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Abstract

We establish a version of Blackwell’s (1956) approachability result with dis-

counting. Our main result shows that, for convex sets, our notion of approacha-

bility with discounting is equivalent to Blackwell’s (1956) approachability. Our

proofs are based on a concentration result for probability measures and on the

minmax theorem for two-person, zero-sum games.
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1 Introduction

Blackwell’s (1956) approachability result gives, in repeated two-player games with

vector payoffs, a necessary and sufficient condition for each player to be able to guar-

antee that the average payoff is, with high probability and after sufficiently periods

have passed, close to a given convex set, independently of the strategy of the other

player and of the time period. Several extensions and variations of this result have

been given,1 but always for the case here payoffs are not discounted, i.e. the average

payoff is the arithmetic average of the payoffs received in the first n periods.2

The importance of no-discounting for Blackwell’s (1956) approachability result is

that this feature is critical for the use of the strong law of large numbers for martin-

gales, i.e. the applicability of this result does not extend to the case of discounting

(where the average payoff is the discounted average of the payoffs received in the first

n periods). Extending Blackwell’s (1956) approachability result to the discounted

case thus requires a different approach.

In this paper, we provide a version of Blackwell’s (1956) approachability result

for the case of discounting. We show that the necessary and sufficient condition for a

convex set to be approachable is also necessary and sufficient for a convex set to be

approachable with discounting.

Our proof is based on the following elementary ideas. First, McDiarmid’s (1998)

concentration result allows us to reduce the problem to showing that the expected

discounted average of payoffs (as opposed to the discounted average of realized payoffs)

is close to a given set. Second, player 1 (say) can always make sure that the expected

discounted average of payoffs belongs to a given convex set. This would give our

result except for the fact that, in general, player 1’s strategy depends on player 2’s

1See, among others, Hou (1969), Hou (1971), Vieille (1992), Spinat (2002), Lehrer and Solan

(2009), Shani and Solan (2014), Bauso, Lehrer, Solan, and Venel (2015), Lagziel and Lehrer (2015),

Perchet and Quincampoix (2015) and Fournier, Kuperwasser, Munk, Solan, and Weinbaum (2020).
2An exception is provided by Vieille (1992) (see its concluding remarks), who has shown that every

set is either weakly approachable or weakly excludable, both under discounting and no-discounting.

See also Flesch, Laraki, and Perchet (2018), who consider weak approachability in quitting games.
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strategy. However, the independence of player 1’s strategy from that of player 2

can be achieved by applying the minmax theorem to the two-person, zero-sum game

where player 1 seeks to minimize the expected distance of the discounted payoff to

the given convex set.

Blackwell’s (1956) approachability has found several applications in game theory,

namely on repeated two-person, zero-sum games (see, e.g., Zamir (1992)) and on

finitely repeated games with no discounting (see Gossner (1995)). In Barlo, Car-

mona, and Sabourian (2016), we have established a perfect monitoring Folk Theorem

with bounded memory strategies in infinitely repeated games with discounting using

a particular case of the main result established in the current paper. The approach-

ability results of this paper can also be used to (i) obtain a perfect monitoring Folk

Theorem with mixed strategies and finite automata in infinitely repeated games with

discounting and 2-players and (ii) obtain the punishment strategies in Hörner and

Lovo (2009).3

2 Approachability with discounting

We consider a setting similar to that of Blackwell (1956). There are two players,

1 and 2, who interact in every period t ∈ N = {1, 2, . . .}. In every such period,

player 1 chooses an action from a finite set A1 = {1, . . . , r}, with r ∈ N, and player

2 from A2 = {1, . . . , s} with s ∈ N. Players are allowed to randomize, i.e. choose

elements of ∆(A1) and ∆(A2) respectively.
4 As in Blackwell (1956), let P = ∆(A1)

and Q = ∆(A2).

Each player observes neither the mixed choice made by the other player nor (nec-

essarily) the realization. Instead, both players observe a public signal from a finite

3The proofs of these claims can be found in Sections B and C respectively. For the case of more

than two players Claim (i) regarding the Folk Theorem with mixed strategies also follows from Barlo,

Carmona, and Sabourian’s (2016) result with bounded recall; however, not only appealing to our

results in this paper makes the proof more direct, it also works for the case with two players.
4Throughout this paper ∆(Y ) will stand for the set of probability distributions over Y , when Y

is a finite set.
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subset X of RN , with N ∈ N.5 For each i ∈ A1 and j ∈ A2, let m(i, j) ∈ ∆(X)

be the probability distribution on X when player 1 chooses i and player 2 chooses

j. We let mx(i, j) denote the probability that the signal x is observed when players

choose (i, j), for each x ∈ X. As in Blackwell (1956), M denotes the r × s matrix

with generic element m(i, j), with 1 ≤ i ≤ r and 1 ≤ j ≤ s.

For any t ≥ 1, a t-stage public history is a sequence h = (x1, . . . , xt) ∈ X t (the

t-fold Cartesian product of X). The set of all t-stage public histories is denoted by

Ht = X t. We represent the initial (empty) public history by ∅ and let H0 = {∅}. The

set of all public histories is defined by H =
⋃

t∈N0
Ht.

A (behavior, public) strategy for player i ∈ {1, 2} is a function fi : H → ∆(Ai)

mapping public histories into mixed actions. The set of player i’s strategies is denoted

by Fi, and F = F1 × F2. We let f denote a generic element of F1 and g a generic

element of F2. Given (f, g) ∈ F , h ∈ H, i ∈ A1 and j ∈ A2, fi(h) denotes the

probability that action i is played by player 1 and gj(h) denotes the probability that

action j is played by player 2.

Given a strategy (f, g) ∈ F , for each t ∈ N, x ∈ X and (x1, . . . , xt) ∈ X t, let

βx(x1, . . . , xt; f, g) =
r∑

i=1

s∑
j=1

fi(x1, . . . , xt)gj(x1, . . . , xt)mx(i, j)

be the probability of x after public history (x1, . . . , xt) has occurred. Furthermore, let

βx(∅; f, g) =
∑r

i=1

∑s
j=1 fi(∅)gj(∅)mx(i, j). When it is clear from the context what

the strategy (f, g) is, we simplify the notation and write βx(x1, . . . , xt) instead of

βx(x1, . . . , xt; f, g).

A strategy (f, g) ∈ F induces, for each t ∈ N, a probability measure P(f,g),t

on X t and a probability measure π(f,g),t on X as follows. For each x ∈ X = X1,

P(f,g),1(x) = π(f,g),1(x) = βx(∅). Assuming that P(f,g),1, π(f,g),1, . . . , P(f,g),t−1, π(f,g),t−1

have been defined, then

P(f,g),t(x1, . . . , xt) = P(f,g),t−1(x1, . . . , xt−1)βxt(x1, . . . , xt−1)

5We depart from Blackwell (1956) in the assumption that X is finite since, in that paper, X is

assumed to be a compact convex subset of RN .
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for all (x1, . . . , xt) ∈ X t and

π(f,g),t(x) =
∑

(x1,...,xt−1)∈Xt−1

P(f,g),t(x1, . . . , xt−1, x)

for each x ∈ X. Moreover, (f, g) ∈ F induces a probability measure P(f,g),∞ on X∞

in the standard way, namely, such that

P(f,g),∞(E ×X ×X × · · · ) = P(f,g),t(E) (1)

for each E ⊆ X t.

Let || · || denote a norm on RN and, for each x ∈ RN and S ⊆ RN , let d(x, S) =

infy∈S ||x− y||. We now recall Blackwell’s (1956) notion of approachability.

Definition 1 (Approachability) A subset S of RN is approachable if there exists

f ∈ F1 such that, for every ε > 0, there exists T ∈ N such that, for every g ∈ F2,

P(f,g),∞

({
(x1, x2, . . .) ∈ X∞ : d

(
1

t

t∑
k=1

xk, S

)
≥ ε for some t ≥ T

})
< ε.

Our notion of approachability with discounting is as follows.

Definition 2 (Approachability with discounting) A subset S of RN is approach-

able with discounting if, for each δ ∈ (0, 1), there exists fδ ∈ F1 such that, for each

ε > 0, there exists δ∗ ∈ (0, 1) such that, for every δ ≥ δ∗, there exists T ∈ N such

that, for every g ∈ F2,

P(fδ,g),∞

({
(x1, x2, . . .) ∈ X∞ : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε for some t ∈ {T, . . . ,∞}

})
< ε.

The above notion of approachability with discounting is analogous to the one

given in Blackwell (1956), with 1−δ
1−δt

∑t
k=1 δ

k−1xk in place of 1
t

∑t
k=1 xk. Thus, while

Blackwell’s (1956) notion consider roughly the case δ = 1, ours covers the case of δ

sufficiently close but different than 1. As Blackwell’s (1956) approachability, in the

above definition, while T depends on both δ and ε, fδ depends only on δ and not on

ε. Also note that approachability with discounting concerns not just sufficiently large

finite discounted averages of signals (when t ≥ T is finite) but also infinity discounted

averages of signals (when t = ∞).
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Note that if S ⊆ RN is approachable then there exists f ∈ F1 such that, for each

ε > 0, there exists T ∈ N such that, for each t ≥ T , there exists δ∗(t) ∈ (0, 1) with

P(f,g),t

({
d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

})
< ε

for each δ ≥ δ∗(t) and g ∈ F2. This conclusion follows easily because, for each

t ∈ N, limδ→1
1−δ
1−δt

∑t
k=1 δ

k−1xk = 1
t

∑t
k=1 xk uniformly on (x1, . . . , xt) ∈ X t. But

the requirement of our notion of approachability with discounting is to find some

sufficiently large δ∗ ∈ (0, 1) such that, for each δ ≥ δ∗, 1−δ
1−δt

∑t
k=1 δ

k−1xk is close to

S with high probability uniformly on g ∈ F2 and on all sufficiently large t. But this

does not follow immediately from the definition of approachability.6

In some applications, our notion of approachability with discounting case may

not be so user friendly as the minimum length of time T depends on the value of

δ. For example to establish Folk theorems for repeated games, one typically requires

a player to be able to guarantee that, with a sufficiently high probability, the dis-

counted average of realized signals be close to a given set when the discount factor δ

is sufficiently high and the discounted average is for some sufficiently long length t(δ)

periods (e.g. Hörner and Lovo (2009)). The above notion of approachability however

is for all t ≥ T . Hence, it is not possible to apply our definition of approachability

with discounting to such set-ups unless the length of time t(δ) required for the Folk

theorem to be at least the length of time T (which also depends on δ) allowed by

approachability with discounting.

The following notion of (δ, t)-approachability sidesteps this issue by focusing on

a finite horizon t and by considering a bound on the probability of the discounted

average of realized signals being within ε of a given set that depends explicitly on δ

6Approachability implies our notion of approachability with discounting if the following claim

were to hold: For each ε > 0, there exists δ∗ ∈ (0, 1) such that, for each δ ≥ δ∗, there exists T ∈ N

such that, for each (x1, x2, . . .) ∈ X∞ and t ≥ T ,∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk − 1

t

t∑
k=1

xk

∥∥∥∥∥ < ε.

But we cannot guarantee this.
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and t. For each δ ∈ (0, 1) and t ∈ N, let

b(δ, t) =
1− δ

1 + δ

1 + δt

1− δt
.

Definition 3 ((δ, t)-approachability) Given δ ∈ (0, 1) and t ∈ N, a subset S of

RN is (δ, t)-approachable if there exists f ∈ F1 such that, for each ε > 0 and g ∈ F2,

P(f,g),t

({
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

})
<

(
M

ε
− ε

)
ce−

dε4

b(δ,t)+ε

where c, d,M > 0 depend only on X and S.

Simple calculation shows that lim(δ,t)→(1,∞) b(δ, t) = 0 (see Lemma 2 in the Ap-

pendix). Hence, if a set S ⊆ RN is (δ, t)-approachable for each δ ∈ (0, 1) and t ∈ N,

then for each ε > 0, there exists δ∗ ∈ (0, 1) and T ∈ N such that, for every δ ≥ δ∗,

t ≥ T there exists fδ,t ∈ F1 such that for all g ∈ F2,

P(fδ,t,g),t

({
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

})
< ε.

Note that in some important cases (e.g. Theorem 3 below) the strategy fδ,t in the

above expression can be made independent of δ and t.

Our main result characterizes the convex subsets of RN that are approachable.

This characterization uses the following notion.

Definition 4 (Securability) A subset S of RN is securable if, there exists c, d > 0

such that, for each g ∈ F2, there exists f ∈ F1 such that, for each ε > 0, t ∈ N and

δ ∈ (0, 1),

P(f,g),t

({
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

})
< ce−

dε2

b(δ,t) .

The usefulness of securability is seen in the following result that shows that it

implies approachability with discounting and (δ, t)-approachability for each δ ∈ (0, 1)

and t ∈ N.

Theorem 1 If S ⊆ RN is securable, then S is approachable with discounting and

(δ, t)-approachable for each δ ∈ (0, 1) and t ∈ N.
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The proof of Theorem 1 as well as the other ones in this section rely on the

following concentration result that may have interest in its own right.

Lemma 1 For any (f, g) ∈ F , ε > 0, δ ∈ (0, 1) and t ∈ N,

P(f,g),t (Sδ,t,ε) ≤ |X|e−
2ε2

B2b(δ,t) ,

where

Sδ,t,ε =

{
(x1, . . . , xt) ∈ X t :

∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk −
1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x

∥∥∥∥∥ ≥ ε

}

and B = |X|maxx∈X ||x||.

Since lim(δ,t)→(1,∞) b(δ, t) = 0, Lemma 1 shows that the discounted sum of the

realization of signals is close to its expected discounted sum with a probability close

to one when δ is close to one and t is close to infinity. In other words, the distribution

of the discounted sum of signals is concentrated around its expected value.

Theorem 2 below characterizes the convex subset of an Euclidean space that

are approachable with discounting. In addition, it shows that all the notions we

considered in this paper — approachability, approachability with discounting, (δ, t)-

approachability for each δ and t, and securability — are equivalent.

It uses the following notation: For each i ∈ A1 and j ∈ A2, let m̄(i, j) =∑
x∈X xmx(i, j) be the expected value of x with respect to m(i, j) and, for each

q ∈ Q, let

T (q) = co

{
s∑

j=1

qjm̄(1, j), . . . ,
s∑

j=1

qjm̄(r, j)

}
.

Theorem 2 Let S ⊆ RN be closed and convex. Then the following are equivalent:

1. S ∩ T (q) 6= ∅ for each q ∈ Q.

2. S is approachable.

3. S is approachable with discounting.

4. S is (δ, t)-approachable for each δ ∈ (0, 1) and t ∈ N.
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5. S is securable.

For each p ∈ P , let

R(p) = co

{
r∑

i=1

pim̄(i, 1), . . . ,
r∑

i=1

pim̄(i, s)

}
.

We have that R(p)∩ T (q) 6= ∅; hence, R(p) is approachable with discounting. In this

case, we obtain a stronger conclusion, namely that player 1’s strategy can be taken

to be identically equal to p and, in particular, independent of δ.

Theorem 3 If R(p) ⊆ S for some p ∈ P and f ≡ p, then, for every ε > 0, there

exists δ∗ ∈ (0, 1) and T ∗ ∈ N such that, for every δ ≥ δ∗, t ≥ T ∗ and g ∈ F2,

P(f,g),t

({
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

})
< ε.

In addition, for every δ ≥ δ∗, there exists T ∈ N such that, for every g ∈ F2,

P(f,g),∞

({
(x1, x2, . . .) ∈ X∞ : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε for some t ∈ {T, . . . ,∞}

})
< ε.

Theorem 3 is analogous to Corollary 1 in Blackwell (1956). As in the latter, R(p),

and therefore any superset of it, is approachable with discounting for each p ∈ P

using the constant strategy f ≡ p. However, we note that Theorem 3 does not follow

from Blackwell’s (1956) Corollary 1 for the same reason why approachability with

discounting does not follows from approachability.

We also note here that our approach uses the minmax theorem for two-person,

zero-sum games which is applied to the game where player 1 seeks to minimize the

expected distance of the infinitely discounted sum of realized public signals to a given

set S using a repeated game strategy. Despite this latter feature, the game is a one-

shot game. Consequently, our approach is not based on Zamir’s (1992) results for

repeated two-person, zero-sum games.
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A Appendix

A.1 Lemmas

In this section, we state and prove some useful lemmas. We start with the proof of

Lemma 1, which uses a concentration result from probability theory.

Proof of Lemma 1. Let (f, g) ∈ F , ε > 0, δ ∈ (0, 1) and t ∈ N be given. For

each x ∈ X, define

Fx(x1, . . . , xt) =
1− δ

1− δt

t∑
k=1

δk−1 (1x(xk)− βx(x1, . . . , xk−1))

for each (x1, . . . , xt) ∈ X t. We first argue that it suffices to show that

P(f,g),t

(
|Fx(x1, . . . , xt)| ≥

ε

B

)
≤ e

− 2ε2

B2b(δ,t) for each x ∈ X. (2)

Indeed, we have that∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk −
1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x

∥∥∥∥∥ =∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

x1x(xk)−
1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x

∥∥∥∥∥ =∥∥∥∥∥∑
x∈X

x

(
1− δ

1− δt

t∑
k=1

δk−11x(xk)−
1− δ

1− δt

t∑
k=1

δk−1βx(x1, . . . , xk−1)

)∥∥∥∥∥ =∥∥∥∥∥∑
x∈X

xFx(x1, . . . , xt)

∥∥∥∥∥ ≤
∑
x∈X

||x|| |Fx(x1, . . . , xt)| .

Hence,{
(x1, . . . , xt) ∈ X t :

∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk −
1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x

∥∥∥∥∥ ≥ ε

}
⊆
⋃
x∈X

{
(x1, . . . , xt) ∈ X t : |Fx(x1, . . . , xt)| ≥

ε

B

}
and, therefore, if (2) holds, then

P(f,g),t

(∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk −
1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x

∥∥∥∥∥ ≥ ε

)
≤ |X|e−

2ε2

B2b(δ,t) .
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By the above, in the remaining of this proof, we establish (2). Fix x ∈ X. For

convenience, for each 1 ≤ k ≤ t, we write Pk (resp. πk) instead of P(f,g),k (resp.

π(f,g),k). First, note that

E(Fx) =
1− δ

1− δt

t∑
k=1

δk−1

πk(x)−
∑

(x1,...,xk−1)∈Xk−1

Pk(x1, . . . , xk−1)βx(x1, . . . , xk−1)


=

1− δ

1− δt

t∑
k=1

(πk(x)− πk(x)) = 0.

Next, fix k ∈ {1, . . . , t} and x̂1, . . . , x̂k−1 ∈ Xk−1. Let Bk = {(x1, . . . , xt) ∈ X t :

xi = x̂i for all i = 1, . . . , k − 1} and, for each x′ ∈ X,

gk(x
′) = E(Fx(x1, . . . , xt)|Bk, xk = x′)− E(Fx(x1, . . . , xt)|Bk).

Furthermore, let ran(x̂1, . . . , x̂k−1) = sup{|gk(x′)− gk(x̄)| : x′, x̄ ∈ X}. We have that,

for each x′ ∈ X and l ∈ {k + 1, . . . , t},

E(1x(xl)− βx(x1, . . . , xl−1)|Bk, xk = x′) = 0 (3)

since

E(1x(xl)|Bk, xk = x′) =∑
(xk+1,...,xl−1)

l−1∏
n=k+1

βxn(x̂1, . . . , x̂k−1, x
′, . . . , xn−1)βx(x̂1, . . . , x̂k−1, x

′, xk+1, . . . , xl−1) =

E(βx(x1, . . . , xl−1)|Bk, xk = x′).

Hence, it follows from (3) that

|gk(x′)− gk(x̄)| =
∣∣∣∣ 1− δ

1− δt
δk−1 (1x(x

′)− 1x(x̄))

∣∣∣∣
and, hence,

ran(x̂1, . . . , x̂k−1) =
1− δ

1− δt
δk−1.

For each (x̂1, . . . , x̂t) ∈ X t, let R2(x̂1, . . . , x̂t) =
∑t

k=1(ran(x̂1, . . . , x̂k−1))
2 and

r̂2 = sup
(x̂1,...,x̂t)∈Xt

R2(x̂1, . . . , x̂t).
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Thus, we obtain that

R2(x̂1, . . . , x̂t) =

(
1− δ

1− δt

)2 t∑
k=1

δ2(k−1)

and, hence,

r̂2 =

(
1− δ

1− δt

)2 t∑
k=1

δ2(k−1) =
(1− δ)2

(1− δt)2
1− δ2t

1− δ2
=

1− δ

1 + δ

1 + δt

1− δt
= b(δ, t).

It follows by Theorem 3.7 in McDiarmid (1998) that

P(f,g),t

(
|Fx(x1, . . . , xt)| ≥

ε

B

)
≤ e

− 2ε2

B2b(δ,t) ,

as desired. This completes the proof.

Lemma 2 lim(δ,t)→(1,∞) b(δ, t) = 0.

Proof. Let {(δn, tn)}∞n=1 be a sequence in (0, 1)× N such that (δn, tn) → (1,∞).

As 0 ≤ δtnn ≤ 1 for each n ∈ N, taking a subsequence if necessary, we may assume

that {δtnn }∞n=1 converges; let α = limn δ
tn
n ∈ [0, 1]. When α 6= 1, it is clear that

limn b(δn, tn) = 0. Thus, assume that α = 1.

Let ε > 0 and pick T ∈ N such that 1/T < ε. Thus, for each n sufficiently large,

tn > T and, therefore,

0 ≤ 1− δn
1− δtnn

≤ 1− δn
1− δTn

→ 1

T
< ε.

Thus, limn
1−δn
1−δtnn

= 0 and, because (1+δtnn )/(1+δn) → 1, it follows that limn b(δn, tn) =

0.

Corollary 1 For each γ > 0, there exists δγ ∈ (0, 1) and Tγ ∈ N such that δ ≥ δγ

and t ≥ Tγ imply that

|X|e−
2ε2

B2b(δ,t) < γ.

Proof. Indeed, if η > 0 is such that b(δ, t) < η implies that |X|e−
2ε2

B2b(δ,t) < γ, then

use Lemma 2 to obtain δγ and Tγ.

It follows by Lemmas 1 and 2 that we can focus on the expected discounted sum

of signals 1−δ
1−δt

∑t
k=1 δ

k−1
∑

x∈X βx(x1, . . . , xk−1)x instead of the discounted sum of the

realized signals 1−δ
1−δt

∑t
k=1 δ

k−1xk. That this is convenient is shown in the following

three lemmas.

12



Lemma 3 If f ≡ p, then

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ R(p)

for all t ∈ N, (x1, . . . , xt) ∈ X t, δ ∈ (0, 1) and g ∈ F2.

Proof. Let t ∈ N, (x1, . . . , xt) ∈ X t, δ ∈ (0, 1) and g ∈ F2 be given. The definition

of f implies that, for each 1 ≤ k ≤ t,

∑
x∈X

βx(x1, . . . , xk−1)x =
s∑

j=1

gj(x1, . . . , xk−1)
r∑

i=1

pim̄(i, j) ∈ R(p).

Hence, as R(p) is convex and 1−δ
1−δt

∑t
k=1 δ

k−1 = 1,

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ R(p).

This concludes the proof.

The following lemma is analogous to Lemma 3.

Lemma 4 If g ≡ q, then

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ T (q)

for all t ∈ N, (x1, . . . , xt) ∈ X t, δ ∈ (0, 1) and f ∈ F1.

Lemma 5 Let S ⊆ RN be convex and such that S ∩ T (q) 6= ∅ for each q ∈ Q. Then,

for each g ∈ F2, there exists f ∈ F1 such that

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ S

for all t ∈ N, (x1, . . . , xt) ∈ X t and δ ∈ (0, 1).

Proof. Let g ∈ F2 be given. For each t ∈ N and (x1, . . . , xt) ∈ X t, there exists

z ∈ S ∩ T (g(x1, . . . , xt)). Hence, for some p ∈ P ,

z =
r∑

i=1

pi

s∑
j=1

gj(x1, . . . , xt)m̄(i, j).
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Define f(x1, . . . , xt) = p.

Fix t ∈ N, (x1, . . . , xt) ∈ X t and δ ∈ (0, 1). The definition of f implies that, for

each 1 ≤ k ≤ t,

∑
x∈X

βx(x1, . . . , xk−1)x =
r∑

i=1

fi(x1, . . . , xk−1)
s∑

j=1

gj(x1, . . . , xk−1)m̄(i, j) ∈ S.

Hence, as S is convex and 1−δ
1−δt

∑t
k=1 δ

k−1 = 1,

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ S.

This concludes the proof.

The following simple lemma is used in the proof of our results.

Lemma 6 For each ε > 0 and δ ∈ (0, 1), there exits T ∈ N such that, for each t ≥ T

and (x1, . . . , xt) ∈ X t,∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk − (1− δ)
∞∑
k=1

δk−1xk

∥∥∥∥∥ < ε.

Proof. Let B = maxx∈X ||x||, and pick T such that 2BδT < ε. We then have

that, for each t ≥ T ,∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk − (1− δ)
∞∑
k=1

δk−1xk

∥∥∥∥∥ ≤

B(1− δ)

∣∣∣∣∣
(
1− 1

1− δt

) t∑
k=1

δk−1

∣∣∣∣∣+B(1− δ)
∞∑

k=t+1

δk−1 =

B(1− δ)
δt

1− δt
1− δt

1− δ
+Bδt = 2Bδt < ε.
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A.2 Proof of Theorem 1

First, some additional notation. For each δ ∈ (0, 1), t ∈ N and ε > 0, let

Aδ,t,ε =

{
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

}
,

Ãδ,t,ε =

{
(x1, x2, . . .) ∈ X∞ : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

}
and

Aδ,ε =

{
(x1, x2, . . .) ∈ X∞ : d

(
(1− δ)

∞∑
k=1

δk−1xk, S

)
≥ ε

}
.

A.2.1 Securability implies approachability with discounting

Let S ⊆ RN be securable. We show that S is approachable with discounting in several

steps.

(I) S being securable implies that, for each g ∈ F2, there exists f ∈ F1 such that,

for each ε > 0 and δ ∈ (0, 1),

P(f,g),∞(Aδ,ε) < ce−
d′ε2
1−δ

where d′ = d(1 + δ)/8.

Indeed, fix g ∈ F2 and let f ∈ F1 be given by the definition of securability. Let

ε > 0 and δ ∈ (0, 1) be given. Then

P(f,g),t

(
Aδ,t,ε/2

)
< ce−

dε2

4b(δ,t) .

Let T be given by Lemma 6 with ε/2 in place of ε and T ′ > T be such that

ce
− dε2

4b(δ,T ′) < ce−
dε2(1+δ)
8(1−δ) ;

such T ′ exists since limt→∞ b(δ, t) = (1 − δ)/(1 + δ) and ce−
dε2(1+δ)
4(1−δ) < ce−

dε2(1+δ)
8(1−δ) . It

then follows that Aδ,ε ⊆ Ãδ,T ′,ε/2 and, therefore,

P(f,g),∞(Aδ,ε) ≤ P(f,g),∞(Ãδ,T ′,ε/2) = P(f,g),T ′(Aδ,T ′,ε/2) < ce
− dε2

4b(δ,T ′) < ce−
dε2(1+δ)
8(1−δ) .

(II) For each δ ∈ (0, 1), the function vδ : X∞ → R defined by setting, for each

x∞ ∈ X∞,

vδ(x
∞) = d((1− δ)

∞∑
k=1

δk−1xk, S)
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is continuous and bounded.

Let M > 1 be such that vδ(x
∞) ≤ M for each δ ∈ (0, 1) and x∞ ∈ X∞. That

such M exists follows because vδ(x
∞) ≤ maxx∈co(X) d(x, S) for each δ ∈ (0, 1) and

x∞ ∈ X∞; as co(X) is compact and the function x 7→ d(x, S), mapping co(X) into

R is continuous and bounded, then maxx∈co(X) d(x, S) < ∞.

We note here for later use that vδ is continuous since the function x∞ 7→ (1 −

δ)
∑∞

k=1 δ
k−1xk, from X∞ to co(X), is continuous and, as noted already, so is the

function x 7→ d(x, S).

(III) S being securable implies that:

For each g ∈ F2, there exists f ∈ F1 such that, for each ε > 0 and δ ∈ (0, 1),∫
X∞

vδdP(f,g),∞ < (M − ε)ce−
d′ε2
1−δ + ε.

(4)

Indeed, fix g ∈ F2 and let f ∈ F1 be given by (I). Let ε > 0 and δ ∈ (0, 1) be given.

Noting that {vδ ≥ ε} = Aδ,t,ε, it follows that∫
X∞

vδdP(f,g),∞ < Mce−
d′ε2
1−δ + ε(1− ce−

d′ε2
1−δ ).

(IV) S is approachable with discounting if the following condition holds:

For each δ ∈ (0, 1), there exists f ∈ F1 such that, for each ε > 0, there exists

δ∗ ∈ (0, 1) such that, for each δ ≥ δ∗ and g ∈ F2, P(f,g),∞(Aδ,ε) < ε.
(5)

Indeed, for each δ ∈ (0, 1), let f ∈ F1 be given by (5). Let ε > 0 be given and

let δ∗ ∈ (0, 1) be obtained from condition (5) corresponding to ε/2. Let δ ≥ δ∗ and

let T ∈ N be given by Lemma 6 corresponding to δ and ε/2. We then have that

(
⋃∞

t=T Ãδ,t,ε) ∪ Aδ,ε ⊆ Aδ,ε/2, implying that, for each g ∈ F2,

P(f,g),∞((
∞⋃
t=T

Ãδ,t,ε) ∪ Aδ,ε) ≤ P(f,g),∞(Aδ,ε/2) < ε/2 < ε.

(V) S is approachable with discounting if the following condition holds:

For each δ ∈ (0, 1), there exists f ∈ F1 such that, for each ε > 0, there exists

δ∗ ∈ (0, 1) such that, for each δ ≥ δ∗ and g ∈ F2,

∫
X∞

vδdP(f,g),∞ < ε.
(6)
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This step holds because we can show that condition (6) implies (5): For each δ ∈

(0, 1), let f be given by (6). Let ε > 0 be given and δ∗ ∈ (0, 1) be obtained from (6)

corresponding to ε2. Thus, for each δ ≥ δ∗ and g ∈ F2,

P(f,g),∞ (Aδ,ε) = P(f,g),∞ ({vδ ≥ ε}) ≤
∫
X∞ vδdP(f,g),∞

ε
<

ε2

ε
= ε.

(VI) Condition (4) implies condition (6).

Fix δ ∈ (0, 1) and consider the following two-person zero-sum game G: Players are

N = {1, 2} and player i’s strategy space is the set Σi of Borel probability measures

over pure strategies fi : H → Ai; since H is countable and Ai is finite, the set of pure

strategies of player i, AH
i endowed with the product topology, is a compact metric

space. As for payoffs: Letting Fp ⊆ F denote the set of pure strategy profiles, player

1’s payoff function is û : Fp → R defined by setting, for each (f, g) ∈ Fp,

û(f, g) = −
∫
X∞

vδdP(f,g),∞;

u : Σ → R is the mixed extension of û: u(σ1, σ2) =
∫
Fp

ûd(σ1×σ2) for each (σ1, σ2) ∈

Σ = Σ1 × Σ2.

We have that û is continuous. Fix (f, g) ∈ Fp and (fk, gk) → (f, g). Note first

that X∞ is a compact metrizable space when endowed with the product topology.

Letting M(X∞) denote the set of Borel probability measures on X∞, we have that

M(X∞) is a compact metric space when endowed with the narrow topology.

We have that P(fk,gk),∞ → P(f,g),∞. Since M(X∞) is a compact metric space,

we may assume that the sequence {P(fk,gk),∞}∞k=1 converges; let Ψ = limk P(fk,gk),∞.

Fix t ∈ N and B ⊆ X t. As X t is finite, the function 1B×X×X×··· : X
∞ → {0, 1} is

continuous. Thus,

Ψ(B ×X ×X × · · · ) =
∫
X∞

1B×X×X×···dΨ = lim
k

∫
X∞

1B×X×X×···dP(fk,gk),∞ =

lim
k

P(fk,gk),∞(B ×X ×X × · · · ) = lim
k

P(fk,gk),t(B) = P(f,g),t(B) =

P(f,g),∞(B ×X ×X × · · · ),

from which Ψ = P(f,g),∞ follows. The continuity of û now follows since vδ is continuous

and bounded by (II); indeed,

û(fk, gk) =

∫
X∞

vδdP(fk,gk),∞ →
∫
X∞

vδdP(f,g),∞ = û(f, g).
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The Minmax Theorem (see Mertens (1986, p. 237)) implies that

max
σ1∈Σ1

min
σ2∈Σ2

u(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u(σ1, σ2).

Kuhn’s Theorem (for infinite extensive-form games as in Aumann (1964) or for

finite extensive-form games as in Kuhn (1953) and Selten (1975), the latter together

with Lemma 6) implies that

max
f∈F1

min
g∈F2

u(f, g) = min
g∈F2

max
f∈F1

u(f, g).

Hence, let fδ ∈ F1 be such that ming∈F2 u(fδ, g) = maxf∈F1 ming∈F2 u(f, g).

Let ε > 0 be given. Now if (4) holds, then

min
g∈F2

max
f∈F1

u(f, g) > −
[(

M − ε

2

)
ce−

d′ε2
4(1−δ) +

ε

2

]
and, hence,

−
∫
X∞

vδdP(fδ,g),∞ ≥ min
g∈F2

u(fδ, g) > −
[(

M − ε

2

)
ce−

d′ε2
4(1−δ) +

ε

2

]
.

Since limδ→1

[(
M − ε

2

)
ce−

d′ε2
4(1−δ) + ε

2

]
= ε

2
< ε, there exists δ∗ ∈ (0, 1) such that, for

each δ ≥ δ∗ and g ∈ F2, ∫
X∞

vδdP(f∗,g),∞ < ε.

This establishes the condition (6) and concludes the proof.

A.2.2 Securability implies (δ, t)-approachability for each δ and t

Let S ⊆ RN be securable. We show that S is (t, δ)-approachable for each δ ∈ (0, 1)

and t ∈ N in several steps, analogous to the ones in Section A.2.1. Let δ ∈ (0, 1) and

t ∈ N.

(I) S being securable implies that, for each g ∈ F2, there exists f ∈ F1 such that,

for each ε > 0, P(f,g),t(Aδ,t,ε) < ce−
dε2

b(δ,t) .

(II) For each δ ∈ (0, 1) and t ∈ N, the function vδ,t : X
t → R defined by setting,

for each xt ∈ X t,

vδ,t(x
t) = d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
.
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is continuous and bounded. This is clear since X t is finite.

(III) S being securable implies that:

For each g ∈ F2, there exists f ∈ F1 such that, for each ε > 0, t ∈ N and δ ∈ (0, 1),∫
Xt

vδ,tdP(f,g),t < (M − ε)ce−
dε2

b(δ,t) + ε.
(7)

(IV) S is (δ, t)-approachable if the following condition holds:

There exists f ∈ F1 such that, for each ε > 0 and g ∈ F2,∫
Xt

vδ,tdP(f,g),t < (M − ε)ce−
dε2

b(δ,t) + ε.
(8)

Indeed, for each given ε > 0 and g ∈ F2, using (8) with ε2 in place of ε, it follows

that

P(f,g),t (Aδ,t,ε) = P(f,g),t ({vδ,t ≥ ε}) ≤
∫
Xt vδ,tdP(f,g),t

ε

<
(M − ε2)ce−

dε4

b(δ,t) + ε2

ε
=

(
M

ε
− ε

)
ce−

dε4

b(δ,t) + ε.

(V) Condition (7) implies condition (8).

Fix δ ∈ (0, 1) and consider the following two-person zero-sum game G: Players

are N = {1, 2} and player i’s strategy space is the set Σi of probability measures

over pure strategies fi : ∪t−1
k=0Hk → Ai; since X and Ai are finite, the set of pure

strategies of player i is also finite. As for payoffs: Letting Fp ⊆ F denote the set of

pure strategy profiles, player 1’s payoff function is û : Fp → R defined by setting, for

each (f, g) ∈ Fp,

û(f, g) = −
∫
Xt

vδ,tdP(f,g),t;

u : Σ → R is the mixed extension of û: u(σ1, σ2) =
∫
Fp

ûd(σ1×σ2) for each (σ1, σ2) ∈

Σ = Σ1 × Σ2. Clearly, û is continuous.

The Minmax Theorem (see Mertens (1986, p. 237))implies that

max
σ1∈Σ1

min
σ2∈Σ2

u(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u(σ1, σ2).

Kuhn’s Theorem implies that

max
f∈F1

min
g∈F2

u(f, g) = min
g∈F2

max
f∈F1

u(f, g).
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Hence, let f ∗ ∈ F1 be such that ming∈F2 u(f
∗, g) = maxf∈F1 ming∈F2 u(f, g).

Let ε > 0 be given. By (7),

min
g∈F2

max
f∈F1

u(f, g) > −
[
(M − ε)ce−

dε2

b(δ,t) + ε

]
and, hence,

−
∫
Xt

vδ,tdP(f∗,g),t ≥ min
g∈F2

u(f ∗, g) > −
[
(M − ε)ce−

dε2

b(δ,t) + ε

]
.

Thus, for each g ∈ F2, ∫
Xt

vδ,tdP(f∗,g),t < (M − ε)ce−
dε2

b(δ,t) + ε.

This establishes the condition (8) and concludes the proof.

A.3 Proof of Theorem 2

Theorem 3 in Blackwell (1956) shows that condition 1 in Theorem 2 is equivalent to

condition 2. Furthermore, in light of Theorem 1, it suffices to show that condition

1 implies condition 5 and that condition 1 is implied by condition 3 and also by

condition 4.

A.3.1 Proof that S ∩ T (q) 6= ∅ for each q ∈ Q implies that S is securable

Let S ⊆ RN be convex and such that S ∩T (q) 6= ∅ for each q ∈ Q. Define let c = |X|

and d = 2/B2 (recall that B = |X|maxx∈X ||x||). Fix g ∈ F2. Lemma 5 implies that

there exists f ∈ F1 such that

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ S

for all t ∈ N, (x1, . . . , xt) ∈ X t and δ ∈ (0, 1). Then, for each ε > 0, δ ∈ (0, 1) and

t ∈ N, Lemma 1 implies that

P(f,g),t

({
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, S

)
≥ ε

})
< ce−

dε2

b(δ,t) .
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A.3.2 Proof that S ∩ T (q) 6= ∅ for each q ∈ Q is implied by S being ap-

proachable with discounting and by S being (δ, t)-approachable for

each δ ∈ (0, 1) and t ∈ N

Let S be closed and convex be such that S ∩ T (q) = ∅ for some q ∈ Q. Let g ≡ q; it

then follows by Lemma 4 that

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ T (q)

for each δ ∈ (0, 1), t ∈ N, f ∈ F1, and (x1, . . . , xt) ∈ X t. Since S ∩ T (q) = ∅, then

d(z, S) > 0 for all z ∈ T (q) and, since T (q) is compact, then minz∈T (q) d(z, S) > 0.

Let η = min{1,minz∈T (q) d(z, S)}/2 > 0.

Let, for convenience,

Cδ,t,η =

{
(x1, . . . , xt) ∈ X t :

∥∥∥∥∥ 1− δ

1− δt

t∑
k=1

δk−1xk −
1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x

∥∥∥∥∥ < η

}
.

Then Cδ,t,η ⊆ Aδ,t,η since 2η ≤ minz∈T (q) d(z, S) and P(f,g),t (Cδ,t,η) ≥ 1− |X|e−
2η2

B2b(δ,t)

by Lemma 1.

Fix ε > 0 and let δ∗ = δmin{ε,η} and T = Tmin{ε,η} be given by Corollary 1 with

min{ε, η} in place of γ. Fix δ ≥ δ∗ and t ≥ T . If η ≥ ε, then

P(f,g),t (Aδ,t,η) ≥ P(f,g),t (Cδ,t,η) ≥ 1− |X|e−
2η2

B2b(δ,t) ≥ 1− |X|e−
2ε2

B2b(δ,t) > 1− ε;

if η < ε, then

P(f,g),t (Aδ,t,η) ≥ P(f,g),t (Cδ,t,η) ≥ 1− |X|e−
2η2

B2b(δ,t) > 1− η > 1− ε.

Hence, P(f,g),t (Aδ,t,η) > 1− ε for each f ∈ F1, δ ≥ δ∗ and t ≥ T .

Using the above, we next show that S is neither approachable with discounting

nor (δ, t)-approachable for each δ ∈ (0, 1) and t ∈ N. Note first that, as above, we

may choose η < 1. Let ε > 0 be such that η < 1− ε.

If S were to be approachable with discounting, then, for some δ ≥ δ∗, f ∈ F1 and

t ≥ T , we would have that Pf,g,t(Aδ,t,η) < η < 1 − ε, contradicting what has been

shown above. Thus, S is not approachable with discounting.
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If S were to be (δ, t)-approachable for each δ ∈ (0, 1) and t ∈ N, then, for each

δ ∈ (0, 1) and t ∈ N, there exists f ∈ F1 such that Pf,g,t(Aδ,t,η) < (M/η−η)ce−
dη4

b(δ,t)+η.

Let, by Lemma 2, δ ≥ δ∗ and t ≥ T be such that (M/η − η)ce−
dη4

b(δ,t) + η < 1 − ε.

Hence, Pf,g,t(Aδ,t,η) < 1 − ε, contradicting what has been shown above. Thus, S is

not (δ, t)-approachable.

A.4 Proof of Theorem 3

Let p ∈ P be such that R(p) ⊆ S and f ≡ p. Fix ε > 0 and let δ∗ = δε/3 and

T ∗ = Tε/3 be given by Corollary 1 with ε/3 in place of γ. Thus, for each δ ≥ δ∗,

t ≥ T ∗ and g ∈ F2, Lemma 3 implies that

1− δ

1− δt

t∑
k=1

δk−1
∑
x∈X

βx(x1, . . . , xk−1)x ∈ R(p) ⊆ S

for all (x1, . . . , xt) ∈ X t. Hence, Lemma 1 implies that P(f,g),t

(
Aδ,t,ε/3

)
< ε/3 and

that

P(f,g),t (Aδ,t,ε) < ce−
dε2

b(δ,t) < ce−
d(ε/3)2

b(δ,t) <
ε

3
< ε.

In addition, fix δ ≥ δ∗ and let T > T ∗ be given by Lemma 6 corresponding to ε/3

and δ. We then have that Aδ,ε ⊆ Ãδ,T,ε/3 and
⋃∞

t=T Ãδ,t,ε ⊆ Ãδ,T,ε/3. Thus, for each

g ∈ F2,

P(f,g),∞((
∞⋃
t=T

Ãδ,t,ε) ∪ Aδ,ε) ≤ P(f,g),∞(Ãδ,T,ε/3) = P(f,g),T (Aδ,T,ε/3) <
ε

3
< ε.

B Folk Theorem with perfect monitoring and fi-

nite automata

To illustrate our result on approachability with discounting, we use Theorem 3 to

establish a Folk Theorem with perfect monitoring and finite automata.

The stage game: A normal form game G is defined by G = (Ai, ui)i∈N , where

N = {1, . . . , n} is a finite set of players, Ai is the set of player i’s actions and

ui :
∏

j∈N Aj → R is player i’s payoff function. We assume that Ai is finite for all

i ∈ N .
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Let A =
∏

i∈N Ai and A−i =
∏

j ̸=i Ai. We shall denote the maximum payoff in

absolute value some player can obtain by B = maxi∈N maxa∈A |ui(a)|. The set of

mixed action of player i ∈ N is denoted by ∆i. As above, we let ∆ =
∏

i∈N ∆i and

∆−i =
∏

j ̸=i∆i. For each i ∈ N , the mixed extension of player i’s payoff function is

also denoted by ui.

For any i ∈ N denote, respectively, the minmax payoff and a minmax pro-

file for player i by vi = minσ−i∈∆−i
maxai∈Ai

ui(ai, σ−i) and µi ∈ ∆, where µi
−i ∈

argminσ−i∈∆−i
maxai∈Ai

ui(ai, a−i) and µi
i ∈ argmaxai∈Ai

ui(ai, µ
i
−i).

Let U = {u ∈ co(u(A)) : ui ≥ vi for all i ∈ N} denote the set of mixed individually

rational payoffs and U0 = {u ∈ co(u(A)) : ui > vi for all i ∈ N}. The game G is full-

dimensional if the interior of U in Rn is nonempty.

The repeated game: The infinitely repeated game consists of an infinite se-

quence of repetitions of G. We denote the action of any player i in the repeated game

at any date t = 1, 2, 3, . . . by ati ∈ Ai . Also, let at = (at1, . . . , a
t
n) be the profile of

choices at t.

For any t ≥ 1, a t-stage history is a sequence h = (a1, . . . , at) ∈ At (the t-fold

Cartesian product of A). The set of all t -stage histories is denoted by Ht = At.

We represent the initial (empty) history by H0. The set of all histories is defined by

H =
⋃

t∈N0
Ht.

7 We also denote the length of any history h ∈ H by ℓ(h).

For any a ∈ A and k ∈ N, we denote a finite path consisting of a being played k

times consecutively by (a; k). Also, for two positive length histories h = (a1, . . . , aℓ(h))

and h̄ = (ā1, . . . , āℓ(h̄)) in H we define the concatenation of h and h̄ by h · h̄ =

(a1, . . . , aℓ(h), ā1, . . . , āℓ(h̄)).

We assume that players may choose mixed actions but observe only the real-

ization of those mixed actions. For all i ∈ N , a finite automata for player i is

fi = (Si, s
0
i , τi, gi) where Si is a finite set of states, s0i ∈ S is the initial state,

τi : S × A → S is the transition function and gi : S → ∆i is the behavior func-

tion; the probability of ai ∈ Ai being played at state si ∈ Si is denoted by gi(si)[ai].

The set of player i’s finite automata is denoted by Fi, and F =
∏

i∈N Fi.

7We use N0 and N to denote, respectively, the set of non-negative and positive integers.
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Given a finite automaton fi ∈ Fi and a history h ∈ H \ H0, let shi be defined

by induction as follows: Letting h = (a1, . . . , aℓ(h)), let ski = τi(s
k−1
i , ak) for each

1 ≤ k ≤ ℓ(h) and set shi = s
ℓ(h)
i ; in the case h = H0, set shi = s0i . The finite

automaton induced by fi at h is fi|h = (Si, s
h
i , τi, gi). We will use f |h to denote

(f1|h, . . . , fn|h) for every f = (f1, . . . , fn) ∈ F and h ∈ H.

Any finite automata f ∈ F induces, for every period t ∈ N, a probability distri-

bution π̃t(f) over pure actions and a probability distribution Pf,t over Ht as follows:

π̃1(f)[a] = Pf,1(a) = g(s0)[a] =
∏

i∈N gi(s
0
i )[ai] for all a ∈ A = H1 and, for any t > 1,

h ∈ Ht and a ∈ A, letting h = h̄ · ā with h̄ ∈ Ht−1, Pf,t(h) = Pf,t−1(h̄)g(s
h̄)[ā] and

π̃t(f)[a] =
∑

h∈Ht−1
Pf,t(h · a).

We assume that all players discount the future payoffs by a common discount

factor δ ∈ (0, 1). Thus, the payoff in the repeated game is given by Ui(f, δ) = (1 −

δ)
∑∞

t=1 δ
t−1
∑

a∈A ui(a)π̃
t(f)[a] for all i ∈ N (when the meaning is clear we will refer

to repeated game payoff by Ui(f) without an explicit reference to δ).

We denote the repeated game described above for discount factor δ ∈ (0, 1) by

G∞(δ). A finite automata f ∈ F is a Nash equilibrium of G∞(δ) if Ui(f) ≥ Ui(f̂i, f−i)

for all i ∈ N and f̂i ∈ Fi. Also, f ∈ F is a subgame-perfect equilibrium (SPE

henceforth) of G∞(δ) if f |h is a Nash equilibrium for all h ∈ H.

The following is our Folk Theorem for finite automata.

Theorem 4 Let G be a full-dimensional n-player game. Then, for all ε > 0, there

exist δ∗ ∈ (0, 1) such that, for all u ∈ U and δ ≥ δ∗, there exists a finite automata

SPE f ∈ F of G∞(δ) such that ‖U(f, δ)− u‖ < ε.

B.1 Proof of Theorem 4

For all x ∈ Rn, let ||x|| = maxi=1,...,n |xi|. Since U is compact, it suffices to show that

for all ε > 0 and all u ∈ U , there exists δ∗ ∈ (0, 1) such that for all δ ≥ δ∗, there

exists a finite automata SPE f of G∞(δ) with ‖U(f, δ)− u‖ < ε. Furthermore, since

U equals the closure of U0, we only need to show that the above holds for any u ∈ U0.

Therefore, we show that for all ε > 0 and u ∈ U0, there exists δ∗ ∈ (0, 1) such that
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for all δ ≥ δ∗, there exists a finite automata SPE f of G∞(δ) with ‖U(f, δ)− u‖ < ε.

For convenience, we normalize payoffs so that vi = 0 for all i ∈ N .

B.2 Preliminary results

We make the following construction, analogous to Gossner (1995), for each δ ∈ (0, 1),

t ∈ N and η > 0, and then show below that these parameters can be chosen to have

certain desirable properties.

For each i, d ∈ N with i 6= d, a ∈ A and ĥ = (â1, . . . , ât) ∈ Ht, let

n(a, ĥ) =
t∑

k=1

δk−11a(â
k),

n(a−i, ĥ) =
∑
bi∈Ai

n((bi, a−i), ĥ),

Φi(d, ĥ) =
1− δ

1− δt

∑
a∈A

|n(a, ĥ)− n(a−i, ĥ)µ
d
i (ai)|,

and

αi(d, ĥ, η) =

 1 if Φi(d, ĥ) < η,

0 otherwise.

Lemma 7 For every 0 < ε1 < 1, there exists η > 0 such that, for every d ∈ N ,

δ ∈ (0, 1), t ∈ N and ĥ = (â1, . . . , ât) ∈ Ht such that αi(d, ĥ, η) = 1 for all i 6= d,

1− δ

1− δt

t∑
k=1

δk−1ud(â
k) < ε1.

Proof. Let 0 < ε1 < 1. Moreover, let η > 0 be such that (n− 1)B|A|2η < ε1.

Consider d ∈ N , δ ∈ (0, 1), t ∈ N and ĥ = (â1, . . . , ât) ∈ Ht such that αi(d, ĥ, η) =

1 for all i 6= d. First, we reorder the players such that the player to be punished is

called player n, i.e. d = n. Second, we write, for each a ∈ A, n(a) instead of n(a, ĥ).

Then, for every a ∈ A and every i 6= n:

|n(a)− n(a−i)µ
n
i (ai)| < η

1− δt

1− δ
.

Fix a = (a1, a2, . . . , an) ∈ A. In particular, we have that

|n(a)−
∑
b1∈A1

n(b1, a2, . . . , an)µ
n
1 (a1)| < η

1− δt

1− δ
.
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Since, for every b1 ∈ A1,

|n(b1, a−1)−
∑
b2∈A2

n(b1, b2, a3, . . . , an)µ
n
2 (a2)| < η

1− δt

1− δ
,

we obtain:

|n(a)−
∑

(b1,b2)∈A1×A2

n(b1, b2, a3, . . . , an)µ
n
1 (a1)µ

n
2 (a2)| < 2|A|η1− δt

1− δ
.

Repeating the same procedure n− 1 times implies that∣∣∣∣∣∣n(a)−
∑

(b1,...,bn−1)∈A−n

n(b1, b2, . . . , bn−1, an)
n−1∏
j=1

µn
j (aj)

∣∣∣∣∣∣ < (n− 1)|A|η1− δt

1− δ
.

Hence,

1− δ

1− δt
|n(a)−

∑
(b1,...,bn−1)∈A−n

n(b1, b2, . . . , bn−1, an)
n−1∏
j=1

µn
j (aj)| < (n− 1)|A|η. (9)

As a ∈ A is arbitrary, it follows that (9) holds for all a ∈ A.

Define, for each an ∈ An,

rn(an) =
1− δ

1− δt

∑
b−n∈A−n

n(b−n, an).

We then have that rn ∈ ∆n since
∑

an
rn(an) = 1. It follows from the definition of rn

and (9) that, for all a ∈ A,∣∣∣∣∣ 1− δ

1− δt
n(a)− rn(an)

n−1∏
j=1

µn
j (aj)

∣∣∣∣∣ < (n− 1)|A|η.

Hence,
1− δ

1− δt

∑
a∈A

n(a)un(a) < un(rn, µ
n
−n) +B(n− 1)|A|2η < ε1,

and, therefore,

1− δ

1− δt

t∑
k=1

δk−1un(â
k) =

1− δ

1− δt

∑
a∈A

n(a)un(a) < ε1.

This concludes the proof.
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Fix i, d ∈ N with i 6= d and let µ̃d
i be player i’s strategy consisting of playing

µd
i each period independently of the history. Given a strategy σ−i for the remaining

players and t ∈ N, let P(µ̃d
i ,σ−i),t

be the probability measure on Ht induced by (µ̃d
i , σ−i).

Given c ∈ (0, 1), for each δ ∈ (0, 1), let t(c, δ) = 1 if δ ≤ c and, if δ > c, let t(c, δ)

be the highest integer t ∈ N such that δt ≥ c. Hence, |δt(c,δ)− c| < (1− δ)/δ whenever

δ > c and, therefore, limδ→1 δ
t(c,δ) = c.

Lemma 8 For all c ∈ (0, 1), η > 0 and ε2 > 0, there exists δ̄ ∈ (0, 1) such that, for

all δ ≥ δ̄,

P(µ̃d
i ,σ−i),t(c,δ)

(
{ĥ ∈ Ht(c,δ) : Φi(d, ĥ) ≥ η}

)
< ε2

for all i, d ∈ N with i 6= d and σ−i ∈ F−i.

Proof. This result will be a consequence of Theorem 3. Let c ∈ (0, 1), η > 0 and

ε2 > 0 be given. Note first that it is enough to show that, for each i, d ∈ N with

i 6= d, there exists δ̄i,d ∈ (0, 1) such that, for all δ ≥ δ̄i,d,

P(µ̃d
i ,σ−i),t(c,δ)

(
{ĥ ∈ Ht(c,δ) : Φi(d, ĥ) ≥ η}

)
< ε2

for all σ−i ∈ F−i. Indeed, the conclusion of the lemma will follow by letting δ̄ =

maxi,d:i ̸=d δ̄i,d.

Fix i, d ∈ N such that i 6= d. We embed A in R|A| by, first, letting θ : A →

{1, . . . , |A|} be 1-1 and onto and, second, letting x(a) ∈ R|A| be such that

xl(a) =

 1 if l = θ(a),

0 otherwise.

Let X = {x(a) : a ∈ A} and m(a) = 1x(a) for all a ∈ A. Consider a 2-player

game where player I’s action set is Ai and player II’s action set is A−i, and hence

P = ∆i and Q = ∆−i. Let p ∈ P be defined by pai = µd
i (ai) for all ai ∈ Ai and let

Λi : co(X) → R be defined by

Λi(z) =
∑
a∈A

∣∣∣∣∣za − ∑
bi∈Ai

paiz(bi,a−i)

∣∣∣∣∣
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for each z ∈ co(X). Since Λi is continuous and co(X) is compact, there exists

0 < ε < ε2 such that

||z − z′|| < ε and z, z′ ∈ co(X) imply |Λi(z)− Λi(z
′)| < η. (10)

We have that R(p) = {z ∈ co(X) : Λi(z) = 0}. Indeed, if z ∈ R(p), then

z =
∑

a−i
qa−i

∑
ai
paix(a) for some q ∈ Q. Thus, for each a ∈ A, za = paiqa−i

and,

therefore, Λi(z) =
∑

a∈A

∣∣paiqa−i
−
∑

bi∈Ai
paipbiqa−i

∣∣ = ∑a∈A

∣∣paiqa−i
− paiqa−i

∣∣ = 0.

Conversely, let z ∈ co(X) be such that Λi(z) = 0. Since z ∈ co(X), then z =∑
a λax(a) for some {λa}a∈A ⊂ R+ with

∑
a λa = 1 and, since Λi(z) = 0, then

za =
∑

bi∈Ai
paiz(bi,a−i) for each a ∈ A. Define qa−i

=
∑

bi∈Ai
λ(bi,a−i) for all a−i ∈ A−i

and note that q ∈ Q. Since za = λa for all a ∈ A given the definition of x(a), it

follows from za = pai
∑

bi∈Ai
z(bi,a−i) for each a ∈ A that λa = paiqa−i

for each a ∈ A.

Thus, z ∈ R(p).

It then follows by Theorem 3 that, with f ≡ p, there exists δ∗ ∈ (0, 1) and T ∈ N

such that

P(f,g),t

({
(x1, . . . , xt) ∈ X t : d

(
1− δ

1− δt

t∑
k=1

δk−1xk, R(p)

)
≥ ε

})
< ε (11)

holds for each δ ≥ δ∗, t ≥ T and g ∈ FII .

Let γ > 0 be such that 1 − c > γ and let δ̄i,d ∈ (δ∗, 1) be such that δ > c and

1 − δT < γ for each δ ≥ δ̄i,d. Thus, δT > 1 − γ > c and, hence, t(c, δ) ≥ T for each

δ ≥ δ̄i,d. Thus, for each δ ≥ δ̄i,d and g ∈ FII , we have that δ > δ∗ and t(c, δ) ≥ T ,

and (11) implies that

P(f,g),t(c,δ)

d

 1− δ

1− δt(c,δ)

t(c,δ)∑
k=1

δk−1xk, R(p)

 ≥ ε


 < ε.

Thus, by (10),

P(f,g),t(c,δ)

Λi

 1− δ

1− δt(c,δ)

t(c,δ)∑
k=1

δk−1xk

 ≥ η


 < ε < ε2.

Let σ−i ∈ F−i be given. Define g ∈ FII as follows: for all t ∈ N and (x1, . . . , xt) ∈

X t, let, for each 1 ≤ k ≤ t, ak ∈ A be such that xk = x(ak) and set g(x1, . . . , xt) =
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σ−i(a1, . . . , at). Hence, we have that

P(µ̃d
i ,σ−i),t(c,δ)

(â1, . . . , ât(c,δ)) = P(f,g),t(c,δ)(x(â1), . . . , x(ât(c,δ))).

Furthermore, note that, for each ĥ = (â1, . . . , ât(c,δ)) ∈ Ht(c,δ),

Φi(d, ĥ) = Λi

 1− δ

1− δt(c,δ)

t(c,δ)∑
k=1

δk−1x(âk)

 .

Hence, it follows that

P(µ̃d
i ,σ−i),t(c,δ)

(
{ĥ ∈ Ht(c,δ) : Φi(d, ĥ) ≥ η}

)
< ε2,

as desired.

B.3 Parametrization

Fix any ε > 0 and any u ∈ U0. Since G is full-dimensional, U0 equals the closure of

int(U0) and, therefore, we may assume that u ∈ int(U0). Let u′ ∈ int(U0) such that

u′ < u, and ρ > 0 be such that (i) u′
i + ρ < ui for all i ∈ N and (ii) ||û − u′|| ≤ ρ

implies û ∈ U0.

Let ε1 > 0 such that

ε1 < min
d∈N

u′
d. (12)

Let η > 0 be as in Lemma 7, corresponding to ε1 just defined. Let 0 < ε2 < 1 be

such that

(1− 2ε2)
n−1 ε1 +

(
1− (1− 2ε2)

n−1)B < min
d∈N

u′
d. (13)

Define

ε̄ = (1− 2ε2)
n−1 ε1 +

(
1− (1− 2ε2)

n−1)B.

Let c ∈ (0, 1) be such that

cρε2 > (1− c)2B. (14)

Let δ̄ be as in Lemma 8, corresponding to ε2, η and c just defined.
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Define ξ > 0 to be such that

2ξ < ε, (15)

(1− c)(min
d

u′
d − ε̄) > (1 + c)2ξ, (16)

c(ρε2 − 4ξ) > (1− c)2B, (17)

Such ξ > 0 exists due to ε > 0, (13) and (14), respectively.

For all i = 1, . . . , n and β ∈ Rn, let ui(β) be defined by ui
i(β) = u′

i and ui
j(β) =

u′
j + βjρ. Furthermore, define

Wi = {ui(β) : βj ∈ {0, 1} for all j ∈ N \ {i}}.

By our choice of ρ (specifically, by (ii) above), then Wi ⊆ U0. Define Ŵ = ∪n
i=1Wi.

Since Ŵ is finite, order Ŵ = {u1, . . . , uω̄}, where ω̄ = |Ŵ |. For notational conve-

nience, let u0 = u and W = Ŵ ∪ {u0}.

For all k ∈ N, let Vk be the set of u′ ∈ co(u(A)) such that u′ =
∑

a∈A pau(a)/k

for some {pa}a∈A satisfying pa ∈ N0 and
∑

a∈A pa = k. Using an analogous argument

to Sorin (1992, Proposition 1.3), it follows that Vk converges to co(u(A)). Therefore,

let K ∈ N such that

co(u(A)) ⊆ ∪x∈VK
Bξ(x). (18)

For all ω ∈ {0, . . . , ω̄}, let xω ∈ VK be such that

||xω − uω|| < ξ (19)

and {pωa}a∈A be such that 1
K

∑K
a∈A pωau(a) = xω. Letting A = {a1, . . . , ar} where

r = |A|, define, for each ω ∈ {0, . . . , ω̄}, π̂(ω) = (π̂(ω),1, π̂(ω),2, . . .) as the repetition of

the cycle

(a1, . . . , a1︸ ︷︷ ︸
pω
a1

times

, . . . , ar, . . . , ar︸ ︷︷ ︸
pωar times

).

In the construction below, π̂(ω) will be the equilibrium path when ω = 0 and a “reward

path” when ω > 0.

Let δ∗ ∈ [δ̄, 1) be such that for all δ ≥ δ∗, letting t(c, δ) be as in Lemma 8,
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sup
x∈[−B,B]K

∣∣∣∣∣ 1− δ

1− δK

K∑
k=1

δk−1xk − 1

K

K∑
k=1

xk

∣∣∣∣∣ < ξ, (20)

δt(c,δ)(ρε2 − 4ξ) > (1− δt(c,δ))2B, and (21)

u′
d − 2ξ > (1− δ)B + δ(1− δt(c,δ))ε̄+ δ1+t(c,δ)(u′

d + 2ξ) for all d ∈ N. (22)

Note that such δ∗ ∈ (0, 1) exists because of (16) and (17), and because the limit of

the left hand side of (20) as δ → 1 is 0.

Fix any δ ≥ δ∗ and set T = t(c, δ). We will now demonstrate the result by

constructing a finite automata SPE f with ||U(f)− u|| < ε.

B.4 Punishment play

Next we define the mixed actions to be played during the punishment phases.

Let C : W → Rn be defined by setting, for all 0 ≤ ω ≤ ω̄,

C(uω) =
1− δ

1− δK

K∑
k=1

δk−1u(π̂(ω),k).

We next define a function w : N × HT → C(W ) that determines the reward payoff

after a punishment phase. Let d ∈ N and ĥ = (â1, . . . , âT ) ∈ HT . Set, for all j 6= d,

βj(d, ĥ) = αj(d, ĥ, η).

Also, set

w(d, ĥ) = C(ud(β(d, ĥ))).

Let σ∗ : N ×∪T−1
t=0 Ht → ∆ and V ∗ : N ×∪T−1

t=0 Ht → Rn be such that the following

property holds: For all d ∈ N , 0 ≤ t ≤ T − 1, ĥ ∈ Ht and i ∈ N , then:

(a) If ℓ(ĥ) = T − 1, then σ∗
i (d, ĥ) solves

max
σi∈∆i

[(1− δ)ui(σi, σ
∗
−i(d, ĥ)) + δ

∑
a∈A

(σi, σ
∗
−i(d, ĥ))[a]wi(d, ĥ · a)]

and

V ∗
i (d, ĥ) = (1− δ)ui(σ

∗(d, ĥ)) + δ
∑
a∈A

σ∗(d, ĥ)[a]wi(d, ĥ · a).
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(b) If ℓ(ĥ) < T − 1, then σ∗
i (d, ĥ) solves

max
σi∈∆i

[(1− δ)ui(σi, σ
∗
−i(d, ĥ)) + δ

∑
a∈A

(σi, σ
∗
−i(d, ĥ))[a]V

∗
i (d, ĥ · a)]

and

V ∗
i (d, ĥ) = (1− δ)ui(σ

∗(d, ĥ)) + δ
∑
a∈A

σ∗(d, ĥ)[a]V ∗
i (d, ĥ · a).

The existence of σ∗ and V ∗ can be established using, for each fixed d ∈ N ,

backwards induction and Nash’s existence theorem.

For notational convenience, for all d ∈ N , let σd = σ∗(d, ·).

Lemma 9 For all i, d ∈ N , with i 6= d,

Pσd,T

(
{ĥ ∈ HT : Φi(d, ĥ) ≥ η}

)
< 2ε2.

Proof. Suppose not. Then, for some i, d ∈ N with i 6= d,

Pσd,T

(
{ĥ ∈ HT : Φi(d, ĥ) ≥ η}

)
≥ 2ε2.

Consider strategy µ̃d
i for player i and let Vi(d,H0) be player i’s expected discounted

payoff from (µ̃d
i , σ

d
−i), i.e.

Vi(d,H0) = (1− δ)
∑

ĥ=(â1,...,âT )∈HT

P(µ̃d
i ,σ

d
−i),T

(ĥ)

(
T∑

k=1

δt−1ui(â
k) + δTwi(d, ĥ)

)
.

Given the definition of σ∗, we have that

V ∗
i (d,H0) ≥ Vi(d,H0). (23)

Furthermore, by Lemma 8, (19) and (20),

Vi(d,H0) ≥ −B(1− δT ) + δT (u′
i − 2ξ) + δTρ(1− ε2).

8

By (19) and (20),

V ∗
i (d,H0) ≤ B(1− δT ) + δT (u′

i + 2ξ) + δTρ(1− 2ε2).

8It is interesting to note that, since σd
−i is fixed, it would suffice in Lemma 8 to establish that,

for each σ−i, player i has a strategy σi such that he, player i, passes the test with a probability of

at least 1− ε2. This could be achieved by using Theorem 2 to show that R(p) is securable.
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Hence, by (21),

V ∗
i (d,H0)− Vi(d,H0) ≤ 2B(1− δT ) + 4ξδT − ρε2δ

T < 0.

But this contradicts (23).

B.5 The finite automata

We next define the finite automata f , which is such that all players have a common

set of states S, a common initial state s0 and a common transition function τ :

S × A → S. The set of states is S = (W × {1, . . . , K}) ∪
(
N × ∪T−1

t=0 Ht

)
, with

initial state s0 = (u0, 1). The transition function τ is defined as follows: First, let

Di(a) = {(a′i, a−i) ∈ A : a′i 6= ai} for each i ∈ N and a ∈ A. Then, for each

(s, a) ∈ S × A,

τ(s, a) =



(uω, (k + 1)modK) if s = (uω, k) ∈ W × {1, . . . , K} and a = π̂(ω),k,

(d,H0) if s ∈ W × {1, . . . , K}, and a ∈ Dd(π̂
(ω),k) for some d ∈ N,

(d, h · a) if s = (d, h) ∈ N × ∪T−2
t=0 Ht,

(ud(β(d, h · a)), 1) if s = (d, h) ∈ N ×HT−1.

Finally, the behavior function is g = (g1, . . . , gn) : S → ∆ defined by

g(s) =

 π̂(ω),k if s = (uω, k) ∈ W × {1, . . . , K},

σd(h) if s = (d, h) ∈ N × ∪T−1
t=0 Ht.

Let f = (S, s0, τ, g).

We have that U(f, δ) = 1−δ
1−δK

∑K
k=1 δ

k−1u(π̂(0),k) and, by (19), (20) and (15),

||U(f, δ)− u|| < 2ξ < ε.

Let f |s = (S, s, τ, g) for each s ∈ S; f |s is the automata obtained by changing the

initial state from s0 to s. To complete the proof of the theorem, we next establish

the following for all s ∈ S, d ∈ N and ad ∈ Ad:

Ud(f |s) ≥ (1− δ)ud(ad, g−d(s)) + δUd(f |τ(s, (ad, g−d(s))). (24)

By construction, (24) holds for each s ∈ N × ∪T−1
t=0 Ht. Consider then the case

s ∈ W × {1, . . . , K}. In this case, the left-hand side of (24) is, by (19) and (20),
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greater or equal to u′
d − 2ξ. By Lemmas 7 and 9, the right-hand side of (24) is less

than or equal to

(1− δ)B + δ(1− δT )ε̄+ δT+1(u′
d + 2ξ).

Thus, by (22), (24) holds.

C Discounted repeated two-person games with in-

complete information

In this section we consider discounted repeated two-person games with incomplete

information. We use our approachability result to obtain a “punishment” strategy

that holds the payoff of the other player below a certain payoff profile (one for each

of his possible types). Our main result of this section shows the existence of such

strategies when the upper bound on payoffs is individually rational as in in Hörner

and Lovo (2009).

The setting is as described in Hörner and Lovo (2009). There are two players, 1

and 2. The set of player i’s action is Ai, i = 1, 2, and is finite. There is a J ×K array

of payoff functions ujk : A → R2; player 1 is told the value of j ∈ {1, . . . , J} in period

1 but not that of k ∈ {1, . . . , K}; player 2 is told the value of k in period 1 but not

that of j. Let T1 = {1, . . . , J} and T2 = {1, . . . , K} be the set of types of each player.

Players select a mixed action profile in each period t = 1, 2, . . .. Realized actions

are observable, mixed action and realized rewards are not. Histories are, therefore,

sequences of actions: Ht = At. A strategy for player i, i = 1, 2, is fi : Ti × H →

∆(Ai). Let Fi be the set of strategies for each type of player i, i.e. the set of all

functions mapping H into ∆(Ai). The set of strategies profiles is then F J
1 × FK

2 .

Given a common discount factor δ ∈ (0, 1), a type profile (j, k) and a strategy profile

f ∈ F J
1 × FK

2 , (f j
1 , f

k
2 ) ∈ F1 × F2 induces a probability measure P(fj

1 ,f
k
2 ),∞

on A∞ as

in Section 2; player i’s payoff is then

vjki (f, δ) = (1− δ)

∫
A∞

∞∑
k=1

δk−1ujk
i (ak)dP(fj

1 ,f
k
2 ),∞

(a∞).
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Since vjki (f, δ) only depends on f j
1 and fk

2 , we also let vjki (f j
1 , f

k
2 , δ) = vjki (f1, f2, δ).

If player 1 of type j has belief pj = (pj,1, . . . , pj,K) about player 2’s types, then the

payoff of type j of player 1 is
K∑
k=1

pj,kv
jk
i (f, δ),

and analogously for type k of player 2.

Approachability is used in repeated games with incomplete information to show

the existence of strategies for each type of player 2 that guarantee that the player 1’s

payoff is below a certain target for each of player 1’s types; such strategy of player

2 is then used to punish player 1 in case the latter deviates from some agreed upon

path. Following Hörner and Lovo (2009), the payoff vectors vk1 = (v1k1 , . . . , vJk1 ) ∈ RJ

that are feasible as targets for type k of player 2 for all discount factors sufficiently

close to 1 are those that are strictly individually rational in the sense that, for each

p ∈ ∆({1, . . . , J}),

p · vk1 > bk1(p),

where bk1(p) is the value of the two-person zero-sum game with payoff matrix p · uk
1.

Indeed, using our Theorem 2, we obtain the following result.

Theorem 5 Let k ∈ {1, . . . , K}. If vk1 is strictly individually rational, then there ex-

ists δ∗ ∈ (0, 1) such that, for each δ ≥ δ∗, there exists fk
2 ∈ F2 such that vjk1 (f1, f

k
2 , δ) <

vjk1 for all j ∈ {1, . . . , J} and f1 ∈ F1.

This result is stated without proof as part of the construction in Hörner and Lovo

(2009), in the specification of the actions during the punishment phases on p. 464

and in the specification of equilibrium strategies on p. 477.

To see how Theorem 2 applies, let X = uk
1(A) ⊆ RJ and m(a) = 1uk

1(a)
(i.e. the

Dirac measure at uk
1(a) ∈ RJ).

Lemma 10 Let k ∈ {1, . . . , K}. If vk1 ∈ RJ is strictly individually rational, then

there exists η > 0 such that {y ∈ RJ : yj ≤ vjk1 − η for each j = 1, . . . , J} is

approachable with discounting by player 2.
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Proof. Let η > 0 be such that p · vk1 − η > bk1(p) for each p ∈ ∆({1, . . . , J}) (note

that p 7→ p ·vk1 −bk1(p) is continuous). Denote S = {y ∈ RJ : yj ≤ vjk1 −η for each j =

1, . . . , J} and suppose that S is not approachable with discounting by player 2. It

follows by Theorem 2 that there exists p0 ∈ ∆(A1) such that R(p0) ∩ S = ∅.

By the Separating Hyperplane Theorem (S is closed, R(p0) is compact, and both

are nonempty and convex), there exists π ∈ RJ \ {0} and c ∈ R such that

min
q∈∆(A2)

π · uk
1(p0, q) > c > π · y for each y ∈ S,

noting thatR(p0) = {uk
1(p0, q) : q ∈ ∆(A2)}. We may assume that ||π||1 =

∑J
j=1 |πj| =

1 (if not, replace π with π/||π||1). Moreover, πj ≥ 0 for each j = 1, . . . , J ; if instead

πj < 0 for some j = 1, . . . , J , consider, for each j′ 6= j, yj′ = vj
′k

1 −η and let yj → −∞

to obtain y ∈ S and π · y → ∞.

Thus, π ∈ ∆({1, . . . , J}) and

min
q∈∆(A2)

π·uk
1(p0, q) > c > π·vk1−η > bk1(π) = max

p∈∆(A1)
min

q∈∆(A2)
π·uk

1(p, q) ≥ min
q∈∆(A2)

π·uk
1(p0, q),

a contradiction. This contradiction shows that S is approachable with discounting

by player 2.

The argument to establish Theorem 5 is completed using a result analogous to

Cripps and Thomas (2003, Result 2, p. 440), which we establish using Theorem 2.

Lemma 11 Let k ∈ {1, . . . , K}. If vk1 ∈ RJ and η > 0 are such that {y ∈ RJ :

yj ≤ vjk1 − η for each j = 1, . . . , J} is approachable with discounting by player 2, then

there exists δ∗ ∈ (0, 1) such that, for each δ ≥ δ∗, there exists fk
2 ∈ F2 such that

vjk1 (f1, f
k
2 , δ) < vjk1 for all j ∈ {1, . . . , J} and f1 ∈ F1.

Proof. Let B > 0 be such that |uk
1(a)| ≤ B for all a ∈ A and ε > 0 be

such that 2ε < η and εB + (1 − ε)(vjk1 − η/2) < vjk1 for each j = 1, . . . , J . Let

S = {y ∈ RJ : yj ≤ vjk1 − η for each j = 1, . . . , J}; since S is approachable with

discounting by player 2, there exists δ∗ ∈ (0, 1) such that, for every δ ≥ δ∗, there exist

f̃2 : ∪∞
t=0X

t → ∆(A2) such that, for every f̃1 : ∪∞
t=0X

t → ∆(A2),

P(f̃1,f̃2),∞

({
(x1, x2, . . .) ∈ X∞ : d

(
(1− δ)

∞∑
t=1

δt−1xt, S

)
≥ ε

})
< ε.
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Define f2 ∈ F2 by f2(H0) = f̃2(X
0) and, for each h = (a1, . . . , at) ∈ Ht with t > 0,

f2(h) = f̃2(u
k
1(a1), . . . , u

k
1(at)). Moreover, for each f1 ∈ F1, define f̃1 : ∪∞

t=0X
t →

∆(A1) as follows: f̃1(X
0) = f1(H0) and, for each xt = (x1, . . . , xt) ∈ X t with t > 0,

f̃1(x
t)[a1] =

∑
h∈Ht:uk

1(h)=xt P(f1,f2),t(h)f1(h)[a1]

P(f1,f2),t([x
t])

,

where uk
1(h) = (uk

1(a1), . . . , u
k
1(at)) for each h = (a1, . . . , at) ∈ Ht with t > 0 and

[xt] = {h ∈ Ht : u
k
1(h) = xt} (if P(f1,f2),t([x

t]) = 0, then f̃1(x
t) is defined arbitrarily,

e.g. f̃1(x
t) is uniform).

Given the above definition, it follows that

P(f1,f2),t([x
t]) = P(f̃1,f̃2),t

(xt)

for each t ∈ N and xt ∈ X t. Indeed, for each t ∈ N, assuming that the equality holds

for t− 1, we have that

P(f1,f2),t([x
t]) =

∑
h∈Ht−1:uk

1(h)=xt−1

P(f1,f2),t−1(h)
∑
a∈A

f1(h)[a1]f2(h)[a2]1xt(u
k
1(a))

= P(f1,f2),t−1([x
t−1])

∑
a∈A

f̃1(x
t−1)[a1]f̃2(x

t−1)[a2]1xt(u
k
1(a))

= P(f̃1,f̃2),t−1(x
t−1)

∑
a∈A

f̃1(x
t−1)[a1]f̃2(x

t−1)[a2]1xt(u
k
1(a)) = P(f̃1,f̃2),t

(xt).

The above then implies that, for each T ∈ N,∫
XT

1− δ

1− δT

T∑
t=1

δt−1xtdP(f̃1,f̃2),T
(xT ) =

∫
AT

1− δ

1− δT

T∑
t=1

δt−1uk
1(at)dP(f1,f2),T (a

T )

and, hence,∫
X∞

(1− δ)
∞∑
t=1

δt−1xtdP(f̃1,f̃2),∞(x∞) =

∫
A∞

(1− δ)
∞∑
t=1

δt−1uk
1(at)dP(f1,f2),∞(a∞).

Thus, it suffices to show that
∫
X∞(1− δ)

∑∞
t=1 δ

t−1xtdP(f̃1,f̃2),∞(x∞) < vk1 . Let

C = {x∞ ∈ X∞ : d

(
(1− δ)

∞∑
t=1

δt−1xt, S

)
< ε}

and note that x∞ ∈ C implies that, for all j = 1, . . . , J and some y ∈ S, (1 −

δ)
∑∞

t=1 δ
t−1xj

t ≤ yj + ε < vjk1 − (η − ε) < vjk1 − η/2. Hence, for each j = 1, . . . , J ,∫
X∞

(1− δ)
∞∑
t=1

δt−1xj
tdP(f̃1,f̃2),∞(x∞) ≤ P(f̃1,f̃2),∞(C)(vjk1 − η/2) + (1− P(f̃1,f̃2),∞(C))B

≤ εB + (1− ε)(vjk1 − η/2) < vjk1 .
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This concludes the proof.

Combining Lemmas 10 and 11 yields Theorem 5.
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