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Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in 

different proteins, like huntingtin in Huntington’s disease (HD) and ataxin-3 in spinocerebellar 

ataxia type 3 (SCA3)1, 2. Age-at-onset decreases with increasing polyglutamine length in these 

proteins and the normal length is also polymorphic3. PolyQ expansions drive pathogenesis in 

these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment 15 

comprising exon 1, which occurs in vivo due to alternative splicing4, causes toxicity. While such 

mutant proteins are aggregate-prone5, toxicity is also associated with soluble forms of the 

proteins6. The function of the polyQ tracts in many normal/wild-type cytoplasmic proteins is 

unclear. One such protein is the deubiquitinating enzyme ataxin 37, 8, which is widely expressed 

in the brain9, 10. Here we show that the polyQ domain in wild-type ataxin-3 enables its 20 

interaction with beclin 1, a key autophagy initiator11. This interaction allows the deubiquitinase 

activity of ataxin-3 to protect beclin 1 from proteasome-mediated degradation and thus enables 

autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly 

inhibited in ataxin-3-depleted human cell-lines, primary neurons and in-vivo. This activity of 

ataxin-3 and its interaction with beclin 1 mediated by its polyQ domain was competed by other 25 

soluble proteins with polyQ tracts in a length-dependent fashion. This resulted in impaired 

starvation-induced autophagy in cells expressing mutant huntingtin exon 1, which was also 

recapitulated in the brain of HD mouse model and in patient cells. A similar phenomenon was 

also seen with other polyQ disease proteins, including mutant ataxin-3 itself. Our data thus 

describe a specific function for a wild-type polyQ tract which is abrogated by a competing 30 

longer polyQ mutation in a disease protein. This also reveals a deleterious function of such 

mutations distinct from their aggregation propensity.  
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Autophagy induction enhances the clearance of polyQ-expanded proteins, like mutant 

huntingtin and ataxin 3, thereby attenuating their toxicities5, 12, 13.  To understand the interplay between 35 

polyQ-containing proteins and autophagy, we investigated if wild-type ataxin-3 affects this process. 

Conjugation of the autophagy protein (Atg) Atg8/LC3-I to phosphatidylethanolamine on 

autophagosomal membranes forms LC3-II. Hence, LC3-II levels (relative to loading controls like 

actin) correlate with autophagosome load14-16. Ataxin-3 knockdown in primary neurons (Fig. 1a) 

lowered LC3-II levels in the presence of bafilomycin A1 (BafA1). As BafA1 inhibits LC3-II 40 

degradation, this suggests that ataxin-3 knockdown impaired autophagosome synthesis. Decreased 

LC3-II levels (but not LC3-I) were also observed in ataxin-3-depleted, BafA1-treated, neurons in 

starvation media (Fig. 1b, Extended Data Fig. 1a). Moreover, ataxin-3 knockdown in HeLa cells 

lowered LC3-II levels and increased the levels of the autophagy substrate, p62 (Extended Data Fig. 1 

b,c). Ataxin-3 knockdown decreased the number of autophagosomes and autolysosomes scored with 45 

mTagRFP-mWasabi-LC3, consistent with impaired autophagosome formation (Extended Data Fig. 

1d).   

The decreased autophagosome biogenesis following ataxin-3 knockdown was associated with 

lower beclin 1 levels (Fig. 1c). The phosphatidylinositol 3-phosphate (PI3P) formed by the beclin 

1/VPS34 complex is particularly important for autophagy induction (LC3-II formation in BafA1) after 50 

nutrient depletion and such defects are seen  in cells with monoallelic beclin 1 deletion11, 17, 18. 

Decreased PI3P-positive structures in starvation, characteristic of beclin 1-depletion18 were seen in 

ataxin-3-depleted cells (Extended Data Fig. 1e). In both fed and starved conditions, loading back 

exogenous PI3P to ataxin-3-depleted cells increased LC3 vesicle numbers to levels comparable to 

control cells (Extended Data Fig. 2 a,b). Ataxin-3 overexpression increased the numbers of puncta 55 

positive for the PI3P-binding autophagy effector, WIPI2, which binds to PI3P at autophagy initiation 

membranes19, 20. This effect was  reversed when ataxin-3 overexpressing cells were treated with the 

PI3 kinase inhibitor, wortmannin (Extended Data Fig. 2c). After fasting mice, livers depleted of 

ataxin-3 failed to upregulate beclin 1 and LC3-II levels (Fig. 1 d,e, Extended Data Fig. 2d) and had 

increased p62 levels (Extended Data Fig. 2 e,f), compared to wild-types. Therefore, ataxin-3 60 

knockdown decreases beclin 1 levels, which can explain reduced PI3P levels and consequent impaired 

autophagosome biogenesis.   

As ataxin-3 interacted with beclin 1 (Fig. 2a), we tested if ataxin-3 deubiquitinase activity 

protected beclin 1 from proteasomal degradation. Beclin 1 levels declined more in ataxin-3-depleted 

cells, compared to controls, after inhibition of protein synthesis, suggesting accelerated beclin 1 65 

turnover (Extended Data Fig. 3a). Beclin 1 levels were restored in ataxin-3 knockdown cells treated 

with a proteasome inhibitor (Extended Data Fig. 3b) and when ataxin-3-depleted cells were 

transfected with wild-type ataxin-3 but not with ubiquitin protease dead mutant (C14A) (Extended 

Data Fig. 3c). Under proteasome inhibition, endogenous beclin 1 ubiquitination was increased when 

ataxin-3 was knocked down (Extended Data Fig. 3d), and recombinant ataxin-3 but not the protease 70 
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dead mutant (C14A) deubiquitinated beclin 1 in vitro (Fig. 2b, Extended Data Fig 3 e,f showing 

beclin 1 selectivity). The percentage of cells with mutant huntingtin exon 1 aggregates correlates with 

levels of this protein and decreases when autophagy is induced12. Consistent with autophagy 

induction, overexpression of wild-type (but not C14A) ataxin-3 decreased the percentage of such 

mutant huntingtin-expressing cells with aggregates (Extended Data Fig. 3g).  75 

Our mass spectrometry analysis and others21 suggested beclin 1 lysine 402 was modified with 

a lysine 48 (K48) ubiquitin chain, a signal for proteasomal degradation (Fig. 2c, Extended Data Fig. 4 

a,b). Lysine 402 in the evolutionary conserved domain (ECD) is conserved in fish, mouse and humans 

(Fig. 2c). K48-linked beclin 1 polyubiquitination was increased by ataxin-3 depletion and mutation of 

lysine 402 to arginine (K402R) decreased K48-linked beclin 1 polyubiquitination, confirming K402 80 

as a site for K48 ubiquitination (Fig. 2d). Consequently, the levels of K402R beclin 1 were already 

more abundant than wild-type beclin 1 in cells and did not further increase after treatment with 

proteasome inhibitors (Extended Data Fig 4c). Ataxin-3 expression in HeLa cells increased wild-type 

beclin 1 levels and did not increase levels of beclin 1 K402R (Extended Data Fig. 4d). This correlated 

with more autophagy with beclin 1 K402R compared to wild-type overexpression (Extended Data 85 

Fig. 4d).  

Deletion of the polyQ domain from ataxin-3 dramatically reduced its binding to beclin 1 (Fig. 

3a) and an isolated polyQ stretch was sufficient to bind beclin 1 (Fig. 3b). Thus, the polyQ domain is 

important for the ataxin-3-beclin 1 interaction, but is not the only binding domain. The beclin l ECD  

interacted with ataxin-3 (Fig. 3c) and also bound the polyQ tract alone (Extended Data Fig. 5a), 90 

suggesting that beclin 1 ECD contained polyQ-binding domains, consistent with structural docking 

models revealing two highly scored polyQ-binding pockets in the beclin 1 ECD (Fig. 3d, Extended 

Data Fig. 5 b-e). As some binding was observed with beclin 1 lacking the ECD, other domains of 

beclin 1 may also interact with ataxin-3.  

GFP-tagged isolated polyQ tracts could bind to beclin 1, while longer stretches (Q81) bound 95 

beclin 1 more strongly than shorter tracts (Q35) (Fig. 4a). Remarkably, beclin 1 K48-

polyubiquitination was increased in cells overexpressing GFP Q35 versus empty GFP, and was 

increased even further with GFP Q81 overexpression (Fig. 4a), consistent with a model where these 

constructs compete with the ataxin-3 polyQ stretch for binding and deubiquitination of beclin 1. 

Indeed, overexpression of GFP-polyQ constructs decreased ataxin-3-beclin 1 binding (Fig. 4b). GFP 100 

Q35 (which does not aggregate in our conditions) decreased beclin 1 levels (Extended Data Fig. 6a), 

impaired starvation-induced autophagy (Extended Data Fig. 6a, d, e) and increased p62 levels in 

starved cells (Extended Data Fig. 6b). No change in the number of LC3-II vesicles was observed 

when the Q35 tract was expressed in beclin 1-depleted cells (Extended Data Fig. 6 c-e) and the 

inhibitory effect of Q35 on beclin 1 levels and autophagy in beclin 1-expressing cells was rescued by 105 

ataxin-3 overexpression (Extended Data Fig. 6a), compatible with the model that the Q35 acts by 

impairing ataxin-3 control of beclin 1 levels.  



4 
 

A wild-type (Q17) huntingtin fragment (N-terminal 350 residues) bound to beclin 1 and this 

interaction was largely lost when the polyQ stretch was deleted (Extended Data Fig. 7a). Furthermore, 

mutant polyQ-expanded, full-length huntingtin competed with wild-type ataxin-3 for beclin 1 binding 110 

(Extended Data Fig. 7b). To test the general principle on autophagy, we used an N-terminal exon 1 

fragment to exclude any confounding effects of the huntingtin C-terminus on autophagy22.  In stable-

inducible HEK293 cells expressing wild-type (Q23) and mutant (Q74) huntingtin exon 1 at similar 

levels (where there is no overt toxicity or aggregation (<1%) during the experiment), we observed 

lower beclin 1 levels and impaired starvation-induced autophagy, after switching on the huntingtin 115 

transgene (Extended Data Fig. 7 c-e). These effects were more pronounced in mutant cells. As these 

phenomena occur in both wild-type Q23-huntingtin cells and Q35-expressing cells, they cannot 

simply be explained by beclin 1 sequestration into aggregates23.  

Next, we studied cell lines derived from the striatum, the brain region most sensitive to the 

HD mutation, from heterozygous mutant huntingtin (Q7/Q111) and matched wild-type huntingtin 120 

knock-in mice (Q7/Q7) both humanised for huntingtin exon 124. Mutant huntingtin striatal-derived 

cells (Q7/Q111) had lower beclin 1 levels and defects in starvation-induction of WIPI2 dots and LC3-

II levels, compared to wild-type cells (Q7/Q7) (Extended Data Fig. 8 a-c). Likewise, brains from 

young mutant huntingtin exon 1 transgenic mice, when there is minimal overt aggregation (Extended 

Data Fig. 8d), had decreased beclin 1 levels in fasting conditions, failed to upregulate LC3-II with 125 

fasting, and had increased p62 levels, compared to wild-type littermate brains (Fig. 4 c,d, Extended 

Data Fig. 8 e-g).  

We then tested if this mechanism applied to mutant ataxin-3, as decreased beclin 1 levels are 

seen in SCA3 rodent models25. Expansion of the polyQ domain in ataxin-3 decreased its 

deubiquitinase activity towards beclin 1 (Extended Data Fig. 9a). Transfecting expanded ataxin-3 Q84 130 

into ataxin-3 knockdown cells partially rescued LC3 dot numbers but was not as effective as wild-

type ataxin-3 Q28 (Extended Data Fig. 9 b-c), consistent with decreased deubiquitinase activity of the 

mutant protein. However, the ΔpolyQ ataxin-3 did not rescue the number of LC3 dots (Extended Data 

Fig. 9 b-c). When overexpressed in cells, mutant ataxin-3 had a stronger interaction with beclin 1, 

associated with increased beclin 1 K48 polyubiquitination, while no obvious change was observed in 135 

beclin 1 K63 polyubiquitination (Extended Data Fig. 9d). Thus, the longer polyQ stretches in mutant 

ataxin-3 bind beclin 1 more strongly than wild-type ataxin-3 but the mutant protein also has decreased 

deubiquitinase activity. This likely results in a partial dominant-negative effect of mutant ataxin-3 

towards beclin 1 levels, with similar consequences on this autophagy pathway as observed with 

mutant huntingtin fragments.  140 

Apart from mutant huntingtin and ataxin-3, beclin 1 also interacted with atrophin-1 and the 

androgen receptor (Extended Data Fig. 10 a,b) that are mutated in the polyQ diseases dentatorubral-

pallidoluysian atrophy (DRPLA) and spinal and bulbar muscular atrophy, respectively. PolyQ-

expanded atrophin-1 and androgen receptor showed increased interactions with beclin 1 that elevated 
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beclin 1 K48-polyubiquitination (Extended Data Fig. 10 a,b). Finally, we observed decreased beclin 1 145 

levels and impaired starvation-induced autophagy in fibroblasts derived from DRPLA, SCA3 and HD 

patients, compared to controls (Fig. 4 e-g, Extended Data Fig. 10 c-g).  

Our data reveal novel roles for polyQ tracts in health and disease. The wild-type ataxin-3 

polyQ stretch is required for binding to beclin 1 that enables deubiquitination of this key autophagy 

inducer26 and protects it from proteasome-mediated degradation. Importantly, this wild-type polyQ-150 

mediated interaction was competed for by diverse disease proteins with polyQ expansion mutations.  

The observed defect in starvation-induced autophagy caused by mutant polyQ proteins may reflect a 

less obvious impairment of basal autophagy, which is magnified under starvation conditions. This 

may contribute to late-onset polyQ diseases, where a relatively subtle defect is tolerated for decades 

prior to disease onset, and where the toxic mutant protein itself is an autophagy substrate.  155 

 

Online Content Methods, along with any additional Extended Data display items are available in the 

online version of the paper; references unique to these sections appear only in the online paper. 
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Figure Legends 245 

Figure 1. Ataxin-3 contributes to autophagosome formation by regulating the levels of beclin 1.  

Mouse cortical neurons were transduced with control or ataxin-3 lentiviral shRNAs and analysed for: 

a, LC3-II levels with/without BafA1. b,  LC3-II levels in starvation (HBSS) with/without BafA1. c, 

Beclin 1 levels in the starved cells. Results are mean ± s.e.m. n=5 replicates from two independent 

cultures. d-e, Control mice and mice depleted of liver ataxin-3 were fasted (24 h). Liver samples were 250 

analysed for beclin 1 (d) and LC3-II (e). Control fed n=9, ataxin-3 knockdown fed n=6, control fasted 

n=8, ataxin-3 knockdown fasted n=6, a.u arbitrary units. Extended statistical analysis in 

Supplementary Table 1. Two-way ANOVA with Bonferroni’s post-test (a, b, d, e). One-way 

ANOVA with post-hoc Tukey’s test (c). For representative blots and in-vivo ataxin-3 knockdown 

efficiency, see Extended Data Fig. 2d. Gel source data in Supplementary Fig. 1.    255 

Figure 2.  Beclin 1 deubiquitination by ataxin-3. a, Endogenous ataxin-3 was immunoprecipitated 

from HeLa cell lysates and blots probed for endogenous beclin 1. b, Ubiquitinated beclin 1 was 

incubated in-vitro with recombinant ataxin-3 or ataxin-3 C14A for 2 h and analysed for beclin 1 

ubiquitination using anti-HA antibodies. c, Evolutionary conservation of region around beclin 1 K402. 

d, Control and ataxin-3 depleted HeLa cells were transfected as indicated (24 h), incubated for last 6 h 260 

with proteasome inhibitor (MG132, 10 µM). Wild-type (WT) FLAG beclin 1 and mutant FLAG 

beclin 1 K402R were immunoprecipitated with anti-FLAG antibody for ubiquitination analysis. Gel 

source data in Supplementary Fig. 1.     

Figure 3. Ataxin-3 polyQ domain contributes to ataxin-3 interaction with beclin 1. a,b,c, 

Constructs were transfected in HeLa cells for 24 h.  a, Cell lysates were immunoprecipitated with 265 

anti-GFP antibody and immunocomplexes analysed with anti-FLAG antibody. b,c, Cell lysates were 

immunoprecipitated with anti-FLAG antibody and immunocomplexes analysed with anti-GFP 

antibody. Gel source data in Supplementary Fig. 1. d, Structural docking modelling reveals two 

interactions sites between beclin 1 ECD and PolyQ7. Surface charge illustration of human beclin 1 
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ECD showing high scored docking pose of polyQ7 stretch (docking scores for site 1 and site 2 are -270 

10.394 and -10.721, respectively). Full structural analysis in Extended Data Fig. 5.   

Figure 4. Expanded polyQ tracts inhibit ataxin-3-beclin 1 interaction, decrease beclin 1 levels 

and impair starvation-induced autophagy. a,b HeLa cells were transfected with indicated 

constructs for 24 h and immunoprecipitated for endogenous beclin 1. a, Cells treated for last 6 h with 

proteasome inhibitor (MG132 10 µM) were analysed for beclin 1 ubiquitination and for beclin 1-275 

bound polyQ using anti-GFP antibody. b, Immunocomplexes were analysed for beclin 1-bound 

ataxin-3 using anti-FLAG antibody. Bound ataxin-3/beclin 1 ratio is presented. c-d, Brain samples 

from wild-type (WT) mice and Huntington’s disease (HD) transgenic mice were analysed for beclin 1 

(c) and LC3-II (d).  WT fed n=7, HD fed n=5, WT fasted n=7, HD fasted n=6, a.u arbitrary units. 

Extended statistical analysis in Supplementary Table 1. Two-way ANOVA with Bonferroni’s post-280 

test. Representative blots in Extended Data Fig. 8e. e-g, Primary fibroblasts from healthy controls or 

patients with different polyQ diseases treated with bafA1, in full media or starved/HBSS analysed for 

LC3-II/actin ratio. Gel source data in Supplementary Fig. 1.     

 

METHODS 285 

Reagents. The primary antibodies used in the study include rabbit anti-Actin (#A2066), mouse anti-

FLAG M2 (#F3165) and mouse anti-Tubulin (#T9026) from Sigma, rabbit anti-LC3 (#NB 100-2220) 

and rabbit anti-Atrophin-1 (#NB100-2336) from Novus Biologicals, mouse anti-HA.11 (#MMS-

101P) from Covance, mouse anti-p62 (#610833) from BD Bioscience, rabbit anti-Beclin 1 (#3738), 

rabbit anti-VPS34 (#4263), rabbit anti-K48 polyUb (#8081) and rabbit anti-K63 polyUb (#5621) from 290 

Cell Signalling, rabbit anti-GFP (ab6556) from Abcam, mouse anti-Ataxin-3 (#MAB5360) and mouse 

anti-polyglutamine (#MAB1574) from Millipore, mouse anti-GFP (#632375) from Clontech, mouse 

anti-Androgen Receptor (#sc-7305) from Santa Cruz. Anti-mouse (#NA931V) and anti-rabbit 

(#NA934V) horseradish peroxidise (HRP)-conjugated secondary antibodies (GE Healthcare). Goat 

anti rabbit 800CW secondary antibody (#926-32211) from LI-COR. Alexa Fluor 555- (#A21428) 295 

conjugated goat anti-rabbit secondary antibody (Invitrogen/Life Technologies). The constructs that 

were used in this work consisted of: empty pEFGP, HA-Ub. pEGFP-Q35 and pEGFP-Q81 were 

described in ref 27. The following were a gift from Henry Paulson28: pEFGP-Ataxin-3Q28 (Addgene 

#22122), pEFGP-Ataxin-3Q84 (#22123), pFLAG-6a-Ataxin-3Q22 (Addgene #22126), pFLAG-6a-

Ataxin-3Q22-C14A (Addgene #22127) and pFLAG-6a-Ataxin3Q80 (Addgene #22129). The 300 

pcDNA4-FLAG-Beclin 1(1-242) (Addgene #24391) and pcDNA4-FLAG-Beclin 1(243-450) 

(Addgene #24392) were gifts from Qing Zhong29. The following constructs were generated in our lab: 

pcDNA-FLAG-Beclin 1 and pcDNA- Beclin 1 were described in ref30, pcDNA-FLAG-Beclin 

1(K402R), pEFGP-Ataxin-3 ΔQ (1-290), FLAG-HTT 350 (1-350) was described in 31, pEGFP-HTT 
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exon 1 Q74 and pEGFP-HTT exon 1 Q23 were described in ref 32 and FLAG-full length HTT Q138. 305 

The following constructs were kindly provided by Janghoo Lim (HA-tagged Androgen Receptor with 

25Q or 120Q) and Zoya Ignatova (EGFP-tagged Atrophin-1 with 19Q or 71Q). 

Cell lines. Human cervical carcinoma (HeLa) cells and striatal neuronal cell lines derived from “wild-

type” HTT Q7/Q7 and heterozygous HTT Q7/Q111 knock-in mice (Coriell Institute #CH00097 and  

#CH00096, respectively)  were grown at 37°C (for HeLa) and at 33°C (for striatal cells) in DMEM 310 

medium (Sigma) supplemented with 10% FBS, 100 U ml–1 penicillin/streptomycin, 2 mM l-glutamine 

and 1 mM sodium pyruvate (basal media), under 5% CO2. HeLa cells stably expressing GFP-LC3 and 

HeLa cells stably expressing mTagRFP-mWasabi-LC3 reporter were cultured in basal media 

supplemented with 500 μg/ml G418 (Sigma). For creation of mTagRFP-mWasabi-LC3 stable cell 

lines, mTagRFP-mWasabi-LC3 (construct from Jian Lin33) was cloned into pIRESneo using EcoR1 315 

and SacII sites. The construct was transfected into HeLa cells, and transfected cells were selected 

using G418. Single cell clones were generated be FACS sorting and cell lines showing moderate 

expression levels were selected. mTagRFP-mWasabi-LC3 monitors autophagic flux, since mWasabi 

(green) fluorescence is quenched when autophagosomes are acidified following fusion with 

lysosomes. Stable-inducible HEK293 cells expressing wild-type (Q23) or mutant (Q74) huntingtin 320 

(HTT) exon 1 were generated by cloning GFP-HTT (mutant or wild-type) from eGFP-C1 into 

pCDNA5/TO using Xba1 and ApaI restriction sites. These constructs were linearised with MfeI and 

transfected into T-Rex-293 cells (Thermo Fisher) which stably express the tetracycline repressor 

protein. Transfected cells were selected by addition of hygromycin. Single cells clones were generated 

which showed expression of GFP-HTT only in the presence of doxycycline, and to enable 325 

comparison, with similar levels of HTT expression. HeLa cells (source ATCC) and HEK293 cells 

(source ECACC) were authenticated by STR profiling and were routinely tested for mycoplasma 

contamination. In some experiments, cells were starved in Hanks balanced salt solution (HBSS) 

media (Invitrogen) for 4 hr with or without 400 nM of bafilomycin A1 (BafA1) (Sigma). BafA1 

treatment alone was carried out sometimes for 16 h with 200 nM, as indicated in the legend. Cell 330 

transfection was performed with TransIT 2020 Mirus (for DNA) or LipofectAMINE 2000 reagents 

(for siRNA) (Invitrogen), using the manufacturer’s protocol. Final siRNA concentrations of 20 nM to 

100nM were used for silencing with two rounds of knockdown for 5 days. The following 

oligonucleotides (ON-TARGETplus SMARTpool, Dharmacon) were used for ataxin-3 depletion: 

oligo 05 (ACAGGAAGGUUAUUCUAUA), oligo 06 (a) (GGACAGAGUUCACAUCCAU), oligo 335 

07 (b) (GCACUAAGUCGCCAAGAAA), oligo 08 (GCAGGGCUAUUCAGCUAAG); for beclin 1 

depletion: oligo 05 (GAUACCGACUUGUUCCUUA), oligo 06 (GGAACUCACAGCUCCAUUA),  

oligo 07 (CUAAGGAGCUGCCGUUAUA), oligo 08 (GAGAGGAGCCAUUUAUUGA). 
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Ataxin-3 depletion in mice. All studies and procedures were performed with project licences granted 340 

by the UK Home Office and with the approval of the University of Cambridge committee for animal 

studies. C57BL/6J mice (Jackson Laboratories) were depleted of ataxin-3 in the liver using the 

ThermoFisher Invivofectamine 3.0 system. The siRNA duplex solution was prepared and diluted to 

2.4 mg/ml according to the manufacturer’s instructions. Preparation of the final injection solution was 

also in accordance with the Thermofisher protocol. Briefly, siRNA (Control/scrambled siRNA 345 

#4457289; ataxin-3 siRNA #4457308) was mixed with the complexation buffer and then the 

Invivfectamine 3.0 reagent (#IVF3005, ThermoFisher). The ataxin-3 siRNA was an Ambion pre-

designed sequence: Sense (5-3): GCAUCGACCAAAACUUAUUtt; Antisense (5-3): 

AAUAAGUUUUGGUCGAUGCat. The solution was vortexed, incubated at 50°C for 30 minutes and 

then diluted in PBS. The solution was stored at 4°C and later up to 200 µl was injected in the lateral 350 

caudal vein at a final concentration of 1 mg/kg. Mice were monitored for any adverse side effects 

briefly after injection with none observed. Mice used were female, weighing approximately 20 grams 

at the age of 6 weeks. Mice were randomly selected for injection with control or targeting siRNA and 

were matched by weight. The knockdown was left for 5 days. In the 4th day, the mice fasted and were 

deprived of food for a total period of 24 hr with free access to water throughout the procedure. Livers 355 

from these mice were dissected, homogenised and resuspended in tissue lysis buffer on ice (50mM 

Tris pH 7.4, 0.5% Triton X-100 and protease inhibitor cocktail) and the supernatant was centrifuged 

twice. Proteins were resolved in SDS-page for further analysis. The same control was loaded on each 

gel and the samples were normalised to that same control on the same gel allowing the comparison 

between multiple samples. The animal experiments did not involve behavioural testing but focussed 360 

on biochemistry, thus the samples were not blinded at this stage as we wanted to be able to load the 

gels in a suitable order. 

Food deprivation in HD mice. We used HD-N171-82Q mice (B6C3F1/J-Tg(HD82Gln)81 Dbo/J, 

Jackson Laboratory, Bar Harbour, ME, USA). These mice carry an N-terminal fragment expressing 

the first 171 amino acids of human huntingtin with 82 glutamine repeats under the mouse prion 365 

promotor 34. The HD transgenic mice and non-transgenic littermates were males and females at the 

age of 6 weeks in the study. The mice fasted and were deprived of food for a total period of 48 hr with 

free access to water throughout the procedure. After 22.5 hr starvation, mice were given free access to 

food 1.5 hr followed by a second round of starvation for another 22.5 hr. At the end of this period, the 

mice were sacrificed by a schedule 1 method. The brain was collected and frozen for western blot 370 

analysis. The mice were weighed at every stage of this experiment in order to monitor weight loss. 

Half brain samples from starved and fed mice were dissected, homogenised and resuspended in tissue 

lysis buffer on ice (50mM Tris pH 7.4, 0.5% Triton X-100 and protease inhibitor cocktail) and the 

supernatant was centrifuged twice. Proteins were resolved in SDS-page for further analysis.   
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Immunohistochemistry. Thirty micrometer sections of brains derived from HD transgenic young and 375 

adult mice (6 and 12 weeks old, respectively) were analysed for neuronal aggregates according to the 

protocol in ref 35. Sections were labelled with anti-huntingtin antibody (clone mEM48, Chemicon, # 

MAB5374) by free-floating immunohistochemistry. Staining was performed by peroxidase labelling 

using Vectastain Avidin:Biotinylated enzyme complex (ABC) kit and visualized with DAB reagent 

(Vector Laboratories). Aggregates were counted in the motor cortex in three fields on at least three 380 

sections per animal at a magnification of ×100 (Zeiss Axioskop2, field diameter 0.2 mm) and 

analysed for the average of aggregates in brains from young and adult HD transgenic mice. The 

observer was blinded to the identity of the samples.  

 Analysis of patient cells.  Primary fibroblasts from 9 controls and 13 mutant polyQ patients were 

grown at 37°C in DMEM medium supplemented with 10% FBS, 100 U ml–1 penicillin/streptomycin, 385 

GlutaMAX™ 1:100 (#35050061, ThermoFisher)  and 1 mM sodium pyruvate (basal media), under 

5% CO2. In some experiments, cells were starved in Hanks balanced salt solution (HBSS) media for 4 

hr or treated for 4 h with 400 nM BafA1. The following patient fibroblasts were obtained from Coriell 

Biorepository, Coriell Institute for Medical Research:  Huntington’s disease (HD) (GM04285, 

GM04287, GM04476, GM04867), Dentatorubral-pallidoluysian atrophy (DRPLA) (GM13716, 390 

GM13717), Spinocerebellar ataxia type 3 (SCA3) (GM06151, GM06153), Spinocerebellar ataxia type 

7 (SCA7) (GM03561). The following patient fibroblasts were kindly provided by Ferdinando 

Squitieri. A program to collect biological specimen at Mendel Institute of Human Genetics for 

research purposes, including skin biopsies to derive fibroblast cell lines, was approved by the Ethical 

Committee from Casa Sollievo della Sofferenza Foundation, section of Istituto Tumori Giovanni 395 

Paolo II in Bari. Informed consents were obtained from healthy control subjects and from a DRPLA 

patient (AT2140102), HD patients (HD 940-01, HD960-01) as well as from the legal representative of 

the other HD patient (HD305-01). See Supplementary Table 2 for a list of patient fibroblasts, their 

catalogue numbers and the matching reference numbers in the paper.     

Isolation and culture of primary cortical neurons. Primary cortical neurons were isolated from 400 

C57BL/6 mice (Jackson Laboratories) embryos at E16.5 as previously described32. Briefly, embryo 

brains were harvested and placed in PBS/glucose where the meninges were removed and the cerebral 

cortices were dissected. After mechanical dissociation using sterile micropipette tips, dissociated 

neurons were resuspended in PBS/glucose and collected by centrifugation. Viable cells were seeded 

on poly-ornithine-coated 12-multiwell plates. Cells were cultured in Neurobasal medium 405 

supplemented with 2 mM glutamine, 200 mM B27 supplement and 1% Penicillin-Streptomycin at 

37°C in a humidified incubator with 5% CO2. One half of the culture medium was changed every two 

days until treatment/infection. After 5 days of ex vivo culturing, differentiated neurons were infected 

with lentiviral particles. 
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Lentivirus production and infection. shRNA lentiviral particles were produced and transduced 410 

following The RNAi Consortium (TRC) protocols. shRNA containing pLKO.1 vectors targeting 

mouse ataxin-3 were obtained from The RNAi Consortium (TRCN0000123959 and 

TRCN0000123961). Scramble shRNA was a gift from David Sabatini (Addgene plasmid # 1864) 36. 

Briefly, HEK-293T packaging cells growing in 10 cm dishes were transfected with a mix of 2.5 µg 

packaging vector (psPAX2), 270 ng envelope vector (pMD2.G) and 2.7 µg hairpin-pLKO.1 vector. 415 

TransIT-LT1 (Mirus) was used as transfection reagent. After transfection, cells were cultured in high-

serum medium. Cell culture medium was harvested 40 hours later and replaced by high-serum 

medium; this step was repeated 2-3 times for intervals of 24 hours. Virus preps were then 

concentrated by centrifugation at 30,000 RPM for 90 minutes. Viral particles were added to primary 

cultured neurons and incubated overnight. 24 hours later, medium was replaced by full medium and 420 

cells were further incubated for 5 more days. For autophagy flux experiments, neurons were treated 

with 200 nM BafA1 in full media for 16 hr or starved in HBSS with 400 nM of BafA1 for 4 hr.  

Western blot analysis. Cells were lysed in lysis buffer (20 mM Tris-HCl, pH 6.8, 137 mM NaCl, 1 

mM EGTA, 1% Triton x100, 10% Glycerol and protease inhibitors cocktail) and protein samples 

were boiled in Laemmli buffer for 5–7 min at 100°C, separated by SDS-PAGE, transferred onto 425 

PVDF membranes, subjected to western blot analysis, and visualized using an ECL enhanced 

chemiluminescence detection kit (GE Healthcare), or with direct infrared fluorescence detection on an 

Odyssey Infrared Imaging System.  

Immunoprecipitation and ubiquitination assays. Cells were lysed with IP buffer (20mM Tris-HCl, 

pH 7.2, 150mM NaCl, 2 mM MgCl2, 0.5% NP-40 and protease inhibitors cocktail). For ubiquitination 430 

experiments, cells were treated with a proteasome inhibitor MG132 (10 µM) in the last 6 hr before 

lysis with the IP buffer supplemented with 1mM PMSF and 10 mM iodoacetamide.  Whole cell 

lysates obtained by centrifugation were incubated with 2-5 µg of antibody overnight at 4°C followed 

by 2 h incubation with protein A sepharose beads (GE Healthcare). The immunocomplexes were then 

washed with IP buffer for three times and separated by SDS–PAGE for further western blotting assay.  435 

In-vitro deubiquitination assay. Ubiquitinated beclin 1 was purified from HeLa cells transfected 

with expression vectors for HA-Ub and FLAG beclin 1 for 24 hr as previously described37. In the last 

6 hr the cells were treated with a proteasome inhibitor MG132 (10 µM) and a 10 µM cell-permeable, 

non-selective DUB inhibitor PR616 (#ab144641, Abcam). Ubiquitinated beclin 1 was purified from 

cell lysates with anti-FLAG-affinity beads (Sigma, #A2220) in FLAG lysis buffer (20 mM Tris-HCl, 440 

pH 6.8, 137 mM NaCl, 1 mM EGTA, 1% Triton x100, 1mM DTT, 10% Glycerol and protease 

inhibitors cocktail). After washing with the FLAG-lysis buffer, the proteins were eluted with 3X 

FLAG Peptides (#F4799, Sigma). Recombinant ataxin-3 Q22 and FLAG ataxin-3 Q22 C14A were 

expressed in HeLa cells and purified using FLAG affinity beads and eluted with 3X FLAG Peptides. 
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In the in-vitro deubiquitination assay, ubiquitinated beclin 1 was incubated with recombinant ataxin-3 445 

in the deubiquitination buffer (50 mM Tris-HCl (pH 8.8), 50mM NaCl, 5% glycerol, 10mM DTT, 

1mM EDTA) at 37°C.  

Fluorescence microscopy. The cells were grown on coverslips and were fixed in 4% 

paraformaldehyde (for LC3-GFP) or methanol (for endogenous LC3, 1:150 Novus Biologicals) for 5 

min and then permeabilized with 0.1% Triton. For blocking and primary and secondary antibodies 1% 450 

BSA in PBS was used. The staining of PI3P was performed as described in ref 38. Briefly, cells were 

fixed in 2% paraformaldehyde and permeabilized with 20 μM digitonin in buffer A (20 mM Pipes pH 

6.8, 137 mM NaCl, 2.7 mM KCl). Then cells were blocked with buffer A supplemented with 5% (v/v) 

FBS and 50 mM NH4Cl. Anti-PI3P antibodies from Echelon (for 1 h, 1:300) and secondary antibodies 

were applied in buffer A with 5% FBS. Cells underwent post-fixation for 5 min in 2% 455 

paraformaldehyde, washed with PBS containing 50 mM NH4Cl, washed once with water and then 

mounted with Mowiol. For WIPI2 staining, cells were grown on coverslips at 60% confluency and 

were incubated in EBSS for 1h. Then cells in 1ml EBSS were fixed by the addition of 1 ml 4% 

paraformaldehyde to a final concentration of 2% and incubated for 10 min at room temperature and 

then cells were permeabilized with 0.1% Triton. 1% BSA PBS solution was used for blocking before 460 

adding primary antibody (mouse anti-WIPI2, 1:100 Abcam #ab105459). A Zeiss LSM880 confocal 

microscope was utilised for fluorescent confocal analysis. All confocal images were taken with a 63X 

oil-immersion lens. Microscopy assays (e.g. dot quantification) were performed by selecting fields 

based on nuclear and GFP staining (with the channel for the dots turned off) - thus the operator was 

blinded to the outcome of the experiment when selecting suitably similar fields to image for 465 

subsequent computerised analysis. ImageJ was used for the analysis (number of vesicles/dots). For the 

analysis of WIPI2 dots that involved different cell lines in different conditions, we used a custom-

designed image-processing pipeline in ImageJ. First, an estimation of the cytoplasmic area was made 

by simultaneously expanding an area from each nuclear centroid, until a neighbouring expansion is 

detected. The resulting mask represents individual cells and was subsequently used to identify WIPI2 470 

dots. Identification of the dots started by reducing cytoplasmic background signal through application 

of a Gaussian convolution filter. The resulting image is then binarized according to the Chow and 

Kaneko adaptive thresholding method. Subsequently, connected or clustered dots are separated using 

a classic watershed segmentation algorithm. Consecutive quantification and feature extraction is then 

performed on all dots that meet set size parameters. Automated microscope counting of 475 

autolysosomes labelled with a pH-sensitive mTagRFP-mWasabi-LC3 was carried out using a Thermo 

Scientific Cellomics ArrayScan VTI HCS reader and the Spot Detector Bioapplication protocol, as 

described20. About 800 cells per condition were analysed.  

Addition of exogenous PI3P to cells. PI3P di-C16 and carrier (Echelon) were reconstituted in 

H2O:tert-BuOH (9:1) solution. After 1 min bath sonication, carrier and PI3P di-C16 were combined at 480 
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a 1:1 ratio for 10 min at room temperature. The mixture of PI3P di-C16 and carrier was diluted in 

media and used for 1-2 hr incubations on cells. The final concentration used was 1 μM. For the 

negative control, DMEM was combined with carrier only and added to the cells. 

Mass Spectrometry. HeLa cells were transfected with FLAG beclin 1 and HA-Ub for 24 hr, treated 

in the last 6 hr with proteasome inhibitor (MG132 10 µM) and FLAG beclin 1 was 485 

immunoprecipitated for identification of putative sites of ubiquitination using mass spectrometry. 

Samples were resolved into a pre-cast 4-12% Bis-Tris polyacrylamide gel (Novex, Thermo Fisher 

Scientific). The lanes were excised and cut in 3 approximately equal chunks and the proteins reduced, 

alkylated and digested in-gel. The resulting tryptic peptides analysed by LC-MSMS using a Q 

Exactive coupled to an RSLCnano3000 (Thermo Scientific). Raw files were processed in Proteome 490 

Discoverer 1.4 using Sequest to search a human Uniprot database (downloaded 03/06/14, 20176 

entries). GlyGly (K) was set as a variable modification and carbamidomethyl (C) as a fixed 

modification. Peptides were filtered to high confidence (0.01 FDR) using Percolator. 

Structural analysis of polyQ binding to beclin 1. Glide software (Schrödinger, LLC) was used for 

studying potential ligand (polyQ7 stretch)-receptor (human beclin 1 ECD; pdb 4DDP, ref 39) 495 

interactions. Protein and ligand preparation were firstly performed, followed by generation of possible 

ligand binding sites using site-map. A receptor grid was then generated for each of the putative 

binding sites and standard precision peptide (SP-peptide) docking was performed. Although several 

potential binding sites were found, docking scores for two of the sites were substantially higher than 

for the others. It should be noted that that binding-sites surrounding the N-terminal helix of beclin 1 500 

ECD (pdb 4DDP) were not considered, as yeast Vps30-BARA domain structure (pdb 5DFZ, ref 40) 

shows this helix is likely to be out of place, being part of the coiled-coil domain (CCD) of beclin 1. 

Docking poses from the best sites were used to generate figures. Visualization and generation of 

graphic illustrations of the molecular models was performed using PyMOL (http://www.pymol.org).  

Statistics. Statistical analysis was done using Microsoft Excel and GraphPad Prism v5. For ANOVA 505 

analysis involving multiple sample comparisons, post testing was performed to discriminate 

significance relationships. For t-test analysis, one-tailed test were performed for independent samples, 

as indicated in the figure legends. Errors bars shown in the figures are standard deviation (s.d) or 

standard error (s.e.m). Sample sizes were chosen based on extensive experience with the assays we 

have performed. The experiments were appropriately randomized.  510 

Data availability. Gel source data are provided in Supplementary Fig. 1. Other source data and 

reagents can be provided by the authors upon reasonable request. Beclin 1 structures were from 

Protein Data Bank (pdb 4DDP, pdb 5DFZ). Beclin 1 protein sequences were from UniProt (human 

Q14457, mouse O88597, Zebrafish A2A135).     
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Extended Data Figure Legends 

Extended Data Figure 1. Ataxin-3 contributes to autophagosome formation. a, Primary cultures 555 

of mouse cortical neurons were transduced with control or ataxin-3 lentiviral shRNAs and analysed 

for the levels of LC3-I under starvation condition (HBSS, 4 hr) or together with BafA1 (400 nM, 4 

hr). Results are normalised to control cells (HBSS+BafA1). Mean ± s.e.m, n=5 replicates from two 

independent cultures. Two-way ANOVA (N.S not significant). b, HeLa cells were transfected with 

different ataxin-3 siRNA and scrambled siRNA used as a control. Ataxin-3 knockdown (KD) 560 

efficiency is presented as well as basal LC3-II levels. LC3-II levels in ataxin-3-depleted HeLa cells 

were normalised to control cells, n=4 independent experiments. One-way ANOVA (** P<0.01) with 

post-hoc Tukey’s test (* P<0.05, ** P<0.01). c, p62 levels in HeLa cells depleted of ataxin-3 by 

siRNA. p62 levels were normalised to control cells (n=4 independent experiments, ** P<0.01 one-

tailed paired t-test). d, HeLa cells stably expressing mTagRFP-mWasabi-LC3 reporter were 565 

transfected with either scrambled or ataxin-3 siRNA and were analysed by the ThermoFisher 

cellomics system for assessing the number of autophagosomes and autolysosomes in the cells. Results 

are mean number of autophagosomes or autolysosomes per cell ± s.e.m in eight fields from a 

representative experiment out of three independent experiments (* P<0.05, ** P<0.01 one-tailed 

unpaired t-test). Representative images of the cells were taken by confocal microscopy (total 800 570 

cells). Scale bar is 10 µm. e, Control and ataxin-3 KD HeLa cells were starved (HBSS, 4 hr) or kept in 

full media. The number of PI3P phospholipid dots were analysed by staining with anti-PI3P antibody. 

Results are mean dots per cell ± s.d from a representative experiment out of three independent 

experiments as well as representative confocal images of PI3P dots (red) for each condition (n=20 

cells). Scale bar is 10 µm. Two-way ANOVA (column factor siRNA *** P<0.001, row factor 575 

starvation ** P<0.01, interaction P value * P<0.05) with Bonferroni’s post-test (** P<0.01, N.S, not 

significant).  

Extended Data Figure 2. Ataxin-3 regulates starvation-induced autophagy. a-b, HeLa cells stably 

expressing GFP-LC3 were treated with control siRNA or ataxin-3 siRNA and incubated for 1 hr with 

carrier alone or carrier with 1 µM of PI3P phospholipid. Then, the control cells and the ataxin-3 KD 580 

cells with the different treatments were shifted to starvation condition (HBSS, 4 hr) or kept in full-

media. a, The number of LC3 dots was analysed for each of the conditions and presented as mean 

LC3 dots per cell ± s.e.m. S.e.m. was determined from n=5 fields from a single representative 

experiment out of three independent experiments. Two-way ANOVA (column factor siRNA *** 

P<0.001, row factor starvation * P<0.05, interaction P value N.S) with Bonferroni’s post-test: for 585 

basal condition: N.S, for starvation:  *** P<0.001. b, Representative confocal images of LC3 dots 

(green) from the different treatments are presented for the starvation condition. For a and b, the total 

number of cells analysed in basal control n=25; basal KD, basal KD carrier, basal KD carrier PI3P, 
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n=30; HBSS control n=34; HBSS KD, HBSS KD carrier PI3P n=37; HBSS KD carrier n=32. Scale 

bar is 10 µm. c, Number of endogenous PI3P effector, WIPI2 dots in HeLa cells that were transfected 590 

with FLAG ataxin-3 or empty vector and starved (EBSS, 1hr) with or without the PI3P inhibitor 

Wortmannin (Wm, 20 nM). Data are presented as means ± s.e.m. of the number of WIPI2 dots per 

cell. S.e.m. was determined based on the total number of cells analysed using software described in 

methods from a representative experiment out of two independent experiments. Confocal images of 

WIPI2 dots (green) from the different treatments are shown. Number of cells analysed and used for 595 

the s.e.m. in Empty FLAG n=47; FLAG ataxin-3 n=45; FLAG ataxin-3/Wm n=37. Scale bar is 10 

µm. One-way ANOVA (*** P<0.001) with post-hoc Tukey’s test (*** P<0.001). d-f, Mice were 

depleted of ataxin-3 in the liver by injection of ataxin-3 siRNA or control/scrambled siRNA 

formulations in the lateral caudal vein. The knockdown was left for 5 days with fasting on the 4th day. 

Livers from these mice were dissected, homogenised and proteins were resolved by SDS-page. d, 600 

Representative blots are shown, as well as in-vivo ataxin-3 knockdown efficiency. For the 

quantification of beclin 1 and LC3-II, see Fig. 1d,e. e, Quantification of p62 levels and f, 

Quantification of LC3-I levels in each group of mice (control fed n=9, ataxin-3 KD fed n=6, control 

fasted n=8, ataxin-3 KD fasted n=6, a.u arbitrary units). For e, two-way ANOVA (column factor 

siRNA * P<0.05, row factor fasting * P<0.05, interaction ** P<0.05) with Bonferroni’s post-test (** 605 

P<0.01, N.S). For f, two-way ANOVA (column factor siRNA P value N.S, row factor starvation * 

P<0.05, interaction P value N.S) with Bonferroni’s post-test (N.S). This suggests no obvious 

difference in LC3-I levels between the control and ataxin-3 KD groups.    

Extended Data Figure 3. Ataxin-3 regulates beclin 1 stability and ubiquitination. a, Beclin 1 

levels in control siRNA-treated HeLa cells and ataxin-3 KD cells (t=0) and after cycloheximide 610 

(CHX, 50 µg/ml) treatment (t=8 hr). The percentage of beclin 1 degradation in control or ataxin-3 KD 

cells was compared and normalised to cells without CHX treatment (n=3 independent experiments, * 

P<0.05 one-tailed paired t-test).  b, Beclin 1 levels in control siRNA-treated HeLa cells and ataxin-3 

KD cells that were treated in the last 6 hr with proteasome inhibitor (MG132, 5 µM). n=3 independent 

experiments, one-way ANOVA (** P<0.01) with post-hoc Tukey’s test (*P<0.05, N.S, not 615 

significant).  c, Beclin 1 levels in ataxin-3-depleted HeLa cells that were transfected with FLAG 

ataxin-3 wild-type (WT) or protease dead mutant, FLAG ataxin-3 C14A for 48hr. Results are 

normalised to control siRNA, n=3 independent experiments, one-way ANOVA (** P<0.01) with 

post-hoc Tukey’s test (** P<0.01). d, Control siRNA-treated and ataxin-3 siRNA-treated HeLa cells 

were transfected with the indicated vectors for 24 hr, treated in the last 6 hr with proteasome inhibitor 620 

(MG132, 10 µM) and endogenous beclin 1 was immunoprecipitated to detect beclin 1 ubiquitination. 

e, VPS34 levels in ataxin-3-depleted HeLa cells normalised to control siRNA, n=3 independent 

experiments, ** P<0.01 one-tailed paired t-test. f, HeLa cells were transfected with the indicated 

vectors for 24 hr, treated in the last 6 hr with proteasome inhibitor (MG132, 10 µM) and VPS34 was 
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immunoprecipitated to detect VPS34 ubiquitination. The levels of the VPS34 components are co-625 

ordinately regulated, and indeed decreased beclin 1 levels in ataxin-3-depleted cells were 

accompanied by decreased levels of VPS34. Still, no obvious change in VPS34 ubiquitination was 

observed in ataxin-3 over-expressing cells supporting a selective effect towards beclin 1. g, FLAG 

ataxin-3 WT and FLAG ataxin-3 C14A were co-expressed with GFP HTT exon 1 Q74 in HeLa cells 

for 48 hr. The number of aggregates was analysed by monitoring GFP fluorescence in 400 cells.. n=4 630 

independent experiments. Results are normalised to control (empty vector). One-way ANOVA (** 

P<0.01) with post-hoc Tukey’s test (* P<0.05, N.S, not significant).  

 

Extended Data Figure 4. Analysis of the beclin 1 lysine 402 modification. a-b, HeLa cells were 

transfected with FLAG beclin 1 and HA-Ub for 24 hr, treated in the last 6 hr with proteasome 635 

inhibitor (MG132, 10 µM) and FLAG beclin 1 was immunoprecipitated for mass spectrometry 

analysis. Tryptic digests of ubiquitin-conjugated beclin 1 resulted in peptides that contain a ubiquitin 

remnant derived from the ubiquitin C-terminus (‘GG’ motif). a, Identification of a putative site of 

ubiquitination in beclin 1. Panel 1 shows the MSMS spectrum of the unmodified beclin 1 peptide 

spanning residues 401 to 416. Amino acids with corresponding y ions are shown in blue. Panel 2 640 

shows the MSMS spectrum of an ion with a mass 114 Da greater than the unmodified peptide. The 

matching y ions and presence of a modified b2 ion indicate –GG modification of lysine 402. b, 

MSMS spectra filtered to high confidence covered 100% of the ubiquitin sequence. Tryptic peptide 

spanning residue 43 to 54 including lysine 48 was identified as the sole high confidence peptide with 

a modification corresponding to a –GG motif and the MSMS spectra of the peptide demonstrates 645 

fragments corresponding to a –GG modified lysine 48.  c, Levels of FLAG beclin 1 and FLAG beclin 

1 K402R in HeLa cells that were treated in the last 6 hr with proteasome inhibitor (MG132, 10 µM). 

Results are normalised to control (FLAG beclin 1 WT). n=3 replicates from two independent 

experiments. Two-way ANOVA (column factor K402R N.S, row factor MG132 *** P<0.001, 

interaction * P<0.05) with Bonferroni’s post-test (* P<0.05, N.S). d, HeLa cells were transfected with 650 

the indicated vectors for 24 hr and shifted in the last 4 hr to starvation media (HBSS). Beclin 1 and 

LC3-II levels were analysed and results are normalised to control (FLAG beclin 1 WT). For LC3-II 

levels, n=3 independent experiments, two-way ANOVA (column factor ataxin-3 * P<0.05, row factor 

K402R mutation ** P<0.01, interaction ** P<0.01) with Bonferroni’s post-test (*** P<0.001, N.S). 

For beclin 1 levels, n=4 independent experiments, two-way ANOVA (column factor ataxin-3 * 655 

P<0.05, row factor K402R mutation *** P<0.001, interaction P value N.S) with Bonferroni’s post-

test (* P<0.05, N.S).  

Extended Data Figure 5. Analysis of the interaction of the polyQ domain with beclin 1. a, Empty 

FLAG, FLAG beclin 1 evolutionary conserved domain (ECD) alone, FLAG beclin 1 ΔECD, FLAG 

beclin 1 full length and GFP Q35 were transfected in HeLa cells for 24 hr and the cell lysates were 660 
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immunoprecipitated with anti-FLAG antibody. Immunocomplexes were analysed using anti-GFP 

antibody. b, Superimposition of human beclin 1 ECD (pdb 4DDP) and Vps30 (pdb 5DFZ), the yeast 

orthologue of beclin 1. Structures reveal that the N-terminal helix (dark blue helix) of the human 

structure is displaced, most likely due to protein truncation for crystallographic purposes. The yeast 

structure suggests that this helix is part of the coiled-coil CC2 of beclin 1 instead of the ECD. c, Two 665 

binding-sites in human beclin 1 ECD reveal high docking scores for polyQ7 (the docking scores for 

site 1 and site 2 are -10.394 and -10.721, respectively). Sites comprising the region adjacent to the N-

terminal helix (dark blue) were not considered for the docking. d-e, Surface charge illustrations of 

human beclin 1 ECD with the two sites of polyQ interaction. Site 2 is in close proximity to a 

protruding hydrophobic loop (aromatic finger) composed by Phe359, Phe360 and Trp361 (top right e 670 

- cartoon view), which are thought to be implicated in beclin 1 anchorage to lipid membranes. 

Extended Data Figure 6. Expression of polyQ tracts impairs beclin 1-dependent starvation-

induced autophagy. a, HeLa cells were transfected with empty GFP or GFP Q35 with or without 

FLAG ataxin-3 Q22 for 24 hr and were shifted to starvation condition (HBSS) in the last 4 hr. LC3-II 

and beclin 1 levels were analysed from the cell lysates. Results are mean ± s.e.m normalised to 675 

control (empty GFP), n=5 independent experiments, One-way ANOVA (for LC3-II ** P<0.01, for 

beclin 1 * P<0.05) with post-hoc Tukey’s test (* P<0.05, ** P<0.01, N.S, not significant). b, HeLa 

cells were transfected with empty GFP or GFP Q35 for 24 hr and were shifted to starvation condition 

(HBSS) in the last 4 hr. p62 levels were than analysed from the lysates. Results are normalised to 

control (empty GFP), n=3 independent experiments, * P<0.05 one-tailed paired t-test. c, HeLa cells 680 

were treated with 20 nM beclin 1 siRNA or scrambled siRNA (control) for 3 days. Beclin 1 KD 

efficiency is presented. d-e, Control and beclin 1 KD HeLa cells were transfected with empty GFP or 

GFP Q35 for 24 hr and were shifted to starvation condition (HBSS) in the last 4 hr. The number of 

endogenous LC3 dots (red) was analysed in the GFP-expressing cells (green). Results are mean 

number of LC3 dots per cell in four fields from a representative experiment out of three independent 685 

experiments, as well as confocal images for each condition (number of cells analysed in control GFP 

n=32, control GFP Q35 n=27, beclin 1 KD GFP n=25, beclin 1 KD GFP Q35 n=23). Scale bar is 10 

µm. Two-way ANOVA (column factor GFP Q35 ** P<0.01, row factor beclin 1 KD *** P<0.001, 

interaction ** P<0.01) with Bonferroni’s post-test (*** P<0.001, N.S).  

Extended Data Figure 7. Impaired starvation-induced autophagy and reduced beclin 1 levels in 690 

cells expressing expanded polyQ forms of huntingtin. a, Empty FLAG, FLAG huntingtin (HTT) 

N-terminal fragment (1-350) Q17, FLAG HTT (1-350) ΔQ and beclin 1 were transfected in HeLa 

cells for 24 hr and cell lysates were immunoprecipitated with anti-beclin 1 antibody. 

Immunocomplexes were analysed using anti-FLAG antibody. b, GFP ataxin-3 Q28 and FLAG full-

length HTT Q138 were transfected in HeLa cells for 24 hr and endogenous beclin 1 was 695 

immunoprecipitated. Immunocomplexes were analysed using anti-ataxin-3 antibody (detect GFP-
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ataxin-3) and anti-FLAG antibody (detect HTT). The ratio of the bound ataxin-3 to beclin 1 is 

presented. c, stable-inducible HEK293 cells were switched on for 48 hr with doxycycline (Dox) to 

express GFP-HTT wild-type exon 1 (GFP-HTT Q23) or mutant GFP HTT exon 1 (GFP-HTT Q74). 

In the last 4 hr cells were starved (HBSS) and beclin 1 levels were analysed in each cell type. Results 700 

are normalised to control HTT Q23 cells no Dox (n=4 independent experiments). Two-way ANOVA 

(column factor Dox ** P<0.01, row factor HEK cells N.S, interaction P value N.S) with Bonferroni’s 

post-test (** P<0.01, N.S). d-e, Quantification of the number of LC3 dots in the starved cells. Results 

are mean dots per cell in four fields of a representative experiment out of three independent 

experiments. Representative confocal images of endogenous LC3 dots (red) and GFP-HTT (green) in 705 

each of the conditions (number of cells analysed in GFP-HTT Q23 no Dox n=41; GFP-HTT Q23 with 

Dox n=34; GFP-HTT Q74 no Dox n=39; GFP-HTT Q74 with Dox n=43).  Scale bar is 10 µm.. Two-

way ANOVA (column factor Dox *** P<0.001, row factor HEK cells * P<0.05, interaction P value 

N.S) with Bonferroni’s post-test (*P<0.05, ** P<0.01). 

Extended Data Figure 8. Impaired starvation-induced autophagy in striatal cell lines and in 710 

brain derived from mouse models of Huntington’s disease. a, Striatal cell lines derived from HTT 

(Q7/Q111) heterozygous knock-in mouse and HTT (Q7/Q7) “wild-type” knock-in mouse were kept in 

full media or starved (EBSS, 1hr). In each experiment, cells were analysed for WIPI2 dots in different 

condition. We could not detect WIPI2 dots in full media in these cells as dots became apparent after 

starvation-induced autophagy. The number of WIPI2 dots per cell is presented normalised to control 715 

HTT (Q7/Q7) cells. n=3 independent experiments, * P<0.05 one-tailed paired t-test. Representative 

confocal images of WIPI2 (red) in each of the conditions are presented (n=80 cells analysed). Scale 

bar is 10 µm. b, HTT (Q7/Q111) and HTT (Q7/Q7) striatal cells were treated with bafA1 (400 nM) in 

full media or starved with HBSS together with bafA1 (400 nM) for 4 hr and analysed for LC3-II 

levels. Results are normalised to control (HTT (Q7/Q7) in full media). n=3 independent experiments, 720 

two-way ANOVA (column factor mut HTT *** P<0.001, row factor starvation ** P<0.01, interaction 

** P<0.01) with Bonferroni’s post-test (*** P<0.001, N.S, not significant). c, beclin 1 levels in the 

starved HTT (Q7/Q111) and HTT (Q7/Q7) striatal cells. Results are normalised to control HTT 

(Q7/Q7) cells. n=3 independent experiments. ** P<0.01 one-tailed paired t-test. d, Sections of brains 

from Huntington’s disease (HD) HD-N171-N82Q transgenic young and adult mice (6 and 12 weeks 725 

old, respectively) were analysed for neuronal aggregates in the motor cortex.  For each brain, 400 

cells were counted in at least three sections. Results are mean percentage of cells with aggregates 

from three brains, ** P<0.01 one-tailed unpaired t-test. e, Young wild-type (WT) mice and HD 

transgenic mice were fed or fasted. Brains from these mice were dissected, homogenised and proteins 

were resolved by SDS-page for analysing the levels of endogenous beclin 1, LC3-I, LC3-II and p62 in 730 

each group. PolyQ levels were analysed using anti-polyQ antibody showing the expression level of 

the polyQ HTT exon 1. Representative blots are shown that were used to generate the data in Fig 4 
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c,d. f-g, Quantification of p62 and LC3-I levels in each group (WT fed n=7, HD fed n=5, WT fasted 

n=7, HD fasted n=6, a.u arbitrary units). For LC3-I levels, two-way ANOVA (column factor HD *** 

P<0.001, row factor fasting N.S, interaction P value N.S) with Bonferroni’s post-test (* P<0.05, *** 735 

P<0.001). For p62 levels, two-way ANOVA (column factor HD *** P<0.001, row factor fasting N.S, 

interaction P value N.S) with Bonferroni’s post-test (* P<0.05, *** P<0.001). 

Extended Data Figure 9. Expansion of the polyQ domain in ataxin-3 decreased deubiquitinase 

activity and increased its interaction with beclin 1. a, Beclin 1 was purified from proteasome 

inhibitor-treated cells that co-expressed HA-Ub and  was incubated in-vitro with recombinant ataxin-3 740 

Q22 or ataxin-3 Q80 for 30 min in deubiquitination buffer and samples were analysed for beclin 1 

ubiquitination using anti-HA antibodies. b, Number of LC3 dots in ataxin-3 KD HeLa cells that were 

transfected with GFP ataxin-3 Q28, GFP ataxin-3 Q84 and GFP ataxin-3 ΔQ and starved with HBSS 

in the last 4 hr. Results are normalised to control siRNA-treated cells from n=4 independent 

experiments. One-way ANOVA (*** P<0.001) with post-hoc Tukey’s test (** P<0.01, *** P<0.001, 745 

N.S, not significant). c, Representative confocal images are presented for each of the conditions from 

b (LC3 dots in red and ataxin-3 staining in green, n=20 cells analysed).Scale bar is 10 µm. d, HeLa 

cells were transfected with empty vector, FLAG ataxin-3 Q22, FLAG ataxin-3 Q80 and HA Ub for 24 

hr, treated in the last 6 hr with proteasome inhibitor (MG132 10 µM). Endogenous beclin 1 was 

immunoprecipitated from the lysates for analysis of different polyUb linkage using K48 polyUb or 750 

K63 polyUb antibodies, and for detection of bound ataxin-3 using anti-ataxin-3 and anti-polyQ 

antibodies. 

Extended Data Figure 10. Effect of different disease proteins with polyQ expansion on beclin 1 

ubiquitination, beclin 1 levels and starvation-induced autophagy. a, HeLa cells were transfected 

with empty vector, GFP atrophin-1 (ATN-1) Q19, GFP ATN-1 Q71 and HA Ub for 24 hr, treated in 755 

the last 6 hr with proteasome inhibitor (MG132 10 µM). Endogenous beclin 1 was 

immunoprecipitated from the lysates for ubiquitination analysis and for detection of bound ATN-1 

using anti-ATN-1 antibody. b, HeLa cells were transfected with empty vector, HA androgen receptor 

(AR) Q25, HA AR Q120 and HA Ub for 24 hr, treated in the last 6 hr with proteasome inhibitor 

(MG132 10 µM). Endogenous beclin 1 was immunoprecipitated from the lysates for ubiquitination 760 

analysis and for detection of bound AR using anti-AR antibody. c, Primary fibroblasts derived from 

healthy controls (n=5) and from HD patients (n=7) were starved with HBSS together with bafA1 (400 

nM) for 4 hr and analysed for LC3-II levels. Results are mean ± s.e.m. * P<0.05 one-tailed Mann 

Whitney test. d-f, Primary fibroblasts derived from healthy controls and from patients with different 

polyQ diseases were kept in full media or starved with HBSS for 4 hr and analysed for LC3-II levels 765 

(LC3-II/actin ratio is presented). d, Spinocerebellar ataxia type 3 (SCA3) samples. e, Dentatorubral-

pallidoluysian atrophy (DRPLA) samples. f, HD samples. The BafA1 experiments for these sets of 

patients are presented in Fig. 4. g, Beclin 1 levels (beclin 1/actin ratio is presented) in the starved 
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control cells vs. SCA3, SCA7, DRPLA and HD patient cells. We only had one SCA7 patient sample 

and thus we have not analysed it further. 770 
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Main Figures

Supplementary Figure 1- Uncropped scans.  
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Extended Data
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Ext Data Figure 6a
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Ext Data Figure 10a
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Ext Data Figure 10d

LC3

Actin

35

55

15

35

55

15

Ext Data Figure 10e

LC3

Actin

35

55

15

LC3

Actin

Ext Data Figure 10f

35

55

15

25

Ext Data Figure 10g

Actin

Beclin 1
55

70

35

55

70

35



Table S1. Full statistical analysis of the data from Figure 1 and Figure 4. 

 

Figure  P value for test P value for post-test 
Figure 1a Two-way ANOVA (column factor shRNA *** 

P<0.001, row factor BafA1 *** P<0.001, interaction * 
P<0.05). 

Bonferroni’s post-test (* P<0.05, 
*** P<0.001, N.S, not significant). 

Figure 1b  Two-way ANOVA (column factor shRNA ** P<0.01, 
row factor BafA1 *** P<0.001, interaction P value 
N.S). 

Bonferroni’s post-test (** P<0.01, 
*** P<0.001, N.S). 

Figure 1c One-way ANOVA (** P<0.01). Post-hoc Tukey’s test (* P<0.05, 
** P<0.01). 

Figure 1d Two-way ANOVA (column factor siRNA ** P<0.01, 
row factor fasting ** P<0.01, interaction P value 
N.S). 

Bonferroni’s post-test (* P<0.05, 
** P<0.01, N.S). 

Figure 1e Two-way ANOVA (column factor siRNA * P<0.05, 
row factor fasting ** P<0.01, interaction P value 
N.S). 

Bonferroni’s post-test (* P<0.05, 
** P<0.01, N.S). 

Figure 4 c Two-way ANOVA (column factor HD ** P<0.01, row 
factor fasting N.S, interaction P value N.S). 

Bonferroni’s post-test (** P<0.01, 
N.S). 

Figure 4 d Two-way ANOVA (column factor HD *** P<0.001, 
row factor fasting * P<0.05, interaction * P<0.05). 

Bonferroni’s post-test (** P<0.01, 
*** P<0.001, N.S). 

 

  



 

Table S2. List of patient-derived fibroblasts analysed in this study. 

 

Disease Catalogue number Ref in the paper 
HD GM04285 HD1 
 GM04287 HD 2 
 GM04476 HD 3 
 GM04867 HD 4 
 HD 940-01 HD 5 
 HD960-01 HD 6 
 HD305-01 HD 7 
DRPLA AT2140102 DRPLA 1 
 GM13716 DRPLA 2 
 GM13717 DRPLA 3 
SCA3 GM06151 SCA3 1 
 GM06153 SCA3 2 
SCA7 GM03561 SCA7 1 
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