solid state’ models. In the solid state model 

the complexes that catalyze individual reactions associate into single units capable of 

catalyzing whole reaction pathways (Keilin and Hartree, 1947). These solid-state devices 

contain Q and cyt c to transfer electrons along pre-defined, enclosed pathways between their 

component complexes, and do not exchange them with the outside. In contrast, in the fluid 

model individual complexes diffuse freely in the membrane, and Q and cyt c move randomly 

and without restraint between them (Hackenbrock et al., 1986). The fluid model was generally 

accepted until the invention of blue native polyacrylamide gel electrophoresis (BN-PAGE). By 

preserving interactions between the complexes, this technique enabled the separation and 

visualization of the multi-enzyme assemblies now known as supercomplexes (Schägger and 

Pfeiffer, 2000). Supercomplexes were criticized initially as artifacts of mild detergent 

solubilization, but their existence was then supported by experiments using a variety of non-

ionic detergents, and using separation by ultracentrifugation on sucrose density gradients 

(Acín-Pérez et al., 2008; Dudkina et al., 2005). Subsequently, they were observed in the 

absence of detergent in isolated cristae membranes, providing evidence of their existence in 
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situ (Davies et al., 2011). Supercomplexes have now been observed in diverse clades of 

organisms, including mammals (Schägger and Pfeiffer, 2000; 2001), plants (Eubel et al., 

2003), yeast (Schägger and Pfeiffer, 2000), and some bacteria such as Paracoccus denitrificans 

(Stroh et al., 2004), a relative of the protomitochondrion. However, they are not universal. For 

example, Escherichia coli contains patches of identical complexes grouped together in 

different parts of its cell membrane (Llorente-Garcia et al., 2014). In mitochondria from 

mammalian tissues, BN-PAGE has revealed supercomplexes of varying stoichiometry 

including CI/CIII2/CIV1-4, CI/CIII2 and CIII2/CIV1-2, and it has been estimated that 85-100% of 

CI and 55-65% of CIII, but only 15-25% of CIV, are found in supercomplexes (Greggio et al., 

2016; Schägger and Pfeiffer, 2001). Respirasomes are supercomplexes that contain CI, CIII 

and CIV and are capable of NADH:O2 oxidoreduction in vitro (CI/CIII2/CIV has been the most 

extensively studied). In organisms such as Saccharomyces cerevisiae, which do not express CI, 

only simpler superassemblies of CIII and CIV are present (III2/IV and III2/IV2) (Heinemeyer et 

al., 2007; Mileykovskaya et al., 2012; Schägger and Pfeiffer, 2000). 

 Here, we discuss how and why respiratory complexes are organized into supercomplex 

assemblies. Supercomplexes are now widely accepted by the scientific community, but the 

reason(s) for their existence, and whether they confer any functional or structural advantage, or 

contribute to the pathophysiology of human disease, remain under debate. We explore 

knowledge of their structures, evidence for specific factors that promote them, functional data 

on their proposed roles in enhancing catalytic efficiency or decreasing oxidative stress, and 

data relevant to the interplay between supercomplex formation and the topology, packing and 

stability of inner membrane structures. 

 
Structures of mammalian supercomplex assemblies  

Recent developments in single-particle electron cryo-microscopy (cryo-EM) (Fernandez-Leiro 

and Scheres, 2016) have led to a proliferation of relatively high resolution structural models of 

the mammalian respirasome (Gu et al., 2016; Letts et al., 2016; Sousa et al., 2016; Wu et al., 

2016). Figures 1A and 1B show the structure of the respirasome from porcine heart 

mitochondria determined at 5.4 Å resolution (Gu et al., 2016). In the architecture shown, 

representative of all the mammalian structures described so far (Althoff et al., 2011; Dudkina 

et al., 2011; Gu et al., 2016; Letts et al., 2016; Sousa et al., 2016; Wu et al., 2016), the 

membrane arm of CI curves around the CIII dimer with CIV positioned on the toe of CI, 

interacting with both CI and CIII. 

 The structure of the porcine respirasome was published back-to-back with three 
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structures from ovine heart mitochondria (Letts et al., 2016), which arose from using cryo-EM 

particle classification to distinguish molecules with different compositions or conformations 

(Scheres, 2016). Two structures are respirasome structures, and one lacks CIV. Figure 1C 

compares the three respirasome structures (Gu et al., 2016; Letts et al., 2016) and highlights the 

conserved arrangement of CI and CIII but the varying location of CIV. From the porcine 

structure, to the ‘tight’ ovine respirasome, to the ‘loose’ ovine respirasome, and finally to the 

ovine structure lacking CIV entirely, CIV rolls around the tip of CI, gradually dissociating 

from CIII, and finally from the respirasome completely. Further structural variation has since 

been observed in data on the bovine respirasome, in which one class shows the CIII dimer 

rotated by 25º relative to CI (breaking specific interactions between them) (Sousa et al., 2016), 

and in further analyses of the porcine complex (Wu et al., 2016). 

 Figure 1C may depict the respirasome in various stages of disassembly, following its 

extraction from the membrane. Alternatively, respirasomes in the membrane may vary in 

structure, or be constantly dissociating, reforming and reorganizing. Tomographic structures of 

the complexes in situ (Davies et al., 2011; Wan and Briggs, 2016) and single molecule imaging 

(Wilkens et al., 2013) will be required to distinguish these alternatives. Importantly, the 

integrities of supercomplex assemblies in BN-PAGE are well known to depend on the type and 

concentration of detergent used to solubilize them out of the membrane; the solubilization 

condition must be strong enough to release the complexes, but mild enough to preserve the 

interactions between them. Furthermore, cryo-EM grid formation exposes samples to a large 

air-water interface and may destabilize or degrade weakly bound assemblies such as 

supercomplexes. Cryo-EM analyses themselves may provide additional bias by excluding large 

numbers of the particles imaged from the analysis. Whereas Sazanov and coworkers only 

discarded 22% of their imaged particles (Letts et al., 2016), Wang and coworkers discarded 62-

64% (Gu et al., 2016; Wu et al., 2016) and Kühlbrandt and coworkers 75% (Sousa et al., 

2016). Different approaches to particle classification and selection affect these values, but the 

substantial inhomogeneity present in all the preparations imaged deserves consideration. 

 The recent structures (Gu et al., 2016; Letts et al., 2016; Wu et al., 2016) have provided 

new information about specific interactions between subunits of the different complexes. 

Complexes I and III interact predominantly in two regions: NDUFA11 and NDUFB4 on CI 

interact with UQCRQ on CIII, and NDUFB9 and NDUFB4 interact with UQCRC1 and 

UQCRFS1 (the Rieske protein) (Letts et al., 2016; Wu et al., 2016). Notably, the contacts are 

dominated by the CI supernumerary (accessory) subunits, which are crucial for assembly and 

function of human CI (Stroud et al., 2016), rather than by the core subunits (Fiedorczuk et al., 
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2016; Zhu et al., 2016). Although it has been proposed that the supernumerary subunits have 

undergone selection during evolution to favor supercomplex-stabilizing interactions (Letts et 

al., 2016), an equally valid proposal is that selection has instead favored them forming cage-

like structures that protect the catalytically-active core subunits of the complexes from too 

close, restrictive interactions. The interactions that the less-tightly bound CIV forms with CI 

and CIII vary between the different respirasome structures (Letts et al., 2016; Wu et al., 2016), 

with a close interaction between CIV subunit COX7A and CIII subunit UQCR11 in the porcine 

structure that is progressively lost in the two ovine structures (Figure 1C). 

 

Relationship between supercomplexes and inner membrane architecture 

Mitochondria have a distinctive morphology due to being bounded by both an encasing outer 

membrane and an invaginated inner membrane that forms in-folded protrusions known as 

cristae. Cristae are pinched off at their base by the mitochondrial contact site and cristae 

organizing (MICOS) complex (Milenkovic and Larsson, 2015; Pfanner et al., 2014) separating 

the inner boundary membrane (which is juxtaposed to the outer membrane) from the cristae 

membrane (which projects into the matrix). Supercomplexes are highly enriched in the cristae 

membrane (Appelhans et al., 2012; Busch et al., 2013; Gilkerson et al., 2003; Vogel et al., 

2006; Wilkens et al., 2013). F1Fo-ATP synthase dimers define the membrane topology by 

organizing into ribbon-like structures on the highly curved tips of the cristae (Davies et al., 

2011; Strauss et al., 2008). In contrast, the respiratory complexes are present predominantly on 

the planar cristae surfaces (Davies et al., 2011; Vogel et al., 2006; Wilkens et al., 2013). 

Consistent with this, a striking feature of the respirasome is its disc-like structure (Gu et al., 

2016; Letts et al., 2016). Cristae remodelling (which disrupts the membrane topology) has been 

observed to disrupt the supercomplexes in the cristae (Cogliati et al., 2013) and an 

interdependent relationship between topology and supercomplex stability has probably arisen 

through their co-evolution. Finally, the dimerization of isolated CIV by interactions involving 

subunit COX6A (Tsukihara et al., 1996) has been used to suggest that respirasomes may form 

dimers and higher-order oligomers such as respiratory strings (Dudkina et al., 2010) through 

dimerization of their CIV monomers, since COX6A faces outside. However, when two 

supercomplex structures are aligned onto the CIV dimer structure the resulting supercomplex 

dimer is V-shaped, not planar (Letts et al., 2016). The larger supercomplex formed by 

arranging two CI and two CIV molecules around a common CIII dimer, as tentatively observed 

by Wu and coworkers (Wu et al., 2016) is more likely to remain consistent with the planar 

cristae membrane environment. 
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Importance of phospholipid interactions for supercomplex structure and function 

Cardiolipin is the signature phospholipid of mitochondria, present in high amounts in the inner 

mitochondrial membrane (Mileykovskaya and Dowhan, 2009; 2013) where it is generally 

considered to stabilize supercomplexes in both yeast and mammals (Figure 2). Budding yeast 

strains with defective cardiolipin synthesis contain unstable supercomplexes that have only 

been visualized using clear native-PAGE, a milder version of BN-PAGE (Pfeiffer et al., 2003; 

Zhang et al., 2005). In addition, supercomplexes between CIII and CIV can only be 

reconstituted in liposomes when cardiolipin is present (Bazán et al., 2013). In mammalian 

systems, fewer supercomplexes can be observed in mitochondria from patients with Barth 

syndrome (McKenzie et al., 2006) who carry an X-linked mutation in the taffazin protein that 

transfers acyl chains between lipids and is required for cardiolipin remodeling (Schlame and 

Greenberg, 2017). Furthermore, it has been proposed recently that, by sequestering cardiolipin, 

the supercomplexes protect it from phospholipases (Xu et al., 2016). Thus, in Barth syndrome, 

defective cardiolipin remodeling may lead to decreased supercomplex stability, then (in a 

vicious cycle) to further cardiolipin release and degradation, augmenting the original effect. 

 In supercomplex structures the complexes are only loosely associated with one another, 

with plenty of space to accommodate phospholipids between them. Although cardiolipin is 

considered to stabilize supercomplexes, phosphatidylethanolamine, another inner membrane 

phospholipid, has been reported to destabilize them (Böttinger et al., 2012). Thus, maintaining 

the correct balance of phospholipid species between the complexes may be important. A 

number of phospholipids were resolved in the structure of the porcine respirasome, but in 

positions that probably stabilize individual complexes, rather than interactions between them 

(Wu et al., 2016). Indeed, it is well established that cardiolipin is required for the stability of 

many membrane proteins, including the respiratory chain complexes (McKenzie et al., 2006; 

Mileykovskaya and Dowhan, 2009; 2013), making it difficult to distinguish its effects on 

individual complexes from its effects on supercomplexes as a whole.  

 

Are specific proteins required for supercomplex formation or stability? 

Three independent groups have reported that respiratory complex factors 1 and 2 (Rcf1 and 

Rcf2) are required for formation/stabilization of CIII/CIV supercomplexes in yeast (Chen et 

al., 2012; Strogolova et al., 2012; Vukotic et al., 2012), and similarly a mammalian ortholog of 

Rcf1, Hig2a, affects CIV-containing supercomplexes (Chen et al., 2012). However, Rcf1 and 

Rcf2 have also been reported to be required for CIV assembly (Vukotic et al., 2012), Higd1a 
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(another ortholog of Rcf1) has been shown to bind to mammalian CIV and increase its activity 

by causing structural changes around heme a (Hayashi et al., 2015), and knocking out Rcf1 and 

Rcf2 in yeast decreased CIV activity (Rydström Lundin et al., 2016). Therefore, the effects of 

these proteins on supercomplex formation/stabilization are probably indirect. Likewise, the 

cardiolipin-binding protein C11orf83, reported to stabilize CIII-containing supercomplexes 

(especially III2/IV in mammalian cells), is also necessary for both an early stage of CIII 

assembly and cristae maintenance (Desmurs et al., 2015). Another cardiolipin-binding factor, 

stomatin-like protein 2, reported to affect supercomplex formation/stabilization in T-cells, is 

also involved in compartmentalizing cardiolipin in the inner membrane (Mitsopoulos et al., 

2015). Finally, mice deficient in the co-chaperone MCJ/DnaJC15, which has known roles in 

protein transport and sensitivity to chemotherapeutic agents (Sinha et al., 2016), have been 

reported to have higher levels of supercomplexes in their mitochondria, and higher rates of 

respiration. Thus, MCJ/DnaJC15 has been proposed as a negative regulator of supercomplex 

formation/stability (Champagne et al., 2016; Hatle et al., 2013). However, rates of CI catalysis 

are increased in the deficient mice, and levels of monomeric CI are not appreciably decreased, 

suggesting the results are influenced by higher CI content and/or activity and that the effects of 

MCJ/DnaJC15 on supercomplex formation/stabilization may be indirect also. 

 No densities from any of these proteins have been identified in structural data (Gu et 

al., 2016; Letts et al., 2016; Wu et al., 2016). Although available cryo-EM density maps are not 

yet at high enough resolution to allow individual residues to be identified, and so have been 

modeled by docking in the pre-existing structures of each individual complex (Fiedorczuk et 

al., 2016; Iwata et al., 1998; Tsukihara et al., 1996; Vinothkumar et al., 2014; Zhu et al., 2016), 

all the protein densities observed are accounted for by the 80 subunits of CI, CIII and CIV. It 

cannot be excluded that additional features will be resolved at higher resolution, but it is to be 

expected that transmembrane helix-containing proteins with important stabilizing roles would 

already have been observed because such proteins are expected to be tightly and 

stoichiometrically bound between the complexes. Although no supercomplex assembly factors 

have been identified in structural data, the existence of such factors cannot be excluded 

because they would be expected to only associate transiently with the nascent supercomplex.  

 In contrast to the proteins described above, the COX7A2-like protein COX7A2L (a.k.a. 

supercomplex assembly factor 1 or SCAFI), was described as a specific factor required for the 

interaction between CIII and CIV and thus for formation/stabilization of the III2/IV and 

I/III2/IV (respirasome) supercomplexes (Ikeda et al., 2013; Lapuente-Brun et al., 2013). The 

report that C57BL/6 mice harbor a shorter allele of Cox7a2l, which leads to the expression of 
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an unstable COX7A2L protein and lack of CIV-containing supercomplexes (Lapuente-Brun et 

al., 2013), contrasted with previous observations of respirasomes in C57BL/6 mice 

(Milenkovic et al., 2013; Sterky et al., 2012). In a study directly comparing mouse strains 

expressing the short (C57BL/6J, C57BL/6N) and long isoforms of Cox7a2l (CD1, BALB/c), it 

was confirmed that the III2/IV supercomplex is dependent on the long isoform of COX7A2L 

(Mourier et al., 2014). However, fully assembled respirasomes and normal respiratory chain 

function were clearly observed in mice expressing both isoforms (Mourier et al., 2014). A 

mouse knockout for Cox7a2l created on the C57BL/6 background also showed the presence of 

CIV-containing supercomplexes, although their steady-state levels appeared lower (Ikeda et al., 

2013), and studies in human cell lines found respirasome formation to be independent of the 

presence of COX7A2L (Pérez-Pérez et al., 2016). Enríquez and coworkers subsequently 

proposed that respirasomes are present in the heart and skeletal muscle of mice expressing the 

short COX7A2L isoform, but absent from the liver and most other tissues (Cogliati et al., 

2016). However, other studies have observed respirasomes in the liver of mice expressing the 

short COX7A2L isoform (Jha et al., 2016; Mourier et al., 2014; Williams et al., 2016) (Table 

1). Therefore, COX7A2L is not essential for formation/stabilization of the respirasome. It 

clearly does assist in formation/stabilization of the III2/IV supercomplex (Pérez-Pérez et al., 

2016), which can only been observed in mice that harbor the long COX7A2L isoform, and not 

in the C57BL/6 strain (Table 1 and Figure 2).  

 Due to lack of additional attributable density for COX7A2L in recent cryoEM maps, 

and high sequence similarity between COX7A2L and tissue-specific isoforms of COX7A, it 

was speculated that COX7A2L may replace COX7A in supercomplexes, acting as a bridge 

between CIII and CIV and stabilizing the III2/IV interaction (Letts et al., 2016). Figure 1C 

shows how COX7A/COX7A2L moves relative to CIII subunit UQCR11 in the three 

respirasome structures described, consistent with the CIII/CIV interface being an inherently 

weak point of the respirasome and with COX7A/COX7A2L being a central feature of this 

interface. In mass spectrometric analyses of digitonin-solubilized mitochondria from CD1 mice 

(that express the long COX7A2L isoform), COX7A was present almost exclusively in 

monomeric/dimeric CIV, whereas COX7A2L was present in III2/IV supercomplexes and 

respirasomes (Cogliati et al., 2016). We have previously shown that COX7A2L is a CIII-

associated protein (Pérez-Pérez et al., 2016), and Enríquez and coworkers also detected 

COX7A2L bound to CIII in C57BL/6 mice (Cogliati et al., 2016). Together, these observations 

suggest that the homologous region of COX7A2L substitutes for COX7A and interacts with 

CIV, and that CIII donates COX7A2L to form the III2/IV interface. Figure 3 proposes how the 
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long COX7A2L isoform displaces COX7A from CIV to form a tight III2/IV interface either in 

III2/IV-containing supercomplexes or respirasomes. It also suggests how respirasomes with 

only a weak III2/IV interface form in the absence of COX7A2L, through interactions solely 

with CI. Whether the variants of the respirasome structure shown in Figure 1C correspond to 

respirasomes with tight or weak III2/IV interfaces formed in these ways is not known. 

 Enríquez and coworkers used mutagenesis to identify residues in mouse COX7A2L that 

are important for the III2/IV interaction (Cogliati et al., 2016). They found that His73, within 

the COX7A homologous region, is critical for the interaction between COX7A2L and CIV. 

The microdeletion in the short COX7A2L isoform removes two amino acid residues adjacent 

to His73, which may explain its inability to promote the III2/IV interaction (Cogliati et al., 

2016). Intriguingly, His73 in COX7A2L and the corresponding histidines in COX7A1 and 

COX7A2 are all replaced by tyrosines in humans, further underlining the importance of 

conserving this residue. Moreover, the roles of COX7A1/A2 and COX6A1/A2, which are 

subunits of CIV with tissue specific expression, were investigated and it was proposed that 

COX7A1 and COX6A2 promote CIV dimerization (Cogliati et al., 2016). 

Interpreting supercomplex structures to learn about their functions 

It is not easy to derive information about the catalytic mechanisms of redox enzymes from their 

structures. For the respirasome it is striking that the same structural information has repeatedly 

been interpreted in two very different ways, to either support or dismiss substrate-channeling 

hypotheses. In 2011, Kühlbrandt and coworkers (Althoff et al., 2011) proposed that 

supercomplexes are solid-state devices that construct pathways for the enclosed exchange of 

ubiquinone/ubiquinol between CI and CIII, and for cyt c between CIII and CIV, and they 

repeated this assertion recently (Sousa et al., 2016). In contrast, also in 2011, Boekema and 

coworkers (Dudkina et al., 2011) noted that proximity of the active sites may help to decrease 

the time required for random diffusion between them, but considered the concept of 

constructing the supercomplex to decrease the distances questionable. In 2016, Sazanov and 

coworkers noted the distinct lack of any substrate channels, or barriers to free diffusion, to 

connect the substrate-binding sites of CI, CIII and CIV in their structures (Letts et al., 2016). 

Figure 4A uses a structural perspective to consider the possibility that Q is channeled 

through the membrane, between CI and CIII. Ubiquinol exits CI at a peripheral location in the 

supercomplex (Baradaran et al., 2013; Zhu et al., 2016) and no confining structure exists to 

guide it to the Qo site of the closest CIII monomer, on the opposite face of the membrane. 

Thus, it is free to diffuse in and out of the region between the two binding sites and to 
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exchange with the greater membrane environment — the lack of confining structure is 

inconsistent with substrate channeling. The structures of enzymes that really do channel 

substrates (typically highly reactive or toxic substrates) exhibit enclosed channels between the 

sites, which allow no escape or exchange (Weeks et al., 2006). Similarly, Figure 4B considers 

the possibility of cyt c channeling between CIII and CIV. Cyt c is located in the intermembrane 

space and diffuses in a thin volume along the inner membrane surface (Gupte and 

Hackenbrock, 1988). In Figure 4B, two cyt c molecules have been added to indicate their 

relative size and approximate binding sites on CIII (Lange and Hunte, 2002). Reduced cyt c 

interacts with a negatively-charged patch on CIV (Shimada et al., 2016; Tsukihara et al., 1996). 

Again, no confining structures exist to contain the cyt c molecules between the two specific 

sites and prevent them diffusing away. Therefore, structural data do not support substrate 

channeling. The close proximities of the active sites within the supercomplex may increase the 

probability of a substrate re-reacting within the same respirasome, but the substrates are 

unconstrained and free to move in any direction, either within or between respirasomes. 

Indeed, the close active site proximities result naturally from the high packing density in the 

inner membrane, independently of the specific arrangements of the complexes in 

supercomplexes. 

 The orientation of the CIII dimer in the respirasome (one monomer facing CI and one 

facing out) has recently led to speculation that the ‘inner’ monomer may dominate catalysis 

because its ubiquinol-oxidizing Qo site is closest to the ubiquinol-producing site of CI (Sousa 

et al., 2016) and because the movement of its Rieske domain appears less hindered by CIV 

(Letts et al., 2016). The asymmetry imposed by the respirasome is not present in isolated CIII, 

in which both monomers are active (Sarewicz and Osyczka, 2015), so little data exists to 

address this hypothesis. Furthermore, despite decades of study and an extensive scientific 

literature, Yang and coworkers (Wu et al., 2016) used their structure to propose a new 

mechanism for CIII. Whereas ubiquinol is known to be oxidized at the Qo site on the inter-

membrane space side of the membrane in a ‘bifurcating’ electron transfer reaction that, by 

sending one of the two electrons across the membrane to ubiquinone bound at the Qi site, 

increases the number of protons transported across the membrane (Sarewicz and Osyczka, 

2015), Yang and coworkers proposed that ubiquinol is in fact oxidized at the Qi site, and that 

the two protons generated ‘might’ then be transported across the membrane (Wu et al., 2016). 

Their model is inconsistent with all extant data on the mechanism of CIII (Sarewicz and 

Osyczka, 2015) and with its known proton-pumping stoichiometry (Nicholls and Ferguson, 
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2013), and it fails to complete a basic Q cycle for proton-electron transfer across the membrane 

as embodied by Mitchell’s chemiosmotic theory (Mitchell, 1975). 

 

Supercomplexes do not channel substrates or partition the Q or cyt c pools 

Early work on distinguishing whether the Q pool in the inner mitochondrial membrane behaves 

as a single, freely-diffusing homogenous pool or whether Q molecules are sequestered into 

individual solid-state supercomplexes, has been reviewed in detail previously (Rich, 1984). 

Several lines of evidence led to a general consensus for a single, homogeneous pool that 

exchanges between all the membrane-bound complexes: i) calculations based on the diffusion 

coefficient of Q estimated that around 80 CIII dimers could be visited during a single CIII 

turnover during state 3 respiration; ii) predictions based on pool equations and comparison 

with experimental data provided evidence for a common substrate pool that could be reduced 

either by CI or CII (Kröger and Klingenberg, 1966; 1973); and iii) extraction of quinones 

followed by their reconstitution into membranes (which were also diluted with additional 

lipids) revealed a dependence on Q concentration consistent with a mobile Q pool in 

stoichiometric excess over the enzyme complexes (Schneider et al., 1982; 1980). 

 The solid-state model was subsequently revived by identification of supercomplex 

assemblies by BN-PAGE, and particularly by a report stating that isolated respirasomes 

(excised from BN-PAGE gels) that contain CI, CIII and CIV as well as co-purified Q and cyt c 

are able to catalyze electron transfer from NADH to O2 (Acín-Pérez et al., 2008). Indeed, the 

isolated respirasome can be considered a solid-state device (Q is trapped in its 

phospholipid/detergent micelle and cyt c remains associated) — but once it is placed in a 

membrane diffusion and exchange of Q and cyt c may occur. Data from flux control analyses 

have been taken to support the existence of independently-catalyzing respirasomes embedded 

in the membrane (Bianchi et al., 2004). In these analyses, a particular step in a pathway is 

inhibited and the effects on the isolated step and on the pathway compared. If the inhibition is 

identical, then the step has complete control over the pathway flux and its flux control 

coefficient (FCC) is 1. Lenaz and coworkers used rotenone and mucidin to obtain FCC values 

of 1 for both CI and CIII in the NADH oxidation pathway, suggesting they operate as a single 

entity (Bianchi et al., 2004). However, the analyses relied on large extrinsic concentrations of 

hydrophilic quinones and cyt c to assay the individual steps, whereas the pathway uses the Q 

and cyt c that exist in situ. Consequently, individual steps may behave differently in isolation 

and in the pathway, and high extrinsic quinone concentrations displace competitive inhibitors 

so the choice of inhibitor may affect the results. It has since been reported that two canonical 
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CI inhibitors, piericidin A and rotenone, give very different FCC values (Blaza et al., 2014): in 

different experimental systems, the values measured for piericidin A were between 0.2 and 0.7, 

but those for rotenone between 1.7 and 3.9. The sum of all the FCC values for a pathway 

should equal 1, so values greater than 1 are not biologically meaningful (Fell, 1992), and the 

inhibitor dependence of the FCC values further questions the reliability of this approach. 

 In 2013, Enríquez and coworkers re-proposed the solid model of the respiratory chain 

by reporting that supercomplexes define dedicated Q and cyt c pools (Lapuente-Brun et al., 

2013). According to their model, neither Q nor cyt c form homogeneous pools, but instead 

each supercomplex contains its own tiny pools that do not exchange with the tiny pools in 

other supercomplexes. However, the data used to support this model are also consistent with 

other explanations that are dependent on neither the involvement of supercomplexes nor 

partitioning of the Q and cyt c pools. First, in mouse fibroblasts with a constitutively low CIII 

expression, the activity of CI was moderately decreased but the activity of CII slightly 

increased. Both observations were explained subsequently by the same authors by increased 

production of reactive oxygen species (ROS) leading to CI disassembly (Diaz et al., 2012) and 

to activation of CII by phosphorylation (Acín-Pérez et al., 2014). Second, in the same 

fibroblasts the rate of CI+CIII catalysis was unchanged but the rate of CII+CIII catalysis was 

decreased, and this interesting discrepancy led to the proposal that CI sequesters CIII into 

supercomplexes, leaving little CIII available for CII catalysis. However, an alternate and 

perhaps simpler explanation is that CI+CIII catalysis is limited by one or more factors external 

to the respiratory chain (e.g. the upstream production of NADH) and therefore not affected by 

decreased CI or CIII activity, whereas CII+CIII catalysis is limited by CIII. Third, the authors 

observed that in CD1 mice (long Cox7a2l isoform) the sum of the rates of respiration on 

NADH- and succinate-linked substrates was equivalent to the rate in the presence of both, 

whereas in C57BL/6 mice (short Cox7a2l isoform) this was not the case. They ascribed the 

additive behavior in CD1 mice to the presence of separate Q pools for each pathway. However, 

an alternate explanation could well be that CIII+CIV catalysis is quick enough to ‘keep up’ 

with the increased rate of ubiquinone reduction. 

 In 2014, submitochondrial particles and membrane preparations from Bos taurus heart 

mitochondria were used to test directly whether partitioning of the Q and cyt c pools occur 

(Blaza et al., 2014). The preparations used contained a full complement of supercomplexes, 

with the CI and CII active sites exposed directly to added substrates. By using different 

amounts of cyt c to vary the CIII+CIV rate and thus alter the identity of the rate limiting steps 

for NADH and succinate oxidation, it was demonstrated how the same system, with the same 
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supercomplex content, could exhibit both additive and non-additive kinetics, excluding this as 

an argument for Q pool partitioning (Figure 5A). Furthermore, the addition of NADH, 

succinate, or both reductants together (in the absence of O2), reduced essentially the same 

population of CIII, CIV and cyt c in every case (Figure 5B). These experiments did not reveal 

any additive effects and so also argue against partitioning of the Q pool. Only the spectroscopic 

time traces from the b-hemes in CIII varied significantly between the three conditions, but due 

to their low reduction potentials the b-hemes are incompletely reduced in all cases. Finally, the 

rate of NADH oxidation was compared with the rate of reverse electron transport, in which the 

proton-motive force from ATP hydrolysis is used to drive electron transport from succinate to 

NAD+, backwards through CI (Figure 5C). The rate of reverse electron transport, which 

requires CI and CII to share a common Q pool, was comparable to that of NADH oxidation. 

Using elegant heme spectroscopy in intact living cells, others have further demonstrated that 

cyt c in S. cerevisiae does not face major barriers to its free diffusion (Trouillard et al., 2011), 

and this is consistent with all the CIV present being catalytically active, rather than only the 

15-25% of it that is present in supercomplexes. 

 In our opinion, robust evidence for the partitioning of the Q and cyt c pools and for the 

channeling of either substrate is thus lacking. Instead, all functional and structural evidence is 

consistent with their free diffusion. Indeed, we contend that trapping a tiny pool of Q and cyt c 

within each supercomplex would be detrimental to respiratory chain function: it would 

preclude redox sensing by the pools and render the system less able to withstand individual 

complexes being dysfunctional. Notably, our conclusion does not support either the fluid or the 

solid-state model for respiratory chain organization. The original formulations of the two 

models linked function and structure tightly together, but this is now seen to be misleading: Q 

and cyt c diffuse between complexes or supercomplexes in any configuration. Recently, a 

‘plasticity model’ has been proposed as a hybrid model that encompasses pool partitioning but 

allows the pools to overflow to give the appearance of being one (Lenaz et al., 2016), and that 

borrows elements from both models to be consistent with all extant data (Enríquez, 2016; 

Moreno-Loshuertos and Enríquez, 2016). Whereas partitioning of the Q and cyt c pools is a 

problematic concept for the reasons discussed above, the plasticity model proposes that 

supercomplexes are dynamic entities that are constantly dissociating and reforming, and this 

latter interesting aspect is worthy of further investigation. 
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If not substrate channeling, what is the raison d’être of supercomplex formation? 

The existence of respiratory chain supercomplexes as structural entities is now widely accepted 

and it is natural to anticipate that, having evolved, they confer one or more functional 

advantages. Having ruled out substrate channeling, we now turn to alternative possibilities for 

why respiratory chain supercomplex formation is beneficial to the cell, namely: i) decreasing 

ROS production; ii) stabilizing or assisting in the assembly of the individual complexes; iii) 

regulation of respiratory chain activity; or iv) prevention of protein aggregation in the protein 

rich mitochondrial inner membrane.  

 i) CI and CIII are considered the main sites of ROS production by the respiratory chain 

(Murphy, 2009). Based on measurements of ROS production by isolated bovine heart 

mitochondria and by reconstituted liposomes containing CI and CIII either independently or in 

the I/III2 supercomplex, and solubilized with different detergents to either maintain or disrupt 

the supercomplexes, Genova and coworkers proposed that supercomplex formation decreases 

ROS production (Maranzana et al., 2013). Being made in the presence of respiratory-chain 

inhibitors, their experiments refer to ROS production by the CI flavin site (Kussmaul and Hirst, 

2006). However, access to the flavin site of CI is not hindered structurally by supercomplex 

formation, so it is difficult to rationalize the proposal. Furthermore, the ROS production rates 

measured were normalized using the rate of ubiquinone reduction by CI, a value that is easily 

modulated by changes in conditions and detergents, so lack of knowledge of the amount of CI 

present convolutes the interpretation. A correlation between ROS production and the level of 

CI present in supercomplexes has also been observed in neurons and astrocytes, cell types with 

very different bioenergetic properties (Lopez-Fabuel et al., 2016). For the CIII dimer, Sazanov 

and coworkers suggested that the asymmetry of the respirasome favors ubiquinone reduction at 

the Qi site closest to CIV, where locally decreased O2 concentrations may decrease ROS 

production. However, ROS formation by CIII is dominated by the QO site, not the Qi site 

(Sarewicz and Osyczka, 2015). Further work is thus required to investigate the interesting 

hypothesis that supercomplexes decrease ROS production. 

 ii) Mutations that cause defects in CIII or CIV may cause combined deficiencies in 

which CI is also affected (Acín-Pérez et al., 2004; Diaz et al., 2006). Because supercomplex 

formation/stability is often affected by the original defect, and defects in CI do not impact 

similarly on CIII and CIV, it has been proposed that CIII and CIV are required to stabilize CI 

through supercomplex formation (Acín-Pérez et al., 2004; Diaz et al., 2006; Schägger et al., 

2004). First, we note the effect is not universal: there are well-known examples of fully-

assembled CI being present when CIV is disrupted (Balsa et al., 2012). There are also many 
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human genetic conditions in which impaired CIV biogenesis leads to an isolated CIV 

deficiency (Diaz, 2010; Williams et al., 2004; Zhu et al., 1998), perhaps because in patients 

with low levels of CIV, the residual CIV is preferentially incorporated into respirasomes 

(Lazarou et al., 2009), and may be sufficient for their formation. Second, the effect can also be 

explained by a supercomplex-independent mechanism (Diaz et al., 2012; Guarás et al., 2016): 

when respiration is compromised (at CIII or CIV) reducing equivalents back-up into the 

NAD+/NADH pool and ROS production by CI increases (Kussmaul and Hirst, 2006); 

increased ROS is detrimental to CI stability, and loss of CI (and CIII or CIV) leads to lower 

supercomplex levels (Diaz et al., 2012). Evidence has since been presented that the increased 

ROS production arises from reverse electron transfer through CI (Guarás et al., 2016), with the 

same consequences. Thus, these combined respiratory-chain deficiencies present no 

unequivocal evidence for the interdependence of the complexes through supercomplex 

formation.  

Supercomplex formation in human cell lines has also been proposed to provide a 

scaffold for the completion of CI assembly (Moreno-Lastres et al., 2012). According to this 

model, the final section of the peripheral arm of CI (the pre-assembled NADH-oxidizing 

module) is only added once the nascent complex has been assembled into a supercomplex so 

that CI is not activated until the supercomplex is complete; this is consistent with CIII 

stabilizing partially-assembled CI in Ndufs4 knockout mice (Calvaruso et al., 2012). In 

contrast, recent proteomics studies that combined complexome profiling with BN-PAGE 

analyses to provide a detailed picture of CI assembly showed that the whole complex was 

assembled independently, before supercomplex formation and without a supercomplex scaffold 

(Guerrero-Castillo et al., 2016). Interestingly, NDUFA11 (a key subunit for the interaction of 

CI and CIII) and the pre-assembled NADH-oxidizing module are both added in the final stage 

of CI assembly. However, they are structurally independent in the complex, suggesting that 

they do not depend on one another for their incorporation. Therefore, the different results 

above probably reflect different balances between the independent rates at which CI assembly 

is completed and intercomplex associations are formed. 

 iii) The assembly and disassembly of supercomplexes are increasingly described as 

methods of regulating respiratory chain activity. For example, it was recently reported that 

exercise leads to increased supercomplex formation in human skeletal muscle (Greggio et al., 

2016). It has also been suggested (based on the existence of more than one Q pool) that the 

respiratory chain may adjust its supercomplexes to promote increased flux through CI or FAD-

linked dehydrogenases and assist in switching between carbohydrate and fatty-acid metabolism 
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(Lapuente-Brun et al., 2013). According to this model, activation of FAD-linked pathways 

causes over-reduction of the putative FAD-dedicated Q pool and upregulates ROS production 

by reverse electron transport through CI. The increased ROS production degrades CI and 

breaks down respirasomes to release CIII and the putative respirasome-associated Q-pool for 

FAD-linked respiration (Guarás et al., 2016). One weakness of this model is that it is internally 

inconsistent because, despite assuming the presence of separate Q pools, reverse electron 

transport between CI and CII requires Q to transfer between the two. Furthermore, a 

supercomplex-independent mechanism can achieve the same effect simply by increased ROS 

production leading to CI degradation. 

 Many varied studies will continue to observe changes to the levels of supercomplexes 

present in mitochondria, and correlate these to changes in metabolic conditions, the 

dysfunction, instability or absence of a respiratory complex, increased oxidative stress, or a 

change in morphology. However, it is important to recognize that correlation does not equate 

to causation, and to be cautious when making mechanistic assignments on the basis of indirect 

observations made on highly complex systems. 

 iv) The mitochondrial inner membrane is extremely protein-rich, with a phospholipid 

content of only around 30% (Fleischer et al., 1961). Therefore, supercomplexes may have been 

selected for because they prevent protein nucleation and aggregation (Blaza et al., 2014). The 

weak protein interactions that hold them together may prevent stronger deleterious interactions 

that would lead to loss of function, and the supernumerary subunits of the eukaryotic 

complexes may have evolved to promote these weak interactions. A well-known example of a 

similar strategy to prevent protein aggregation is in the lens of the eye, where densely packed 

protein molecules maintain the gel state by interacting only weakly with one another (Slingsby 

et al., 2013). Indeed, it is possible that supercomplexes form only in highly packed membranes 

due to either concentration-dependent association, or in response to a regulatory mechanism 

such as the expression of supercomplex assembly factors.  

 

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS 

The organization of the respiratory chain is disrupted in a large number of human 

mitochondrial disorders caused by mutations in both mtDNA and nDNA (Wallace, 2010), such 

as Barth syndrome (McKenzie et al., 2006) and Leigh syndrome (McKenzie et al., 2007), as 

well as in a range of age-associated human diseases, such as heart failure (Rosca et al., 2011), 

and by the aging process itself (Frenzel et al., 2010; Gómez et al., 2009; Kauppila et al., 2016). 

A deterioration of respiratory chain supercomplex formation often forms part of the 
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biochemical disease phenotype, but the extent to which pathology and functional decline can 

be attributed to it is unclear. Recent advances in understanding the structures and organization 

of supercomplexes (Gu et al., 2016; Letts et al., 2016; Wu et al., 2016) now open new 

opportunities for testing their different proposed roles, particularly those centered on spatial 

organization or stability rather than catalysis. For example, it should now be possible to 

develop supercomplexes with enhanced interactions between the complexes, as well as to 

generate specific mutations that have no effect other than to disrupt supercomplex formation or 

stability. Biochemical studies on tightly-controlled systems in which supercomplex formation 

is the only variable are also required to study proposed properties such as the minimization of 

ROS production and the dependence on different phospholipids, in the absence of convoluting 

factors. Recent development of methods for reliable mitochondrial metabolomics (Chen et al., 

2016) may give insights into possible metabolite changes in response to supercomplex 

perturbations. Continuing advances in cryo-EM tomography, single-molecule labeling 

techniques and super-resolution light microscopy should be exploited for detailed and dynamic 

studies of respiratory chain organization in intact mitochondria and whole cells. Increased 

understanding in this area is clearly of great importance for the future, both for basic science 

and for understanding the roles of oxidative phosphorylation deficiencies in human disease and 

ageing. 
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FIGURE AND TABLE LEGENDS 

 

Figure 1. Structures of the respirasome. A) The arrangement of CI (orange), the CIII dimer 

(the monomers are shown in blue and cyan), and CIV (magenta) in the porcine respirasome, 

viewed along the membrane plane. B) The porcine respirasome viewed from the matrix. C) 

Comparison of the porcine and ovine respirasome structures. The structures were 

superimposed using the structure of the CIII dimer, to reveal the different relative positions of 

CI and CIV. CIV is shown as transparent over-lapping shapes (pink, porcine respirasome; 

magenta, tight ovine respirasome; blue, loose ovine respirasome). The transmembrane helix in 

CIV COX7A is highlighted to show how it moves relative to CIII UQCR11, which has been 

modeled in two slightly different positions. The figure was created using 5GPN.pdb (Gu et al., 

2016) (provided by the authors before release by the protein data bank), 5J4Z.pdb and 

5J7Y.pdb (Letts et al., 2016). 

 

 Figure 2. The presence of supercomplexes and respirasomes depends on COX7A2L and 

cardiolipin. A) The respiratory chain complexes of mouse strains harboring the long 

COX7A2L isoform (e.g. CD1 and BALB/c) are organized in respirasomes (I/III2/IV) and 

supercomplexes (I/III2 and III2/IV). B) Strains carrying the short COX7A2L isoform (e.g. 

C57BL/6 and DBA/2J) lack the III2/IV supercomplex. C) Deficiency of the mitochondrial 

signature phospholipid, cardiolipin, leads to destabilized supercomplex assemblies (light 

colors). 

 

 Figure 3. Proposal for how respirasomes form in the presence and absence of the long 

isoform of COX7A2L. A) Respirasome formation in the presence of the long isoform of 

COX7A2L. Top: the individual, fully-assembled complexes are CI, the CIII dimer and the CIV 

monomer. COX7A2L is weakly associated with CIII (it is not observed in the structure of CIII) 

and is proposed to interact with subunit UQCR11. COX7A is also shown as a CIV subunit. 
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Middle: a tight interface forms between CIII and CIV when COX7A2L replaces COX7A. 

Bottom: the III2/IV supercomplex associates with CI to form the respirasome. It is also 

possible that CIII and CIV both associate with CI before the III2/IV interface forms. B) 

Respirasome formation in the absence of the long isoform of COX7A2L. i) The individual, 

fully-assembled complexes are CI, the CIII dimer and the CIV monomer. COX7A is shown as 

a CIV subunit. ii) CIII and CIV both associate with CI but a tight interface is not formed 

between them. The III2/IV supercomplex is unstable. 

 

Figure 4. Ubiquinone and cyt c binding sites in the respirasome. A) The transmembrane 

helices in the respirasome, shown in the same orientation as Figure 1B. The exit from the CI 

ubiquinone-binding site is indicated, along with the positions of the two ubiquinol-binding 

sites in CIII. B) The respirasome viewed from the intermembrane space with two cyt c 

molecules shown to approximately indicate their binding sites on CIII, and the negatively-

charged patch on CIV where the reduced cyt c is reoxidized. The figure was created using 

5GPN.pdb for the porcine respirasome (Gu et al., 2016) (provided by the authors before release 

by the protein data bank). 

 

 Figure 5. Functional data that demonstrate there is only one Q pool in the inner 

mitochondrial membrane. A). Rates of O2 reduction by submitochondrial particles (SMPs) 

measured using NADH, succinate, or both substrates together. The sum of the individually-

measured rates is also shown. For SMPs prepared with additional cyt c, the rate of CIII+CIV 

catalysis is high so adding both substrates together increases the overall rate. For SMPs 

prepared without additional cyt c, the rate of CIII+CIV catalysis is low so the rate of O2 

reduction is constant, regardless of which substrate(s) are added. B). Reduction of the cyt c1 

heme in CIII and of cyt c upon addition of NADH, succinate, or both substrates together, 

followed spectroscopically. The relative extents of reduction are indicated for the ends of the 

traces shown and in all cases the hemes are close to fully reduced. C). The rates of different 

reactions measured in the same set of SMPs. Electrons can pass from CII to CI (in reverse 

electron transport) as fast as from CI to CIII+IV. Reverse electron transport from succinate to 

NAD+ requires ATP hydrolysis to overcome the potential difference. Data from Hirst and 

coworkers (Blaza et al., 2014). 
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Table 1. Overview of the literature on the supercomplex organization in C57BL/6 mouse 

strain harboring the short Cox7a2l isoform. +, present; -, absent; n.d., not determined. 

 
 
Study 

 
Mouse tissue 
(C57BL/6 
background) 

 
Supercomplex 
III2/IV1  

 
Respirasomes 
I/IIIn/IVn 

Lapuenete-Brun et al., 
2013 liver - - 

Ikeda et al., 2013 sk. muscle n.d. + 

Mourier et  al., 2014 heart / liver - + 

Jha et al, 2016 Liver - + 

Williams et al., 2016 liver / heart - + 

Perez-Perez et al., 
2016 heart - + 

Cogliati et al., 2016 

heart / sk. muscle - + 

liver / kidney / brain - - 
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