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Abstract 

 

This thesis provides an overview of how a successful method for structuring cold spray deposition was 

developed, allowing the creation of defined surfaces from a previously uncontrolled deposition profile. 

When considering both additive and traditional manufacturing techniques, there remains a gap in the 

market for a high build rate, low-cost manufacturing system, capable of building net shape structures 

with good material properties from a range of difficult to work with engineering materials. A cold spray 

system had the potential to meet these requirements, and to provide additional benefits from being a 

solid-state fusion process, but the technique lacked the structural control capabilities required. 

The aim of this body of work was to develop methods for controlling the shape of depositing material, 

allowing the creation of three-dimensional structures, and determining an approach which would 

allow the creation of flexible manufacturing platform. A limited number of attempts had been 

previously made to control the deposition shape. These methods met with limited success, did not 

offer real control over the shape of the deposit during operation, and presented issues of accuracy, 

reliability, and repeatability. 

In this work, a series of concepts for shaping the deposition of the material were tested for the creation 

of flat vertical surfaces. Copper was used as the deposition powder as it readily deposits with cold 

spray under easily manageable conditions. The samples were investigated for shape conformity, 

surface roughness, porosity and build height, using optical microscopy and a white light 

interferometer. Successful shaping was delivered using masks, wide flow impeding backstops and 

thinner flow separating tools, provided the non-adhering powder had sufficient room to be cleared 

from the deposition zone. The thinner tool was further developed, as it allowed better positioning in 

smaller spaces for future systems. 

Computational fluid dynamics models were created to assist with the understanding of some 

inconsistencies in deposit quality. The results of these simulations showed minimal alteration to the 

particle trajectory was caused by the alteration of gas dynamics from the introduction of obstacles. 
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The developed thin tool deposition concept was then successfully tested for robustness with 

deposition of further materials, and with the inclusion of laser irradiation of the substrate. It was 

demonstrated that the density, deposition efficiency and build heights are comparable with those 

expected from typical cold spray/supersonic laser deposition deposits. Following this, a range of 

building block structures were created, to further advance the shaping capabilities of the system, and 

demonstrate the freedom of deposition profile. Flat surfaces, thin walls, corners, curves, rings and 

overhangs were all shown to build efficiently without further complication. 

It is concluded that it is both possible to control the shape of the depositing material during cold spray, 

and possible to do so without adversely affecting the deposit characteristics that give cold spray 

manufacturing its specific advantages over other manufacturing methods. 

The next steps for this process are to create a more flexible system, automating the placement of the 

shaping tool and using a 5 or 6 axis bed and nozzle positioning setup. Further to that, precise control 

over the powder dosage, and the development of a known parameter space for select materials would 

progress the system to an additive capable platform. 
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Chapter 1 -  Introduction 

1.1. Research motivation 

Metallic additive manufacturing is a rapidly growing field, having piqued the interest of both the public 

and private sectors, leading to investment across a range of fields including aerospace, motorsport and 

medical implants. One of the greatest limiting factors in the development of metallic additive 

manufacturing technologies has been the achievable build rate. Powder bed machines are limited by 

a maximum layer depth, melt pool scan speed and powder distribution rate, while blown powder 

systems that melt the material must limit their deposition rate or face large residual stresses in their 

components. They are also limited in material choices and often require post process machining and 

heat treatment. 

Conversely, cold spray and supersonic laser deposition are capable of depositing a range of metals in 

bulk, with high densities and compressive loading. Cold spray also offers other unique benefits in the 

creation of metal components that cannot be replicated in processes involving melting, owing to the 

solid-state nature of the deposition. It is capable of retaining the microstructure of the powder during 

deposition, and is capable of depositing a variety of materials as well as mixtures of metals. It is also 

capable of handling temperature sensitive materials without damaging their unique material 

properties. However, there is limited control over the shaping of the deposit, and this is a significant 

problem that needs to be overcome to reduce the waste, time and cost of a cold spray additive system. 

1.2. Research aims 

It is expected that this research will demonstrate that a viable method for creating defined surfaces 

using a cold spray system with a view of creating 3D structures is desirable, allowing the development 

of a system to fill a competitive niche for cold spray in the metal additive manufacturing space. This 

research aims to investigate potential methods of shape control, attempt to characterise their 

effectiveness, and provide some understanding of the phenomena which govern the success or failure 

of the different methods. With the level of control expected it is likely that this will be for large, low 

complexity components, with high fidelity surfaces made in small to medium quantities. 

The research will aim to create building block structures, such as flat walls, corners and curves which 

could be extrapolated into more complicated shapes. The research will aim to demonstrate that the 

created concept will be viable for a range of engineering materials, and also capable of functioning 

with laser assisted heating without further complicating factors. The positioning and control of the 
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accepted solution required to build more complex shapes will be outside of the scope of this work, as 

is the parameter space exploration to determine the optimal deposition conditions and limits of the 

achievable structures. 

The scope and aims of this research led to the following questions and objectives being established at 

the beginning of the research, to investigate the feasibility, limitations and potential of utilising the 

cold spray system for 3D structuring: 

 Where are the areas of opportunity in the additive manufacturing landscape, and how might cold 

spray find a competitive advantage in this space? 

- Determine the capabilities of current metal additive manufacturing systems, and identify the 

shortcomings of the processes and components 

- Evaluate the current cold spray deposition mechanism and structure 

- Examine the current applications of cold spray technology and determine the need for, and 

requirements of, an additive cold spray system 

- Investigate the principle applications for an additive cold spray system, and how this will affect 

the system to be designed 

 Can cold spray deposits be controlled to directly produce net shape objects? 

- Conceptualise and test a series of solutions for defining the edges of the deposition profile 

- Determine the best approach for creation of high-fidelity surfaces and bulk near net-shape 

structures, focussing on surface finish and deposition shape above other parameters 

- Examine viability of different materials and the effect of laser heating 

- Create building block structures using the cold spray system that could be extrapolated into 

more complex shapes 

 Can simulation and visualisation of the gas structure around obstacles inform the development of 

concepts, and indicate limitations of certain methods? 

- Construct fluid dynamics models of the gas jet from the cold spray nozzle 

- Incorporate particle tracking methods into the simulations in order to model standard particle 

trajectory and velocity from inlet to substrate 

- Extend simulation to cover flow obstructions, in order to understand the effects on shockwave 

structure and how this alters particle trajectory 

- Use simulation data to explain and predict deposition outcomes when utilising the developed 

profile shaping methods 

1.3. Thesis synopsis 

This section contains a brief overview of each remaining chapter in this thesis, detailing the content 

and structure of the work presented within. 
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Chapter 2 – Literature review 

This chapter details the current metallic additive manufacturing landscape which, alongside traditional 

manufacturing methodology, is examined for an area of opportunity for cold spray in which capability 

is lacking. Each manufacturing method is assessed for its competences and limitations. A brief overview 

of the cold spray process from its discovery, through to its most recent applications in industry, is then 

provided. The cold spray deposition mechanism is then discussed, with the two most prominent 

theories presented and analysed, before an examination of the benefits and limitations of cold spray 

deposition, to assess whether cold spray has the capability to fill this competitive niche. The current 

deposition control capabilities of cold spray are explored, and the approaches to modelling cold spray 

are examined, to inform the initial concepts investigated in this thesis. 

Chapter 3 – Experimental setup 

The experimental equipment which makes up the cold spray system at the Institute for Manufacturing, 

used for all trials in this report, is introduced. This chapter presents the standard operating procedures 

of the system, and goes on to detail the analytical equipment and methods used for the examination 

of the deposits in the subsequent chapters. 

Chapter 4 – Exploration of deposition shaping  

Chapter 4 shows the progression of concepts for deposition shaping to create a cold spray deposit with 

a vertical, flat wall, using copper powder for these proof of concept trials. The effect of traverse rate 

on the resulting depositions is investigated, along with the effects of the nozzle alignment in relation 

to the edge of the forming tool. The structures are inspected to assess shape, and the experiments 

reviewed for ease of development into a fully three-dimensional manufacturing platform. 

Chapter 5 – Generation and validation of computational flow models 

This chapter details the procedure for creating computational fluid dynamics (CFD) models of the cold 

spray nozzle and exhaust region above the substrate, first in a two-dimensional axi-symmetrical model, 

then developed in three dimensions to allow the addition of non-symmetric obstacles. In order to 

validate the accuracy of the simulations, the same method was used to model a nozzle from a 

published paper, and the results compared to those in the paper. Particle tracking and the chosen 

deposit shaping tools were subsequently added to the model to determine how the addition of 

obstacles affected gas flow and particle trajectory. 
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Chapter 6 – Progression of structural control 

In this chapter further material options are attempted using the shaping method developed, including 

materials requiring the addition of a laser for deposition, to determine how the structuring capabilities 

seen in Chapter 4 are affected. The effect of backstop roughness on the deposit, and the positioning 

of the backstop in relation to the substrate are examined. This chapter then presents the attempts to 

build further shapes once the method for manufacture had been established, namely corners, curves 

and overhangs, which by extrapolation can be used to create more complex shapes. The manufacture 

of several demonstration rings with defined surfaces was then completed in titanium. 

Chapter 7 – Conclusions and recommendations 

The final chapter summarises the progress made from the experimental and simulated work, laying 

out the progression from concepts through to the final construction capabilities at the time of writing 

of this thesis. It also introduces a plan for the extension of this work, examining the possibility of 

converting the advancements made into a functioning additive manufacturing system. 
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Chapter 2 -  Literature Review 

2.1. Introduction 

This chapter contains an overview of current metal manufacturing techniques, both traditional and 

additive, against which an additive cold spray system would be competing, in order to assess whether 

there is a competitive niche for an additive cold spray system. Each technique is examined for its 

process characteristics and manufacturing uses, before the market as a whole is discussed. 

Following this examination, an introduction to the cold spray process is presented, comprising the 

discovery of the phenomenon, typical experimental arrangement, gas flow and deposition mechanism, 

to provide an overview of the current state of the field. Understanding the gas structure and 

practicalities of deposition are vital in understanding how to manipulate the deposition shape. 

Following this is an examination of cold spray characteristics, along with current cold spray deposition 

control capabilities and its applications, including any research into additive manufacturing. 

2.2. Metal additive manufacturing overview 

Metal additive manufacturing has of late been receiving attention for both industrial and academic 

purposes. Much of the focus has been on the geometric freedom offered by powder bed systems, with 

a range of engineering materials that can be difficult form using traditional manufacturing processes. 

This has been particularly of interest in aerospace and medical component manufacture for complex 

component generation[1], for part number and assembly reduction [2], [3], and in the construction of 

low volume custom components [4], [5]. 

For the establishment of a cold spray process that is capable of creating net shape structures, it is 

important to consider how this technology would compete with existing manufacturing routes. Once 

the strengths and weaknesses of these methods have been analysed, the specific advantages of cold 

spray over other systems can be investigated, and a net shape cold spray system designed to exploit 

them. Presented in this section is the state of the art in research and industry for additive 

manufacturing techniques. 

2.2.1. Powder Bed 

Powder bed fusion processes involve the targeted consolidation of individual layers of powdered 

material by providing energy to localised regions of a build area, creating the component in the build 

chamber from the bottom up. After each layer has been completed, the build platform on which the 
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components are created will be incrementally lowered, and fresh powder will then be distributed and 

levelled across the build area. 

All powder bed technologies share some common advantages and disadvantages, with the layer by 

layer approach to component consolidation allowing for intricate and internal feature to be created, 

while also meaning long lead times as each layer is processed in sequence. 

2.2.1.1. Electron beam melting 

In electron beam melting (EBM) systems, the consolidation energy is provided by an electron beam, 

generated within the machine. This beam is then split and controlled via three pairs of electromagnetic 

coils, for positioning, focus and astigmatism, allowing fast scan rates as the beam position can be 

rapidly changed. The layout of a typical system can be seen in Figure 1, depicting the layout of an 

Arcam A2X machine [6]. This allows the system to maintain several melt pools concurrently, 

multiplying the rate at which the build can be consolidated. In order to allow the electron beam to 

reach the powder bed, the build chamber must be kept under a high level of vacuum for the duration 

of the build. The chamber is evacuated to approximately 4 x 10-3 mbar, having been evacuated further 

and allowed partial pressurisation with helium. When the electron beam hits the powder particles in 

the bed, the kinetic energy of the electrons is converted into thermal energy, creating a melt pool that 

is moved across the surface of the powder bed to consolidate the layer. 

The beam power provided from the tungsten filament is 3 kW, with an absorption efficiency of 

approximately 70% due to backscatter from the powder, and a minimum beam diameter of 180 µm 

focused at the powder bed. Lanthanum boride crystals are replacing the tungsten alloy filaments in 

the newer EBM systems, allowing for a smaller spot diameter and therefore finer control of the melt 

pool, though these are not yet in common use. 
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Figure 1 - ARCAM EBM system schematic [6] 

Materials currently used in EBM machines include titanium alloys, aluminium alloys, steels, Inconel 

and nickel alloys. Powder sizes used in EBM machines vary from 40 – 70 µm. EBM manufacturing is 

currently the fastest of the powder bed fusion processes, capable of producing up to 1kg of material 

per hour in a build volume of 500 x 280 x 320 mm. 

EBM machines are capable of building components that are up to 99.9% dense, with a minimum 

feature size of approximately 0.1 mm. The typical stated machine accuracy is +/- 0.1 mm. Components 

for engineering applications typically require post processing to improve the surface finish, with 

surface roughness values of Ra ~ 30 µm in currently available commercial machines, though the Arcam 

Q20 has demonstrated a higher quality surface finish than any previous commercial machine. 

The machines are also expensive, costing in excess of £1m per machine, and, for relatively new 

systems, this is a high capital expenditure for companies when the machine cannot be guaranteed to 

work as per their requirements. It also means that there is a much higher cost to change for companies 

with a legacy process, and so presents higher risk. 
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2.2.1.2. Laser powder bed fusion 

As with other powder bed processes, the construction of components using laser-powder bed fusion 

(LPBF) machines – also known as Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) 

and Laser Cusing – follows the procedure of consolidating the powdered feed material on a given layer, 

lowering the build platform and recoating the surface with a level surface of powder for consolidation 

into the next layer. In LBPF machines, the consolidation energy is provided by a laser beam, which is 

guided by galvanometers to melt the pattern required for that layer in the powder bed. To avoid 

oxidation of the powder as it is melted, the build chamber is converted to an inert environment, 

typically Argon or Nitrogen depending on the material. 

Typical deposition rates of LBPF machines range from tens of grams to a maximum of 1kg an hour. The 

build area on LBPF machines has been steadily increasing, with the largest being approximately 800 x 

400 x 500 mm. LBPF produces high density components, over 99%, with a typical surface finish Ra ~ 4 

– 10 µm. The minimum feature size varies between 0.04 - 0.2 mm depending on the laser spot size, 

with an accuracy of 0.02 – 0.05 mm. 

As the powder is melted during consolidation and the build chamber is not heated, it is difficult to 

control the microstructure of the component. The rapid cooling of the layers after creation due to the 

lack of a heated bed  leads to large residual stresses in the component [7]. The component must 

therefore be fastened to the build plate by supports, and the entire build heat-treated before being 

removed from the base plate to avoid warping. 

LBPF machines are currently typically being used for prototyping of components, especially in 

aerospace, for manufacturing of medical implants and injection mould tools, as conformal cooling 

channels can be made directly below the surface. 

2.2.1.3. Selective laser sintering 

Similarly to selective laser melting, laser sintering works by selectively heating regions of the available 

build area by irradiation with the laser spot. The difference is that in laser sintering, the powder is 

heated by the beam to just below its melting point rather than above, allowing coalescence at the 

contact points without melting the bulk of the powder. 

The lack of melting does create a rougher surface finish than LBPF components, and a higher porosity 

than other forms of metal powder bed fusion. There are methods around this, such as the diffusion of 

other metals throughout the material or isostatic pressing, which in some cases can be beneficial. 
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2.2.2. Directed energy deposition 

Processes that fall into the directed energy deposition (DED) category involve the deposition of 

material to build a geometry by feeding the material as required into a melt pool generated by a 

focussed source of thermal energy. These systems are typically mounted on a multi-axis robotic arm 

above a fixed bed, or occasionally are fixed in position over a multi-axis bed. 

2.2.2.1. Blown powder laser deposition 

The first type of DED systems are those being developed from laser cladding systems used to coat 

existing geometries, to allow the freeform fabrication of components. In blown powder laser 

deposition techniques [also known as laser engineered net shaping (LENS) or laser consolidation], a 

melt pool is created and maintained using a high-power laser system, typically between 0.5 – 3 kW, 

focussed onto the substrate or previous layer. The materials to be deposited, typically metallic 

powders, are then fed into the melt pool via powder feeders. The melt pool is moved along the surface 

to create a layer of deposited material, and the component is typically built up layer by layer on a 3-

axis bed, up to a maximum size of 400 x 400 [8]. Some systems involve a 5-axis bed, with the greater 

geometric freedom allowing for the creation of more complex components without requiring large 

support structures. These systems offer a rate of deposition that is typically between 1-2 kg/hr [9]. 

Laser powder fusion systems are capable of working with a range of metals including steels, titanium 

and its alloys, and aluminium. These systems also have the possibility to offer multi-material and 

functionally graded components, including in-process alloying using side jets, with careful attention 

required to the material melting points. 

 

Figure 2 - Sandia LENS System [8] 
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Components manufactured by laser engineered net shaping show densities upwards of 95 – 99 %, 

depending on the material and cladding parameters, and exhibit decent metallurgical properties, with 

hardness values similar to those of the bulk material. Laser powder fusion systems provide poor 

feature resolution in comparison to powder bed systems, as the typical melt pool size is in the order 

of a few millimetres. These processes still have some beneficial applications, where the production of 

near net shape components requiring a small degree of finishing is a vast improvement on machining 

the entire component from a larger block, in terms of waste, time and cost reduction. 

The required melting of the powder also introduces further disadvantages of this method of 

manufacturing. The large amount of thermal energy creates high residual stresses in the completed 

components and means that the microstructure cannot be easily controlled during deposition, both of 

which would require heat treatment following manufacture. It also means that the atmosphere needs 

to be carefully controlled in order to avoid oxidation of the part as it is being created. If being used for 

component repair or feature addition, the deposition will also create a large heat affected zone in the 

substrate component, creating thermal stresses and affecting the microstructure too, though this 

could potentially be corrected with post heat treatment. 

Current applications of laser engineered net shaping techniques include the repair of high value 

components, particularly those with difficult to work materials such as injection moulding tools and 

non-critical aerospace parts, and the manufacture of parts for medical implants and aerospace. 

Companies often offer these applications as services, as the machines can be costly and require 

specialist knowledge to use correctly. These companies are developing worldwide, such as IREPA laser 

and BeAM in France, Accusfusion in Canada, Optomec in the USA. 

2.2.2.2. Wire fed power systems 

Power welding systems create and maintain a melt pool with a large-scale plasma-welding torch or 

electron source, as shown in Figure 3, where material is fed through a powder stream or spooled from 

a wire for a more controlled material input rate. These systems are capable of depositing bulk material 

at rates of between 1-20 kg/hr, over a large area for the creation of large-scale components. 
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Figure 3 - PTA deposition torch 

The required temperature and high deposition rate when using PTA machines can cause a range of 

issues similar to those faced by blown powder methods. The created geometries have very large 

residual stresses, and induce large heat affected zones into any substrate. It is not possible to 

accurately control the microstructure of the deposition, as the thermal gradients will vary and the 

process is not temperature controlled. Upon cooling, there is the possibility of creating voids and 

cracks, and the gas shrouding required in some processes can lead to air bubbles being captured at 

higher deposition speeds. The density of components produced by wire fed power systems is often 

>99%. 

These capabilities are also often provided as a service, from companies such as Norsk Titanium, though 

commercial machines are available from Sciaky in addition to the service option that they provide. 

 

Figure 4 - Sciaky electron beam additive manufacturing (EBAM) system [10] 

2.2.3. Coating Techniques 

Coating techniques are often used in the remanufacture of components in order to reclaim the value 

of damaged components. Plasma spraying has already been mentioned as a method for 3D geometry 

creation, and is also used for coating creation, and several of the other techniques are being 

investigated for development into 3D structuring systems. However, all of the processes noted in this 
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section face similar issues due to the temperature at which the material is deposited, typically 1000° - 

3000° Celsius depending on the material, which will cause heat affected zones in the substrate, 

potential porosity and residual stresses in the substrate and deposit. 

2.2.3.1. Flame Spraying 

When coating by flame spraying, the material to be clad is fed into the flame of an oxyacetylene torch, 

in wire or powder form, where it melts and forms droplets of approximately 50 µm in diameter. The 

droplets are pushed by the oxyacetylene gas stream towards the substrate at relatively low speeds of 

50 - 100 m/s, where they spread upon impact and bond as they solidify. 

 

Figure 5 - Flame spraying schematic [11] 

Wire fed systems often produce higher quality coatings as the material feed rate can be more carefully 

controlled, and the material must be molten before it will leave through the nozzle, unlike with powder 

feedstock which is not guaranteed to be molten. 

Flame spray deposits have a surface roughness (Ra) of 30 – 50 µm, which would require post-process 

machining. This is due to the particle size of the feedstock powder and the droplets formed by the wire 

melting. Capable of achieving deposition rates of up to 15 kg/hr, flame spraying is one of the fastest 

processes available, but deposits can have porosity of 10 - 15%, depending on the material. This is 

typically caused by the entrapment of the accelerating gas in the molten deposit before solidification. 

2.2.3.2. High velocity oxygen fuel deposition 

HVOF is essentially the same process as flame spraying, except that the fuel system has been modified 

to give much higher spray velocity, which can often exceed 1000 m/s. In HVOF spraying, a high-

pressure gas stream is generated by the continuous combustion of a fuel, gas or liquid based, with 

oxygen in a combustion vessel. This gas stream is directed through a converging-diverging nozzle, 

similarly to that in a cold spray system, in order to accelerate the flow to supersonic speeds. Powder 
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is then injected into the stream, where it melts due to the high gas temperatures before impacting the 

substrate and solidifying. 

The porosity of HVOF coatings is typically lower than 1% though can contain impurities from the 

combustion gases and oxidation of the depositing material, with build rates of up to 9 kg/hr [12, p. 89].  

2.2.3.3. Wire Arc Spraying 

In wire arc spraying, the molten feedstock is provided by the feeding of wire into an atomising gas, 

whereby the electrical discharge between the two wires causes them to melt.  These molten droplets 

are then accelerated by the gas towards the substrate, where they solidify upon impact. Coating 

materials are restricted to metals available as wire, and occasionally ceramics, glass or carbon that can 

be sourced as wire. 

 

Figure 6 - Wire arc spraying [11] 

This method is capable of depositing material at rates of up to 20 kg/hr, but can be up to 20% porous 

depending on the materials. 

2.3. Traditional manufacturing techniques 

In addition to competing with other metal additive systems, all additive manufacturing systems are 

faced with the challenge of outperforming the more traditional, established manufacturing 

techniques. They compete for advantage in areas ranging from cost, time or energy savings to waste 

reduction, wider material choices or microstructure control. This section contains a brief outline of the 

strengths and weaknesses of each method, and how they compare to standard additive techniques, 

as well as a potential cold spray system. 
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2.3.1. Forging 

Forging processes shape metal using compressive forces, pressing, pounding or squeezing, to work the 

original billet into the desired shape with hammers, presses or dies, as shown in Figure 7. Forging may 

be done across a range of temperatures, usually classified by comparison to a material’s 

recrystallization temperature. Cold forging of metal components can cause work hardening of the 

metal, as it is strengthened by the dislocation movement during plastic deformation. In hot forging, 

the temperature is high enough to allow the metal to recrystallize, avoiding the work hardening effects. 

There is also warm forging, whereby the material is heated to increase ductility and reduce tool or 

press loading, but not sufficiently to allow recrystallization. 

 

Figure 7 - Hot forging of titanium [13] 

Forging methods are capable of producing a vast range of size of component, from small objects of a 

few hundred grams, to equipment for heavy industry at over 200 tonnes. The parts produced have 

excellent structural integrity, with the method of formation ensuring that they are almost 100% dense, 

without the possibility of gas pockets or cracks when cooled appropriately. 

The high repeatability of the process and good mechanical strength of the components are also major 

advantages of forging, particularly when safety critical components are required. Forged components 

exhibit good mechanical strength, and are dimensionally accurate, with Ra values of 2 – 20 µm. 

However forging has certain limitations when it comes to production. Expensive and sizeable 

equipment is required for each new component to be built, requiring large manufacturing batches to 

become cost-effective. There is also limited shape potential, as moulds cannot be overlapping or 

contain internal features such as threading, and there is difficulty in post machining processes. 

2.3.2. Casting 

Metal casting involves the pouring of molten metal into moulds where it solidifies to take the shape of 

the mould. There are several types of casting, and choosing which type to use depends on factors such 

as production volume, material, cost and dimensional accuracy required. As all of the casting methods 
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are molten processes, all will have problems with solidification shrinkage, the potential for gas pockets 

and porosity. 

Sand casting consists of moulds that have been shaped into a mould cavity using natural or synthetic 

sand, by pressing around a wooden or metal pattern of the required part. After the pouring of the 

molten metal, the part is cooled and the sand broken away to reveal the final shape. Typically used in 

the manufacture of large parts with high production volumes, the surface finish of these parts is rough, 

Ra ~ 10 – 50 µm, so extra stock is added for post-process machining. 

In die-casting, the molten material is injected under high pressure into a reusable metal mould, helping 

to ensure the production of repeatable objects. The high-pressure aids in ensuring the entirety of the 

mould is filled, and care is taken during design to ensure that material solidification will not occur and 

block the filling of the mould. These moulds provide a very smooth surface finish, Ra ~ 0.5 – 2 µm, and 

so require minimal post processing. 

There are limitations to casting, as there are limitations to the materials that can practically be poured 

while molten and that have moulds that can withstand repeated use at these temperatures, as well as 

the costs associated with this problem. The initial costs can be expensive, so this process is not practical 

for small volume production. The complexity of design is also limited by the ability to create a separable 

mould to remove the component. 

Due to the different types of casting, applications range from making small components, such as small 

toys, to large steam turbine blades. 

2.3.3. CNC machining 

CNC machining involves the subtractive machining of components from a larger starting billet. These 

machines are typically flexible systems, capable of making many different components on the same 

machine with only a change of program required. This is aided by the fact that there is effective CAD 

integration, so a part can be designed and quickly made machine ready. The process can be very 

precise, with machines able to cope with tolerances of 0.01 mm, and with excellent surface finishing 

capabilities, from 0.2 – 5 µm. The process is also highly reliable, producing identical components over 

large production runs, which can be operated continuously until maintenance is required. 

However, machining large volumes of components is costly and time consuming, and can generate 

large quantities of machining waste. Certain materials will also be extremely difficult to machine, for 

example those used in hard-facing or wear resistant applications.  



 16  

2.4. Overview of manufacturing techniques 

Table 1 – Metal manufacturing methods properties overview - 2018 (*maximum build area for commercial system, not theoretical maximum)  

System 

Surface 

roughness 

Ra (µm) 

Density 

(% of fully 

dense) 

Deposition 

rate 

(kg/hr) 

Accuracy 

(± mm) 

Near net 

shape 

capability level 

Maximum 

build area* 

(mm) 

Materials 
Relative 

Cost 
Common Applications Key Advantages 

EBM 25 - 130 
Up to 

99.9 
0.1 - 1 0.2 High 

500 x 280 x 

320 
Ferrous and non-

ferrous metals and 

alloys, commonly 

steels, bronze, Al, Ti 

and Ni 

High 

Prototyping, rapid tooling, 

aero components, medical 

devices/prosthetics 

Complex and internal 

features and good 

microstructure 

LBPF 5 - 40 
Up to 

99.9 
0.1 - 0.5 0.05 High 

800 x 400 x 

500 
High 

High accuracy allows for 

small and complex 

features, and good 

surface finish 

DED - Laser 4 - 10 90 + 3 0.1 Medium 
2000 x 1500 

x 750 
Ferrous and non-

ferrous metals and 

alloys, commonly 

steels, Al, Ti, Co, Ni 

and bronze 

Medium 

Aerospace components, 

tool repair, large 

structural components 

Large components, high 

accuracy, good for repair 

DED - 

E-beam 
8 - 15 99 + 

10 

 
0.25 Medium 

2000 x 1500 

x 750 
Medium 

Large components, high 

deposition rate with high 

density 

Wire Arc 

AM 
10 - 30 99 + 0.5 - 20 2+ Medium 

3000 x 3000 

x 10000 
Medium 

Highest achievable 

deposition rates, large 

material options 

Forging 2 - 20 Up to 100 Variable 

Mould 

accuracy 

down to 

0.01 

High 
5000 x 3000 

x 1000 
Most metals Medium 

Automotive, agricultural, 

oil and gas, heavy 

industry  

Well established process, 

high quality surface finish, 

high accuracy 
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Casting 0.5 - 50 90 - 98 Variable 

Mould 

accuracy 

down to 

0.01 

High 
Large scale 

variation 

Al, Mg, Cu, Zi and 

other low-cost 

metals 

Low in 

volume 

Transport, machine tools, 

heavy industry, household 

Well established process, 

can create very large 

components, cheapest 

option 

CNC 

Machining 
0.2 - 5 Up to 100 Variable 0.01 Very High 

2000 x 3500 

X 10000 
Most metals High 

Aerospace, household, 

automotive 

Best achievable surface 

finish 

Flame 

Spraying 
30 - 50 85 - 99 1 - 15 0.5 - 1 Low 

2000 x 1500 

x 750 

Al, Cu, Ni, Sn, Zi, 

steels 
Low 

Corrosion protection, 

component repair, surface 

coating 

Low cost and simple 

HVOF 50 - 100 99 + 1 - 9 0.5 - 1 Low 
2000 x 1000 

x 750 

Tungsten carbide, 

Chromium carbide, 

Aluminium bronze 

Low 
Oil and gas, power, 

mining, aerospace 

High density, low cost 

approach 
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As can be seen from Table 1, the systems capable of rapid build rate are typically those that suffer from 

a lack of accuracy. They also tend to have secondary problems, lacking variety in material options or 

creating residual stresses in the components from the high operating temperatures. 

Alternatively, those systems with high accuracy and high-fidelity surfaces are those with comparatively 

much slower build rates, to allow for a greater level of complexity in the components. Whilst this 

increases the variety of manufacturable components, it also creates much longer lead times and 

manufacturing times per machine, usually also at a significant increase in cost and the manufacturing 

development required. 

There is clearly an opportunity space for the potential development of a system that approaches the 

ideal of a high build rate, high accuracy, high fidelity system that creates the required material and 

mechanical properties without being prohibitively expensive or creating secondary complications such 

as residual thermal stresses or porosity.  

When investigating potential techniques for filling this space, the relatively high achievable build rate 

and controllable material properties of cold spray coatings suggested that it was a practical prospect 

for development, prompting further investigation of the current state of the art in cold spray, detailed 

in the subsequent sections. 
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2.5. Cold Spray 

As can be seen from the overview of additive manufacturing techniques, there is a gap in the market 

for a high build rate, high density, near net capable system to compete with components that are 

usually cast, or require materials that prove difficult for other manufacturing methods. 

In order to determine the viability of creating an additive capable system from cold spray to fill this 

niche, the mechanisms and capabilities of the coating system must first be understood. In the 

subsections that follow, the cold spray method is introduced, along with the deposition method and 

deposit characteristics. These areas are scrutinised to determine whether the cold spray system is 

suitable for adaptation to an additive platform. 

2.6. Cold Spray discovery 

Cold gas-dynamic spraying was discovered at the Institute of Theoretical and Applied Mechanics of the 

Siberian Branch of the Russian Academy of Sciences (ITAM SB RAS) by Professor Anatolii Papyrin and 

colleagues, during a study into the flow field around an obstacle in a two-phase flow, of gas and powder 

particles, in a wind tunnel [14],[15]. Particles of aluminium travelling at velocity of approximately 400 

– 450 m/s were found to adhere to the surface of the cylindrical obstacle at 280 K, causing a thick 

coating to be built up, whilst Plexiglass particles did not adhere, and bronze particles were found to 

cause erosion under the same conditions. 

“The microphotographs of the sprayed layer showed that the coating consists of 

strongly deformed and densely packed particles uniformly covering the surface. The 

coating has a scaly structure with dense packing without noticeable pores and voids.” 

- Professor Anatolii Papyrin [15] 

This phenomenon was noted by the team, published and further investigated at the academy, leading 

to the development of the cold spray systems in use today. 

2.7. Experimental arrangement 

Though the cold spray systems vary between institutions as they are adapted for specific purposes or 

research requirements, for example the addition of a laser as explained in Section 2.11, the underlying 

fundamental system is common to all. 

2.7.1. Apparatus 

High-pressure gas is required for the process, and is provided to the system before being split into two 

streams. This gas is often heated in order to increase the local speed of sound, and its positive drag 
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force on particles, allowing the highest possible gas velocity, and therefore powder velocity, for a given 

temperature. The powder to be deposited is then entrained within the jet of carrier gas by means of a 

high-pressure powder feeder, before recombining with the other gas stream at the nozzle entrance. 

The nozzles used in cold spray are converging-diverging (de Laval) nozzles, explored in more detail in 

Section 2.9. The carrier gas is accelerated through the nozzle as the pressure drops to atmospheric 

pressure, accelerating the powder to velocities typically between 500 – 800 m/s. This powder stream 

is then directed towards the substrate, whereupon it forms a coating during impact. 

 

Figure 8 – Cold spray schematic [16] 

Less commonly, a low-pressure gas supply is used to pick up powder from the powder feeder, and the 

powder is fed into the supersonic nozzle, usually radially instead of coaxially, downstream of the 

throat. This is more typical of portable cold spray systems, as smaller, lower-pressure powder feeders 

can then be used. 

Most systems will also employ ancillary equipment for control and safety purposes, such as positioning 

stages, rotary stages, articulated robots and environmental control chambers. There is no reason why 

either the nozzle or the bed couldn’t be mounted upon a 6-axis platform, allowing for complete 

dimensional freedom of the substrate relative to the nozzle. 
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2.7.2. Typical cold spray parameters 

Table 2 – Typical cold spray parameters 

Parameters Typical Values 

Gas Type Helium, nitrogen, air, water vapour 

Gas Pressure 0.5 – 5 MPa 

Gas Temperature 0 – 1100 °C 

Powder Material Various metals and alloys, (commonly Cu, Al, Fe, Ni, Ti, W), composites 

Powder Particle Size 1 – 100 µm 

Gas Flow Rate 500 – 4000 litres/min 

Powder Feed Rate Up to 20 kg/hr (material dependent) 

Standoff Distance 10 – 40 mm 

Impact Angle Perpendicular ± 60 ° (material dependent) 

Substrate Material Metals, glass, polymers, ceramics 

Traverse Rate 
Flat: 0 – 100 mm/s 

Rotational: 0 – 500 mm/s 

2.8. Deposition mechanism 

It is important that the deposition mechanism is understood, as developed concepts should not 

adversely affect the deposition capability, whilst attempting to avoid issues with adherence to any 

shaping mechanism. 

The velocity of the powder particles is the key variable in providing enough energy to promote deposit-

substrate bonding. A series of experiments were conducted to determine at what velocity the 

mechanism moved from one of erosion at low velocities, noted to have been previously demonstrated 

by Preece [17] at particle velocities of 10 – 100 m/s, to one of adhesion and subsequent cohesion. This 

velocity was termed the “critical velocity”, and changes depending on particle size, material and 

properties. Critical velocities have been widely studied in order to provide specific values for given 

powder-substrate combinations, with a range of experiments [18]–[22] and numerical simulations 

[23]–[25] conducted. Similar investigations regarding critical velocities have been carried out for larger 

powder particles, for a process called “kinetic spraying” [26]–[29] involving the same principles. The 
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critical velocity has been shown to be dependent on the diameter of the particles, with the smaller 

particles having a higher critical velocity [30], [31].  

Similar to the critical velocity, there is a critical angle of impact with the substrate beyond which the 

powder particle will not adhere. Deposition efficiency – the proportion of impinging powder that 

adheres to the surface – is reduced as the incident angle is reduced from normal to the substrate 

towards this critical angle. This was demonstrated with the deposition of titanium at 20 bar and 240°C, 

showing little change between 90° and 70°, but a rapid fall to 10% when decreased from 70° to 50° 

[32], [33], and has been noted in many papers since. This phenomenon is also noted as powder is 

deposited from a stationary nozzle, as the deposit builds forms a conical peak that stops expanding 

when the angle of the sides of the cone become the critical angle, explained further in Section 2.9.1. 

The bonding mechanism between powder particles and the substrate has been extensively researched 

by  a range of authors over the last fifteen years, and is widely accepted to be in majority due to 

intermetallic bonding between the powder particles and the substrate all occurring in the solid state 

[23], [34]. The impact of the powder particle causes the oxide layers on the particle and the substrate 

to rupture and be pushed to the sides of the impact zone, which exposes “clean” metal faces of the 

substrate and particle to each other under high contact pressure, allowing for intimate metallic 

bonding, as shown in the simulation in Figure 9. 

 

Figure 9 - Sequence of particle impact (a) 4.4 ns; (b) 13.2 ns; (c) 22.0 ns and (d) 30.8 ns. [35] 

The mechanism that facilitates this exposure of clean surfaces is thought to be the adiabatic shear, as 

the powder particles impact into the substrate material, causing local plastic deformation, and the 

“jets” that can be seen when cross-sectioned, as shown in Figure 10 [35]–[41]. Normally the strain is 
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distributed evenly across the material, however in adiabatic shear situations the energy transfer is too 

rapid, meaning that a narrow layer, or “band”, of intense shearing occurs. This causes localised raises 

in temperature which are not diffused quickly enough into the bulk material, causing high material 

softening and allowing for the plastic deformation that can be observed. A few papers have indicated 

that in these areas there may be evidence of localised melting at the interfaces, but this is not widely 

accepted [42]. 

More recently, papers have begun to examine whether there can be alternative explanations for the 

jetting of the powder particles, mainly that there is a pressure release at the particle boundary [43]. 

The formation of the jets from the particle is not disputed, solely the mechanism by which they are 

formed. 

 

Figure 10 - FIB cross section image of cold sprayed powder particle, arrow points to the jet [44] 

It is also believed that there is some mechanical interlocking of the powder and substrate providing an 

extra bond strength to the deposits, or even the majority of the deposition strength in less ductile 

particles. Simple topological bonding is suggested whereby the powder particle is encapsulated by the 

substrate after impact and the subsequent impacts, causing a mechanical linkage. There is also the 

suggestion that the two surfaces flowing over each other as the particle shears on impact may cause 

vortices or rollup of material on a smaller length scale [36], as shown in Figure 11.  
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Figure 11 – Schematic of rollups caused by interfacial instabilities [36] 

These theories are both contested as individually they do not provide sufficient bond strength to 

account for that which is measured [34].  Most recently, theories presenting a combination of these 

bonding mechanisms have emerged, though whether the majority of the noted bond strength can be 

attributed to metallurgical or mechanical bonding is still not agreed upon [45]. 

Given the recently demonstrated ability of cold spray to deposit metal coatings onto non-metallic 

substrates [46], [47], and the ability to deposit plastic, glass and ceramic particles, there must be a 

level of mechanical interlocking at least between the first layer of impacting particles and the 

substrates. It is therefore extremely likely that there is also a level of mechanical interlocking between 

the subsequent layers also, strengthened by the metallurgical bonding mentioned previously. 

2.9. Deposition shape 

The largest challenge facing the development of an additive cold spray system is altering the structure 

of the deposit as it is formed. A method is required to control the shape of the deposition, without 

negatively impacting the properties of the deposit, or losing the advantages that cold spray provides. 

2.9.1. Free-standing cold spray deposition profile 

As powder is accelerated through the cold spray nozzle from the powder needle, the diverging nature 

of the gas causes the powder stream to diverge also. This causes a Gaussian distribution of particles 

around the centreline of the nozzle, and therefore a Gaussian deposit is formed. As subsequent layers 

are deposited, these Gaussians will stack upon each other until the critical angle is reached, mentioned 

in Section 2.8, whereby no further powder will adhere, leaving the triangular profile to finish, shown 

in Figure 12a. To counter this, the most typical approach is to deposit evenly spaced tracks with low 

heights and then pass back over the spaces in between, attempting to even the surface before the 

critical angle is approached. 
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Figure 12 - Single track cold spray deposition profile reaching the critical build angle (different 
materials to viewing)  

2.9.2. Current deposition shape control capabilities 

The use of cold spray as a potential mechanism for freeform fabrication or direct part manufacture is 

mentioned on several occasions, most often in review papers, which suggest potential for the 

technology in this area [48]–[50]. However, there has been little published on altering the profile of 

cold spray deposits, with most research in this area seeming to focus on flattening the profile of each 

layer by increasing the traverse rate, allowing easier deposition of even coatings when adjacent tracks 

are overlapped. The little that has been published is detailed in this subsection. 

2.9.2.1. Angling 

Several attempts have been made to create shapes approximating a final shape by depositing 

subsequent tracks at an angle to the first, in order to build out layers in different directions. As can be 

seen from Figure 13, it is possible to approximate a vertical surface using this angling and subsequent 

deposition technique [50]. However, to do this the layers must be built tall enough to start with to 

become the deposition substrate for the next tessellated deposition, reducing deposition efficiency as 

the deposit is built steeper. The available shapes are also limited by the ability to position the nozzle 

appropriately for deposition, and by the fact that there will always be an angled surface at the sides of 

the deposit. 

 

Figure 13 - Tessellation for structuring cold spray deposition  
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2.9.2.2. Masking 

The largest alteration to the deposition profile of as deposited powder was an investigation conducted 

on the use of masks to create near net shape pyramidal fins for a heat exchanger [51], as seen in Figure 

14. A steel wire mesh was placed 25 mm in front of the nozzle, at a set, 2 mm offset distance from the 

substrate, and aluminium sprayed through [51], [52]. The material used was AL A5001, sprayed at 30 

bar and 300 °C. The effect of this was to create pyramidal deposits on the substrate, while it was noted 

that the top of the wire mesh also becomes fouled with depositing aluminium. As can be seen below, 

the formed deposits were 5 % porous and the surfaces of the pyramids were rough . 

 

Figure 14 - Pyramidal fin arrays from cold spray through a mesh (a) as deposited (b) after cross 
sectioning [35] 

A similar study was conducted to determine the effects of placing a mask consisting of a plate with a 

circular aperture in the gas stream [53], as shown in Figure 15. A substrate was placed at variable 

distances behind the mask, with similar results. A polymer washer was added to the powder facing 

side of the mask in an effort to create a smaller replaceable surface, minimising the problems caused 

by fouling of the mask. While this would potentially reduce the turnover rate of masks, it would likely 

not stop the fouling of the surface which may affect the deposition, and may introduce contaminating 

polymer particles into the deposition zone if any is eroded from the washer. 

 

Figure 15 – Mask [53] 

(a) (b) 
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The depositions formed during this study, seen in Figure 16, appear similar in nature to those formed 

from the typical cold spray process, with perhaps a wider scattering of particles onto the substrate, as 

the gas flow diverges under the mask causing smaller particles to be dragged further from the 

centreline. 

 

Figure 16 - Pyramid deposit formed by masked cold spray [53] 

The deposits formed in both of these cases are still defined by the critical build angle of the depositing 

powder. While the deposition has been altered from the typically form, it has been achieved by placing 

further reductions and restrictions on the deposit structure, which doesn’t suggest great potential for 

future applications. 

No further control has been demonstrated over the shape of the depositing powder using masks, other 

than to limit it to pyramids, however this masking approach has clearly altered the deposition, and so 

further investigation into the use of masks would be a sensible starting point to the research in this 

thesis. 

2.9.2.3. Flow Swirling 

Another method of altering the deposition profile was attempted by the addition of a “flow swirler” 

upstream of the De Laval nozzle to alter the flow of the gas [54]. Kiselev et al. managed to alter the 

deposition structure from a conical profile to a ring shape with this method, as shown in Figure 17. The 

potential of finding a compromise between the two deposits and providing an even deposition profile 

would allow a more easily controlled build-up of cold spray deposited layers, but would require a 

significant amount of effort as the results would vary depending on powder size and density, gas 

velocity, and pressures. 
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Figure 17 - Cold spray deposition of copper particles (a) non-swirled flow (b) swirled flow [54] 

2.9.2.4. Nozzle Slotting 

In a study of unconventional nozzle designs for use in cold spray, deposition was attempted with a 

series of standard De Laval nozzles with the addition of 2, 3 and 4 slots, as shown in Figure 18. The 

deposition profiles that were generated were broadly similar to traditional cold spray, having a peak 

at the centre, with more powder having been deposited in line with the slots in the nozzle, as gas and 

powder has escaped laterally from these openings. 

  

Figure 18 – Slotted nozzles and cold spray deposition [55] 

Similarly to the attempt at changing the deposition profile via gas swirling, no explanation is given as 

to the purpose of these alterations, other than to create unusual deposition patterns. It is unlikely that 

this work will prove useful in the creation of an additive cold spray system without significant further 

development.  
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2.9.2.5. Moulds and machining 

The most common method of producing a defined geometry with cold spray is machining of the 

deposit, both after the construction has been completed or in process, typically in a layer by layer 

fashion. However, this not only generates more waste material but also takes longer, using more gas, 

and is not suitable for difficult to machine materials, which runs directly counter to one of the main 

benefits of using cold spray. Examples of systems that already utilise machining can be seen in 2.13.4. 

The most advanced process noted so far demonstrates a part sprayed over a blank insert or mandrel, 

which is then removed and finished with machining, as shown in Figure 19. It is not mentioned how 

the mandrel is removed, but it is likely machined away or sliced free by EDM, likely damaging the 

mandrel so that it cannot be reused. Even if it were reusable, component manufacture would be 

limited by having the correct shape of mandrel to start with, a similar problem to requiring dies and 

moulds for casting and forging, which only allows for a limited range of shapes. This method would 

also still require the machining of the outer surface once completed, so is primarily relying on final 

material properties alone to compete with existing manufacturing methods. 

  

Figure 19 – Cold-sprayed construction of a component (a) on a blank to provide structure and 
(b) removed from blank and machined [56] 

Some shape control has also been demonstrated from spraying titanium into an aluminium mould, as 

shown in Figure 20. This allows for very limited geometry control and often requires the destruction 

of the mould afterwards to reveal the part for more complicated features [50]. 
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Figure 20 - Titanium sprayed with aluminium mould [50] 

2.9.2.6. Shape control summary 

It has previously been demonstrated that cold spray deposition shape can be affected both by altering 

the particle-gas dynamics of the process, either directly upon input (gas swirling) or near substrate 

(wire mesh interference), and by physical processes, such as nozzle tilting, spray moulds and post-

machining. None of these methods provide well-defined free form control of the deposition, and are 

very limited in their application. This research proposes to investigate other potential methods for 

providing a greater level of control of the deposit through the placement of flow distorting objects into 

the gas flow, downstream of the nozzle exhaust. 

2.10. Deposition characteristics 

Like all manufacturing processes, cold spray deposition has advantages and disadvantages in 

associated with both its process and the components produced. Many of the unique advantages of 

cold spray deposits come from the fact that deposition occurs as a solid-state process, avoiding the 

issues faced by competing high temperature manufacturing methods. 

2.10.1. Physical properties 

Depending on the process condition and materials, the porosity of the deposits formed by cold spray 

can be varied from 20 – 0.1 % [57]–[61]. It is noted that porosity can be lowered by increasing the 

particle speed, usually by increasing the gas temperature, or by increasing the substrate or particle 

temperature. Any loosely bound particles are either knocked free or further compacted by subsequent 

impacts from particles in the powder stream. 

The powder particles are not heated sufficiently to cause phase changes during deposition, avoiding 

thermal cracking upon cooling caused by the contraction of the deposit. There is also insufficient 

energy for the recrystallization of the powder grains in the bulk of the particle, leaving the 
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microstructure in the bulk of the deposit the same as the microstructure of the original powder 

particles, allowing careful control of the grain size by control of the powder feedstock. This also allows 

for dense deposits of nano-crystalline materials, such as Ni-20Cr, WC-Co or aluminium alloys, which 

are capable of retaining their nanometre scale grain sizes after deposition [62]–[66]. 

Deposition of oxygen sensitive materials does not pose an additional challenge for cold spray systems, 

as the powder is not heated to high enough temperatures to accelerate oxidation [67], [68]. In 

addition, the accelerating gas is most commonly helium or nitrogen, which provide shielding at the 

deposition site. On some occasions, the oxygen content of the deposit has been noted to be lower 

than the average of the starting material, due in part to the likely loss of the smaller powder particles 

which will have a higher percentage oxygen content, and in part to the shattering of the oxide skin 

upon impact which may be subsequently swept away by the gas flow [69]. 

The low temperatures required for material deposition means that there is also little heat input into 

the substrate itself. This lack of thermal input to the substrate means that there is no heat-affected 

zone, and so no recrystallization, cracking, oxidation or induced thermal stresses arise in the substrate 

from this process. This allows a wide range of materials to be used for substrates that would otherwise 

be affected by higher temperature options. 

2.10.2. Material properties 

Material deposited by cold spray deposition has also been demonstrated to have high hardness when 

compared to bulk values, sometimes even higher than the hardness of the powder particles. This is 

thought to be due to the effective cold working of the powder particles upon their impact and the 

subsequent impacts upon them by the next layer [70]. 

Cold spray deposits are formed by the rapid plastic deformation of particles, from the high velocity 

impact, in the solid state. This causes the coating to be compressive in nature [71, p. 66], as the 

subsequent particle impacts are effectively shot peening the previous layer of deposition [72]–[74]. 

Requiring only low processing temperatures, there is little difference between the temperature of the 

substrate and the depositing material, avoiding quenching stress prevalent in other coating 

techniques. 

Due to the inter-particulate bonding and high density of the coatings created by cold spray, the 

conductivity values demonstrated are typically in excess of 92% of the bulk values, compared with 

approximately 50% for other thermal spray processes [69]. 
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2.10.3. Process properties 

Certain inherent aspects of the cold spray process provide specific benefits that are either superior or 

unavailable to other manufacturing processes. The cold spray process is capable of depositing material 

at rates of up to approximately 12 kg/hr, depending on the material [75, p. 94]. As the cold spray 

system is robust enough to be mounted to a robotic arm, or held above a CNC stage, and does not 

require a controlled environment as other systems do, the only limit to the size of the constructs that 

could be created is the available build platform of the machining system that it is incorporated into. 

Due to the suspected bonding mechanisms and the relatively low temperatures involved in cold spray 

deposition, materials with highly different coefficients of thermal expansion can be bonded without 

the associated problems that arise due to cooling from molten processes. This allows for the 

exploitation of different characteristics of the combined materials. As an example, the bulk of a 

component could be made lightweight by being made from aluminium, with a corrosion resistant 

coating made from a titanium alloy to protect it from the environment. 

 

Figure 21 - Copper and aluminium layered cold spray deposit [50] 

By altering the mixture of the powder in the cold spray jet, the composition of the deposit could be 

carefully controlled. The absence of melting means that powders with different melting temperatures 

can easily be used together, and will not affect the microstructure of the powder once deposited. This 

mixture could potentially be altered throughout the build, allowing for the creation of functionally 

graded components. Components that are manufactured with functionally graded materials have a 

gradual shift in composition and structure through the part, which allows equivalent changes to the 

properties of the material through the part. This would become of use in situations requiring different 

material properties in different areas of the component, for example; a bearing which is strong and 

lightweight, with a wear resistant but self-lubricating outer surface, a rocket nose cone graded from a 

strong and lightweight interior to temperature resistant exterior to avoid the problems of different 

thermal expansivities or a component that requires a corrosion resistant channel. 
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2.11. Supersonic laser deposition (Laser assisted cold spray) 

Certain materials prove difficult to deposit when using a standard cold spray system, such as stellite or 

nickel super alloys, as the material hardness and yield strength means that the required velocity for 

deposition is too high to be practically achieved, even when using helium as the carrier gas, and may 

cause erosion of the substrate when approaching these velocities. 

The application of a laser spot to the targeted deposition area, commonly known as supersonic laser 

deposition (SLD) or laser assisted cold spray (LACS), heats the substrate, reducing the critical velocity 

required for adhesion, and may allow the replacement of helium with nitrogen as the carrier gas, 

significantly reducing the cost of the process [76]. It is not known whether the heating of the substrate 

contributes towards the metallurgical bonding, by softening the oxide layer and allowing exposure of 

the metal at lower particle velocities, contributes to the mechanical interlocking, by allowing greater 

plastic deformation of the substrate upon impact, or raises the temperature of the material to allow a 

thin molten area to form more easily during impact. 

 

Figure 22 – SLD setup 

This advancement has allowed for the deposition of a range of previously unfeasible materials, 

including those that are also difficult to manufacture with other processes, such as tungsten carbide, 

Stellite and titanium alloys. SLD has also been proven to increase the density of deposits formed at a 

given temperature in comparison to cold spray, and increases the deposition efficiency, for faster build 

rates [76]–[78]. 

It will be important that any developed concept does not prevent the addition of laser irradiation of 

the substrate so that these materials can also be shaped. It is equally important that the laser 

irradiation does not detrimentally affect the capabilities of the shaping method. 
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2.12. Computational fluid dynamics modelling 

Experimental investigation of the supersonic gas flow and particle traverse rate in cold spray is limited 

by the difficulty in measurement and relatively high processing costs which would be required for each 

new nozzle, powder material or morphology. This has led to the development of analytical and 

numerical models for the investigation of the gas structure and particle velocity, most recently using 

computational fluid dynamics (CFD) models. This section details the most recently utilised methods for 

modelling of the cold spray system, and investigates the accuracy of such models. 

2.12.1. Governing flow equations 

Modern computational methods for fluid dynamics involve the solving of the Navier-Stokes equations 

for describing the motion of viscous fluids, consisting of the continuity equation for conservation of 

mass (Eq 1), an equation per dimension for the conservation of momentum (Eq 2), and the 

conservation of energy (Eq 3). 
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The flow throughout the cold spray system was regarded as steady state by all but a few models, and 

the ideal gas law was used as the equation of state for compressible flow. 

2.12.2. Boundary conditions 

The boundary conditions, including pressure, gas velocity, and temperature, of the model must be 

specified to reflect the real world situation, and very commonly are the same when modelling the cold 

spray system, as displayed in Table 3. 
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Table 3 – Most commonly used boundary conditions in cold spray gas flow simulation for 
pressure (P), velocity (v), and temperature (T) or their derivatives representing the differential 
gradients at this point [79] 

Model Location Pressure Velocity Temperature 

 

2.12.3. Turbulence models 

Several different turbulence models have been used to close the Navier-Stokes equation set when 

modelling the cold spray gas flow. This factor has arguably the largest effect on the model accuracy. 

The most common model is the standard k-ε model, as it converges easily, requiring less computational 

power than other models, and is easily implementable for a variety of flow situations [80]–[88]. This 

model does fail to capture the smaller resolution effects, regardless of the mesh size, and has a 

tendency to smooth the shock waves generated by the cold spray nozzle [79]. 

The RNG k-ε model is also used commonly for cold spray and other supersonic nozzle flows [89]–[97]. 

The RNG model uses an extra term in the epsilon equation which improves accuracy in strained flows 

and low Reynolds number flows, at the expense of processing time and more complex pre-requisites 

when establishing the near-wall region [98]. 

Realizable k-ε methods utilise a different model for calculating the dissipation rate, epsilon, that is 

more suitable for calculating the mean flow of complex structures as we see in cold spray, and provides 

better predictions of the jet spreading effects once the flow has left the nozzle [99]–[102]. 

The k-ω is not commonly used for cold spray simulations, due to the difficulty in creating a converging 

model. Whilst the model produces more accurate near wall simulations, this is not particular concern 

for cold spray nozzles, though could be useful for resolving surfaces around objects which interrupt 

the flow downstream of a nozzle [103], [104]. The k- ω model is noted for over-predicting the shear 

stress within boundary layers with adverse pressure gradients, and commonly used in simulations of 

swirling flows  and vortices, neither of which are common in cold spray. 
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2.12.4. Meshing 

The 2D models were most commonly divided into zones of structured meshes of varying size, as this 

produces faster converging models. When modelled in 3D, unstructured meshing was used when the 

models required more complex geometry [81], [95], [101]. 

2.12.5. Particle tracking 

There are two methods for solving computational particle-gas flow, Euler-Lagrangian discrete phase 

model or Euler-Euler mixtures. In all types of Euler-Euler models, the secondary phase cannot occupy 

the same physical space as the first phase, and the mesh interaction between the two phases must be 

calculated with each iteration, with the gas modelled as a continuum with a suspended secondary 

phase. This puts a heavy computational requirement on the solver but can provide a more accurate 

representation of the combined flow, particularly in particle heavy mixtures. 

Lagrangian discrete phase modelling calculates the flow of the primary phase as if it were the only 

phase in the simulation in the Eulerian frame gas model. This method is well suited to particle-fluid 

flows where the volume fraction of particles is less than 10% [101]. This is the case in cold spray, where 

the volume fraction is typically less than 1%, with local maxima occurring around the centreline 

measured to be approaching 2.8% in a typical cold spray system [89]. 

The effects of the particles on the gas stream are typically ignored in cold spray simulation, the model 

is only one way coupled [22], [83], [86], [88], [102], [105]–[107]. In one way coupled models, the model 

is calculated to convergence, after which it calculates the force balance that this established flow 

regime would apply to the secondary phase via drag and turbulence with each iteration of the particle 

along its defined step length. 

At increased powder feed rates, it has been reported that the gas-particle interaction is sufficient to 

cause a reduction in gas momentum, weakening the shock structures that form after the nozzle’s 

exhaust. This can be accounted for by phase coupling the powder and gas flow using the source terms 

in the Navier-Stokes equations, but this situation is rare and will not be encountered in this thesis as 

the powder feed rate is significantly lower than that which is required  [81], [82], [102], [108]–[110]. 

2.13. Areas of application 

Cold spray finds applications across a range of industrial sectors, usually determined by the specific 

properties of the available materials. Table 4 shows the range of functional properties that cold spray 

capable materials have and their typical applications. 
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Table 4 - Typical applications of cold spray, listed by material and functional property [111] 

 

2.13.1. Wear resistance 

Wear resistant coatings are required situations with high levels of abrasion, erosion, fatigue, fretting 

or cavitation erosion, in order to minimise the amount of damage caused by these interactions and 

prolong the life of the component. Common areas of interest include cutting inserts, cutting tools, pipe 

walls in pump shafts and bearings. 

To function optimally, these coatings should be made from materials with high intrinsic hardness and 

contain minimal pores or cracks. Typical materials used for the creation of wear resistant coatings by 

cold spray include titanium carbide, tungsten carbide and chromium carbide. 

Cold spray is still in the research stages of investigating these opportunities [112]–[115]. These 

materials are so hard that deposition may require mixing with a softer “binder” material, and require 

higher velocities to exceed the critical velocity. With the cold spray process, it is possible to produce 

highly dense coatings using materials that are usually difficult to handle, without damaging the 

component to be protected. 

2.13.2. Corrosion and erosion resistance 

Surfaces that will suffer from degradation due to their interaction with the environment also require 

protection, typically being coated in layers of nickel, chromium or titanium alloys. Common areas of 

interest include pipes, pumps and other surfaces in chemical, petrochemical or oil handling equipment, 

and power plants. 

The use of these alloys on just the surface of the component offers significant cost reductions when 

compared with the cost of making a full component, but does not lessen the performance. Cold spray 
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is capable of providing these dense coatings evenly across the surface of components, with a lower 

level of oxidation than competing processes, allowing for a greater volume fraction of reactive, 

sacrificial material in the coating [116]. 

2.13.3. Joining 

Cold spray has also been used as a method to combine two components together, in a similar process 

to welding. The two components are aligned at the joining sections, and a cold spray deposit is used 

to create a bond between the two across the seam [117]. It has been demonstrated that the fractures 

are more likely to occur in the freeform section of the weld than at the interface, meaning that the 

maximum strength will be that of the deposited material [118]. 

2.13.4. Additive manufacturing and restoration 

Over the last five years, several companies have announced the development of new manufacturing 

platforms utilising cold spray deposition as part of hybrid part creation methods. Little information is 

currently available on these processes, however it is important to monitor these processes to note the 

industry interest, their target markets and their shaping capabilities. 

The Hermle Metal Powder Application (MPA) technique uses superheated steam, instead of nitrogen 

or helium, as the accelerating gas in order to propel the powder particles through the supersonic 

nozzle. The resulting deposit is then machined in a layer by layer approach after deposition in order to 

create the desired shape, by the CNC machine in which the cold spray system has been mounted, as 

shown in Figure 23. 

 

Figure 23 - Hermle MPA 40 hybrid cold spray and machining centre 

Hermle are targeting injection moulding and die casting tools, particularly focussing on their capability 

to add features to pre-existing blanks, and the formation of conformal cooling channels with a water 

soluble filler material. 



39 

A newly established Australian company named Spee3D have a 6 axis bed for near net shape cold spray 

deposition, controlled by angling of the bed as mentioned in Section 2.9.2.1, and then machined post 

deposition, rather than layer by layer. Spee3d are targeting low cost, medium volume production 

components in aluminium or copper, as a direct competitor for casting. 

 

Figure 24 - Spee3d additive cold spray system 

The US Army Research Lab (ARL) has developed a manually operated cold spray system for repair of 

components, as shown in Figure 25, with VRC Metal Systems. Component with defects are built back 

up by using the handheld cold spray nozzle before taking the part for machining. It is not currently 

clear what the target applications will be for this system, but it is likely to be initially focused on the 

repair of military aircraft components. As this system is a manually driven process, the accuracy and 

repeatability are likely to be of a lower standard than competitive machines. 

 

Figure 25 - VRC Gen III manual cold spray deposition system [119] 
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General Electric was noted to be investigating the potential of freeform fabrication using cold spray in 

2013 [120], but have published little progress since the announcement of their investigation and initial 

trials. 

In addition to the commercial endeavours, a research team in the Department for Mechanical and 

Manufacturing Engineering in Trinity College Dublin, headed by Dr Rocco Lupoi, has been awarded a 

€500,000 grant from the European Space Agency for the “Development of Cold Spray towards the next 

generation of Additive Manufacturing” [121]. All papers produced by this group to date have been 

review papers or focussed on a two-dimensional simulation of the cold spray process. 

As with some conventional and additive systems, the creation of net shape structures using hybrid 

systems will still be limited by the capability of machining the materials, leading to limited materials 

choices or expensive finishing processes. The extra machining steps leads to unnecessary time, cost 

and material waste when compared to a potential direct net shape cold spray system. 

2.14. Summary 

Sector analysis shows there is a space in the metallic manufacturing sector for a high speed, low cost, 

large scale, net-shape capable system with above standard surface finish. Cold spray has the potential 

to effectively fill this space, if it can overcome the current lack of structural control over the shape of 

its deposition, whilst maintaining the beneficial properties of the process described in Section 2.10. 

The benefits it provides with increased build rate, cost/energy savings and broader material choices 

would give it a unique placement within the manufacturing space. 

Literature has demonstrated some methods exist for altering the shape of the deposit, via upstream 

gas interference before it enters the nozzle, and by altering the substrate conditions at the deposition 

zone. The best approach for developing a controllable structuring system is likely to be a downstream 

interruption of the combined gas and powder jet, as the particles will be travelling at a higher velocity 

and so the process more applicable to powders of varying size and density. It is sensible to start with 

a further investigation of substrate masking developed from the work noted in the literature. If 

successful, this can be progressed into more flexible solutions to allow for the creation of more 

complex geometries.
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Chapter 3 -  Experimental setup 

3.1. Introduction 

During this study, the same cold spray system, located at the University of Cambridge’s Institute for 

Manufacturing, was used for all experiments. This chapter briefly details the apparatus combined to 

make the cold spray system. The operation of the cold spray system is described from the first stages 

of introducing the gas to the system to the recovery of the substrate and deposit. In addition, the 

analytical methods for acquiring the data from the deposits that will be used throughout this thesis 

are defined. 

3.2. Health and Safety 

Due to the equipment and materials involved in these experiments, risk assessments were required to 

ensure the safety of those present. Use of metallic powders necessitates the use of filtered masks, 

after face-fit tests to determine the suitability, and gloves when handling containers and during 

machine setup. Lab coats should be warn when entering the lab, and taken off when leaving to stop 

the spread of powder outside of the room. Safety glasses are also required to protect the eyes from 

powder plumes when filling the powder hopper and operating the system. When the system is in 

operation, ear defenders are required upon entering the lab.  

3.3. Cold Spray System 

3.3.1. Powder feeder 

A Praxair TAFA Model 1264 is used to supply the powder at high pressure to the cold spray system, an 

open loop wheel fed setup shown in Figure 26. The powder is contained in a sealed, pressurised 

powder hopper, with a heating blanket to prevent the absorption of moisture into the powder, 

maintaining reliable flow through the powder wheel. The powder wheel has a series of holes around 

its outer diameter, which fill with powder as the wheel turns. When these holes align with the outlet, 

the powder is fed through the piping to the injection needle in the converging section of the De Laval 

nozzle. 
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Figure 26 – Praxair TAFA Model 1264, high pressure open loop wheel powder feeder 

The powder wheel rotates at a constant rate that can be programmed by the operator, enabling the 

steady supply of a specific volume of powder. The entire feeder is located on a load cell that monitors 

and logs the mass of the powder feeder during the experiments, with a resolution of ±0.5 g, to calculate 

mass flow rates and deposition efficiency. 

3.3.2. Gas heater 

The gas is heated using a Cold Gas Technology K2000 gas heater, capable of safely reaching nitrogen 

temperatures of up to 500 °C. The bulk of the gas is directed from here to the nozzle, where it 

recombines with the mixed powder and gas stream from the powder feeder in the converging section 

of the nozzle. 
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Figure 27 – Gas heater 

3.3.3. Nozzle 

The nozzle used for all experiments within this report is a converging-diverging De Laval nozzle, with 

dimensions as shown in Figure 28. The gauge pressure at the inlet is 30 bar, regulated from a 200 bar 

nitrogen manifold cylinder pallet (MCP). The powder injection needle is directed concentrically into 

the converging section of the nozzle, with the tip falling 15 mm short of the 2.72 mm diameter throat. 

The nozzle is positioned over the substrate at a 40 mm offset, as the particles reach their maximum 

velocity between 20-40 mm from the nozzle exhaust, which is 7.8 mm in diameter. 

At the 30 bar maximum operating pressure of this system, the nozzle is over-expanded for nitrogen, 

allowing the gas to expand to below atmospheric pressure, and therefore accelerate to higher 

velocities, allowing for greater particle velocities to be achieved at the nozzle exhaust. 
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Figure 28 – Diagram of the tungsten carbide cold spray nozzle [DLV190] at the IfM 
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3.3.4. Laser and pyrometer 

The laser is a 4 KW Ytterbium laser, the YLS 4000 from IPG, with a spot size of 0.06 mm at focus. As the 

cold spray system requires a less localised heating affect, the substrate is not positioned at the laser 

focus, but rather at 40 mm from the focus, to increase the spot diameter to 5.88 mm and heat an area 

of the substrate similar to that covered by the powder. The maximum achievable average spot 

intensity at this distance is 1.5 x 104 W/cm2, below the melting regime for the metals used in this thesis. 

The laser is controlled via an output in the Aerotech control software, and so its activation can be timed 

to integrate with the positioning of the stage. It is capable of providing requested power at any level 

up to the maximum 4 KW. The laser alignment can be seen in Figure 29, coming in through the thick 

black cable on the left, with the pyrometer positioned front right. 

 

Figure 29 - Laser head and pyrometer positioning in the build chamber 

The requested and output laser power is recorded with the operational data from the gas and powder 

feeds, to allow analysis and repeatability at a later date. The pyrometer will record the temperature 

data of the substrate under the nozzle during deposition, but does not record for the rest of the 

substrate. 

Alternatively a specific temperature can be requested for the area under the nozzle, which will be 

monitored by the pyrometer as the laser power is actively altered to maintain this temperature in the 

substrate. 
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3.3.5. Auxiliary equipment 

Other minor equipment is used in the course of experimentation: 

 The system comprises of 3 Cartesian Aerotech stages and one optional rotary stage that can 

be orientated as required. 

 The entire system is contained within an environmental chamber, where a filtered extraction 

system maintains a slight negative pressure. The chamber is also light-tight, with interlocked 

doors to avoid human exposure to the laser. 

3.4. Operational Control 

This subsection details the generic operating procedures that were central to each trial conducted with 

the cold spray apparatus. Operations that are experiment specific, for example pertaining to the 

positioning of masks, are detailed within the corresponding results section of this thesis. 

3.4.1. Preparation 

Before processing begins, nitrogen stores must be checked to ensure that there is a sufficient supply 

to safely complete the planned experiments. A continual flow is vital for temperature control of the 

gas heater. The extraction system must also be turned on to maintain a safe level of nitrogen in the 

room, and the oxygen meter checked to be operational. It is highly advisable to conduct a dry run of 

the proposed experiment at a lower speed to check for nozzle collisions or other issues that would 

create complications during deposition. All required PPE is donned before progressing any further. 

All substrates are initially cleaned with acetone in an effort to present a clean surface to aid in coating 

formation, before being mounted on the platform. 

3.4.2. Powder handling 

Powders are kept dry throughout the spraying process to avoid causing problems with flow through 

the various narrow pipes of the powder feeder and injection needle. When preparing to spray, powder 

is transferred from airtight containers kept in a temperature-controlled cupboard, to the powder 

feeder surrounded with a heated blanket, shown in Figure 30, which is then sealed. 
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Figure 30 – Powder feeder mounted on a load cell 

Once transfer is complete, the load cell is unlocked to monitor the mass of the powder in the system. 

This powder feeder is connected to the same PC as the control software, allowing for real-time 

recording of the mass, and monitoring of the powder feed rate. 

3.4.3. Positioning 

The substrates are clamped onto a fixed platform using a series of positional levered arms. This 

platform can then be positioned by 3 Aerotech stages to translate the nozzle across the substrate 

surface and maintain the desired nozzle-substrate offset. The stages can be controlled manually, or 

automatically by a program written in G-Code via the Aerotech controller software, shown in Figure 

31, loaded onto the same PC as the laser control and the gas and powder feeder control, with traverse 

rates of up to 100 mm/s. 
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Figure 31 - Aerotech control software used for nozzle positioning 

A rotary stage can also be affixed to the platform vertically or horizontally to provide a 4th axis for the 

system. This stage is capable of rotating small diameter cylinders to provide surface speeds in excess 

of 5000 mm/s. 

There is no reason why different positioning equipment could not be used with greater movement 

range or traverse rate, as the particles are moving in excess of 500 m/s in the direction normal to the 

substrate. In order for the stage speed to negatively affect the particle impact angle and change the 

deposition, the stage would need to move at speeds of a similar order of magnitude, which is an 

unfeasible prospect. 

Indeed, a significant upgrade to this positional capability would be required to make a cold spray 

system competitive with other additive manufacturing techniques. A 6-axis system would allow for 

much greater versatility in shape and spray angle. 

3.4.4. Process control 

The process is controlled from a software suite which monitors gas and temperature levels, and allows 

control of the gas and powder flow, as show in Figure 32. 
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Figure 32 - Cold spray process control software 

Gas pressure and temperature must be monitored throughout the deposition cycle, along with powder 

feed rates, to ensure the reliability and repeatability of the trials. All of this data is logged with each 

experiment, and can be examined at a later date, along with data of requested and supplied laser 

power. 

3.4.5. Post process 

Upon completion of the deposition phase of the experiment, the equipment must be left to cool with 

the gas running to aid the cooling of the heating element, before samples are removed for analysis.  

3.5.  Methods of Analysis 

The following methods will be used to determine the success of the deposits formed during 

experimentation. 

3.5.1. Shape conformity 

The main method of analysing the deposits made will be the conformity to the intended shape, as this 

is the primary success criteria for the project. This is a qualitative visual inspection rather than 

quantitative measure, whereby the deposits are inspected upon removal from the cold spray system 

to examine whether they have deposited flush to the forming tool. If a flat surface is presented with 

lower surface roughness than standard cold spray, the deposition will be deemed to be successful. 
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To confirm this visual inspection for a few of the samples, a quantitative measure of the flatness of the 

deposit’s surface will be analysed using a Veeco Wyko NT3300 white light interferometer, shown in 

Figure 33. The data is presented as a scatter plot, with the stability of the gradient of the points 

indicating the flatness of the  sample. 

 

Figure 33 - Veeco Wyko NT3300 used for surface roughness measurements 

3.5.2. Surface roughness 

The mean surface roughness of the samples was also measured using the Veeco Wyko NT3300 white 

light interferometer mentioned in Section 3.5.1, capable of measuring to ±0.01 nm [122]. The 10X 

objective was used to scan across a 50 µm range, 25 µm either side of the surface in focus, using the 

automated stages to move independently and ensure repeatability of measurement. 

Measurements are presented as a heat map, as can be seen in Figure 34. Black areas in the 

measurement zone occur when the surface is not reflective enough to be measured. Settings can be 

adjusted to interpolate from the surrounding data, though this is often not used. As long as more than 

80% of the measured area is returned, the measurement will be accepted as valid. 
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Figure 34 - Sample Veeco Wyko NT3300 surface roughness measurement output image 

3.5.3. Metallography 

Porosity measurements of the samples were collected to compare to free standing cold spray deposits. 

These porosity values are determined by analysing optical micrographs of cross-sections of the 

deposits. 

The samples were sectioned using a Struers Sectom 10, mounted in resin and polished before being 

examined under an Olympus BX51 research microscope with a 20x lens and a JENOPTIK Laser ProgRes 

C10Plus camera, capable of providing real-time imaging. Image analysis software from A4i was used to 

record images, measure samples and record images, calculates porosity in the image by counting the 

number of pixels in a user defined greyscale range, and displays the result as a percentage of the total 

number of pixels in the area selected, as can be seen in Figure 35. 

In an attempt to approximate the best porosity value for each sample, three sectioning cuts will be 

made in each deposit, and the porosity measured at each cut in three locations, before averaging. 
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Figure 35 - Porosity measurement example of 4% porous Al cold spray deposit 

3.5.4. Build height 

Average build height per layer will also be measured using the optical microscopy suite mentioned in 

Section 3.5.3. There will be significant uncertainty in this measurement, as misalignment between the 

nozzle, substrate, and axis would cause variation in the height, as demonstrated in the diagonal 

alignment tests in Section 6.3. That being said, all depositions within a material type were conducted 

with the same alignment, allowing for comparison within that data set, and the formulation of general 

trends. 
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Chapter 4 -  Exploration of deposition shaping 

concepts 

4.1. Introduction 

Pursuant to the research aim, this chapter of work was conducted with two main objectives: to 

demonstrate the viability of creating definable surfaces, and to consider the most effective approach 

for creating definable surfaces of free-form shapes. 

As mentioned in Section 2.8, the factor determining whether powder is successfully deposited is the 

particle velocity at impact being above the critical velocity threshold, normal to the substrate. The 

following concepts involving the alteration of the downstream deposition zone were developed ahead 

of other methods in an attempt to reduce any effects on the majority of the gas velocity and 

consequently the powder velocity and trajectory from inlet to substrate. 

The experiments would be deemed successful if the samples achieved shape conformity upon visual 

inspection, which would be confirmed by a high surface finish, exceeding that expected from standard 

cold spray, caused by proximity to the deposit shaping tool. The analysis and optimisation of the 

developed concepts will be considered further in later chapters. 

4.2. Parameters 

In order to minimise unnecessary variation in parameters between trials, a set of parameters were 

fixed for all experimental trials within this chapter, summarised below in Table 5. Copper was chosen 

as the powder material, as it readily and densely deposits without the use of the laser, eliminating a 

further unnecessary variable. Copper also has a steep critical deposition angle of 60° [32], allowing for 

a tall single track build up. The temperature was limited to 300 °C to prevent any fouling of the nozzle, 

and the gauge pressure set to 30 bar, the maximum operating pressure for the system. Unless 

otherwise detailed, all copper experiments within this thesis used these parameters for deposition. 
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Table 5  - Fixed parameters 

Variable Setting 

Powder Copper – Nominal size - 38 + 15 µm 

Powder feed rate 20 cm3/min 

Substrate Aluminium 12 mm plate 

Temperature 300 °C 

Gauge pressure 30 bar 

Traverse Rates  3, 3.75, 5, 7.5, 15 mm/s (plus 50 & 100 mm/s for 

flow separator experiments) 

Spray spot diameter 8 mm 

4.3. Masking plate 

A masking plate was positioned to obscure parts of the substrate, and the nozzle programmed to pass 

over the pattern in the mask. This would provide minimal interference with the majority of the gas 

flow, and was intended to have little impact on the particle trajectory and speed. It also seemed a 

logical extension of the work done by Cormier et al and Dupois et al [123], [124] in using a wire mesh 

to interrupt the gas flow and structure the deposition to pyramidal fins, though this was lacking in any 

real level of control, being limited only by mesh size and the critical deposition angle. 

The masking plates were made at thicknesses of 1, 2 and 3 mm from steel plate using a water jet cutter. 

The masking plates were clamped to a 1 mm thick aluminium substrate and fixed to the machine bed, 

with the nozzle positioned orthogonally to the substrate and mask surface. The masking plates were 

divided into sections, shown in Figure 36, to investigate how different feature sizes, traverse rates, 

number of layers and alignment of the nozzle centreline with the face of the feature would affect the 

deposition of material.  

In the first section of the plates, the nozzle was directed to traverse over a series of features of 1, 2, 3 

and 4 mm in size, similar in scale to the wire mesh used by Cormier et al, and allows full coverage by 

the 8 mm spray track. This was to allow investigation of the creation small structures with fully 

defined side surfaces, and was conducted with traverse rates of 15, 30 and 45 mm/s for both a single 

layer pass and a double layer deposit. 

In the second section, the effects of nozzle alignment with the features edge as it traversed parallel to 

the masking feature was tested. It was expected that moving parallel to the edge of the mask feature 

would cause less disruption to the gas flow than moving perpendicularly over the side of a feature. The 

nozzle was traversed along the feature at 15 mm/s for a single layer, and 30 mm/s for 2 layers, which 

allowed the testing of the central alignment, and with offsets of ±1 and ±2 mm. 
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Figure 36 – Mask experiment setup and mask outline (150 x 150 mm) with nozzle path of 8 mm 
spray track 

4.3.1. Small feature section 

Deposition into the small feature zones of the mask was limited, being highest in the centre of the 

zones, and minimal at the faces of the mask, as can be seen in Figure 37. The deposition across all 

traverse rates was no more than 100 microns in thickness for single or double layers, compared to the 

expected 2 to 4 mm heights for free-standing tracks using the same parameters. The deposition failed 

to build any vertical surfaces adjacent to the mask on any face of the square unmasked zones, at any 

thickness of mask. 

 

Figure 37 – A typical failed small feature deposition pattern 

One possible cause of this could be an effect of the deposition efficiency of the process, as a significant 

proportion of the powder does not adhere to the substrate. In this zone, the gas jet will not be 

sweeping along the substrate surface, but will travel horizontally along the top face of the mask, 

meaning any undeposited powder may not have been blown away from within the smaller features of 

the masking plate, especially at the sides and corners, hindering the deposition of the subsequent 

incoming powder. It is even possible that powder had already collected in these sections during the 

trial as the powder feeder is active before the nozzle is placed over the mask. This is to ensure a 

continuous powder flow through the nozzle, but in a better controlled system it would be worth 
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examining whether powder fed only once the nozzle was in place over the mask would achieve more 

successful deposition into smaller features. 

4.3.2. Nozzle alignment section 

Deposition in the nozzle alignment test section proved successful for all mask thicknesses, though 

deposition of the copper powder was also noted on the top surface of the masking tool. Though this 

did not appear to interfere with the deposition in these single- and double-layer trials, it could 

potentially cause problems for deposition in longer spray trials, or when considering the reusability of 

the masks. 

In each experiment the deposit built flush to the vertical face of the mask, seen in Figure 38, with the 

surface created showing differing deposit build heights for each nozzle-wall offset. There was no 

observed bonding of the deposit to the side walls of the masking plate, with the masking plate easily 

removed by hand after spraying was completed. 

 

Figure 38 – Side view of the deposit formed in nozzle alignment section, after mask removal 
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The deposited surfaces were flat, and tilted from the substrate to the same degree as mask walls were 

from the water jet cutting, as shown in Figure 39. 

 

Figure 39 – Samples from the nozzle conformity section, where the nozzle’s central axis is offset 
from parallel with the wall by (a) +2 mm, (b) +1 mm, (c) 0 mm, (d) -1 mm, and (e) -2 mm 

The thickness of the mask caused negligible variation in the maximum height of the deposited tracks,  

the minor variations seen in Figure 40 are likely to be caused by alignment discrepancies between the 

experiments. Multiple layers appear to work without issue, and proved a point about total build height 

- that the same build time will give the same cumulative build height regardless of the traverse rate.   
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Figure 40 – Vertical wall build height vs central alignment of the nozzle with feature edge with 
3 mm mask thickness, for one 15 mm/s layer and two 30 mm/s layers 

The tallest deposited mask adjacent surface constructed when the nozzle was centrally aligned with 

the mask for all mask thicknesses. This was expected from the centrally peaked shape of deposition 

observed during standard cold spray deposition, and it is clear that the mask has not changed the local 

distribution of particles that have impacted, but rather prevented a portion from reaching the 

substrate. 

4.4. Backstop 

In order to avoid disturbing the gas flow near the substrate, and to allow undeposited powder to 

escape the deposition zone, in the following experiments the nozzle was directed to spray parallel to 

a backstop wall, similarly to the nozzle alignment section of the mask trials in Section 4.3.2. 

The backstop components were made from tool steel, to reduce or eliminate deposition forming on 

the top surface of the backstop, depending on the depositing powder. Backstops of incrementally 

increasing heights, from 2 – 10 mm, were created to test whether the backstop height would affect 

the capability of the deposit to form adjacent to its surface, or alter the deposited layer height or 

surface finish. The nozzle was aligned perpendicular to the substrate with the face of the backstop 

being parallel to the axis of the nozzle, as shown in Figure 41. 
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Figure 41 – Backstop design figure, nozzle traverse direction is into the page. 

Spray parameters used for all experiments in this section are as described in Section 4.2. 

4.4.1. Backstop deposition results 

Similarly to the parallel sections of the mask trials, a flat, vertical surface was achieved at all traverse 

rates for 2, 4 and 6 mm backstop heights, an example of which is shown in Figure 42. 

 

Figure 42 – Example of successful copper deposition against 6 mm backstop, with decreasing 
traverse rates of 15, 7.5, 5, 3.75 and 3 mm/s. 

Successful vertical deposits were created in some experiments using 8 and 10 mm tall backstops, at all 

tested traverse rates, shown in Figure 43. The shape conformity and surface finish of the successful 

trials were the same as the successful smaller height backstop experiments.  
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Figure 43 - Successful copper deposition against 10 mm backstop, at a steady declining 
traverse rate from 25 to 3.75 mm/s 

However, increasing the height of the backstop appeared to occasionally create greater inconsistencies 

in the successful deposition of a flat surface, shown in Figure 44’s results using a 10 mm backstop, most 

commonly, though not solely, at the lower traverse rates. 

 

Figure 44 – Failed copper deposition adjacent to 10 mm height backstop at 25, 15, 7.5, 5 and 
3.75 mm/s 

It is possible that the angle at which the nozzle was aligned to the backstop face, may have altered 

during operation, causing a “shadow” to be cast over the depositing region adjacent to the backstop 

face, as drawn in Figure 45. Evidently any shadow that impedes particles from reaching the substrate 

will cause problems with deposition in the wall adjacent zone. 

 

Figure 45 - Nozzle alignment shadow 
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A stepped backstop was created to study the effect of backstop height on the surface creation 

capability, whilst ensuring the process parameters and nozzle alignment during deposition were 

identical for each height, eliminating any minor variations from previous trials. 

Figure 46 shows the similar inconsistent surface finish phenomenon in this trial as was demonstrated 

previously, with a flat, vertical wall being created in the 2, 4 and 6 mm tall backstop zones, while there 

was little success in the 8 and 10 mm zones, though the maximum build height remained consistent. 

 

Figure 46 – Stepped backstop result at heights of 2, 4, 6, 8 and 10 mm at 5 mm/s traverse rate 

It should also be noted that during these experiments there was build-up of deposited powder on the 

top surface of the backstop during deposition, despite using tool steel as the tool material. This is a 

feature of using a powder material that deposits so readily and would be reduced with other materials, 

but steps should be considered to minimize this build-up to avoid future interference with the desired 

deposition. This interference could come from nozzle collision, particle trajectory interference or the 

build-up detaching and obstructing with the deposition zone. This build up was triangular in cross 

section, approximately 4 mm wide and up to 2mm tall. During deposition it regularly detached from 

the top surface and was forced outwards away from the deposition site by the oncoming gas jet. This 

happened at all heights and was not observed to have altered the deposition in any way for any height 

of backstop. 

4.5. Flow separator 

As the forces involved in cold spray generated by the gas impacting on surfaces can cause strong 

vibrations, requiring everything within the path of the gas within the chamber to be firmly clamped, it 

was originally believed that the use of a thin sheet to define the desired deposit surface may lead to 

vibrations which would affect the deposition of the material, or potentially even bend the sheet. 

Following the success of the previous backstop experiments it was decided that the attempt should be 

made, as an effort to reduce interference with particle trajectory and gas dynamics as much as 



62 

possible, in addition to providing a less obtrusive and more easily positionable solution for a future 

production system. 

A thin stainless steel sheet, 0.6 mm thick, termed the flow separator, was clamped to the side of a 

12 mm thick machined substrate to ensure that its surface remained at 90° to the deposition zone on 

the nozzle facing substrate surface, as demonstrated in Figure 47. The nozzle was moved 50 mm along 

the flow separator at traverse rates of 3, 3.75, 7.5, 15, 25, 50 and 100 mm/s. It was then stepped away 

from the flow separator by 4 mm, and returned 50 mm back along the substrate whilst depositing an 

adjacent track to the first, and returned to the nozzle start position. Subsequent layers were then 

deposited in varying numbers (ranging from 2 to 50), with the intention of creating a similar total dwell 

time over the samples. For example, one layer deposited with nozzle traverse rate of 5 mm/s gives the 

substrate the equivalent dwell time as two layers at 10 mm/s. 

 

Figure 47 – Flow separator diagram 

The height of the flow separator was chosen to be 19 mm. This height was chosen to allow a reasonable 

height of deposition for examination and measurement purposes, and to locate the leading edge of 

the flow separator just after the point of one of the diamond shocks in the simulated gas profile, as 

located by simulations in Chapter 5, where the pressure is already highest in the gas stream, hopefully 

avoiding the issues noted from the taller backstops in Section 4.4. It was hoped that this would cause 

the minimal interference with the gas and powder flow whilst allowing a height of surface to deposit. 

The results of test simulations for flow separators of different heights can be seen in Figure 70Section 

5.6 in the simulation chapter. 
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4.5.1. Flow separator deposition results 

The flow separator experiments proved successful, repeatedly providing a flat, vertical walled deposit 

of 12 – 14 mm, adjacent to the flow separator face across a range of traverse rates from 3 – 100 mm/s, 

seen cross-sectioned to better show the straight surface in Figure 48. Taller spikes can be seen at the 

ends of some deposits, caused by signal delay in switching the powder feeder off as the nozzle is 

dwelling at the end of a deposition run. 

 

Figure 48 - Copper deposition cross sections [3, 3.75, 7.5, 15, 25, 50, 100 mm/s], with all 
parameters as described in Section 4.2. 

The defined, flow separator-adjacent surface of the copper deposits were observed to be reflective, 

achieving sub-micron surface roughness (Ra) at all traverse rates, shown in Figure 49. There is not 

enough data to draw firm conclusions on how the traverse rate affects the surface roughness. It is 

likely that the deposits with a greater number of layers are presenting with a rougher surface, as the 

interface between the layers tends to be rougher and more porous than the deposition within a single 

layer. This is likely caused by the cooling of the previous layer, which could be countered by the 

addition of a preheating laser and optimisation of the deposition parameters. 
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Figure 49 - Traverse rate vs surface roughness for copper flow separator deposits 

While depositing, a thin layer of deposit can be seen building up on the top of the flow separator. This 

builds to a small height and then flakes off. This does not affect deposition, as the copper building up 

is only the width of the top of the flow separator, and as described in Section 6.2, the height of the 

separator makes little difference to the deposition. 

4.6. Discussion 

The results presented in this chapter have shown the advancements made in progressing the cold 

spray system from one incapable of any in-process shape control to one able to build high fidelity, 

controlled surfaces. 

The highly limited deposition in the small feature sections shown in Section 4.3 of the masks despite 

the success in the alignment tests suggests that in order to facilitate the deposition of subsequent 

powder, there has to be an escape path any previously undeposited powder. Additionally, the use of 

masking plates to construct three-dimensional objects would limit the potential shapes, as this would 

require a fixed cross section of the component being built. Deposition on the top surface of the mask 

is also unwanted, as this may interfere with deposition at a later point, either affecting gas flow, 

powder clearance, laser interaction, nozzle clearance, or potentially breaking off and interfering with 

deposition. 

With these considerations in mind, it was decided the next experiments would use tall, flat walls to 

spray adjacent to, and facilitate the clearing of powder from the deposition zone. These walls would 

be made from a harder material to avoid building up a deposition on the top surface of the shaping 

tool, as the incoming powder would deposit less readily to a harder material. 
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Subsequent experiments were conducted with the nozzle aligned centrally with the face of the tool, 

as this would locate the tallest part of the deposition at the tool face. This prevents subsequent layers 

from spraying into a channel between the previous deposit layer and tool face displayed in Figure 50, 

potentially hindering powder clearance and further deposition. 

 

Figure 50 - Diagram showing the effects of tool wall position on tool adjacent deposit shape 

During the backstop trials, conformal surfaces were successfully created across a range of traverse 

rates and backstop heights. The buildable height is only limited by the critical angle of the non-sculpted 

face of the deposit, building adjacent tracks or full layers with defined surfaces would allow the height 

to continue to increase, something that will be investigated in further chapters. 

Whilst capability has been demonstrated, seemingly affected by height of the backstop, a solution 

requiring the positioning of a large flat backstop would further limit the achievable shapes in a future 

system. As the experiments are expensive and time consuming, it was decided to attempt to reduce 

the required size of the backstop tool, rather than optimise and explain the results achievable with this 

method. 

Research has been unable to determine why the deposit was less consistently successful with a 10 mm 

backstop, than with a 2 mm backstop. It is possible that a larger volume of powder is hitting the taller 

vertical surface of the backstop prior to the substrate and, having lost velocity after this impact, is not 

bonding nor clearing the deposition zone, causing interference with the subsequent incoming 

particles. Alternatively, alignment issues could have caused the backstop to occlude the substrate, 

causing deposition issues. The gas dynamics surrounding the backstops will be considered in Chapter 

5, to see if any conclusions can be drawn about why the particle trajectories were affected with taller 

backstops. 
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The flow separator experiments successfully and consistently produced smooth, flat and dense 

deposits that conformed to the surface of the tool face at a range of traverse rates. The deposits 

produced using a flow separator have the most consistently smooth and conformal surfaces, and used 

the tool that would lead to the least interference/most flexibility in terms of positioning capability. 

These deposits were further analysed to assess deposit structure and compared with standard cold 

spray, detailed in Section 6.3.1, and to allow better comparison to the subsequent experimentation. 

The backstop experiments noted difficulties in producing successful, flat deposits when utilising taller 

backstops, especially at lower traverse rates. This however does not seem to be the case for equally 

tall or taller flow separators used to shape the deposition, and so further work is required to 

understand what phenomenon causes the instability at greater backstop heights. 

4.7. Powder recycling 

The deposition efficiency of the powder was not measured for the trials in this research, as the amount 

of powder used was not a measurement of success in this case, and this process by necessity involves 

diverting powder away from the deposition site in the surface regions of the component shape during 

deposition, thereby lowering the deposition efficiency compared to standard cold spray. In order to 

reduce material waste and therefore cost of this process, an investigation should be conducted into 

the recyclability of the powder which does not adhere during deposition. As the environmental 

chamber is enclosed, this powder would not be difficult to recollect for deposition, though it may be 

difficult to ensure its purity if different materials are used in the same system. 

After one of the spray trials detailed in this thesis, titanium powder was collected from the chamber 

for a cursory visual inspection. Figure 51 shows the SEM images of the powder (a) before and (b) after 

spraying. As can be seen, the powder particles appear to remain largely spherical, however have lost 

most of the smaller satellite particles adhered to them, and generally appear to have smoother 

surfaces, although are faceted in places where impact with the substrate or deposit has likely occurred 

but not caused adherence. Some may have even shattered on impact into a number of smaller 

particles. Further work is needed to ensure that the particles behave in the same way as fresh powder 

before the powder can be deemed reusable. The powder properties are likely to have changed 

following the substrate impact from work hardening, though how significantly is unknown. It is possible 

that the powder could then be annealed to return the original material properties of the virgin powder. 
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Figure 51 - Powder particles (a) before and (b) after spraying through the system 

 

4.8. Summary 

The results presented in this chapter have shown that the deposition of a defined, flat, vertical surface 

is possible using cold dynamic gas spraying of a copper powder, by spraying parallel to the surface of 

a tool with a flat, vertical side wall. 

It has also been shown that the shape of the tool can affect the maximum height that the tool can be 

before affecting the deposition capability, though it has not been understood what causes this 

observation at lower traverse rates. It has been noted that in all cases, the deposition of a defined 

surface appears most affected by the presence of a shaping tool at lower traverse rates. This is not of 

major concern for the development of a future manufacturing system, as faster traverse rates create 

thinner, flatter layers which would be desirable to substrate-nozzle normalcy and retain maximum 

deposition efficiency.  

The next logical step in this work is the expansion of the capabilities of this system when using the thin, 

flow separator tools. This includes the testing of other materials, the addition of laser substrate 

preheating, and the creation of further shapes with defined surfaces, all of which are examined in 

Chapter 6. 

Before that, however, an attempt to understand the cold spray gas and particle dynamics, and resulting 

interference caused by obstacles, will be investigated in Chapter 5 to lend understanding to some of 

the affects seen in this chapter. 

50 µm 50 µm 

(a) (b) 
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Chapter 5 -  Generation and validation of 

computational flow models 

5.1.  Introduction 

After the inconsistent results during lower traverse rate experiments in Section 4.4, it seemed logical 

to gather a better understanding of the complex gas dynamics involved in cold spray deposition by 

simulating the gas flow, and to investigate the effect of placing obstacles into the flow path on the 

path of the particles. It was expected that understanding the effects on the trajectories of the particles 

would allow explanation of the inconsistencies found when depositing with backstops but not with 

flow separators. 

In order to do this, a series of simulations were created to model the experimental setup of the cold 

spray system. The purpose of creating these models is to understand the gas velocity profiles, the 

shape of the shock structures that form and the effects that these have on the particle trajectory. 

This work was undertaken in ANSYS FLUENT and described within this chapter is the method of 

establishing the model, and its subsequent validation through comparison with other simulations in 

literature, developed as part of this work. Once the gas structure had been accepted as accurate, the 

effects of these structures upon particle trajectory through the nozzle and through the exhaust region 

was added to the model. 

The comparison of the generated gas flow models will generally focus on the centreline gas velocity, 

as is standard in cold spray simulation [84]–[86], [88], [89], [101], [102]. Once particle tracking has 

been implemented these results will also be part of the comparisons. 

5.2. Model construction 

The gas flow dynamics involved in cold spray were not well enough described in literature to inform 

the flow shaping methods being considered, and so models of the gas structure were developed to aid 

this understanding. Certain assumptions about the system were necessary to facilitate this simulation, 

and are justified below. The construction and validation of these models is discussed in this chapter, 

with the implications from these models on experimental design considered in the chapter summary. 
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5.2.1. Assumptions 

i. The gas flow is continuous. The pressure within the system is sufficiently high that the 
interactions of individual molecules do not have to be considered. 

ii. There are no chemical changes within the gas flow, e.g. combustion. The gases used in cold 
spray are inert. 

iii. Gravity acts along the nozzle length, but has been ignored as its effects are negligible 
compared to the other forces acting in the system. 

iv. Upon convergence of the model, the flow is expected to remain steady, i.e. the velocity, 
pressure and density are independent of time. Transient models do not provide significantly 
different results in this instance, but require much greater computing power. Whilst in reality 
the gas flow is likely to slightly fluctuate around an average case, the standard process for 
cold spray is to assume a steady state. 

v. The gas is treated as an ideal gas for density calculations. 
vi. The solid phase particles within the gas stream are not of sufficient volume to affect the flow 

conditions of the gas, allowing for a discrete phase Lagrangian method to be applied over an 
Eulerian method. This is standard practice for mixed phase flows with secondary phases 
comprising less than 10% of the volume flow rate. This is discussed further in this chapter. 

vii. The model is static. Though the nozzle is moving in reality, the velocity of the gas far exceeds 
the traverse velocity of the nozzle, by approximately 10,000 times. For this reason the 
assumption holds that this will have negligible effect on the instantaneous gas structure and 
velocity. 

5.2.2. Dimensions 

There are three available model types for analysis in Fluent 16.0: 2D profile, 2D axisymmetric or 3D 

volume. 2D profile modelling does not provide an accurate representation of the flow for this situation. 

The initial case of a nozzle plus an exhaust region is ideal for modelling as an axisymmetric simulation, 

but this would restrict all simulated obstacles in the later instances to being also axisymmetrical. The 

3D volume model would be the optimal choice, however it is more resource intensive for both meshing 

and solution iteration, and the mesh needs more careful control when being created. 

Initially, two-dimensional models were created to test the assumptions listed previously, and 

determine whether the initial parameters selected gave reasonable gas velocity and structure results. 

This approach was chosen as it would be the less resource intensive method, and allow for comparison 

with literature data, which is predominantly 2D, to examine the validity. 

Following this, three-dimensional models were created in order to allow the introduction of non-

axisymmetric obstacles into the flow, and create a more accurate model. These models were validated 

by comparison to the 2D models. 

5.2.3. Geometry and meshing 

Analysis conducted in ANSYS Fluent requires the geometry of the volume in which the fluid is located. 

The internal dimensions of the nozzle were therefore used to create a model of only the initial gas 
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pathway, starting at the nozzle inlet as the nitrogen arrives from the gas heater, through the throat 

and diverging section. Once this model had been tested, an exhaust section was added to the nozzle, 

with the option for including substrates and altering the standoff distances, seen in Figure 52. 

 

Figure 52 - Geometry creation screenshot 

When creating a 2D mesh for the axisymmetric calculations, the most important definable parameters 

include the minimum edge size, maximum face sizes and the growth rate. The maximum face size 

allowed for these simulations was 0.2 mm. This would allow a minimum number of 10 cells across the 

narrowest part of the nozzle, including the smaller boundary layer cells. If the cell size is too large, flow 

structure will be lost between iterations. Alternatively, if the cell size is too small, the processing power 

required to calculate the flow structure will be too large to resolve the flow with the available 

resources, and is unnecessary to create a sufficiently accurate model. With these limitations in mind, 

the minimum edge length was set as 0.1 mm. 

For the three-dimensional models, the maximum face size has been extended to 0.5 mm to allow for 

faster processing in the bulk of the model, while still creating a minimum of 20 cells in the cross section 

of the nozzle at the throat. In actuality the models had more than 20 cells at this point, as this is the 

minimum number. An unstructured mesh was used as it is more suitable in dealing with complex 

geometry when using compressible fluids, which can be seen in Figure 53, and has been previously 

employed in cold spray modelling [81], [95], [101]. 
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Figure 53 – Mesh creation screenshot of early mesh model 

Once a body mesh has been established, the parameters were altered to provide a finer mesh, max 

edge length of 0.1 mm, and therefore better gas flow resolution at the most interesting areas, such as 

the throat and exhaust of the nozzle, or the surface of any flow altering implement. 

5.2.4. Solver parameter selection 

As the problem deals with supersonic flow, which is high-speed and compressible, the density-based 

solver option is employed in the FLUENT setup. Though Fluent is now capable of applying either density 

based and pressure-based solvers for calculation of compressible flows, the density based solvers are 

most commonly used as the velocity profile can be obtained directly from the momentum equations, 

and the pressure from the equations of state. 

5.2.4.1. Energy equation 

As the model is operating with compressible flow, the additional energy equation must be activated 

to ensure energy conservation throughout the model. 

5.2.4.2. Discrete phase modelling 

There are two types of particle tracking methodology in Fluent 16 [125], Euler-Lagrangian discrete 

phase model or Euler-Euler mixtures as described in Section 2.12.5. The one-way coupled Euler-
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Lagrangian method is chosen for these models as the powder volume fraction is low, the particles are 

assumed to have no influence on the fluid, allowing for reduced computation time. 

The injection site of the particles can be specified within the model, with particles given an initial 

temperature, velocity and size, and a mass flow rate given to the injection zone. The particles are 

typically assumed to be spherical, though some alteration can be made to provide a typical aspect ratio 

for particles if this is not the case. The particles used in this trial were gas atomised, and as shown in 

Figure 51 are spherical enough to be approximated to spherical without significant change to results. 

At the expense of further resources, a stochastic tracking principle can be applied, whereby multiple 

tracks will be modelled per injection point, based on random turbulent dispersions added to each 

track. The effects of the gas structure on the particle are then evaluated every 50 µm along its path 

length, as this is half the minimum cell edge length allowing a minimum of 2 calculations per cell, to 

determine the velocity of the particle. 

The spherical drag coefficient was applied in FLUENT for the particle velocity calculations, as is common 

throughout cold spray simulation with the particles typically being approximately spherical [53], [83], 

[86], [87], [95], [107], [126]. 

5.2.4.3. Materials 

The fluid volume denoted by the mesh is set to be nitrogen. The density is set to follow the ideal-gas 

method, and the viscosity to use the Sutherland equations. 

Though the initial conditions in reality would be an air environment, the steady state solution for the 

nozzle will be entirely nitrogen, and as this case would have been rapidly reached in a few iterations, 

there is no need to include another complicating factor. 

The nozzle wall is designated to be tungsten carbide, and the heat transfer component disabled. When 

the system has been active during warmup, the nozzle reaches temperatures close to the inlet gas 

temperature of 300°C, meaning that there will be no energy loss through the wall, and the cooler gas 

further down the nozzle will be moving so quickly that there can be minimal heat transfer to the gas. 

The inert particle materials and parameters are also chosen at this point, though can be altered later 

as the flow is not coupled. The chosen material was copper, and the particles were designated as 

spherical with diameters of 30 microns. 

5.2.4.4. Boundary conditions 

In all cases, the gauge pressure at the nozzle inlet was fixed at 30 bar as this is the maximum operating 

pressure of the system when using nitrogen as the carrier gas, and was the pressure used for all 
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experiments. The gauge pressure at the outlet of the system is initialised as 0 bar, with an operating 

pressure of 1 atm (101,325 Pa) throughout the system. 

The nitrogen temperatures were also established, with the temperature at the nozzle inlet fixed at 

300 °C, as it arrives from the gas heater, and initialised to 20 °C at the outlet. 

5.2.4.5. Turbulence model 

As mentioned in Section 2.12, the most commonly utilised turbulence model for cold spray simulations 

is standard k-ε. 

As the development of these models were created with the intention of developing three-dimensional 

shock structures, the realizable k-ε model was chosen over standard k-ε. Despite the increase in 

processing power and time required to cope with this upgrade, one of the major benefits of using the 

realizable model is the more accurate predictions of the distribution of the dissipation rate of round 

jets and of boundary layers in large pressure gradients, both of which are features of a cold spray 

system, and around the obstacles intended to be introduced to the flow. This should allow a more 

accurate representation of the gas flow, and subsequently the particle trajectory in the three-

dimensional simulations. 

5.2.4.6. Discretisation scheme 

The order of the discretisation scheme in cold spray modelling is rarely discussed in cold spray model 

generation, but can have a fundamental impact on the results, particularly on the generated shock 

structure [127]. Lower order schemes typical produce less accurate results at a faster convergence 

rate, and less resolved shock structures and vice versa for higher order schemes. 

A comparison was made of models using first and second order upwind schemes, and subsequently, 

first and second order terms in the turbulence equations. Removing second order terms from the 

upwind calculations altered the resulting gas structure, providing less resolution of the diamond 

structure and larger irregularities around the walls and substrate, despite identical mesh sizes. 

Figure 54 shows us that when the second and higher order terms were included in calculating the 

turbulence equations, minimal difference was noted in the gas velocity. This model does not rely 

heavily on turbulent zones, but since the inclusion of these terms did not significantly increase 

processing times, it was decided that the higher order terms would be included. This would also be 

useful for comparison purposes should sources of turbulence be added in future experimental setups. 
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Figure 54 – Graph depicting the gas velocity along nozzle centreline for solutions including 
different order upwind equation terms 

5.3. Two-dimensional modelling 

5.3.1. Model progression 

In order to establish that the correct parameters had been chosen for modelling, the initial model 

included only the nozzle with no exhaust zone, helping to reduce the processing power required for 

simulation. Once a sensible flow structure and velocity profile had been established, the geometries 

were then incrementally expanded to include an exhaust section, followed by a substrate, and finally 

flow structuring devices. 

5.3.2. Initial results 

Initial results show the nozzle used at the IfM to be over expanded as it was designed, with the gas jet 

collapsing from the exhaust, forming a diamond shock profile, as can be seen in Figure 55. Over-

expansion allows the gas to reach greater velocities than those achievable with a perfectly expanded 

nozzle, and therefore will also allow the acceleration of the particles to a greater velocity. However, it 

is uncertain how the subsequent shock profile affects the trajectory of individual particles. The gas is 

shown to accelerate to over 900 m/s, which was near the expected value for this system from previous 

work using schlieren imaging and PIV. 
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Figure 55 – Simulation generated gas velocity map of the cold spray nozzle with open exhaust 
area, with parameters as established in Section 5.2.4 

When the substrate is introduced to the simulation at a 40 mm offset from the nozzle, the expected 

bow shock can be seen on the substrate and the radial shocks are formed parallel to the substrate as 

the nitrogen is blasted outwards from the nozzle centreline, shown in Figure 56. 

 

Figure 56 – 2D Simulation generated gas velocity map of cold spray nozzle and substrate at 
40 mm stand-off distance 

The shape of the diamond shocks is consistent with those seen in other simulations and previously 

published images of this setup using Schlieren photography, taken of the same system during 

operation, as shown in Figure 57. 
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Figure 57 – Schlieren image of shock structure vs offset distance [128] 

5.3.3. Two-dimensional mesh independence 

When modelling the fluid region, the size of cells in the mesh must be constrained to provide sufficient 

resolution to the gas structure and accuracy in velocity calculations, without requiring unnecessary 

processing time. 

To test whether altering the chosen mesh size would have an impact on the accuracy of the resulting 

model, after the model parameters had been established as detailed in Section 5.2.4 and a converging 

model generated, the same calculation was attempted with a mesh that was half of the size of the 

original. The mean absolute difference in generated centreline gas velocity was 0.3%, as shown in 

Figure 58. 
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Figure 58 – Centreline gas velocity comparison for 2D mesh independence demonstration 

Having demonstrated a minimal difference in results, there is no reason to further refine the mesh in 

an attempt to create more accurate simulations, allowing for savings on computational power without 

sacrificing clarity in results. Whilst an enlarged mesh could also be tested for comparison, it was felt 

that the gas shock structure could be lost if the mesh size were to be increased too much, and so the 

mesh would be kept in the same order of magnitude as the powder particles. 

5.3.4. Two-dimensional obstacle addition 

As can be seen from Figure 59, the introduction of other obstacles into the gas flow causes alterations 

to the shock structure formed in the deposition zone, with the formation of larger subsonic zones or 

secondary radial shocks. Two-dimensional, axi-symmetric modelling of the gas flow limits the obstacles 

that can be introduced in the same manner. To determine the effects of non axi-symmetric obstacles, 

a three-dimensional model is required, which requires greater processing capability. As the initial 

solver parameters and boundary conditions have now been established by the two-dimensional 

model, they can now be re-implemented in the generation of three-dimensional models. 
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Figure 59 – Axisymmetric obstacles in nozzle exhaust 

5.4. Model validation with literature 

In order to provide a degree of validation to the results generated from the two-dimensional 

simulations, an examination of literature was conducted in an attempt to find scenarios that could be 

replicated in this model. It was found to be very uncommon for papers to contain the full nozzle 

dimensions, parameters used for cold spray, and gas or powder velocities that would be necessary to 

allow replication of the simulation. Those that did state gas or particle velocities often gave only one 

measurement, usually at the centreline or averaged at the exhaust of the nozzle respectively [101]. 

Only one study was found in which the author had provided all of the required initial conditions of the 

simulation parameters, the nozzle dimensions and the gas and powder velocities, in a paper 

investigating particulate flow in cold spray nozzles by Meyer and Lupoi [89]. Data from this set of 

results was extracted from the graph presented in the paper and compared to a simulation conducted 

at the same temperature and pressure as that described. The model established for the Cambridge 

system was adapted to account for the different nozzle geometry (noted in Table 6), and the initial 

conditions adjusted to match those from the paper, however no alteration was made to the mesh 

generation settings or solution controls. 
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Table 6 - Geometric properties of Meyer and Lupoi nozzle 

Ai (mm2) Lc (mm) A* (mm2) Ld (mm) Ae (mm2) 

314 20 5.7 190 47.8 

 

Figure 60 - Meyer and Lupoi nozzle diagram 

The solution was then run to convergence, and a comparison of the centreline gas velocities from the 

resulting data and the published data can be seen in Figure 61 below. 

 

Figure 61 – Comparative centreline gas velocity results of simulation with literature 

The gas velocity along the centreline of the model from inlet to substrate was compared at over 250 

points, approximately every millimetre along the nozzle length, to the data from the paper. The 

similarity in the generated model can be seen in Figure 61. The mean absolute difference measured 
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between the points from the simulated model and the published model on this graph is 1.52%, which 

is well within acceptable error. 

A further comparison was then conducted of the particle velocities. The paper in question mentions 

that unsatisfactory results for particle velocity were obtained when the solver was uncoupled. Figure 

62 shows the comparison of the results of my uncoupled particle tracking method with the coupled 

particle tracking method utilised in the paper. 

There should be no reason why the particle would decelerate during its path through the nozzle (up to 

0.19 m path length) other than hitting the nozzle walls, and that would likely cause greater 

discrepancies than those shown below if well modelled, or have no effect at all depending on the 

modelling of the powder-wall interaction. Nevertheless, the final particle velocity appears to be similar, 

and follows a broadly similar velocity profile along its path length. It is likely therefore that the 

uncoupled method used in this paper did not use a fine enough mesh or small enough step length or 

time step to calculate the effect of the gas upon the powder particle. That being said, the similarity 

between the published coupled results and those simulated in this thesis suggests that the uncoupled 

particle tracking method used in this thesis is sufficiently accurate, and indeed is the most commonly 

used method for low volume fraction, particle-laden flows, as mentioned in Section 5.2.4.2. 

 

Figure 62 - Particle velocity comparison to literature data [89] 

The correlation of the gas and particle data with the published model suggests that the solution 

parameters – including turbulence model, solution methods, initial conditions and boundary 

conditions – have been correctly established to produce a model comparable with the literature. This 
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will allow the use of these parameters in subsequent models with confidence in the accuracy of 

generated solutions. 

5.5. Three-dimensional modelling 

Once the two-dimensional model was accepted as an accurate representation of the process, a three-

dimensional model was created using the same parameters and boundary conditions, barring the mesh 

adjustments noted in Section 5.2.3. 

Similarly to the generation of two-dimensional models, three-dimensional models were built up from 

nozzle only, followed by the inclusion of an exhaust region and substrate, as shown in Figure 63, and 

finally the inclusion of obstacles to act as shaping devices for the deposition. This was to allow the 

investigation of each individual component region of the model for fault finding, which saved time in 

the long run for both meshing and solving. The initial measures of success of these models was the 

convergence of the model and the shape of the curve generated from the velocity magnitude of the 

gas along the model centreline. Subsequently they were compared to the 2D models for further 

validation. 

 

Figure 63 – 3D nozzle with open expansion/substrate 
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5.5.1. Three-dimensional mesh independence 

Similarly to the two-dimensional model, there comes a point at which further refinement of the mesh 

only provides minimal difference in results at the expense of greater computational time. 

The model was re-meshed with double the edge length, while keeping all model parameters and 

solution controls identical. Figure 64 shows the comparison of centreline gas velocity between the two 

models. 

The mean absolute difference is 0.7%, but for this instance it was decided that the smaller mesh would 

be preferable as this would allow better resolution of the shock structures, especially around the 

obstacle and substrate surfaces. 

 

Figure 64 – 3D mesh independence test 

5.5.2. Comparison with two-dimensional model 

In order to validate the three-dimensional model, a comparison of the shock structure and centreline 

gas velocities was made for a nozzle directed perpendicularly at a substrate with 40 mm stand-off 

distance. All other parameters and boundary conditions were identical, except for the mesh sizing 

mentioned in Section 5.2.3. Figure 65 shows the structure comparison, and as can be seen the 

structures formed are identical in size and shape, as well as the measure of generated gas velocity 

magnitude. 
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Figure 65 – Comparison of 3D and 2D nozzle simulations with substrate at 40 mm standoff 

As can be seen in Figure 66, gas velocity data from the centreline path of the 3D model correlates well 

with the 2D results, with the gas velocity at the nozzle exit being 900 m/s and 893 m/s respectively.  

 

Figure 66 – Centreline gas velocity comparison of 2D and 3D FLUENT models 

The mean absolute difference in values along the centreline between the two models is 0.26%, seen 

in Figure 67. As the two-dimensional model was provided a level of validation by comparison with 

literature, the correlation here suggests that the three-dimensional model is also an acceptable 



85 

representation of the real-world scenario, and that the modelling parameters have been appropriately 

selected. The measurements which show larger disparities are found in areas where the gas velocity is 

rapidly changing after the exhaust. The disparity between measurements is likely to be due to the 

different size of mesh between 2d and 3d models creating marginal short length differences between 

the models. 

 

Figure 67 – Absolute percentage difference between 2D and 3D models 

5.6. Three-dimensional obstacle addition 

Once satisfied with the construction of the three-dimensional model, obstacles were added into the 

gas stream geometry between the nozzle exhaust and model’s substrate, and the model was re-

meshed. These obstacles were aligned to have the face of the obstacle in line with axis of the nozzle. 

Initially a large block obstacle was tested to represent the flat-topped backstops used in Section 4.4, 

and subsequently a thin flow separator as used in Section 4.5, the velocity magnitude results of which 

are displayed in Figure 68 below. Models were tested across a range of obstacle heights, with the 

alteration to the gas structure shifting with the top edge of the tool, but the shape of the disturbance 

remained consistent. 



86 

 

Figure 68 – Gas structure at the central plane of 3D model showing gas velocity magnitudes 
with (a) no obstacle, (b) with 19 mm backstop, and (c) with 19 mm flow separator 

As can be seen in Figure 68, the generated gas structure and velocity magnitudes are identical in all 

cases up to the first 15 mm from the nozzle exhaust. The model with the backstop appears to have a 

larger subsonic section around the corner at the top surface, though the flow along the face of the tool 

remains supersonic as seen from the flow lines in Figure 69, between 400 and 800 m/s, for the majority 

of the distance to the substrate, for both backstop and flow separator. These speeds are higher than 

the expected particle velocities at this point, so should not cause any deceleration of the particles. 

 

Figure 69 - Gas flow lines around flow separator 
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This subsonic regions at the backstop corner and top of the flow separator are of similar size to the 

subsonic region formed under the substrate bow shock in substrate only deposition, which itself is not 

sufficient to prevent deposition nor deflect the particles. At this point the particles will already be 

travelling at over 95% of its maximum achievable velocity in an open exhaust environment. 

The observations made at this point made it unlikely that the gas flow structure around the various 

obstacles, being of comparable velocity to the particles and similar size to existing structures, would 

cause any significant difference in particle trajectory from their original paths. 

Despite this, flow separators were also modelled at different heights to attempt to find the smallest 

disturbance to the gas flow structure, and therefore minimise any affects from unknown variables. As 

can be seen from Figure 70, and as would be expected, the shorter the flow separator, the smaller the 

difference from the original gas structure seen in (a). As the gas structure at 19 mm was still reasonably 

unaltered, this height was chosen as it allowed for a greater height of deposit to be built for our sample 

investigation. 

 

Figure 70 – Simulations of (a) nozzle and substrate at 40 mm stand-off distance, plus added 
flow separators at (b) 10 mm, (c) 19 mm and (d) 28 mm. 

5.7. Particle tracking results 

After establishment of the gas model was complete, the tracking of particle velocity and trajectory was 

added to the model as described in Section 5.2.4.2. The initial particle velocity is calculated to be 

100 m/s determined from the recorded gas flow through the powder feeder. At this point the powder 

has been entrained in the gas jet from the pow15der feeder for long enough to be travelling at 

approximately the same speed as the gas at the exhaust of the needle, which enters the nozzle 5 mm 

from the nozzle entrance, leaving it 15 mm short of the throat. Though the initial particle velocity from 

the powder injection needle was calculated to be 100 m/s, the particle velocity and trajectory were 

calculated from the models using initial particle velocities of 1, 10 and 100 m/s to note any differences 
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and to account for errors in calculation of gas velocity and potential slower particles of greater mass 

or from needle collision, and the resulting differences in exit velocity from the nozzle were less than 

3%, as can be seen in Figure 71. 

 

Figure 71 - Particle velocities calculated from differing initial velocities 

It had been expected that the particles would deflect significantly when they passed through the shock 

formations formed over the substrate. Arrays of particles were launched from the location of the 

injection needle tip, with stochastic direction variation, into the simulated gas structures developed in 

Section 5.6. The horizontal displacement from the centreline was plotted against the distance travelled 

along the centreline, an example graph of which can be seen in Figure 72. What was found was that 

the particles are travelling at a high enough velocity when they exit the nozzle, and therefore with so 

much momentum, that their trajectory remains relatively unaffected by the differing shock structures 

which they may pass through. 
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Figure 72 – Simulated 40-micron diameter particle trajectory past a 20 mm tall, 1 mm thick 
flow separator 

Those passing more centrally also pass through more normally to the shock boundary, making it even 

less likely to deflect, as seen in Figure 73 by the increasing deflection as we move away from the 

backstop face at the axis. 

 

Figure 73 – Simulated 40-micron diameter particle trajectory from the nozzle exhaust, past a 
20 mm tall backstop 

Flow 
separator 
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The minimal deflection that is noted when compared to the standard, unobstructed flow, of 

12 – 40 microns, is not significant enough to explain the irregularities caused when depositing with a 

backstop, especially as the model suggests that the resulting deflections should be no different to 

depositing alongside a flow separator. From this, it is unclear how great of a deflection of powder 

particles would cause the prevention of satisfactory deposition adjacent to the face of a flow separator 

or backstop. 

At this point a calculation was made to determine the theoretical maximum force that could be acting 

on the particle due to the pressure gradient in the period that it passes the wall, and the maximum 

theoretical deflection that this would cause from the particle’s original trajectory. 

The deflection was calculated with the worst-case scenario in mind. The pressure gradient used 

represent the highest observed adverse gauge pressure gradient, as shown in the pressure maps in 

Figure 74. The maximum deflection was calculated as 16 µm, as shown in Appendix A. 

 

Figure 74 - Pressure maps for flow separator and backstop FLUENT models 
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After noting the lack of effect on the particles, previous work was further examined to see if anything 

could be learned. In the examined literature where the nozzle has been slotted, in Section 2.9.2.4, 

the spot width changed only from roughly 10 mm to roughly 12 mm, despite the allowance of rapid 

sideways expansion much farther up the nozzle [55].  

That equates to 1 mm additional radial spread of the smallest particles at the nozzles edge from the 

deposition centre, across a 60 mm travel to the substrate, when the gas is allowed to expand into free 

air. It is therefore understandable that the deflection caused by obstacle interference at the centre of 

the gas stream, when only 20 mm above the substrate in the centre of the gas stream would cause 

less displacement of the powder from its trajectory. 

5.8. Confirmatory literature on particle trajectory models 

Since conducting these simulations, Klinkov et al have published a paper on coating formation while 

spraying past a wire of 1 mm thickness, demonstrating using “three-exposition shadow flight-time 

method” that the powder particles are not greatly deflected by the shockwave, but do bounce off the 

wire [129]. 

Mean velocity and angle of approach before the shock region and after are shown in Table 7 from the 

paper in question. The copper and aluminium particles used in these experiments had average 

diameters of 60 and 30 microns respectively, so of a similar size to the particles used in the experiments 

contained within this thesis. As is noted in the study, the difference between particle speeds before 

and after the wire is negligible, with a maximum 3.2% between the mean values, and the difference in 

angles of 0.2 – 0.3 degrees. 

Table 7 – Particle trajectory parameters measured during shockwave interaction by Klinkov et 
al. [129] 
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It was concluded that the only significant effect on the particle flow from the masking structure is from 

direct collision of the particles into the mask, and that the shock structures around the mask have a 

negligible effect in altering the speed or trajectory of the particles greater than 1 µm in diameter. 

If these deflections are applied to the flow separator case, the likely displacement of the particles from 

the surface of the flow separator can be calculated. The leading edge of the flow separator should form 

a similar shock structure to that of a wire of similar thickness, 1 mm in this case. 

A particle arriving before the shock being normal to the substrate and targeting the interface between 

the substrate and flow separator, could deflect up to a maximum of 0.3 degrees off from this trajectory, 

shown in Figure 75. At 20 mm height above the substrate, that would create a maximum displacement 

of 105 microns, a result consistent with that simulated and calculated in Section 5.7. 

 

Figure 75 – Mean displacement of particle from original trajectory 

5.9. Summary 

At the outset of this work it was expected that the shock structures formed around the various shaping 

mechanisms would cause the powder particles to be deflected from their trajectories. The simulations 

presented in this chapter were designed to investigate the different occurring shock patterns, the gas 

velocities surrounding these shaping tools, and how this affected the particle trajectory. 

Two- and three-dimensional models of the cold spray system at the IfM were created using ANSYS 

Fluent, including nozzles and exhaust regions for the purposes of gas velocity monitoring and shock 

structure visualisation. Subsequently, substrates and deposit shaping obstacles were introduced into 
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the exhaust region, and particle tracking was added to the model to determine how these obstacles 

would affect particle trajectory throughout the system. 

Particle tracking showed the gas structure surrounding the substrate to have little impact upon the 

trajectory of the powder particles at this point. This should perhaps have been the more likely 

outcome, as particles are noted to have previously been able to reach the substrate in a satisfactory 

manor while passing through the diamond shocks that exist from the nozzle exhaust when there is no 

obstacle present, and the bow shock that exists over the substrate. If they are not significantly 

deflected by these structures then it is reasonable to assume that they would not be significantly 

affected by a minor alteration of these structures by the addition of obstacles into the flow, other than 

by collision with said obstacles. 

As these simulations were conducted in parallel with experimentation, a number of design choices for 

experimental progression are noted in the Chapter 4 to have been made with the notion of minimising 

the effects on gas structure. Whilst it has now been demonstrated that this is likely to have been 

unnecessary, it remains good practice to maintain as consistent a set of variables as is possible to 

eliminate potential causes for disruption. 

With the knowledge of the shock structures having minimal effect on the particle trajectory, an 

alternative cause for the inconsistent deposition from some shaping mechanisms, in Section 4.4, could 

be sought in the future work detailed in Section 7.3. As these inconsistencies did not continue to be a 

factor when using the thinner, flow-separator tools of the same height, it could be accepted that there 

was a short-term random unknown variable, perhaps concerning nozzle-flow separator alignment, that 

affected the deposition on this occasion, and that it may not be worth pursuing for future development 

of a capable system as the backstop was not determined to be the most appropriate method for other, 

additional reasons.
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Chapter 6 -  Progression of structural control 

6.1. Introduction 

After successfully achieving control of the deposition structuring mechanism using copper, several 

further avenues of investigation were pursued to examine the capabilities of the system and assess 

the viability of progressing towards an industrial system. To this end, it was important to ensure that 

the process was not limited by material choice, nor disrupted by the addition of a laser interaction for 

substrate pre-heating. Once that had been established, structures of increased complexity were 

attempted to develop the system’s capability. 

6.2. Flow separator height 

The flow separator height had been maintained at 19 mm throughout the trials in Section 4.5, resulting 

in successful deposition. To further test the effect of flow separator height on the deposited surface, 

a flow separator with constantly sloped edge was created with height from 2 to 24 mm above the 

substrate. 

As can be seen from Figure 76, the height of the deposit was reasonably consistent across the range 

of flow separator height, with a flat, vertical deposit face being consistently created. The minor height 

variations of the deposit formed can be accounted for by the unevenness in the powder feed rate. The 

surface roughness and density of the sample was consistent along its length. 
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Figure 76 – Single track, single layer deposit with variable height flow separator at 5 mm/s (Flow 

separator outline drawn in) 

The consistency of deposition height despite varying flow separator height may prove a useful feature 

for the deposition of consistently shaped surfaces as it will allow a larger separator to be positioned a 

single time and deposited against, rather than a smaller separator repeatedly requiring repositioning 

which may increase build time and decrease accuracy. 

In future experiments, the initial backstop height was fixed at 19 mm above the substrate, as it was for 

the previous copper experiments to maintain a consistent experimental setup. This height places the 

top of the flow separator below the point of a diamond in the exhaust shock profile, as has been 

calculated in the simulations in Chapter 5 and measured experimentally in literature [128]. This is the 

location at which the gas flow is already beginning to expand again, so the intension is to minimise the 

disturbance to the shock structure, gas flow and powder trajectory. 

6.3. Material investigation 

Following the successful construction of flat, vertical copper surfaces in the Chapter 4, the method 

required testing with alternate materials to verify that the noted shaping effects were not material 

dependent. 

Titanium and steel (316L) were chosen as test materials in addition to the already demonstrated 

copper, as these represented a range of material properties, displayed in Table 8. 
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Table 8 – Material properties of test powders, from manufacturer data sheet 

Material Copper Titanium (grade 2) Steel (316L) 

Hardness (Rockwell B) 55 98 81 

Density (kg/m3) 8960 4510 8000 

Yield strength (MPa) 320 400 205 

Modulus of Elasticity (GPa) 110 105 193 

These materials were trialled using the flow separator in the same experimental setup as in Section 

4.5, with parameters as detailed in Table 9. 

Table 9  - Parameters for deposition 

Variable Setting 

Powder Copper: - 38 + 15 µm 

Titanium: - 45 µm 

Steel (316L): 20-63 µm 

Powder feed rate 20 cm3/min 

Substrate Aluminium – 12 mm thick plate 

Gas Temperature 300 °C – Cu, Al, Ti 

500 °C – Steel 316L 

Gauge pressure 30 bar 

Traverse rates 3.75, 5, 7.5, 15, 25 mm/s (plus 50, 100 for copper) 

Flow separator Surface Roughness 26 nm 

6.3.1. Copper 

Having passed the initial success criteria for creating a defined cold spray deposit by the level of 

shaping control, the copper samples described in Section 4.5, shown again in Figure 77, were analysed 

to determine their quality, through analysis of the achieved surface roughness, build height and 

density. 
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Figure 77 - Copper deposition cross sections [3, 3.75, 7.5, 15, 25, 50, 100 mm/s] 

As is the case with standard, unrestricted cold spray deposition, the deposited layer height decreases 

with increasing traverse rate, as would be expecting from there being a lower volume of powder 

impacting per unit length of deposit. Subsequent layering of the same track causes the same final 

height to be built as a function of time. For example, a single track at 10 mm/s will be the same height 

as two layers at 5 mm/s. However, once parallel, overlapping adjacent tracks are deposited, the 

surface upon which the subsequent layers will be impacting will be changed, and so those with higher 

traverse rates may expect to build taller on average for the same deposition time. 

 

Figure 78 – Copper layer build height vs traverse rate 

The average measured density of the copper cold spray deposits while depositing adjacent to the flow 

separator was 99.7%, with the porosity measurements shown in Figure 79. This is comparable to 

standard cold spray deposition of copper powder, typically achieving results of 99% and higher, 

showing that the density of the deposits has not been adversely affected by the presence of the flow 
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separator. With the development of optimisation experiments to determine the best parameters, 

including traverse rates, gas temperatures, and offsets, the density could likely be improved further to 

create near fully dense components. 

 

Figure 79 - Copper porosity vs traverse rate 

It was initially theorised that there may be a difference in porosity between the bulk sections of the 

deposit and the area within a few particle diameters of the surface for the deposit, as those impacting 

in the surface region may be inhibited in their deformation by the flow separator or uncleared powder 

particles trapped between the deposit and the flow separator surface. This would require components 

with tight tolerances to be made a few hundred microns oversize, and in need of slightly more rigorous 

finishing operations. Whilst this would not present a particular problem when machining copper, this 

could prove more problematic when working with materials that are more difficult to machine. 

Figure 80 shows one of the images taken during density measurements of these copper trials, showing 

no discernible difference in porosity between the bulk sections of the deposit away from the flow 

separator, and near surface sections, both repeatedly measuring 99.7 ±0.15 % density in all samples. 

The surface built adjacent to the flow separator for this sample was at the copper-resin boundary in 

the image below, which also gives an indication of the flatness of the achieved surface. 
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Figure 80 – Microscope image showing surface and bulk density, 500 micron scale represents 
approximately 10-15 particle diameters 

Having decided to align the nozzle centrally with the tool face after the mask trials in Section 4.3, a 

further test was devised to investigate how the deposition shape was affected by the nozzle-flow 

separator alignment. This was done by traversing the nozzle diagonally across the flow separator while 

the powder spray was active. The nozzle was moved to deposit a track of 50 mm length parallel to the 

flow separator face at 5 mm/s, whilst moving 10 mm perpendicular to the face of the flow separator.  
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Figure 81 - Nozzle path diagram for diagonal height 

The deposit that formed, shown in Figure 82, had a defined surface across the full range of alignment 

position, until the deposit was no longer forming adjacent to the flow separator, showing that perfect 

alignment of the nozzle’s central axis with the face of the flow separator is not critical to the formation 

of a flat surface. However, the maximum height of copper deposited still occurred as the nozzle was 

centrally aligned with the face of the shaping tool, and ideally will be positioned no further than that 

hallway point to ensure that the tallest deposition occurs adjacent to the flow separator. This 

experiment also proved that the nozzle does not need to be pre-aligned with the flow separator before 

spraying commences, but can be brought into position over the separator with powder already flowing 

without detrimentally affecting the shaping capabilities. 

 

Figure 82 - Copper diagonal test 

6.3.2. Titanium 

The second material to be explored was titanium, as titanium and its alloys are materials commonly 

available for metal additive manufacturing systems, and have uses in a wide range of applications from 

aerospace to medical implants and devices. 
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The powder used for deposition was Titanium Grade 2, - 45 µm nominal size. The experimental setup 

was identical to that shown in Section 4.5, with the flow separator being clamped to the side of the 

substrate and the centre of the nozzle aligned at the substrate-flow separator interface. 

As can be seen from the build height profile of the surface in Figure 83, the diagonal test of titanium 

also shows the optimum build height is achieved when the flow separator is aligned with the centre of 

the nozzle. Similarly to the copper deposition trials, in subsequent deposition experiments, the nozzle 

was actually aligned centrally with the face of the flow separator, to ensure the peak of the deposition 

was adjacent to the flow separator to allow for any minor misalignment of clamping and motor axes. 

 

Figure 83 – Build profile of titanium nozzle alignment test after sectioning at the centre 

The titanium readily deposits onto the substrate in the area immediately adjacent to the flow 

separator, depositing a flat vertical surface at all traverse rates tested seen in Figure 84. At 3.75 mm/s, 

the second layer of deposition was inconsistent and resulted in peaks and troughs building upon the 

first layer. It remains unclear why this occurs at lower traverse rates, as was the case in the copper 

deposits. One potential cause could be that the powder is able to clear better from the deposition zone 

at faster traverse rates, as the moving nozzle allows the radial gas jets that form as the gas hits the 

surface, to move over the area more frequently. Though this does not explain why the inconsistency 

is only seen on the second layer. 
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Figure 84 - Titanium deposits adjacent to flow separator at 3.75, 5, 7.5, 15 and 25 mm/s 

Variation of the traverse rate did not appear to affect the surface roughness of the created titanium 

surfaces, seen in Figure 85, though the measured surface roughness for the titanium surfaces was 

higher than that of copper, at all traverse rates. This may be caused by the relative hardness of the 

titanium compared to the copper, as the particles deform less on impact, and so do not conform as 

closely to the surface of the flow separator as the copper particles. 

Further development of the deposition parameters, such as increased gas temperature or pressure, 

and utilisation of the laser should reduce the surface roughness of the created surfaces by allowing 

the powder particles to deform farther during deposition. 

 

Figure 85 – Titanium deposits surface roughness vs traverse rate 

Similarly to the copper deposits, the first layers deposited were marginally larger than subsequent 

layers causing a lower average layer build height. This was expected as the deposition efficiency of 
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each layer decreases as the powder is impacting a surface that is increasingly angled from the normal 

to the powder trajectory. 

 

Figure 86 - Surface height vs traverse rate for Ti deposit 

Cold spray deposition is capable of achieving titanium deposition with porosity as low as 0.2% when in 

a high pressure and high temperature system, but depending on coating requirement and optimisation 

can vary from 0.2 – 20 % [130]. As can be seen from Figure 87, the titanium experiments produced 

porosity measurements in the 2-3 % range, which is a respectable value for an unoptimized system. A 

free-standing track built with the same parameters during the same experimental trails was measured 

at 2.1 % porosity, indicating that the shaping method is having little impact on the porosity of the 

deposit. 

 

Figure 87 – Titanium sample porosity vs nozzle traverse rates 
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6.3.3. Stainless steel (316L) 

As another commonly utilised engineering material, and a material often utilised by other additive 

manufacturing systems, stainless steel was chosen as the third test material. Specifically, 316L was 

chosen as it has previously been successfully deposited via cold spray. 

As steel does not deposit readily at 300°C, building thin layers with a low deposition efficiency, the gas 

temperature for this test was raised to 500°C. This provided an opportunity to test whether the 

temperature of the cold spray carrier gas would affect the deposition capability. 

As has come to be expected from the previously deposited materials, the alignment height test shows 

that the tallest build height for the vertical near wall section is when the nozzle is centrally aligned with 

the flow separator, as shown in Figure 88. 

 

Figure 88 – Build profile of steel nozzle alignment test 

The steel deposited adjacent to the flow separator at all traverse rates, conforming to the shape of the 

separator to create a flat vertical surface, shown in Figure 89. Raising the gas temperature to 500°C 

does not appear to have caused any adverse effects on the shaping capability of the system, nor caused 

any adherence of the deposit to the flow separator. 

It is notable that the steel deposition did not produce the inconsistencies in deposit that were seen in 

the copper and titanium trails at the lowest traverse rate. The higher gas temperature will have created 

higher gas and subsequently powder velocities, perhaps mitigating the effect that was disrupting the 

powder deposition at slow traverse rates in other materials. 
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Figure 89 - Steel deposits, cross sectioned to display surface profile, at 3.75, 7.5, 15 and 
25 mm/s 

The steel deposition achieved sub-micron surface roughness (Ra) at all traverse rates. There are not 

enough data points to conclude if there is a trend in surface roughness when compared to traverse 

rate, but a reason for one is not readily apparent, allowing an assumption that similarly to the other 

materials, there is no effect. 

 

Figure 90 – Steel surface finish vs traverse rate 

As with copper and titanium, the first layers of steel deposit were higher than the average layer height. 

The difference in the slowest traverse rate of 3.75 mm/s is minimal, as only 2 layers were deposited, 

skewing the average. The difference in the fastest traverse rate is also minimal, skewed as the first 

layers would not significantly alter the normalcy of the substrate from the powder trajectory, allowing 

a number of initial layers to measure similarly. 
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Figure 91 – Steel layer height vs traverse rate 

The steel deposits proved more porous than both the copper and titanium deposition, shown in Figure 

92, caused by the increased hardness of the steel powder particles and the lack of optimisation of the 

process, giving an average density of approximately 97%. Increased gas speeds from higher gas 

temperatures or alternative carrier gases, and increased particle temperature from a preheating stage, 

would allow reduction of the porosity of the deposition to that measured in standard cold spray 

deposits. 

 

Figure 92 - Steel samples porosity vs traverse rate 

6.4. Supersonic laser deposition 

As the creation of definable surfaces has now been achieved using cold dynamic gas spraying without 

the use of a laser in the previous chapter and the previous sections of this chapter, the purpose of this 
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section is to examine whether the application of laser has any adverse effects on this capability. As 

mentioned in Section 3.3.4, the laser intensity at this spot size is in the heating range for materials 

used, not enough to cause melting. 

Typically, literature shows that the addition of laser substrate heating to the cold spray process can 

give a variety of process benefits and increase the available material pool for deposition, as detailed in 

Section 2.11. As the flow separator does not interfere with the laser-substrate interaction, it was not 

expected to alter the deposition in any way other than that which is observed during standard 

supersonic laser deposition, while providing the same benefits over traditional cold spray. It was also 

not expected that the laser will cause any adherence of the deposit to the flow separator, nor alter the 

ability to deposit adjacent to a shaping tool. 

6.4.1. Titanium without laser vs with laser 

As shown in Section 6.3.2, Grade 2 titanium powder has been proven to successfully deposit at 300 °C 

adjacent to the flow separator. It has also been previously shown that titanium deposits with improved 

properties when utilising a laser substrate heating stage, compared to standard cold spray properties, 

noted in Section 2.11. Deposition of this powder was attempted with the flow separator in the same 

configuration as the titanium deposits in Section 6.3.2, to allow a direct comparison to the previous 

deposit, with the laser substrate heating. The traverse rate used was 15 mm/s with laser power of 600 

W. 

As can be seen in Figure 93, the addition of the laser has not affected the structured deposition of the 

titanium while using the flow separator. The deposition has still occurred flush to the flow separator 

without adhering to the face, building a flat surface feature on the adjacent side of the track. 

 

Figure 93 – Supersonic laser deposition of titanium shaped with flow separator, sectioned to 
show shape 
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Figure 94 below shows the achieved differences in surface roughness, porosity and build height 

between the previously deposited titanium samples and the titanium sample with laser assistance. 

 

Figure 94 – Comparison of Ti and Ti + laser assistance for porosity, average build height and 
surface roughness 

The porosity of the deposit has decreased with the addition of laser irradiation of the substrate due to 

the increased deformation of the particles and substrate/previous layer, allowing the particles to form 

a more dense coating as they deform into the available space. The build height of the laser assisted 

deposition experiment had also increased. Both of these results were to be expected as the addition 

of a laser assisted heating stage to standard cold spray also provides reduced porosity and increased 

deposition efficiency, and consequentially build height. 

Additionally, the surface roughness of the deposit decreased. This could be due to the particles being 

more readily able to deform to the surface of the flow separator face, though further work is required 

to validate this as the measured difference was relatively small. 

It appears likely that with optimisation of the laser parameters alongside the other cold spray 

parameters, an improvement similar to that seen in adding laser assistance to standard cold spray 

could be seen. 
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6.4.2. Controlled deposition of Stellite 21 

Table 10 – Stellite 21 properties 

Material Stellite 

Hardness (Rockwell B) 35 

Density (kg/m3) 8330 

Yield strength (MPa) 1050 

Modulus of Elasticity (GPa) 245 

Certain materials are not capable of being deposited with cold spray alone using this system, and 

require the addition of laser irradiation of the substrate, as detailed in Section 2.11. It was important 

to validate that the deposition of these materials was not affected by the addition of the flow 

separator. The material chosen for this purpose was Stellite 21, which leaves no deposit using the 

standard IfM cold spray system as the Nitrogen carrier gas does not allow for particle velocities above 

the critical velocity on a cold substrate, but forms dense coatings with laser irradiation of the substrate. 

The laser power for these experiments was set to 1.5 kW, as this had been tested with this system 

previously for free-standing deposition. The gas temperature was set to 500 °C, the maximum value 

for the system to create the fastest carrier gas velocity. As can be seen from Figure 95, the deposition 

was successful and has still built flush to the flow separator. As with the titanium experiments, the 

laser irradiation has not caused the Stellite to bond to the flow separator. 

 

Figure 95 – Supersonic laser deposition of Stellite 21 shaped with flow separator at 25, 15, 7.5 
and 3.75 mm/s, at 500 °C with additional 1.5 kW laser power 

6.5. Effect of flow separator roughness 

It was noted throughout Chapter 4 that the surface roughness of the backstop appeared to affect the 

surface roughness of the deposited surface. A test was conducted to see how the surface roughness 

of the backstop affected the roughness of the deposit surface formed. Copper was sprayed using the 

parameters as prior experimentation – 15 mm/s, 300 °C and 30 bar - along a flow separator that was 
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given a range of surface roughness values by grinding in sections with a variety of different roughing 

media. 

As expected, the deposit roughness increased with increasing roughness of the shaping tool. In 

addition, Figure 96 appears to show an increasing disparity between the roughness of the deposit and 

the tool with increasing roughness, though this may be a proportional factor, there is not enough data 

to evaluate.  

 

Figure 96 – Graph of initial tool face roughness vs deposit surface roughness (Ra) 

The degree of difference between the surface finishes of the tool and deposit may be altered by 

material properties or by powder size, though this has not been investigated further in this work. 

Additionally, the surface of the backstop is marginally detrimentally affected by the oblique impact of 

powder hitting it before impacting the substrate. This tool face roughening effect would be reduced 

for tools made from harder materials, and in a system with a reusable tool there would likely come an 

equilibrium point where further deposits would not further increase the surface roughness of the tool, 

creating a known and repeatable surface finish for the surfaces forming adjacent to the tool face. 

As these trials used a new tool for each deposit to maintain the same parameters between 

experiments, this theory was not pursued in this work but should be examined for a more viable 

system. 

6.6. Building block structures 

Once a method for defining a straight, flat surface had been successfully achieved for a variety of 

materials, the development of further shapes was considered to further define the system capabilities. 
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It was decided that the development should be focussed on the creation of a range of “building block” 

structures, from which the creation of more complex shapes could be extrapolated. The shapes settled 

upon were: Projecting walls, thin wall sections, corners and curved surfaces. 

The parameters used for deposition were the same as those used in Table 5 in Section 4.2, unless 

otherwise stated in the subsection. 

6.6.1. Walls 

6.6.1.1. Flat, defined walls  

The production of flat, defined wall structures has been proven throughout Chapter 4 and previously 

in Chapter 6 of this thesis by positioning a thin, flow separator tool adjacent to the substrate. 

6.6.1.2. Projecting walls 

To allow more complex shape generation, the system must be shown capable of depositing material 

adequately onto existing geometry, not only when the shaping tool can be pressed alongside a 

substrate. In order to test this, a flow separator was positioned directly above the substrate with the 

face remaining perpendicular to the substrate and parallel to the axis of the nozzle. This was done by 

creating a U-shaped flow separator which could be clamped away from the face to be sprayed against. 

Copper was used as the trial material with the same deposition parameters as in Section 6.3.1, using 

traverse rates of 7.5, 15 and 25 mm/s. The nozzle was centrally aligned with the open face of the flow 

separator as in the previous experimentation. 

                  

Figure 97 – Diagram of setup for flow separator to be positioned over the substrate 
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As can be seen from the sample in Figure 98, the defined surface was still deposited successfully with 

copper when the tool was placed over the substrate. A vertical wall was formed across the range of 

traverse rates without negatively affecting the density, surface finish or build height of the samples 

compared to samples with the flow separator adjacent to the substrate. 

Initially there were concerns that the clamping forces were not close enough to the face of the 

separator that would be sprayed against, and this may lead to vibrations in the tool and interference 

with the deposition, however this proved not to be the case. 

 

Figure 98 – Separator positioning sample 

This is a significant capability demonstration for cold spray deposition, as it means that features can 

be built up from any existing surface at a sharp angle to the surface face, not just built up to continue 

the edge of a substrate with predetermined shape. The results displayed in Table 11 show that the 

alteration of the flow separator position has had little impact on the properties of the deposit, showing 

only a minor decrease in all quality of all measurements. 

Table 11 – Comparison of measurements for adjacent and above substrate flow separator 
positioning experiments 

Measurement Flow separator adjacent to 

substrate 

Flow separator over 

substrate 

Surface Roughness, Ra (µm) 0.157 0.184 

Porosity (%) 0.33 0.52 

Average layer height (mm) 2.0 1.9 
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6.6.2. Thin wall section 

Deposition was attempted between two flow separators with separation widths of 8, 12, 16 and 

20 mm. In each case, a track was sprayed along each flow separator face sequentially before the centre 

tracks were sprayed between the two flow separators, with 4 mm separation. Figure 99 shows an 

example of the nozzle path using 12 mm separation.  

 

Figure 99 - Flow separator setup for thin wall features 

Figure 100 shows the smallest successfully constructed double wall sample that has currently been 

achieved, of 8 mm width. The current system tooling did not allow for smaller channels to be tested, 

however this is not believed to be the minimum width achievable if the process allows for powder 

clearance to avoid for the issues noted in Section 4.3. 
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Figure 100 – 8 mm copper wall section 

The surface finish and porosity measurements of these samples were consistent with those of the 

previously constructed copper samples, averaging 0.164 µm and 0.39 % respectively. 

6.6.3. Corners  

In order to build more complex shapes, it is clearly important that the surface is able to change 

direction while continuing deposition. To test this, two flow separators were created: one with a 

rounded corner, 2 mm radius, and the other with a squared corner. The nozzle was tracked along the 

flow separators along one axis up to the corner, and then followed the along the separator on the 

other axis. The space behind the wall was then filled in with a further 3 tracks to return to the starting 

position, at 4 mm spacing, half the track width.  
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Figure 101 – Nozzle spray pattern for corner deposition 

The samples were then sectioned to remove the top surfaces and better show the form of the deposit 

surfaces that formed adjacent to the flow separators. Figure 102 and Figure 103 show the successfully 

constructed surfaces when utilising both the rounded, 2 mm radius, and squared cornered flow 

separators respectively. 

   

Figure 102 - Rounded corner deposit (a) prior to and (b) post sectioning 
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Figure 103 - Square corner deposit formed using flow separator after sectioning 

6.6.4. Curves 

As an example curve, the deposition of an arc was attempted in copper. A curved flow separator was 

fixed against a circular substrate, and the nozzle aligned centrally with the edge and tracked along the 

path of the separator. The deposition was successful, with Figure 104 showing the created arced 

surface after removal from the substrate and sectioning of the end to better show the surface form. 

 

Figure 104 – Curved copper surface 

Though the curve used in this particular trial was an arc of a circle, the nozzle could easily be 

programmed to follow a curved flow separator of any fixed or varying gradient, meaning the shape is 

only limited by the shape of available flow separator that may be place during deposition. 
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6.7. Ring manufacture 

As further proof of concept, to prove that the system could produce components with multiple layers, 

multiple tracks and with multiple controlled surfaces, a series of rings were developed to demonstrate 

the different capabilities highlighted in the previous “building blocks” section. 

A cylindrical tube tool was designed and constructed from stainless steel tubing, leaving a thin section 

to act as flow separator at the top, chamfered to a thicker body below to provide rigidity and the ability 

to mount it to the rotary stage. The tube was 89.1 mm internal diameter, and gave a 19 mm original 

height above the substrate surface.  

The substrate was then fixed inside the tool, and mounted to the rotary stage of the Aerotech CNC 

system which had been added to the platform. To keep the maximum track build height low and aid 

the building of adjacent tracks, a traverse rate close to 100 mm/s was desired. To simplify the timings 

in the programming, the stage was set to rotate at 120° per second, giving a traverse rate of 93 mm/s 

at the flow separator-substrate boundary and a full revolution every 3 seconds. 

The nozzle was then aligned to the top of the flow separator tube. For the single-track rings, the nozzle 

then remained stationary in the X and Y axes. In subsequent trials when thicker rings were built, the 

nozzle was stepped across in X by 4 mm, half of the width of a single track, after every revolution of 

the substrate for a programmable number of times before returning to its original position. 

 

Figure 105 – Ring manufacture setup diagram 

6.7.1. Copper ring 

A copper ring was constructed first to ensure that the nozzle was correctly aligned with the tool on the 

rotary stage. Once constructed, some concern was held about residual stresses in the ring, and the 
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potential release of these stresses when sectioned, however, as can be seen in Figure 106, the ring 

suffered no deformation after being cut. 

 

Figure 106 – Copper ring (a) as deposited and (b) after sectioning 

Following this successful trial, a larger copper ring was attempted with several track widths, to ensure 

that there were no issues generated by the nozzle moving away from being centrally aligned with the 

flow separator or when moving back again. Figure 107 shows one of the taller, thicker rings that was 

also successfully deposited. 
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Figure 107 - Thicker copper ring 

In both ring constructions, there was no bonding of the deposit to the tubular tool, which was easily 

removed from the deposit following the experiment. 

6.7.2. Titanium rings and tool replacement 

As with the flat wall deposition trials, once the process had been successfully developed with copper 

powder, the process was attempted with titanium powder. With limited time and resources, it was 

decided that a taller, thicker ring would be constructed, allowing the testing of the replacement of the 

shaping tool mid-deposition. 

The initial ring was constructed, seen in Figure 108, then the tool removed and a taller tool attached 

to the platform, allowing the nozzle to be raised and further deposition to increase the build height. 
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Figure 108 - Titanium ring after first stage of construction 

A faint line of increased porosity can be seen around the titanium ring in Figure 109, at the point where 

the experiment was stopped to replace the tool. This likely is due to the titanium cooling before spray 

was recommenced, causing less successful bonding on the first layer of the restarted deposition due 

to the hardness of the material. This problem would likely not occur when running the system 

continuously, as can be seen from the many other layers contained in each half, and could also be 

eliminated by a heating stage or the addition of the laser for substrate preheating. 

 

Figure 109 – Deposited titanium tube, 55 mm height, 89 mm diameter 
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The top surface of the constructed tube can be seen to have a somewhat uneven profile. This is caused 

by the repositioning of the nozzle in X after every revolution as the rotary stage continues to rotate 

over a hundred layers. As the nozzle was moved in X at 50 mm/s and was revolving to give a speed 

under the nozzle of 93 mm/s, when it had to move the 12 mm back to the outside, the ring had already 

rotated approximately 24 mm. With a better controlled system, able of switching the powder on/off 

faster or faster movement in X, this feature would be avoided providing a more consistent finish as 

seen in the previous experiments. 

6.7.3. Ring with centre 

It is important for a future manufacturing system developed from this idea to be able to construct 

internal features as well as shaping the exterior walls, so an experiment was conducted to extend the 

work of Section 6.7.2 and create a ring with both internally and externally defined walls. 

A smaller tool was designed to be mounted in the centre of the substrate on the rotary stage, shown 

in Figure 110. This tool was also made from stainless steel tube that was turned to leave a thin section 

to act as a flow separator. The nozzle was then programmed to create one layer at the outer and inner 

surfaces, before returning to the outer surface and stepping across by half of the track width per 

revolution (4 mm), to fill in the central region. 

 

Figure 110 - Titanium ring creation with defined inner and outer surfaces, using flow separator 
tube and centre cup 

As can be seen from the cross-sectioned ring image in Figure 111, parallel, vertical walls have been 

successfully built at the inner and outer surfaces. The reduced height of the central section between 
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the walls was due only to a coding error which excluded some layers in the central 2 tracks during 

deposition. 

 

Figure 111 – Sectioned titanium ring with inner and outer face sculpted 

6.7.4. Ring with flange 

In order to establish that the structuring capabilities were not constrained to creating shapes simply 

built out with the same cross section as the substrate, a titanium ring with a 90° protruding flange was 

manufactured, by positioning the flow separator over the surface as detailed in Section 6.6.1.2. 

A titanium ring was constructed in the same manner as in Section 6.7.2, and the top machined flat for 

ease of handling. This ring was then re-attached to the rotary axis, and the whole rotary axis rotated 

to be mounted horizontally onto the cold spray platform. The nozzle was then aligned with the flow 

separator as shown in Figure 112 and remained stationary, while the rotary axis was rotated at 120° 

per second, giving a surface traverse rate of 93 mm/s. 
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Figure 112 - System setup diagram for flange creation 

As expected from the results in Section 6.6.1.2, the flange was deposited without issue onto the 

previously constructed titanium ring, creating the object shown in Figure 113. 

 

Figure 113 - Titanium ring with protruding flange 

6.8. Discussion 

It would appear that the material choice for deposition does not affect the potential for structuring of 

a surface in the deposited zone, and there is no apparent reason to suggest why any material that can 

be deposited via cold spray could not be deposited with this method. The surfaces created were all 
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markedly smoother than those created during typical cold spray deposition, and are comparable to or 

exceed those produced by other additive manufacturing processes. 

The materials that were deposited did not show an appreciable difference in density when compared 

to standard cold spray, which is typically regarded as the main indicator of success in cold spray 

deposition. Further tests on other mechanical and material properties, such as hardness and 

conductivity, are desirable to ensure that the shape forming process has no effect on the properties of 

the deposits created. 

The addition of laser substrate heating to the cold spray process did not prove detrimental to the shape 

formation of the deposit, but did provide an increase in the density of the deposit as would be expected 

when comparing standard cold spray with laser assisted cold spray.  

The alteration of flow separator height between 2 and 24 mm above the substrate with a fixed 40 mm 

nozzle-substrate distance was shown to have no effect on the shaping capability of the depositing 

powder, nor the layer height. The positioning of the flow separator above the substrate surface, rather 

than clamped adjacent to it, also does not affect the deposit shaping capabilities. 

The surface roughness of the deposit was found to be correlated to the roughness of the flow separator 

surface against which the deposition forms. Further investigation would likely determine a minimum 

achievable surface roughness for each material determined by the variables that would affect powder 

deformation upon impact such as powder size, impact velocity and hardness. Further investigation is 

also required to determine how the surface roughness of the flow separator is affected by the 

deposition process. 

With the capability of constructing flat walls, corners, curves and projections from a surface, a vast 

array of shapes can be extrapolated from the combination of these features. Some shapes will need 

further investigation and careful consideration of build strategy and order to determine their viability, 

for example to create small, enclosed or overlapping features where powder may become trapped or 

nozzle/flow separator positioning may become difficult. 

There are potential solutions for these issues that cold spray could utilise, including the use of a 

sacrificial filler material – as cold spray is capable of bonding dissimilar metals without compromising 

the desired material properties of the main component – or from the creation of additional support 

structures similar to those commonly used in other additive manufacturing techniques. The use of 

support material has been previously attempted using Titanium and aluminium, in the spraying of a 

hemisphere of titanium in an aluminium mould, as mentioned in Section 2.9.2.5.  

The addition of a rotating stage to allow deposition using a tubular flow separator successfully created 

copper and titanium structures with defined outer surfaces that did not bond to the tool face. 
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Replacing the tool with a taller flow separator to extend the height of the ring did not cause 

complications with the formation of the ring shape, allowing a taller titanium ring to be constructed 

and showing that tool repositioning is possible during deposition. 

Rings were also created with defined inner surfaces and protruding flanges to show that the process 

would not be restricted to creating a single defined surface during deposition, but could accommodate 

multiple surfaces in different and changing axes. 

6.9. Summary 

The results presented in this chapter have shown that the successful creation of a defined surface is 

not limited to the use of copper for material choice. Whilst only 4 materials were tested in this thesis, 

they were chosen for their range of material properties, and the fact that they readily deposit when 

using standard cold spray techniques. 

It was found that the deposition capability was not detrimentally affected by positioning the flow 

separator above the substrate, the height of the flow separator, or addition of a substrate heating 

laser. Nor was the method of deposition control developed in Chapter 4 limited to the creation of flat 

walled surfaces, with corners, curves and thin walls having been built in copper. The work here stands 

only as proof that different shapes are possible, the limits of each of these shapes have yet to be fully 

explored. For example, it is not known how narrow a thin wall section could be made, or how this 

would be affected by using different height flow separators to facilitate powder clearance. 

Copper rings were created to trial the addition of a rotary axis stage onto the cold spray system, 

successfully depositing adjacent to the tubular flow separator mounted onto the stage. Subsequently, 

larger ring constructs were formed using titanium grade 2 powder, to explore some of the achievable 

shapes when combining the building block structures, not being limited to a constant cross-section, 

and showing that the repositioning of a flow separator during deposition does not inhibit the 

construction.
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Chapter 7 -  Conclusions and recommendations 

7.1. Introduction 

The purpose of this research was to determine the viability of using the cold gas dynamic spray metal 

deposition system to create defined surfaces, with a view to developing a system capable of the near 

net shape creation of 3D structures, while retaining all of the material benefits that cold spray has over 

the competing manufacturing technologies. 

To achieve this goal, a systematic review into the currently available metal additive manufacturing 

systems was conducted, and the place of a cold spray system within this field was suggested. 

Subsequently a series of methods for shaping the deposition were tested, and a computational fluid 

dynamics model created to aid in understanding of the gas dynamics of the system. 

7.2. Summary and conclusions from analysis 

An investigation of the additive manufacturing landscape and current cold spray deposition structure 

capabilities was conducted, determining that there was a viable niche for a net-shape capable additive 

system using cold spray. This thesis then presents the progress through the concepts developed for 

shaping the deposition of cold spray coatings, achieving the greatest success with the positioning of a 

thin sheet of stainless steel, termed a flow separator, and progressing a clear step beyond the control 

previously manageable with cold spray deposition. Using this novel method, a series of samples were 

successfully created with flat surface features, and analysed for comparison of material properties with 

standard cold spray deposits. 

Computational fluid dynamics models were then created to simulate the supersonic gas structure and 

powder particle trajectory, which suggest that alteration of the gas dynamics of the exhaust area alone 

have little consequence on the final impact position of the particles. The inclusion of obstacles into a 

3D flow model for cold spray, other than a substrate, was an original contribution to the field. This was 

then demonstrated to be a mathematically sensible discovery, and was subsequently noted 

experimentally by a researcher investigating particle deflection at a shock boundary. 

This developed process was then further shown to be viable for a range of materials covering an array 

of material properties, without detrimentally effecting the deposition properties that give cold spray 

its competitive placement within the additive manufacturing landscape. Alteration of the carrier gas 

temperature to increase the deposition efficiency for steel deposition did not affect the shaping 

capability of the system. There is no obvious reason to suggest that any material capable of being 
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deposited by a standard cold spray system would not also be capable of shaped deposition using this 

process. 

Further to this, a range of viable shapes were achieved successfully to prove that the shaping capability 

was not limited to flat, featureless walls, another advancement in the process. Deposition was tested 

against flow separators of different shapes, namely corners, curves, thin sections, and projections, to 

create a set of sample components. As further proof of concept, to demonstrate that the system could 

produce components with multiple layers, multiple tracks and with multiple controlled surfaces, a 

series of rings were developed to demonstrate the different capabilities highlighted in the previous 

“building blocks” section. 

These developments clearly demonstrate that it is both possible to control the shape of the depositing 

material during cold spray to a greater extent than is currently accepted, and possible to do so without 

adversely affecting the deposit characteristics that would offer cold spray a unique place in the additive 

manufacturing landscape. With more advanced control processes, a net shape cold spray system is a 

viable solution for creating components additively. The work done in this thesis has laid the 

foundations for the system, including demonstrating a range of materials and shapes to be built upon. 

7.3. Future Recommendations 

The results achieved in this thesis have detailed a solid foundation for the development of a cold spray 

additive manufacturing system, capable of producing near net-shape components of low complexity, 

by the demonstrated construction of building block shapes. 

There remains a number of significant challenges in progressing this work to a fully realised 3D 

construction capable system, in particular with process control. 

7.3.1. Positional control 

Greater positional control of both the cold spray nozzle and the flow separator will allow for more 

complex shape generation. There are several approaches to this issue: 

- Mounting the substrate on a 5 or 6 axis platform. This would allow precise positioning of the 

component as it is deposited, which would be particularly useful if the component is built more 

free-form and not built in a layer-by-layer approach. However, for the manufacture of much 

larger components, the mass of the component may make this more complicated, especially 

if it must be moved rapidly to maintain a high effective traverse rate. 

- Nozzle mounted on an articulated arm, with flow separator not fixed relative to the bed, but 

fixed relative to the nozzle. 
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7.3.2. Shape control 

Demonstration of greater control of the deposit formation zone is required to construct more 

complicated components with this method. There are several options available to achieve these 

shapes, but it is likely that precise control of the powder dosage to the nozzle will be required, to allow 

the changing and repositioning of the flow separator shape that is being followed. 

As the deposit does not adhere to the flow separator, there is no requirement for the flow separator 

to be stationary relative to the substrate, rather than to the nozzle. This method was chosen for the 

trials in this thesis for ease of positioning on the substrate and alignment with the nozzle, but the trials 

with consistent shape requirements of the flow separator could have utilised a flow separator 

mounted stationary relative to the nozzle, and had the substrate moved underneath as the deposition 

occurred. 

Further avenues of investigation include: 

- A range of flow separator shapes for creating different surfaces 

- A flexible flow separator that could be bent to the appropriate shape to sculpt different shapes 

- A flow separator that is mounted to the nozzle for ease of positioning 

- The smallest features that can be created 

- The acutest angles that can be sprayed into 

7.3.3. Parameter exploration and process control 

In order to avoid any shadowing issues demonstrated in Figure 45, it may be possible to intentionally 

angle the nozzle in the opposite direction. However, it is not yet known to what angle, α in Figure 114, 

the nozzle could be tilted away from the flow separator in the opposite direction and still allow for 

controlled, layer-able deposition without adherence to the flow separator surface, which should form 

part of any future work on the subject and potentially mitigate any similar problems. 
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Figure 114 – Flow separator-nozzle alignment angle  

- A comprehensive array of parameters must be constructed to detail the build height of 

different powders for each traverse rate, laser power, material choice, powder size and other 

parameters. 

- Once this has been completed a build strategy must be developed for the most efficient 

construction of the component, considering the feature deposition order to allow rapid 

construction while not blocking line of sight for feature creation, whether created with a layer 

by layer, or in bulk sections. 

- Investigation of sacrificial materials for feature creation assistance or support structures. 

- Examine tool degradation, dependant on tool material and depositing powder. 
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Appendix A 

 

Maximum deflection calculation: 

Vertical particle velocity - 400 m/s 

Particle radius - 20 µm 

Particle Area facing pressure differential = 4π x 10-10 m2 

Particle density - 8960 kg/m3 

Particle mass = volume x density = (32π x 10-15)/3 x 8960 = 3.0 x 10-10 kg 

Maximum pressure gradient = 2.5 x 108 Pa/m 

Maximum pressure diff across particle = 2.5 x 108 x 40 x 10-6 = 1 x 104 Pa 

Force on particle = pressure change across particle x Area = 1 x 104 x 4π x 10-10 = 1.26 x 10-5 N 

Acceleration = F/m = 4.19 x 104 m/s2 

High pressure zone length = 3 x 10-3 m 

Time in pressure zone = high pressure zone length/particle velocity = 7.5 x 10-6 s 

Horizontal velocity on leaving high pressure zone = at = 0.314 m/s 

Max deflection = vt = 0.314 x (20 x 10-3/400) = 16 µm 

 


